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PREFACE

It is with great pleasure that we introduce the fifth edition of Regression Analysis
by Example first published in 1977. The statistical community has been most
supportive, and we have benefitted greatly from their suggestions in improving the
text.

Regression analysis has become one of the most widely used statistical tools
for analyzing multifactor data. It is appealing because it provides a conceptually
simple method for investigating functional relationships among variables. The
standard approach in regression analysis is to take data, fit a model, and then
evaluate the fit using statistics such as ¢, ', and R%. Our approach is much broader.
We view regression analysis as a set of data analytic techniques that examine the
interrelationships among a given set of variables. The emphasis is not on formal
statistical tests and probability calculations. We argue for an informal analysis
directed toward uncovering patterns in the data.

We utilize most standard and some not so standard summary statistics on the
basis of their intuitive appeal. We rely heavily on graphical representations of the
data, and employ many variations of plots of regression residuals. We are not overly
concerned with precise probability evaluations. Graphical methods for exploring
residuals can suggest model deficiencies or point to troublesome observations.
Upon further investigation into their origin, the troublesome observations often
turn out to be more informative than the well-behaved observations. We notice
often that more information is obtained from a quick examination of a plot of
residuals than from a formal test of statistical significance of some limited null

xiii
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Xiv PREFACE

hypothesis. In short, the presentation in the chapters of this book is guided by the
principles and concepts of exploratory data analysis.

Our presentation of the various concepts and techniques of regression analysis
relies on carefully developed examples. In each example, we have isolated one
or two techniques and discussed them in some detail. The data were chosen to
highlight the techniques being presented. Although when analyzing a given set of
data it is usually necessary to employ many techniques, we have tried to choose the
various data sets so that it would not be necessary to discuss the same technique
more than once. Our hope is that after working through the book, the reader will be
ready and able to analyze his/her data methodically, thoroughly, and confidently.

The emphasis in this book is on the analysis of data rather than on formulas,
tests of hypotheses, or confidence intervals. Therefore no attempt has been made
to derive the techniques. Techniques are described, the required assumptions are
given and, finally, the success of the technique in the particular example is assessed.
Although derivations of the techniques are not included, we have tried to refer the
reader in each case to sources in which such discussion is available. Our hope is
that some of these sources will be followed up by the reader who wants a more
thorough grounding in theory.

‘We have taken for granted the availability of a computer and a statistical package.
Recently there has been a qualitative change in the analysis of linear models, from
model fitting to model building, from overall tests to clinical examinations of
data, from macroscopic to the microscopic analysis. To do this kind of analysis
a computer is essential and we have assumed its availability. Almost all of the
analyses we use are now available in software packages. We are particularly
heartened by the arrival of the package R, available on the Internet under the
General Public License (GPL). The package has excellent computing and graphical
features. It is also free!

The material presented is intended for anyone who is involved in analyzing data.
The book should be helpful to those who have some knowledge of the basic concepts
of statistics. In the university, it could be used as a text for a course on regression
analysis for students whose specialization is not statistics, but, who nevertheless
use regression analysis quite extensively in their work. For students whose major
emphasis is statistics, and who take a course on regression analysis from a book
at the level of Rao (1973), Seber (1977), or Sen and Srivastava (1990), this book
can be used to balance and complement the theoretical aspects of the subject with
practical applications. Outside the university, this book can be profitably used
by those people whose present approach to analyzing multifactor data consists of
looking at standard computer output (¢, F, R?, standard errors, etc.), but who want
to go beyond these summaries for a more thorough analysis.

The book has a Website: http://www.aucegypt.edu/faculty/hadi/RABES. This
Website contains, among other things, all the data sets that are included in this book
and more.
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PREFACE XV

Major changes have been made in streamlining the text, removing ambiguities,
and correcting errors pointed out by readers and others detected by the authors. New
examples of data sets have been added in Chapter 1. The material on centering and
scaling has been moved from Chapter 9 to Section 3.6. Chapters 9 and 10 have
been rearranged, so the updated material flows more smoothly. The Appendix to
Chapter 10 now includes a brief description of surrogate ridge regression, a recently
introduced topic in the literature. New references have also been added. We have
rewritten some of the exercises, and increased the number of exercises at the end of
the chapters. We feel that the exercises reinforce the understanding of the material
in the preceding chapters.

We have attempted to write a book for a group of readers with diverse back-
grounds. We have also tried to put emphasis on the art of data analysis rather than
on the development of statistical theory.

We are fortunate to have had assistance and encouragement from several friends,
colleagues, and associates. Some of our colleagues at New York University and
Cornell University have used portions of the material in their courses and have
shared with us their comments and comments of their students. Special thanks
are due to our friend and former colleague Jeffrey Simonoff (New York Univer-
sity) for comments, suggestions, and general help. The students in our classes on
regression analysis have all contributed by asking penetrating questions and de-
manding meaningful and understandable answers. Our special thanks go to Nedret
Billor (Cukurova University, Turkey) and Sahar El-Sheneity (Cornell University)
for their very careful reading of an earlier edition of this book. We also thank Amy
Hendrickson for preparing the Latex style files and for responding to our Latex
questions, and Dean Gonzalez for help with the production of some of the figures.

SAMPRIT CHATTERJEE
ALl S. HADI

Brooksville, Maine
Cairo, Egypt
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CHAPTER 1

INTRODUCTION

1.1 WHAT IS REGRESSION ANALYSIS?

Regression analysis is a conceptually simple method for investigating functional re-
lationships among variables. A real estate appraiser may wish to relate the sale price
of a home from selected physical characteristics of the building and taxes (local,
school, county) paid on the building. We may wish to examine whether cigarette
consumption is related to various socioeconomic and demographic variables such
as age, education, income, and price of cigarettes. The relationship is expressed in
the form of an equation or a model connecting the response or dependent variable
and one or more explanatory or predictor variables. In the cigarette consumption
example, the response variable is cigarette consumption (measured by the number
of packs of cigarette sold in a given state on a per capita basis during a given year)
and the explanatory or predictor variables are the various socioeconomic and de-
mographic variables. In the real estate appraisal example, the response variable is
the price of a home and the explanatory or predictor variables are the characteristics
of the building and taxes paid on the building.

We denote the response variable by Y and the set of predictor variables by
X1, X2, -+, Xp, where p denotes the number of predictor variables. The true
relationship between Y and X, X», - - -, X, can be approximated by the regression

Regression Analysis by Example, Fifth Edition. By Samprit Chatterjee and Ali S. Hadi
Copyright (©) 2012 John Wiley & Sons, Inc.
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2 INTRODUCTION

model
Y = f(X1,X2,---, Xp) +5¢, (L.1)

where € is assumed to be a random error representing the discrepancy in the
approximation. It accounts for the failure of the model to fit the data exactly. The
function f(X;, Xs,- - -, X,) describes the relationship between Y and X3, Xo, - - -,
Xp. An example is the linear regression model

Y =00+ X1+ BXo+ -+ B Xy, +e, (1.2)

where 5y, 81, - - -, Bp, called the regression parameters or coefficients, are unknown
constants to be determined (estimated) from the data. We follow the commonly
used notational convention of denoting unknown parameters by Greek letters.

The predictor or explanatory variables are also called by other names such as
independent variables, covariates, regressors, factors, and carriers. The name
independent variable, though commonly used, is the least preferred, because in
practice the predictor variables are rarely independent of each other.

1.2 PUBLICLY AVAILABLE DATA SETS

Regression analysis has numerous areas of applications. A partial list would include
economics, finance, business, law, meteorology, medicine, biology, chemistry,
engineering, physics, education, sports, history, sociology, and psychology. A few
examples of such applications are given in Section 1.3. Regression analysis is
learned most effectively by analyzing data that are of direct interest to the reader.
We invite the readers to think about questions (in their own areas of work, research,
or interest) that can be addressed using regression analysis. Readers should collect
the relevant data and then apply the regression analysis techniques presented in this
book to their own data. To help the reader locate real-life data, this section provides
some sources and links to a wealth of data sets that are available for public use.

A number of data sets are available in books and on the Internet. The book by
Hand et al. (1994) contains data sets from many fields. These data sets are small
in size and are suitable for use as exercises. The book by Chatterjee, Handcock,
and Simonoff (1995) provides numerous data sets from diverse fields. The data
are included in a diskette that comes with the book and can also be found at the
Website. !

Data sets are also available on the Internet at many other sites. Some of the
Websites given below allow the direct copying and pasting into the statistical
package of choice, while others require downloading the data file and then importing
them into a statistical package. Some of these sites also contain further links to yet
other data sets or statistics-related Websites.

The Data and Story Library (DASL, pronounced “dazzle") is one of the most
interesting sites that contains a number of data sets accompanied by the “story"” or

! http://www.stern.nyu.edu/~jsimonof/Casebook
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SELECTED APPLICATIONS OF REGRESSION ANALYSIS 3

background associated with each data set. DASL is an online library? of data files
and stories that illustrate the use of basic statistical methods. The data sets cover
a wide variety of topics. DASL comes with a powerful search engine to locate the
story or data file of interest.

Another Website, which also contains data sets arranged by the method used in
the analysis, is the Electronic Dataset Service.> The site also contains many links
to other data sources on the Internet.

Finally, this book has a Website*, which contains, among other things, all the
data sets that are included in this book and more. These and other data sets can be
found at the book’s Website.

1.3 SELECTED APPLICATIONS OF REGRESSION ANALYSIS

Regression analysis is one of the most widely used statistical tools because it
provides simple methods for establishing a functional relationship among variables.
It has extensive applications in many subject areas. The cigarette consumption and
the real estate appraisal, mentioned above, are but two examples. In this section, we
give a few additional examples demonstrating the wide applicability of regression
analysis in real-life situations. Some of the data sets described here will be used
later in the book to illustrate regression techniques or in the exercises at the end of
various chapters.

1.3.1 Agricultural Sciences

The Dairy Herd Improvement Cooperative (DHI) in upstate New York collects
and analyzes data on milk production. One question of interest here is how to
develop a suitable model to predict current milk production from a set of measured
variables. The response variable (current milk production in pounds) and the
predictor variables are given in Table 1.1. Samples are taken once a month during
milking. The period that a cow gives milk is called lactation. Number of lactations is
the number of times a cow has calved or given milk. The recommended management
practice is to have the cow produce milk for about 305 days and then allow a 60-
day rest period before beginning the next lactation. The data set, consisting of
199 observations, was compiled from the DHI milk production records. The Milk
Production data can be found at the book’s Website.

2 http://lib.stat.cmu.edw/DASL
3 http://www-unix.oit.umass.edu/~statdata
4 http://www.aucegypt.edu/faculty/hadi/RABES
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Table 1.1 Variables in Milk Production Data

Variable  Definition

Current Current month milk production in pounds
Previous  Previous month milk production in pounds

Fat Percent of fat in milk

Protein Percent of protein in milk

Days Number of days since present lactation

Lactation Number of lactations

179 Indicator variable (0 if Days < 79 and 1 if Days > 79)

Table 1.2 Variables in Right-To-Work Laws Data

Variable Definition

COL Cost of living for a four-person family

PD Population density (person per square mile)
URate State unionization rate in 1978

Pop Population in 1975

Taxes Property taxes in 1972

Income  Per capita income in 1974

RTWL  Indicator variable (1 if there are right-to-work laws
in the state and O otherwise)

1.3.2 Industrial and Labor Relations

In 1947, the United States Congress passed the Taft-Hartley Amendments to the
Wagner Act. The original Wagner Act had permitted the unions to use a Closed
Shop Contract® unless prohibited by state law. The Taft-Hartley Amendments
made the use of Closed Shop Contract illegal and gave individual states the right
to prohibit union shops® as well. These right-to-work laws have caused a wave
of concern throughout the labor movement. A question of interest here is: What
are the effects of these laws on the cost of living for a four-person family living
on an intermediate budget in the United States? To answer this question a data set
consisting of 38 geographic locations has been assembled from various sources.
The variables used are defined in Table 1.2. The Right-To-Work Laws data are
given in Table 1.3 and can also be found at the book’s Website.

3 Under a Closed Shop Contract provision, all employees must be union members at the time of hire
and must remain members as a condition of employment.

% Under a Union Shop clause, employees are not required to be union members at the time of hire,
but must become a member within two months, thus allowing the employer complete discretion in
hiring decisions.
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Table 1.3 The Right-To-Work Laws Data

City COL PD URate Pop Taxes Income RTWL
Atlanta 169 414 136 1790128 5128 2961 1
Austin 143 239 11 396891 4303 1711 1
Bakersfield 339 43 237 349874 4166 2122 0
Baltimore 173 951 21 2147850 5001 4654 0
Baton Rouge 99 255 16 411725 3965 1620 i
Boston 363 1257 244 3914071 4928 5634 0
Buffalo 253 834 392 1326848 4471 7213 0
Champaign-Urbana 117 162 315 162304 4813 5535 0
Cedar Rapids 294 229 182 164145 4839 7224 1
Chicago 291 1886  31.5 7015251 5408 6113 0
Cincinnati 170 643 295 1381196 4637 4806 0
Cleveland 239 1295 295 1966725 5138 6432 0
Dallas 174 302 11 2527224 4923 2363 1
Dayton 183 489  29.5 835708 4787 5606 0
Denver 227 304 152 1413318 5386 5982 0
Detriot 255 1130 34.6 4424382 5246 6275 0
Green Bay 249 323 278 169467 4289 8214 0
Hartford 326 696 219 1062565 5134 6235 0
Houston 194 337 11 2286247 5084 1278 1
Indianapolis 251 371 293 1138753 4837 5699 0
Kansas City 201 386 30 1290110 5052 4868 0
Lancaster, PA 124 362 342 342797 4377 5205 0
Los Angeles 340 1717 237 6986898 5281 1349 0
Milwaukee 328 968  27.8 1409363 5176 7635 0
Minneapolis, St. Paul 265 433 244 2010841 5206 8392 0
Nashville 120 183 177 748493 4454 3578 1
New York 323 6908 392 9561089 5260 4862 0
Orlando 117 230 117 582664 4613 782 1
Philadelphia 182 1353 342 4807001 4877 5144 0
Pittsburgh 169 762 342 2322224 4677 5987 0
Portland 267 201 231 228417 4123 7511 0
St. Louis 184 480 30 2366542 4721 4809 0
San Diego 256 372 237 1584583 4837 1458 0
San Francisco 381 1266  23.7 3140306 5940 3015 0
Seattle 195 333 331 1406746 5416 4424 0
Washington 205 1073 21 3021801 6404 4224 0
Wichita 206 157 12.8 384920 4796 4620 1
Raleigh-Durham 126 302 6.5 468512 4614 3393 1
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Table 1.4 Variables in Study of Domestic Immigration

Variable Definition

State State name

NDIR Net domestic immigration rate over the period 1990-1994

Unemp  Unemployment rate in the civilian labor force in 1994

Wage Average hourly earnings of production workers in manufacturing
in 1994

Crime Violent crime rate per 100,000 people in 1993

Income Median household income in 1994

Metrop  Percentage of state population living in metropolitan areas

in 1992
Poor Percentage of population who fall below the poverty level
in 1994
Taxes Total state and local taxes per capita in 1993
Educ Percentage of population 25 years or older who have a high school

degree or higher in 1990

BusFail  The number of business failures divided by the population of the
state in 1993

Temp Average of the 12 monthly average temperatures (in degrees Fahrenheit)
for the state in 1993

Region  Region in which the state is located (northeast, south, midwest, west)

1.3.3 Government

Information about domestic immigration (the movement of people from one state
or area of a country to another) is important to state and local governments. It is
of interest to build a model that predicts domestic immigration or to answer the
question of why do people leave one place to go to another? There are many factors
that influence domestic immigration, such as weather conditions, crime, taxes,
and unemployment rates. A data set for the 48 contiguous states has been created.
Alaska and Hawaii are excluded from the analysis because the environments of these
states are significantly different from the other 48, and their locations present certain
barriers to immigration. The response variable here is net domestic immigration,
which represents the net movement of people into and out of a state over the period
1990-1994 divided by the population of the state. Eleven predictor variables
thought to influence domestic immigration are defined in Table 1.4. The data are
given in Tables 1.5 and 1.6, and can also be found at the book’s Website.

1.3.4 History

A question of historical interest is how to estimate the age of historical objects
based on some age-related characteristics of the objects. For example, the variables
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Table 1.5  First Six Variables of Domestic Immigration Data

State NDIR Unemp Wage Crime Income Metrop
Alabama 17.47 6.0 10.75 780 27196 674
Arizona 49.60 6.4 11.17 715 31293 84.7
Arkansas 23.62 53 9.65 593 25565 44.7
California —-37.21 8.6 12.44 1078 35331 96.7
Colorado 53.17 4.2 12.27 567 37833 81.8
Connecticut —38.41 5.6 13.53 456 41097 95.7
Delaware 2243 49 13.90 686 35873 82.7
Florida 39.73 6.6 9.97 1206 29294 93.0
Georgia 39.24 5.2 10.35 723 31467 67.7
Idaho 71.41 5.6 11.88 282 31536 30.0
Ilinois —-20.87 5.7 12.26 960 35081 84.0
Indiana 9.04 49 13.56 489 27858 71.6
Iowa 0.00 3.7 12.47 326 33079 43.8
Kansas —1.25 53 12.14 469 28322 54.6
Kentucky 13.44 54 11.82 463 26595 48.5
Louisiana —13.94 8.0 13.13 1062 25676 75.0
Maine -9.770 74 11.68 126 30316 35.7
Maryland —1.55 5.1 13.15 998 39198 92.8
Massachusetts —30.46 6.0 12.59 805 40500 96.2
Michigan -13.19 59 16.13 792 35284 82.7
Minnesota 9.46 4.0 12.60 327 33644 69.3
Mississippi 5.33 6.6 9.40 434 25400 34.6
Missouri 6.97 4.9 11.78 744 30190 68.3
Montana 41.50 5.1 12.50 178 27631 240
Nebraska —0.62 2.9 10.94 339 31794 50.6
Nevada 128.52 6.2 11.83 875 35871 84.8
New Hampshire —-8.72 4.6 11.73 138 35245 59.4
New Jersey —24.90 6.8 13.38 627 42280 100.0
New Mexico 29.05 6.3 10.14 930 26905 56.0
New York —45.46 6.9 12.19 1074 31899 91.7
North Carolina 29.46 44 10.19 679 30114 66.3
North Dakota -26.47 39 10.19 82 28278 41.6
Ohio —-3.27 5.5 14.38 504 31855 81.3
Oklahoma 7.37 5.8 11.41 635 26991 60.1
Oregon 49.63 54 12.31 503 31456 70.0
Pennsylvania —4.30 6.2 12.49 418 32066 84.8
Rhode Island ~35.32 7.1 10.35 402 31928 93.6
South Carolina 11.88 6.3 9.99 1023 29846 69.8
South Dakota 13.71 33 9.19 208 29733 32.6
Tennessee 32.11 4.8 10.51 766 28639 67.7
Texas 13.00 6.4 11.14 762 30775 83.9
Utah 31.25 37 11.26 301 35716 71.5
Vermont 3.94 4.7 11.54 114 35802 27.0
Virginia 6.94 4.9 11.25 372 37647 77.5
Washington 44.66 6.4 14.42 515 33533 83.0
West Virginia 10.75 8.9 12.60 208 23564 418
Wisconsin 11.73 4.7 12.41 264 35388 68.1
Wyoming 11.95 53 11.81 286 33140 29.7
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Table 1.6 Last Six Variables of Domestic Immigration Data

State Poor Taxes Educ BusFail Temp Region
Alabama 16.4 1553 66.9 0.20 62.77 South
Arizona 15.9 2122 78.7 0.51 61.09 West
Arkansas 15.3 1590 66.3 0.08 59.57 South
California 17.9 2396 76.2 0.63 59.25 West
Colorado 9.0 2092 84.4 0.42 43.43 West
Connecticut 10.8 3334 79.2 0.33 48.63 Northeast
Delaware 8.3 2336 77.5 0.19 54.58 South
Florida 14.9 2048 74 .4 0.36 70.64 South
Georgia 14.0 1999 70.9 0.33 63.54 South
Idaho 12.0 1916 79.7 0.31 42.35 West
Illinois 12.4 2332 76.2 0.18 50.98 Midwest
Indiana 13.7 1919 75.6 0.19 50.88 Midwest
Iowa 10.7 2200 80.1 0.18 45.83 Midwest
Kansas 149 2126 81.3 0.42 52.03 Midwest
Kentucky 18.5 1816 64.6 0.22 55.36 South
Louisiana 25.7 1685 68.3 0.15 65.91 South
Maine 94 . 2281 78.8 0.31 40.23 Northeast
Maryland 10.7 2565 78.4 0.31 54.04 South
Massachusetts 9.7 2664 80.0 0.45 47.35 Northeast
Michigan 14.1 2371 76.8 0.27 43.68 Midwest
Minnesota 11.7 2673 824 0.20 39.30 Midwest
Mississippi 19.9 1535 64.3 0.12 63.18 South
Missouri 15.6 1721 73.9 0.23 53.41 Midwest
Montana 11.5 1853 81.0 0.20 40.40 West
Nebraska 8.8 2128 81.8 0.25 46.01 Midwest
Nevada 11.1 2289 78.8 0.39 48.23 West
New Hampshire 7.7 2305 82.2 0.54 43,53 Northeast
New Jersey 9.2 3051 76.7 0.36 52.72 Northeast
New Mexico 21.1 2131 75.1 0.27 53.37 Midwest
New York 17.0 3655 74.8 0.38 44.85 Northeast
North Carolina 14.2 1975 70.0 0.17 59.36 South
North Dakota 104 1986 76.7 0.23 38.53 Midwest
Ohio 14.1 2059 75.7 0.19 50.87 Midwest
Oklahoma 16.7 1777 74.6 0.44 58.36 South
Oregon 11.8 2169 81.5 0.31 46.55 West
Pennsylvania 12.5 2260 74.7 0.26 49.01 Northeast
Rhode Island 10.3 2405 72.0 0.35 49,99 Northeast
South Carolina 13.8 1736 68.3 0.11 62.53 South
South Dakota 14.5 1668 77.1 0.24 42.89 Midwest
Tennessee 14.6 1684 67.1 0.23 57.75 South
Texas 19.1 1932 72.1 0.39 64.40 South
Utah 8.0 1806 85.1 0.18 46.32 West
Vermont 7.6 2379 80.8 0.30 42.46 Northeast
Virginia 10.7 2073 75.2 0.27 55.55 South
Washington 11.7 2433 83.8 0.38 46.93 Midwest
West Virginia 18.6 1752 66.0 0.17 52.25 South
Wisconsin 9.0 2524 78.6 0.24 42.20 Midwest
Wyoming 9.3 2295 83.0 0.19 43.68 West
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Table 1.7 Variables in Egyptian Skulls Data

Variable Definition

Year Approximate year of skull formation
(negative = B.C.; positive = A.D.)

MB Maximum breadth of skull

BH Basibregmatic height of skull

BL Basialveolar length of skull

NH Nasal Height of skull

in Table 1.7 can be used to estimate the age of Egyptian skulls. Here the response
variable is Year and the other four variables are possible predictors. There are
150 observations in this data set. The original source of the data is Thomson and
Randall-Maciver (1905), but they can be found in Hand et al. (1994), pp. 299-301.
An analysis of the data can be found in Manly (1986). The Egyptian Skulls data
can be found at the book’s Website.

1.3.5 Environmental Sciences

In a 1976 study exploring the relationship between water quality and land use, Haith
(1976) obtained the measurements (shown in Table 1.8) on 20 river basins in New
York State. A question of interest here is how the land use around a river basin
contributes to the water pollution as measured by the mean nitrogen concentration
(mg/liter). The data are shown in Table 1.9 and can also be found at the book’s
Website.

1.3.6 Industrial Production

Nambe Mills in Santa Fe, New Mexico, makes a line of tableware made from sand
casting a special alloy of metals. After casting, the pieces go through a series of
shaping, grinding, buffing, and polishing steps. Data was collected for 59 items
produced by the company. The relation between the polishing time and the product
diameters and the product types (Bowl, Casserole, Dish, Tray, and Plate) are used
to estimate the polishing time for new products which are designed or suggested
for design and manufacture. The data are given in Table 1.10. The variables
representing product types are coded as binary variables (1 corresponds to the type
and O otherwise). Diam is the diameter of the item (in inches), polishing time is
measured in minutes, and price in dollars. The polishing time is the major item in
the cost of the product. The production decision will be based on the estimated
time of polishing. The data is obtained from the DASL library, can be found there,
and also at the book’s Website.
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Table 1.8 Variables in Study of Water Pollution in New York Rivers

Variable Definition
Y Mean nitrogen concentration (mg/liter) based on samples taken
at regular intervals during the spring, summer, and fall months
X1 Agriculture: percentage of land area currently in agricultural use
X2 Forest: percentage of forest land
X3 Residential: percentage of land area in residential use
X4 Commercial/Industrial: percentage of land area in either

commercial or industrial use

Table 1.9 New York Rivers Data

Row River Y X; X3 X3 X4
1 Olean 1.10 26 63 1.2 0.29
2 Cassadaga 1.01 29 57 0.7 0.09
3 Oatka 1.90 54 26 1.8 0.58
4 Neversink 1.00 2 84 1.9 1.98
5 Hackensack 1.99 3 27 29.4 3.11
6 Wappinger 1.42 19 61 34 0.56
7 Fishkill 2.04 16 60 5.6 1.1
8 Honeoye 1.65 40 43 1.3 0.24
9 Susquehanna 1.01 28 62 1.1 0.15

10 Chenango 1.21 26 60 09 0.23
11 Tioughnioga 1.33 26 53 09 0.18
12 West Canada 0.75 15 75 0.7 0.16
13 East Canada 0.73 6 84 0.5 0.12
14 Saranac 0.80 3 81 0.8 0.35
15 Ausable 0.76 2 89 0.7 0.35
16 Black 0.87 6 82 0.5 0.15
17 Schoharie 0.80 22 70 0.9 0.22
18 Raquette 0.87 4 75 04 0.18
19 Oswegatchie 0.66 21 56 0.5 0.13
20 Cohocton 1.25 40 49 1.1 0.13
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Table 1.10 Industrial Production

Row Bowl Casserole Dish Tray Plate Diam Time Price
1 0 1 0 0 0 10.7 47.65 144.0
2 0 1 0 0 0 14.0 63.13 215.0
3 0 1 0 0 0 9.0 58.76 105.0
4 1 0 0 0 0 8.0 34.88 69.0
5 0 0 1 0 0 10.0 55.53 134.0
6 0 1 0 0 0 10.5 43.14 129.0
7 0 0 0 1 0 16.0 54.86 155.0
8 0 0 0 1 0 15.0 44.14 99.0
9 0 0 1 0 0 6.5 17.46 38.5
10 0 0 1 0 0 5.0 21.04 36.5
11 0 0 0 1 0 25.0 109.38 260.0
12 1 0 0 0 0 104 17.67 54.0
13 1 0 0 0 0 7.4 16.41 39.0
14 1 0 0 0 0 54 12.02 29.5
15 0 1 0 0 0 154 49.48 109.0
16 0 1 0 0 0 124 48.74 89.5
17 1 0 0 0 0 6.0 23.21 42.0
18 1 0 0 0 0 9.0 28.64 65.0
19 1 0 0 0 0 9.0 44.95 115.0
20 0 0 0 0 1 12.4 23.77 49.5
21 1 0 0 0 0 7.5 20.21 36.5
22 1 0 0 0 0 14.0 32.62 109.0
23 1 0 0 0 0 7.0 17.84 45.0
24 1 0 0 0 0 9.0 22.82 58.0
25 1 0 0 0 0 12.0 29.48 89.0
26 | 0 0 0 0 5.5 15.61 30.0
27 1 0 0 0 0 6.0 13.25 31.0
28 1 0 0 0 0 12 45.78 119.0
29 0 0 0 1 0 55 26.53 220
30 1 0 0 0 0 142 37.11 109.0
31 0 0 1 0 0 11.0 45.12 99.0
32 0 0 0 0 1 16.0 26.09 99.0
33 0 1 0 0 0 13.5 68.63 179.0
34 0 0 1 0 0 11.1 33.71 99.0
35 0 0 1 0 0 9.8 44.45 89.0
36 1 0 0 0 0 10.0 23.74 75.0
37 0 1 0 0 0 13.0 86.42 199.0
38 1 0 0 0 0 13.0 39.71 93.0
39 0 0 0 0 1 11.7 26.52 65.0
40 0 0 0 1 0 12.3 33.89 74.0
41 0 0 0 1 0 19.5 64.30 165.0
42 1 0 0 0 0 152 22.55 99.0
43 0 0 0 0 1 10.0 31.86 43.5
44 1 0 0 0 0 11.0 53.18 94.0
45 0 0 0 | 0 17.8 74.48 189.0
46 0 0 0 1 0 11.5 34.16 75.0
47 0 0 0 1 0 12.7 31.46 59.5
48 1 0 0 0 0 8.0 21.34 420
49 0 0 0 1 0 7.5 20.83 23.0
50 1 0 0 0 0 9.0 20.59 52.5
51 0 | 0 0 0 14.0 33.70 99.0
52 0 1 0 0 0 12.4 32.90 89.0
53 0 0 1 0 0 8.8 27.76 65.0
54 1 0 0 0 0 85 30.20 54.5
55 0 0 0 0 1 6.0 20.85 24.5
56 0 0 0 0 1 11.0 26.25 52.0
57 0 0 0 0 1 11.1 21.87 62.5
58 0 0 0 0 1 14.5 23.88 89.0
59 0 0 0 0 1 5.0 16.66 21.5

www.it-ebooks.info


http://www.it-ebooks.info/

12 INTRODUCTION

Table 1.11  Number of O-rings Damaged and Temperature (Degrees Fahrenheit) at
Time of Launch for 23 Flights of Space Shuttle Challenger

Flight Damaged Temperature Flight Damaged Temperature
1 2 53 13 1 70
2 1 57 14 1 70
3 1 58 15 0 72
4 1 63 16 0 73
5 0 66 17 0 75
6 0 67 18 2 75
7 0 67 19 0 76
8 0 67 20 0 78
9 0 68 21 0 79
10 0 69 22 0 81
11 0 70 23 0 76
12 0 70

1.3.7 The Space Shuttle Challenger

The explosion of the space shuttle Challenger in 1986 killing the crew was a
shattering tragedy. To look into the case a Presidential Commission was appointed.
The O-rings in the booster rockets, which are used in space launching, play a very
important part in its safety. The rigidity of the O-rings is thought to be affected
by the temperature at launching. There are six O-rings in a booster rocket. Table
1.11 gives the number of rings damaged and the temperature at launchings of the
23 flights. The data set can also be found at the book’s Website. The analysis
performed before the launch did not include the launches in which no O-ring was
damaged and came to the wrong conclusion. A detailed discussion of the problem
is found in The Flight of the Space Shuttle Challenger in Chatterjee, Handcock, and
Simonoff (1995, pp. 33-35). Note here that the response variable is a proportion
bounded between 0 and 1.

1.3.8 Cost of Health Care

The cost of delivery of health care has become an important concern. Getting
data on this topic is extremely difficult because it is highly proprietary. These data
were collected by the Department of Health and Social Services of the State of
New Mexico and cover 52 of the 60 licensed facilities in New Mexico in 1988.
The variables in these data are the characteristics which describe the facilities size,
volume of usage, expenditures, and revenue. The location of the facility is also
indicated, whether it is in the rural or nonrural area. Specific definitions of the
variables are given in Table 1.12 and the data are given in Table 1.13 and also at the
book’s Website. There are several ways of looking at a body of data and extracting
various kinds of information. For example, (a) Are rural facilities different from
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Table 1.12 Variables in Cost of Health Care Data

Variable Definition

RURAL Rural home (1) and nonrural home (0)
BED Number of beds in home

MCDAYS Annual medical in-patient days (hundreds)
TDAYS Annual total patient days (hundreds)
PCREV Annual total patient care revenue ($100)
NSAL Annual nursing salaries ($100)

FEXP Annual facilities expenditures ($100)
NETREV PCREV —~ NSAL - FEXP

nonrural facilities? and (b) How do the hospital characteristics affect the total
patient care revenue?

1.4 STEPS IN REGRESSION ANALYSIS

Regression analysis includes the following steps:
e Statement of the problem
e Selection of potentially relevant variables

e Data collection

Model specification

Choice of fitting method

Model fitting

Model validation and criticism

e Using the chosen model(s) for the solution of the posed problem.

These steps are examined below.

1.4.1 Statement of the Problem

Regression analysis usually starts with a formulation of the problem. This includes
the determination of the question(s) to be addressed by the analysis. The problem
statement is the first and perhaps the most important step in regression analysis.
It is important because an ill-defined problem or a misformulated question can
lead to wasted effort. It can lead to the selection of irrelevant set of variables or
to a wrong choice of the statistical method of analysis. A question that is not
carefully formulated can also lead to the wrong choice of a model. Suppose we
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Table 1.13 Cost of Health Care

Row RURAL BED MCDAYS TDAYS PCREV NSAL FEXP NETREV
1 0 244 128 385 23521 5230 5334 12957
2 1 59 155 203 9160 2459 493 6208
3 0 120 281 392 21900 6304 6115 9481
4 0 120 291 419 22354 6590 6346 9418
5 0 120 238 363 17421 5362 6225 5834
6 1 65 180 234 10531 3622 449 6460
7 1 120 306 372 22147 4406 4998 12743
8 1 90 214 305 14025 4173 966 8886
9 0 96 155 169 8812 1955 1260 5597
10 1 120 133 188 11729 3224 6442 2063
11 0 62 148 192 8896 2409 1236 5251
12 1 120 274 426 20987 2066 3360 15561
13 0 116 154 321 17655 5946 4231 7478
14 1 59 120 164 7085 1925 1280 3880
15 1 80 261 284 13089 4166 1123 7800
16 1 120 338 375 21453 5257 5206 10990
17 1 80 77 133 7790 1988 4443 1359
18 1 100 204 318 18309 4156 4585 9568
19 1 60 97 213 8872 1914 1675 5283
20 1 110 178 280 17881 5173 5686 7022
21 0 120 232 336 17004 4630 907 11467
22 0 135 316 442 23829 7489 3351 12989
23 1 59 163 191 9424 2051 1756 5617
24 0 60 96 202 12474 3803 2123 6548
25 1 25 74 83 4078 2008 4531 2461
26 1 221 514 776 36029 1288 2543 32198
27 1 64 91 214 8782 4729 4446 -393
28 0 62 146 204 8951 2367 1064 5520
29 1 108 255 366 17446 5933 2987 8526
30 1 62 144 220 6164 2782 411 2971
31 0 90 151 286 2853 4651 4197 ~5995
32 0 146 100 375 21334 6857 1198 13279
33 1 62 174 189 8082 2143 1209 4730
34 1 30 54 88 3948 3025 137 786
35 0 79 213 278 11649 2905 1279 7465
36 1 44 127 158 7850 1498 1273 5079
37 0 120 208 423 29035 6236 3524 19275
38 1 100 255 300 17532 3547 2561 11424
39 1 49 110 177 8197 2810 3874 1513
40 1 123 208 336 22555 6059 6402 10094
41 1 82 114 136 8459 1995 1911 4553
42 1 58 166 205 10412 2245 1122 7045
43 1 110 228 323 16661 4029 3893 8739
44 1 62 183 222 12406 2784 2212 7410
45 1 86 62 200 11312 3720 2959 4633
46 1 102 326 355 14499 3866 3006 7627
47 0 135 157 471 24274 7485 1344 15445
48 1 78 154 203 9327 3672 1242 4413
49 1 83 224 390 12362 3995 1484 6883
50 0 60 48 213 10644 2820 1154 6670
51 1 54 119 144 7556 2088 245 5223
52 0 120 217 327 20182 4432 6274 9476
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wish to determine whether or not an employer is discriminating against a given
group of employees, say women. Data on salary, qualifications, and gender are
available from the company’s record to address the issue of discrimination. There
are several definitions of employment discrimination in the literature. For example,
discrimination occurs when on the average (a) women are paid less than equally
qualified men, or (b) women are more qualified than equally paid men. To answer
the question: “On the average, are women paid less than equally qualified men?"
we choose salary as a response variable, and qualification and gender as predictor
variables. But to answer the question: “On the average, are women more qualified
than equally paid men?" we choose qualification as a response variable and salary
and gender as predictor variables, that is, the roles of variables have been switched.

1.4.2 Selection of Potentially Relevant Variables

The next step after the statement of the problem is to select a set of variables that
are thought by the experts in the area of study to explain or predict the response
variable. The response variable is denoted by Y and the explanatory or predictor
variables are denoted by X, X, - - -, X, where p denotes the number of predictor
variables. An example of a response variable is the price of a single-family house
in a given geographical area. A possible relevant set of predictor variables in this
case is: area of the lot, area of the house, age of the house, number of bedrooms,
number of bathrooms, type of neighborhood, style of the house, amount of real
estate taxes, and so forth.

1.4.3 Data Collection

The next step after the selection of potentially relevant variables is to collect the data
from the environment under study to be used in the analysis. Sometimes the data
are collected in a controlled setting so that factors that are not of primary interest
can be held constant. More often the data are collected under nonexperimental
conditions where very little can be controlled by the investigator. In either case, the
collected data consist of observations on n subjects. Each of these n observations
consists of measurements for each of the potentially relevant variables. The data
are usually recorded as in Table 1.14. A column in Table 1.14 represents a variable,
whereas a row represents an observation, which is a set of p + 1 values for a single
subject (e.g., a house); one value for the response variable and one value for each
of the p predictors. The notation z;; refers to the ith value of the jth variable.
The first subscript refers to observation number and the second refers to variable
number.

Each of the variables in Table 1.14 can be classified as either quantitative or
qualitative. Examples of quantitative variables are the house price, number of
bedrooms, age, and taxes. Examples of qualitative variables are neighborhood type
(e.g., good or bad neighborhood) and house style (e.g., ranch, colonial, etc.). In
this book we deal mainly with the cases where the response variable is quantita-
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Table 1.14 Notation for Data Used in Regression Analysis

Observation Response Variable Predictors
Number Y X1 X2 s Xp
1 n 1 T12 tee T1p
2 Y2 T21 T22 e T2p
3 Y3 T31 Z32 e T3p
n Un Tl Tn2 e Znp

tive. A technique used in cases where the response variable is binary’ is called
logistic regression. This is introduced in Chapter 12. In regression analysis, the
predictor variables can be either quantitative and/or qualitative. For the purpose of
computations, however, the qualitative variables, if any, have to be coded into a set
of indicator or dummy variables as discussed in Chapter 5.

If all predictor variables are qualitative, the techniques used in the analysis of
the data are called the analysis of variance techniques. Although the analysis of
variance techniques can be introduced and explained as methods in their own right,
it is shown in Chapter 5 that they are special cases of regression analysis. If some
of the predictor variables are quantitative while others are qualitative, regression
analysis in these cases is called the analysis of covariance.

1.4.4 Model Specification

The form of the model that is thought to relate the response variable to the set
of predictor variables can be specified initially by the experts in the area of study
based on their knowledge or their objective and/or subjective judgments. The
hypothesized model can then be either confirmed or refuted by the analysis of the
collected data. Note that the model needs to be specified only in form, but it can
still depend on unknown parameters. We need to select the form of the function
f(X1,X2,---,X,) in (1.1). This function can be classified into two types: linear
and nonlinear. An example of a linear function is

Y=08+/A/X1+¢ (1.3)
while a nonlinear function is

Y = Bg +M%1 te (1.4)

7 A variable that can take only one of two possible values such as yes or no, 1 or 0, and success or

failure, is called a binary variable
8 See, for example, the books by Scheffé (1959), Iversen (1976), Wildt and Ahtola (1978), Krishnaiah
(1980), Iversen and Norpoth (1987), Lindman (1992), and Christensen (1996)

www.it-ebooks.info


http://www.it-ebooks.info/

STEPS IN REGRESSION ANALYSIS 17

Note that the term linear (nonlinear) here does not describe the relationship between
Y and X1, Xs,- -, Xp. Itisrelated to the fact that the regression parameters enter
the equation linearly (nonlinearly). Each of the following models are linear:

Y = Bo+BX+BX%+e,
Y = By+piInX +e¢,

because in each case the parameters enter linearly although the relationship between
Y and X is nonlinear. This can be seen if the two models are reexpressed,
respectively, as follows:

Y = Bo+ 05X+ BeXo +e,
Y = I80+/31X1+€’

where in the first equation we have X; = X and Xp = X 2 and in the second
equation we have X; = In X. The variables here are reexpressed or transformed.
Transformation is dealt with in Chapter 6. All nonlinear functions that can be
transformed into linear functions are called linearizable functions. Accordingly,
the class of linear models is actually wider than it might appear at first sight because
itincludes all linearizable functions. Note, however, that not all nonlinear functions
are linearizable. For example, it is not possible to linearize the nonlinear function
in (1.4). Some authors refer to nonlinear functions that are not linearizable as
intrinsically nonlinear functions.

A regression equation containing only one predictor variable is called a simple
regression equation. An equation containing more than one predictor variable is
called a multiple regression equation. An example of simple regression would be
an analysis in which the time to repair a machine is studied in relation to the number
of components to be repaired. Here we have one response variable (time to repair
the machine) and one predictor variable (number of components to be repaired).
An example of a very complex multiple regression situation would be an attempt to
explain the age-adjusted mortality rates prevailing in different geographic regions
(response variable) by a large number of environmental and socioeconomic factors
(predictor variables). Both types of problems are treated in this book. These two
particular examples are studied, one in Chapter 2, the other in Chapter 11.

In certain applications the response variable can actually be a set of variables,
Y1,Ys, -, Y,, say, which are thought to be related to the same set of predictor
variables, X, X»,---, X,,. For example, Bartlett, Stewart, and Abrahamowicz
(1998) present a data set on 148 healthy people. Eleven variables are measured; six
variables represent different types of measured sensory thresholds (e.g., vibration,
hand and foot temperatures) and five a priori selected baseline covariates (e.g., age,
gender, height, and weight) that may have systematic effects on some or all of
the six sensory thresholds. Here we have six response variables and five predictor
variables. This data set, which we refer to as the QST (quantitative sensory testing)
data, is not listed here due to its size (148 observations) but it can be found at the
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Table 1.15 Various Classifications of Regression Analysis

Type of Regression Conditions

Univariate Only one quantitative response variable
Multivariate Two or more quantitative response variables
Simple Only one predictor variable

Multiple Two or more predictor variables

Linear All parameters enter the equation linearly, possibly

after transformation of the data

Nonlinear The relationship between the response and some of
the predictors is nonlinear or some of the parameters
appear nonlinearly, but no transformation is possible
to make the parameters appear linearly

Analysis of variance All predictors are qualitative variables

Analysis of covariance Some predictors are quantitative variables and others
are qualitative variables

Logistic The response variable is qualitative

book’s Website. For further description of the data and objectives of the study, see
Bartlett, Stewart, and Abrahamowicz (1998).

When we deal only with one response variable, regression analysis is called uni-
variate regression and in cases where we have two or more response variables, the
regression is called multivariate regression. Simple and multiple regressions should
not be confused with univariate versus multivariate regressions. The distinction be-
tween simple and multiple regressions is determined by the number of predictor
variables (simple means one predictor variable and multiple means two or more
predictor variables), whereas the distinction between univariate and multivariate
regressions is determined by the number of response variables (univariate means
one response variable and multivariate means two or more response variables). In
this book we consider only univariate regression (both simple and multiple, linear
and nonlinear). Multivariate regression is treated in books on multivariate analysis
such as Rencher (1995), Johnson and Wichern (1992), and Johnson (1998). In this
book the term regression will be used to mean univariate regression.

The various classifications of regression analysis we discussed above are shown
in Table 1.15.
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1.4.5 Method of Fitting

After the model has been defined and the data have been collected, the next task
is to estimate the parameters of the model based on the collected data. This is
also referred to as parameter estimation or model fitting. The most commonly used
method of estimation is called the least squares method. Under certain assumptions
(to be discussed in detail in this book), least squares method produce estimators
with desirable properties. In this book we will deal mainly with the least squares
method and its variants (e.g., weighted least squares). In some instances (e.g., when
one or more of the assumptions does not hold) other estimation methods may be
superior to least squares. The other estimation methods that we consider in this
book are the maximum likelihood method, the ridge regression, and the principal
components method.

1.4.6 Model Fitting

The next step in the analysis is to estimate the regression parameters or to fit the
model to the collected data using the chosen estimation method (e.g., least squares).

The estimates of the regression parameters 3y, 81, - -, Bp in (1.1) are denoted by
,Bo, Bl, cee Bp. The estimated regression equation then becomes
Y =Bo+BiX1+BaXo+ -+ BpXp. (1.5)

A hat on top of a parameter denotes an estimate of the parameter. The value Y
(pronounced as Y-hat) is called the fitted value. Using (1.5), we can compute n
fitted values, one for each of the n observations in our data. For example, the ith
fitted value §; is

9i = Po+ Pz + Pozia + - + Bpmip, i=1,2,--,m, (1.6)
where z;1, - - -, z;p are the values of the p predictor variables for the ith observation.

Note that (1.5) can be used to predict the response variable for any values of the
predictor variables not observed in our data. In this case, the obtained Y is called the
predicted value. The difference between fitted and predicted values is that the fitted
value refers to the case where the values used for the predictor variables correspond
to one of the n observations in our data, but the predicted values are obtained for
any set of values of the predictor variables. It is generally not recommended to
predict the response variable for a set of values of the predictor variables far outside
the range of our data. In cases where the values of the predictor variables represent
future values of the predictors, the predicted value is referred to as the forecasted
value.

1.4.7 Model Criticism and Selection

The validity of a statistical method, such as regression analysis, depends on certain
assumptions. Assumptions are usually made about the data and the model. The
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accuracy of the analysis and the conclusions derived from an analysis depends
crucially on the validity of these assumptions. Before using (1.5) for any purpose,
we first need to determine whether the specified assumptions hold. We need to
address the following questions:

1. What are the required assumptions?

2. For each of these assumptions, how do we determine whether or not the
assumption is valid?

3. What can be done in cases where one or more of the assumptions does not
hold?

The standard regression assumptions will be specified and the above questions will
be addressed in great detail in various parts of this book. We emphasize here that
validation of the assumptions must be made before any conclusions are drawn from
the analysis. Regression analysis is viewed here as a iterative process, a process
in which the outputs are used to diagnose, validate, criticize, and possibly modify
the inputs. The process has to be repeated until a satisfactory output has been
obtained. A satisfactory output is an estimated model that satisfies the assumptions
and fits the data reasonably well. This iterative process is illustrated schematically
in Figure 1.1. This dynamic iterative regression process can be implemented with
the aid of the flowchart in Figure 1.2. This process will be illustrated by examples
in later chapters.

Inputs Outputs

* Subject matter theories Calculate .

. Mocjlel = « Parameter estimates
+ Confidence regions

* Data Di Valid . T L

« Statistical techniques - 1agnose, validate est St‘atlStl(?S

- . . * Graphical displays
* Auxiliary assumptions and Criticize

Figure 1.1 A schematic illustration of the iterative nature of the regression process.

1.4.8 Objectives of Regression Analysis

The explicit determination of the regression equation is the most important product
of the analysis. It is a summary of the relationship between Y (the response
variable) and the set of predictor variables X1, X2, -+, X;. The equation may be
used for several purposes. It may be used to evaluate the importance of individual
predictors, to analyze the effects of policy that involves changing values of the
predictor variables, or to forecast values of the response variable for a given set
of predictors. Although the regression equation is the final product, there are
many important by-products. We view regression analysis as a set of data analytic
techniques that are used to help understand the interrelationships among variables
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I 1 Choose a set of variables
‘ Choose form of model
Formulate the Problem |« Choose method of fitting
1 Specify assumptions
Fit the Model < Use method of fitting
Residual plots
Validate Assumptions [+ Outliers detection
Sensitivity analysis

No
Yes

Evaluate the Fitted Model Goodness of fit tests

No

O

Yes

Use the model for the
intended purpose

Figure 1.2 A flowchart illustrating the dynamic iterative regression process.

in a certain environment. The task of regression analysis is to learn as much as
possible about the environment reflected by the data. We emphasize that what is
uncovered along the way to the formulation of the equation may often be as valuable
and informative as the final equation.

1.5 SCOPE AND ORGANIZATION OF THE BOOK

This book can be used by all who analyze data. A knowledge of matrix algebra
is not necessary. We have seen excellent regression analysis done by people who
have no knowledge of matrix theory. A knowledge of matrix algebra is certainly
very helpful in understanding the theory. We have provided appendices which
use matrix algebra for readers who are familiar with that topic. Matrix algebra
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permits expression of regression results much more compactly and is essential for
the mathematical derivation of the results.

Lack of knowledge of matrix algebra should not deter anyone from using this
book and doing regression analysis. For readers who are not familiar with matrix
algebra but who wish to benefit from the material in the appendices, we recommend
reading the relatively short book by Hadi (1996), Matrix Algebra as a Tool. We
believe that the majority, if not all, of our readers can read it entirely on their own
or with minimal assistance.

There are no formal derivations in the text and readers interested in mathematical
derivations are referred to a number of books that contain formal derivations of the
regression formulas. Formulas are presented, but only for purposes of reference.
It is assumed throughout the book that the necessary summary statistics will be
computer generated from an existing regression package.’

The book is organized as follows: It begins with the simple linear regression
model in Chapter 2. The simple regression model is then extended to the mul-
tiple regression model in Chapter 3. In both chapters, the model is formulated,
assumptions are specified, and the key theoretical results are stated and illustrated
by examples. For simplicity of presentation and for pedagogical reasons, the anal-
ysis and conclusions in Chapters 2 and 3 are made under the presumption that
the standard regression assumptions are valid. Chapter 4 addresses the issue of
assumptions validation and the detection and correction of model violations.

Each of the remaining chapters deals with a special regression problem. Chapter
5 deals with the case where some or all of the predictor variables are qualitative.
Chapter 6 deals with data transformation. Chapter 7 presents situations where a
variant of the least squares method is needed. This method is called the weighted
least squares method. Chapter 8 discusses the problem that arises when the ob-
servations are correlated. This problem is known as the autocorrelation problem.
Chapters 9 and 10 presents methods for the detection and correction of an important
problem called collinearity. Collinearity occurs when the predictor variables are
highly correlated.

Chapter 11 presents variable selection methods — computer methods for selecting
the best and most parsimonious model(s). Before applying any of the variable se-
lection methods, we assume in this chapter that questions of assumptions validation
and model violations have already been addressed and settled satisfactorily.

The earlier chapters dealt with the case where the response variable is quantita-
tive. Chapter 12 discusses logistic regression, the method used when the response
variable is categorical. Logistic regression is studied because it is an important tool
with many applications. Beside binary logistic regression, we have now included
a discussion of multinomial logistic regression. This extends the application of

9 Many commercial statistical packages include regression analysis routines. We assume that these
programs have been thoroughly tested and produce numerically accurate answers. For the most part
the assumption is a safe one, but for some data sets, different programs have given dramatically
different results.
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logistic regression to more diverse situations. The categories in some multinomial
are ordered, for example, in attitude surveys. We also discuss the application of the
logistic model to ordered response variables.

The book concludes with Chapter 13 entitled Further Topics. Two topics are
discussed in this chapter. One extends the concept of linear models so that regression
and logistic models are all viewed as special cases of the linear model. This extends
the range of applications of linear models to more diverse situations. We also discuss
Poisson regression, often used to model count data. A brief discussion of robust
regression with illustrative examples is also given in this chapter.

We recommend that the chapters be covered in the same sequence as they are
presented, although Chapters 5-12 can be covered in any order after Chapter 4, as
long as Chapter 9 is covered before Chapter 10, and Chapter 7 is covered before
Chapters 12 and 13.

EXERCISES

1.1 Classify each of the following variables as either quantitative or qualitative.
If a variable is qualitative, state the possible categories.

(a) Geographical region (b) Number of children in a family
{c) Price of a house (d) Race

(e) Temperature (f) Fuel consumption

(g) Employment rate (h) Political party preference

1.2 Give two examples in any area of interest to you (other than those already
presented in this chapter) where regression analysis can be used as a data
analytic tool to answer some questions of interest. For each example:

(a) What is the question of interest?

(b) Identify the response and the predictor variables.

(c) Classify each of the variables as either quantitative or qualitative.

(d) Which type of regression (see Table 1.15) can be used to analyze the data?
(e) Give a possible form of the model and identify its parameters.

1.3 In each of the following sets of variables, identify which of the variables
can be regarded as a response variable and which can be used as predictors?
(Explain)

(a) Number of cylinders and gasoline consumption of cars
(b) SAT scores, grade point average, and college admission
(c) Supply and demand of certain goods

(d) Company’s assets, return on a stock, and net sales

(e) The distance of arace, the time to run the race, and the weather conditions
at the time of running
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() The weight of a person, whether or not the person is a smoker, and whether
or not the person has a lung cancer

(g) The height and weight of a child, his/her parents’ height and weight, and
the gender and age of the child
1.4 For each of the sets of variables in Exercise 1.3:
(a) Classify each variable as either quantitative or qualitative.

(b) Which type of regression (see Table 1.15) can be used in the analysis of
the data?
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CHAPTER 2

SIMPLE LINEAR REGRESSION

2.1 INTRODUCTION

We start with the simple case of studying the relationship between a response vari-
able Y and a predictor variable X;. Since we have only one predictor variable,
we shall drop the subscript in X; and use X for simplicity. We discuss covariance
and correlation coefficient as measures of the direction and strength of the linear
relationship between the two variables. A simple linear regression model is then
formulated and the key theoretical results are given without mathematical deriva-
tions, but illustrated by numerical examples. Readers interested in mathematical
derivations are referred to the bibliographic notes at the end of the chapter, where
books that contain a formal development of regression analysis are listed.

2.2 COVARIANCE AND CORRELATION COEFFICIENT

Suppose we have observations on n subjects consisting of a dependent or response
variable Y and an explanatory variable X. The observations are usually recorded
as in Table 2.1. We wish to measure both the direction and the strength of the
relationship between Y and X. Two related measures, known as the covariance
and the correlation coefficient, are developed below.

25

Regression Analysis by Example, Fifth Edition. By Samprit Chatterjee and Ali S. Hadi
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Table 2.1 Notation for the Data Used in Simple Regression and Correlation

Observation Response Variable Predictor
Number Y X
1 Y1 1
2 Yo T2
n Yn Tn

On the scatter plot of Y versus X, let us draw a vertical line at Z and a horizontal
line at §, as shown in Figure 2.1, where

n n
2 Vi > Ti
g=21 and z=%1—, (2.1)
n 7

are the sample mean of Y and X, respectively. The two lines divide the graph into
four quadrants. For each point ¢ in the graph, compute the following quantities:

e y; — 7, the deviation of each observation y; from the mean of the response
variable,

e 1; — Z, the deviation of each observation z; from the mean of the predictor
variable, and

e the product of the above two quantities, (y; — §)(z; — Z).

It is clear from the graph that the quantity y; — ¢ is positive for every point in the
first and second quadrants and is negative for every point in the third and fourth

=
p
L J
.
L

X

=

Figure 2.1 Graphical illustration of the correlation coefficient.
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Table 2.2 Algebraic Signs of the Quantities (y; — §) and (z; — Z)

Quadrant Yi — T T; — T (yi — 9)(z; — T)
1 + + +
2 + - -
3 - - -+
4 - + —

quadrants. Similarly, the quantity x; — Z is positive for every point in the first and
fourth quadrants and is negative for every point in the second and third quadrants.
These facts are summarized in Table 2.2.

If the linear relationship between Y and X is positive (as X increases Y also
increases), then there are more points in the first and third quadrants than in the
second and fourth quadrants. In this case, the sum of the last column in Table 2.2
is likely to be positive because there are more positive than negative quantities.
Conversely, if the relationship between Y and X is negative (as X increases Y
decreases), then there are more points in the second and fourth quadrants than in
the first and third quadrants. Hence the sum of the last column in Table 2.2 is likely
to be negative. Therefore, the sign of the quantity

[NgE]

(yi — 9)(z: — T)

Cov(Y, X) = &1 — , (2.2)

which is known as the covariance between Y and X, indicates the direction of the
linear relationship between Y and X. If Cov(Y, X) > 0, then there is a positive
relationship between Y and X, but if Cov(Y, X) < 0, then the relationship is
negative. Unfortunately, Cov(Y, X) does not tell us much about the strength of
such arelationship because it is affected by changes in the units of measurement. For
example, we would get two different values for the Cov(Y, X) if we report Y and/or
X in terms of thousands of dollars instead of dollars. To avoid this disadvantage
of the covariance, we standardize the data before computing the covariance. To
standardize the Y data, we first subtract the mean from each observation then divide
by the standard deviation, that is, we compute

u=4"Y (2.3)

Sy

where

5 (i — )7

i=1

e 2.4)

is the sample standard deviation of Y. It can be shown that the standardized
variable Z in (2.3) has mean zero and standard deviation one. We standardize X in
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a similar way by subtracting the mean Z from each observation z; and then divide
by the standard deviation s;. The covariance between the standardized X and Y
data is known as the correlation coefficient between Y and X and is given by

n & .
Cor(Y, X) = 3 (424 ( i ”) . 2.5)
n—1& Sy Sz
Equivalent formulas for the correlation coefficient are
Cor(Y, X) Cov(¥, X) (2.6)

VWi — )7 (zi —2)2
Thus, Cor(Y, X) can be interpreted either as the covariance between the standard-
ized variables or the ratio of the covariance to the standard deviations of the two
variables. From (2.5), it can be seen that the correlation coefficient is symmetric,
that is, Cor(Y, X) = Cor(X,Y).
Unlike Cov(Y, X), Cor(Y, X) is scale invariant, that is, it does not change if we
change the units of measurements. Furthermore, Cor(Y, X) satisfies

—1<Cor(Y,X) < 1. (2.8)

These properties make the Cor(Y, X) a useful quantity for measuring both the
direction and the strength of the relationship between Y and X. The magnitude of
Cor(Y, X') measures the strength of the linear relationship between Y and X. The
closer Cor(Y, X) is to 1 or —1, the stronger is the relationship between ¥ and X.
The sign of Cor(Y, X') indicates the direction of the relationship between Y and X .
That is, Cor(Y, X) > 0 implies that Y and X are positively related. Conversely,
Cor(Y, X) < 0 implies that Y and X are negatively related.

Note, however, that Cor(Y, X') = 0 does not necessarily mean that ¥ and X are
not related. It only implies that they are not linearly related because the correlation
coefficient measures only linear relationships. In other words, the Cor(Y, X) can
still be zero when Y and X are nonlinearly related. For example, Y and X in Table
2.3 have the perfect nonlinear relationship ¥ = 50 — X2 (graphed in Figure 2.2),
yet Cor(Y, X) = 0.

Furthermore, like many other summary statistics, the Cor(Y, X)) can be substan-
tially influenced by one or a few outliers in the data. To emphasize this point,
Anscombe (1973) has constructed four data sets, known as Anscombe quartet, each
with a distinct pattern, but each having the same set of summary statistics (e.g.,
the same value of the correlation coefficient). The data and graphs are reproduced
in Table 2.4 and Figure 2.3. The data can be found at the book’s Website.! An
analysis based exclusively on an examination of summary statistics, such as the
correlation coefficient, would have been unable to detect the differences in patterns.

! http://www.aucegypt.edu/faculty/hadi/RABES
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Table 2.3 Data Set with a Perfect Nonlinear Relationship Between Y and X, Yet
Cor(X,Y)=0

Y X Y X Y X
1 -7 46 -2 41 3
14 —6 49 -1 34 4
25 -5 50 0 25 5
34 —4 49 1 14 6
41 -3 46 2 1 7
50 T e * 4
407 . .
30 1 L] .
Y . .
201
10 1 . .
—4 0 4
X
Figure 2.2 Scatter plot of Y versus X in Table 2.3.
Table 2.4  Anscombe Quartet: Four Data Sets Having Same Values of Summary
Statistics
Y X3 Ys X Y3 X3 Yy X4
8.04 10 9.14 10 7.46 10 6.58 8
6.95 8 8.14 8 6.77 8 5.76 8
7.58 13 8.74 13 12.74 13 7.71 8
8.81 9 8.77 9 7.11 9 8.84 8
8.33 11 9.26 11 7.81 11 8.47 8
9.96 14 8.10 14 8.84 14 7.04 8
7.24 6 6.13 6 6.08 6 5.25 8
4.26 4 3.10 4 5.39 4 12.50 19
10.84 12 9.13 12 8.15 12 5.56 8
4.82 7 7.26 7 6.42 7 7.91 8
5.68 5 4.74 5 5.73 5 6.89 8

Source: Anscombe (1973).
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i
, .y
8 12 16 20
Xy X4

Figure 2.3 Scatter plots of the data in Table 2.4 with the fitted lines.

An examination of Figure 2.3 shows that only the first set, whose plot is given
in (a), can be described by a linear model. The plot in (b) shows the second
data set is distinctly nonlinear and would be better fitted by a quadratic function.
The plot in (c) shows that the third data set has one point that distorts the slope
and the intercept of the fiited line. The plot in (d) shows that the fourth data set
is unsuitable for linear fitting, the fitted line being determined essentially by one
extreme observation. Therefore, it is important to examine the scatter plot of Y
versus X before interpreting the numerical value of Cor(Y, X).

2.3 EXAMPLE: COMPUTER REPAIR DATA

As an illustrative example, consider a case of a company that markets and repairs
small computers. To study the relationship between the length of a service call
and the number of electronic components in the computer that must be repaired
or replaced, a sample of records on service calls was taken. The data consist of
the length of service calls in minutes (the response variable) and the number of
components repaired (the predictor variable). The data are presented in Table 2.5.
The Computer Repair data can also be found at the book’s Website. We use this
data set throughout this chapter as an illustrative example. The quantities needed
to compute 7, Z, Cov(Y, X}, and Cor(Y, X) are shown in Table 2.6. We have

n n

> Yi > T
&7 1361 &7 s
V=== =97.21 and Z = - ——14—6,
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Table 2.5 Length of Service Calls (in Minutes) and Number of Units Repaired

Row Minutes Units Row Minutes Units
1 23 1 8 97 6
2 29 2 9 109 7
3 49 3 10 119 8
4 64 4 11 149 9
5 74 4 12 145 9
6 87 5 13 154 10
7 96 6 14 166 10

g - :
T g
& 4 .
5 .
5 7] [
£ o
=2 8 .
2 .
?
o _| e ¢
N T T T T T
2 4 6 8 10
Units

Figure 2.4 Computer Repair data: Scatter plot of Minutes versus Units.

(3
> (Y —y)(zi — )
= 1768
Cov(Y, X) = — 3 136,
and
Cor(Y, X) = —2Wi Z 0@ =7) 1768 = 0.996.

Vi — g2 S (z; — )2 +/27768.36 x 114

Before drawing conclusions from this value of Cor(Y, X), we should examine the
corresponding scatter plot of Y versus X. This plot is given in Figure 2.4. The
high value of Cor(Y, X)) = 0.996 is consistent with the strong linear relationship
between Y and X exhibited in Figure 2.4. We therefore conclude that there is a
strong positive relationship between repair time and units repaired.

Although Cor(Y, X) is a useful quantity for measuring the direction and the
strength of linear relationships, it cannot be used for prediction purposes, that is,
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Table 2.6  Quantities Needed for Computation of Correlation Coefficient Between
Length of Service Calls, Y, and Number of Units Repaired, X

@ Yi T Yi—y T;—Z% i —9)?* (@i—-2? (g-9)(z—2)
1 23 1 —-74.21 -5 5507.76 25 371.07
2 29 2 —68.21 —4 4653.19 16 272.86
3 49 3 —48.21 -3 2324.62 9 144.64
4 64 4 =3321 -2 1103.19 4 66.43
5 74 4 =-2321 -2 538.90 4 46.43
6 87 5 —10.21 —1 104.33 1 10.21
7 96 6 —1.21 0 1.47 0 0.00
8 97 6 -0.21 0 0.05 0 0.00
9 109 7 11.79 1 138.90 1 11.79
10 119 8 21.79 2 474.62 4 43.57
11 149 9 51.79 3 2681.76 9 155.36
12 145 9 47.79 3 2283.47 9 143.36
13 154 10 56.79 4 3224.62 16 227.14
14 166 10 68.79 4 4731.47 16 275.14
Total 1361 84 0.00 0 27768.36 114 1768.00

we cannot use Cor(Y, X) to predict the value of one variable given the value of the
other. Furthermore, Cor(Y, X') measures only pairwise relationships. Regression
analysis, however, can be used to relate one or more response variable to one or
more predictor variables. It can also be used in prediction. Regression analysis
is an attractive extension to correlation analysis because it postulates a model that
can be used not only to measure the direction and the strength of a relationship
between the response and predictor variables, but also to numerically describe that
relationship. We discuss simple linear regression models in the rest of this chapter.
Chapter 3 is devoted to multiple regression models.

2.4 THE SIMPLE LINEAR REGRESSION MODEL
The relationship between a response variable Y and a predictor variable X is
postulated as a linear model?

Y=08+HX+e, 2.9

where By and 3, are constants called the model regression coefficients or param-
eters, and ¢ is a random disturbance or error. It is assumed that in the range of

2 The adjective linear has a dual role here. It may be taken to describe the fact that the relationship
between Y and X is linear. More generally, the word linear refers to the fact that the regression
parameters, o and f1, enter (2.9) in a linear fashion. Thus, for example, Y = 8o + 51 X 24cis
also a linear model even though the relationship between Y and X is quadratic.
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the observations studied, the linear equation (2.9) provides an acceptable approxi-
mation to the true relation between Y and X . In other words, Y is approximately
a linear function of X, and ¢ measures the discrepancy in that approximation.
In particular ¢ contains no systematic information for determining Y that is not
already captured in X. The coefficient 3;, called the slope, may be interpreted
as the change in Y for unit change in X. The coefficient 3y, called the constant
coefficient or intercept, is the predicted value of Y when X = 0.
According to (2.9), each observation in Table 2.1 can be written as

yi=ﬁ0+ﬁ1$i+6ia i=1727"'1n7 (210)

where y; represents the :th value of the response variable Y, z; represents the ¢th
value of the predictor variable X, and ¢; represents the error in the approximation
of Yi.

Regression analysis differs in an important way from correlation analysis. The
correlation coefficient is symmetric in the sense that Cor(Y, X) is the same as
Cor(X,Y). The variables X and Y are of equal importance. In regression analysis
the response variable Y is of primary importance. The importance of the predictor
X lies on its ability to account for the variability of the response variable Y and
not in itself per se. Hence Y is of primary importance.

Returning to the Computer Repair Data example, suppose that the company
wants to forecast the number of service engineers that will be required over the next
few years. A linear model,

Minutes = 8y + B1Units + ¢, 211

is assumed to represent the relationship between the length of service calls and the
number of electronic components in the computer that must be repaired or replaced.
To validate this assumption, we examine the graph of the response variable versus
the explanatory variable. This graph, shown in Figure 2.4, suggests that the straight
line relationship in (2.11) is a reasonable assumption.

2.5 PARAMETER ESTIMATION

Based on the available data, we wish to estimate the parameters Sy and 8;. This is
equivalent to finding the straight line that gives the best fit (representation) of the
points in the scatter plot of the response versus the predictor variable (see Figure
2.4). We estimate the parameters using the popular least squares method, which
gives the line that minimizes the sum of squares of the vertical distances® from
each point to the line. The vertical distances represent the errors in the response
variable. These errors can be obtained by rewriting (2.10) as

€&i=yi—Bo— bz, i=12,---,n. 2.12)

3 An alternative to the vertical distance is the perpendicular (shortest) distance from each point to the
line. The resultant line is called the orthogonal regression line.
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The sum of squares of these distances can then be written as

S(Bo,B1) =Y &l =Y (v — fo— Prmi)®. (2.13)
=1 i=1

2
The values of 5 and 3; that minimize S (Bo, 1) are given by

=

and ) .

Po =9 — . (2.15)
Note that we give the formula for Bl before the formula for Bo because Bo uses Bl.
The estimates ,30 and /3’1 are called the least squares estimates of 5y and 3; because
they are the solution to the least squares method, the intercept and the slope of the
line that has the smallest possible sum of squares of the vertical distances from each
point to the line. For this reason, the line is called the least squares regression line.
The least squares regression line is given by

Y =08 +hAX. (2.16)

Note that a least squares line always exists because we can always find a line that
gives the minimum sum of squares of the vertical distances. In fact, as we shall
see later, in some cases a least squares line may not be unique. These cases are not
common in practice.

For each observation in our data we can compute

% = Bo+ Przi, i=1,2,---,n. (2.17)

These are called the fitted values. Thus, the ith fitted value, §j;, is the point on
the least squares regression line (2.16) corresponding to z;. The vertical distance
corresponding to the ith observation is

ei:yi_gi, 7;:1,2,"','”,. (2.18)

These vertical distances are called the ordinary* least squares residuals. One
property of the residuals in (2.18) is that their sum is zero [see Exercise 2.5(a)].
This means that the sum of the distances above the line is equal to the sum of the
distances below the line.

Using the Computer Repair data and the quantities in Table 2.6, we have

s S(yi—y)(mi—1) 1768 _
b= S -z~ 1 = 15.509,

and ) A
Bo =17 — Bz =97.21 — 15.509 x 6 = 4.162.

4 To be distinguished from other types of residuals to be presented later.
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Minutes
100 150

50

Units

Figure 2.5 Plot of Minutes versus Units with the fitted least squares regression line.

Then the equation of the least squares regression line is
Minutes = 4.162 + 15.509Units. (2.19)

This least squares line is shown together with the scatter plot of Minutes versus
Units in Figure 2.5. The fitted values in (2.17) and the residuals in (2.18) are shown
in Table 2.7.

The coefficients in (2.19) can be interpreted in physical terms. The constant
term represents the setup or startup time for each repair and is approximately 4
minutes. The coefficient of Units represents the increase in the length of a service
call for each additional component that has to be repaired. From the data given, we
estimate that it takes about 15.5 minutes for each additional component that has to
be repaired. For example, the length of a service call in which four components had
to be repaired is obtained by substituting Units = 4 in the equation of the regression
line (2.19) and obtaining § = 4.162 + 15.509 x 4 = 66.20. Since Units = 4,
corresponds to two observations in our data set (observations 4 and 5), the value
66.198 is the fitted value for both observations 4 and 5, as can be seen from Table
2.7. Note, however, that since observations 4 and 5 have different values for the
response variable Minutes, they have different residuals.

We should note here that by comparing (2.2), (2.7), and (2.14), an alternative
formula for Bl can be expressed as

5 Cov(Y,X)

B = Cor(Y, X)L, (2.20)

Var(X) @
from which it can be seen that 5;, Cov(Y, X), and Cor(Y, X) have the same
sign. This makes intuitive sense because positive (negative) slope means positive
(negative) correlation.

So far in our analysis we have made only one assumption, namely, that Y and
X are linearly related. This assumption is referred to as the linearity assumption.
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Table 2.7  Fitted Values, §;, and Ordinary Least Squares Residuals, e;, for
Computer Repair Data

ioT Y i e; i z; Yi Ui €

1 1 23 19.67 3.33 8 6 97 9721 -0.21
2 2 29 35.18 —6.18 9 7 109 11272 =372
3 3 49 50.69 —1.69 10 8 119 12823 -9.23
4 4 64 66.20 ~2.20 11 9 149 143.74 5.26
5 4 74 66.20 7.80 12 9 145 143.74 1.26
6 5 87 81.71 5.29 13 10 154 15925 —525
7 6 9 97.21 —~1.21 14 10 166 159.25 6.75

This is merely an assumption or a hypothesis about the relationship between the
response and predictor variables. An early step in the analysis should always be
the validation of this assumption. We wish to determine if the data at hand support
the assumption that Y and X are linearly related. An informal way to check
this assumption is to examine the scatter plot of the response versus the predictor
variable, preferably drawn with the least squares line superimposed on the graph
(see Figure 2.5). If we observe a nonlinear pattern, we will have to take corrective
action. For example, we may reexpress or transform the data before we continue
the analysis. Data transformation is discussed in Chapter 6.

If the scatter of points resembles a straight line, then we conclude that the lin-
earity assumption is reasonable and continue with our analysis. The least squares
estimators have several desirable properties when some additional assumptions
hold. The required assumptions are stated in Chapter 4. The validity of these
assumptions must be checked before meaningful conclusions can be reached from
the analysis. Chapter 4 also presents methods for the validation of these assump-
tions. Using the properties of least squares estimators, one can develop statistical
inference procedures (e.g., confidence interval estimation, tests of hypothesis, and
goodness-of-fit tests). These are presented in Sections 2.6-2.9.

2.6 TESTS OF HYPOTHESES

As stated earlier, the usefulness of X as a predictor of Y can be measured informally
by examining the correlation coefficient and the corresponding scatter plot of Y
versus X. A more formal way of measuring the usefulness of X as a predictor of Y’
is to conduct a test of hypothesis about the regression parameter 3;. Note that the
hypothesis 31 = 0 means that there is no linear relationship between Y and X. A
test of this hypothesis requires the following assumption. For every fixed value of
X, the ¢’s are assumed to be independent random quantities normally distributed
with mean zero and a common variance o2. With these assumptions, the quantities,
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Bo and f; are unbiased® estimates of 3y and S, respectively. Their variances are

Var(Go) = o2 | X __ (2.21)
arlfo) = o 0t SN - z2 |’ -
and 9
A g

Furthermore, the sampling distributions of the least squares estimates Bo and
are normal with means By and $; and variance as given in (2.21) and (2.22),
respectively.

The variances of ﬁo and Bl depend on the unknown parameter o2. So, we need
to estimate o from the data. An unbiased estimate of o2 is given by

52 — > e? _ S (yi — 9:)? _ SSE
n—2 n—2 n—2"

where SSE is the sum of squares of the residuals (errors). The number n — 2 in
the denominator of (2.23) is called the degrees of freedom (df). It is equal to the
number of observations minus the number of estimated regression coefficients.
Replacing 2 in (2.21) and (2.22) by 42 in (2.23), we get unbiased estimates
of the variances of Bo and 51. An estimate of the standard deviation is called the
standard error (s.e.) of the estimate. Thus, the standard errors of EO and Bl are

(2.23)

. =2
se.(Bo) =6 \/ % + f@x_—@—z (2.24)
and .
- o
s-e.(f1) = N CEr (2.25)

respectively, where & is the square root of 52 in (2.23). The standard error of /3 is
a measure of how precisely the slope has been estimated. The smaller the standard
error the more precise the estimator,

With the sampling distributions of @0 and 5’1, we are now in position to perform
statistical analysis concerning the usefulness of X as a predictor of Y. Under the
normality assumption, an appropriate test statistic for testing the null hypothesis
Hp : 81 = 0 against the alternative H; : 51 # 0 is the ¢-Test,

A
s.e.(B1)

The statistic ¢; is distributed as a Student’s ¢ with n — 2 degrees of freedom. The
test is carried out by comparing this observed value with the appropriate critical

t (2.26)

5 An estimate 4 is said to be an unbiased estimate of a parameter 8 if the expected value of 8 is equal
to 6.
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Figure 2.6  Graph of the probability density function of a ¢-distribution. The p-value for
the ¢-Test is the shaded areas under the curve.

value obtained from the ¢-table given in the Appendix to this book (see Table A.2),
which is £(,_9 o /2), Where a is a specified significance level. Note that we divide
a by 2 because we have a two-sided alternative hypothesis. Accordingly, Hy is to
be rejected at the significance level « if

lt1] = t(n-2,a/2) (2.27)

where |t1| denotes the absolute value of ¢;. A criterion equivalent to that in (2.27)
is to compare the p-value for the ¢-Test with « and reject Hy if

p(t1]) < o, (2.28)

where p(|t1]), called the p-value, is the probability that a random variable having
a Student ¢ distribution with n — 2 degrees of freedom is greater than |¢;| (the
absolute value of the observed value of the {-Test). Figure 2.6 is a graph of the
density function of a ¢-distribution. The p-value is the sum of the two shaded
areas under the curve. The p-value is usually computed and supplied as part of the
regression output by statistical packages. Note that the rejection of Hy : 81 = 0
would mean that 3 is likely to be different from 0, and hence the predictor variable
X 1is a statistically significant predictor of the response variable Y.

To complete the picture of hypotheses testing regarding regression parameters,
we give here tests for three other hypotheses that may arise in practice.

Testing Ho: 3; = 89
The above t-Test can be generalized to test the more general hypothesis Hg :

B1 = B9, where 3? is a constant chosen by the investigator, against the two-sided
alternative H; : $; # (9. The appropriate test statistic in this case is the t-Test,

Bi—8
t1 = — . 2.29
iy ) (2.29)
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Note that when 39 = 0, the ¢-Test in (2.29) reduces to the ¢-Test in (2.26). The
statistic 1 in (2.29) is also distributed as a Student’s £ with n — 2 degrees of freedom.
Thus,Hp : 51 = B? is rejected if (2.27) holds [or, equivalently, if (2.28) holds].

For illustration, using the Computer Repair data, let us suppose that the manage-
ment expected the increase in service time for each additional unit to be repaired to
be 12 minutes. Do the data support this conjecture? The answer may be obtained
by testing Hy : 81 = 12 against H; : 8; # 12. The appropriate statistic is

3 — 509 — 12
t = B1 A12 — 15.509 — 1 — 6.948,
S,e,(ﬂl) 0.505

with 12 degrees of freedom. The critical value for this test is {(n_24/2) =
t(12,0.025) = 2.18. Since {1 = 6.948 > 2.18, the result is highly significant,
leading to the rejection of the null hypothesis. The management’s estimate of the
increase in time for each additional component to be repaired is not supported by
the data. Their estimate is too low.

Testing Hg: By = ﬂg

The need for testing hypotheses regarding the regression parameter 3y may also
arise in practice. More specifically, suppose we wish to test Hy : 8y = 3] against
the alternative Hy : 8o # /33, where 5§ is a constant chosen by the investigator.
The appropriate test in this case is given by

3 _ 30
=0 P (2.30)
s.e.(fo)
If we set ) = 0, a special case of this test is obtained as
o = — PO : (2.31)
s.e.(5o)

which tests Hyp : Sy = 0 against the alternative H; : 8y # 0.

The least squares estimates of the regression coefficients, their standard errors,
the ¢-Tests for testing that the corresponding coefficient is zero, and the p-values
are usually given as part of the regression output by statistical packages. These
values are usually displayed in a table such as the one in Table 2.8. This table is
known as the coefficients table. To facilitate the connection between a value in the
table and the formula used to obtain it, the equation number of the formula is given
in parentheses.

As an illustrative example, Table 2.9 shows a part of the regression output for
the Computer Repair data in Table 2.5. Thus, for example, Bl = 15.509, the
s.e.(f1) = 0.505, and hence ¢; = 15.509/0.505 = 30.71. The critical value for
this test using a = 0.05, for example, is ¢(19 g g25) = 2.18. The ¢; = 30.71 is much
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Table 2.8 Standard Regression Output. Equation Number of the Corresponding
Formulas are Given in Parentheses

Variable Coefficient (Formula) s.e. (Formula) t-Test (Formula) p-value
Constant Bo (2.15) se.(Bo) (2.24) to (2.31) o
X B (2.149) se.(81) (2.25) t1 (2.26) M

Table 2.9 Regression Output for Computer Repair Data

Variable Coefficient s.e. t-Test p-value
Constant 4.162 3.355 1.24 0.2385
Units 15.509 0.505 30.71 < 0.0001

larger than its critical value 2.18. Consequently, according to (2.27), Hp : 51 = 01is
rejected, which means that the predictor variable Units is a statistically significant
predictor of the response variable Minutes. This conclusion can also be reached
using (2.28) by observing that the p-value (p; < 0.0001) is much less than o = 0.05
indicating very high significance.

A Test Using Correlation Coefficient

As mentioned above, a test of Hy : 81 = 0 against H; : 8; # 0 can be thought of as
a test for determining whether the response and the predictor variables are linearly
related. We used the ¢-Test in (2.26) to test this hypothesis. An alternative test,
which involves the correlation coefficient between Y and X, can be developed.
Suppose that the population correlation coefficient between Y and X is denoted
by p. If p # 0, then Y and X are linearly related. An appropriate test for testing
Hp : p = 0 against H; : p # 0 is given by

_ Cor(Y, X)vn —2

" V- [CoV X &

1

where Cor(Y, X) is the sample correlation coefficient between Y and X, defined
in (2.6), which is considered here to be an estimate of p. The t-Test in (2.32) is
distributed as a Student’s ¢ with n — 2 degrees of freedom. Thus, Hy : p = O is
rejected if (2.27) holds [or, equivalently, if (2.28) holds]. Againif Ho : p = O is
rejected, it means that there is a statistically significant linear relationship between
Y and X.

It is clear that if no linear relationship exists between Y and X, then 3, = 0.
Consequently, the statistical tests for Hyp : 81 = 0 and Hg : p = 0 should be
identical. Although the statistics for testing these hypotheses given in (2.26) and
(2.32) look different, it can be demonstrated that they are indeed algebraically
equivalent.
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2.7 CONFIDENCE INTERVALS

To construct confidence intervals for the regression parameters, we also need to
assume that the £’s have a normal distribution, which will enable us to conclude
that the sampling distributions of B and /3’1 are normal, as discussed in Section 2.6.
Consequently, the (1 — a) x 100% confidence interval for 3y is given by

Bo £ t(n_2,a/2) X s€.(Bo), (2.33)

where t(,,_9 o /9) is the (1 — «/2) percentile of a t distribution with n — 2 degrees
of freedom. Similarly, limits of the (1 — a) x 100% confidence interval for 3; are
given by

Br £ t(n_2,as2) X se.(B1)- (2.34)

The confidence interval in (2.34) has the usual interpretation, namely, if we were to

take repeated samples of the same size at the same values of X and construct, for

example, 95% confidence intervals for the slope parameter for each sample, then

95% of these intervals would be expected to contain the true value of the slope.
From Table 2.9 we see that a 95% confidence interval for S is

15.509 £ 2.18 x 0.505 = (14.408,16.610). (2.35)

That is, the incremental time required for each broken unit is between 14 and 17
minutes. The calculation of confidence interval for 3y in this example is left as an
exercise for the reader.

Note that the confidence limits in (2.33) and (2.34) are constructed for each of
the parameters 3y and 31, separately. This does not mean that a simultaneous (joint)
confidence region for the two parameters is rectangular. Actually, the simultaneous
confidence region is elliptical. This region is given for the general case of multiple
regression in the Appendix to Chapter 3 in (A.15), of which the simultaneous
confidence region for 3y and /3 is a special case.

28 PREDICTIONS

The fitted regression equation can be used for prediction. We distinguish between
two types of predictions:

1. The prediction of the value of the response variable Y which corresponds to
any chosen value, z, of the predictor variable.

2. The estimation of the mean response g, when X = xzq.

For the first case, the predicted value g is

g0 = Bo + Bizo. (2.36)
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The standard error of this prediction is

— 7)2
s.e.(fo) = a\/ 1+ % . Ry 2.37)

Hence, the confidence limits for the predicted value with confidence coefficient
(1 — o) are given by

Go £ t(n—2,a/2) 8-€.(J0)- (2.38)
For the second case, the mean response g is estimated by
fio = Bo + Przo. (2.39)

The standard error of this estimate is

1 (:Uo — :f‘)z
E Z(.’L‘Z — 11_7)2 ’

from which it follows that the confidence limits for ¢ with confidence coefficient
(1 — @) are given by

s.e.(fip) =6 (2.40)

fo = tn—2,0/2) s.e.(fio). (2.41)

Note that the point estimate of 4 is identical to the predicted response §y. This
can be seen by comparing (2.36) with (2.39). The standard error of /i is, however,
smaller than the standard error of §jy and can be seen by comparing (2.37) with
(2.40). Intuitively, this makes sense. There is greater uncertainty (variability)
in predicting one observation (the next observation) than in estimating the mean
response when X = xg. The averaging that is implied in the mean response reduces
the variability and uncertainty associated with the estimate.

To distinguish between the limits in (2.38) and (2.41), the limits in (2.38) are
sometimes referred to as the prediction or forecast limits, whereas the limits given
in (2.41) are called the confidence limits.

Suppose that we wish to predict the length of a service call in which four
components had to be repaired. If 4 denotes the predicted value, then from (2.36)
we get

94 = 4.162 + 15.509 x 4 = 66.20,

with a standard error that is obtained from (2.37) as

1 (4—6)2
() = 5.392 — = 5.67.
s.e.(94) 539\/1+14+ =567

On the other hand, if the service department wishes to estimate the expected (mean)
service time for a call that needed four components repaired, we would use (2.39)
and (2.40), respectively. Denoting by 14, the expected service time for a call that
needed four components to be repaired, we have

flg = 4.162 4 15.509 x 4 = 66.20,
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with a standard error

(4-6)2
114

s.e.(f14) = 5.392 1 + = 1.76.

14
With these standard errors we can construct confidence intervals using (2.38) and
(2.41), as appropriate.

As can be seen from (2.37), the standard error of prediction increases the farther
the value of the predictor variable is from the center of the actual observations.
Care should be taken when predicting the value of Minutes corresponding to a
value for Units that does not lie close to the observed data. There are two dangers
in such predictions. First, there is substantial uncertainty due to the large standard
error. More important, the linear relationship that has been estimated may not hold
outside the range of observations. Therefore, care should be taken in employing
fitted regression lines for prediction far outside the range of observations. In our
example we would not use the fitted equation to predict the service time for a service
call which requires that 25 components be replaced or repaired. This value lies too
far outside the existing range of observations.

2.9 MEASURING THE QUALITY OF FIT

After fitting a linear model relating ¥ to X, we are interested not only in knowing
whether a linear relationship exits, but also in measuring the quality of the fit of the
model to the data. The quality of the fit can be assessed by one of the following
highly related (hence, somewhat redundant) ways:

1. When using the tests in (2.26) or (2.32), if Hy is rejected, the magnitude of
the values of the test (or the corresponding p-values) gives us information
about the strength (not just the existence) of the linear relationship between
Y and X. Basically, the larger the ¢ (in absolute value) or the smaller the
corresponding p-value, the stronger the linear relationship between Y and X.
These tests are objective but they require all the assumptions stated earlier,
specially the assumption of normality of the €’s.

2. The strength of the linear relationship between Y and X can also be assessed
directly from the examination of the scatter plot of Y versus X together with
the corresponding value of the correlation coefficient Cor(Y, X) in (2.6).
The closer the set of points to a straight line [the closer Cor(Y, X) to 1 or
—1], the stronger the linear relationship between Y and X. This approach is
informal and subjective but it requires only the linearity assumption.

3. Examine the scatter plot of Y versus Y. The closer the set of points to a
straight line, the stronger the linear relationship between Y and X. One can
measure the strength of the linear relationship in this graph by computing the
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correlation coefficient between Y and Y, which is given by

Cor(Y,Y) 2y y)(y’ 9) — (2.42)
\/Z yz ( Yi y)

where 7 is the mean of the response variable Y and § is the mean of the
fitted values. In fact, the scatter plot of Y versus X and the scatter plot of
Y versus Y are redundant because the patterns of points in the two graphs
are identical. The two corresponding values of the correlation coefficient are
related by the following equation:

Cor(Y,Y) = |Cor(Y, X)|. (2.43)

Note that Cor(Y, Y) cannot be negative (why?), but Cor(Y, X) can be positive
or negative [—1 < Cor(Y, X) < 1]. Therefore, in simple linear regression,
the scatter plot of ¥ versus Y is redundant. However, in multiple regression,
the scatter plot of Y versus Y is not redundant. The graph is very useful
because, as we shall see in Chapter 3, it is used to assess the strength of the
relationship between Y and the set of predictor variables X1, Xa,- - -, X,

. Although scatter plots of Y versus Y and Cor(Y, )7) are redundant in simple

linear regression, they give us an indication of the quality of the fit in both
simple and multiple regression. Furthermore, in both simple and multiple
regressions, Cor(Y, Y) is related to another useful measure of the quality of
fit of the linear model to the observed data. This measure is developed as
follows. After we compute the least squares estimates of the parameters of a
linear model, let us compute the following quantities:

SST = 3 (v:i—9)%
SSR = > (3 — %) (2.44)
SSE = Y (yi— )%

where SST stands for the total sum of squared deviations in Y from its mean
7, SSR denotes the sum of squares due to regression, and SSE represents
the sum of squared residuals (errors). The quantities (g; — ), (%; — 7). and
(yi — i) are depicted in Figure 2.7 for a typical point (z;,y;). The line
Ui = [3’0 + le,- is the fitted regression line based on all data points (not
shown on the graph) and the horizontal line is drawn at Y = §. Note that
for every point (z;,y;), there are two points, (z;, §;), which lies on the fitted
line, and (z;, §) which lies on the line Y = 3.

A fundamental equality, in both simple and multiple regressions, is given by
SST = SSR + SSE. (2.45)

This equation arises from the description of an observation as
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(xi, ¥1)
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-

Figure 2.7 Graphical illustration of various quantities computed after fitting a regression
line to data.

Yi = % + (i — %)
Observed Fit + Deviation from fit.

Subtracting ¢ from both sides, we obtain

Yi— Y = G — ) + (=)
Deviation from mean = Deviationdue to fit + Residual.

Accordingly, the total sum of squared deviations in Y can be decomposed
into the sum of two quantities, the first, SSR, measures the quality of X as
a predictor of Y, and the second, SSE, measures the error in this prediction.
Therefore, the ratio R* = SSR/SST can be interpreted as the proportion of
the total variation in Y that is accounted for by the predictor variable X.
Using (2.45), we can rewrite R? as

, SSR SSE

=20 -2 4
SST ! SST (246)
Additionally, it can be shown that
[Cor(Y, X)]? = [Cor(Y, Y)]? = R%. (2.47)

In simple linear regression, R? is equal to the square of the correlation
coefficient between the response variable Y and the predictor X or to the
square of the correlation coefficient between the response variable Y and the
fitted values Y. The definition given in (2.46) provides us with an alternative
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interpretation of the squared correlation coefficients. The goodness-of-fit
index, R?, may be interpreted as the proportion of the total variability in the
response variable Y that is accounted for by the predictor variable X. Note
that 0 < R? < 1 because SSE < SST. If R? is near 1, then X accounts for a
large part of the variation in Y. For this reason, R? is known as the coefficient
of determination because it gives us an idea of how the predictor variable X
accounts for (determines) the response variable Y. The same interpretation
of R? will carry over to the case of multiple regression.

Using the Computer Repair data, the fitted values, and the residuals in Table
2.7, the reader can verify that Cor(Y, X) = Cor(Y,Y) = 0.994, from which
it follows that R? = (0.994)2 = 0.987. The same value of R? can be
computed using (2.46). Verify that SST = 27768.348 and SSE = 348.848.

So that
SSE 348.848

"~ SST  ~ 27768.348
The value R? = 0.987 indicates that nearly 99% of the total variability in
the response variable (Minutes) is accounted for by the predictor variable
(Units). The high value of R? indicates a strong linear relationship between
servicing time and the number of units repaired during a service call.

RP=1 = (.987.

We reemphasize that the regression assumptions should be checked before draw-
ing statistical conclusions from the analysis (e.g., conducting tests of hypothesis
or constructing confidence or prediction intervals) because the validity of these
statistical procedures hinges on the validity of the assumptions. Chapter 4 presents
a collection of graphical displays that can be used for checking the validity of the
assumptions. We have used these graphs for the computer repair data and found no
evidence that the underlying assumptions of regression analysis are not in order. In
summary, the 14 data points in the Computer Repair data have given us an infor-
mative view of the repair time problem. Within the range of observed data, we are
confident of the validity of our inferences and predictions.

2.10 REGRESSION LINE THROUGH THE ORIGIN

We have considered fitting the model
Y=0%+pX+e, (2.48)

which is a regression line with an intercept. Sometimes, it may be necessary to fit

the model
Y =/X+¢, (2.49)

a line passing through the origin. This model is also called the no-intercept model.
The line may be forced to go through the origin because of subject matter theory
or other physical and material considerations. For example, distance traveled as a
function of time should have no constant. Thus, in this case, the regression model
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in (2.49) is appropriate. Many other practical applications can be found where
model (2.49) is more appropriate than (2.48). We shall see some of these examples
in Chapter 7.

The least squares estimate of 31 in (2.49) is

B = %y;‘;’ (2.50)
The ith fitted value is A
9 =bz, 1=12,---,n, (2.51)
and the corresponding residual is
e =Y -, i=12,- n. (2.52)
The standard error of the Bl is
s.e.(fr) = i , (2.53)
Y}
where
. e? SSE
6= 3:—11:\/n—1' (2.54)

Note that the degrees of freedom for SSE is n — 1, not n — 2, as is the case for a
model with an intercept.

Note that the residuals in (2.52) do not necessarily add up to zero as is the case
for a model with an intercept [see Exercise 2.11(c)]. Also, the fundamental identity
in (2.45) is no longer true in general. For this reason, some quality measures for
models with an intercept such as R? in (2.46) are no longer appropriate for models
with no intercept. The appropriate identity for the case of models with no intercept
is obtained by replacing ¥ in (2.44) by zero. Hence, the fundamental identity

becomes .
n
DY =D U+ el (2.55)

= . (2.56)

This is the appropriate form of R? for models with no intercept. Note, however,
that the interpretations for the two formulas of R? are different. In the case of
models with an intercept, R? can be interpreted as the proportion of the variation in
Y that is accounted for by the predictor variable X after adjusting Y by its mean.
For models without an intercept, no adjustment of Y is made. For example, if we
fit (2.49) but use the formula for R? in (2.46), it is possible for R? to be negative in
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some cases [see Exercise 2.11(d)]. Therefore, the correct formula and the correct
interpretation should be used.

The formula for the £-Test in (2.29) for testing Hy : 51 = 5? against the two-
sided alternative Hy : 31 # (Y continues to hold but with the new definitions of Bl
and s.e.(ﬁl) in (2.50) and (2.53), respectively.

As we mentioned earlier, models with no intercept should be used whenever
they are consistent with the subject matter (domain) theory or other physical and
material considerations. In some applications, however, one may not be certain as
to which model should be used. In these cases, the choice between the models given
in (2.48) and (2.49) has to be made with care. First, the goodness of fit should be
judged by comparing the residual mean squares (62) produced by the two models
because it measures the closeness of the observed and predicted values for the two
models. Second, one can fit model (2.48) to the data and use the t-Test in (2.31)
to test the significance of the intercept. If the test is significant, then use (2.48),
otherwise use (2.49).

An excellent exposition of regression models through the origin is provided by
Eisenhauer (2003) who also alerts the users of regression models through the origin
to be careful when fitting these models using computer software programs because
some of them give incorrect and confusing results for the case of regression models
through the origin.

2.11 TRIVIAL REGRESSION MODELS

In this section we give two examples of trivial regression models, that is, regression
equations that have no regression coefficients. The first example arises when we
wish to test for the mean u of a single variable Y based on a random sample of
n observations yi, ¥2, * -+, Yn. Here we have Hy : p = 0 against H; : p # 0.
Assuming that Y is normally distributed with mean p and variance o2, the well-
known one-sample t-Test

g—o0 ]
t= — = , 2.57)
sey)  sy/vn
can be used to test Hy, where s, is the sample standard deviation of Y. Alternatively,
the above hypotheses can be formulated as

Ho(Model 1) : Y = ¢ against Hy(Model 2) : Y = g + ¢, (2.58)

where g = po. Thus, Model 1 indicates that = 0 and Model 2 indicates that
p # 0. The least squares estimate of 3y in Model 2 is g, the ith fitted value is
9; = ¥, and the ith residual is e; = y; — ¥ (See Exercise 2.2.13). It follows then
that an estimate of 2 is

2
s2_ SSE _Yi-9°_ o (2.59)

Tn-1  n-1 v
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which is the sample variance of Y. The standard error of BO is then 6/y/n =
8y/+/n, which is the familiar standard error of the sample mean 3. The ¢-Test for
testing Model 1 against Model 2 is

_ Bo—0 __ ¥
se.(Bo)  sy/vn’

which is the same as the one-sample ¢-Test in (2.57).

The second example occurs in connection with the paired two-sample t-Test.
For example, to test whether a given diet is effective in weight reduction, a random
sample of n people is chosen and each person in the sample follows the diet for a
specified period of time. Each person’s weight is measured at the beginning of the
diet and at the end of the period. Let Y; and Y5 denote the weight at the beginning
and at the end of diet period, respectively. Let Y = Y; — Y2 be the difference
between the two weights. Then Y is a random variable with mean ¢ and variance
o?. Consequently, testing whether or not the diet is effective is the same as testing
Hp : ¢ = 0 against Hy : ¢ > 0. With the definition of Y and assuming that Y is
normally distributed, the well-known paired two-sample ¢-Test is the same as the
test in (2.57). This sitnation can be modeled as in (2.58) and the test in (2.60) can
be used to test whether the diet is effective in weight reduction.

The above two examples show that the one-sample and the paired two-sample
tests can be obtained as special cases using regression analysis.

t1 (2.60)

2.12 BIBLIOGRAPHIC NOTES

The standard theory of regression analysis is developed in a number of good text
books, some of which have been written to serve specific disciplines. Each provides
a complete treatment of the standard results. The books by Snedecor and Cochran
(1980), Fox (1984), and Kmenta (1986) develop the results using simple algebra
and summation notation. The development in Searle (1971), Rao (1973), Seber
(1977), Myers (1990), Sen and Srivastava (1990), Green (1993), Graybill and Iyer
(1994), and Draper and Smith (1998) lean more heavily on matrix algebra.

EXERCISES
2.1 Using the data in Table 2.6:
(a) Compute Var(Y') and Var(X).
(b) Prove or verify that i (yi —§) = 0.
i=1

(c) Prove or verify that any standardized variable has a mean of 0 and a
standard deviation of 1.

(d) Prove or verify that the three formulas for Cor(Y, X) in (2.5), (2.6), and
(2.7) are identical.
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(e) Prove or verify that the three formulas for Bl in (2.14) and (2.20) are
identical.

Explain why you would or wouldn’t agree with each of the following state-
ments:

(a) Cov(Y,X) and Cor(Y, X) can take values between —oo and +o0.

(b) If Cov(Y,X) = 0 or Cor(Y, X) = 0, one can conclude that there is no
relationship between Y and X.

(c) The least squares line fitted to the points in the scatter plot of Y versus Y’
has a zero intercept and a unit slope.

Using the regression output in Table 2.9, test the following hypotheses using
a=0.1:

(a) Hp: By =15 versus Hy : 5) # 15

(b) Hy: fy =15 versusH; : 51 > 15

(¢) Hy : Bg=0versusHy : By #0

(d) Ho: Bo=5versusHy : By # 5

Using the regression output in Table 2.9, construct the 99% confidence interval
for fg.

When fitting the simple linear regression model Y = 8y + 51X + € to a set
of data using the least squares method, each of the following statements can
be proven to be true. Prove each statement mathematically or demonstrate its
correctness numerically (using the data in Table 2.5):

(a) The sum of the ordinary least squares residuals is zero.

(b) The two tests in (2.26) and (2.32) are equivalent.

(c) The scatter plot of Y versus X and the scatter plot of Y versus Y have
identical patterns.

(d) The correlation coefficient between Y and ¥ must be nonnegative.

Using the data in Table 2.5, and the fitted values and the residuals in Table
2.7, verify that:

(a) Cor(Y,X) = Cor(Y,Y) = 0.994

(b) SST =27768.348

(c) SSE =348.848

Verify that the four data sets in Table 2.4 give identical results for the following

quantities:
(@ Bo and By (b) Cor(Y, X)
(©) R (d) The ¢-Test

When fitting a simple linear regression model ¥ = [y 4+ 81X + € to a set
of data using the least squares method, suppose that Hy : 81 = 0 was not
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Table 2.10  Regression Qutput When Y is Regressed on X for Labor Force
Participation Rate of Women

Variable Coefficient s.e. t-Test p-value
Constant 0.203311 0.0976 2.08 0.0526
X 0.656040 0.1961 3.35 < 0.0038
n=19 R?=0.397 R2 =0.362 & =0.0566 df =17

rejected. This implies that the model can be written simply as: ¥ = Sy +e¢.
The least squares estimate of 5y is Sp = §. (Can you prove that?)

(a) What are the ordinary least squares residuals in this case?
(b) Show that the ordinary least squares residuals sum up to zero.

2.9 LetY and X denote the labor force participation rate of women in 1972 and
1968, respectively, in each of 19 cities in the United States. The regression
output for this data set is shown in Table 2.10. It was also found that SSR
= 0.0358 and SSE = 0.0544. Suppose that the model Y = Sy + 51X + ¢
satisfies the usual regression assumptions.

(a) Compute Var(Y') and Cor(Y, X).

(b) Suppose that the participation rate of women in 1968 in a given city is
45%. What is the estimated participation rate of women in 1972 for the
same city?

(c) Suppose further that the mean and variance of the participation rate of
women in 1968 are 0.5 and 0.005, respectively. Construct the 95%
confidence interval for the estimate in (b).

(d) Construct the 95% confidence interval for the slope of the true regression
line, ﬂl.

(e) Test the hypothesis: Hg : 51 = 1 versus H; : 8y > 1 at the 5% signifi-
cance level.

(f) If Y and X were reversed in the above regression, what would you expect
R? to be?

2.10 One may wonder if people of similar heights tend to marry each other. For
this purpose, a sample of newly married couples was selected. Let X be
the height of the husband and Y be the height of the wife. The heights (in
centimeters) of husbands and wives are found in Table 2.11. The data can
also be found at the book’s Website.

(a) Compute the covariance between the heights of the husbands and wives.
(b) What would the covariance be if heights were measured in inches rather
than in centimeters?
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Table 2.11 Heights of Husband (H) and Wife (W) in (Centimeters)

Row H W Row H w Row H W
1 186 175 33 180 166 65 181 175
2 180 168 34 188 181 66 170 169
3 160 154 35 153 148 67 161 149
4 186 166 36 179 169 68 188 176
5 163 162 37 175 170 69 181 165
6 172 152 38 165 157 70 156 143
7 192 179 39 156 162 71 161 158
8 170 163 40 185 174 72 152 141
9 174 172 41 172 168 73 179 160

10 191 170 42 166 162 74 170 149
11 182 170 43 179 159 75 170 160
12 178 147 44 181 155 76 165 148
13 181 165 45 176 171 77 165 154
14 168 162 46 170 159 78 169 171
15 162 154 47 165 164 79 171 165
16 188 166 48 183 175 80 192 175
17 168 167 49 162 156 81 176 161
18 183 174 50 192 180 82 168 162
19 188 173 51 185 167 83 169 162
20 166 164 52 163 157 84 184 176
21 180 163 53 185 167 85 171 160
22 176 163 54 170 157 86 161 158
23 185 171 55 176 168 87 185 175
24 169 161 56 176 167 88 184 174
25 182 167 57 160 145 89 179 168
26 162 160 58 167 156 90 184 177
27 169 165 59 157 153 91 175 158
28 176 167 60 180 162 92 173 161
29 180 175 61 172 156 93 164 146
30 157 157 62 184 174 94 181 168
31 170 172 63 185 160 95 187 178
32 186 181 64 165 152 96 181 170
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(c) Compute the correlation coefficient between the heights of the husband
and wife.

(d) What would the correlation be if heights were measured in inches rather
than in centimeters?

(e) What would the correlation be if every man married a woman exactly 5
centimeters shorter than him?

(f) We wish to fit a regression model relating the heights of husbands and
wives. Which one of the two variables would you choose as the response
variable? Justify your answer.

(g) Using your choice of the response variable in Exercise 2.10(f), test the
null hypothesis that the slope is zero.

(h) Using your choice of the response variable in 2.10(f), test the null hypoth-
esis that the intercept is zero.

2.11 Consider fitting a simple linear regression model through the origin, ¥ =

51X + ¢, to a set of data using the least squares method.

(a) Give an example of a situation where fitting the model (2.49) is justified
by theoretical or other physical and material considerations.

(b) Show that least squares estimate of 3; is as given in (2.50).

(c) Show that the residuals ej, e, - - -, e, Will not necessarily add up to zero.

(d) Give anexample of adatasetY and X in which R?in (2.46) but computed
from fitting (2.49) to the data is negative.

(e) Which goodness of fit measures would you use to compare model (2.49)
with model (2.48)?

2.12 In order to investigate the feasibility of starting a Sunday edition for a large
metropolitan newspaper, information was obtained from a sample of 34 news-
papers concerning their daily and Sunday circulations (in thousands) (Source:
Gale Directory of Publications, 1994). The data are given in Table 2.12 and
can be found at the book’s Website.

(a) Construct a scatter plot of Sunday circulation versus daily circulation.
Does the plot suggest a linear relationship between daily and Sunday
circulation? Do you think this is a plausible relationship?

(b) Fit aregression line predicting Sunday circulation from daily circulation.

{c) Obtain the 95% confidence intervals for 5y and 3;.

(d) Is there a significant relationship between Sunday circulation and daily
circulation? Justify your answer by a statistical test. Indicate what
hypothesis you are testing and your conclusion.

(e) What proportion of the variability in Sunday circulation is accounted for
by daily circulation?

(f) Provide an interval estimate (based on 95% level) for the average Sunday
circulation of newspapers with daily circulation of 5S00,000.
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Table 2.12 Newspapers Data: Daily and Sunday Circulations (in Thousands)

Newspaper Daily Sunday
Baltimore Sun 391.952 488.506
Boston Globe 516.981 798.298
Boston Herald 355.628 235.084
Charlotte Observer 238.555 299.451
Chicago Sun Times 537.780 559.093
Chicago Tribune 733.775 1133.249
Cincinnati Enquirer 198.832 348.744
Denver Post 252.624 417.779
Des Moines Register 206.204 344.522
Hartford Courant 231.177 323.084
Houston Chronicle 449.755 620.752
Kansas City Star 288.571 423.305
Los Angeles Daily News 185.736 202.614
Los Angeles Times 1164.388 1531.527
Miami Herald 444,581 553.479
Minneapolis Star Tribune 412.871 685.975
New Orleans Times-Picayune 272.280 324.241
New York Daily News 781.796 083.240
New York Times 1209.225 1762.015
Newsday 825.512 960.308
Omaha World Herald 223.748 284.611
Orange County Register 354.843 407.760
Philadelphia Inquirer 515.523 982.663
Pittsburgh Press 220.465 557.000
Portland Oregonian 337.672 440.923
Providence Journal-Bulletin 197.120 268.060
Rochester Democrat & Chronicle 133.239 262.048
Rocky Mountain News 374.009 432.502
Sacramento Bee 273.844 338.355
San Francisco Chronicle 570.364 704.322
St. Louis Post-Dispatch 391.286 585.681
St. Paul Pioneer Press 201.860 267.781
Tampa Tribune 321.626 408.343
Washington Post 838.902 1165.567
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(g) The particular newspaper that is considering a Sunday edition has a daily
circulation of 500,000. Provide an interval estimate (based on 95% level)
for the predicted Sunday circulation of this paper. How does this interval
differ from that given in (f)?

(h) Another newspaper being considered as a candidate for a Sunday edition
has a daily circulation of 2,000,000. Provide an interval estimate for
the predicted Sunday circulation for this paper? How does this interval
compare with the one given in (g)? Do you think it is likely to be accurate?

2.13 Letyy, y2,- - -, Yn be a sample drawn from a normal population with unknown
mean z and unknown variance 0. One way to estimate 4 is to fit the linear
model

yi=pt+e i1=12---,n, (2.61)

and use the least squares (LS), that is, to minimize the sum of squares,
n
> (i — ). Another way is to use the least absolute value (LAV), that is, to

i=1

n
minimize the sum of absolute value of the vertical distances, Y |y; — u|.
i=1

(a) Show that the least squares estimate of . is the sample mean .
(b) Show that the LAV estimate of u is the sample median.

(c) State one advantage and one disadvantage of the sample mean.
(d) State one advantage and one disadvantage of the sample median.
(e) Which of the above two estimates of x would you choose? Why?

2.14 Analternative to the least squares method is the orthogonal regression method.
According to the orthogonal regression method, the estimated regression
coefficients in the simple regression model are obtained by minimizing the
sum of squares of the perpendicular distances from each point to the regression
line. Show that the intercept and the slope of the line that minimizes the sum
of the squared orthogonal distances are obtained by finding 3y and /1 that
minimize the function

é(’!ﬁ ~ Bo — rz:)?
g(ﬂ()vﬁl) = 1+,B%

(2.62)

Unlike the least squares criterion, there is no closed-form solution to the
minimization problem in (2.62). A solution, however, can be obtained using
iterative methods. This is one reason for the popularity of the least squares
method.

www.it-ebooks.info


http://www.it-ebooks.info/

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 3

MULTIPLE LINEAR REGRESSION

3.1 INTRODUCTION

In this chapter the general multiple linear regression model is presented. The
presentation serves as a review of the standard results on regression analysis.
The standard theoretical results are given without mathematical derivations, but
illustrated by numerical examples. Readers interested in mathematical derivations
are referred to the bibliographic notes at the end of Chapter 2, where a number
of books that contain a formal development of multiple linear regression theory is
given.

3.2 DESCRIPTION OF THE DATA AND MODEL

The data consist of n observations on a dependent or response variable Y and p
predictor or explanatory variables, X1, X», - -, X,. The observations are usually
represented as in Table 3.1. The relationship between ¥ and X1, Xo,---, X, is
formulated as a linear model

Y=00+5X1+BXo+ -+ 5pXy,+e, (3.1

where By, 51,52, - -, Bp are constants referred to as the model partial regression
coefficients (or simply as the regression coefficients) and ¢ is a random disturbance
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Table 3.1 Notation for Data Used in Multiple Regression Analysis

Observation Response Predictors
Number Y X, X5 e Xp
1 1 1) Z12 e ZT1p
2 Y2 T21 22 s Top
3 Y3 T31 T32 T L3p
n Yn Znl Zn2 s Tnp
or error. It is assumed that for any set of fixed values of X3, Xs,---, X, that

fall within the range of the data, the linear equation (3.1) provides an acceptable
approximation of the true relationship between Y and the X’s (Y is approximately
a linear function of the X’s, and € measures the discrepancy in that approximation).
In particular, € contains no systematic information for determining Y that is not
already captured by the X'’s.

According to (3.1), each observation in Table 3.1 can be written as

yi=ﬂ0+5137i1+"‘+5p33ip+5i, i=1’27"'1n7 (32)

where y; represents the ith value of the response variable Y, z;1, i, -, Zsp
represent values of the predictor variables for the ith unit (the sth row in Table 3.1),
and ¢; represents the error in the approximation of y;.

Multiple linear regression is an extension (generalization) of simple linear re-
gression. Thus, the results given here are essentially extensions of the results given
in Chapter 2. One can similarly think of simple regression as a special case of
multiple regression because all simple regression results can be obtained using the
multiple regression results when the number of predictor variables p = 1. For
example, when p = 1, (3.1) and (3.2) reduce to (2.9) and (2.10), respectively.

3.3 EXAMPLE: SUPERVISOR PERFORMANCE DATA

Throughout this chapter we use data from a study in industrial psychology (man-
agement) to illustrate some of the standard regression results. A recent survey of
the clerical employees of a large financial organization included questions related
to employee satisfaction with their supervisors. There was a question designed to
measure the overall performance of a supervisor, as well as questions that were re-
lated to specific activities involving interaction between supervisor and employee.
An exploratory study was undertaken to try to explain the relationship between
specific supervisor characteristics and overall satisfaction with supervisors as per-
ceived by the employees. Initially, six questionnaire items were chosen as possible
explanatory variables. Table 3.2 gives the description of the variables in the study.
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Table 3.2 Description of Variables in Supervisor Performance Data

Variable Description
Y Overall rating of job being done by supervisor
X1 Handles employee complaints
Xo Does not allow special privileges
X3 Opportunity to learn new things
X4 Raises based on performance
X5 Too critical of poor performance
Xs Rate of advancing to better jobs

As can be seen from the list, there are two broad types of variables included in
the study. Variables X, X2, and X relate to direct interpersonal relationships be-
tween employee and supervisor, whereas variables X3 and X are of a less personal
nature and relate to the job as a whole. Variable Xj is not a direct evaluation of the
supervisor but serves more as a general measure of how the employee perceives his
or her own progress in the company.

The data for the analysis were generated from the individual employee response
to the items on the survey questionnaire. The response on any item ranged from
1 through 5, indicating very satisfactory to very unsatisfactory, respectively. A
dichotomous index was created to each item by collapsing the response scale to
two categories: {1,2}, to be interpreted as a favorable response, and {3,4,5},
representing an unfavorable response. The data were collected in 30 departments
selected at random from the organization. Each department had approximately 35
employees and one supervisor. The data to be used in the analysis, given in Table
3.3, were obtained by aggregating responses for departments to get the proportion of
favorable responses for each item for each department. The resulting data therefore
consist of 30 observations on seven variables, one observation for each department.
We refer to this data set as the Supervisor Performance data. The data set can also
be found at the book’s Website. !

A linear model of the form

Y=08+58X1+8Xo+ -+ PsX6+¢, (3.3)

relating Y and the six explanatory variables, is assumed. Methods for the validation
of this and other assumptions are presented in Chapter 4.

3.4 PARAMETER ESTIMATION

Based on the available data, we wish to estimate the parameters o, 51, - -, Bp. As
in the case of simple regression presented in Chapter 2, we use the least squares

! http://www.aucegypt.edu/faculty/hadi/RABES
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Table 3.3 Supervisor Performance Data

Row Y X, Xa X3 X4 X5 X6
1 43 51 30 39 61 92 45
2 63 64 51 54 63 73 47
3 71 70 68 69 76 86 48
4 61 63 45 47 54 84 35
5 81 78 56 66 71 83 47
6 43 55 49 44 54 49 34
7 58 67 42 56 66 68 35
8 71 75 50 55 70 66 41
9 72 82 72 67 71 83 31

10 67 61 45 47 62 80 41
11 64 53 53 58 58 67 34
12 67 60 47 39 59 74 41
13 69 62 57 42 55 63 25
14 68 83 83 45 59 71 35
15 77 77 54 72 79 77 46
16 81 90 50 72 60 54 36
17 74 85 64 69 79 79 63
18 65 60 65 75 55 80 60
19 65 70 46 57 75 85 46
20 50 58 68 54 64 78 52
21 50 40 33 34 43 64 33
22 64 61 52 62 66 80 41
23 53 66 52 50 63 80 37
24 40 37 42 58 50 57 49
25 63 54 42 48 66 75 33
26 66 77 66 63 88 76 72
27 78 75 58 74 80 78 49
28 48 57 44 45 51 83 38
29 85 85 71 71 77 74 55
30 82 82 39 59 64 78 39
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method, that is, we minimize the sum of squares of the errors. From (3.2), the
errors can be written as

—50-51%'1-"'—5;)%@, i=1a2>"'1n' (34)

The sum of squares of these errors is

S(Bo,B1, . Bp) =D i = (i — Bo—Prizaa— - = Bpzip)®.  (3.5)
i=1 i=1

By a direct application of calculus, it can be shown that the least squares estimates
Bo, B, - ,Bp, which minimize S(By, 81, - -, Bp), are given by the solution of a
system of linear equations known as the normal equations.> The estimate By is
usually referred to as the intercept or constant, and Bj as the estimate of the (partial)
regression coefficient of the predictor X;.

We assume that the system of equations is solvable and has a unique solution.
A closed-form formula for the solution is given in the Appendix at the end of
this chapter for readers who are familiar with matrix notation. We shall not say
anything more about the actual process of solving the normal equations. We assume
the availability of computer software that gives a 1 numerically accurate solution.

Using the estimated regression coefficients 60, Bl, .. ,ﬁp, we write the fitted
least squares regression equation as

Y =080+5X1+ -+ BXp. (3.6)
For each observation in our data we can compute
§i=Bo+Przin + -+ Bpzip, i=1,2,--0,m. (3.7)

These are called the fitted values. The corresponding ordinary least squares resid-
uals are given by
ei:yi_lg’i) 2.:]-727""77/- (3-8)

An unbiased estimate of o2 is given by

SSE
~2 _
o4 _—n—p—l’ 3.9
where n
SSE=) (yi—#:)*= Zez, (3.10)
=1

is the sum of squared residuals. The number n — p— 1 in the denominator of (3.9) is
called the degrees of freedom (df). It is equal to the number of observations minus
the number of estimated regression coefficients.

% For readers who are familiar with matrix notation, the normal equations and the least squares
estimates are given in the Appendix to this chapter as (A.2) and (A.3), respectively.
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When certain assumptions hold, the least squares estimators have several de-
sirable properties. Chapter 4 is devoted entirely to validation of the assumptions.
We should note, however, that we have applied these validation procedures on the
Supervisor Performance data that we use as illustrative numerical examples in this
chapter and found no evidence for model misspecification. We will, therefore, con-
tinue with the presentation of multiple regression analysis in this chapter knowing
that the required assumptions are valid for the Supervisor Performance data.

The properties of least squares estimators are presented in Section 3.7. Based
on these properties, one can develop proper statistical inference procedures (e.g.,
confidence interval estimation, tests of hypothesis, and goodness-of-fit tests). These
are presented in Sections 3.8-3.11.

3.5 INTERPRETATIONS OF REGRESSION COEFFICIENTS

The interpretation of the regression coefficients in a multiple regression equation
is a source of common confusion. The simple regression equation represents a
line, while the multiple regression equation represents a plane (in cases of two
predictors) or a hyperplane (in cases of more than two predictors). In multiple
regression, the coefficient 3y, called the constant coefficient, is the value of Y when
X1 = Xo =+ = X, =0, as in simple regression. The regression coefficient
Bj,j = 1,2,---,p, has several interpretations. It may be interpreted as the change
in Y corresponding to a unit change in X; when all other predictor variables are
held constant. Magnitude of the change is not dependent on the values at which
the other predictor variables are fixed. In practice, however, the predictor variables
may be inherently related, and holding some of them constant while varying the
others may not be possible.

The regression coefficient [3; is also called the partial regression coefficient
because J3; represents the contribution of X; to the response variable Y after it has
been adjusted for the other predictor variables. What does “adjusted for" mean in
multiple regression? Without loss of any generality, we address this question using
the simplest multiple regression case where we have two predictor variables. When
p = 2, the model is

Y =Bo+ B1 X1+ B2X2 + e (3.11)

We use the variables X and X5 from the Supervisor data to illustrate the concepts.
A statistical package gives the estimated regression equation as

A~

Y = 15.3276 + 0.7803X; — 0.0502.X>. (3.12)

The coefficient of X; suggests that each unit of X; adds 0.7803 to Y when the
value of X5 is held fixed. As we show below, this is also the effect of X after
adjusting for Xo. Similarly, the coefficient of X5 suggests that each unit of X2
subtracts about 0.0502 from Y when the value of X7 is held fixed. This is also the
effect of X, after adjusting for X;.
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Table 3.4 Partial Residuals

Row ey.X, ex, X, Row ey.X, ex,.X,
1 -9.8614 —15.1300 16 —1.2912 —15.1383
2 0.3287 —0.7995 17 —4.5182 1.4269
3 3.8010 13.1224 18 5.3471 15.2527
4 —-0.9167 —6.2864 19 —2.1990 —8.8776
5 7.7641 —2.9819 20 —8.1437 19.2787
6 —12.8799 1.8178 21 5.4393 —6.4867
7 —6.9352 —11.3385 22 3.5925 1.7397
8 0.0279 —7.4428 23 —11.1806 —0.8255
9 —4.2543 10.9660 24 —2.2969 4.0524

10 6.5925 —5.2604 25 7.8748 —4.6691
11 9.629%4 6.8439 26 —6.4813 7.5311
12 7.3471 =2.1473 27 7.0279 0.5572
13 7.8379 6.2266 28 —9.3891 —4.2082
14 —9.0089 21.4529 29 6.4818 8.4269
15 45187 —4.4689 30 5.7457 —22.0340

This interpretation can be easily understood when we consider the fact that the
multiple regression equation can be obtained from a series of simple regression
equations. For example, the coefficient of X5 in (3.12) can be obtained as follows:

1.

Fit the simple regression model that relates Y to X;. Let the residuals from
this regression be denoted by ey.x, . This notation indicates that the variable
that comes before the dot is treated as a response variable and the variable
that comes after the dot is considered as a predictor. The fitted regression
equation is

~

Y =14.3763 + 0.754610.X;. (3.13)

Fit the simple regression model that relates X5 (considered temporarily here
as a response variable) to X;. Let the residuals from this regression be
denoted by ex,.x,. The fitted regression equation is

X» = 18.9654 + 0.513032X. (3.14)

The residuals, ey.x, and ex,.x, are given in Table 3.4.

. Fit the simple regression model that relates the above two residuals. In

this regression, the response variable is ey.x, and the predictor variable is
ex,.x,. The fitted regression equation is

éy.x, = 0 — 0.0502ex, x, - (3.15)

The interesting result here is that the coefficient of ex,.x, in this last regression is
the same as the multiple regression coefficient of X5 in (3.12). The two coefficients
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are equal to —0.0502. In fact, their standard errors are also the same. What’s the
intuition here? In the first step, we found the linear relationship between Y and
Xi. The residual from this regression is Y after taking or partialling out the linear
effects of X;. In other words, the residual is that part of Y that is not linearly
related to X. In the second step we do the same thing, replacing Y by X», so the
residual is the part of X that is not linearly related to X;. In the third step we
look for the linear relationship between the Y residual and the X5 residual. The
resultant regression coefficient represents the effect of X2 on Y after taking out the
effects of X from both Y and X5.

The regression coefficient 3; is the partial regression coefficient because it rep-
resents the contribution of X; to the response variable Y after both variables have
been linearly adjusted for the other predictor variables (see also Exercise 3.5).

Note that the estimated intercept in the regression equation in (3.15) is zero
because the two sets of residuals have a mean of zero (they sum up to zero). The
same procedures can be applied to obtain the multiple regression coefficient of X;
in (3.12). Simply interchange X7 by X; in the above three steps. This is left as an
exercise for the reader.

From the above discussion we see that the simple and the multiple regression
coefficients are not the same unless the predictor variables are uncorrelated. In non-
experimental or observational data, the predictor variables are rarely uncorrelated.
In an experimental setting, in contrast, the experimental design is often set up to
produce uncorrelated explanatory variables because in an experiment the researcher
sets the values of the predictor variables. So in samples derived from experiments
it may be the case that the explanatory variables are uncorrelated and hence the
simple and multiple regression coefficients in that sample would be the same.

3.6 CENTERING AND SCALING

The magnitudes of the regression coefficients in a regression equation depend on
the unit of measurements of the variables. For example, if the regression coefficient
of income, when measured in dollars, is 5.123, this coefficient will change to 5123
if income were measured in $1000 instead. To make the regression coefficients
unitless, one may first center and/or scale the variables before performing the
regression computations. There are other situations when centering and scaling the
variables are desirable as in the case when dealing with the problem of collinearity
in Chapters 9 and 10. This section describes the centering and scaling process.
We have been mainly dealing with regression models of the form

Y=0+/X1+ -+ B8Xp +e, (3.16)

which are models with a constant term /3y. But there are also situations where
fitting the no-intercept model

Y=5Xi+ - +5pXp+e (3.17)
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is necessary (see, e.g., Chapters 3 and 7). When dealing with constant term models,
itis convenient to center and scale the variables, but when dealing with a no-intercept
model, we need only to scale the variables.

3.6.1 Centering and Scaling in Intercept Models

If we are fitting an intercept model as in (3.16), we need to center and scale the
variables. A centered variable is obtained by subtracting from each observation the
mean of all observations. For example, the centered response variable is (Y — )
and the centered jth predictor variable is X; — z;. The mean of a centered variable
is zero.

The centered variables can also be scaled. Two types of scaling are usually
performed: unit-length scaling and standardizing. Unit length scaling of the
response variable Y and the jth predictor variable X; is obtained as follows:

Z, = (Y -9)/L,,

5 - . 3.18

where 7 is the mean of Y, Z; is the mean of X, and

n

Ly = Z(yi — §)2 and Lj = JZ(IEU — .’f?j)2, j =1---,p. (3.19
=1

i=1

The quantities L, is referred to as the length of the centered variable Y — 3 because
it measures the size or the magnitudes of the observations in Y — . Similarly, L;
measures the length of the variable X; — z;. The variables Z, and Z; in (3.18)
have zero means and unit lengths, hence this type of scaling is called unit length
scaling. In addition, unit length scaling has the following property:

Cor(X;, Xy) = Zz,]zzk (3.20)

That is, the correlation coefficient between the original variables, X; and Xy, can
be computed easily as the sum of the products of the scaled versions Z; and Z.
The second type of scaling is called standardizing, which is defined by

y = Y=¢
Sy
- - 32D
XJ M’ ]: 13' 5P
S5
where
Sy = and s; --,p, (3.22)
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are standard deviations of the response and jth predictor variable, respectively.
The standardized variables ¥ and X in (3.21) have means zero and unit standard
deviations.

Since correlations are unaffected by centering and/or scaling the data, it is both
sufficient and convenient to deal with either the unit length scaled or the standardized
versions of the variables.

3.6.2 Scaling in No-Intercept Models

If we are fitting a no-intercept model as in (3.17), we do not center the data because
centering has the effect of including a constant term in the model. This can be seen
from

Y-g=58(X1-21)+ -+ Bp(Xp — Tp) +¢. (3.23)

Rearranging terms, we obtain

= Bo+BiXi+ -+ BpXp+e, (3.24)

where By = y — ($1Z1 + - - + BpZp). Although a constant term does not appear
in an explicit form in (3.23), it is clearly seen in (3.24). Thus, when we deal
with no-intercept models, we need only to scale the data. The scaled variables are
defined by
Zy = Y/L,
(3.25)

v
I

Xj/LJ7 j=19'”7p7

n n
Ly=,Y v} and L;= 'Exfj, j=1,2,---,p. (3.26)

The scaled variables in (3.25) have unit lengths but do not necessarily have means
zero. Nor do they satisfy (3.20) unless the original variables have zero means.

We should mention here that centering (when appropriate) and/or scaling can be
done without loss of generality because the regression coefficients of the original
variables can be recovered from the regression coefficients of the transformed
variables. For example, if we fit a regression model to centered data, the obtained
regression coefficients Bl R Bp are the same as the estimates obtained from fitting
the model to the original data. The estimate of the constant term when using the
centered data will always be zero. The estimate of the constant term for an intercept
model can be obtained from

Bo =G~ (P1Z1 + -+ + BpZyp).

Scaling, however, will change the values of the estimated regression coefficients.
For example, the relationship between the estimates, 1, - - -, 8p, obtained from

where
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using the original data and those obtained using the standardized data are given by

léj = (sy/sj)AJH ]: 1’27"'7p7 5

" N

Bo = §— zaﬁjfj, (3.27)
j=

where Bj and 5j are the jth estimated regression coefficients obtained when using
the original and standardized data, respectively. Similar formulas can be obtained
when using unit length scaling instead of standardizing.

The regression coefficients obtained using the standardized version of the vari-
ables are often referred to as the beta coefficients. They represent marginal effects
of the predictor variables in standard deviation units. For example, 6; measures
the change in standardized units of Y corresponding to an increase of one standard
deviation unit in X;.

We shall make extensive use of the centered and/or scaled variables in Chapters
9 and 10.

3.7 PROPERTIES OF THE LEAST SQUARES ESTIMATORS

Under certain standard regression assumptions (to be stated in Chapter 4), the least
squares estimators have the properties listed below. A reader familiar with matrix
algebra will find concise statements of these properties employing matrix notation
in the Appendix at the end of the chapter.

1. The estimator f)’j, J =0,1,---,p, is an unbiased estimate of 3; and has a
variance of o2c;;, where c;; is the jth diagonal element of the inverse of a
matrix known as the corrected sums of squares and products matrix. The
covariance between Bz and Bj is a2c,-j, where c;; is the element in the ¢th row
and jth column of the inverse of the corrected sums of squares and products
matrix. For all unbiased estimates that are linear in the observations the
least squares estimators have the smallest variance. Thus, the least squares
estimators are said to be BLUE (best linear unbiased estimators).

2. The estimator Bj, 7=0,1,---,p, is normally distributed with mean 3; and
variance o 2Cj g

3. W= SSE/o? has a x? distribution with n — p — 1 degrees of freedom, and
B;’s and 62 are distributed independently of each other.

4. The vector 3 = (8o, 51, - -, Bp) has a (p + 1)-dimensional normal distribu-
tion with mean vector 3 = (8, f1, - - -, Bp) and variance-covariance matrix
with elements o2c;;.

The results above enable us to test various hypotheses about individual regression
parameters and to construct confidence intervals. These are discussed in Section 3.9.
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3.8 MULTIPLE CORRELATION COEFFICIENT

After fitting the linear model to a given data set, an assessment is made of the
adequacy of fit. The discussion given in Section 2.9 applies here. All the material
extend naturally to multiple regression and will not be repeated here.

The strength of the linear relationship between Y and the set of predictors
X1, X2, -+, Xp can be assessed through the examination of the scatter plot of Y’
versus ¥ and the correlation coefficient between Y and Y, which is given by

Cor(Y, V) = >y — y)(yz 7) , (3.28)
\[Z yz Z(yz )

where § is the mean of the response variable Y and 7 is the mean of the fitted values.
Asin the simple regression case, the coefficient of determination R? = [Cor(Y, Y')]?
is also given by

_ SSR SSE _ . (i — )
SST ~ = SST = Y(yi—9)

(3.29)

as in (2.46). Thus, R? may be interpreted as the proportion of the total variability in
the response variable Y that can be accounted for by the set of predictor variables
X1, X2, -+, Xp. In multiple regression, R = VR? is called the multiple correla-
tion coefficient because it measures the relationship between one variable Y and a
set of variables X, Xo,- -, X,.

The value of R? for the Supervisor Performance data is 0.73, showing that about
73% of the total variation in the overall rating of the job being done by the supervisor
can be accounted for by the six variables.

When the model fits the data well, it is clear that the value of R? is close to unity.
With a good fit, the observed and predicted values will be close to each other, and
S>(y; — ;)2 will be small. Then R? will be near unity. On the other hand, if there
is no linear relationship between Y and the predictor variables, X, - -, X}, the
linear model gives a poor fit, the best predicted value for an observation y; would
be 7; that is, in the absence of any relationship with the predictors, the best estimate
of any value of Y is the sample mean, because the sample mean minimizes the sum
of squared deviations. So in the absence of any linear relationship between Y and
the X’s, R? will be near zero. The value of R? is used as a summary measure to
judge the fit of the linear model to a given body of data. As pointed out in Chapter
2, a large value of R? does not necessarily mean that the model fits the data well.
As we outline in Section 3.10, a more detailed analysis is needed to ensure that the
model adequately describes the data.

A quantity related to R2, known as the adjusted R-squared, RZ, is also used for
judging the goodness of fit. It is defined as

e " SST/(n—1) (330)
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which is obtained from R? in (3.29) after dividing SSE and SST by their respective
degrees of freedom. From (3.30) and (3.29) it follows that
n

;1(1 — R?). (3.31)

RI=1-
@ n—p-—1

R? is sometimes used to compare models having different numbers of predictor
variables. (This is described in Chapter 11.) In comparing the goodness of fit of
models with different numbers of explanatory variables, R? tries to “adjust” for
the unequal number of variables in the different models. Unlike R?, R2 cannot be
interpreted as the proportion of total variation in Y accounted for by the predictors.
Many regression packages provide values for both R? and R2.

3.9 INFERENCE FOR INDIVIDUAL REGRESSION COEFFICIENTS

Using the properties of the least squares estimators discussed in Section 3.7, one
can make statistical inference regarding the regression coefficients. The statistic
for testing Ho : 3; = 9 versus H : §; # 37, where 37 is a constant chosen by
the investigator, is
_bBi
s.e.(B;)
which has a Student’s t-distribution with n — p — 1 degrees of freedom. The
test is carried out by comparing the observed value with the appropriate critical
value ¢(,_, 1 o/2), Which is obtained from the ¢-table given in the Appendix to
this book (see Table A.2), where « is the significance level. Note that we divide
the significance level a by 2 because we have a two-sided alternative hypothesis.
Accordingly, Hy is to be rejected at the significance level « if

t; (3.32)

[til > tn—p—1,a/2)s (3.33)

where |t;| denotes the absolute value of ¢;. A criterion equivalent to that in (3.33)
is to compare the p-value of the test with o and reject Hp if

p(lt;]) < @, (3.34)

where p(|t;]), is the p-value of the test, which is the probability that a random
variable having a Student ¢-distribution, with n — p — 1, is greater than |t;| (the
absolute value of the observed value of the ¢-Test); see Figure 2.6. The p-value is
usually computed and supplied as part of the regression output by many statistical
packages.

The uvsual test is for Hy : ﬂ? = (), in which case the ¢-Test reduces to

tj = —2 (3.35)
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which is the ratio of Bj to its standard error, s.e.(Bj) given in the Appendix at the
end of this chapter, in (A.10). The standard errors of the coefficients are computed
by the statistical packages as part of their standard regression output.

Note that the rejection of Hy: 8; = 0 would mean that j3; is likely to be different
from 0, and hence the predictor variable X; is a statistically significant predictor
of the response variable Y after adjusting for the other predictor variables.

As another example of statistical inference, the confidence limits for 3; with
confidence coefficient o are given by

Bj T t(n—p—l,a/Z) X S.C.(Bj), (3.36)

where ¢(,_p_1 o) i the 1 — a percentile point of the ¢-distribution with n — p — 1
degrees of freedom. The confidence interval in (3.36) is for the individual coefficient
B;. A joint confidence region of all regression coefficients is given in the Appendix
at the end of this chapter in (A.15).

Note that when p = 1 (simple regression), the ¢-Test in (3.35) and the criteria in
(3.33) and (3.34) reduce to the t-Test in (2.26) and the criteria in (2.27) and (2.28),
respectively, illustrating the fact that simple regression results can be obtained from
the multiple regression results by setting p = 1.

Many other statistical inference situations arise in practice in connection with
multiple regression. These will be considered in the following sections.

Example: Supervisor Performance Data (Cont.)

Let us now illustrate the above ¢-Tests using the Supervisor Performance data set
described earlier in this chapter. The results of fitting a linear regression model
relating Y and the six explanatory variables are given in Table 3.5. The fitted
regression equation is

~

Y =10.787+0.613X; —0.073X3 4+ 0.320X3 4 0.081.X4 + 0.038 X5 — 0.217 X5.

(3.37)
The t-values in Table 3.5 test the null hypothesis Hy : 3; = 0,5 = 0,1,---,p,
against an alternative Hy, : 8; # 0. From Table 3.5 it is seen that only the
regression coefficient of X; is significantly different from zero and X3 has a
regression coefficient that approach being significantly different from zero. The
other variables have insignificant ¢-Tests. The construction of confidence intervals
for the individual parameters is left as an exercise for the reader.

It should be noted here that the constant in the above model is statistically not
significant (¢-value of 0.93 and p-value of 0.3616). In any regression model, unless
there is strong theoretical reason, a constant should always be included even if the
term is statistically not significant. The constant represents the base or background
level of the response variable. Insignificant predictors should not be in general
retained but a constant should be retained.
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Table 3.5 Regression Output for Supervisor Performance Data

Variable Coefficient s.e. t-Test p-value
Constant 10.787 11.5890 0.93 0.3616
X, 0.613 0.1610 3.81 0.0009
X5 —0.073 0.1357 —-0.54 0.5956
X3 0.320 0.1685 1.90 0.0699
X4 0.081 0.2215 0.37 0.7155
Xs 0.038 0.1470 0.26 0.7963
Xs -0.217 0.1782 —1.22 0.2356
n =30 R?=0.73 R2 =0.66 & =17.068 df =23

3.10 TESTS OF HYPOTHESES IN A LINEAR MODEL

In addition to looking at hypotheses about individual 5’s, several different hypothe-
ses are considered in connection with the analysis of linear models. The most
commonly investigated hypotheses are

1. All the regression coefficients associated with the predictor variables are
Zero.

2. Some of the regression coefficients are zero.
3. Some of the regression coefficients are equal to each other.
4. The regression parameters satisfy certain specified constraints.

The different hypotheses about the regression coefficients can all be tested in the
same way by a unified approach. Rather than describing the individual tests, we
first describe the general unified approach, then illustrate specific tests using the
Supervisor Performance data.

The model given in (3.1) will be referred to as the full model (FM). The null
hypothesis to be tested specifies values for some of the regression coefficients.
When these values are substituted in the full model, the resulting model is called
the reduced model (RM). The number of distinct parameters to be estimated in the
reduced model is smaller than the number of parameters to be estimated in the full
model. Accordingly, we wish to test

Hp : Reduced model is adequate against Hj : Full model is adequate.

Note that the reduced model is nested. A set of models are said to be nested if
they can be obtained from a larger model as special cases. The test for these nested
hypotheses involves a comparison of the goodness of fit that is obtained when using
the full model, to the goodness of fit that results using the reduced model specified
by the null hypothesis. If the reduced model gives as good a fit as the full model,
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the null hypothesis, which defines the reduced model (by specifying some values
of f3;), is not rejected. This procedure is described formally as follows.

Let ¢; and §; be the values predicted for y; by the full model and the reduced
model, respectively. The lack of fit in the data associated with the full model is the
sum of the squared residuals obtained when fitting the full model to the data. We
denote this by SSE(FM), the sum of squares due to error associated with the full
model,

SSE(FM) = > (3 — )% (3.38)
Similarly, the lack of fit in the data associated with the reduced model is the sum
of the squared residuals obtained when fitting the reduced model to the data. This
quantity is denoted by SSE(RM), the sum of squares due to error associated with
the reduced model,

SSERM) = > (v — 97)* (3.39)

In the full model there are p + 1 regression parameters (3o, 51, 52, -, Bp) to be
estimated. Let us suppose that for the reduced model there are £ distinct parameters.
Note that SSE(RM) > SSE(FM) because the additional parameters (variables) in
the full model cannot increase the residual sum of squares. Note also that the
difference SSE(RM) - SSE(FM) represents the increase in the residual sum of
squares due to fitting the reduced model. If this difference is large, the reduced
model is inadequate. To see whether the reduced model is adequate, we use the

ratio
SSE(RM) — SSE(FM)|/(p+ 1 — k)

SSE(FM)/(n —p — 1)
This ratio is referred to as the F'-Test. Note that we divide SSE(RM) — SSE(FM) and
SSE(FM) in the above ratio by their respective degrees of freedom to compensate for
the different number of parameters involved in the two models as well as to ensure
that the resulting test statistic has a standard statistical distribution. The full model
has p + 1 parameters, hence SSE(FM) has n — p — 1 degrees of freedom. Similarly,
the reduced model has k parameters and SSE(RM) has n — k degrees of freedom.
Consequently, the difference SSE(RM) — SSE(FM) has (n — k) — (n—p—1) =
p + 1 — k degrees of freedom. Therefore, the observed F-ratio in (3.40) has
F-distribution with p + 1 — k and n — p — 1 degrees of freedom.

If the observed F-value is large in comparison to the tabulated value of F’ with
p+1—kand n — p— 1 degrees of freedom, the result is significant at level ; that
is, the reduced model is unsatisfactory and the null hypothesis, with its suggested
values of 3’s in the full model is rejected. The reader interested in the proofs of
the statements above is referred to Graybill (1976), Rao (1973), Searle (1971), or
Seber and Lee (2003).

Accordingly, Hy is rejected if

F 2 Fpt1-kn-p-150) (3.41)

ol (3.40)

or, equivalently, if
p(F) < a (3.42)
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where F is the observed value of the F-Test in (3.40), Fipi1 g n—p-1,0) 18 the
appropriate critical value obtained from the F table given in the Appendix to this
book (see Tables A.4 and A.5), « is the significance level, and p(F) is the p-
value for the F-Test, which is the probability that a random variable having an
F-distribution, with p+ 1 — k and n — p — 1 degrees of freedom, is greater than the
observed F-Test in (3.40). The p-value is usually computed and supplied as part
of the regression output by many statistical packages.

In the rest of this section, we give several special cases of the general F'-Test in
(3.40) with illustrative numerical examples using the Supervisor Performance data.

3.10.1 Testing All Regression Coefficients Equal to Zero

An important special case of the F-Test in (3.40) is obtained when we test the
hypothesis that all predictor variables under consideration have no explanatory
power and that all their regression coefficients are zero. In this case, the reduced
and full models become

RM: Hy:Y =g te, (3.43)
FM: Hp:Y =080+ B1 X1+ +BpXp+e. (3.44)

The residual sum of squares from the full model is SSE(FM) = SSE. Because the
least squares estimate of [y in the reduced model is g, the residual sum of squares
from the reduced model is SSE(RM) = 3_(y; — )2 = SST. The reduced model
has one regression parameter and the full model has p + 1 regression parameters.
Therefore, the F-Test in (3.40) reduces to
[SSE(RM) —~ SSE(FM)]/(p + 1 — k)
SSE(FM)/(n —p — 1)

[SST — SSE]/p
SSE/(n—p—1)
Because SST = SSR + SSE, we can replace SST — SSE in the above formula by
SSR and obtain

F

(3.45)

SSR/p _ MSR
SSE/(n—p—1) MSE"’
where MSR is the mean square due to regression and MSE is the mean square
due to error. The F-Test in (3.46) can be used for testing the hypothesis that the
regression coefficients of all predictor variables (excluding the constant) are zero.

The F-Test in (3.46) can also be expressed directly in terms of the sample
multiple correlation coefficient. The null hypothesis which tests whether all the
population regression coefficients are zero is equivalent to the hypothesis that states
that the population multiple correlation coefficient is zero. Let R, denote the
sample multiple correlation coefficient, which is obtained from fitting a model to »
observations in which there are p predictor variables (i.e., we estimate p regression
coefficients and one intercept). The appropriate F' for testing

Hy:B1=p=---=8,=0

F =

(3.46)
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Table 3.6 Analysis of Variance (ANOVA) Table in Multiple Regression

Source Sum of Squares df Mean Square F-Test
Regression SSR P MSR = SSTR F= %g%
Residuals SSE n—p-—1 MSE = ns_ffl

in terms of R, is

RZ/p
(1-RY)/(n-p-1)’
with p and n — p — 1 degrees of freedom.

The values involved in the above F'-Test are customarily computed and com-
pactly displayed in a table called the analysis of variance (ANOVA) table. The
ANOVA table is given in Table 3.6. The first column indicates that there are
two sources of variability in the response variable Y. The total variability in Y,
SST = 3 (y; — %)?, can be decomposed into two sources: the explained variability,
SSR = Y_(§; — 7). which is the variability in Y that can be accounted for by the
predictor variables, and the unexplained variability, SSE = Y (y; — gi)ﬁ. This is
the same decomposition SST = SSR + SSE. This decomposition is given under the
column heading Sum of Squares. The third column gives the degrees of freedom
(df) associated with the sum of squares in the second column. The fourth column
is the Mean Square (MS), which is obtained by dividing each sum of squares by
its respective degrees of freedom. Finally, the F'-Test in (3.46) is reported in the
last column of the table. Some statistical packages also give an additional column
containing the corresponding p-value, p(F').

Returning now to the Supervisor Performance data, although the ¢-Tests for the
regression coefficients have already indicated that some of the regression coeffi-
cients (8, and J33) are significantly different from zero, we will, for illustrative
purposes, test the hypothesis that all six predictor variables have no explanatory
power, that is, 51 = 2 = --- = B¢ = 0. In this case, the reduced and full models
in (3.43) and (3.44) become

F =

(3.47)

RM: Hy:Y =5 + g, (3.48)
FM: H;:Y =8+ X1+ +PsXe+e. (3.49)

For the full model we have to estimate seven parameters, six regression coef-
ficients and an intercept term 3y. The ANOVA table is given in Table 3.7. The
sum of squares due to error in the full model is SSE(FM) = SSE = 1149. Under
the null hypothesis, where all the 3’s are zero, the number of parameters estimated
for the reduced model is therefore 1 (3p). Consequently, the sum of squares of the
residuals in the reduced model is

SSE(RM) = SST = SSR + SSE = 3147.97 + 1149 = 4296.97.
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Table 3.7 Supervisor Performance Data: Analysis of Variance (ANOVA) Table

Source Sum of Squares df Mean Square F-Test
Regression 3147.97 6 524.661 10.5
Residuals 1149.00 23 49.9565

Note that this is the same quantity obtained by 3_(y; — %)?. The observed F-ratio
is 10.5. In our present example the numerical equivalence of (3.46) and (3.47) is
easily seen for

R2/p 0.7326/6

F=az RY)/(n—p—1) (1-0.7326)/23

= 10.50.

This F-value has an F'-distribution with 6 and 23 degrees of freedom. The 1%
F-value with 6 and 23 degrees of freedom is found in Table A.5 to be 3.71. (Note
that the value of 3.71 is obtained in this case by interpolation.) Since the observed
F-value is larger than this value, the null hypothesis is rejected; not all the 3’s can
be taken as zero. This, of course, comes as no surprise, because of the large values
of some of the ¢-Tests.

If any of the ¢-Tests for the individual regression coefficients prove significant, the
F for testing all the regression coefficients zero will usually be significant. A more
puzzling case can, however, arise when none of the ¢-values for testing the regression
coefficients are significant, but the F'-Test given in (3.47) is significant. This implies
that although none of the variables individually have significant explanatory power,
the entire set of variables taken collectively explain a significant part of the variation
in the dependent variable. This situation, when it occurs, should be looked at very
carefully, for it may indicate a problem with the data analyzed, namely, that some
of the explanatory variables may be highly correlated, a situation commonly called
collinearity. We discuss this problem in Chapters 9 and 10.

3.10.2 Testing a Subset of Regression Coefficients Equal to Zero

We have so far attempted to explain Y in the Supervisor Performance data, in
terms of six variables, X1, X9, - - - Xg. The F-Test in (3.46) indicates that all the
regression coefficients cannot be taken as zero, hence one or more of the predictor
variables is related to Y. The question of interest now is: Can Y be explained
adequately by fewer variables? An important goal in regression analysis is to arrive
at adequate descriptions of observed phenomenon in terms of as few meaningful
variables as possible. This economy in description has two advantages. First, it
enables us to isolate the most important variables, and second, it provides us with a
simpler description of the process studied, thereby making it easier to understand the
process. Simplicity of description or the principle of parsimony, as it is sometimes
called, is one of the important guiding principles in regression analysis.
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Table 3.8 Regression Output from the Regression of Y on X; and X3

ANOVA Table
Source Sum of Squares df Mean Square F-Test
Regression 3042.32 2 1521.1600 32,7
Residuals 1254.65 27 46.4685
Coefficients Table

Variable Coefficient s.e. t-Test p-value
Constant 9.8709 7.0610 1.40 0.1735
X3 0.6435 0.1185 5.43 < 0.0001
X3 0.2112 0.1344 1.57 0.1278
n =30 R? =0.708 R? = 0.686 o =6.817 df =27

To examine whether the variable Y can be explained in terms of fewer variables,
we look at a hypothesis that specifies that some of the regression coefficients are
zero. If there are no overriding theoretical considerations as to which variables are
to be included in the equation, preliminary ¢-Tests, like those given in Table 3.5,
are used to suggest the variables. In our current example, suppose it was desired
to explain the overall rating of the job being done by the supervisor by means of
two variables, one taken from the group of personal employee interaction variables
X1, X2, X5, and another taken from the group of variables X3, X4, X¢, which are
of a less personal nature. From this point of view X; and X3 suggest themselves
because they have significant ¢-Tests. Suppose then that we wish to determine
whether Y can be explained by X; and X3 as adequately as the full set of six
variables. The reduced model in this case is

RM:Y = 3y + 51 X7 + B3 X3 + €. (3.50)
This model corresponds to hypothesis
Ho: B2 =04=05=0=0. (3.51)

The regression output from fitting this model is given in Table 3.8, which includes
both the ANOVA and the coefficients tables.

The residual sum of squares in this output is the residual sum of squares for the
reduced model, which is SSE(RM) = 1254.65. From Table 3.7, the residual sum of
squares from the full model is SSE(FM) = 1149.00. Hence the F-Test in (3.40) is

_ [1254.65 — 1149]/4
N 1149/23

— 0.528, (3.52)

with 4 and 23 degrees of freedom.
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The corresponding tabulated value for this test is F{4 23 0.05) = 2.8. The value
of F'is not significant and the null hypothesis is not rejected. The variables X; and
X3 together explain the variation in Y as adequately as the full set of six variables.
We conclude that the deletion of X, X4, X5, X¢ does not adversely affect the
explanatory power of the model.

We conclude this section with a few remarks:

1. The F-Test in this case can also be expressed in terms of the sample multiple
correlation coefficients. Let R, denote the sample multiple correlation co-
efficient that is obtained when the full model with all the p variables in it is
fitted to the data. Let R, denote the sample multiple correlation coefficient
when the model is fitted with ¢ specific variables: that is, the null hypothesis
states that p — ¢ specified variables have zero regression coefficients. The
F-Test for testing the above hypothesis is

(R — R3)/(p—q)
(1-R2)/(n-p-1)’
In our present example, from Tables 3.7 and 3.8, we have n = 30,p = 6,9 =

2, RZ = 0.7326, and R3 = 0.7080. Substituting these in (3.53) we get an
F-value of 0.528, as before.

F = df=p—gandn—p—1. (3.53)

2. When the reduced model has only one coefficient (predictor variable) less
than the full model, say 3;, then the F-Test in (3.40) has landn —p — 1
degrees of freedom. In this case, it can be shown that the F-Test in (3.40) is
equivalent to the ¢-Test in (3.33). More precisely, we have

F =t (3.54)

which indicates that an F'-value with 1 and n — p — 1 degrees of freedom is
equal to the square of a ¢-value with n — p — 1 degrees of freedom, a result
which is well-known in statistical theory. [Check the t- and F-Tables A.2,
A.4, and A.5 in the Appendix to this book to see that F((1,v) = t2(v).]

3. In simple regression the number of predictors is p = 1. Replacing p by one
in the multiple regression ANOVA table (Table 3.6) we obtain the simple
regression ANOVA table (Table 3.9). The F-Test in Table 3.9 tests the null
hypothesis that the predictor variable X; has no explanatory power, that is,
its regression coefficient is zero. But this is the same hypothesis tested by
the ¢;-Test introduced in Section 2.6 and defined in (2.26) as

A

P S (3.55)
s.e.(f1)
Therefore in simple regression, the F' and ¢; tests are equivalent, they are
related by
F =1 (3.56)

www.it-ebooks.info


http://www.it-ebooks.info/

78 MULTIPLE LINEAR REGRESSION

Table 3.9 Analysis of Variance (ANOVA) Table in Simple Regression

Source Sum of Squares df Mean Square F-Test
Regression SSR 1 MSR = SSR F=M3R
Residuals SSE n—2 MSE — SSE

3.10.3 Testing the Equality of Regression Coefficients

It is possible to test the equality of two or more regression coefficients in the same
model. In the present example we test whether the regression coefficient of the
variables X; and X3 can be treated as equal. The test is performed assuming that
it has already been established that the regression coefficients for X2, X4, X5, and
X are zero. The null hypothesis to be tested is

Ho:B1=8s|(B2=Pa=Ps=06=0). (3.57)
The full model assuming that 3 = 84 = 85 = B¢ = 01s
Y = fo+ 1 X1+ f3X3 +e. (3.58)
Under the null hypothesis, where 3; = 83 = (1, say, the reduced model is
Y = By + B1(X1 + X3) + . (3.59)

A simple way to carry out the test is to fit the model given by (3.58) to the data.
The resulting regression output has been given in Table 3.8. We next fit the reduced
model given in (3.59). This can be done quite simply by generating a new variable
W = X7 + X3 and fitting the model

Y=5+B8 W+e (3.60)

The least squares estimates of 3, 3] and the sample multiple correlation coefficient
(in this case it is the simple correlation coefficient between Y and W since we have
only one variable) are obtained. The fitted equation is

Y =9.988 4 0.444W

with R% = 0.6685. The appropriate F for testing the null hypothesis, defined in
(3.53), becomes

(R2—R2)/(p—q) _ (0.7080 — 0.6685)/(2 — 1)
(1-R2)/(n—p-1)  (1-0.7080)/(30 -2~ 1)

F = = 3.65,

with 1 and 27 degrees of freedom. The tabulated value is F{; 97,005y = 4.21. The
resulting F' is not significant; the null hypothesis is not rejected. The distribution
of the residuals for this equation (not given here) was found satisfactory.
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The equation

A

¥ = 9.988 + 0.444 (X, + X3)

is not inconsistent with the given data. We conclude then that X; and X3 have the
same incremental effect in determining employee satisfaction with a supervisor.
This test could also be performed by using a ¢-Test, given by

_ hdy
s.e.(Bl — ﬁ3)

with 27 degrees of freedom.> The conclusions are identical and follow from the
fact that F' with 1 and p degrees of freedom is equal to the square of ¢ with p degrees
of freedom.

In this example we have discussed a sequential or step-by-step approach to model
building. We have discussed the equality of 5; and 33 under the assumption that
the other regression coefficients are equal to zero. We can, however, test a more
complex null hypothesis which states that 3; and 33 are equal and 32, 84, 85, and
B are all equal to zero. This null hypothesis H{ is formally stated as

Hy:p1=p03,02=p4=05=ps=0. (3.61)

The difference between (3.57) and (3.61) is that in (3.57), Ba, B4, B5, and ¢ are
assumed to be zero, whereas in (3.61) this is under test. The null hypothesis (3.61)
can be tested quite easily. The reduced model under Hy is (3.59), but this model is
not compared to the model of equation (3.58), as in the case of Hyp, but with the full
model with all six variables in the equation. The F-Test for testing H}, is, therefore,

0.7326 — 0.6685) /5

_
F= 0.2674/23

=1.10, df =5 and 23.

The result is insignificant as before. The first test is more sensitive for detecting
departures from equality of the regression coefficients than the second test. (Why?)

3.10.4 Estimating and Testing of Regression Parameters
Under Constraints

Sometimes in fitting regression equations to a given body of data it is desired to
impose some constraints on the values of the parameters. A common constraint
is that the regression coefficients sum to a specified value, usually unity. The
constraints often arise because of some theoretical or physical relationships that
may connect the variables. Although no such relationships are obvious in our
present example, we consider 51 + 3 = 1 for the purpose of demonstration.
Assuming that the model in (3.58) has already been accepted, we may further argue

> The s.e.(Bi — B;) = \/Var(ﬁi) + Var(8;) — 2Cov(B;:, B;). These quantities are defined in the
Appendix to this chapter.
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that if each of X; and X3 is increased by a fixed amount, Y should increase by that
same amount. Formally, we are led to the null hypothesis Hy which states that

Ho:B1+Bs=1|(P2=Ps=p5=P=0). (3.62)

Since (1 + B3 = 1, or equivalently, 83 = 1 — (31, then under Hg the reduced model
is
Ho:Y =B+ 51 X1+ (1 —-B1)Xs+e.

Rearranging terms we obtain
Hop:Y — X5 = fo + B1(X1 — X3) +¢,
which can be written as
Ho:Y' = B0+ BV +e,

where Y = Y — X3 and V = X; — X3. The least squares estimates of the
parameters, J; and (3 under the constraint are obtained by fitting a regression
equation with Y’ as response variable and V' as the predictor variable. The fitted
equation is

Y =1.166+0.694 V,

from which it follows that the fitted equation for the reduced model is

~

Y =1.166 + 0.694 X; + 0.306 X3

with R? = 0.6905.
The test for Hy is given by

_ (0.7080 - 0.6905)/1 _ 1.62, df=1and27,
0.2920/27

which is not significant. The data support the proposition that the sum of the partial
regression coefficients of X; and X3 equal unity.

Recall that we have now tested two separate hypotheses about 8; and S3, one
which states that they are equal and the other that they sum to unity. Since both
hypotheses hold, it is implied that both coefficients can be taken to be 0.5. A test
of this null hypothesis, 51 = 83 = 0.5, may be performed directly by applying the
methods we have outlined.

The previous example, in which the equality of 3; and 3 was investigated, can
be considered as a special case of a constrained problem in which the constraint is
51 — B3 = 0. The tests for the full set or subsets of regression coefficients being
zero can also be thought of as examples of testing regression coefficients under
constraints.

From the above discussion it is clear that several models may describe a given
body of data adequately. Where several descriptions of the data are available, it is
important that they all be considered. Some descriptions may be more meaningful

www.it-ebooks.info


http://www.it-ebooks.info/

PREDICTIONS 81

than others (meaningful being judged in the context of the application and con-
siderations of subject matter), and one of them may be finally adopted. Looking
at alternative descriptions of the data provides insight that might be overlooked in
focusing on a single description.

The question of which variables to include in a regression equation is very
complex and is taken up in detail in Chapter 11. We make two remarks here that
will be elaborated on in later chapters.

1. The estimates of regression coefficients that do not significantly differ from
zero are most commonly replaced by zero in the equation. The replacement
has two advantages: a simpler model and a smaller prediction variance.

2. A variable or a set of variables may sometimes be retained in an equation
because of their theoretical importance in a given problem, even though the
sample regression coefficients are statistically insignificant. That is, sample
coefficients which are not significantly different from zero are not replaced by
zero. The variables so retained should give a meaningful process description,
and the coefficients help to assess the contributions of the X’s to the value of
the dependent variable Y.

3.11 PREDICTIONS

The fitted multiple regression equation can be used to predict the value of the
response variable using a set of specific values of the predictor variables, x¢ =

(o1, o2, - -, Zop). The predicted value, o, corresponding to xg is given by
do = fo + Przor + Bozoz + - + Bpop, (3.63)

and its standard error, s.e.(%p), is given, in the Appendix to this chapter, in (A.12)
for readers who are familiar with matrix notation. The standard error is usually
computed by many statistical packages. Confidence limits for g, with confidence
coefficient « are

Yo £ tn—p—1,a/2) S-€-(Yo)-
As already mentioned in connection with simple regression, instead of predicting
the response Y corresponding to an observation xo we may want to estimate the

mean response corresponding to that observation. Let us denote the mean response
at xg by po and its estimate by fig. Then

fio = Bo + 313701 + 529302 + o+ szop,

as in (3.63), but its standard error, s.e.(fio), is given, in the Appendix to this chapter,
in (A.14) for readers who are familiar with matrix notation. Confidence limits for
f1p with confidence coefficient o are

£ £ t(n—p—1,a/2)5-€-(i0)-
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3.12 SUMMARY

We have illustrated the testing of various hypotheses in connection with the linear
model. Rather than describing individual tests we have outlined a general procedure
by which they can be performed. It has been shown that the various tests can also be
described in terms of the appropriate sample multiple correlation coefficients. It is
to be emphasized here, that before starting on any testing procedure, the adequacy
of the model assumptions should always be examined. As we shall see in Chapter 4,
residual plots provide a very convenient graphical way of accomplishing this task.
The test procedures are not valid if the assumptions on which the tests are based do
not hold. If a new model is chosen on the basis of a statistical test, residuals from
the new model should be examined before terminating the analysis. It is only by
careful attention to detail that a satisfactory analysis of data can be carried out.

EXERCISES

3.1 Using the Supervisor data, verify that the coefficient of X; in the fitted
equation Y = 15.3276 + 0.7803X1 — 0.0502X5 in (3.12) can be obtained
from a series of simple regression equations, as outlined in Section 3.5 for the
coefficient of Xs.

3.2 Construct a small data set consisting of one response and two predictor vari-
ables so that the regression coefficient of X; in the following two fitted
equations are equal: Y = Bo + Ble and V = G + &1 X1 + G2X5. Hint:
The two predictor variables should be uncorrelated.

3.3 Table 3.10 shows the scores in the final examination F’ and the scores in two

preliminary examinations P; and P, for 22 students in a statistics course. The
data can be found at the book’s Website.

(a) Fit each of the following models to the data:

Modell: F =80+ 5P +¢
Model 2: F = fg + PP+ €
Model3: F =080+ P+ BP+¢

(b) Test whether Sy = 0 in each of the three models.
(c) Which variable individually, P; or P, is a better predictor of F'?

(d) Which of the three models would you use to predict the final examina-
tion scores for a student who scored 78 and 85 on the first and second
preliminary examinations, respectively? What is your prediction in this
case?

3.4 Find or construct a simple or multiple regression data set such that the resulting
adjusted R2 a is negative.
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Table 3.10 Examination Data: Scores in Final (£), First Preliminary (), and
Second Preliminary (F,) Examinations

Row F P1 P2 Row F P1 P2
1 68 78 73 12 75 79 75
2 75 74 76 13 81 89 84
3 85 82 79 14 91 93 97
4 94 90 96 15 80 87 77
5 86 87 90 16 94 91 96
6 90 90 92 17 94 86 94
7 86 83 95 18 97 91 92
8 68 72 69 19 79 81 82
9 55 68 67 20 84 80 83
10 69 69 70 21 65 70 66
11 91 91 89 22 83 79 81

3.5 The relationship between the simple and the multiple regression coefficients

3.6

3.7

can be seen when we compare the following regression equations:

Y = Bo+5iXy+feXo, (3.64)
Y = B+ 81X, (3.65)
Y = B¢ + B4 Xo, (3.66)
X1 = & + 62X, (3.67)
Xy = &)+ amX. (3.68)

Using the Examination Data in Table 3.10 with Y = F, X; = P, and

X = Py, verify that:

(a) B{ = 31 + Bgéq, that is, the simple regression coefficient of Y on X;
is the multiple regression coefficient of X; plus the multiple regression
coefficient of X times the coefficient from the regression of X5 on X;.

(b) Bé = Bz + 51d2, that is, the simple regression coefficient of Y on X
is the multiple regression coefficient of Xo plus the multiple regression
coefficient of X times the coefficient from the regression of X; on Xs.

Table 3.11 shows the regression output, with some numbers erased, when a
simple regression model relating a response variable Y to a predictor variable
X is fitted based on 20 observations. Complete the 13 missing numbers,
then compute Var(Y') and Var(X;).

Table 3.12 shows the regression output, with some numbers erased, when a
simple regression model relating a response variable Y to a predictor variable
X is fitted based on 18 observations. Complete the 13 missing numbers,
then compute Var(Y') and Var(X}).
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Table 3.11 Regression Output When Y is Regressed on X for 20 Observations
ANOVA Table

Source Sum of Squares df Mean Square F-Test
Regression 1848.76 - - -
Residuals - - -

Coefficients Table
Variable Coefficient s.e. t-Test p-value
Constant —23.4325 12.74 - 0.0824
X1 - 0.1528 8.32 < 0.0001
n=- R?=- RZ=- G=- df =-
Table 3.12  Regression Output When Y is Regressed on X for 18 Observations

ANOVA Table

Source Sum of Squares df Mean Square F-Test
Regression - - - -
Residuals - - -

Coefficients Table
Variable Coefficient s.e. t-Test p-value
Constant 3.43179 - 0.265 0.7941
X1 - 0.1421 - < 0.0001
n=- R?2=0.716 R2=- 6=17342 df = -

3.8 Construct the 95% confidence intervals for the individual parameters 5; and
B2 using the regression output in Table 3.5.

3.9 Explain why the test for testing the hypothesis Hg in (3.57) is more sensitive
for detecting departures from equality of the regression coefficients than the
test for testing the hypothesis Hy in (3.61).

3.10 Using the Supervisor Performance data, test the hypothesis Ho : 81 = 83 =
0.5 in each of the following models:

@ Y =08+ /i X1+ B X3+e
®) Y =fo+ X1+ foXo+ +03X3 +¢.
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Model 1: Dependent variable is Salary

Variable Coefficient s.e. t-Test p-value
Constant 20009.5 0.8244 24271 < 0.0001
Qualification 0.935253 0.0500 18.7 < 0.0001
Gender 0.224337 0.4681 0.479 0.6329
Model 2: Dependent variable is Qualification
Variable Coefficient s.e. t-Test p-value
Constant —16744.4 896.4 —18.7 < 0.0001
Gender 0.850979 0.4349 1.96 0.0532
Salary 0.836991 0.0448 18.7 < 0.0001

3.11 Refer to Exercise 2.10 and the data in Table 2.11, which can also be found at

the book’s Website.

(a) Using your choice of the response variable Exercise 2.10(f), test the null

hypothesis that both the intercept and the slope are zero.

(b) Which of the hypotheses and tests in Exercises 2.10(g), 2.10(h), and
3.11(a) would you choose to test whether people of similar heights tend

to marry each other? What is your conclusion?

(c) If none of the above tests is appropriate for testing the hypothesis that
people of similar heights tend to marry each other, which test would you

use? What is your conclusion based on this test?

3.12 To decide whether a company is discriminating against women, the following
data were collected from the company’s records: Salary is the annual salary
in thousands of dollars, Qualification is an index of employee qualification,
and Gender (1, if the employee is a man, and 0, if the employee is a woman).
Two linear models were fit to the data and the regression outputs are shown

in Table 3.13. Suppose that the usual regression assumptions hold.

(a) Are men paid more than equally qualified women?
(b) Are men less qualified than equally paid women?

(c) Do you detect any inconsistency in the above results? Explain.

(d) Which model would you advocate if you were the defense lawyer? Ex-

plain.

3.13 Table 3.14 shows the regression output of a multiple regression model relating
the beginning salaries in dollars of employees in a given company to the

following predictor variables:
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Table 3.14  Regression Output When Salary is Related to Four Predictor Variables

ANOVA Table
Source Sum of Squares df Mean Square F-Test
Regression 23665352 4 5916338 22.98
Residuals 22657938 88 257477
Coefficients Table

Variable Coefficient s.e. t-Test p-value
Constant 35264 327.7 10.76 0.000
Gender 722.5 117.8 6.13 0.000
Education 90.02 24.69 3.65 0.000
Experience 1.2690 0.5877 2.16 0.034
Months 23.406 5.201 4.50 0.000
n=93 R?=0.515 R2 =0.489 & =5074 df = 88

Gender An indicator variable (1 = man and 0 = woman)

Education  Years of schooling at the time of hire
Experience Number of months of previous work experience
Months Number of months with the company

In (a)—(b) below, specify the null and alternative hypotheses, the test used,

and your conclusion using a 5% level of significance.

(a) Conduct the F'-Test for the overall fit of the regression.

(b) Is there a positive linear relationship between Salary and Experience, after
accounting for the effect of the variables Gender, Education, and Months?

(c) What salary would you forecast for a man with 12 years of education, 10
months of experience, and 15 months with the company?

(d) What salary would you forecast, on average, for men with 12 years of
education, 10 months of experience, and 15 months with the company?

(e) What salary would you forecast, on average, for women with 12 years of
education, 10 months of experience, and 15 months with the company?

3.14 Consider the regression model that generated the output in Table 3.14 tobe a
full model. Now consider the reduced model in which Salary is regressed on
only Education. The ANOVA table obtained when fitting this model is shown
in Table 3.15. Conduct a single test to compare the full and reduced models.
What conclusion can be drawn from the result of the test? (Use o = 0.05.)

3.15 Cigarette Consumption Data: A national insurance organization wanted to
study the consumption pattern of cigarettes in all 50 states and the District of
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Table 3.15 ANOVA Table When the Beginning Salary is Regressed on Education

ANOVA Table
Source Sum of Squares df Mean Square F-Test
Regression 7862535 1 7862535 18.60
Residuals 38460756 91 422646

Table 3.16 Variables in the Cigarette Consumption Data in Table 3.17

Variable Definition

Age Median age of a person living in a state

HS Percentage of people over 25 years of age in a state who had
completed high school

Income Per capita personal income for a state (income in dollars)

Black Percentage of blacks living in a state

Female Percentage of females living in a state

Price Weighted average price (in cents) of a pack of cigarettes in a state

Sales Number of packs of cigarettes sold in a state on a per capita basis

Columbia. The variables chosen for the study are given in Table 3.16. The
data from 1970 are given in Table 3.17. The states are given in alphabetical
order. The data can be found at the book’s Website.

In (a)-(b) below, specify the null and alternative hypotheses, the test used,
and your conclusion using a 5% leve! of significance.

(a) Testthe hypothesis that the variable Female is not needed in the regression
equation relating Sales to the six predictor variables.

(b) Test the hypothesis that the variables Female and HS are not needed in
the above regression equation.

(c) Compute the 95% confidence interval for the true regression coefficient
of the variable Income.

(d) What percentage of the variation in Sales can be accounted for when
Income is removed from the above regression equation? Explain.

(e) What percentage of the variation in Sales can be accounted for by the
three variables: Price, Age, and Income? Explain.

(f) What percentage of the variation in Sales that can be accounted for by the
variable Income, when Sales is regressed on only Income? Explain.

3.16 Consider the two models:

RM: Hp:Y —¢,
FM: Hi:Y =80+ X1+ + 5pXp+e.
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Table 3.17 Cigarette Consumption Data (1970)

State Age HS Income Black Female Price Sales
AL 27.0 413 2948.0 26.2 51.7 42.7 89.8
AK 229 66.7 4644.0 3.0 45.7 41.8 1213
AZ 26.3 58.1 3665.0 3.0 50.8 385 115.2
AR 29.1 39.9 2878.0 18.3 515 38.8 100.3
CA 28.1 62.6 4493.0 7.0 50.8 39.7 123.0
CO 26.2 63.9 3855.0 3.0 50.7 31.1 124.8
CT 29.1 56.0 4917.0 6.0 51.5 45.5 120.0
DE 26.8 54.6 4524.0 14.3 51.3 41.3 155.0
DC 28.4 552 5079.0 71.1 53.5 32.6 200.4
FL 323 52.6 3738.0 15.3 51.8 43.8 123.6
GA 259 40.6 3354.0 259 514 358 109.9
HI 25.0 619 4623.0 1.0 48.0 36.7 82.1
ID 26.4 59.5 3290.0 0.3 50.1 33.6 102.4
IL 28.6 52.6 4507.0 12.8 515 414 124.8
IN 27.2 529 3772.0 6.9 513 32.2 134.6
IA 28.8 59.0 3751.0 1.2 514 38.5 108.5
KS 28.7 59.9 3853.0 4.8 51.0 38.9 114.0
KY 27.5 38.5 3112.0 7.2 50.9 30.1 155.8
LA 24.8 42.2 3090.0 29.8 514 39.3 1159
ME 28.0 54.7 3302.0 03 513 388 128.5
MD 27.1 52.3 4309.0 17.8 51.1 34.2 123.5
MA 29.0 58.5 4340.0 3.1 522 41.0 1243
MI 26.3 52.8 4180.0 11.2 51.0 39.2 128.6
MN 26.8 57.6 3859.0 0.9 51.0 40.1 104.3
MS 25.1 41.0 2626.0 36.8 51.6 37.5 934
MO 29.4 48.8 3781.0 10.3 51.8 36.8 121.3
MT 27.1 59.2 3500.0 0.3 50.0 347 111.2
NB 28.6 59.3 3789.0 2.7 512 347 108.1
NV 27.8 65.2 4563.0 5.7 49.3 44.0 189.5
NH 28.0 57.6 3737.0 0.3 51.1 34.1 265.7
NJ 30.1 52.5 4701.0 10.8 51.6 41.7 120.7
NM 239 55.2 3077.0 19 50.7 41.7 90.0
NY 30.3 52.7 4712.0 11.9 522 41.7 119.0
NC 26.5 385 32520 22.2 51.0 29.4 1724
ND 26.4 50.3 3086.0 04 49.5 389 93.8
OH 27.7 53.2 4020.0 9.1 51.5 38.1 121.6
OK 29.4 51.6 3387.0 6.7 513 39.8 108.4
OR 29.0 60.0 3719.0 1.3 510 29.0 157.0
PA 30.7 50.2 3971.0 8.0 520 447 107.3
RI 29.2 46.4 3959.0 2.7 509 40.2 123.9
SC 24.8 37.8 2990.0 30.5 50.9 343 103.6
SD 274 53.3 3123.0 0.3 50.3 385 92.7
TN 28.1 41.8 3119.0 15.8 51.6 41.6 99.8
X 26.4 47.4 3606.0 12.5 51.0 42.0 106.4
UT 23.1 67.3 3227.0 0.6 50.6 36.6 65.5
VT 26.8 57.1 3468.0 0.2 51.1 395 122.6
VA 26.8 47.8 3712.0 18.5 50.6 30.2 124.3
WA 275 63.5 4053.0 2.1 503 40.3 96.7
wv 30.0 41.6 3061.0 3.9 51.6 41.6 114.5
WI 272 54.5 3812.0 29 50.9 40.2 106.4
wY 272 62.9 3815.0 0.8 50.0 344 1322
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(a) Develop an F-Test for testing the above hypotheses.

(b) Letp = 1 (simple regression) and construct a data set Y and X such that
Hj is not rejected at the 5% significance level.

(c) What does the null hypothesis indicate in this case?
(d) Compute the appropriate value of R? that relates the above two models.

Appendix: Multiple Regression in Matrix Notation

We present the standard results of multiple regression analysis in matrix notation.
Let us define the following matrices:

N Ti0 Tl - Tip Bo €1

Y2 Zap To1 v Tap B €2
Y = . 3 X= . . . ) ,3 = . , €=

Yn Zno Tnl *** Tnp Bp En

The linear model in (3.1) can be expressed in terms of the above matrices as
Y =X3+e¢, (A.1)

where ;9 = 1 for all . The assumptions made about ¢ for least squares estimation
are
E(€)=0 and Var(e) = E(ee?) = oI,

where E(¢) is the expected value (mean) of €, I, is the identity matrix of order
n, and €7 is the transpose of €. Accordingly, €;’s are independent and have zero
mean and constant variance. This implies that

E(Y) =

The least squares estimator 3 of 3 is obtained by minimizing the sum of squared
deviations of the observations from their expected values. Hence the least squares
estimators are obtained by minimizing S(/3), where

5(8) =eTe = (Y - XB)T(Y - X0).
Minimization of S(/3) leads to the system of equations
(XTx)3 = XTY. (A.2)

This is the system of normal equations referred to in Section (3.4). Assuming that
(XTX) has an inverse, the least squares estimates B can be written explicitly as

B=X"xX)'xTy, (A3)

from which it can be seen that ,3 is a linear function of Y. The vector of fitted
values Y corresponding to the observed Y is

Y = X3 =PY, (A.4)
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where
P = X(XTX)"1XT, (A.5)
is known as the hat or projection matrix. The vector of residuals is given by
e=Y-Y=Y-PY=(,-P)Y. (A.6)
The properties of the least squares estimators are

1. Bisan unbiased estimator of 3 (i.e., E(B) = @) with variance-covariance
matrix Var(3), which is

var(B) = E(B — B)(B - B)T = ¢*(XTX)™! = oC,

where
C=XTx). (A7)

Of all unbiased estimators of 3 that are linear in the observations, the least
squares estimator has minimum variance. For this reason, 3 is said to be the
best linear unbiased estimator (BLUE) of 3.

2. The residual sum of squares can be expressed as
efe=Y7(1, - P)T(1,-P)Y =YT(I, - P)Y. (A.8)
The last equality follows because (I,, — P) is a symmetric idempotent matrix.

3. An unbiased estimator of o2 is

~2 eTe YT(In - P)Y

& (A9)

T n-p-—1 - n—p—1
With the added assumption that the ¢;’s are normally distributed we have the

following additional results:

4. The vector /3 has a (p+ 1)-dimensional normal distribution with mean vector
B and variance-covariance matrix ¢?C. The marginal distribution of 53-
is normal with mean 3; and variance azcjj, where c¢;; is the jth diagonal
element of C in (A.7). Accordingly, the standard error of Bj is

se.(B;) = 6./, (A.10)
and the covariance of 3; and Bj is Cov(f;, B]) = o2cyj.

5. The quantity W = e”e/c? has an x? distribution with n — p — 1 degrees of
freedom.

6. 3 and 62 are distributed independently of one another.

7. The vector of fitted values Y hasa singular n-dimensional normal distribution
with mean E(Y) = X3 and variance-covariance matrix Var(Y) = o2P.
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The residual vector e has a singular n-dimensional normal distribution with
mean E(e) = 0 and variance-covariance matrix Var(e) = o2(I, — P).

The predicted value o corresponding to an observation vector Xo = (Zgo,
o1, 02> " fL‘op)T, with xgp = 11is

Jo = x5 B (A.11)

and its standard error is

s.e.(do) = 61/1 + xF(XTX)~1xo. (A.12)
The mean response ug corresponding to xg is

fo = x4 8 (A.13)

with a standard error

se.(fig) = 61/xT (XTX)~1xq. (A.14)

The 100(1 — «)% joint confidence region for the regression parameters 3 is
given by

{ 5. B B)T(XTX)(B - B)
’ G2(p+1)

< F(p-{—l,n—p—l,a)} ) (A.15)

which is an ellipsoid centered at ,B
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CHAPTER 4

REGRESSION DIAGNOSTICS:
DETECTION OF MODEL VIOLATIONS

4.1 INTRODUCTION

We have stated the basic results that are used for making inferences about simple
and multiple linear regression models in Chapters 2 and 3. The results are based
on summary statistics that are computed from the data. In fitting a model to a
given body of data, we would like to ensure that the fit is not overly determined
by one or a few observations. The distribution theory, confidence intervals, and
tests of hypotheses outlined in Chapters 2 and 3 are valid and have meaning only
if the standard regression assumptions are satisfied. These assumptions are stated
in this chapter (Section 4.2). When these assumptions are violated, the standard
results quoted previously do not hold and an application of them may lead to
serious error. We re-emphasize that the prime focus of this book is on the detection
and correction of violations of the basic linear model assumptions as a means of
achieving a thorough and informative analysis of the data. This chapter presents
methods for checking these assumptions. We will rely mainly on graphical methods
as opposed to applying rigid numerical rules to check for model violations.
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4.2 THE STANDARD REGRESSION ASSUMPTIONS

In the previous two chapters we have given the least squares estimates of the
regression parameters and stated their properties. The properties of least squares
estimators and the statistical analysis presented in Chapters 2 and 3 are based on
the following assumptions:

1. Assumptions about the form of the model: The model that relates the

response Y to the predictors X, X»,- -+, X, is assumed to be linear in the
regression parameters g, 81, - - -, Bp, namely,
Y=0+5X1+ -+ BpXp+e, 4.1)

which implies that the ith observation can be written as
yi = Po+ Bz + - + Bpzip + €0, 1 =1,2,--,n. 4.2)

We refer to this as the linearity assumption. Checking the linearity assump-
tion in simple regression is easy because the validity of this assumption can
be determined by examining the scatter plot of Y versus X. A linear scatter
plot ensures linearity. Checking the linearity in multiple regression is more
difficult due to the high dimensionality of the data. Some graphs that can be
used for checking the linearity assumption in multiple regression are given
later in this chapter. When the linearity assumption does not hold, transfor-
mation of the data can sometimes lead to linearity. Data transformation is
discussed in Chapter 6.

2. Assumptions about the errors: The errors 1,3, ,&, in (4.2) are as-
sumed to be independently and identically distributed (iid) normal random
variables each with mean zero and a common variance o2. Note that this
implies four assumptions:

e Theerrore;,i = 1,2,---,n, has a normal distribution. We refer to this
as the normality assumption. The normality assumption is not as easily
validated especially when the values of the predictor variables are not
replicated. The validity of the normality assumption can be assessed
by examination of appropriate graphs of the residuals, as we describe
later in this chapter.

e The errors €1, €9, - - -, £, have mean zero.

e The errors €1,€2, - -, £, have the same (but unknown) variance a2,

This is the constant variance assumption. It is also known by other
names such as the homogeneity or the homoscedasticity assumption.
When this assumption does not hold, the problem is called the hetero-
geneity or the heteroscedasticity problem. This problem is considered
in Chapter 7.
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e The errors €1,€9,---,&, are independent of each other (their pair-
wise covariances are zero). We refer to this as the independent-errors
assumption. When this assumption does not hold, we have the aufo-
correlation problem. This problem is considered in Chapter 8.

3. Assumptions about the predictors: There are three assumptions concerning
the predictor variables:

e The predictor variables X1, X3, -+, X, are nonrandom, that is, the
values 1, T2, ", Tnj;J = 1,2, - -, p, are assumed fixed or selected
in advance. This assumption is satisfied only when the experimenter
can set the values of the predictor variables at predetermined levels. It
is clear that under nonexperimental or observational situations this as-
sumption will not be satisfied. The theoretical results that are presented
in Chapters 2 and 3 will continue to hold, but their interpretation has to
be modified. When the predictors are random variables, all inferences
are conditional, conditioned on the observed data. It should be noted
that this conditional aspect of the inference is consistent with the ap-
proach to data analysis presented in this book. Our main objective is to
extract the maximum amount of information from the available data.

e The values x5, z2j, -+, Tn;3J = 1,2, -+, p, are measured without er-
ror. This assumption is hardly ever satisfied. The errors in measurement
will affect the residual variance, the multiple correlation coefficient, and
the individual estimates of the regression coefficients. The exact mag-
nitude of the effects will depend on several factors, the most important
of which are the standard deviation of the errors of measurement and
the correlation structure among the errors. The effect of the measure-
ment errors will be to increase the residual variance and reduce the
magnitude of the observed multiple correlation coefficient. The effects
of measurement errors on individual regression coefficients are more
difficult to assess. The estimate of the regression coefficient for a vari-
able is affected not only by its own measurement errors, but also by the
measurement errors of other variables included in the equation.

Correction for measurement errors on the estimated regression coeffi-
cients, even in the simplest case where all the measurement errors are
uncorrelated, requires a knowledge of the ratio between the variances
of the measurement errors for the variables and the variance of the
random error. Since these quantities are seldom, if ever, known (par-
ticularly in the social sciences, where this problem is most acute), we
can never hope to remove completely the effect of measurement errors
from the estimated regression coefficients. If the measurement errors
are not large compared to the random errors, the effect of measurement
errors is slight. In interpreting the coefficients in such an analysis, this
point should be remembered. Although there is some problem in the
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estimation of the regression coefficients when the variables are in error,
the regression equation may still be used for prediction. However, the
presence of errors in the predictors decreases the accuracy of predic-
tions. For a more extensive discussion of this problem, the reader is
referred to Fuller (1987), Chatterjee and Hadi (1988), and Chi-Lu and
Van Ness (1999).

e The predictor variables X1, X»,---, X, are assumed to be linearly
independent of each other. This assumption is needed to guarantee
the uniqueness of the least squares solution (the solution of the normal
equations in (A.2) in the Appendix to Chapter 3). If this assumption is
violated, the problem is referred to as the collinearity problem. This
problem is considered in Chapters 9 and 10.

The first two of the above assumptions about the predictors cannot be val-
idated, so they do not play a major role in the analysis. However, they do
influence the interpretation of the regression results.

4. Assumptions about the observations: All observations are equally reliable
and have an approximately equal role in determining the regression results
and in influencing conclusions.

A feature of the method of least squares is that small or minor violations of
the underlying assumptions do not invalidate the inferences or conclusions drawn
from the analysis in a major way. Gross violations of the model assumptions can,
however, seriously distort conclusions. Consequently, it is important to investigate
the structure of the residuals and the data pattern through graphs.

4.3 VARIOUS TYPES OF RESIDUALS

A simple and effective method for detecting model deficiencies in regression anal-
ysis is the examination of residual plots. Residual plots will point to serious
violations in one or more of the standard assumptions when they exist. Of more
importance, the analysis of residuals may lead to suggestions of structure or point
to information in the data that might be missed or overlooked if the analysis is
based only on summary statistics. These suggestions or cues can lead to a better
understanding and possibly a better model of the process under study. A careful
graphical analysis of residuals may often prove to be the most important part of the
regression analysis.

As we have seen in Chapters 2 and 3, when fitting the linear model in (4.1) to a
set of data by least squares, we obtain the fitted values,

G = Bo+ Prain+ - + Bpzip, i=1,2,-0,m, (4.3)
and the corresponding ordinary least squares residuals,

€i=yi—:l)i, ’i=1,2,"',ﬂ. (44)
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The fitted values in (4.3) can also be written in an alternative form as
U = piay1 +pi2y2 + - + Pinyn, t=1,2,---,n, 4.5)

where the p;;’s are quantities that depend only on the values of the predictor
variables (they do not involve the response variable). Equation (4.5) shows directly
the relationship between the observed and predicted values. In simple regression,
p;; is given by
_ 1 (@—2)(z; - 7)
Yon Y- 2)?

In multiple regression the p;;’s are elements of a matrix known as the hat or
projection matrix, which is defined in (A.5) in the Appendix to Chapter 3.

When ¢ = 7, p;; is the ith diagonal element of the projection matrix P. In simple
regression,

(4.6)

1 (.’1:,- — .’Z’)z
T S S A 4.7
n + Sz — ) @D
The value py; is called the leverage value for the ith observation because, as can be
seen from (4.5), §; is a weighted sum of all observations in Y and p;; is the weight
(leverage) given to y; in determining the ith fitted value 7; (Hoaglin and Welsch,

1978). Thus, we have n leverage values and they are denoted by

Dis

P11,P22, s Pnn- (48)

The leverage values play an important role in regression analysis and we shall often
encounter them.

When the assumptions stated in Section 4.2 hold, the ordinary residuals, e1, e,
-+, en, defined in (4.4), will sum to zero, but they will not have the same variance
because

Var(e;) = 0*(1 — pu), (4.9)

where pj; is the ith leverage value in (4.8), which depends on x;1, i3, - - -, Zip. TO
overcome the problem of unequal variances, we standardize the ith residual e; by
dividing it by its standard deviation and obtain
oVT=pi
This is called the ith standardized residual because it has mean zero and stan-

dard deviation 1. The standardized residuals depend on o, the unknown standard
deviation of €. An unbiased estimate of o2 is given by

s2_ o€ _ Xwi—%)® _ _ SSE
n—p—1 n—p-1 n—p—1~

z (4.10)

(4.11)
where SSE is the sum of squares of the residuals. The number n — p — 1 in the

denominator of (4.11) is called the degrees of freedom (df). It is equal to the number
of observations, n, minus the number of estimated regression coefficients, p + 1.
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An alternative unbiased estimate of o2 is given by

Ity =

(n—-1)-p—-1 n-p-2’ (412)

where SSE(;) is the sum of squared residuals when we fit the model to the n — 1
observations obtained by omitting the ith observation. Both 2 and c”r(i.) are unbiased

estimates of o2
Using 6 as an estimate of ¢ in (4.10), we obtain

e

ri = = (4.13)
whereas using & ;) as an estimate of o, we obtain
* &
Ty = W—ﬁ . 4.14)

The form of residual in (4.13) is called the internally studentized residual, and
the residual in (4.14) is called the externally studentized residual, because e; is
not involved in (external to) &(;). For simplicity of terminology and presentation,
however, we shall refer to the studentized residuals as the standardized residuals.
The standardized residuals do not sum to zero, but they all have the same variance.
The externally standardized residuals follow a ¢-distribution with n — p — 2 degrees
of freedom, but the internally standardized residuals do not. However, with a
moderately large sample, these residuals should approximately have a standard
normal distribution. The residuals are not strictly independently distributed, but
with a large number of observations, the lack of independence may be ignored.
The two forms of residuals are related by

n—p-—2
= —mm———— 4.15
i rt\/n—p—l—r?’ (4.15)

hence one is a monotone transformation of the other. Therefore, for the purpose of
residual plots, it makes little difference as to which of the two forms of the stan-
dardized residuals is used. From here on, we shall use the internally standardized
residuals in the graphs. We need not make any distinction between the internally
and externally standardized residuals in our residual plots. Several graphs of the
residuals are used for checking the regression assumptions.

44 GRAPHICAL METHODS

Graphical methods play an important role in data analysis. It is of particular
importance in fitting linear models to data. As Chambers et al. (1983, p. 1) put
it, “There is no single statistical tool that is as powerful as a well-chosen graph."
Graphical methods can be regarded as exploratory tools. They are also an integral
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Figure 4.1 Plot of the data (X,Y") with the least squares fitted line for the Anscombe
quartet.

part of confirmatory analysis or statistical inference. Huber (1991, p. 121) says,
“Eye-balling can give diagnostic insights no formal diagnostics will ever provide."
One of the best examples that illustrates this is the Anscombe quartet, the four
data sets given in Chapter 2 (Table 2.4). The four data sets are constructed by
Anscombe (1973) in such a way that all pairs (Y, X) have identical values of
descriptive statistics (same correlation coefficients, same regression lines, same
standard errors, etc.), yet their pairwise scatter plots (reproduced in Figure 4.1 for
convenience) give completely different scatters.

The scatter plot in Figure 4.1(a) indicates that a linear model may be reasonable,
whereas the one in Figure 4.1(b) suggests a (possibly linearizable) nonlinear model.
Figure 4.1(c) shows that the data follow a linear model closely except for one point
which is clearly off the line. This point may be an outlier, hence it should be
examined before conclusions can be drawn from the data. Figure 4.1(d) indicates
either a deficient experimental design or a bad sample. For the point at X = 19, the
reader can verify that (a) the residual at this point is always zero (with a variance
of zero) no matter how large or small its corresponding value of Y and (b) if the
point is removed, the least squares estimates based on the remaining points are no
longer unique (except the vertical line, any line that passes through the average of
the remaining points is a least squares line!). Observations which unduly influence
regression results are called influential observations. The point at X = 19 is
therefore extremely influential because it alone determines both the intercept and
the slope of the fitted line.
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We have used the scatter plot here as an exploratory tool, but one can also use
graphical methods to complement numerical methods in a confirmatory analysis.
Suppose we wish to test whether there is a positive correlation between Y and X
or, equivalently, if Y and X can be fitted by a positively sloped regression line. The
reader can verify that the correlation coefficients are the same in all four data sets
[Cor(Y, X) = 0.80] and all four data sets also have the same regression line (Y =
3 + 0.5 X) with the same standard errors of the coefficients. Thus, based on these
numerical summaries, one would reach the erroneous conclusion that all four data
sets can be described by the same model. The underlying assumption here is that
the relationship between Y and X is linear and this assumption does not hold here,
for example, for the data set in Figure 4.1(b). Hence the test is invalid. The test
for linear relationship, like other statistical methods, is based on certain underlying
assumptions. Thus conclusions based on these methods are valid only when the
underlying assumptions hold. It is clear from the above example that if analyses
were solely based on numerical results, wrong conclusions will be reached.

Graphical methods can be useful in many ways. They can be used to:

1. Detect errors in the data (e.g., an outlying point may be a result of a typo-
graphical error)

Recognize patterns in the data (e.g., clusters, outliers, gaps, etc.)
Explore relationships among variables

Discover new phenomena

Confirm or negate assumptions

Assess the adequacy of a fitted model

Nk » N

Suggest remedial actions (e.g., transform the data, redesign the experiment,
collect more data, etc.)

8. Enhance numerical analyses in general

This chapter presents some graphical displays useful in regression analysis.
The graphical displays we discuss here can be classified into two (not mutually
exclusive) classes:

e Graphs before fitting a model. These are useful, for example, in correcting
errors in data and in selecting a model.

e Graphs after fitting a model. These are particularly useful for checking the
assumnptions and for assessing the goodness of the fit.

Qur presentation draws heavily from Hadi (1993) and Hadi and Son (1997). Before
examining a specific graph, consider what the graph should look like when the
assumptions hold. Then examine the graph to see whether it is consistent with
expectations. This will then confirm or disprove the assumption.
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4.5 GRAPHS BEFORE FITTING A MODEL

The form of a model that represents the relationship between the response and
predictor variables should be based on the theoretical background or the hypothesis
to be tested. But if no prior information about the form of the model is available, the
data may be used to suggest the model. The data should be examined thoroughly
before a model is fitted. The graphs that one examines before fitting a model to the
data serve as exploratory tools. Four possible groups of graphs are

1. One-dimensional graphs
2. Two-dimensional graphs
3. Rotating plots

4. Dynamic graphs

4.5.1 One-Dimensional Graphs

Data analysis usually begins with the examination of each variable in the study. The
purpose is to have a general idea about the distribution of each individual variable.
One of the following graphs may be used for examining a variable:

e Histogram

e Stem-and-leaf display
e Dot plot

e Box plot

The one-dimensional graphs serve two major functions. They indicate the dis-
tribution of a particular variable, whether the variable is symmetric or skewed.
When a variable is very skewed, it should be transformed. For a highly skewed
variable a logarithmic transformation is recommended. Univariate graphs provide
guidance on the question as to whether one should work with the original or with
the transformed variables.

Univariate graphs also point out the presence of outliers in the variables. Outliers
should be checked to see if they are due to transcription errors. No observation
should be deleted at this stage. They should be noted as they may show up as
troublesome points later.

4.5.2 Two-Dimensional Graphs

Ideally, when we have multidimensional data, we should examine a graph of the
same dimension as that of the data. Obviously, this is feasible only when the
number of variables is small. However, we can take the variables in pairs and look
at the scatter plots of each variable versus each other variable in the data set. The
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Y . ale .
0.002 X, T
0.434 0.9 X,

Figure 4.2 Plot matrix for Hamilton’s data with the pairwise correlation coefficients.

purposes of these pairwise scatter plots are to explore the relationships between
each pair of variables and to identify general patterns.

When the number of variables is small, it may be possible to arrange these
pairwise scatter plots in a matrix format, sometimes referred to as the draftsman’s
plot or the plot matrix. Figure 4.2 is an example of a plot matrix for one response
and two predictor variables. The pairwise scatter plots are given in the upper
triangular part of the plot matrix. We can also arrange the corresponding correlation
coefficients in a matrix. The corresponding correlation coefficients are given in
the lower triangular part of the plot matrix. These arrangements facilitate the
examination of the plots. The pairwise correlation coefficients should always be
interpreted in conjunction with the corresponding scatter plots. The reason for this
is twofold: (a) the correlation coefficient measures only linear relationships, and
(b) the correlation coefficient is nonrobust, that is, its value can be substantially
influenced by one or two observations in the data.

What do we expect each of the graphs in the plot matrix to look like? In simple
regression, the plot of Y versus X is expected to show a linear pattern. In multiple
regression, however, the scatter plots of Y versus each predictor variable may or
may not show linear patterns. Where the presence of a linear pattern is reassuring,
the absence of such a pattern does not imply that our linear model is incorrect. An
example is given below.
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Table 4.1 Hamilton’s (1987) Data

Y X1 X2 Y X1 X2
12.37 2.23 9.66 12.86 3.04 7.71
12.66 2.57 8.94 10.84 3.26 5.11
12.00 3.87 440 11.20 3.39 5.05
11.93 3.10 6.64 11.56 2.35 8.51
11.06 3.39 491 10.83 2.76 6.59
13.03 2.83 8.52 12.63 3.90 4.90
13.13 3.02 8.04 12.46 3.16 6.96
11.44 2.14 9.05

Example: Hamilton’s Data

Hamilton (1987) generates sets of data in such a way that Y depends on the predictor
variables collectively but not individually. One such data setis given in Table 4.1. It
can be seen from the plot matrix of this data (Figure 4.2) that no linear relationships
exist in the plot of Y versus X3 (R? = 0)and Y versus X5 (R? = 0.19). Yet, when
Y is regressed on X; and X5 simultaneously, we obtain an almost perfect fit. The
reader can verify that the following fitted equations are obtained:

A

Y = 11.989 + 0.004X71; t-Test = 0.009; R?=0.0,

Y =10.632 + 0.195X5; t-Test = 1.74; R? =0.188,
Y = —4.515 +3.097X; + 1.032X,; F-Test=39222; RZ?=10.

The first two equations indicate that Y is related to neither X; nor X5 individually,
yet X7 and X5 predict Y almost perfectly. Incidentally, the first equation produces
a negative value for the adjusted R?, R2 = —0.08.

The scatter plots that should look linear in the plot matrix are the plots of Y
versus each predictor variable after adjusting for all other predictor variables (i.e.,
taking the linear effects of all other predictor variables out). Two types of these
graphs, known as the added-variable plot and the residual plus component plot, are
presented in Section 4.12.1.

The pairwise scatter plot of the predictors should show no linear pattern (ideally,
we should see no discernible pattern, linear or otherwise) because the predictors
are assumed to be linearly independent. In Hamilton’s data, this assumption does
not hold because there is a clear linear pattern in the scatter plot of X; versus Xo
(Figure 4.2). We should caution here that the absence of linear relationships in these
scatter plots does not imply that the entire set of predictors are linearly independent.
The linear relationship may involve more than two predictor variables. Pairwise
scatter plots will fail to detect such a multivariate relationship. This collinearity
problem will be dealt with in Chapters 9 and 10.
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Figure 4.3 Rotating plot for Hamilton’s data.

4.5.3 Rotating Plots

Recent advances in computer hardware and software have made it possible to
plot data of three or more dimensions. The simplest of these plots is the three-
dimensional rotating plot. The rotating plot is a scatter plot of three variables in
which the points can be rotated in various directions so that the three-dimensional
structure becomes apparent. Describing rotating plots in words does not do them
justice. The real power of rotation can be felt only when one watches a rotating
plot in motion on a computer screen. The motion can be stopped when one sees an
interesting view of the data. For example, in the Hamilton data we have seen that
X1 and X predict Y almost perfectly. This finding is confirmed in the rotating
plot of Y against X; and X7. When this plot is rotated, the points fall on an almost
perfect plane. The plot is rotated until an interesting direction is found. Figure 4.3
shows one such direction, where the plane is viewed from an angle that makes the
scatter of points seem to fall on a straight line.

45.4 Dynamic Graphs

Dynamic graphics are an extraordinarily useful tool for exploring the structure
and relationships in multivariate data. In a dynamic graphics environment the
data analyst can go beyond just looking at a static graph. The graphs can be
manipulated and the changes can be seen instantaneously on the computer screen.
For example, one can make two or more three-dimensional rotating plots and then
use dynamic graphical techniques to explore the structure and relationships in more
than three dimensions. Articles and books have been written about the subject, and
many statistical software programs include dynamic graphical tools (e.g., rotating,
brushing, linking, etc.). We refer the interested reader to Becker, Cleveland, and
Wilks (1987) and Velleman (1999).
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4.6 GRAPHS AFTER FITTING A MODEL

The graphs presented in the previous section are useful in data checking and the
model formulation steps. The graphs after fitting a model to the data help in
checking the assumptions and in assessing the adequacy of the fit of a given model.
These graphs can be grouped into the following classes:

1. Graphs for checking the linearity and normality assumptions
2. Graphs for the detection of outliers and influential observations

3. Diagnostic plots for the effect of variables

4.7 CHECKING LINEARITY AND NORMALITY ASSUMPTIONS

When the number of variables is small, the assumption of linearity can be checked
by interactively and dynamically manipulating the plots discussed in the previous
section. The task of checking the linearity assumption becomes difficult when the
number of variables is large. However, one can check the linearity and normality
assumptions by examining the residuals after fitting a given model to the data.

The following plots of the standardized residuals can be used to check the
linearity and normality assumptions:

1. Normal probability plot of the standardized residuals: This is a plot of
the ordered standardized residuals versus the so-called normal scores. The
normal scores are what we would expect to obtain if we take a sample of size n
from a standard normal distribution. If the residuals are normally distributed,
the ordered residuals should be approximately the same as the ordered normal
scores. Under normality assumption, this plot should resembie a (nearly)
straight line with an intercept of zero and a slope of one (these are the mean
and the standard deviation of the standardized residuals, respectively).

2. Scatter plots of the standardized residual against each of the predictor vari-
ables: Under the standard assumptions, the standardized residuals are un-
correlated with each of the predictor variables. If the assumptions hold, this
plot should be a random scatter of points. Any discernible pattern in this plot
may indicate violation of some assumptions. If the linearity assumption does
not hold, one may observe a plot like the one given in Figure 4.4(a). In this
case a transformation of the Y and/or the particular predictor variable may
be necessary to achieve linearity. A plot that looks like Figure 4.4(b) may
indicate heterogeneity of variance. In this case a transformation of the data
that stabilizes the variance may be needed. Several types of transformations
for the corrections of some model deficiencies are described in Chapter 6.

3. Scatter plot of the standardized residual versus the fitted values: Under the
standard assumptions, the standardized residuals are also uncorrelated with
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(@) ®

Residuals
Residuals

Figure 44 Two scatter plots of residuals versus X illustrating violations of model
assumptions: (a) a pattern indicating nonlinearity and (b) a pattern indicating heterogeneity.

the fitted values; therefore, this plot should also be a random scatter of points.
In simple regression, the plots of standardized residuals against X and against
the fitted values are identical.

4. Index plot of the standardized residuals: In this diagnostic plot we display
the standardized residuals versus the observation number. If the order in
which the observations were taken is immaterial, this plot is not needed.
However, if the order is important (e.g., when the observations are taken over
time or there is a spatial ordering), a plot of the residuals in serial order may
be used to check the assumption of independence of the errors. Under the
assumption of independent errors, the points should be scattered randomly
within a horizontal band around zero.

4.8 LEVERAGE, INFLUENCE, AND OUTLIERS

In fitting a model to a given body of data, we would like to ensure that the fit
is not overly determined by one or a few observations. Recall, for example, that
in the Anscombe quartet data, the straight line for the data set in Figure 4.1(d) is
determined entirely by one point. If the extreme point were to be removed, a very
different line would result. When we have several variables, it is not possible to
detect such a situation graphically. We would, however, like to know the existence
of such points. It should be pointed out that looking at residuals in this case would
be of no help, because the residual for this point is zero! The point is therefore not
an outlier because it does not have a large residual, but it is a very influential point.

A point is an influential point if its deletion, singly or in combination with others
(two or three), causes substantial changes in the fitted model (estimated coefficients,
fitted values, ¢-Tests, etc.). Deletion of any point will in general cause changes in the
fit. We are interested in detecting those points whose deletion cause large changes
(i.e., they exercise undue influence). This point is illustrated by an example.
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Table 4.2 New York Rivers Data: The ¢-Tests for the Individual Coefficients

Observations Deleted

Test None Neversink Hackensack
to 1.40 1.21 2.08
ty 0.39 0.92 0.25
2 —-0.93 -0.74 —1.45
t3 -0.21 —3.15 4.08
ta 1.86 4.45 0.66

Example: New York Rivers Data

Consider the New York Rivers data described in Section 1.3.5 and given in Table
1.9. Let us fit a linear model relating the mean nitrogen concentration, Y, and the
four predictor variables representing land use:

Y =08+ 51 X1+ BoXo+ B3 X3+ BaXa+ €. (4.16)

Table 4.2 shows the regression coefficients and the ¢-Tests for testing the significance
of the coefficients for three subsets of the data. The second column in Table 4.2
gives the regression results based on all 20 observations (rivers). The third column
gives the results after deleting the Neversink River (number 4). The fourth column
gives the results after deleting the Hackensack River (number 5).

Note the striking difference among the regression outputs of three data sets that
differ from each other by only one observation! Observe, for example, the values
of the ¢-Test for 53. Based on all data, the test is insignificant, based on the data
without the Neversink River, it is significantly negative, and based on the data
without the Hackensack River, it is significantly positive. Only one observation
can lead to substantially different results and conclusions! The Neversink and
Hackensack Rivers are called influential observations because they influence the
regression results substantially more than other observations in the data. Examining
the raw data in Table 1.9, one can easily identify the Hackensack River because it
has an unusually large value for X3 (percentage of residential land) relative to the
other values for X3. The reason for this large value is that the Hackensack River is
the only urban river in the data due to its geographic proximity to New York City
with its high population density. The other rivers are in rural areas. Although the
Neversink River is influential (as can be seen from Table 4.2), it is not obvious from
the raw data that it is different from the other rivers in the data.

It is therefore important to identify influential observations if they exist in data.
We describe methods for the detection of influential observations. Influential
observations are usually outliers in either the response variable Y or the predictor
variable (the X -space).
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4.8.1 Outliers in the Response Variable

Observations with large standardized residuals are outliers in the response variable
because they lie far from the fitted equation in the Y -direction. Since the stan-
dardized residuals are approximately normally distributed with mean zero and a
standard deviation 1, points with standardized residuals larger than 2 or 3 standard
deviations away from the mean (zero) are called outliers. Outliers may indicate
a model failure for those points. They can be identified using formal testing pro-
cedures [see, e.g., Hawkins (1980), Barnett and Lewis (1994), Hadi and Simonoff
(1993), and Hadi and Velleman (1997) and the references therein] or through ap-
propriately chosen graphs of the residuals, the approach we adopt here. The pattern
of the residuals is more important than their numeric values. Graphs of residuals
will often expose gross model violations when they are present. Studying residual
plots is one of the main tools in our analysis.

4.8.2 Outliers in the Predictors

Outliers can also occur in the predictor variables (the X-space). They can also
affect the regression results. The leverage values p;;, described earlier, can be used
to measure outlyingness in the X -space. This can be seen from an examination of
the formula for p;; in the simple regression case given in (4.7), which shows that
the farther a point is from Z, the larger the corresponding value of p;;. This is also
true in multiple regression. Therefore, p;; can be used as a measure of outlyingness
in the X -space because observations with large values of p;; are outliers in the X-
space (i.e., compared to other points in the space of the predictors). Observations
that are outliers in the X -space [e.g., the point with the largest value of X4 in Figure
4.1(d)] are known as high-leverage points to distinguish them from observations
that are outliers in the response variable (those with large standardized residuals).

The leverage values possess several interesting properties {see Dodge and Hadi
(1999) and Chatterjee and Hadi (1988), Chapter 2, for a comprehensive discussion].
For example, they lie between 0 and 1 and their average value is (p + 1) /n. Points
with p;; greater than 2(p + 1)/n (twice the average value) are generally regarded
as points with high leverage (Hoaglin and Welsch, 1978).

In any analysis, points with high leverage should be flagged and then examined
to see if they are also influential. A plot of the leverage values (e.g., index plot,
dot plot, or a box plot) will reveal points with high leverage if they exist. Another
interesting plot is proposed by Gray and Ling (1984).

4.8.3 Masking and Swamping Problems

The standardized residuals provide valuable information for validating linearity and
normality assumptions and for the identification of outliers. However, analyses that
are based on residuals alone may fail to detect outliers and influential observations
for the following reasons:
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1. The presence of high-leverage points: The ordinary residuals, e;, and leverage
values, p;;, are related by

2

pi+ = <1, @.17)
where SSE is the residual sum of squares. This inequality indicates that high-
leverage points (points with large values of p;;) tend to have small residuals.
For example, the point at X = 19 in Figure 4.1(d) is extremely influential
even though its residual is identically zero. Therefore, in addition to an
examination of the standardized residuals for outliers, an examination of the
leverage values is also recommended for the identification of troublesome
points.

2. The masking and swamping problems: Masking occurs when the data contain
outliers but we fail to detect them. This can happen because some of the
outliers may be hidden by other outliers in the data. Swamping occurs when
we wrongly declare some of the nonoutlying points as outliers. This can
occur because outliers tend to pull the regression equation toward them,
hence make other points lie far from the fitted equation. Thus, masking is
a false negative decision whereas swamping is a false positive. An example
of a data set in which masking and swamping problems are present is given
below. Methods which are less susceptible to the masking and swamping
problems than the standardized residuals and leverage values are given in
Hadi and Simonoff (1993) and the references therein.

For the above reasons, additional measures of the influence of observations are
needed. Before presenting these methods, we illustrate the above concepts using a
real-life example.

Example: New York Rivers Data

Consider the New York Rivers data, but now for illustrative purpose, let us consider
fitting the simple regression model

Y = 6o+ BsX4+ ¢, (4.18)

relating the mean nitrogen concentration, Y, to the percentage of land area in either
industrial or commercial use, X4. The scatter plot of Y versus X together with the
corresponding least squares fitted line are given in Figure 4.5. The corresponding
standardized residuals, r;, and the leverage values, p;;, are given in Table 4.3
and their respective index plots are shown in Figure 4.6. In the index plot of the
standardized residuals all the residuals are small indicating that there are no outliers
in the data. This is a wrong conclusion because there are two clear outliers in the
data as can be seen in the scatter plot in Figure 4.5. Thus masking has occurred!
Because of the relationship between leverage and residual in (4.17), the Hackensack

www.it-ebooks.info


http://www.it-ebooks.info/

110 REGRESSION DIAGNOSTICS: DETECTION OF MODEL VIOLATIONS

2.0 H *7 Se

Figure 4.5 New York Rivers Data: Scatter plot of Y versus X}.

Table 4.3 New York Rivers Data: Standardized Residuals, r;, and Leverage
Values, p;;, from Fitting Model 4.18

Row T Dii Row r; Dii
1 0.03 0.05 11 0.75 0.06
2 —-0.05 0.07 12 —-0.81 0.06
3 1.95 0.05 13 —0.83 0.06
4 -1.85 0.25 14 —0.83 0.05
5 0.16 0.67 15 —0.94 0.05
6 0.67 0.05 16 —0.48 0.06
7 1.92 0.08 17 —-0.72 0.06
8 1.57 0.06 18 -0.50 0.06
9 -0.10 0.06 19 —1.03 0.06

10 0.38 0.06 20 0.57 0.06

River with its large value of p;; = 0.67 has a small residual. While a small value
of the residual is desirable, the reason for the small value of the residual here is not
due to a good fit; it is due to the fact that observation 5 is a high-leverage point and,
in collaboration with observation 4, they pull the regression line toward them.

A commonly used cutoff value for p;; is 2(p+ 1) /n = 0.2 (Hoaglin and Welsch,
1978). Accordingly, two points (Hackensack, p;; = 0.67, and Neversink, p;; = 0.25)
that we have seen previously stand out in the scatter plot of points in Figure 4.5,
are flagged as high-leverage points as can be seen in the index plot of p;; in Figure
4.6(b), where the two points are far from the other points. This example shows
clearly that looking solely at residual plots is inadequate.
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Figure 4.6 New York Rivers Data: Index plots of the standardized residuals, r;, and the
leverage values, p;;.

4.9 MEASURES OF INFLUENCE

The influence of an observation may be measured by the effects it produces on the fit
when it is omitted from the data in the fitting process. This deletion is almost always
done one point at a time. Let Sq(;), B1(i), * * *» Bp(i) denote the regression coefficients

obtained when the ith observation is deleted (¢ = 1,2,---,n). Similarly, let
Y165)s Y2(3)> " » Yn(i)> and &(21.) be the predicted values and residual mean square
when we drop the ith observation. Note that

Gm(i) = Bog) + PrsyTm1 + -+ + By(i)Tmp 4.19)

is the fitted value for observation m when the fitted equation is obtained with the ith
observation deleted. Influence measures look at differences produced in quantities
such as Bj — Bj(i) or §; — ¥j;(i)- There are numerous measures of influence in the
literature, and the reader is referred to one of the books for details: Belsley, Kuh,
and Welsch (1980), Cook and Weisberg (1982), Atkinson (1985), and Chatterjee
and Hadi (1988). Here we give three of these measures.

4.9.1 Cook’s Distance

An influence measure proposed by Cook (1977) is widely used. Cook’s distance
measures the difference between the regression coefficients obtained from the full
data and the regression coefficients obtained by deleting the ith observation, or
equivalently, the difference between the fitted values obtained from the full data
and the fitted values obtained by deleting the ith observation. Accordingly, Cook’s
distance measures the influence of the ith observation by

Z?=1(33j - ?j(i))2

Ci: ~ 3
6 (p+1)

=1,2,---,n. (4.20)
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It can be shown that C; can be expressed as

r 12 Dii )

Cz_p+1><1—pn" t=12,---,n. (4.21)
Thus, Cook’s distance is a multiplicative function of two basic quantities. The first
is the square of the standardized residual, 7;, defined in (4.13) and the second is
the so-called potential function p;;/(1 — p;;), where p;; is the leverage of the ith
observation introduced previously. If a point is influential, its deletion causes large
changes and the value of C; will be large. Therefore, a large value of C; indicates
that the point is influential. It has been suggested that points with C; values greater
than the 50% point of the F-distribution with p + 1 and n — p — 1 degrees of
freedom be classified as influential points. A practical operational rule is to classify
points with C; values greater than 1 as being influential. Rather than using a rigid
cutoff rule, we suggest that all C; values be examined graphically. A dot plot or an
index plot of C; is a useful graphical device. When the C; values are all about the
same, no action need be taken. On the other hand, if there are data points with C;
values that stand out from the rest, these points should be flagged and examined.
The model may then be refitted without the offending points to see the effect of
these points.

4.9.2 Welsch and Kuh Measure

A measure similar to Cook’s distance has been proposed by Welsch and Kuh (1977)
and named DFITS. It is defined as

Yi — 'gi(i)
DFITS; = — , =12,.---,n. 4.22)
O(i)y/Pii

Thus, DFITS; is the scaled difference between the ith fitted value obtained from
the full data and the sth fitted value obtained by deleting the ith observation. The
difference is scaled by (3)y/Pis- It can be shown that DFITS; can be written as

Pii

DFITS; = 1,/ ot
— Pii

i=1,2--,n, 4.23)
where r} is the standardized residual defined in (4.14). DFITS; corresponds to
+/C; when the normalization is done by using 6(;) instead of 6. Points with
IDFITS;| larger than 2,/(p + 1)/(n — p — 1) are usually classified as influential
points. Again, instead of having a strict cutoff value, we use the measure to sort out
points of abnormally high influence relative to other points on a graph such as the
index plot, the dot plot, or the box plot. There is not much to choose between C;
and DFITS; — both give similar answers because they are functions of the residual

and leverage values. Most computer software will give one or both of the measures,
and it is sufficient to look at only one of them.
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4.9.3 Hadi’s Influence Measure

Hadi (1992) proposed a measure of the influence of the ith observation based on
the fact that influential observations are outliers in either the response variable or
in the predictors, or both. Accordingly, the influence of the ith observation can be
measured by

_ _Pi_ P+l d;
1-py  1-pil—d¥

H; i=1,2,--,m, (4.24)

where d; = e;/+/SSE is the so-called normalized residual. The first term on the
right-hand side of (4.24) is the potential function which measures outlyingness
in the X-space. The second term is a function of the residual, which measures
outlyingness in the response variable. It can be seen that observations will have
large values of H; if they are outliers in the response and/or the predictor variables,
that is, if they have large values of r;, p;;, or both. The measure H; does not
focus on a specific regression result, but it can be thought of as an overall general
measure of influence which depicts observations that are influential on at least one
regression result.

Note that C; and DFITS; are multiplicative functions of the residuals and leverage
values, whereas H; is an additive function. The influence measure H; can best be
examined graphically in the same way as Cook’s distance and Welsch and Kuh
measure.

Example: New York Rivers Data

Consider again fitting the simple regression model in (4.18), which relates the mean
nitrogen concentration, Y, to the percentage of land area in commercial/industrial
use, X4. The scatter plot of ¥ versus X, and the corresponding least squares
regression are given in Figure 4.5. Observations 4 (the Neversink River) and 5 (the
Hackensack River) are located far from the bulk of other data points in Figure 4.5.
Also observations 7, 3, 8, and 6 are somewhat sparse in the upper-left region of
the graph. The three influence measures discussed above which result from fitting
model (4.18) are shown in Table 4.4, and the corresponding index plots are shown
in Figure 4.7. No value of C; exceeds its cutoff value of 1. However, the index
plot of C; in Figure 4.7(a) shows clearly that observation number 4 (Neversink)
should be flagged as an influential observation. This observation also exceeds its
DFITS; cutoff value of 21/(p+ 1)/(n — p — 1) = 2/3. As can be seen from Fig-
ure 4.7, observation number 5 (Hackensack) was not flagged by C; or by DFITS,.
This is due to the small value of the residual because of its high leverage and to
the multiplicative nature of the measure. The index plot of H; in Figure 4.7(c)
indicates that observation number 5 (Hackensack) is the most influential one, fol-
lowed by observation number 4 (Neversink), which is consistent with the scatter
plot in Figure 4.5.
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Table 44 New York Rivers Data. Influence Measures from Fitting Model 4.18:

REGRESSION DIAGNOSTICS: DETECTION OF MODEL VIOLATIONS

Cook’s Distance, C;, Welsch and Kuh Measure, DFITS;, and Hadi’s Influence

Measure H;

Row C, i DFITSi H i Row Cz DFITSi H i
1 0.00 0.01 0.06 11 0.02 0.19 0.13
2 0.00 —-0.01 0.07 12 0.02 -0.21 0.14
3 0.10 0.49 0.58 13 0.02 -0.22 0.15
4 0.56 —1.14 0.77 14 0.02 -0.19 0.13
5 0.02 0.22 2.04 15 0.02 -0.22 0.16
6 0.01 0.15 0.10 16 0.01 -0.12 0.09
7 0.17 0.63 0.60 17 0.02 -0.18 0.12
8 0.07 0.40 0.37 18 0.01 -0.12 0.09
9 0.00 —-0.02 0.07 19 0.04 -0.27 0.19

10 0.00 0.09 0.08 20 0.01 0.15 0.11
(a) (b)
0.5+ 04+ * ’ .
().4.L U.JN 001 oo T o.. *
= LAY S P
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024 , ° 0.8 1
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©
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Figure4.7 New York Rivers data: Index plots of influence measures: (a) Cook’s distance,
C;, (b) Welsch and Kuh measure, DFITS;, and (c) Hadi’s influence measure H;.
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Figure 4.8 New York Rivers data: Potential-Residual plot.

410 THE POTENTIAL-RESIDUAL PLOT

The formula for H; in (4.24) suggests a simple graph to aid in classifying unusual
observations as high-leverage points, outliers, or a combination of both. The graph
is called the potential-residual (P-R) plot (Hadi, 1992) because it is the scatter plot
of

Potential Function Residual Function
——pii Versus p+ 1 —d? 3 -
I —pi 1—-piil—d;

The P-R plot is related to the L-R (leverage-residual) plot suggested by Gray (1986)
and McCulloch and Meeter (1983). The L-R plot is a scatter plot of p;; versus df.
For a comparison between the two plots, see Hadi (1992).

As an illustrative example, the P-R plot obtained from fitting model (4.18) is
shown in Figure 4.8. Observation 5, which is a high-leverage point, is located by
itself in the upper-left corner of the plot. Four outlying observations (3, 7, 4, and
8) are located in the lower-right area of the graph.

It is clear now that some individual data points may be flagged as outliers,
leverage points, or influential points. The main usefulness of the leverage and
influence measures is that they give the analyst a complete picture of the role played
by different points in the entire fitting process. Any point falling in one of these
categories should be carefully examined for accuracy (gross error, transcription
error), relevancy (whether it belongs to the data set), and special significance
(abnormal condition, unique situation). Outliers should always be scrutinized
carefully. Points with high leverage that are not influential do not cause problems.
High-leverage points that are influential should be investigated because these points
are outlying as far as the predictor variables are concerned and also influence the
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Figure 4.9  Scatter plot of population size, Y, versus time, X. The curve is obtained by
fitting an exponential function to the full data. The straight line is the least squares line
when observations 22 and 23 are are deleted.

fit. To get an idea of the sensitivity of the analysis to these points, the model should
be fitted without the offending points and the resulting coefficients examined.

4.11 WHAT TO DO WITH THE OUTLIERS?

Outliers and influential observations should not routinely be deleted or automat-
ically down-weighted because they are not necessarily bad observations. On the
contrary, if they are correct, they may be the most informative points in the data.
For example, they may indicate that the data did not come from a normal population
or that the model is not linear. To illustrate that outliers and influential observations
can be the most informative points in the data, we use the exponential growth data
described in the following example.

Example: Exponential Growth Data

Figure 4.9 is the scatter plot of two variables, the size of a certain population, Y,
and time, X. As can be seen from the scatter of points, the majority of the points
resemble a linear relationship between population size and time as indicated by the
straight line in Figure 4.9. According to this model the two points 22 and 23 in
the upper-right corner are outliers. If these points, however, are correct, they are
the only observations in the data set that indicate that the data follow a nonlinear
(e.g., exponential) model, such as the one shown in the graph. Think of this as a
population of bacteria which increases very slowly over a period of time. After a
critical point in time, however, the population explodes.

What to do with outliers and influential observations once they are identified?
Because outliers and influential observations can be the most informative obser-
vations in the data set, they should not be automatically discarded without justifi-
cation. Instead, they should be examined to determine why they are outlying or
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influential. Based on this examination, appropriate corrective actions can then be
taken. These corrective actions include: correction of error in the data, deletion or
down-weighing outliers, transforming the data, considering a different model, and
redesigning the experiment or the sample survey, collecting more data.

4.12 ROLE OF VARIABLES IN A REGRESSION EQUATION

As we have indicated, successive variables are introduced sequentially into a regres-
sion equation. A question that arises frequently in practice is: Given a regression
model which currently contains p predictor variables, what are the effects of delet-
ing (or adding) one of the variables from (or to) the model? Frequently, the answer
is to compute the ¢-Test for each variable in the model. If the ¢-Test is large in abso-
lute value, the variable is retained, otherwise the variable is omitted. This is valid
only if the underlying assumptions hold. Therefore, the ¢-Test should be interpreted
in conjunction with appropriate graphs of the data. Two plots have been proposed
that give this information visually and are often very illuminating. They can be
used to complement the ¢-Test in deciding whether one should retain or remove a
variable in a regression equation. The first graph is called the added-variable plot
and the second is the residual plus component plot.

412.1 Added-Variable Plot

The added-variable plot, introduced by Mosteller and Tukey (1977), enables us
graphically to see the magnitude of the regression coefficient of the new variable that
is being considered for inclusion. The slope of the least squares line representing the
points in the plot is equal to the estimated regression coefficient of the new variable.
The plot also shows data points which play key roles in determining this magnitude.
We can construct an added-variable plot for each predictor variable X ;. The added-
variable plot for X; is essentially a graph of two different sets of residuals. The first
is the residuals when Y is regressed on all predictor variables except X;. We call
this set the Y -residuals. The second set of residuals are obtained when we regress
X (treated temporarily as a response variable) on all other predictor variables. We
refer to this set as the X ;-residuals. Thus, the added-variable plot for X; is simply
a scatter plot of the

Y-residuals versus  Xj-residuals.

Therefore, if we have p predictor variables available, we can construct p added-
variable plots, one for each predictor.

Note that the Y-residuals in the added-variable plot for X; represent the part
of Y not explained by all predictors other than X;. Similarly, the X ;-residuals
represent the part of X; that is not explained by the other predictor variables. If
a least squares regression line were fitted to the points in the added-variable plot
for X, the slope of this line is equal to 3]-, the estimated regression coefficient of
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X; when Y is regressed on all the predictor variables including X;. This is an
illuminating but equivalent interpretation of the partial regression coefficient as we
have seen in Section 3.5.

The slope of the points in the plot gives the magnitude of the regression coef-
ficient of the variable if it were brought into the equation. Thus, the stronger the
linear relationship in the added-variable plot is, the more important the additional
contribution of X; to the regression equation already containing the other predic-
tors. If the scatter of the points shows no marked slope, the variable is unlikely to
be useful in the model. The scatter of the points will also indicate visually which of
the data points are most influential in determining this slope and its corresponding
t-Test. The added-variable plot is also known as the partial regression plot. We
remark in passing that it is not actually necessary to carry out this fitting. These
residuals can be obtained very simply from computations done in fitting Y on the
full set of predictors. For a detailed discussion, see Velleman and Welsch (1981)
and Chatterjee and Hadi (1988).

4.12.2 Residual Plus Component Plot

The residual plus component plot, introduced by Ezekiel (1924), is one of the
earliest graphical procedures in regression analysis. It was revived by Larsen
and McCleary (1972), who called it a partial residual plot. We are calling it
a residual plus component plot, after Wood (1973), because this name is more
self-explanatory.

The residual plus component plot for X; is a scatter plot of

e+BjX~ versus X,

where e is the ordinary least squares residuals when Y is regressed on all predictor
variables and ,8] is the coefficient of X in this regression. Note that BJX is the
contribution (component) of the jth prcdlctor to the fitted values. As in the added-
variable plot, the slope of the points in this plotis Bj , the regression coefficient of X ;.
Besides indicating the slope graphically, this plot indicates whether any nonlinearity
is present in the relationship between Y and X;. The plot can therefore suggest
possible transformations for linearizing the data. The indication of nonlinearity is,
however, not present in the added-variable plot because the horizontal scale in the
plot is not the variable itself. Both plots are useful, but the residual plus component
plot is more sensitive than the added-variable plot in detecting nonlinearities in the
variable being considered for introduction in the model. The added-variable plot
is, however, easier to interpret and points out the influential observations.

Example: The Scottish Hills Races Data

The Scottish hills races data consist of a response variable (record times, in seconds)
and two explanatory variables (the distance in miles, and the climb in feet) for 35
races in Scotland in 1984. The data set is given in Table 4.5. Since this data set
is three dimensional, let us first examine a three-dimensional rotating plot of the
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Distance

Figure 4,10 Rotating plot for the Scottish hills races data.

data as an exploratory tool. An interesting direction in this rotating plot is shown in
Figure 4.10. Five observations are marked in this plot. Clearly, observations 7 and
18 are outliers; they lie far away (in the direction of Time) from the plane suggested
by the majority of other points. Observation 7 lies far away in the direction of
Climb. Observations 33 and 31 are also outliers in the graph but to a lesser extent.
While observations 11 and 31 are near the plane suggested by the majority of other
points, they are located far from the rest of the points on the plane. (Observation
11 is far mainly in the direction of Distance and observation 31 is in the direction
of Climb.) The rotating plot clearly shows that the data contain unusual points
(outliers, high-leverage points, and/or influential observations).
The fitted equation is

Time = —539.483 + 373.073 Distance + 0.662888 Climb. (4.25)

We wish to address the question: Does each of the predictor variables contribute
significantly when the other variable is included in the model? The ¢-Test for the two
predictors are 10.3 and 5.39, respectively, indicating very high significance. This
implies that the answer to the above question is in the affirmative for both variables.
The validity of this conclusion can be enhanced by examining the corresponding
added-variable and residual plus component plots. These are given in Figures
4.11 and 4.12, respectively. For example, in the added-variable plot for Distance
in Figure 4.11(a), the quantities plotted on the ordinate axis are the residuals
obtained from the regression of Time on Climb (the other predictor variable), and
the quantities plotted on the abscissa are the residuals obtained from the regression
of Distance on Climb. Similarly for the added-variable plot for Climb, the quantities
plotted are the residuals obtained from the regression of Time on Distance and the
residuals obtained from the regression of Climb on Distance.

It can be seen that there is a strong linear trend in all four graphs supporting
the conclusions reached by the above t-Tests. The graphs, however, indicate the
presence of some points that may influence our results and conclusions. Races
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Table 4.5 Scottish Hills Races Data

REGRESSION DIAGNOSTICS: DETECTION OF MODEL VIOLATIONS

Row Race Time Distance Climb
1 Greenmantle New Year Dash 965 2.5 650
2 Carnethy 2901 6 2500
3 Craig Dunain 2019 6 900
4 Ben Rha 2736 7.5 800
5 Ben Lomond 3736 8 3070
6 Goatfell 4393 8 2866
7 Bens of Jura 12277 16 7500
8 Cairnpapple 2182 6 800
9 Scolty 1785 5 800

10 Traprain Law 2385 6 650
11 Lairig Ghru 11560 28 2100
12 Dollar 2583 5 2000
13 Lomonds of Fife 3900 9.5 2200
14 Cairn Table 2648 6 500
15 Eildon Two 1616 4.5 1500
16 Cairngorm 4335 10 3000
17 Seven Hills of Edinburgh 5905 14 2200
18 Knock Hill 4719 3 350
19 Black Hill 1045 4.5 1000
20 Creag Beag 1954 5.5 600
21 Kildoon 957 3 300
22 Meall Ant-Suiche 1674 35 1500
23 Half Ben Nevis 2859 6 2200
24 Cow Hill 1076 2 900
25 North Berwick Law 1121 3 600
26 Creag Dubh 1573 4 2000
27 Burnswark 2066 6 800
28 Largo 1714 5 950
29 Criffel 3030 6.5 1750
30 Achmony 1257 5 500
31 Ben Nevis 5135 10 4400
32 Knockfarrel 1943 6 600
33 Two Breweries Fell 10215 18 5200
34 Cockleroi 1686 4.5 850
35 Moffat Chase 9590 20 5000
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Figure 4.11  Scottish Hills Races data: Added-variable plots for (a) Distance and (b)
Climb.
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Figure 4.12  Scottish Hills Races data: Residual plus component plots for (a) Distance
and (b) Climb.

7, 11, and 18 clearly stand out. These points are marked on the graphs by their
numbers. Races 31 and 33 are also suspects but to a lesser extent. An examination
of the P-R plot obtained from the above fitted equation (Figure 4.13) classifies Race
11 as a high-leverage point, Race 18 as an outlier, and Race 7 as a combination of
both. These points should be scrutinized carefully before continuing with further
analysis.

4.13 EFFECTS OF AN ADDITIONAL PREDICTOR

We discuss in general terms the effect of introducing a new variable in a regression
equation. Two questions should be addressed: (a) Is the regression coefficient of
the new variable significant? and (b) Does the introduction of the new variable
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Figure 4.13 Scottish Hills Races data: Potential-Residual plot.

substantially change the regression coefficients of the variables already in the
regression equation? When a new variable is introduced in a regression equation,
four possibilities result, depending on the answer to each of the above questions:

e Case A: The new variable has an insignificant regression coefficient and
the remaining regression coefficients do not change substantially from their
previous values. Under these conditions the new variable should not be
included in the regression equation, unless some other external conditions
(e.g., theory or subject matter considerations) dictate its inclusion.

e Case B: The new variable has a significant regression coefficient, and the
regression coefficients for the previously introduced variables are changed
in a substantial way. In this case the new variable should be retained, but an
examination of collinearity! should be carried out. If there is no evidence
of collinearity, the variable should be included in the equation and other
additional variables should be examined for possible inclusion. On the other
hand, if the variables show collinearity, corrective actions, as outlined in
Chapter 10, should be taken.

e Case C: The new variable has a significant regression coefficient, and the
coefficients of the previously introduced variables do not change in any sub-
stantial way. This is the ideal situation and arises when the new variable is
uncorrelated with the previously introduced variables. Under these condi-
tions the new variable should be retained in the equation.

e Case D: The new variable has an insignificant regression coefficient, but the
regression coefficients of the previously introduced variables are substantially
changed as a result of the introduction of the new variable. This is clear
evidence of collinearity, and corrective actions have to be taken before the

! Collinearity occurs when the predictor variables are highly correlated. This problem is discussed
in Chapters 9 and 10.
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question of the inclusion or exclusion of the new variable in the regression
equation can be resolved.

It is apparent from this discussion that the effect a variable has on the regres-
sion equation determines its suitability for being included in the fitted equation.
The results presented in this chapter influence the formulation of different strate-
gies devised for variable selection. Variable selection procedures are presented in
Chapter 11.

4.14 ROBUST REGRESSION

Another approach (not discussed here), useful for the identification of outliers
and influential observations, is robust regression, a method of fitting that gives
less weight to points with high leverage. There is a vast amount of literature on
robust regression. The interested reader is referred, for example, to the books by
Huber (1981), Hampel et al. (1986), Rousseeuw and Leroy (1987), Staudte and
Sheather (1990), and Birkes and Dodge (1993). We must also mention the papers
by Krasker and Welsch (1982), Coakley and Hettmansperger (1993), Chatterjee
and Machler (1997), and Billor, Chatterjee, and Hadi (2006), which incorporate
ideas of bounding influence and leverage in fitting. In Section 13.5 we give a brief
discussion of robust regression and present a numerical algorithm for robust fitting.
Two examples are given as illustration.

EXERCISES

4.1 Check to see whether or not the standard regression assumptions are valid for
each of the following data sets:

(a) The Milk Production data described in Section 1.3.1.

(b) The Right-To-Work Laws data described in Section 1.3.2 and given in
Table 1.3.

(c) The Egyptian Skulls data described in Section 1.3.4.
(d) The Domestic Immigration data described in Section 1.3.3.
(e) The New York Rivers data described in Section 1.3.5 and given in Table
1.9.
4.2 Find a data set where regression analysis can be used to answer a question of
interest. Then:

(a) Check to see whether or not the usual multiple regression assumptions
are valid.

(b) Analyze the data using the regression methods presented thus far, and
answer the question of interest.

4.3 Consider the computer repair problem discussed in Section 2.3. In a second
sampling period, 10 more observations on the variables Minutes and Units
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Table 4.6 Expanded Computer Repair Times Data: Length of Service Calls
(Minutes) and Number of Units Repaired (Units)

Row Units Minutes Row Units Minutes
1 1 23 13 10 154
2 2 29 14 10 166
3 3 49 15 11 162
4 4 64 16 11 174
5 4 74 17 12 180
6 5 87 18 12 176
7 6 96 19 14 179
8 6 97 20 16 193
9 7 109 21 17 193
10 8 119 22 18 195
11 9 149 23 18 198
12 9 145 24 20 205
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Figure 4.14 P-R plot used in Exercise 4.4.

were obtained. Since all observations were collected by the same method

from a fixed environment, all 24 observations were pooled to form one data

set. The data appear in Table 4.6.

(a) Fit a linear regression model relating Minutes to Units.

(b) Check each of the standard regression assumptions and indicate which
assumption(s) seems to be violated.

In an attempt to find unusual points in a regression data set, a data analyst
examines the P-R plot (shown in Figure 4.14). Classify each of the unusual
points on this plot according to type.
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Name one or more graphs that can be used to validate each of the following
assumptions. For each graph, sketch an example where the corresponding
assumption is valid and an example where the assumption is clearly invalid.
(a) There is alinear relationship between the response and predictor variables.
(b) The observations are independent of each other.

(¢) The error terms have constant variance.

(d) The error terms are uncorrelated.

(e) The error terms are normally distributed.

(f) The observations are equally influential on least squares results.

The following graphs are used to verify some of the assumptions of the
ordinary least squares regression of Y on X1, X, -, X}t

. The scatter plot of Y versus each predictor X ;.

. The scatter plot matrix of the variables X1, Xo,- -+, X,.

. The normal probability plot of the internally standardized residuals.

. The residuals versus fitted values.

. The potential-residual plot.

. Index plot of Cook’s distance.

. Index plot of Hadi’s influence measure.

~N N R W N =

For each of these graphs:
(a) What assumption can be verified by the graph?

(b) Draw an example of the graph where the assumption does not seem to be
violated.

(c) Draw an example of the graph which indicates the violation of the as-
sumption.

Consider again the Cigarette Consumption data described in Exercise 3.15

and given in Table 3.17.

(a) What would you expect the relationship between Sales and each of the
other explanatory variables to be (i.e., positive, negative)? Explain.

(b) Compute the pairwise correlation coefficients matrix and construct the
corresponding scatter plot matrix.

(c) Are there any disagreements between the pairwise correlation coefficients
and the corresponding scatter plot matrix?

(d) Isthere any difference between your expectations in part (a) and what you
see in the pairwise correlation coefficients matrix and the corresponding
scatter plot matrix?

(e) Regress Sales on the six predictor variables. Is there any difference
between your expectations in part (a) and what you see in the regression
coefficients of the predictor variables? Explain inconsistencies if any.
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(f) How would you explain the difference in the regression coefficients and
the pairwise correlation coefficients between Sales and each of the six
predictor variables?

(g) Is there anything wrong with the tests you made and the conclusions you
reached in Exercise 3.15?

Consider again the Examination Data used in Exercise 3.3 and given in Table
3.10:

(a) For each of the three models, draw the P-R plot. Identify all unusual
observations (by number) and classify as outlier, high-leverage point,
and/or influential observation.

(b) What model would you use to predict the final score F'?
Either prove each of the following statements mathematically or demonstrate

its correctness numerically using the Cigarette Consumption data described
in Exercise 3.15 and given in Table 3.17:

(a) The sum of the ordinary least squares residuals is zero.
(b) The relationship between 2 and &(2i) is

Cp—1—¢2
53y = 62 (21’—1”') . (4.26)

4.10 Identify unusual observations for the data set in Table 4.7

Table 4.7 Data for Exercise 4.10

Row Y X Row Y X
1 8.11 0 7 9.60 19
2 11.00 5 8 10.30 20
3 8.20 15 9 11.30 21
4 8.30 16 10 11.40 22
5 9.40 17 11 12.20 23
6 9.30 18 12 12.90 24

4.11 Consider the Scottish hills races data in Table 4.5. Choose an observation

index ¢ (e.g., ¢ = 33, which corresponds to the outlying observation number
33) and create an indicator (dummy) variable U;, where all the values of U;
are zero except for its ith value which is one. Now consider comparing the
following models:

Hp : Time = [+ B Distance + 85 Climb + ¢, 4.27)

H; : Time = pfy+ B Distance + 85 Climb + (33 U; + €. (4.28)
Let r} be the ith externally standardized residual obtained from fitting model
(4.27). Show (or verify using an example) that
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(a) The t-Test for testing B3 = 0 in Model (4.28) is the same as the ith
externally standardized residual obtained from Model (4.27), that is,
t3=r;.

(b) The F'-Test for testing Model (4.27) versus (4.28) reduces to the square
of the ith externally standardized residual, that is, F’ = r}2,

(¢) FitModel (4.27) to the Scottish hills races data without the ith observation.

(d) Show that the estimates of Sy, 81, and 32 in Model (4.28) are the same
as those obtained in (c). Hence adding an indicator variable for the ith
observation is equivalent to deleting the corresponding observation!

4.12 Consider the data in Table 4.8, which consist of a response variable Y and
six predictor variables. The data can be obtained from the book’s Website.?
Consider fitting a linear model relating Y to all six X -variables.

(a) What least squares assumptions (if any) seem to be violated?

(b) Compute r;, C;, DFITS;, and H;.

(c) Construct the index plots of r;, C;, DFITS;, and H; as well as the Potential-
Residual plot.

(d) Identify all unusual observations in the data and classify each according
to type (i.e., outliers, leverage points, etc.).

4.13 Consider again the data set in Table 4.8. Suppose now that we fit a linear
model relating Y to the first three X -variables. Justify your answer to each
of the following questions with the appropriate added-variable plot:

(a) Should we add X4 to the above model? If yes, keep X4 in the model.
(b) Should we add X to the above model? If yes, keep X5 in the model.
(¢) Should we add Xg to the above model?

(d) Which model(s) would you recommend as the best possible description
of Y'? Use the above results and/or perform additional analysis if needed.

4.14 Consider fitting the model Y = §y + £1 X1 + B2 X2 + 53X3 -+ € to the data
set in Table 4.8. Now let u be the residuals obtained from regressing Y on
X1. Also, let X3 and v be the residuals obtained from regressing X3 on X;.
Show (or verify using the data set in Table 4.8 as an example) that:

@ fs = é u;v;/ Ej:l v

-~ n
(b) The standard error of B3 is 6/, 3 v7.

=1

2 http://www.aucegypt.edu/faculty/hadi/RABES
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Table 4.8 Data for Exercises 4.12—4.14

Row Y X1 X2 X3 X4 X5 Xﬁ
1 443 49 79 76 8 15 205
2 290 27 70 31 6 6 129
3 676 115 92 130 0 9 339
4 536 92 62 92 5 8 247
5 481 67 42 94 16 3 202
6 296 31 54 34 14 11 119
7 453 105 60 47 5 10 212
8 617 114 85 84 17 20 285
9 514 98 72 71 12 -1 242

10 400 15 59 99 15 11 174
11 473 62 62 81 9 1 207
12 157 25 11 7 9 9 45
13 440 45 65 84 19 13 195
14 480 92 75 63 9 20 232
15 316 27 26 82 4 17 134
16 530 111 52 93 11 13 256
17 610 78 102 84 5 7 266
18 617 106 87 82 18 7 276
19 600 97 98 71 12 8 266
20 480 67 65 62 13 12 196
21 279 38 26 44 10 8 110
22 446 56 32 99 16 8 188
23 450 54 100 50 11 15 205
24 335 53 55 60 8 0 170
25 459 61 53 79 6 5 193
26 630 60 108 104 17 8 273
27 483 83 78 71 11 8 233
28 617 74 125 66 16 4 265
29 605 89 121 71 8 8 283
30 388 64 30 81 10 10 176
31 351 34 44 65 7 9 143
32 366 71 34 56 8 9 162
33 493 88 30 87 13 0 207
34 648 112 105 123 5 12 340
35 449 57 69 72 5 4 200
36 340 61 35 55 13 0 152
37 292 29 45 47 13 13 123
38 688 82 105 81 20 9 268
39 408 80 55 61 11 1 197
40 461 82 88 54 14 7 225

Source: Chatterjee and Hadi (1988)
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CHAPTER 5

QUALITATIVE VARIABLES AS
PREDICTORS

5.1 INTRODUCTION

Qualitative or categorical variables can be very useful as predictor variables in
regression analysis. Qualitative variables such as gender, marital status, or political
affiliation can be represented by indicator or dummy variables. These variables take
on only two values, usually 0 and 1. The two values signify that the observation
belongs to one of two possible categories. The numerical values of indicator
variables are not intended to reflect a quantitative ordering of the categories, but
only serve to identify category or class membership. For example, an analysis of
salaries earned by computer programmers may include variables such as education,
years of experience, and gender as predictor variables. The gender variable could
be quantified, say, as 1 for female and O for male. Indicator variables can also be
used in a regression equation to distinguish among three or more groups as well as
among classifications across various types of groups. For example, the regression
described above may also include an indicator variable to distinguish whether the
observation was for a systems or applications programmer. The four conditions
determined by gender and type of programming can be represented by combining
the two variables, as we shall see in this chapter.
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Table 5.1 Salary Survey Data

Row S X E M Row S X E M
1 13876 1 1 24 22884 6 2 1
2 11608 1 3 0 25 16978 7 1 1
3 18701 1 3 1 26 14803 8 2 0
4 11283 1 2 0 27 17404 8 1 1
5 11767 1 3 0 28 22184 8 3 1
6 20872 2 2 1 29 13548 8 1 0
7 11772 2 2 0 30 14467 10 1 0
8 10535 2 1 0 31 15942 10 2 0
9 12195 2 3 0 32 23174 10 3 1

10 12313 3 2 0 33 23780 10 2 1
11 14975 3 1 1 34 25410 11 2 1
12 21371 3 2 1 35 14861 11 1 0
13 19800 3 3 1 36 16882 12 2 0
14 11417 4 1 0 37 24170 12 3 1
15 20263 4 3 1 38 15990 13 1 0
16 13231 4 3 0 39 26330 13 2 1
17 12884 4 2 0 40 17949 14 2 0
18 13245 5 2 0 41 25685 15 3 1
19 13677 5 3 0 42 27837 16 2 1
20 15965 5 1 1 43 18838 16 2 0
21 12336 6 1 0 44 17483 16 1 0
22 21352 6 3 1 45 19207 17 2 0
23 13839 6 2 0 46 19346 20 1 0

Indicator variables can be used in a variety of ways and may be considered
whenever there are qualitative variables affecting a relationship. We shall illustrate
some of the applications with examples and suggest some additional applications. It
is hoped that the reader will recognize the general applicability of the technique from
the examples. In the first example, we look at data on a salary survey, such as the
one mentioned above, and use indicator variables to adjust for various categorical
variables that affect the regression relationship. The second example uses indicator
variables for analyzing and testing for equality of regression relationships in various
subsets of a population.

We continue to assume that the response variable is a quantitative continuous
variable, but the predictor variables can be quantitative and/or categorical. The case
where the response variable is an indicator variable is dealt with in Chapter 12.

5.2 SALARY SURVEY DATA
The Salary Survey data set was developed from a salary survey of computer pro-

fessionals in a large corporation. The objective of the survey was to identify and
quantify those variables that determine salary differentials. In addition, the data
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could be used to determine if the corporation’s salary administration guidelines
were being followed. The data appear in Table 5.1 and can be obtained from the
book’s Website.! The response variable is salary (S) and the predictors are: (1)
experience (X)), measured in years; (2) education (£), coded as 1 for completion of
ahigh school (H.S.) diploma, 2 for completion of a bachelor degree (B.S.), and 3 for
the completion of an advanced degree; and (3) management (M), which is coded
as 1 for a person with management responsibility and O otherwise. We shall try to
measure the effects of these three variables on salary using regression analysis.

A linear relationship will be used for salary and experience. We shall assume that
each additional year of experience is worth a fixed salary increment. Education may
also be treated in a linear fashion. If the education variable is used in the regression
equation in raw form, we would be assuming that each step up in education is
worth a fixed increment in salary. That is, with all other variables held constant, the
relationship between salary and education is linear. That interpretation is possible
but may be too restrictive. Instead, we shall view education as a categorical
variable and define two indicator variables to represent the three categories. These
two variables allow us to pick up the effect of education on salary whether or not
it is linear. The management variable is also an indicator variable designating the
two categories, 1 for management positions and O for regular staff positions.

Note that when using indicator variables to represent a set of categories, the
number of these variables required is one less than the number of categories. For
example, in the case of the education categories above, we create two indicator
variables F; and F5, where

1, if the ith person is in the H.S. category,
Eiy = .
0, otherwise,

and

1, if the ith person is in the B.S. category,
Ei = .
0, otherwise.

As stated above, these two variables taken together uniquely represent the three
groups. For H.S., By = 1, E; = 0; for B.S., E; = 0, E3 = 1; and for advanced
degree, F4 = 0, F = 0. Furthermore, if there were a third variable, E;3, defined
to be 1 or 0 depending on whether or not the ith person is in the advanced degree
category, then for each person we have 1 + Fo+ E3 = 1. Then E3 = 1— E| — E,
showing clearly that one of the variables is superfluous.? Similarly, there is only
one indicator variable required to distinguish the two management categories. The
category that is not represented by an indicator variable is referred to as the base
category or the control group because the regression coefficients of the indicator
variables are interpreted relative to the control group.

! http://www.aucegypt.edu/faculty/hadi/RABES
2 Had E, E», and E3 been used, there would have been a perfect linear relationship among the
predictors, which is an extreme case of collinearity, a problem described in Chapters 9 and 10.
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Table 5.2 Regression Equations for the Six Categories of Education and
Management

Category E M Regression Equation
1 1 0 S = (Bo+m) +65X +e
2 1 1 S=Bo+m+b)+bhX+e
3 2 0 S = (Bo +72) + 65X +e
4 2 1 S=(ﬂ0+’)’2+51)+ﬂ1X+E
5 3 0 S =70 + 51X +¢
6 3 1 S = (8o + 1) + B X +e¢

Table 5.3 Regression Analysis of Salary Survey Data

Variable Coefficient s.e. t-Test p-value
Constant 11031.800 383.2 28.80 < 0.0001
X 546.184 30.5 17.90 < 0.0001
E, —2996.210 411.8 —7.28 < 0.0001
FEs 147.825 387.7 0.38 0.7049
M 6883.530 3139 21.90 < 0.0001
n =46 R? = 0.957 R2 =0.953 & = 1027 df =41

In terms of the indicator variables described above, the regression model is
S=00+bbX+nE1+7E+0M+e. 5.1

By evaluating (5.1) for the different values of the indicator variables, it follows
that there is a different regression equation for each of the six (three education and
two management) categories as shown in Table 5.2. According to the proposed
model, we may say that the indicator variables help to determine the base salary
level as a function of education and management status after adjustment for years
of experience.

The results of the regression computations for the model given in (5.1) appear
in Table 5.3. The proportion of salary variation accounted for by the model is
quite high (R? = 0.957). At this point in the analysis we should investigate
the pattern of residuals to check on model specification. We shall postpone that
investigation for now and assume that the model is satisfactory so that we can
discuss the interpretation of the regression results. Later we shall return to analyze
the residuals and find that the model must be altered.

We see that the coefficient of X is 546.16. That is, each additional year of
experience is estimated to be worth an annual salary increment of $546. The
other coefficients may be interpreted by looking into Table 5.2. The coefficient
of the management indicator variable, 4y, is estimated to be 6883.50. From Table
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5.2 we interpret this amount to be the average incremental value in annual salary
associated with a management position. For the education variables, y; measures
the salary differential for the H.S. category relative to the advanced degree category
and -, measures the differential for the B.S. category relative to the advanced
degree category. The difference, y2 — 1, measures the differential salary for the
H.S. category relative to the B.S. category. From the regression results, in terms of
salary for computer professionals, we see that an advanced degree is worth $2996
more than a high school diploma, a B.S. is worth $148 more than an advanced
degree (this differential is not statistically significant, ¢ = 0.38), and a B.S. is worth
about $3144 more than a high school diploma. These salary differentials hold for
every fixed level of experience.

5.3 INTERACTION VARIABLES

Returning now to the question of model specification, consider Figure 5.1, where the
residuals are plotted against X. The plot suggests that there may be three or more
specific levels of residuals. Possibly the indicator variables that have been defined
are not adequate for explaining the effects of education and management status.
Actually, each residual is identified with one of the six education-management
combinations. To see this we plot the residuals against Category (a new categorical
variable that takes a separate value for each of the six combinations). This graph is,
in effect, a plot of residuals versus a potential predictor variable that has not yet been
used in the equation. The graph is given in Figure 5.2. It can be seen from the graph
that the residuals cluster by size according to their education-management category.
The combinations of education and management have not been satisfactorily treated
in the model. Within each of the six groups, the residuals are either almost totally
positive or totally negative. This behavior implies that the model given in (5.1) does
not adequately explain the relationship between salary and experience, education,
and management variables. The graph points to some hidden structure in the data
that has not been explored.

The graphs strongly suggest that the effects of education and management status
on salary determination are not additive. Note that in the model in (5.1) and
its further exposition in Table 5.2, the incremental effects of both variables are
determined by additive constants. For example, the effect of a management position
is measured as 4;, independently of the level of educational attainment. The
nonadditive effects of these variables can be evaluated by constructing additional
variables that are used to measure what may be referred to as multiplicative or
interaction effects. Interaction variables are defined as products of the existing
indicator variables (E; - M) and (E; - M). The inclusion of these two variables on
the right-hand side of (5.1) leads to a model that is no longer additive in education
and management, but recognizes the multiplicative effect of these two variables.
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Figure 5.1 Standardized residuals versus years of experience (X).
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Figure 5.2 Standardized residuals versus education-management categorical variable.
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Table 5.4 Regression Analysis of Salary Data: Expanded Model

Variable Coefficient s.e. t-Test p-value
Constant 11203.40 79.07 141.7 < 0.0001
X 496.99 5.57 89.3 < 0.0001
E, —1730.75 105.30 —16.4 < 0.0001
Es —349.08 97.57 -3.6 0.0009
M 7047.41 102.60 68.7 < 0.0001
Ei M —3066.04 149.30 -20.5 < 0.0001
Ey, M 1836.49 131.20 14.0 < 0.0001
n =46 R? =0.999 R2 =0.999 6 =173.8 df =39

Table 5.5 Regression Analysis of Salary Data: Expanded Model, Observation 33
Deleted.

Variable Coefficient s.e. t-Test p-value
Constant 11199.70 30.54 367.0 < 0.0001
X 498.41 2.15 232.0 < 0.0001
B —1741.28 40.69 —42.8 < 0.0001
E, —357.00 37.69 -9.5 < 0.0001
M 7040.49 39.63 178.0 < 0.0001
E,- M —3051.72 57.68 -52.9 < 0.0001
Ey, M 1997.62 51.79 38.6 < 0.0001
n =45 R?*=1.0 R?2=10 6 =67.13 df =38

The expanded model is

S = o+ X +nE1+vnE+6M
+o1(Br- M)+ as(Es- M) +e. (5.2)

The regression results are given in Table 5.4. The residuals from the regression of
the expanded model are plotted against X in Figure 5.3. Note that observation 33
is an outlier. Salary is overpredicted by the model. Checking this observation in
the listing of the raw data, it appears that this particular person seems to have fallen
behind by a couple of hundred dollars in annual salary as compared to other persons
with similar characteristics. To be sure that this single observation is not overly
affecting the regression estimates, it has been deleted and the regression rerun. The
new results are given in Table 5.5.

The regression coefficients are basically unchanged. However, the standard
deviation of the residuals has been reduced to $67.28 and the proportion of explained
variation has reached 0.9998. The plot of residuals versus X (Figure 5.4) appears
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Figure 5.3  Standardized residuals versus years of experience: Expanded model.
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Figure 5.4  Standardized residuals versus years of experience: Expanded model,
observation 33 deleted.
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Figure 5.5 Standardized residuals versus education-management categorical variable:
Expanded model, observation 33 deleted.
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to be satisfactory compared with the similar residual plot for the additive model.
In addition, the plot of residuals for each education-management category (Figure
5.5) shows that each of these groups has residuals that appear to be symmetrically
distributed about zero. Therefore the introduction of the interaction terms has
produced an accurate representation of salary variations. The relationships between
salary and experience, education, and management status appear to be adequately
described by the model given in (5.2).

With the standard error of the residuals estimated to be $67.28, we can believe that
we have uncovered the actual and very carefully administered salary formula. Using
95% confidence intervals, each year of experience is estimated to be worth between
$494.08 and $502.72. These increments of approximately $500 are added to a
starting salary that is specified for each of the six education-management groups.
Since the final regression model is not additive, it is rather difficult to directly
interpret the coefficients of the indicator variables. To see how the qualitative
variables affect salary differentials, we use the coefficients to form estimates of
the base salary for each of the six categories. These results are presented in Table
5.6 along with standard errors and confidence intervals. The standard errors are
computed using (A.12) in the Appendix to Chapter 3.

Using a regression model with indicator variables and interaction terms, it has
been possible to account for almost all the variation in salaries of computer pro-
fessionals selected for this survey. The level of accuracy with which the model
explains the data is very rare! We can only conjecture that the methods of salary
administration in this company are precisely defined and strictly applied.

In retrospect, we see that an equivalent model may be obtained with a different set
of indicator variables and regression parameters. One could define five variables,
each taking on the values of 1 or 0, corresponding to five of the six education-
management categories. The numerical estimates of base salary and the standard
errors of Table 5.6 would be the same. The advantage to proceeding as we have
is that it allows us to separate the effects of the three sets of predictor variables,
(1) education, (2) management, and (3) education-management interaction. Recall
that interaction terms were included only after we found that an additive model did
not satisfactorily explain salary variations. In general, we start with simple models
and proceed sequentially to more complex models if necessary. We shall always
hope to retain the simplest model that has an acceptable residual structure.

5.4 SYSTEMS OF REGRESSION EQUATIONS: COMPARING
TWO GROUPS

A collection of data may consist of two or more distinct subsets, each of which
may require a separate regression equation. Serious bias may be incurred if one
regression relationship is used to represent the pooled data set. An analysis of this
problem can be accomplished using indicator variables. An analysis of separate
regression equations for subsets of the data may be applied to cross-sectional or time

www.it-ebooks.info


http://www.it-ebooks.info/

138 QUALITATIVE VARIABLES AS PREDICTORS

Table 5.6 Estimates of Base Salary Using the Nonadditive Model in (5.2)

Estimate of 95% Confidence
Category E M  Coefficients Base Salary® s.e.? Interval

1 1 0 Bo+m 9459 31 (9398, 9520)
2 1 1 Bo+m+d+aq 13448 32 (13385, 13511)
3 2 0  Bo+e 10843 26 (10792, 10894)
4 2 1 Bo+v2+0+ 19880 33 (19815, 19945)
5 3 0 b 11200 31 (11139, 11261)
6 3 1 Bo+6 18240 29 (18183, 18297)

@ Recorded to the nearest dollar.

series data. The example discussed below treats cross-sectional data. Applications
to time series data are discussed in Section 3.5.

The model for the two groups can be different in all aspects or in only some
aspects. In this section we discuss three distinct cases:

1. Each group has a separate regression model.
2. The models have the same intercept but different slopes.

3. The models have the same slope but different intercepts.

We illustrate these cases below when we have only one quantitative predictor
variable. These ideas can be extended straightforwardly to the cases where there
are more than one quantitative predictor variable.

5.4.1 Models with Different Slopes and Different Intercepts

We illustrate this case with an important problem concerning equal opportunity
in employment. Many large corporations and government agencies administer a
preemployment test in an attempt to screen job applicants. The test is supposed
to measure an applicant’s aptitude for the job and the results are used as part of
the information for making a hiring decision. The federal government has ruled?
that these tests (1) must measure abilities that are directly related to the job under
consideration and (2) must not discriminate on the basis of race or national origin.
Operational definitions of requirements (1) and (2) are rather elusive. We shall not
try to resolve these operational problems. We shall take one approach involving
race represented as two groups, white and minority. The hypothesis that there are
separate regressions relating test scores to job performance for the two groups will
be examined. The implications of this hypothesis for discrimination in hiring are
discussed.

3 Tower amendment to Title VII, Civil Rights Act of 1964.
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Figure 5.6 Requirements for employment on pretest.

Let Y represent job performance and let X be the score on the preemployment
test. We want to compare

Model 1 (Pooled):  yi; = B0 + Pizy; +e€i, 1=1,2; i=1,2,---,n;,
Model 2 (Minority): ;1 = Bo1 + Bz + €1, (5.3)
Model 2 (White): Yi2 = Po2 + B12xie + €50.

Figure 5.6 depicts the two models. In model 1, race distinction is ignored, the data
are pooled, and there is one regression line. In model 2 there is a separate regression
relationship for the two subgroups, each with distinct regression coefficients. We
shall assume that the variances of the residual terms are the same in each subgroup.

Before analyzing the data, let us briefly consider the types of errors that could
be present in interpreting and applying the results. If Yp, as seen on the graph,
has been set as the minimum required level of performance, then using Model
1, an acceptable score on the test is one that exceeds X,. However, if Model 2
is in fact correct, the appropriate test score for whites is X,, and for minorities
is Xp. Using X, in place of X, and X, represents a relaxation of the pretest
requirement for whites and a tightening of that requirement for minorities. Since
inequity can result in the selection procedure if the wrong model is used to set
cutoff values, it is necessary to examine the data carefully. It must be determined
whether there are two distinct relationships or whether the relationship is the same
for both groups and a single equation estimated from the pooled data is adequate.
Note that whether Model 1 or Model 2 is chosen, the values X,,, X,,, and X, are
estimates subject to sampling errors and should only be used in conjunction with
appropriate confidence intervals. (Construction of confidence intervals is discussed
in the following paragraphs.)

Data were collected for this analysis using a special employment program.
Twenty applicants were hired on a trial basis for six weeks. One week was spent in
a training class. The remaining five weeks were spent on the job. The participants
were selected from a pool of applicants by a method that was not related to the
preemployment test scores. A test was given at the end of the training period and
a work performance evaluation was developed at the end of the six-week period.
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Table 5.7 Data on Preemployment Testing Program

Row TEST RACE JPERF Row TEST RACE JPERF
1 0.28 1 1.83 11 2.36 0 3.25
2 0.97 1 4.59 12 2.11 0 5.30
3 1.25 1 297 13 045 0 1.39
4 2.46 1 8.14 14 1.76 0 4.69
5 2.51 1 8.00 15 2.09 0 6.56
6 1.17 1 3.30 16 1.50 0 3.00
7 1.78 1 7.53 17 1.25 0 5.85
8 1.21 1 2.03 18 0.72 0 1.90
9 1.63 1 5.00 19 042 0 3.85
10 1.98 1 8.04 20 1.53 0 2.95

These two scores were combined to form an index of job performance. (Those
employees with unsatisfactory performance at the end of the six-week period were
dropped.) The data appear in Table 5.7 and can be obtained from the book’s
Website. We refer to this data set as the Preemployment Testing data.

Formally, we want to test the null hypothesis Hg : 811 = B12, Bo1 = Bo2 against
the alternative that there are substantial differences in these parameters. The test
can be performed using indicator variables. Let z;; be defined to take the value 1
if 7 = 1 and to take the value O if j = 2. That is, Z is a new variable that has the
value 1 for a minority applicant and the value O for a white applicant. We consider
the two models

Model 1: Yij = Bo + ;61.’1)1;3' + €ij

Model 3: Yij = Bo + Przij + vzij + 5(2’1'3' . .’Eij) + €ij. 5.4
The variable (z;; - x;;) represents the interaction between the group (race) variable
Z and the preemployment test X . Note that Model 3 is equivalent to Model 2. This

can be seen if we observe that for the minority group, x;; = ;1 and z;; = 1; hence
Model 3 becomes

yi = Po+Piza+y+dratea
= (Bo+7)+ (61 +d)za +ea
= fo1 + Puza + €,

which is the same as Model 2 for minority with gy = o + v and 511 = B1 + 6.
Similarly, for the white group, we have x;; = x;2, z;; = 0, and Model 3 becomes

Yi2 = Bo + B1xi2 + €42,

which is the same as Model 2 for white with 8y = S and B2 = 1. Therefore, a
comparison between Models 1 and 2 is equivalent to a comparison between Models
1 and 3. Note that Model 3 can be viewed as a full model (FM) and Model 1
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Table 5.8 Regression Results, Preemployment Testing Data: Model 1

Variable Coefficient s.€. t-Test p-value
Constant 1.03 0.87 1.19 0.2486
TEST (X) 2.36 0.54 4.39 0.0004
n=20 R? =0.52 R? = 0.49 & = 1.59 df=18

Table 5.9 Regression Results, Preemployment Testing Data: Model 3

Variable Coefficient s.€. t-Test p-value
Constant 2.01 1.05 1.91 0.0736
TEST (X) 1.31 0.67 1.96 0.0677
RACE (2) -1.91 1.54 —1.24 0.2321
RACE - TEST (X - Z) 2.00 0.95 2.09 0.0527
n=20 R? =0.664 R% =0.601 =141 df=16

as a restricted model (RM) because Model 1 is obtained from Model 3 by setting
v = d = 0. Thus, our null hypothesis Hy now becomes Hy : v = § = 0. The
hypothesis is tested by constructing an F'-Test for the comparison of two models
as described in Chapter 3. In this case, the test statistics is

[SSE(RM) — SSE(FM)]/2
SSE(FM)/16 ’

which has 2 and 16 degrees of freedom. (Why?) Proceeding with the analysis of
the data, the regression results for Model 1 and Model 3 are given in Tables 5.8
and 5.9. The plots of residuals against the predictor variable (Figures 5.7 and 5.8)
look acceptable in both cases. The one residual at the lower right in Model 1 may
require further investigation.

To evaluate the formal hypothesis we compute the F'-ratio specified previously,
which is equal to
(45.51 — 31.81)/2

F =
31.81/16

=34

and is significant at a level slightly above 5%. Therefore, on the basis of this test
we would conclude that the relationship is probably different for the two groups.
Specifically, for minorities we have

Y1 =0.10+ 3.31X;

and for whites we have
Yo =2.01 +1.32X5.
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Figure 5.7 Standardized residuals versus test score: Model 1.
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Figure 5.8 Standardized residuals versus test score: Model 3.
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Figure 5.9 Standardized residuals versus race: Model 1.

Table 5.10 Separate Regression Results

~ A

Sample Bo B t R? & df
Minority 0.10 3.31 5.31 0.78 1.29 8
White 2.01 1.31 1.82 0.29 1.51 8

The results are very similar to those that were described in Figure 5.5 when the
problem of bias was discussed. The straight line representing the relationship for
minorities has a larger slope and a smaller intercept than the line for whites. If
a pooled model were used, the types of biases discussed in relation to Figure 5.6
would occur.

Although the formal procedure using indicator variables has led to the plausible
conclusion that the relationships are different for the two groups, the data for the
individual groups have not been looked at carefully. Recall that it was assumed
that the variances were identical in the two groups. This assumption was required
so that the only distinguishing characteristic between the two samples was the pair
of regression coefficients. In Figure 5.9 a plot of residuals versus the indicator
variable is presented. There does not appear to be a difference between the two
sets of residuals. We shall now look more closely at each group. The regression
coefficients for each sample taken separately are presented in Table 5.10. The
residuals are shown in Figures 5.10 and 5.11. The regression coefficients are, of
course, the values obtained from Model 3. The standard errors of the residuals are
1.29 and 1.51 for the minority and white samples, respectively. The residual plots
against the test score are acceptable in both cases. An interesting observation that
was not available in the earlier analysis is that the preemployment test accounts
for a major portion of the variation in the minority sample, but the test is only
marginally useful in the white sample.
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Figure 5.10 Standardized residuals versus test: Model |, minority only.
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Figure 5.11 Standardized residuals versus test: Model 1, white only.
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Our previous conclusion is still valid. The two regression equations are different.
Not only are the regression coefficients different, but the residual mean squares also
show slight differences. Of more importance, the values of R? are greatly different.
For the white sample, R? = 0.29 is so small (¢t = 1.82;2.306 is required for
significance) that the preemployment test score is not deemed an adequate predictor
of job success. This finding has bearing on our original objective since it should
be a prerequisite for comparing regressions in two samples that the relationships
be valid in each of the samples when taken alone. Concerning the validity of
the preemployment test, we conclude that if applied as the law prescribes, with
indifference to race, it will give biased results for both racial groups. Moreover,
based on these findings, we may be justified in saying that the test is of no value
for screening white applicants.

We close the discussion with a note about determining the appropriate cutoff test
score if the test were used. Consider the results for the minority sample. If Y,
is designated as the minimum acceptable job performance value to be considered
successful, then from the regression equation (also see Figure 5.6)

Xm _ Ym :— BO ’
A

where Bo and Bl are the estimated regression coefficients. X, is an estimate of the
minimum acceptable test score required to attain Y,,. Since X, is defined in terms
of quantities with sampling variation, X,, is also subject to sampling variation.
The variation is most easily summarized by constructing a confidence interval for
Xm. An approximate 95% level confidence interval takes the form (Scheffé, 1959,
p- 52)

t(n—Z,a/2) (&/n)

B

where {(,,_5 o/9) is the appropriate percentile point of the ¢-distribution and &2 is the
least squares estimate of o2. If Y,,, is set at 4, then X,,, = (4 — 0.10)/3.31 = 1.18
and a 95% confidence interval for the test cutoff score is (1.09, 1.27).

Xm £

bl

5.4.2 Models with Same Slope and Different Intercepts

In the previous subsection we dealt with the case where the two groups have distinct
models with different sets of coefficients as given by Models 1 and 2 in (5.3) and
as depicted in Figure 5.6. Suppose now that there is a reason to believe that the
two groups have the same slope, 31, and we wish to test the hypothesis that the
two groups also have the same intercept, that is, Ho : So1 = Bp2. In this case we
compare

Model 1 (Pooled): Yij = Po + bz +ei, j=1,2; i=1,2,---,n,,
Model 2 (Minority):  y;1 = Bo1 + Bixi1 + €41, (5.5)
Model 2 (White): Yi2 = Boz + B1zie + €i2.
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Notice that the two models have the same value of the slope 3; but different values
of the intercepts Sp1 and Bg2. Using the indicator variable Z defined earlier, we
can write Model 2 as

Model 3:  y;; = Bo + Brzij + v2i5 + €345 (5.6)

Note the absence of the interaction variable (2;; - ;) from Model 3 in (5.6). If it
is present, as it is in (5.4), the two groups would have two models with different
slopes and different intercepts.

The equivalence of Models 2 and 3 can be seen by noting that for the minority
group, where z;; = z;1 and z;; = 1, Model 3 becomes

yn = Po+ Pz +vy+ea
= (Bo+7)+ Brxi +ea
= Bo1 + fizit + €i1,

which is the same as Model 2 for minority with 5y; = Sy + . Similarly, Model 3
for the white group becomes

Yo = Po+ PiTi2 + €.

Thus, Model 2 (or equivalently, Model 3) represents two parallel lines* (same slope)
with intercepts Bg + v and SBy. Therefore, our null hypothesis implies a restriction
on v in Model 3, namely, Hp : v = 0. To test this hypothesis, we use the F'-Test

_ [SSERM) — SSE(FM)]/1

F SSE(FM)/17 ’

which has 1 and 17 degrees of freedom. Equivalently, we can use the ¢-Test for
testing v = 0 in Model 3, which is

Y
t=——
s.e.(%)

bl

which has 17 degrees of freedom. Again, the validation of the assumptions of
Model 3 should be done before any conclusions are drawn from these tests. For the
current example, we leave the computations of the above tests and the conclusions
based on them, as an exercise for the reader.

5.4.3 Models with Same Intercept and Different Siopes

Now we deal with the third case where the two groups have the same intercept, S,
and we wish to test the hypothesis that the two groups also have the same slope,

* In the general case where the model contains X, X2, - - -, X plus one indicator variable Z, Model
3 represents two parallel (hyper-) planes that differ only in the intercept.
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that is, Hg : £11 = B12. In this case we compare

Model 1 (Pooled): Yij = Bo + b1 Tij+é&ij, J=1,2; i=1,2,---,n;,
Model 2 (Minority): y;1 = 8o + Bz + €1, (5.7
Model 2 (White): vi2 = Bo + Praxio + €i2.

Note that the two models have the same value of the intercept 3y but different values

of the slopes (13 and ;2. Using the indicator variable Z defined earlier, we can
write Model 2 as

Model 3: ;5 = Bo + fixij + (5(2,'3' . :Eij) + E45. (5.8)

Observe the presence of the interaction variable (2;; - ;;) but the absence of the
individual contribution of the variable Z. The equivalence of Models 2 and 3 can
be seen by observing that for the minority group, where z;; = x;; and 2;; = 1,
Model 3 becomes

yin = Po+ Pizi + 0T +eqn
= Bo+(Bi+d)xn +eu
= fo+ Puzia +ean,

which is the same as Model 2 for minority with 81; = 81 + 4. Similarly, Model 3
for the white group becomes

vio = Bo+ Brazio + 2.

Therefore, our null hypothesis implies a restriction on § in Model 3, namely,
Hp : 0 = 0. To test this hypothesis, we use the F-Test
SSE(RM) — SSE(FM)]/1

SSE(FM)/17 ’
which has 1 and 17 degrees of freedom. Equivalently, we can use the ¢-Test for
testing § = 0 in Model 3, which is

ro

~

9
s.e.(8)

which has 17 degrees of freedom. Validation of the assumptions of Model 3, the
computations of the above tests, and the conclusions based on them are left as an
exercise for the reader.

5.5 OTHER APPLICATIONS OF INDICATOR VARIABLES

Applications of indicator variables such as those described in Section 5.4 can be
extended to cover a variety of problems [see, e.g., Fox (1984), and Kmenta (1986)
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for a variety of applications]. Suppose, for example, that we wish to compare the
means of £ > 2 populations or groups. The techniques commonly used here is
known as the analysis of variance (ANOVA). A random sample of size n; is taken
from the jth population, j = 1,---, k. We have atotal of n = ny + --- + ny
observations on the response variable. Let y;; be the ith response in the jth sample.
Then y;; can be modeled as

Yij = po + mZin + -+ ppZip + Eij5. 5.9

In this model there are p = k — 1 indicator predictor variables ;i, - - -, z;p. Each
variable z;; is 1 if the corresponding response is from population j, and zero
otherwise. The population that is left out is usually known as the control group.
All indicator variables for the control group are equal to zero. Thus, for the control
group, (5.9) becomes

Yij = Mo + Eij- (5.10)

In both (5.9) and (5.10), ¢;; are random errors assumed to be independent normal
variables with zero means and constant variance ¢2. The constant p represents
the mean of the control group and the regression coefficient 1; can be interpreted
as the difference between the means of the control and jth groups. If p; = 0,
then the means of the control and jth groups are equal. The null hypothesis
Hg : 1 = -+ = pp = 0O that all groups have the same mean can be represented
by the model in (5.10). The alternate hypothesis that at least one of the y;’s is
different from zero can be represented by the model in (5.9). The models in (5.9)
and (5.10) can be viewed as full and reduced models, respectively. Hence Hy can be
tested using the F-Test given in (3.45). Thus, the use of indicator variables allowed
us to express ANOVA techniques as a special case of regression analysis. Both
the number of quantitative predictor variables and the number of distinct groups
represented in the data by indicator variables may be increased.

Note that the examples discussed above are based on cross-sectional data. In-
dicator variables can also be utilized with time series data. In addition, there are
some models of growth processes where an indicator variable is used as the depen-
dent variable. These models, known as logistic regression models, are discussed in
Chapter 12.

In Sections 5.6 and 5.7 we discuss the use of indicator variables with time series
data. In particular, notions of seasonality and stability of parameters over time are
discussed. These problems are formulated and the data are provided. The analyses
are left to the reader.

5.6 SEASONALITY

The data set we use as an example here, referred to as the Ski Sales data, is shown
in Table 5.11 and can be obtained from the book’s Website. The data consist of
two variables: the sales, .S, in millions for a firm that manufactures skis and related
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Table 5.11 Disposable Income and Ski Sales for Years 1964-1973

Row Date Sales PDI Row Date Sales PDI
1 Ql/64 37.0 109 21 Q1/69 449 153
2 Q2/64 33.5 115 22 Q2/69 41.6 156
3 Q3/64 30.8 113 23 Q3/69 44.0 160
4 Q4/64 379 116 24 Q4/69 48.1 163
5 Q1/65 374 118 25 Q1/70 49.7 166
6 Q2/65 31.6 120 26 Q2/70 439 171
7 Q3/65 34.0 122 27 Q3/70 41.6 174
8 Q4/65 38.1 124 28 Q4/70 51.0 175
9 Q1/66 40.0 126 29 Ql/71 52.0 180

10 Q2/66 35.0 128 30 Q2/71 46.2 184
11 Q3/66 349 130 31 Q3/71 47.1 187
12 Q4/66 40.2 132 32 Q4/71 52.7 189
13 Q1/67 419 133 33 Q1/72 52.2 191
14 Q2/67 34.7 135 34 Q2/72 47.0 193
15 Q3/67 38.8 138 35 Q3/72 47.8 194
16 Q4/67 43.7 140 36 Q4/72 52.8 196
17 Q1/68 442 143 37 Q1/73 54.1 199
18 Q2/68 40.4 147 38 Q2/73 49.5 201
19 Q3/68 38.4 148 39 Q3/73 49.5 202
20 Q4/68 454 151 40 Q4/73 54.3 204

equipment for the years 19641973, and personal disposable income, PDI.> Each
of these variables is measured quarterly. We use these data in Chapter 8 to illustrate
the problem of correlated errors.

The model is an equation that relates S to PDI, that is, 5; = 5y + 31PDI; + &,
where S; is sales in millions in the ¢th period and PDI; is the corresponding
personal disposable income. Our approach here is to assume the existence of a
seasonal effect on sales that is determined on a quarterly basis. To measure this
effect we may define indicator variables to characterize the seasonality. Since we
have four quarters, we define three indicator variables, Z1, Zo, and Z3, where

1, if the tth period is a first quarter,
Zt1 = .
0, otherwise,

I 1, if the {th period is a second quarter,
2 = 0, otherwise,

{ 1, if the tth period is a third quarter,

213 = .
t3 0, otherwise.

5 Aggregate measure of purchasing potential.
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The analysis and interpretation of this data set are left to the reader. The authors
have analyzed these data and found that there are actually only two seasons. (See the
discussion of these sales data in Chapter 8 for an analysis using only one indicator
variable, two seasons.) See Kmenta (1986) for further discussion on using indicator
variables for analyzing seasonality.

5.7 STABILITY OF REGRESSION PARAMETERS OVER TIME

Indicator variables may also be used to analyze the stability of regression coef-
ficients over time or to test for structural change. We consider an extension of
the system of regressions problem when data are available on a cross-section of
observations and over time. Our objective is to analyze the constancy of the rela-
tionships over time. The methods described here are suitable for intertemporal and
interspatial comparisons. To outline the method we use the Education Expenditure
data shown in Tables 5.12-5.14. The measured variables for the 50 states are:

Y  Per capita expenditure on public education

X3  Per capita personal income

X2 Number of residents per thousand under 18 years of age
X3 Number of people per thousand residing in urban areas

The variable Region is a categorical variable representing geographical regions:
1 = Northeast, 2 =North Central, 3 = South, 4= West.

This data set is used in Chapter 7 to demonstrate methods of dealing with het-
eroscedasticity in multiple regression and to analyze the effects of regional char-
acteristics on the regression relationships. Here we focus on the stability of the
expenditure relationship with respect to time.

Data have been developed on the four variables described above for each state in
1960, 1970, and 1975. Assuming that the relationship can be identically specified
in each of the three years,® the analysis of stability can be carried out by evaluating
the variation in the estimated regression coefficients over time. Working with the
pooled data set of 150 observations (50 states each in 3 years) we define two
indicator variables, 77 and T5, where

p—

, if the ith observation was from 1960,
Th = .
0, otherwise,

—

, if the 4th observation was from 1970,
Tin = .
0, otherwise.

® Specification as used here means that the same variables appear in each equation. Any transforma-
tions that are used apply to each equation. The assumption concerning identical specification should
be empirically validated.
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Table 5.12 Education Expenditures Data (1960)

Row STATE Y X1 X, X3 Region
1 ME 61 1704 388 399 1
2 NH 68 1885 372 598 1
3 VT 72 1745 397 370 1
4 MA 72 2394 358 868 1
5 RI 62 1966 357 899 1
6 CT 91 2817 362 690 1
7 NY 104 2685 341 728 1
8 NJ 99 2521 353 826 1
9 PA 70 2127 352 656 1

10 OH 82 2184 387 674 2
11 IN 84 1990 392 568 2
12 IL 84 2435 366 759 2
13 Ml 104 2099 403 650 2
14 WI 84 1936 393 621 2
15 MN 103 1916 402 610 2
16 IA 86 1863 385 522 2
17 MO 69 2037 364 613 2
18 ND 94 1697 429 351 2
19 SD 79 1644 411 390 2
20 NB 80 1894 379 520 2
21 KS 98 2001 380 564 2
22 DE 124 2760 388 326 3
23 MD 92 2221 393 562 3
24 VA 67 1674 402 487 3
25 wv 66 1509 405 358 3
26 NC 65 1384 423 362 3
27 SC 57 1218 453 343 3
28 GA 60 1487 420 498 3
29 FL 74 1876 334 628 3
30 KY 49 1397 594 377 3
31 TN 60 1439 346 457 3
32 AL 59 1359 637 517 3
33 MS 68 1053 448 362 3
34 AR 56 1225 403 416 3
35 LA 72 1576 433 562 3
36 OK 80 1740 378 610 3
37 TX 79 1814 409 727 3
38 MT 95 1920 412 463 4
39 ID 79 1701 418 414 4
40 wY 142 2088 415 568 4
41 CO 108 2047 399 621 4
42 NM 94 1838 458 618 4
43 AZ 107 1932 425 699 4
44 UT 109 1753 494 665 4
45 NV 114 2569 372 663 4
46 WA 112 2160 386 584 4
47 OR 105 2006 382 534 4
48 CA 129 2557 373 717 4
49 AK 107 1900 434 379 4
50 HI 77 1852 431 693 4
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Table 5.13 Education Expenditures Data (1970)

Row STATE Y X, X5 X3 Region
1 ME 189 2828 351 508 1
2 NH 169 3259 346 564 1
3 VT 230 3072 348 322 1
4 MA 168 3835 335 846 1
5 RI 180 3549 327 871 1
6 CT 193 4256 341 774 1
7 NY 261 4151 326 856 1
8 NJ 214 3954 333 889 1
9 PA 201 3419 326 715 1

10 OH 172 3509 354 753 2
11 IN 194 3412 359 649 2
12 IL 189 3981 349 830 2
13 MI 233 3675 369 738 2
14 WI 209 3363 361 659 2
15 MN 262 3341 365 664 2
16 IA 234 3265 344 572 2
17 MO 177 3257 336 701 2
18 ND 177 2730 369 443 2
19 SD 187 2876 369 446 2
20 NB 148 3239 350 615 2
21 KS 196 3303 340 661 2
22 DE 248 3795 376 722 3
23 MD 247 3742 364 766 3
24 VA 180 3068 353 631 3
25 wv 149 2470 329 390 3
26 NC 155 2664 354 450 3
27 SC 149 2380 377 476 3
28 GA 156 2781 371 603 3
29 FL 191 3191 336 805 3
30 KY 140 2645 349 523 3
31 TN 137 2579 343 588 3
32 AL 112 2337 362 584 3
33 MS 130 2081 385 445 3
34 AR 134 2322 352 500 3
35 LA 162 2634 390 661 3
36 OK 135 2880 330 680 3
37 TX 155 3029 369 797 3
38 MT 238 2942 369 534 4
39 ID 170 2668 368 541 4
40 WY 238 3190 366 605 4
41 (6(0) 192 3340 358 785 4
42 NM 227 2651 421 698 4
43 AZ 207 3027 387 796 4
44 UT 201 2790 412 804 4
45 NV 225 3957 385 809 4
46 WA 215 3688 342 726 4
47 OR 233 3317 333 671 4
48 CA 273 3968 348 909 4
49 AK 372 4146 440 484 4
50 HI 212 3513 383 831 4
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Row STATE Y X, Xo X3 Region
1 ME 235 3944 325 508 1
2 NH 231 4578 323 564 1
3 VT 270 4011 328 322 1
4 MA 261 5233 305 846 1
5 RI 300 4780 303 871 1
6 CT 317 5889 307 774 1
7 NY 387 5663 301 856 1
8 NJ 285 5759 310 889 1
9 PA 300 4894 300 715 1

10 OH 221 5012 324 753 2
11 IN 264 4908 329 649 2
12 IL 308 5753 320 830 2
13 MI 379 5439 337 738 2
14 Wi 342 4634 328 659 2
15 MN 378 4921 330 664 2
16 IA 232 4869 318 572 2
17 MO 231 4672 309 701 2
18 ND 246 4782 333 443 2
19 SD 230 4296 330 446 2
20 NB 268 4827 318 615 2
21 KS 337 5057 304 661 2
22 DE 344 5540 328 722 3
23 MD 330 5331 323 766 3
24 VA 261 4715 317 631 3
25 wv 214 3828 310 390 3
26 NC 245 4120 321 450 3
27 SC 233 3817 342 476 3
28 GA 250 4243 339 603 3
29 FL 243 4647 287 805 3
30 KY 216 3967 325 523 3
31 TN 212 3946 315 588 3
32 AL 208 3724 332 584 3
33 MS 215 3448 358 445 3
34 AR 221 3680 320 500 3
35 LA 244 3825 355 661 3
36 OK 234 4189 306 680 3
37 X 269 4336 335 797 3
38 MT 302 4418 335 534 4
39 ID 268 4323 344 541 4
40 WY 323 4813 331 605 4
41 (¢0] 304 5046 324 785 4
42 NM 317 3764 366 698 4
43 AZ 332 4504 340 796 4
44 uT 315 4005 378 804 4
45 NV 291 5560 330 809 4
46 WA 312 4989 313 726 4
47 OR 316 4697 305 671 4
48 CA 332 5438 307 909 4
49 AK 546 5613 386 484 4
50 HI 311 5309 333 831 4
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Using Y to represent per capita expenditure on schools, the model takes the form

Y = fo+ Xy +BeXo+ B3 Xs+mT1 +veTo+ 6T - Xy
4+ 611 - Xo+ 63T - Xz + T - X1 + asTs - Xo
+ a3y - X3+ €.

From the definitions of 77 and 77, the above model is equivalent to

For 1960: Y = (Bo+m)+ (61 +61) X1 + (B2 + 82) X2
+ (B3 + 03) X3 + ¢,

For1970: Y = (o +72) + (B1 + a1) X1 + (B2 + a2) X2
+ (B3 + a3) X3 + ¢,

For 1975: Y =08+ 5X1+ BXs+ B3X3 +¢.

As noted earlier, this method of analysis necessarily implies that the variability
about the regression function is assumed to be equal for all three years. One formal
hypothesis of interest is

Hy:m=m=h=8=0B=a1=0p=a3=0,

which implies that the regression system has remained unchanged throughout the
period of investigation (1960-1975).

The data for this example, which we refer to as the Education Expenditures data,
appear in Tables 5.12, 5.13, and 5.14 and can be obtained from the book’s Website.
The reader is invited to perform the analysis described above as an exercise.

EXERCISES

5.1 Using the model defined in (5.6):
(a) Check to see if the usual least squares assumptions hold.
(b) Test Hp : v = 0 using the F-Test.
(c) Test Hg : v = 0 using the ¢-Test.
(d) Verify the equivalence of the two tests above.
5.2 Using the model defined in (5.8):
(a) Check to see if the usual least squares assumptions hold.
(b) Test Hp : § = 0 using the F'-Test.
(c) Test Hy : & = O using the t-Test.
(d) Verify the equivalence of the two tests above.

5.3 Perform a thorough analysis of the Ski Sales data in Table 5.11 using the ideas
presented in Section 5.6.

5.4 Perform a thorough analysis of the Education Expenditures data in Tables
5.12, 5.13, and 5.14 using the ideas presented in Section 5.7.
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Table 5.15 Regression Output from the Regression of the Weekly Wages, Y, on X
(Gender: 1 = Male, 0 = Female)

ANOVA Table

Source Sum of Squares df Mean Square F-Test
Regression 98.8313 1 08.8313 14
Residual 338.449 48 7.05101

Coefficients Table
Variable Coefficient s.e. t-Test p-value
Constant 15.58 0.54 28.8 < 0.0001
X -2.81 0.75 -3.74 0.0005

5.5 Table 5.15 shows a regression output obtained from fitting the model ¥ =
Bo + B1X + € to a set.of data consisting of n workers in a given company,
where Y is the weekly wages in $100 and X is the gender. The Gender
variable is coded as 1 for Males and 0 for Females.

(a) How many workers are there in this data set?

(b) Compute the variance of Y?

(c) Given that X = 0.52, whatis Y?

(d) Given that X = 0.52, how many women are there in this data set?

(e) What percentage of the variability in Y can be accounted for by X?

(f) Compute the correlation coefficient between Y and X?

(g) What is your interpretation of the estimated coefficient Bl?

(h) What is the estimated weekly wages of a man chosen at random from the
workers in the company?

(i) What is the estimated weekly wages of a woman chosen at random from
the workers in the company?

(i) Construct a 95% confidence interval for 3.

(k) Test the hypothesis that the average weekly wages of men is equal to that

of women. [Specify (a) the null and alternative hypotheses, (b) the test
statistics, (c) the critical value, and (d) your conclusion.]

5.6 The price of a car is thought to depend on the horsepower of the engine and
the country where the car is made. The variable Country has four categories:
USA, Japan, Germany, and Others. To include the variable Country in a re-
gression equation, three indicator variables are created, one for USA, another
for Japan, and the third for Germany. In addition, there are three interaction
variables between the horsepower and each of the three Country categories
(HP*USA, HP*Japan, and HP*Germany). Some regression outputs when
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Table 5.16 Some Regression Outputs When Fitting Three Models to the Car Data

Model 1
Source Sum of Squares df Mean Square F-Test
Regression 4604.7 1 4604.7 253
Residual 1604.44 88 18.2323
Variable Coefficient s.e. t-Test p-value
Constant —-6.107 1.487 —4.11 0.0001
Horsepower 0.169 0.011 15.9 0.0001
Model 2
Source Sum of Squares df Mean Square F-Test
Regression 4818.84 4 1204.71 73.7
Residual 1390.31 85 16.3566
Variable Coefficient s.e. t-Test p-value
Constant —4.117 1.582 2.6 0.0109
Horsepower 0.174 0.011 16.6 0.0001
USA -3.162 1.351 -2.34 0.0216
Japan -3.818 1.357 -2.81 0.0061
Germany 0.311 1.871 0.166 0.8682
Model 3
Source Sum of Squares df Mean Square F-Test
Regression 4889.3 7 698.471 43.4
Residual 1319.85 82 16.0957
Variable Coefficient s.e. t-Test p-value
Constant -10.882 4.216 —2.58 0.0116
Horsepower 0.237 0.038 6.21 0.0001
USA 2.076 4916 042 0.6740
Japan 4.755 4.685 1.01 0.3131
Germany 11.774 9.235 1.28 0.2059
HP*USA -0.052 0.042 -1.23 0.2204
HP*Japan -0.077 0.041 -1.88 0.0631
HP*Germany -0.095 0.066 -1.43 0.1560
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fitting three models to the data is shown in Table 5.16. The usual regression

assumptions hold.

(a) Compute the correlation coefficient between the price and the horsepower.

(b) What is the least squares estimated price of an American car with a 100
horsepower engine?

(¢) Holding the horsepower fixed, which country has the least expensive car?
Why?

(d) Test whether there is an interaction between Country and horsepower.
Specify the null and alternative hypotheses, test statistics, and conclusions.

(e) Given the horsepower of the car, test whether the Country is an important
predictor of the price of a car. Specify the null and alternative hypotheses,
test statistics, and conclusions.

(f) Would you recommend that the number of categories of Country be re-
duced? If so, which categories can be joined together to form one cate-
gory?

(g) Holding the horsepower fixed, write down the formula for the test statistic
for testing the equality of the price of American and Japanese cars?

Three types of fertilizer are to be tested to see which one yields more corn

crop. Forty similar plots of land were available for testing purposes. The 40

plots are divided at random into four groups, 10 plots in each group. Fertilizer

1 was applied to each of the 10 corn plots in Group 1. Similarly, Fertilizers

2 and 3 were applied to the plots in Groups 2 and 3, respectively. The corn

plants in Group 4 were not given any fertilizer; it will serve as the control

group. Table 5.17 gives the corn yield y;; for each of the 40 plots.

(a) Create three indicator variables Fi, Fy, F3, one for each of the three
fertilizer groups.

(b) Fitthe model y;; = po + p1Fi1 + pokio + paFiz + €i5.

(c) Testthe hypothesis that, on the average, none of the three types of fertilizer
has an effect on corn crops. Specify the hypothesis to be tested, the test
used, and your conclusions at the 5% significance level.

(d) Test the hypothesis that, on the average, the three types of fertilizer have
equal effects on corn crop but different from that of the control group.
Specify the hypothesis to be tested, the test used, and your conclusions at
the 5% significance level.

(e) Which of the three fertilizers has the greatest effects on corn yield?

In a statistics course personal information was collected on all the students
for class analysis. Data on age (in years), height (in inches), and weight (in
pounds) of the students are given in Table 5.18 and can be obtained from the
book’s Website. The gender of each student is also noted and coded as 1 for
women and 0 for men. We want to study the relationship between the height
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Table 5.17 Corn Yields by Fertilizer Group

Fertilizer 1 Fertilizer 2 Fertilizer 3 Control Group
31 27 36 33
34 27 37 27
34 25 37 35
34 34 34 25
43 21 37 29
35 36 28 20
38 34 33 25
36 30 29 40
36 32 36 35
45 33 42 29

5.9

and weight of students. Weight is taken as the response variable, and the

height as the predictor variable.

(a) Do you agree or do you think the roles of the variables should be reversed?

(b) Is a single equation adequate to describe the relationship between height
and weight for the two groups of students? Examine the standardized
residual plot from the model fitted to the pooled data, distinguishing
between the male and female students.

(c) Find the best model that describes the relationship between the weight
and the height of students. Use interaction variables and the methodology
described in this chapter.

(d) Do you think we should include age as a variable to predict weight? Give
an intuitive justification for your answer.

Presidential Election Data (1916-1996): The data in Table 5.19 were kindly

provided by Professor Ray Fair of Yale University, who has found that the
proportion of votes obtained by a presidential candidate in a U.S.A. presiden-
tial election can be predicted accurately by three macroeconomic variables,
incumbency, and a variable which indicates whether the election was held
during or just after a war. The variables considered are given in Table 5.20.
All growth rates are annual rates in percentage points. Consider fitting the
following initial model to the data:

V = Bo+ Bl + BoD+ W + B4(G - I)
+B5P + BN + e, (511

(a) Write the regression model corresponding to each of the three possible
values of D in (5.11) and interpret the regression coefficient of D (/32).

(b) Do we need to keep the variable I in the above model?
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Table 5.18 Class Data on Age (in Years), Height (in Inches), Weight (in Pounds),
and Gender (1 = Female, 0 = Male)

Age Height  Weight Gender Age Height  Weight Gender
19 61 180 0 19 65 135 1
19 70 160 0 19 70 120 0
19 70 135 0 21 69 142 0
19 71 195 0 20 63 108 1
19 64 130 1 19 63 118 1
19 64 120 1 20 72 135 0
21 69 135 1 19 73 169 0
19 67 125 0 19 69 145 0
19 62 120 1 27 69 130 1
20 66 145 0 18 64 135 0
19 65 155 0 20 61 115 1
19 69 135 1 19 68 140 0
19 66 140 0 21 70 152 0
19 63 120 1 19 64 118 1
19 69 140 0 19 62 112 1
18 66 113 1 19 64 100 1
18 68 180 0 20 67 135 1
19 72 175 0 20 63 110 1
19 70 169 0 20 68 135 0
19 74 210 0 18 63 115 1
20 66 104 1 19 68 145 0
20 64 105 1 19 65 115 1
20 65 125 1 19 63 128 1
20 71 120 i 20 68 140 1
19 69 119 1 19 69 130 0
20 64 140 1 19 69 165 0
20 67 185 1 19 69 130 0
19 60 110 1 20 70 180 0
20 66 120 1 28 65 110 1
19 71 175 0 19 55 155 0

(c) Do we need to keep the interaction variable (G - I) in the above model?
(d) Examine different models to produce the model or models that might

be expected to perform best in predicting future presidential elections.
Include interaction terms if needed.

5.10 Refer to the Presidential Election Data in Exercise 5.9, where the variable D
is a categorical variable with three categories. Now, if we replace D by two
indicator variables such as:

D; = 1if D = 1 (Democratic incumbent is running) and 0 otherwise, and
Dy =1if D = —1 (Republican incumbent is running) and 0 otherwise.
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Table 5.19 Presidential Election Data (1916-1996)

Year 1% I D w G P N
1916 0.5168 1 1 0 2.229 4.252 3
1920 0.3612 1 0 1 —11.463 16.535 5
1924 0.4176 -1 -1 0 -3.872 5.161 10
1928 04118 -1 0 0 4.623 0.183 7
1932 0.5916 -1 -1 0 —14.901 7.069 4
1936 0.6246 1 1 0 11.921 2.362 9
1940 0.5500 1 1 0 3.708 0.028 8
1944 0.5377 1 1 1 4.119 5.678 14
1948 0.5237 1 1 1 1.849 8.722 5
1952 0.4460 1 0 0 0.627 2.288 6
1956 0.4224 -1 -1 0 —-1.527 1.936 5
1960 0.5009 -1 0 0 0.114 1.932 5
1964 0.6134 1 1 0 5.054 1.247 10
1968 0.4960 1 0 0 4.836 3.215 7
1972 0.3821 -1 -1 0 6.278 4.766 4
1976 0.5105 -1 0 0 3.663 7.657 4
1980 0.4470 1 1 0 —3.789 8.093 5
1984 0.4083 -1 -1 0 5.387 5.403 7
1988 0.4610 -1 0 0 2.068 3272 6
1992 0.5345 -1 -1 0 2.293 3.692 1
1996 0.5474 1 1 0 2918 2.268 3

Then an alternative to the model in (5.11) is

V = Bo+BiI+ 1D+ azDy+ BsW + B4(G - 1)
+P5P + BN + . (5.12)

(a) Write the regression model corresponding to each of the three possible
values of D in (5.12) and interpret the regression coefficients of I); and

Ds.
(b) Show that the model in (5.11) can be obtained as a special case of the
model in (5.11) by assuming that a; = —ap.

(c) Do the data in Table 5.19 support the assumption that o; = —a2?

5.11 Use the data given in Table 1.10 (A description of the data is found in Section
1.3.6).
(a) Examine the relationship between polishing times, the diameters, and the
product type. Does the relationship vary between the categories?
(b) Polishing time plays an important part in the cost. Construct a regression
model which connects price with the product types, polishing time, and
diameter.
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Table 5.20  Variables for the Presidential Election Data (1916-1996) in Table 5.19

Variable Definition
YEAR Election year
V Democratic share of the two-party presidential vote
I Indicator variable (1 if there is a Democratic incumbent at the
time of the election and —1 if there is a Republican incumbent)
D Categorical variable (1 if a Democratic incumbent is running for
election, —1 if a Republican incumbent is running for election,
and 0 otherwise)
w Indicator variable (1 for the elections of 1920, 1944, and 1948,
and 0 otherwise)
G Growth rate of real per capita GDP in the first three quarters
of the election year
P Absolute value of the growth rate of the GDP deflator in the first
15 quarters of the administration
N Number of quarters in the first 15 quarters of the administration

in which the growth rate of real per capita GDP is greater than 3.2%
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CHAPTER 6

TRANSFORMATION OF VARIABLES

6.1 INTRODUCTION

Data do not always come in a form that is immediately suitable for analysis. We
often have to transform the variables before carrying out the analysis. Transfor-
mations are applied to accomplish certain objectives such as to ensure linearity, to
achieve normality, or to stabilize the variance. It often becomes necessary to fit a
linear regression model to the transformed rather than the original variables. This
is common practice. In this chapter, we discuss the situations where it is necessary
to transform the data, the possible choices of transformation, and the analysis of
transformed data.

We illustrate transformation mainly using simple regression. In multiple re-
gression where there are several predictors, some may require transformation and
others may not. Although the same technique can be applied to multiple regression,
transformation in multiple regression requires more effort and care.

The necessity for transforming the data arises because the original variables, or
the model in terms of the original variables, violates one or more of the standard
regression assumptions. Two of the most commonly violated assumptions are the
linearity of the model and the constancy of the error variance. As mentioned in
Chapters 2 and 3, a regression model is linear when the parameters present in the
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model occur linearly even if the predictor variables occur nonlinearly. For example,
each of the four following models is linear:

Y = Bo+biX +e,

Y Bo+ BiX + B X% +e,
Y = Bo+pbilogX +e,

Y = Bo+pBivVX +e,

I

because the model parameters Gy, 81, 32 enter linearly. On the other hand,
Y = Bo+eM% 4 ¢

is a nonlinear model because the parameter 3; does not enter the model linearly. To
satisfy the assumptions of the standard regression model, instead of working with the
original variables, we sometimes work with transformed variables. Transformations
may be necessary for several reasons.

1. Theoretical considerations may specify that the relationship between two
variables is nonlinear. An appropriate transformation of the variables can
make the relationship between the transformed variables linear. Consider an
example from learning theory (experimental psychology). A learning model
that is widely used states that the time taken to perform a task on the ith
occasion (T;) is

Ti=af, a>0, 0<fB<1. (6.1)

The relationship between (7;) and ¢ as given in (6.1) is nonlinear, and we
cannot directly apply techniques of linear regression. On the other hand, if
we take logarithms of both sides, we get

log T; = log a + ¢ log B3, (6.2)

showing that log T; and ¢ are linearly related. The transformation enables
us to use standard regression methods. Although the relationship between
the original variables was nonlinear, the relationship between transformed
variables is linear. A transformation is used to achieve the linearity of the
fitted model.

2. The response variable Y, which is analyzed, may have a probability dis-
tribution whose variance is related to the mean. If the mean is related to
the value of the predictor variable X, then the variance of Y will change
with X, and will not be constant. The distribution of Y will usually also be
non-normal under these conditions. Non-normality invalidates the standard
tests of significance (although not in a major way with large samples) since
they are based on the normality assumption. The unequal variance of the
error terms will produce estimates that are unbiased, but are no longer best in
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Table 6.1 Linearizable Simple Regression Functions with Corresponding
Transformations

Function Transformation Linear Form Graph

Y =aX? Y =log?, X' =log X Y' =loga+ 8X' Figure 6.1

Y = aePX Y=Y Y'=lna+BX Figure 6.2
Y=a+plogX X' =logX Y=a+8X' Figure 6.3
Y=35 Y=3X'=4% Y =a-BX’ Figure 6.4(a)
Y = S Y =% Y'=a+6X Figure 6.4(b)

In Chapter 12 we describe an application using the transformation in the last line of the table.

the sense of having the smallest variance. In these situations we often trans-
form the data so as to ensure normality and constancy of error variance. In
practice, the transformations are chosen to ensure the constancy of variance
(variance-stabilizing transformations). 1t is a fortunate coincidence that the
variance-stabilizing transformations are also good normalizing transforms.

3. There are neither prior theoretical nor probabilistic reasons to suspect that a
transformation is required. The evidence comes from examining the residuals
from the fit of a linear regression model in which the original variables are
used.

Each of these cases where transformation is needed is illustrated in the following
sections.

6.2 TRANSFORMATIONS TO ACHIEVE LINEARITY

One of the standard assumptions made in regression analysis is that the model which
describes the data is linear. From theoretical considerations, or from an examination
of scatter plot of Y against each predictor X;, the relationship between Y and X;
may appear to be nonlinear. There are, however, several simple nonlinear regression
models which by appropriate transformations can be made linear. We list some
of these linearizable curves in Table 6.1. The corresponding graphs are given in
Figures 6.1-6.4.

When curvature is observed in the scatter plot of Y against X, a linearizable
curve from one of those given in Figures 6.1-6.4 may be chosen to represent the
data. There are, however, many simple nonlinear models that cannot be linearized.
Consider for example, Y = o + 36%, a modified exponential curve, or

hX 02X

Y = a1 4+ age’?

which is the sum of two exponential functions. The strictly nonlinear models (i.e.,
those not linearizable by variable transformation) require very different methods
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Figure 6.3 Graphs of the linearizable function Y = o+ 3 log X.

www.it-ebooks.info


http://www.it-ebooks.info/

BACTERIA DEATHS DUE TO X-RAY RADIATION 167

30 , . 10 T
20 B 0.8 :
a>0,8>0, [
10 x>Bla 0.6 F
Y 0 Y L
04
-10 F
0.2} J
-20 L
-30 0F 1 1 1 "
1 15 2 25 3 0 0.2 04 06 0.8 1
X X
(@ (b)

Figure 6.4 Graphs of the linearizable functions: (a) Y = X/(a X — ) and (b)
Y = (e2tB X) /(1 + e tB X)),

for fitting. We do not describe them in this book but refer the interested reader to
Bates and Watts (1988) and Seber and Wild (1989), and Ratkowsky (1983, 1990).

In the following example, theoretical considerations lead to a model that is
nonlinear. The model is, however, linearizable and we indicate the appropriate
analysis.

6.3 BACTERIA DEATHS DUE TO X-RAY RADIATION

The data given in Table 6.2 represent the number of surviving bacteria (in hundreds)
as estimated by plate counts in an experiment with marine bacterium following
exposure to 200-kilovolt X-rays for periods ranging from ¢ = 1 to 15 intervals of
six minutes. The data can also be found at the book’s Website.! The response
variable n; represents the number surviving after exposure time ¢. The experiment
was carried out to test the single-hit hypothesis of X-ray action under constant
field of radiation. According to this theory, there is a single vital center in each
bacterium, and this must be hit by a ray before the bacteria is inactivated or killed.
The particular bacterium studied does not form clumps or chains, so the number of
bacterium can be estimated directly from plate counts.
If the theory is applicable, then n; and ¢ should be related by

n = ngePt, ¢ >0, (6.3)

where ng and 3; are parameters. These parameters have simple physical interpre-
tations; ng is the number of bacteria at the start of the experiment, and 3 is the
destruction (decay) rate. Taking logarithms of both sides of (6.3), we get

Inn; = Inng + Bit = Bo + Bit, (6.4)

! http://www.aucegypt.edu/faculty/hadi/RABES
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Table 6.2 Number of Surviving Bacteria (Units of 100)

t I t ¢ t nt
1 355 6 106 11 36
2 211 7 104 12 32
3 197 8 60 13 21
4 166 9 56 14 19
5 142 10 38 15 15

where 8y = Inng and we have In n; as a linear function of ¢. If we introduce &; as
the random error, our model becomes

In ng = ;6() + ,Blt + & (65)

and we can now apply standard least squares methods.

To get the error €; in the transformed model (6.5) to be additive, the error
must occur in the multiplicative form in the original model (6.3). The correct
representation of the model should be

ng = noeﬁltsé, (6.6)

where ¢} is the multiplicative random error. By comparing (6.5) and (6.6), it
is seen that &; = Ing}. For standard least squares analysis &; should be normally
distributed, which in turn implies that £}, has a log-normal distribution.? In practice,
after fitting the transformed model we look at the residuals from the fitted model to
see if the model assumptions hold. No attempt is usually made to investigate the
random component, £}, of the original model.

6.3.1 Inadequacy of a Linear Model

The first step in the analysis is to plot the raw data n; versus t. The plot, shown
in Figure 6.5, suggests a nonlinear relationship between n; and ¢t. However, we
proceed by fitting the simple linear model and investigate the consequences of
misspecification. The model is

ne = Po + Bit + &, 6.7)

where 8By and 3, are constants; &;’s are the random errors, with zero means and
equal variances, and are uncorrelated with each other. Estimates of 3y, 3;, their
standard errors, and the square of the correlation coefficient are given in Table 6.3.
Despite the fact that the regression coefficient for the time variable is significant
and we have a high value of R2, the linear model is not appropriate. The plot of 7
against t shows departure from linearity for high values of ¢ (Figure 6.5). We see
this even more clearly if we look at a plot of the standardized residuals against time

2 The random variable Y is said to have a log-normal distribution if In Y has a normal distribution.
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Table 6.3 Estimated Regression Coefficients From Model (6.7)

Variable Coefficient s.e. t-Test p-value
Constant 259.58 22.73 11.42 < 0.0001
TIME (¢) —19.46 2.50 -7.79 < 0.0001
n=15 R? =0.823 6 =41.83 df =13
3504
250
n, 1 "
150 * .
50 H t e .
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Figure 6.5 Plot of n; against time ¢.
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Figure 6.6 Plot of the standardized residuals from (6.7) against time ¢.

(Figure 6.6). The distribution of residuals has a distinct pattern. The residuals for
t = 2 through 11 are all negative, for t = 12 through 15 are all positive, whereas
the residual for ¢ = 1 appears to be an outlier. This systematic pattern of deviation
confirms that the linear model in (6.7) does not fit the data.
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5-0 - * .

Figure 6.7 Plot of Inn,; against time ¢.

Table 6.4 Estimated Regression Coefficients When In n; is Regressed on Time ¢

Variable Coefficient s.e. t-Test p-value
Constant 5973 0.0598 999 < 0.0001
TIME (t) —0.218 0.0066 —-33.2 < 0.0001

n=15 R% =0.988 & =0.11 df=13

6.3.2 Logarithmic Transformation for Achieving Linearity

The relation between n; and ¢ appears distinctly nonlinear and we will work with
the transformed variable In n;, which is suggested from theoretical considerations
as well as by Figure 6.7. The plot of In n; against ¢ appears linear, indicating that the
logarithmic transformation is appropriate. The results of fitting (6.5) appear in Table
6.4. The coefficients are highly significant, the standard errors are reasonable, and
nearly 99% of the variation in the data is explained by the model. The standardized
residuals are plotted against ¢ in Figure 6.8. There are no systematic patterns to the
distribution of the residuals and the plot is satisfactory. The single-hit hypothesis of
X-ray action, which postulates that In n; should be linearly related to ¢, is confirmed
by the data.

While working with transformed variables, careful attention must be paid to the
estimates of the parameters of the model. In our example the point estimate of
B1 is —0.218 and the 95% confidence interval for the same parameter is (—0.232,
—0.204). The estimate of the constant term in the equation is the best linear unbiased
estimate of Inng. If Bg denotes the estimate, eP° may be used as an estimate of
ng. With ,@0 = 5.973, the estimate of ng is €’ = 392.68. This estimate is not an
unbiased estimate of ng; that is, the true size of the bacteria population at the start
of the experiment was probably somewhat smaller than 392.68. A correction can
be made to reduce the bias in the estimate of ng. The estimate exp|[/3y — %Vm(ﬁ'o)]
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Figure 6.8 Plot of the standardized residuals against time ¢ after transformation.

is nearly unbiased of ng. In our present example, the modified estimate of ng is
391.98. Note that the bias in estimating ng has no effect on the test of the theory or
the estimation of the decay rate.

In general, if nonlinearity is present, it will show up in a plot of the data. If
the plot corresponds approximately to one of the graphs given in Figures 6.1-6.4,
one of those curves can be fitted after transforming the data. The adequacy of the
transformed model can then be investigated by methods outlined in Chapter 4.

6.4 TRANSFORMATIONS TO STABILIZE VARIANCE

We have discussed in the preceding section the use of transformations to achieve
linearity of the regression function. Transformations are also used to stabilize the
error variance, that is, to make the error variance constant for all the observations.
The constancy of error variance is one of the standard assumptions of least squares
theory. It is often referred to as the assumption of homoscedasticity. When the
error variance is not constant over all the observations, the error is said to be
heteroscedastic. Heteroscedasticity is usually detected by suitable graphs of the
residuals such as the scatter plot of the standardized residuals against the fitted
values or against each of the predictor variables. A plot with the characteristics
of Figure 6.9 typifies the situation. The residuals tend to have a funnel-shaped
distribution, either fanning out or closing in with the values of X.

If heteroscedasticity is present and no corrective action is taken, application of
the ordinary least squares to the raw data will result in estimated coefficients which
lack precision in a theoretical sense. The estimated standard errors of the regression
coefficients are often understated, giving a false sense of accuracy.

Heteroscedasticity can be removed by means of a suitable transformation. We de-
scribe an approach for (a) detecting heteroscedasticity and its effects on the analysis
and (b) removing heteroscedasticity from the data analyzed using transformations.
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Residuals

Figure 6.9 An example of heteroscedastic residuals.

The response variable Y, in a regression problem, may follow a probability dis-
tribution whose variance is a function of the mean of that distribution. One property
of the normal distribution, that many other probability distributions do not have, is
that its mean and variance are independent in the sense that one is not a function of
the other. The binomial and Poisson are but two examples of common probability
distributions that have this characteristic. We know, for example, that a variable
that is distributed binomially with parameters n and m has mean n7 and variance
nm(1 — 7). Itis also known that the mean and variance of a Poisson random vari-
able are equal. When the relationship between the mean and variance of a random
variable is known, it is possible to find a simple transformation of the variable,
which makes the variance approximately constant (stabilizes the variance). We list
in Table 6.5, for convenience and easy reference, transformations that stabilize the
variance for some random variables with commonly occurring probability distri-
butions whose variances are functions of their means. The transformations listed
in Table 6.5 not only stabilize the variance, but also have the effect of making the
distribution of the transformed variable closer to the normal distribution. Conse-
quently, these transformations serve the dual purpose of normalizing the variable
as well as making the variance functionally independent of the mean.

As an illustration, consider the following situation: Let ¥ be the number of
accidents and X the speed of operating a lathe in a machine shop. We want to
study the relationship between the number of accidents Y and the speed of lathe
operation X . Suppose that a linear relationship is postulated between Y and X and
is given by

Y=0(+5HX+e,

where ¢ is the random error. The mean of Y is seen to increase with X. It is
known from empirical observation that rare events (events with small probabilities
of occurrence) often have a Poisson distribution. Let us assume that Y has a Poisson
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Table 6.5 Transformations to Stabilize Variance

Probability Var(Y') in Terms Resulting
Distribution of Y of Its Mean p Transformation Variance
Poisson® w VY or (VY +VY +1) 0.25
Binomial® u(l—pu)/n sin~!VY (degrees) 821/n
sin™'VY (radians) 0.25/n
Negative Binomial® B+ A2u? A Lsinh =} (AVY) or
A Lsinh ' (WY +0.5) 0.25

a. For small values of Y, /Y + 0.5 is sometimes recommended.
b. The sample size is denoted by n; for Y = r/n a slightly better transformation is

sin’l\ﬂr +3/8)/(n+ 3/4).
c. Note that the parameter A = 1/+/7.

distribution. Since the mean and variance of Y are the same,? it follows that the
variance of Y is a function of X, and consequently the assumption of homoscedas-
ticity will not hold. From Table 6.5 we see that the square root of a Poisson variable
(v'Y) has a variance independent of the mean and is approximately equal to 0.25.
To ensure homoscedasticity we, therefore, regress v'Y on X. Here the transfor-
mation is chosen to stabilize the variance, the specific form being suggested by the
assumed probability distribution of the response variable. An analysis of data em-
ploying transformations suggested by probabilistic considerations is demonstrated
in the following example.

Injury Incidents in Airlines

The number of injury incidents and the proportion of total flights from New York
for nine (n = 9) major U.S.A. airlines for a single year is given in Table 6.6 and
plotted in Figure 6.10. Let f; and y; denote the total flights and the number of
injury incidents for the ith airline that year. Then the proportion of total flights n;
made by the ith airline is
_ i
L

XS

If all the airlines are equally safe, the injury incidents can be explained by the model

¥ = Bo + Bin; + &5,

where 3 and (3 are constants and ¢; is the random error.

3 The probability mass function of a Poisson random variable Y is Pr(Y = y) = e™> A¥/y;
y=0,1,- -, where A is a parameter. The mean and variance of a Poisson random variable are equal
to A
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Table 6.6 Number of Injury Incidents ¥ and Proportion of Total Flights N

Row Y N Row Y N Row Y N
1 11 0.0950 4 19 0.2078 7 3 0.1292
7 0.1920 5 9 0.1382 8 1 0.0503
3 7 0.0750 6 4 0.0540 9 3 0.0629
15
Y 10 ) .
5 n L ]
T T T T
0.05 0.10 0.15 0.20
N

Figure 6.10 Plot of Y against N.

Table 6.7 Estimated Regression Coefficients (When Y is Regressed on N)

Variable Coefficient s.e. t-Test p-value
Constant —0.14 3.14 -0.045 0.9657
N 64.98 25.20 2.580 0.0365

n=9 R? = 0.487 6 =4.201 daf=7

The results of fitting the model are given in Table 6.7. The plot of residuals
against n; is given in Figure 6.11. The residuals are seen to increase with n; in
Figure 6.11 and, consequently, the assumption of homoscedasticity seems to be
violated. This is not surprising, since the injury incidents may behave as a Poisson
variable which has a variance proportional to its mean. To ensure the assumption
of homoscedasticity, we make the square root transformation. Instead of working
with Y we work with v/Y, a variable which has an approximate variance of 0.25,
and is more normally distributed than the original variable.

Consequently, the model we fit is

V¥ = By + Bini + €5 (6.8)

The result of fitting (6.8) is given in Table 6.8. The residuals from (6.8) when
plotted against n; are shown in Figure 6.12. The residuals for the transformed
model do not seem to increase with n;. This suggests that for the transformed
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Figure 6.11 Plot of the standardized residuals versus V.

Table 6.8 Estimated Regression Coefficients When \/)7 is Regressed on N

Variable Coefficient s.e. t-Test p-value
Constant 1.169 0.578 2.02 0.0829
N 11.856 4.638 2.56 0.0378

n=9 R? = 0.483 & =0.773 df=7

1.0—1 ]

0.0 -

e

-1.0

Residuals

T ] I
0.05 0.10 0.15 0.20
N

Figure 6.12  Plot of the standardized residuals from the regression of ,/y; on n;.

model the homoscedastic assumption is not violated. The analysis of the model in
terms of  /y; and n; can now proceed using standard techniques. The regression is
significant here (as judged by the ¢ statistic) but is not very strong. Only 48% of the
total variability of the injury incidents of the airlines is explained by the variation
in their number of flights. It appears that for a better explanation of injury incidents
other factors have to be considered.
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Table 6.9 Number of Supervised Workers and Supervisors in 27 Industrial
Establishments

Row X Y Row X Y Row X Y
1 294 30 10 697 78 19 700 106
2 247 32 11 688 80 20 850 128
3 267 37 12 630 84 21 980 130
4 358 44 13 709 88 22 1025 160
5 423 47 14 627 97 23 1021 97
6 311 49 15 615 100 24 1200 180
7 450 56 16 999 109 25 1250 112
8 534 62 17 1022 114 26 1500 210
9 438 68 18 1015 117 27 1650 135

In the preceding example the nature of the response variable (injury incidents)
suggested that the error variance was not constant about the fitted line. The square
root transformation was considered based on the well-established empirical fact
that the occurrence of accidents tend to follow the Poisson probability distribution.
For Poisson variables, the square root is the appropriate transformation (Table 6.5).
There are situations, however, when the error variance is not constant and there is
no a priori reason to suspect that this would be the case. Empirical analysis will
reveal the problem, and by making an appropriate transformation this effect can
be eliminated. If the unequal error variance is not detected and eliminated, the
resulting estimates will have large standard errors, but will be unbiased. This will
have the effect of producing wide confidence intervals for the parameters and tests
with low sensitivity. We illustrate the method of analysis for a model with this type
of heteroscedasticity in the next example.

6.5 DETECTION OF HETEROSCEDASTIC ERRORS

In a study of 27 industrial establishments of varying size, the number of supervised
workers (X) and the number of supervisors (Y) were recorded (Table 6.9). The data
can also be found at the book’s Website. It was decided to study the relationship
between the two variables, and as a start a linear model

Yi = Po + Brxi + & (6.9)

was postulated. A plot of Y versus X suggests a simple linear model as a starting
point (Figure 6.13). The results of fitting the linear model are given in Table 6.10.

The plot of the standardized residuals versus X (Figure 6.14) shows that the
residual variance tends to increase with X. The residuals tend to lie in a band that
diverges as one moves along the X axis. In general, if the band within which the
residuals lie diverges (i.e., becomes wider) as X increases, the error variance is
also increasing with X. On the other hand, if the band converges (i.e., becomes
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Figure 6.13 Number of supervisors (Y) versus number supervised (X).

Table 6.10 Estimated Regression Coefficients When Number of Supervisors (Y) is
Regressed on the Number Supervised (X)

Variable Coefficient s.€. t-Test p-value
Constant 14.448 9.562 1.51 0.1433
X 0.105 0.011 9.30 < 0.0001
n=27 R2 =0.776 o=2173 df =25
2 ] - . .
1 - * . *
E 0 - ...‘ .0 . ) .: :.
-2 - *
-3 T T T T T T l.
200 600 1000 1400
X

Figure 6.14  Plot of the standardized residuals against X when number of supervisors
(Y') is regressed on the number supervised (X).

narrower), the error variance decreases with X. If the band that contains the
residual plots consists of two lines parallel to the X axis, there is no evidence
of heteroscedasticity. A plot of the standardized residuals against the predictor
variable points up the presence of heteroscedastic errors. As can be seen in Figure
6.14, in our present example the residuals tend to increase with X.
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6.6 REMOVAL OF HETEROSCEDASTICITY

In many industrial, economic, and biological applications, when unequal error
variances are encountered, it is often found that the standard deviation of residuals
tends to increase as the predictor variable increases. Based on this empirical obser-
vation, we will hypothesize in the present example that the standard deviation of
the residuals is proportional to X (some indication of this is available from the plot
of the residuals in Figure 6.14):

Var(e;) = k%22, k> 0. 6.10)
Dividing both sides of (6.9) by z;, we obtain
=248+, (6.11)
z

Now, define a new set of variables and coefficients,

Y 1 €
Y,:}a XI:X, /B[I)___)Bl: Bizﬁﬂ) 5,:}~
In terms of the new variables (6.11) reduces to
vi = By + Bizi + €. (6.12)

Note that for the transformed model, Var(e}) is constant and equals k2. If our
assumption about the error term as given in (6.10) holds, to fit the model properly
we must work with the transformed variables: Y/X and 1/X as response and
predictor variables, respectively. If the fitted model for the transformed data is
B{, + 5{ /X, the fitted model in terms of the original variables is

V=8, + B)X. (6.13)

The constant in the transformed model is the regression coefficient of X in the
original model, and vice versa. This can be seen from comparing (6.11) and (6.12).

The residuals obtained after fitting the transformed model are plotted against
the predictor variable in Figure 6.15. It is seen that the residuals are randomly
distributed and lie roughly within a band parallel to the horizontal axis. There is
no marked evidence of heteroscedasticity in the transformed model. The distribu-
tion of residuals shows no distinct pattern and we conclude that the transformed
model is adequate. Our assumption about the error term appears to be correct; the
transformed model has homoscedastic errors and the standard assumptions of least
squares theory hold. The result of fitting Y/ X and 1/X leads to estimates of 3
and ] which can be used for the original model.

The equation for the transformed variables is Y/X = 0.121 + 3.803/X. In
terms of the original variables, we have Y = 3.803 + 0.121X. The results are
summarized in Table 6.11. By comparing Tables 6.10 and 6.11 we see the reduction
in standard errors that is accomplished by working with transformed variables. The
variance of the estimate of the slope is reduced by 33%.
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Figure 6.15  Plot of the standardized residuals against 1/X when Y/ X is regressed on
1/X.

Table 6.11 Estimated Regression Coefficients of the Original Equation When
Fitted by the Transformed Variables Y/ X and 1/X

Variable Coefficient s.e. t-Test p-value
Constant 3.803 4.570 0.832 04131
X 0.121 0.009 13.44 < 0.0001

n =27 R? =(.758 & = 21.577 df =25

6.7 WEIGHTED LEAST SQUARES

Linear regression models with heteroscedastic errors can also be fitted by a method
called the weighted least squares (WLS), where parameter estimates are obtained by
minimizing a weighted sum of squares of residuals where the weights are inversely
proportional to the variance of the errors. This is in contrast to ordinary least
squares (OLS), where the parameter estimates are obtained by minimizing equally
weighted sum of squares of residuals. In the preceding example, the WLS estimates
are obtained by minimizing

1
> = = Bo = Bz’ (6.14)

1

as opposed to minimizing

> (yi — Bo — Brzi)*. (6.15)

It can be shown that WLS is equivalent to performing OLS on the transformed
variables Y/X and 1/X. We leave this as an exercise for the reader.

Weighted least squares as an estimation method is discussed in more detail in
Chapter 7.
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Figure 6.16 Scatter plot of In Y versus X.

Table 6.12 Estimated Regression Coefficients When In Y is Regressed on X

Variable Coefficient s.e. t-Test p-value
Constant 3.5150 0.1110 31.65 < 0.0001
X 0.0012 0.0001 9.15 < 0.0001

n =27 R?2=0.77 & = 0.252 df =25

6.8 LOGARITHMIC TRANSFORMATION OF DATA

The logarithmic transformation is one of the most widely used transformations in
regression analysis. Instead of working directly with the data, the statistical analy-
sis is carried out on the logarithms of the data. This transformation is particularly
useful when the variable analyzed has a large standard deviation compared to its
mean. Working with the data on a log scale often has the effect of dampening vari-
ability and reducing asymmetry. This transformation is also effective in removing
heteroscedasticity. We illustrate this point by using the industrial data given in
Table 6.9, where heteroscedasticity has already been detected. Besides illustrating
the use of log (logarithmic) transformation to remove heteroscedasticity, we also
show in this example that for a given body of data there may exist several adequate
descriptions (models).
Instead of fitting the model given in (6.9), we now fit the model

Iny; = Bo+ Brzi + & (6.16)
(i.e., instead of regressing Y on X, we regress InY on X). The corresponding
scatter plot is given in Figure 6.16. The results of fitting (6.16) are given in Table

6.12. The coefficients are significant, and the value of R? (0.77) is comparable to
that obtained from fitting the model given in (6.9).

www.it-ebooks.info


http://www.it-ebooks.info/

POWER TRANSFORMATION 181

e . .
1 ﬂ .o L
.
7 . ) b ®
= 0 —‘ .0 L4
E .. .
g -1
~ . .
_2 )
I T 1 ! T T
200 600 1000 1400
X

Figure 6.17  Plot of the standardized residuals against X when InY is regressed on X.

The plot of the residuals against X is shown in Figure 6.17. The plot is quite
revealing. Heteroscedasticity has been removed, but the plot shows distinct nonlin-
earity. The residuals display a quadratic effect, suggesting that a more appropriate
model for the data may be

Iny; = Bo + Prx; + Poz? + €. (6.17)

Equation (6.17) is a multiple regression model because it has two predictor
variables, X and X2. As discussed in Chapter 4, residual plots can also be used in
the detection of model deficiencies in multiple regression. To show the effectiveness
of residual plots in detecting model deficiencies and their ability to suggest possible
corrections, we present the results of fitting model (6.17) in Table 6.13. Plots of
the standardized residuals against the fitted values and against each of the predictor
variables X and X2 are presented in Figures 6.18-6.20, respectively.*

Residuals from the model containing a quadratic term appear satisfactory. There
is no appearance of heteroscedasticity or nonlinearity in the residuals. We now have
two equally acceptable models for the same data. The model given in Table 6.13
may be slightly preferred because of the higher value of R2. The model given in
Table 6.11 is, however, easier to interpret since it is based on the original variables.

6.9 POWER TRANSFORMATION

In the previous section we used several types of transformations (such as the recip-
rocal transformation, 1/Y, the square root transformation, v/Y’, and the logarithmic
transformation, In Y'). These transformation have been chosen based on theoretical
or empirical evidence to obtain linearity of the model, to achieve normality, and/or

# Recall from our discussion in Chapter 4 that in simple regression the plots of residuals against fitted
values and against the predictor variable X are identical; hence one needs to examine only one of
the two plots but not both. In multiple regression the plot of residuals against the fitted values is
distinct from the plots of residuals against each of the predictors.
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Table 6.13  Estimated Regression Coefficients When In Y is Regressed on X and

X2
Variable Coefficient s.e. t-Test p-value
Constant 2.8516 0.1566 18.2 < 0.0001
X 3.11267E-3 0.0004 7.80 < 0.0001
X2 -1.10226E—6 0.220E—6 —4.93 < 0.0001
n=27 R? =0.886 & =0.1817 df =24
2 .
@ l n ¢ ’ * * . *
7 0 o . o
Q .
~ . . . ..
-1 4 .
T T —
35 4.0 45 5.0
Predicted
Figure 6.18  Plot of standardized residuals against the fitted values when In Y is regressed
on X and X2.
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Figure6.19 Plot of standardized residuals against X whenIn Y isregressedon X and X 2,
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Figure 6.20 Plot of standardized residuals against X2 when InY is regressed on
X and X2

to stabilize the error variance. These transformation can be thought of as a general
case of power transformation. In power transformation, we raise the response vari-
able Y and/or some of the predictor variables to a power. For example, instead of
using Y we use Y*, where \ is an exponent to be chosen by the data analyst based
on either theoretical or empirical evidence. When A = —1 we obtain the reciprocal
transformation, A = 0.5 gives the square root transformation, and when A = 0 we
obtain the logarithmic transformation.> Values of A = 1 implies no transformation
is needed.

If A cannot be determined by theoretical considerations, the data can be used to
determine the appropriate value of A. This can be done using numerical methods.
In practice, several values of A are tried and the best value is chosen. Values of
A commonly tried are: 2, 1.5, 1.0, 0.5, 0, —0.5, —1, —1.5, —2. These values of
A are chosen because they are easy to interpret. They are known as a ladder of
transformation. This is illustrated in the following example.

Example: The Brain Data

The data set shown in Table 6.14 represent a sample taken from a larger data set.
The data can also be found at the book’s Website. The original sources of the data
is Jerison (1973). It has also been analyzed by Rousseeuw and Leroy (1987). The
average brain weight (in grams), Y, and the average body weight (in kilograms),
X, are measured for 28 animals. One purpose of the data is to determine whether
a larger brain is required to govern a heavier body. Another purpose is to see
whether the ratio of the brain weight to the body weight can be used as a measure

5 Note that when A = 0, Y* = 1 for all values of Y. To avoid this problem the transformation
(Y* — 1)/ is used. It can be shown that as X approaches zero, (Y > — 1)/ approaches In Y. This
transformation is known as the Box-Cox power transformation. For more details, see Carroll and
Ruppert (1988).
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Figure 6.21 Brain data: Scatter plots of Brain Weight versus Body Weight.

Table 6.14 The Brain Data: Brain Weight (Grams) and Body Weight (Kilograms)

Brain Body Brain Body
Name Weight Weight Name Weight Weight
Mountain beaver 8.1 1.35 African elephant 5712.0 6654.00
Cow 423.0 465.00 Triceratops 70.0 9400.00
Gray wolf 119.5 36.33 Rhesus monkey 179.0 6.80
Goat 115.0 27.66 Kangaroo 56.0 35.00
Guinea pig 5.5 1.04 Hamster 1.0 0.12
Diplodocus 50.0 11700.00 Mouse 04 0.02
Asian elephant 4603.0 2547.00 Rabbit 12.1 2.50
Donkey 419.0 187.10 Sheep 175.0 55.50
Horse 655.0 521.00 Jaguar 157.0 100.00
Potar monkey 115.0 10.00 Chimpanzee 440.0 52.16
Cat 25.6 3.30 Brachiosaurus 154.5 87000.00
Giraffe 680.0 529.00 Rat 1.9.0 0.28
Gorilla 406.0 207.00 Mole 3.0 0.12
Human 1320.0 62.00 Pig 180.0 192.00

of intelligence. The scatter plot of the data (Figure 6.21) does not show an obvious
relationship. This is mainly due to the presence of very large animals (e.g., two
elephants and three dinosaurs). Let us apply the power transformation to both Y’
and X. The scatter plots of Y* versus X* for several values of X in the ladder of
transformation are given in Figure 6.22. It can be seen that the values of A = 0
(corresponding to the log transformation) is the most appropriate value. For A = 0,
the graph looks linear but the three dinosaurs do not conform to the linear pattern
suggested by the other points. The graph suggests that either the brain weight of
the dinosaurs is underestimated and/or their body weight is overestimated.

Note that in this example we transformed both the response and the predictor
variables and that we used the same value of the power for both variables. In other
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Figure 6.22 Scatter plots of Y* versus X* for various values of \.

applications, it may be more appropriate to raise each value to a different power
and/or to transform only one variable. For further details on data transformation
the reader is referred to Carroll and Ruppert (1988) and Atkinson (1985).

6.10 SUMMARY

After fitting a linear model one should examine the residuals for any evidence of
heteroscedasticity. Heteroscedasticity is revealed if the residuals tend to increase
or decrease with the values of the predictor variable, and is conveniently examined
from a plot of the residuals. If heteroscedasticity is present, account should be taken
of this in fitting the model. If no account is taken of the unequal error variance,
the resulting least squares estimates will not have the maximum precision (smallest
variances). Heteroscedasticity can be removed by working with transformed vari-
ables. Parameter estimates from the transformed model are then substituted for the
appropriate parameters in the original model. The residuals from the appropriately
transformed model should show no evidence of heteroscedasticity.
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EXERCISES

6.1 Two variables, Y and X, are believed to be strongly nonlinearly related. A
power transformation Y was thought to make the relationship between Y
and X linear for some value of A. Table 6.15 gives the value of the correlation
coefficient between Y and X for some values of .

Table 6.15 Correlation Coefficient Between Y* and X for Some Values of A

x| 05 0001 -0.001 -05 -1 -2

Correlation | -0777 -0.852 -0.930 0.930 0985 0.999 0.943

(a) What is the correlation coefficient between Y and X ? Explain.

(b) Observing the trend in Table 6.15, what is the best (and easy to explain or
interpret) value of \? Explain.

(c) Using your choice of X in (b), write the equation that relates ¥ to X.
6.2 Two variables, Y and X, are believed to be strongly nonlinearly related.
A power transformation Y* and X* was thought to make the relationship

between Y* and X linear for some value of \. Table 6.16 gives the value of
the correlation coefficient between Y* and X* for some values of \.

Table 6.16 Correlation Coefficient Between Y and X for Some Values of )

D 0.5 -0.001  0.001 0.5 1

Correlation i -0.524 -0.680 -0.992 0.992 0.698 0.543

(a) What is the correlation coefficient between Y and X ? Explain.

(b) Observing the trend in Table 6.16, what is the best (and easy to explain or
interpret) value of A? Explain.

(¢) Using your choice of A in (b), write the equation that relates Y to X.

6.3 Magazine Advertising: In a study of revenue from advertising, data were
collected for 41 magazines in 1986 (Table 6.17). The variables observed are
number of pages of advertising and advertising revenue. The names of the
magazines are listed.

(a) Fitalinear regression equation relating advertising revenue to advertising
pages. Verify that the fit is poor.

(b) Choose an appropriate transformation of the data and fit the model to the
transformed data. Evaluate the fit.

(¢) You should not be surprised by the presence of a large number of outliers
because the magazines are highly heterogeneous and it is unrealistic to
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Table 6.17  Advertising Pages (P), in Hundreds, and Advertising Revenue (R), in
Millions of Dollars) for 41 Magazines in 1986

187

Magazine P R Magazine P R
Cosmopolitan 25 50.0 Town and Country 1 7.0
Redbook 15 49.7 True Story 77 6.6
Glamour 20 34.0 | Brides 13 6.2
Southern Living 17 30.7 | Book Digest Magazine 5 58
Vogue 23 27.0 w 7 5.1
Sunset 17 26.3 Yankee 13 4.1
House and Garden 14 24.6 Playgirl 4 39
New York Magazine 22 16.9 | Saturday Review 6 39
House Beautiful 12 16.7 New Woman 3 35
Mademoiselle 15 14.6 Ms. 6 33
Psychology Today 8 13.8 Cuisine 4 30
Life Magazine 7 13.2 Mother Earth News 3 2.5
Smithsonian 9 13.1 1001 Decorating Ideas 3 2.3
Rolling Stone 12 10.6 Self 5 2.3
Modern Bride 1 8.8 Decorating & Craft Ideas 4 1.8
Parents 6 8.7 Saturday Evening Post 4 1.5
Architectural Digest 12 8.5 McCall’s Needlework and Craft 3 1.3
Harper’s Bazaar 9 8.3 Weight Watchers 3 1.3
Apartment Life 7 8.2 High Times 4 1.0
Bon Appetit 9 8.2 Soap Opera Digest 2 0.3
Gourmet 7 7.3

expect a single relationship to connect all of them. Delete the outliers and
obtain an acceptable regression equation that relates advertising revenue

to advertising pages.

6.4 Wind Chill Factor: Table 6.18 gives the effective temperatures (W), which

are due to the wind chill effect, for various values of the actual temperatures

(T') in still air and wind speed (V). The zero-wind condition is taken as the

rate of chilling when one is walking through still air [an apparent wind of four

miles per hour (mph)]. The National Weather Service originally published
the data; we have compiled it from a publication of the Museum of Science of

Boston. The temperatures are measured in degrees Fahrenheit and the wind

speed in mph.

(a) The data in Table 6.18 are not given in a format suitable for direct appli-
cation of regression programs. You may need to construct another table
containing three columns, one column for each of the variables W, T,
and V. This table can be found at the book’s Website.

(b) Fit a linear relationship between W, T', and V. The pattern of residuals
should indicate the inadequacy of the linear model.
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Table 6.18 Wind Chill Factor (°F) for Various Values of Winds peed, V, in
Miles/Hour, and Temperature (°F)

Actual Air Temperature (T')

50 40 30 20 10 0 -10 -20 -30 —-40 -50 —60

10
15
20
25
30
35
40
45
50

48 36 27 17 5 -5 —-15 -25 35 46 56 —66
40 29 18 5 -8 -20 -30 -43 -5 —-68 —80 -93
3 23 10 -5 -18 -29 -42 -5 -70 -8 -97 112
32 18 4 —-10 -23 -34 50 -64 -79 -94 -108 -—121
30 15 -1 -i5 -28 -38 -5 -72 88 -105 -118 -—130
28 13 -5 —-18 33 -4 —60 -76 —-92 -109 -124 -—134
27 11 -6 -20 -35 -48 —-65 -8 -9 -—-113 —-130 -137
26 10 -7 -21 -37 -52 -—68 —83 -100 -117 -—-135 -140
25 9 -8 -22 -39 -54 -70 -8 -103 -—-120 -139 -143
25 8 -9 -23 -—-40 -55 -72 -88 -—-105 -—123 142 -145

6.5

(c) After adjusting W for the effect of T" (e.g., keeping T fixed), examine the
relationship between W and V. Does the relationship between W and V
appear linear?

(d) After adjusting W for the effect of V', examine the relationship between
W and T'. Does the relationship appear linear?

(e) Fit the model
W=8+5T+pPV+pBVV+e. (6.18)

Does the fit of this model appear adequate? The W numbers were pro-
duced by the National Weather Service according to the formula (except
for rounding errors)

W = 0.0817(3.71VV + 5.81 — 0.25V)(T — 91.4) + 91.4.  (6.19)

Does the formula above give an accurate numerical description of W?
(f) Can you suggest a model better than those in (6.18) and (6.19)?

Refer to the Presidential Election Data in Table 5.19, where the response
variable V is the proportion of votes obtained by a presidential candidate in
the United States. Since the response is a proportion, it has a value between
0 and 1. The transformation Y = log[V/(1 — V)] takes the variable V' with
values between 0 and 1 to a variable Y with values between —oo to +o0. Itis
therefore more reasonable to expect that Y satisfies the normality assumption
than does V. Consider then fitting the model in (5.11) but replacing V by Y.
(a) For each of the two models, examine the appropriate residual plots dis-
cussed in Chapter 4 to determine which model satisfies the standard as-
sumptions more than the other, the original variable V' or the transformed
variable Y.
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Table 6.19 Annual World Crude Oil Production in Millions of Barrels (1880-1988)

Year OIL Year OIL Year OIL
1880 30 1940 2,150 1972 18,584
1890 77 1945 2,595 1974 20,389
1900 149 1950 3,803 1976 20,188
1905 215 1955 5,626 1978 21,922
1910 328 1960 7,674 1980 21,722
1915 432 1962 8,882 1982 19,411
1920 689 1964 10.310 1984 19,837
1925 1,069 1966 12,016 1986 20,246
1930 1,412 1968 14,104 1988 21,338
1935 1,655 1970 16,690

6.6

6.7

6.8

(b) What does the fitted model above imply about the form of the model
relating the original variables V' in terms of the predictor variables? That
is, find the form of the function

V. = f(Bo+ Bl +B2D + BsW + B4(G - I)
+ BsP + BsN +¢). (6.20)

[Hint: This is a nonlinear function referred to as the logistic function,
which is discussed in Chapter 12.]

Repeat Exercise 6.5 but when fitting the model in (5.12) but replacing V' by
Y and compare the results of the two exercises.

Oil Production Data: The data in Table 6.19 are the annual world crude oil
production in millions of barrels for the period 1880-1988. The data are taken
from Moore and McCabe (1993, p. 147).

(a) Construct a scatter plot of the oil production variable (OIL) versus Year
and observe that the scatter of points on the graph is not linear. In order
to fit a linear model to these data, OIL must be transformed.

(b) Construct a scatter plot of log(OIL) versus Year. The scatter of points
now follows a straight line from 1880 to 1973. Political turmoil in the oil-
producing regions of the Middle East affected patterns of oil production
after 1973,

(c) Fit a linear regression of log(OIL) on Year. Assess the goodness of fit of
the model.

(d) Construct the index plot of the standardized residuals. This graph shows
clearly that one of the standard assumptions is violated. Which one?

One of the remarkable technological developments in computer industry has
been the ability to store information densely on hard disk. The cost of storage
has steadily declined. Table 6.20 shows the average price per megabyte in
dollars from 1988 to 1998.
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Table 6.20 Average Price Per Megabyte in Dollars from 1988 to 1998

Year Price Year Price
1988 11.54 1994 0.705
1989 9.30 1995 0.333
1990 6.86 1996 0.179
1991 5.23 1997 0.101
1992 3.00 1998 0.068
1993 1.46

Source: Kindly provided by Jim Porter, Disk/Trends in Wired April 1998.

(a) Does a linear time trend describe the data? Define a new variable ¢ by

coding 1988 as 1, 1989 as 2, and so forth.

(b) Fit the model P, = PyePt, where P, is the price in period ¢. Does this

model describe the data?

(c) Introduce an indicator variable which takes the value O for the years 1988—
1991, and 1 for the remaining years. Fit a model to connecting log(F;)
with time ¢, the indicator variable, and the variable created by taking the
product of time and the indicator variable. Interpret the coefficients of the

fitted model.
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CHAPTER 7

WEIGHTED LEAST SQUARES

7.1 INTRODUCTION

So far in our discussion of regression analysis it has been assumed that the under-
lying regression model is of the form

Yi = Po + Bixin + - + Bpxip + €4, (7.1)

where the ¢;’s are random errors that are independent and identically distributed
(iid) with mean zero and variance ¢. Various residual plots have been used to
check these assumptions (Chapter 4). If the residuals are not consistent with the
assumptions, the equation form may be inadequate, additional variables may be
required, or some of the observations in the data may be outliers.

There has been one exception to this line of analysis. In the example based on
the Supervisor Data of Section 6.5, it is argued that the underlying model does
not have residuals that are iid In particular, the residuals do not have constant
variance. For these data, a transformation was applied to correct the situation so
that better estimates of the original model parameters could be obtained (better than
the ordinary least squares (OLS) method).

In this chapter and in Chapter 8 we investigate situations where the underlying
process implies that the errors are not iid The present chapter deals with the het-
eroscedasticity problem, where the residuals do not have the same variance, and

191

Regression Analysis by Example, Fifth Edition. By Samprit Chatterjee and Ali S. Hadi
Copyright (© 2012 John Wiley & Sons, Inc.

www.it-ebooks.info


http://www.it-ebooks.info/

192 WEIGHTED LEAST SQUARES

Chapter 8 treats the autocorrelation problem, where the residuals are not indepen-
dent.

In Chapter 6 heteroscedasticity was handled by transforming the variables to
stabilize the variance. The weighted least squares (WLS) method is equivalent to
performing OLS on the transformed variables. The WLS method is presented here
both as a way of dealing with heteroscedastic errors and as an estimation method in
its own right. For example, WLS perfoms better than OLS in fitting dose-response
curves (Section 7.5) and logistic models (Section 7.5 and Chapter 12).

In this chapter the assumption of equal variance is relaxed. Thus, the ¢;’s are
assumed to be independently distributed with mean zero and Var(g;) = o2. In this
case, we use the WLS method to estimate the regression coefficients in (7.1). The

WLS estimates of 8y, 81, - - -, Bp are obtained by minimizing
n
Z’wi(yi — Bo = Bixi1 — -+ — BpTip)?,
i=1

where w; are weights inversely proportional to the variances of the residuals (i.e.,
w; = 1/0?). Note that any observation with a small weight will be severely
discounted by WLS in determining the values of 3y, 81, -, Bp. In the extreme
case where w; = 0, the effect of WLS is to exclude the ith observation from the
estimation process.

Our approach to WLS uses a combination of prior knowledge about the process
generating the data and evidence found in the residuals from an OLS fit to detect the
heteroscedastic problem. If the weights are unknown, the usual solution prescribed
is a two-stage procedure. In Stage 1, the OLS results are used to estimate the
weights. In the second stage, WLS is applied using the weights estimated in Stage
1. This is illustrated by examples in the rest of this chapter.

7.2 HETEROSCEDASTIC MODELS

Three different situations in which heteroscedasticity can arise will be distinguished.
For the first two situations, estimation can be accomplished in one stage once the
source of heteroscedasticity has been identified. The third type is more complex
and requires the two-stage estimation procedure mentioned earlier. An example
of the first situation is found in Chapter 6 and will be reviewed here. The second
situation is described, but no data are analyzed. The third is illustrated with two
examples.

7.2.1 Supervisors Data

In Section 6.5, data on the number of workers (X) in an industrial establishment
and the number of supervisors (Y) were presented for 27 establishments. The
regression model

¥i = PBo + b1z + & (7.2)
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Residuals

Figure 7.1 Example of heteroscedastic residuals.

was proposed. It was argued that the variance of €; depends on the size of the
establishment as measured by z;; that is, 02 = k*z?, where k is a positive constant
(see Section 6.5 for details). Empirical evidence for this type of heteroscedasticity
is obtained by plotting the standardized residuals versus X. A pattern of points
like the one in Figure 7.1 typifies the situation. The residuals tend to have a
funnel-shaped distribution, either fanning out or closing in with the values of X.
If corrective action is not taken and OLS is applied to the raw data, the resulting
estimated coefficients will lack precision in a theoretical sense. In addition, for the
type of heteroscedasticity present in these data, the estimated standard errors of the
regression coefficients are often understated, giving a false sense of precision. The
problem is resolved by using a version of weighted least squares, as described in
Chapter 6.

This approach to heteroscedasticity may also be considered in multiple regression
models. In (7.1) the variance of the residuals may be affected by only one of the
predictor variables. (The case where the variance is a function of more than one
predictor variable is discussed later.) Empirical evidence is available from the plots
of the standardized residuals versus the suspected variables. For example, if the
model is given as (7.1) and it is discovered that the plot of the standardized residuals
versus Xo produces a pattern similar to that shown in Figure 7.1, then one could
assume that Var(e;) is proportional to z%, that is, Var(e;) = k%z%, where k > 0.
The estimates of the parameters are determined by minimizing

“L1

Y 7 (Wi = Bo— Bz — - — Bpmp)®.

i=1 Ti2
If the software being used has a special weighted least squares procedure, we make
the weighting variable equal to 1/z%. On the other hand, if the software is only
capable of performing OLS, we transform the data as described in Chapter 6. In
other words, we divide both sides of (7.1) by x;3 to obtain

Yi

1 Tl Z;
T = fo— B A By R
T2 T2 T2 T2 T2

Eg
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Table 7.1 Variables in Cost of Education Survey

Name Description

Y Total annual expense (above tuition)

X3 Size of city or town where school is located
Xo Distance to nearest urban center

X3 Type of school (public or private)

Xy Size of student body

X5 Proportion of entering freshman who graduate
X6 Distance from home

The OLS estimate of the coefficient of the variable 1/X is the WLS estimate of
Bo- The coefficient of the variable X;/ X is an estimate of 3; for all j # 2. The
constant term in this fitting is an estimate of 2. Refer to Chapter 6 for a detailed
discussion of this method applied to simple regression.

7.2.2 College Expense Data

A second type of heteroscedasticity occurs in large-scale surveys where the obser-
vations are averages of individual sampling units taken over well-defined groups
or clusters. Typically, the average and number of sampling units are reported for
each cluster. In some cases, measures of variability such as a standard deviation or
range are also reported.

For example, consider a survey of undergraduate college students that is intended
to estimate total annual college-related expenses and relate those expenses to char-
acteristics of the institution attended. A list of variables chosen to explain expenses
is shown in Table 7.1. Regression analysis with the model

Y=038+/X1+5Xo+- -+ PBsXe+¢ (7.3)

may be used to study the relationship. In this example, a cluster is equated with a
school and an individual sampling unit is a student. Data are collected by selecting
a set of schools at random and interviewing a prescribed number of randomly
selected students at each school. The response variable, Y, in (7.3) is the average
expenditure at the ith school. The predictor variables are characteristics of the
school. The numerical values of these variables would be determined from the
official statistics published for the school.

The precision of average expenditure is directly proportional to the square root of
the sample size on which the average is based. That is, the standard deviation of g; is
o/+/T;, where n; represents the number of students interviewed at the ith institution
and o is the standard deviation for annual expense for the population of students.
Then the standard deviation of ¢; in the model (7.1) is 0; = ¢ //n;. Estimation of
the regression coefficients is carried out using WLS with weights w; = 1/0?. Since
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o2 = o2 /n;, the regression coefficients are obtained by minimizing the weighted

2 =
sum of squared residuals,
2

n 6
S=Ynilyi—Bo— > Bz | - (7.4)
i=1 =1

Note that the procedure implicitly recognizes that observations from institutions
where a large number of students were interviewed as more reliable and should
have more weight in determining the regression coefficients than observations
from institutions where only a few students were interviewed. The differential
precision associated with different observations may be taken as a justification for
the weighting scheme.

The estimated coefficients and summary statistics may be computed using a
special WLS computer program or by transforming the data and using OLS on the
transformed data. Multiplying both sides of (7.1) by /7, we obtain the new model

yivni = Bovni + Biziiv/mg + - - - + BeTis/Ni + €i/Ni. (7.5)

The error terms in (7.5), £;1/n;, now satisfy the necessary assumption of constant
variance. Regression of y;/n; against the seven new variables consisting of /7,
and the six transformed predictor variables, z;;./n; using OLS, will produce the
desired estimates of the regression coefficients and their standard errors. Note that
the regression model in (7.5) has seven predictor variables, a new variable ,/n;,
and the six original predictor variables multiplied by \/n;. Note also that there is
no constant term in (7.5) because the intercept of the original model, 3y, is now
the coefficient of /n;. Thus the regression with the transformed variables must
be carried out with the constant term constrained to be zero, that is, we fit a no-
intercept model. More details on this point are given in the numerical example in
Section 7.4.

7.3 TWO-STAGE ESTIMATION

In the two preceding problems heteroscedasticity was expected at the outset. In
the first problem the nature of the process under investigation suggests residual
variances that increase with the size of the predictor variable. In the second
case, the method of data collection indicates heteroscedasticity. In both cases,
homogeneity of variance is accomplished by a transformation. The transformation
is constructed directly from information in the raw data. In the problem described
in this section, there is also some prior indication that the variances are not equal.
But here the exact structure of heteroscedasticity is determined empirically. As a
result, estimation of the regression parameters requires two stages.

Detection of heteroscedasticity in multiple regression is not a simple matter. If
present it is often discovered as a result of some good intuition on the part of the
analyst on how observations may be grouped or clustered. For multiple regression
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Figure 7.2 Nonconstant variance with replicated observations.

models, the plots of the standardized residuals versus the fitted values and versus
each predictor variable can serve as a first step. If the magnitude of the residuals
appears to vary systematically with §; or with x;;, heteroscedasticity is suggested.
The plot, however, does not necessarily indicate why the variances differ (see the
following example).

One direct method for investigating the presence of nonconstant variance is
available when there are replicated measurements on the response variable corre-
sponding to a set of fixed values of the predictor variables. For example, in the
case of one predictor variable, we may have measurements y11, Y21, - * , Yn,1 at Z1;
Y12, Y22, * * Yny2 at To; and SO on, Up tO Y1k, Y2k, - *» Ynek At Ty. Taking k = 5
for illustrative purposes, a plot of the data appears as Figure 7.2. With this wealth
of data, it is not necessary to make restrictive assumptions regarding the nature of
heteroscedasticity. It is clear from the graph that the nonconstancy of variance does
not follow a simple systematic pattern such as Var(e;) = k%z2. The variability first
decreases as z increases up to x3, then jumps again at z4. The regression model
could be stated as

yij:ﬁ0+ﬂl$j+5ij, Z:1a27an]7 j=1527374, (76)

where Var(e;;) = o7.

The observed residual for the ith observation in the jth cluster or group is
eij = ¥i; — Jij. Adding and subtracting the mean of the response variable in for
the jth cluster, 7/;, we obtain

eij = (i — G5) + (G5 — Bij), (1.7)

which shows that the residual is made up of two parts, the difference between y;;
and g, and the difference between g; and the point on the regression line, §;;. The
first part is referred to as pure error. The second part measures lack of fit. An
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assessment of heteroscedasticity is based on the pure error.! The weights for WLS
may be estimated as w;; = 1/ sjz-, where

n
s = (yij — 9;)*/(n; — 1),
i=1
is the variance of the response variable for the jth group.

When the data are collected in a controlled laboratory setting, the researcher
can choose to replicate the observations at any values of the predictor variables.
But the presence of replications on the response variable for a given value of X
is rather uncommon when data are collected in a nonexperimental setting. When
there is only one predictor variable, it is possible that some replications will occur.
If there are many predictor variables, it is virtually impossible to imagine coming
upon two observations with identical values on all predictor values. However,
it may be possible to form pseudoreplications by clustering responses where the
predictor values are approximately identical. The reader is referred to Daniel
and Wood (1980), where these methods are discussed in considerable detail. A
more plausible way to investigate heteroscedasticity in multiple regression is by
clustering observations according to prior, natural, and meaningful associations.
As an example, we analyze data on state education expenditures. These data were
used in Chapter 5.

7.4 EDUCATION EXPENDITURE DATA

The Education Expenditure data were used in Section 5.7 and it was suggested
there that these data be looked at across time (the data are available for 1965, 1970,
and 1975) to check on the stability of the coefficients. Here we use these data to
demonstrate methods of dealing with heteroscedasticity in multiple regression and
to analyze the effects of regional characteristics on the regression relationships. For
the present analysis we shall work only with the 1975 data. The objective is to get
the best representation of the relationship between expenditure on education and the
other variables using data for all 50 states. The data are grouped in a natural way, by
geographic region. Our assumption is that, although the relationship is structurally
the same in each region, the coefficients and residual variances may differ from
region to region. The different variances constitute a case of heteroscedasticity that
can be treated directly in the analysis.

The data are presented in Table 7.2 and can be found at the book’s Website.”
The variable names and definitions appear in Table 7.3. The model is

Y = fo+ 51X+ PoXo + 3 X3 + €. (7.8)

! The notion of pure error can also be used to obtain a test for lack of fit [see, e.g., Draper and Smith
(1998)].
? http://www.aucegypt.edu/faculty/hadi/RABES
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Table 7.2 Education Expenditure Data

Row State Y Xi X5 X3 Region
1 ME 235 3944 325 508 1
2 NH 231 4578 323 564 1
3 VT 270 4011 328 322 1
4 MA 261 5233 305 846 1
5 RI 300 4780 303 871 1
6 CT 317 5889 307 774 1
7 NY 387 5663 301 856 1
8 NJ 285 5759 310 889 1
9 PA 300 4894 300 715 1

10 OH 221 5012 324 753 2
11 IN 264 4908 329 649 2
12 IL 308 5753 320 830 2
13 MI 379 5439 337 738 2
14 WI 342 4634 328 659 2
15 MN 378 4921 330 664 2
16 1A 232 4869 318 572 2
17 MO 231 4672 309 701 2
18 ND 246 4782 333 443 2
19 SD 230 4296 330 446 2
20 NB 268 4827 318 615 2
21 KS 337 5057 304 661 2
22 DE 344 5540 328 722 3
23 MD 330 5331 323 766 3
24 VA 261 4715 317 631 3
25 \'VA% 214 3828 310 390 3
26 NC 245 4120 321 450 3
27 SC 233 3817 342 476 3
28 GA 250 4243 339 603 3
29 FL 243 4647 287 805 3
30 KY 216 3967 325 523 3
31 TN 212 3946 315 588 3
32 AL 208 3724 332 584 3
33 MS 215 3448 358 445 3
34 AR 221 3680 320 500 3
35 LA 244 3825 355 661 3
36 OK 234 4189 306 680 3
37 TX 269 4336 335 797 3
38 MT 302 4418 335 534 4
39 ID 268 4323 344 541 4
40 WY 323 4813 331 605 4
41 CcoO 304 5046 324 785 4
42 NM 317 3764 366 698 4
43 AZ 332 4504 340 796 4
44 UT 315 4005 378 804 4
45 NV 291 5560 330 809 4
46 WA 312 4989 313 726 4
47 OR 316 4697 305 671 4
48 CA 332 5438 307 909 4
49 AK 546 5613 386 484 4
50 HI 311 5309 333 831 4
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Table 7.3 State Expenditures on Education, Variable List

Variable Description

Y Per capita expenditure on education projected for 1975

X Per capita income in 1973

Xo Number of residents per thousand under 18 years of age in 1974
X3 Number of residents per thousand living in urban areas in 1970

States may be grouped into geographic regions based on the presumption that
there exists a sense of regional homogeneity. The four broad geographic regions:
(1) Northeast, (2) North Central, (3) South, and (4) West, are used to define the
groups. It should be noted that data could be analyzed using indicator variables
to look for special effects associated with the regions or to formulate tests for the
equality of regressions across regions. However, our objective here is to develop
one relationship that can serve as the best representation for all regions and all states.
This goal is accomplished by taking regional differences into account through an
extension of the method of weighted least squares.

It is assumed that there is a unique residual variance associated with each of
the four regions. The variances are denoted as (c10)?, (c20)?, (c30)?, and (c40)?,
where ¢ is the common part and the ¢;’s are unique to the regions. According
to the principle of weighted least squares, the regression coefficients should be
determined by minimizing

Sw =381+ 5+ 83+ 54,

where
Si=Y, c_z(yi — Bo — Brzi1 — Baziz — Baziz)?; 5 =1,2,3,4. (7.9)
i=1"J

Each of S; through S4 corresponds to a region, and the sum is taken over only
those states that are in the region. The factors 1/ C? are the weights that determine
how much influence each observation has in estimating the regression coefficients.
The weighting scheme is intuitively justified by arguing that observations that are
most erratic (large error variance) should have little influence in determining the
coefficients.

The WLS estimates can also be justified by a second argument. The object is to
transform the data so that the parameters of the model are unaffected, but the residual
variance in the transformed model is constant. The prescribed transformation is to
divide each observation by the appropriate c;, resulting in a regression of Y/c; on
1/¢j, X1/cj, Xa/cj, and X3/c;.> Then the error term, in concept, is also divided

3 If we denote a variable with a double subscript, ¢ and 7, with j representing region and ¢ representing
observation within region, then each variable for an observation in region j is divided by c;. Note
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Table 7.4 Regression Results: State Expenditures on Education (n = 50)

Variable Coefficient s.e. t-Test p-value
Constant —556.568 123.200 —4.52 < 0.0001
X, 0.072 0.012 6.24 < 0.0001
X2 1.552 0.315 4.93 < 0.0001
X3 —0.004 0.051 —0.08 0.9342
n =50 R? = 0.591 R? = 0.565 & = 40.47 df =46

by c;, the resulting residuals have a common variance, o2, and the estimated
coefficients have all the standard least squares properties.

The values of the ¢;’s are unknown and must be estimated in the same sense that
o2 and the 3’s must be estimated. We propose a two-stage estimation procedure.
In the first stage perform a regression using the raw data as prescribed in the
model of (7.8). Use the empirical residuals grouped by region to compute an
estimate of regional residual variance. For example, in the Northeast, compute
62 = Y e2/(9 — 1), where the sum is taken over the nine residuals corresponding
to the nine states in the Northeast. Compute 53,3, and 7 in a similar fashion. In
the second stage, an estimate of c? in (7.9) is replaced by

~2
S —
3T =15 2°

n i=1 €

The regression results for Stage 1 (OLS) using data from all 50 states are given
in Table 7.4. Two residual plots are prepared to check on specification. The
standardized residuals are plotted versus the fitted values (Figure 7.3) and versus
a categorical variable designating region (Figure 7.4). The purpose of Figure 7.3
is to look for patterns in the size and variation of the residuals as a function of
the fitted values. The observed scatter of points has a funnel shape, indicating
heteroscedasticity. The spread of the residuals in Figure 7.4 is different for the
different regions, which also indicates that the variances are not equal. The scatter
plots of standardized residual versus each of the predictor variables (Figures 7.5-
7.7) indicate that the residual variance increases with the values of X;.

Looking at the standardized residuals and the influence measures in this example
is very revealing. The reader can verify that observation 49 (Alaska) is an outlier
with a standardized residual value of 3.28. The standardized residual for this
observation can actually be seen to be separated from the rest of the residuals

that 3o is the coefficient attached to the transformed variable 1/c;. The transformed model is

ij 1 T1ij 235 Z3ij ’
$i — o + B2 4 72 4 5= 4 g
G Cj G G i
and the variance of &, is o2. Notice that the same regression coefficients appear in the transformed

model as in the original model. The transformed model is also a no-intercept model.
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Figure 7.5  Plot of standardized residuals versus each of the predictor variable X7.
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Figure 7.7 Plot of standardized residuals versus each of the predictor variable X3.

in Figure 7.3. Observation 44 (Utah) and 49 (Alaska) are high-leverage points
with leverage values of 0.29 and 0.44, respectively. On examining the influence
measures we find only one influential point 49, with a Cook’s distance value of
2.13 and a DFITS value of 3.30. Utah is a high-leverage point without being
influential. Alaska, on the other hand, has high leverage and is also influential.
Compared to other states, Alaska represents a very special situation: a state with a
very small population and a boom in revenue from oil. The year is 1975! Alaska’s
education budget is therefore not strictly comparable with those of the other states.
Consequently, this observation (Alaska) is excluded from the remainder of the
analysis. It represents a special situation that has considerable influence on the
regression results, thereby distorting the overall picture.

The data for Alaska may have an undue influence on determining the regression
coefficients. To check this possibility, the regression was recomputed with Alaska
excluded. The estimated values of the coefficients changed significantly [see Table
7.5]. This observation is excluded for the remainder of the analysis because it
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Table 7.5 Regression Results: State Expenditures on Education (n = 49), Alaska
Omitted

Variable Coefficient s.e. t-Test p-value
Constant —277.577 132.400 —-2.10 0.0417
X, 0.048 0.012 3.98 0.0003
X5 0.887 0.331 2.68 0.0103
X3 0.067 0.049 1.35 0.1826
n =49 R? = 0.497 R? = 0.463 & = 35.81 df = 45
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Figure 7.8  Plot of the standardized residuals versus fitted values (excluding Alaska).
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Figure 7.9  Plot of the standardized residuals versus region (excluding Alaska).

represents a special sitnation that has too much influence on the regression results.
Plots similar to those of Figures 7.3 and 7.4 are presented as Figures 7.8 and 7.9.
With Alaskaremoved, Figures 7.8 and 7.9 still show indication of heteroscedasticity.

To proceed with the analysis we must obtain the weights. They are computed
from the OLS residuals by the method described above and appear in Table 7.6.
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Table 7.6 Weights c; for Weighted Least Squares

Region j n; “]2. ¢

Northeast 9 1632.50 1.177
North Central 12 2658.52 1.503
South 16 266.06 0.475
West 12 1036.83 0.938

Table 7.7 OLS and WLS Coefficients for Education Data (n = 49), Alaska
Omitted

OLS WLS
Variable Coefficient s.e. t Coefficient s.e. t
Constant -277.577 132.40 -2.10 -316.024 77.42 —4.08
X3 0.048 0.01 3.98 0.062 0.01 8.00
X, 0.887 0.33 2.68 0.874 0.20 441
X3 0.067 0.05 1.35 0.029 0.03 0.85
R? = 0.497 6 =235.81| R?=0477 & = 36.52

The WLS regression results appear in Table 7.7 along with the OLS results for
comparison. The standardized residuals from the transformed model are plotted in
Figures 7.10 and 7.11. There is no pattern in the plot of the standardized residuals
versus the fitted values (Figure 7.10). Also, from Figure 7.11, it appears that the
spread of residuals by geographic region has evened out compared to Figures 7.4
and 7.9. The WLS solution is preferred to the OLS solution. Referring to Table
7.7, we see that the WLS solution does not fit the historical data as well as the
OLS solution when considering & or R? as indicators of goodness of fit.# This
result is expected since one of the important properties of OLS is that it provides a
solution with minimum & or, equivalently, maximum R?. Our choice of the WLS
solution is based on the pattern of the residuals. The difference in the scatter of
the standardized residuals when plotted against Region (compare Figures 7.9 and
7.11) shows that WLS has succeeded in taking account of heteroscedasticity.

It is not possible to make a precise test of significance because exact distribution
theory for the two-stage procedure used to obtain the WLS solution has not been

# Note that for comparative purposes, & for the WLS solution is computed as the square root of

21, o
0—4521,(% 9i)%,
=

and §; = —316.024 + 0.062z;; + 0.874x;2 + 0.029z;3, are the fitted values computed in terms of
the WLS estimated coefficients and the weights, c;; weights play no further role in the computation
of 5.

www.it-ebooks.info


http://www.it-ebooks.info/

EDUCATION EXPENDITURE DATA 205

2 . . ) .
. * * .

P 1 ® .:

g O * % .

d 0 — . . .

5 [ ® ¢ o .
_1 _‘ hd - .o ..
_2 — .

| T I T I 1 T
200 240 280 320
Predicted

Figure 7.10 Standardized residuals versus fitted values for WLS solution.
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Figure 7.11 Standardized residuals by geographic region for WLS solution.
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worked out. If the weights were known in advance rather than as estimates from
data, then the statistical tests based on the WLS procedure would be exact. Of
course, it is difficult to imagine a situation similar to the one being discussed where
the weights would be known in advance. Nevertheless, based on the empirical
analysis above, there is a clear suggestion that weighting is required. In addition,
since less than 50% of the variation in Y has been explained (R? = 0.477), the search
for other factors must continue. It is suggested that the reader carry out an analysis
of these data by introducing indicator variables for the four geographical regions.
In any model with four categories, as has been pointed out in Chapter 5, only three
indicator variables are needed. Heteroscedasticity can often be eliminated by the
introduction of indicator variables corresponding to different subgroups in the data.

7.5 FITTING A DOSE-RESPONSE RELATIONSHIP CURVE

An important area for the application of weighted least squares analysis is the
fitting of a linear regression line when the response variable Y is a proportion
(values between zero and one). Consider the following situation: An experimenter
can administer a stimulus at different levels. Subjects are assigned at random
to different levels of the stimulus and for each subject a binary response is noted.
From this set of observations, a relationship between the stimulus and the proportion
responding to the stimulus is constructed. A very common example is in the field
of pharmacology, in bioassay, where the levels of stimulus may represent different
doses of a drug or poison, and the binary response is death or survival. Another
example is the study of consumer behavior where the stimulus is the discount offered
and the binary response is the purchase or nonpurchase of some merchandise.
Suppose that a pesticide is tried at k different levels. At the jth level of dosage
;, let 7; be the number of insects dying out of a total n; exposed (j = 1,2, - -, k).
We want to estimate the relationship between dose and the proportion dying. The
sample proportion p; = r;/n; is a binomial random variable, with mean value 7;
and variance m;(1 — 7;)/n;, where 7; is the population probability of death for a
subject receiving dose z;. The relationship between 7 and X is based on the notion
that
T = f(X), (7.10)

where the function f(-) is increasing (or at least not decreasing) with X and is
bounded between 0 and 1. The function should satisfy these properties because (1)
7 being a probability is bounded between 0 and 1, and (2) if the pesticide is toxic,
higher doses should decrease the chances of survival (or increase the chances for
death) for a subject. These considerations effectively rule out the linear model

;i = a+ Bz + €5, (7.11)

because m; would be unbounded.
Stimulus-response relationships are generally nonlinear. A nonlinear function
which has been found to represent accurately the relationship between dose z; and
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Figure 7.12 Logistic response function.

the proportion dying is

ePo+Biz;
(7.12)

T T ot
The relationship (7.12) is called the logistic response function and has the shape
shown in Figure 7.12. It is seen that the logistic function is bounded between 0 and
1, and is monotonic. Physical considerations based on concepts of threshold values
provide a heuristic justification for the use of (7.12) to represent a stimulus-response
relationship (Cox, 1989).

The setup described above differs considerably from those of our other examples.
In the present situation the experimenter has the control of dosages or stimuli and
can use replication to estimate the variability of response at each dose level. This
is a designed, experimental study, unlike the others, which were observational or
nonexperimental.

The objectives for this type of analysis are not only to determine the nature of
dose-response relationship but also to estimate the dosages which induce specified
levels of response. Of particular interest is the dosage that produces a response in
50% of the population (median dose).

The logistic model (sometimes called logit model) has been used extensively
in biological and epidemiological work. For analyzing proportions from binary
response data, it is a very appealing model and easy to fit.

An alternative model in which the response function is represented by the cu-
mulative distribution function of the normal probability distribution is also used.
The cumulative curve of the normal distribution has a shape similar to that of the
logistic function. This model is called the probit model, and for details we refer the
reader to Finney (1964).

Besides medicine and pharmacology, the logistic model has been used in risk
analysis, learning theory, the study of consumer behavior (choice models), and
market promotion studies.

Since the response function in (7.12) is nonlinear, we can work with transformed
variables. The transformation is chosen to make the response function linear.
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However, the transformed variables will have nonconstant variance. Then, we
must use the weighted least squares methods for fitting the transformed data.

A whole chapter (Chapter 12) is devoted to the discussion of logistic regression
models, for we believe that they have important and varied practical applications.
General questions regarding the suitability and fitting of logistic models are con-
sidered there.

EXERCISES

7.1 Repeat the analysis in Section 7.4 using the Education Expenditure Data in
Table 5.12.

7.2 Repeat the analysis in Section 7.4 using the Education Expenditure Data in
Table 5.13.

7.3 Compute the leverage values, the standardized residuals, Cook’s distance,
and DFITS for the regression model relating Y to the three predictor variables
X1, Xo, and X3 in Table 7.2. Draw an appropriate graph for each of these
measures. From the graph verify that Alaska and Utah are high-leverage
points, but only Alaska is an influential point.

7.4 Using the Education Expenditure Data in Table 7.2, fit a linear regression
model relating Y to the three predictor variables X1, X2, and X3 plus indicator
variables for the region. Compare the results of the fitted model with the WLS
results obtained in Section 7.4. Test for the equality of regressions across
regions.

7.5 Repeat the previous exercise for the data in Table 5.12.
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CHAPTER 8

THE PROBLEM OF CORRELATED
ERRORS

8.1 INTRODUCTION: AUTOCORRELATION

One of the standard assumptions in the regression model is that the error terms ¢;
and ¢, associated with the ith and jth observations, are uncorrelated. Correlation
in the error terms suggests that there is additional information in the data that has
not been exploited in the current model. When the observations have a natural
sequential order, the correlation is referred to as autocorrelation.

Autocorrelation may occur for several reasons. Adjacent residuals tend to be
similar in both temporal and spatial dimensions. Successive residuals in economic
time series tend to be positively correlated. Large positive errors are followed
by other positive errors, and large negative errors are followed by other negative
errors. Observations sampled from adjacent experimental plots or areas tend to have
residuals that are correlated since they are affected by similar external conditions.

The symptoms of autocorrelation may also appear as the result of a variable
having been omitted from the right-hand side of the regression equation. If suc-
cessive values of the omitted variable are correlated, the errors from the estimated
model will appear to be correlated. When the variable is added to the equation, the
apparent problem of autocorrelation disappears. The presence of autocorrelation
has several effects on the analysis. These are summarized as follows:
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1. Least squares estimates of the regression coefficients are unbiased but are not
efficient in the sense that they no longer have minimum variance.

2. The estimate of o2 and the standard errors of the regression coefficients may
be seriously understated; that is, from the data the estimated standard errors
would be much smaller than they actually are, giving a spurious impression
of accuracy.

3. The confidence intervals and the various tests of significance commonly
employed would no longer be strictly valid.

The presence of autocorrelation can be a problem of serious concern for the pre-
ceding reasons and should not be ignored.

We distinguish between two types of autocorrelation and describe methods for
dealing with each. The first type is only autocorrelation in appearance. It is due
to the omission of a variable that should be in the model. Once this variable is
uncovered, the autocorrelation problem is resolved. The second type of autocor-
relation may be referred to as pure autocorrelation. The methods of correcting for
pure autocorrelation involve a transformation of the data. Formal derivations of the
methods can be found in Johnston (1984) and Kmenta (1986).

8.2 CONSUMER EXPENDITURE AND MONEY STOCK

Table 8.1 gives quarterly data from 1952 to 1956 on consumer expenditure (Y') and
the stock of money (X), both measured in billions of current dollars for the United
States. The data can be found at the book’s Website.!

A simplified version of the quantity theory of money suggests a model given by

ys = Bo + Pzt + €, 8.1)

where B¢ and B are constants, £; the error term. Economists are interested in
estimating 31 and its standard error; 3; is called the multiplier and has crucial
importance as an instrument in fiscal and monetary policy. Since the observations
are ordered in time, it is reasonable to expect that autocorrelation may be present.
A summary of the regression results is given in Table 8.2.

The regression coefficients are significant; the standard error of the slope coeffi-
cient is 0.115. For a unit change in the money supply the 95% confidence interval
for the change in the aggregate consumer expenditure would be 2.30+2.10 < 0.115
= (2.06, 2.54). The value of R? indicates that roughly 96% of the variation in the
consumer expenditure can be accounted for by the variation in money stock. The
analysis would be complete if the basic regression assumptions were valid. To
check on the model assumption, we examine the residuals. If there are indications
that autocorrelation is present, the model should be reestimated after eliminating
the autocorrelation.

! http://www.aucegypt.edu/faculty/hadi/RABES
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Table 8.1 Consumer Expenditure and Money Stock

Consumer  Money Consumer Money
Year  Quarter Expenditure  Stock | Year Quarter Expenditure = Stock
1952 1 214.6 159.3 | 1954 3 238.7 173.9
2 217.7 161.2 4 243.2 176.1
3 219.6 162.8 | 1955 1 249.4 178.0
4 2272 164.6 2 254.3 179.1
1953 1 230.9 165.9 3 260.9 180.2
2 233.3 167.9 4 263.3 181.2
3 234.1 168.3 1 1956 1 265.6 181.6
4 2323 169.7 2 268.2 182.5
1954 1 233.7 170.5 3 2704 183.3
2 236.5 171.6 4 275.6 184.3

Source: Friedman and Meiselman (1963, p. 266).

Table 8.2 Results When Consumer Expenditure is Regressed on Money Stock, X

Variable Coefficient s.e. t-Test p-value
Constant —154.72 19.850 -7.79 < 0.0001
X 2.30 0.115 20.10 < 0.0001
n =20 R? = 0.957 R?2 =0.955 6 =3.983 df =18

For time series data a useful plot for analysis is the index plot (plot of the stan-
dardized residuals versus time). The graph is given in Figure 8.1. The pattern of
residuals is revealing and is characteristic of situations where the errors are corre-
lated. Residuals of the same sign occur in clusters or bunches. The characteristic
pattern would be that several successive residuals are positive, the next several are
negative, and so on. From Figure 8.1 we see that the first seven residuals are posi-
tive, the next seven negative, and the last six positive. This pattern suggests that the
error terms in the model are correlated and some additional analysis is required.

This visual impression can be formally confirmed by counting the number of
runs in a plot of the signs of the residuals, the residuals taken in the order of the
observations. These types of plots are called sequence plots. In our present example
the sequence plot of the signs of the residuals is

++++++t——————— ++++++

and it indicates three runs. With n; residuals positive and ny residuals negative,
under the hypothesis of randomness the expected number of runs y and its variance
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Figure 8.1 Index plot of the standardized residuals.
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In our case n; = 13,ny = 7, giving the expected number of runs to be 10.1
and a standard deviation of 1.97. The observed number of runs is three. The
deviation of 5.1 from the expected number of runs is more than twice the standard
deviation, indicating a significant departure from randomness. This formal runs
test procedure merely confirms the conclusion arrived at visually that there is a
pattern in the residuals.

Many computer packages now have the runs test as an available option. This
approximate runs test for confirmation can therefore be easily executed. The runs
test as we have described it should not, however, be used for small values of n;
and ny (less than 10). For small values of n; and ny one needs exact tables
of probability to judge significance. For more details on the runs test, the reader
should refer to a book on nonparametric statistics such as Lehmann (1975), Conover
(1980), Gibbons (1993), and Hollander and Wollfe (1999). Besides the graphical
analysis, which can be confirmed by the runs test, autocorrelated errors can also be
detected by the Durbin-Watson statistic [Durbin and Watson (1951)].

8.3 DURBIN-WATSON STATISTIC

The Durbin-Watson statistic is the basis of a popular test of autocorrelation in
regression analysis. The test is based on the assumption that successive errors are
correlated, namely,

£t = pEt—1 + W, i p ‘< 1, (8.2)

www.it-ebooks.info


http://www.it-ebooks.info/

DURBIN-WATSON STATISTIC 213

where p is the correlation coefficient between €; and ¢, and w; is normally
independently distributed with zero mean and constant variance. In this case, the
errors are said to have first-order autoregressive structure or first-order autocorre-
lation. In most situations the error £; may have a much more complex correlation
structure. The first-order dependency structure, given in (8.2), is taken as a simple
approximation to the actual error structure.

The Durbin-Watson statistic is defined as

_ Z?:z(et - et—1)2
P e? ’

where e; is the ith ordinary least squares (OLS) residual. The statistics d is used
for testing the null hypothesis Hy : p = 0 against an alternative H; : p > 0. Note
that when p = 0 in (8.2), the £’s are uncorrelated.

Since p is unknown, we estimate the parameter p by p, where

d

5= Yo etei1
Y€

(8.3)

An approximate relationship between d and p is
d=2(1-p),

(= means approximately equal to) showing that d has a range of 0 to 4. Since p is
an estimate of p, it is clear that d is close to 2 when p = 0 and near to zero when
p = 1. The closer the sample value of d to 2, the firmer the evidence that there is
no autocorrelation present in the error. Evidence of autocorrelation is indicated by
the deviation of d from 2. The formal test for positive autocorrelation operates as
follows: Calculate the sample statistic d. Then, if

1. d < dj, reject Hp.
2. d > dy, do not reject Hy.
3. dy, < d < dy, the test is inconclusive.

The values of (dz,dy) for different percentage points have been tabulated by
Durbin and Watson (1951). A table is provided in the Appendix at the end of the
book (Tables A.6 and A.7).

Tests for negative autocorrelation are seldom performed. If, however, a test is
desired, then instead of working with d, one works with 4 — d and follows the same
procedure as for the testing of positive autocorrelation.

In our Money Stock and Consumer Expenditure data, the value of d is 0.328.
From Table A.6, with n = 20, p = 1 (the number of predictors), and a significance
level of 0.05, we have d;, = 1.20 and dyy = 1.41. Since d < dj, we conclude
that the value of d is significant at the 5% level and Hy is rejected, showing that
autocorrelation is present. This essentially reconfirms our earlier conclusion, which
was arrived at by looking at the index plot of the residuals.
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If d had been larger than dy = 1.41, autocorrelation would not be a problem
and no further analysis is needed. When d;, < d < dy, additional analysis of the
equation is optional. We suggest that in cases where the Durbin-Watson statistic
lies in the inconclusive region, reestimate the equation using the methods described
below to see if any major changes occur.

As pointed out earlier, the presence of correlated errors distorts estimates of
standard errors, confidence intervals, and statistical tests, and therefore we should
reestimate the equation. When autocorrelated errors are indicated, two approaches
may be followed. These are (1) work with transformed variables, or (2) introduce
additional variables that have time-ordered effects. We illustrate the first approach
with the Money Stock data. The second approach is illustrated in Section 8.6.

8.4 REMOVAL OF AUTOCORRELATION BY TRANSFORMATION

When the residual plots and Durbin-Watson statistic indicate the presence of cor-
related errors, the estimated regression equation should be refitted taking the au-
tocorrelation into account. One method for adjusting the model is the use of a
transformation that involves the unknown autocorrelation parameter, p. The in-
troduction of p causes the model to be nonlinear. The direct application of least
squares is not possible. However, there are a number of procedures that may be
used to circumvent the nonlinearity (Johnston, 1984). We use the method due to
Cochrane and Orcutt (1949).
From model (8.1), £; and £;_; can be expressed as

& = Yt — Bo — By,
€t-1 = Yt—1 — Po — PiTi-1-

Substituting these in (8.2), we obtain
Yt — Bo — G120t = p(yt—1 ~ Bo — B1%1-1) + we.
Rearranging terms in the above equation, we get

y—py—1 = Bo(l—p) + Bilze—pze_1) + wi, 8.4)
Yy = Bs + B =z +  wy,

where

y;" = Yt — pPYi-1,

*

Iy = Tt — PpTi-1,
66 = ﬁo(l - p)7
Bi = B

Since the w’s are uncorrelated, (8.4) represents a linear model with uncorrelated
errors. This suggests that we run an ordinary least squares regression using y; as
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a response variable and x} as a predictor. The estimates of the parameters in the
original equations are

~

*

Bo = 1’8" ~ and B =5 (8.5)
- p

Therefore, when the errors in model (8.1) have an autoregressive structure as
given in (8.2), we can transform both sides of the equation and obtain transformed
variables which satisfy the assumption of uncorrelated errors.

The value of p is unknown and has to be estimated from the data. Cochrane
and Orcutt (1949) have proposed an iterative procedure. The procedure operates as
follows:

1. Compute the OLS estimates of 3y and 3; by fitting model (8.1) to the data.
2. Calculate the residuals and, from the residuals, estimate p using (8.3).

3. Fit the equation given in (8.4) using the variables y; — py;—1 and z; — px;—1
as response and predictor variables, respectively, and obtain 5y and 3, using
(8.5).

4, Examine the residuals of the newly fitted equation. If the new residuals con-
tinue to show autocorrelation, repeat the entire procedure using the estimates
BO and Bl as estimates of 3y and (3 instead of the original least squares
estimates. On the other hand, if the new residuals show no autocorrelation,
the procedure is terminated and the fitted equation for the original data is

9t = fBo + Py

As a practical rule we suggest that if the first application of the Cochrane-
Orcutt procedure does not yield non-autocorrelated residuals, one should look for
alternative methods of removing autocorrelation. We apply the Cochrane-Orcutt
procedure to the data given in Table 8.1.

The d value for the original data is 0.328, which is highly significant. The value
of pis 0.751. On fitting the regression equation to the variables (y; — 0.751y;_1)
and (z¢ — 0.751x;_1), we have a d value of 1.43. The value of di; for n = 19 and
p = 1is 1.40 at the 5% level. Consequently, Hy : p = 0 is not rejected.? The fitted
equation is

g = —53.70 + 2.64x;,

which, using (8.5), the fitted equation in terms of the original variables is

g = —215.31 + 2.64z;.

? The significance level of the test is not exact because /5 was used in the estimation process. The d
value of 1.43 may be viewed as an index of autocorrelation that indicates an improvement from the
previous value of 0.328.
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Figure 8.2 Index plot of standardized residuals after one iteration of the Cochrane-Orcutt
method.

The estimated standard error for the slope is 0.307, as opposed to the least squares
estimate of the original equation, which was y; = —154.7 + 2.3x; with a standard
error for the slope of 0.115. The newly estimated standard error is larger by a factor
of almost 3. The residual plots for the fitted equation of the transformed variables
are shown in Figure 8.2. The residual plots show less clustering of the adjacent
residuals by sign, and the Cochrane-Orcutt procedure has worked to our advantage.

8.5 ITERATIVE ESTIMATION WITH AUTOCORRELATED ERRORS

One advantage of the Cochrane-Orcutt procedure is that estimates of the parameters
are obtained using standard least squares computations. Although two stages are
required, the procedure is relatively simple. A more direct approach is to try to
estimate values of p, 5y, and 3; simultaneously. The model is formulated as before
requiring the construction of transformed variables y; — py;—1 and x; — pzy—1.
Parameter estimates are obtained by minimizing the sum of squared errors, which
is given as
n
S(Bo, B1,0) = > [yt — pyt—1 — Bo(1 — p) — Bi (s — pxe—1)]°.
t=2

If the value of p were known, 3y and ;1 would be easily obtained by regressing
Yyt — pys—1 on x; — pxy—1. Final estimates are obtained by searching through many
values of p until a combination of p, By, and 3; is found that minimizes S(p, B9, 51)-
The search could be accomplished using a standard regression computer program,
but the process can be much more efficient with an automated search procedure.
This method is due to Hildreth and Lu (1960). For a discussion of the estimation
procedure and properties of the estimates obtained, see Kmenta (1986).

Once the minimizing values, say g, fBo, and 1, have been obtained, the standard
error for the estimate of 3; can be approximated using a version of (2.25) of Chapter
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Table 8.3 Comparison of Regression Estimates

Method p Bo B s.e.(B1)
OLS - —154.700 2.300 0.115
Cochrane-Orcutt 0.874 —324.440 2.758 0.444
Iterative 0.824 —235.509 2.753 0.436

2. The formula is used as though y; — py;—1 were regressed on z; — px;—1 with p
known; that is, the estimated standard error of 3; is

(B) i
S.e.\01) = = — = ?

Valze — pri1 — (1 - p)?
where & is the square root of S(3, Bo, Bl )/(n—2). When adequate computing facil-
ities are available such that the iterative computations are easy to accomplish, then
the latter method is recommended. However, it is not expected that the estimates
and standard errors for the iterative method and the two-stage Cochrane-Orcutt
method would be appreciably different. The estimates from the three methods,
OLS, Cochrane-Orcutt, and iterative for the data of Table 8.1, are given in Table
8.3 for comparison.

8.6 AUTOCORRELATION AND MISSING VARIABLES

The characteristics of the regression residuals that suggest autocorrelation may also
be indicative of other aspects of faulty model specification. In the preceding exam-
ple, the index plot of residuals and the statistical test based on the Durbin-Watson
statistic were used to conclude that the residuals are autocorrelated. Autocorre-
lation is only one of a number of possible explanations for the clustered type of
residual plot or low Durbin-Watson value.

In general, a plot of residuals versus any one of the list of potential predictor
variables may uncover additional information that can be used to further explain
variation in the response variable. When an index plot of residuals shows a pattern
of the type described in the preceding example, it is reasonable to suspect that it
may be due to the omission of variables that change over time. Certainly, when
the residuals appear in clusters alternating above and below the mean value line
of zero, when the estimated autocorrelation coefficient is large and the Durbin-
Watson statistic is significant, it would appear that the presence of autocorrelation
is overwhelmingly supported. We shall see that this conclusion may be incorrect.
The observed symptoms would be better interpreted initially as a general indication
of some form of model misspecification.

All possible correction procedures should be considered. In fact, it is always
better to explore fully the possibility of some additional predictor variables before
yielding to an autoregressive model for the error structure. It is more satisfying and
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probably more useful to be able to understand the source of apparent autocorrelation
in terms of an additional variable. The marginal effect of that variable can then
be estimated and used in an informative way. The transformations that correct for
pure autocorrelation may be viewed as an action of last resort.

8.7 ANALYSIS OF HOUSING STARTS

As an example of a situation where autocorrelation appears artificially because of the
omission of another predictor variable, consider the following project undertaken
by a midwestern construction industry association. The association wants to have
a better understanding of the relationship between housing starts and population
growth. They are interested in being able to forecast construction activity. Their
approach is to develop annual data on regional housing starts and try to relate these
data to potential home buyers in the region. Realizing that it is almost impossible
to measure the number of potential house buyers accurately, the researchers settled
for the size of the 22- to 44-year-old population group in the region as a variable
that reflects the size of potential home buyers. With some diligent work they were
able to bring together 25 years of historical data for the region (see Table 8.4). The
data in Table 8.4 can be obtained from the book’s Website. Their goal was to get a
simple regression relationship between housing starts and population,

Hy = fo + b1 P + e (8.6)

Then using methods that they developed for projecting population changes, they
would be able to estimate corresponding changes in the requirements for new
houses. The construction association was aware that the relationship between
population and housing starts could be very complex. It is even reasonable to
suggest that housing affects population growth (by migration) instead of the other
way around. Although the proposed model is undoubtedly naive, it serves a useful
purpose as a starting point for their analysis.

Analysis

The regression results from fitting model (8.6) to the 25 years of data are given in
Table 8.5. The proportion of variation in H accounted for by the variability in P
is R? = 0.925. We also see that an increase in population of 1 million leads to
an increase in housing starts of about 71,000. The Durbin-Watson statistic and the
index plot of the residuals (Figure 8.3) suggest strong autocorrelation. However,
it is fairly simple to conjecture about other variables that may further explain
housing starts and could be responsible for the appearance of autocorrelation.
These variables include the unemployment rate, social trends in marriage and family
formation, government programs in housing, and the availability of construction
and mortgage funds. The first choice was an index that measures the availability
of mortgage money for the region. Adding that variable to the equation the model
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Table 8.4 Data for Housing Starts (H), Population Size (P) in millions, and
Availability for Mortgage Money Index (D)

Row H P D
1 0.09090 2.200 0.03635
2 0.08942 2.222 0.03345
3 0.09755 2.244 0.03870
4 0.09550 2.267 0.03745
5 0.09678 2.280 0.04063
6 0.10327 2.289 0.04237
7 0.10513 2.289 0.04715
8 0.10840 2.290 0.04883
9 0.10822 2.299 0.04836
10 0.10741 2.300 0.05160
11 0.10751 2.300 0.04879
12 0.11429 2.340 0.05523
13 0.11048 2.386 0.04770
14 0.11604 2433 0.05282
15 0.11688 2.482 0.05473
16 0.12044 2.532 0.05531
17 0.12125 2.580 0.05898
18 0.12080 2.605 0.06267
19 0.12368 2.631 0.05462
20 0.12679 2.658 0.05672
21 0.12996 2.684 0.06674
22 0.13445 2.711 0.06451
23 0.13325 2.738 0.06313
24 0.13863 2.766 0.06573
25 0.13964 2.793 0.07229
becomes

Hy = Bo + b1 Py + B2 Dy + &.

The introduction of the additional variable has the effect of removing autocorre-
lation. From Table 8.6 we see that the Durbin-Watson statistic has the new value
1.852, well into the acceptable region. The index plot of the residuals (Figure 8.4)
is also improved. The regression coefficients and their corresponding ¢-values show
that there is a significant population effect but that it was overstated by a factor of
more than 2 in the first equation. In a certain sense, the effect of changes in the
availability of mortgage money for a fixed level of population is more important
than a similar change in population.

If each variable in the regression equation is replaced by the standardized version
of the variable (the variables transformed so as to have mean 0, and unit variance),
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Figure 8.3 Index plot of standardized residuals from the regression of H; on P, for the
Housing Starts data.
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Figure 84 Index plot of the standardized residuals from the regression of H, on F; and
D, for the Housing Starts data.
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Table 8.5 Regression on Housing Starts (H) Versus Population (P)

Variable Coefficient s.e. t-Test p-value
Constant —0.0609 0.0104 —-5.85 < 0.0001
P 0.0714 0.0042 16.90 < 0.0001
n =25 R? =0.925 d = 0.621 6 = 0.0041 df =23

Table 8.6 Results of the Regression of Housing Starts (H) on Population (P) and

Index (D)

Variable Coefficient s.c. t-Test p-value
Constant —0.0104 0.0103 -1.01 0.3220
P 0.0347 0.0064 5.39 < 0.0001
D 0.7605 0.1216 6.25 < 0.0001
n=25 R?=10.973 d=1.85 & = 0.0025 df =22

the resulting regression equation is
H, = 0.4668P; + 0.5413D;,

where H denotes the standardized value of H, H = (H — H)/sy. A unit increase
in the standardized value of }5t is worth an additional 0.4668 to the standardized
value of Hjy; that is, if the population increases by standard deviation, then H;
increases by 0.4668 standard deviation. Similarly, if D; increases by 1 standard
deviation, H; increases by 0.5413 standard deviation. Therefore, in terms of the
standardized variables, the mortgage index is more important (has a larger effect)
than population size.

The example on housing starts illustrates two important points. First, a large
value of R? does not imply that the data have been fitted and explained well. Any
pair of variables that show trends over time are usually highly correlated. A large
value of R? does not necessarily confirm that the relationship between the two
variables has been adequately characterized. Second, the Durbin-Watson statistic
as well as the residual plots may indicate the presence of autocorrelation among
the errors when, in fact, the errors are independent but the omission of a variable or
variables has given rise to the observed situation. Even though the Durbin-Watson
statistic was designed to detect first-order autocorrelation it can have a significant
value when some other model assumptions are violated such as misspecification
of the variables to be included in the model. In general, a significant value of the
Durbin-Watson statistic should be interpreted as an indication that a problem exists,
and both the possibility of a missing variable or the presence of autocorrelation
should be considered.
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Table 8.7 Ski Sales Versus PDI

Variable Coefficient s.c. t-Test p-value
Constant 12.3921 2.539 4.88 < 0.0001
PDI 0.1979 0.016 12.40 < 0.0001
n = 40 R? =0.801 d = 1.968 & = 3.019 df = 38

8.8 LIMITATIONS OF THE DURBIN-WATSON STATISTIC

In the previous examples on Expenditure versus Money Stock and Housing Starts
versus Population Size the residuals from the initial regression equations indicated
model misspecifications associated with time dependence. In both cases the Durbin-
Watson statistic was small enough to conclude that positive autocorrelation was
present. The index plot of residuals further confirmed the presence of a time-
dependent error term. In each of the two problems the presence of autocorrelation
was dealt with differently. In one case (Housing Starts) an additional variable
was uncovered that had been responsible for the appearance of autocorrelation,
and in the other case (Money Stock) the Cochrane-Orcutt method was used to
deal with what was perceived as pure autocorrelation. It should be noted that the
time dependence observed in the residuals in both cases is a first-order type of
dependence. Both the Durbin-Watson statistic and the pattern of residuals indicate
dependence between residuals in adjacent time periods. If the pattern of time
dependence is other than first order, the plot of residuals will still be informative.
However, the Durbin-Watson statistic is not designed to measure higher-order time
dependence and may not yield much valuable information.

As an example we consider the efforts of a company that produces and markets
ski equipment in the United States to obtain a simple aggregate relationship of
quarterly sales to some leading economic indicator. The indicator chosen is personal
disposable income, PDI, in billions of current dollars. The initial model is

St = Bo + B1PDL; + &4,

where S; is ski sales in period ¢ in millions of dollars and PDI; is the personal
disposable income for the same period. Data for 10 years (40 quarters) are available
(Table 5.11). The data can be obtained from the book’s Website. The regression
output is in Table 8.7 and the index plot of residuals is given in Figure 8.6.

At first glance the results in Table 8.7 are encouraging. The proportion of
variation in sales accounted for by PDI is 0.80. The marginal contribution of an
additional dollar unit of PDI to sales is between $165,420 and $230,380 (51 =
0.1979) with a confidence coefficient of 95%. In addition, the Durbin-Watson
statistic is 1.968, indicating no first-order autocorrelation.

It should be expected that PDI would explain a large proportion of the variation
in sales since both variables are increasing over time. Therefore, although the R?
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Figure 8.5 Index plot of the standardized residuals. (Quarters 1 and 4 are indicated by
an open circle and Quarters 2 and 3 are indicated by a solid circle.)

value of 0.80 is good, it should not be taken as a final evaluation of the model. Also,
the Durbin-Watson value is in the acceptable range, but it is clear from Figure 8.5
that there is some sort of time dependence of the residuals. We notice that residuals
from the first and fourth quarters are positive, while residuals from the second and
third quarters are negative for all the years. Since skiing activities are affected by
weather conditions, we suspect that a seasonal effect has been overlooked. The
pattern of residuals suggests that there are two seasons that have some bearing on
ski sales: the second and third quarters, which correspond to the warm weather
season, and the fourth and first quarters, which correspond to the winter season,
when skiing is in full progress. This seasonal effect can be simply characterized by
defining an indicator (dummy) variable that takes the value 1 for each winter quarter
and is set equal to zero for each summer quarter (see Chapter S). The expanded
data set is listed in Table 8.8 and can be obtained from the book’s Website.

8.9 INDICATOR VARIABLES TO REMOVE SEASONALITY

Using the additional seasonal variable, the model is expanded to be
St = Bo + B1PDL; + B2 Zy + &, (8.7)

where Z; is the zero-one variable described above and S is a parameter that
measures the seasonal effect. Note that the model in (8.7) can be represented by
the two models (one for the cold weather quarters where Z; = 1) and the other for
the warm quarters where Z; = 0):

Winter season: Sy = (Bo+082) + BiPDL; + &
Summer season: S; = Bo + 51 PDL, + .

Thus, the model represents the assumption that sales can be approximated by a
linear function of PDI, in one line for the winter season and one for the summer
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Table 8.8 Personal Disposable Income, Ski Sales, and Seasonal Variables for Years

1964-1973
Quarter Sales PDI Season
Ql/64 37.0 109 1
Q2/64 33.5 115 0
Q3/64 30.8 113 0
Q4/64 379 116 |
Ql1/65 374 118 1
Q2/65 31.6 120 0
Q3/65 340 122 0
Q4/65 38.1 124 1
Q1/66 40.0 126 1
Q2/66 35.0 128 0
Q3/66 349 130 0
Q4/66 40.2 132 1
Q1/67 419 133 1
Q2/67 347 135 0
Q3/67 38.8 138 0
Q4/67 437 140 1
Q1/68 442 143 1
Q2/68 40.4 147 0
Q3/68 38.4 148 0
Q4/68 454 151 1
Q1/69 449 153 1
Q2/69 41.6 156 0
Q3/69 44.0 160 0
Q4/69 48.1 163 1
Q1/70 49.7 166 1
Q2/70 439 171 0
Q3/70 41.6 174 0
Q4/70 51.0 175 1
Q1/71 52.0 180 1
Q21 46.2 184 0
Q3/71 47.1 187 0
Q4/71 52.7 189 1
Q1/72 52.2 191 1
Q2/72 47.0 193 0
Q3/72 478 194 0
Q4/72 52.8 196 1
Q1/73 54.1 199 1
Q2/73 49.5 201 0
Q3/73 49.5 202 0
Q4/73 54.3 204 1
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Figure 8.6 Model for Ski Sales and PDI adjusted for season.

PDI

Table 8.9 Ski Sales Versus PDI and Seasonal Variables

Variable Coefficient s.e. t-Test p-value
Constant 9.5402 0.9748 9.79 0.3220
PDI 0.1987 0.0060 32.90 < 0.0001
Z 5.4643 0.3597 15.20 < 0.0001
n =40 R? =0.972 d=1.772 6 =1.137 df =37

season. The lines are parallel; that is, the marginal effect of changes in PDI is the
same in both seasons. The level of sales, as reflected by the intercept, is different
in each season (Figure 8.6).

The regression results are summarized in Table 8.9 and the index plot of the
standardized residuals is shown in Figure 8.7. We see that all indications of the
seasonal pattern have been removed. Furthermore, the precision of the estimated
marginal effect of PDI increased. The confidence interval is now ($186,520,
$210,880). Also, the seasonal effect has been quantified and we can say that for
a fixed level of PDI the winter season brings between $4,734,109 and $6,194,491
over the summer season (with 95% confidence).

The ski data illustrate two important points concerning autocorrelation. First, the
Durbin-Watson statistic is only sensitive to correlated errors when the correlation
occurs between adjacent observations (first-order autocorrelation). In the ski data
the first-order correlation is —0.001. The second-, fourth-, sixth-, and eighth-order
correlations are —0.81, 0.76, —0.71, and 0.73, respectively. The Durbin-Watson
test does not show significance in this case. There are other tests that may be used
for the detection of higher-order autocorrelations [see Box and Pierce (1970)]. But
in all cases, the graph of residuals will show the presence of time dependence in
the error term when it exists.
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Figure 8.7 Index plot of the standardized residuals with seasonal variables (quarters
indicated). (Quarters 1 and 4 are indicated by an open circle and Quarters 2 and 3 are
indicated by a solid circle.)

Second, when autocorrelation is indicated the model should be refitted. Often
the autocorrelation appears because a time-dependent variable is missing from
the model. The inclusion of the omitted variable often removes the observed
autocorrelation. Sometimes, however, no such variable is present. Then one has to
make a differencing type of transformation on the original variables to remove the
autocorrelation.

If the observations are not ordered in time, the Durbin-Watson statistic is not
strictly relevant. The statistic may still, however, be a useful diagnostic tool. If
the data are ordered by an extraneous criterion, for example, an alphabetic listing,
the value of the Durbin-Watson statistic should be near 2.0. Small values are
suspicious, and the data should be scrutinized very carefully.

Many data sets are ordered on a criterion that may be relevant to the study. A list
of cities or companies may be ordered by size. A low value of the Durbin-Watson
statistic would indicate the presence of a significant size effect. A measure of size
should therefore be included as a predictor variable. Differencing or Cochrane-
Orcutt type of differencing would not be appropriate under these conditions.

8.10 REGRESSING TWO TIME SERIES

The data sets analyzed in this chapter all have the common characteristic that they
are time series data (i.e., the observations arise in successive periods of time). This
is quite unlike the data sets studied in previous chapters (a notable exception being
the bacteria data in Chapter 6), where all the observations are generated at the same
point in time. The observations in these examples were contemporaneous and gave
rise to cross-sectional data. When the observations are generated simultaneously
(and relate to a single time period), we have cross-sectional data. The contrast
between time series and cross-sectional data can be seen by comparing the ski sales

www.it-ebooks.info


http://www.it-ebooks.info/

REGRESSING TWO TIME SERIES 227

data discussed in this chapter (data arising sequentially in time), and the supervisor
performance data in Section 3.3, where all the data were collected in an attitude
survey and relate to one historical point in time.

Regression analysis of one time series on another is performed extensively in
economics, business, public health, and other social sciences. There are some
special features in time series data that are not present in cross-sectional data. We
draw attention to these features and suggest possible techniques for handling them.

The concept of autocorrelation is not relevant in cross-sectional data. The order-
ing of the observations is often arbitrary. Consequently, the correlation of adjacent
residuals is an artifact of the organization of the data. For time series data, however,
autocorrelation is often a significant factor. The presence of autocorrelation shows
that there are hidden structures in the data (often time related) which have not been
detected. In addition, most time series data exhibit seasonality, and an investigator
should look for seasonal patterns. A regular time pattern in the residuals (as in the
ski data) will often indicate the presence of seasonality. For quarterly or monthly
data, introduction of indicator variables, as has been pointed out, is a satisfactory
solution. For quarterly data, four indicator variables would be needed but only
three used in the analysis (see the discussion in Chapter 4). For monthly data, we
will need 12 indicator variables but use only 11, to avoid problems of collinearity
(this is discussed in Chapter 5). Not all of the indicator variables will be significant
and some of them may well be deleted in the final stages of the analysis.

In attempting to find a relationship between y; and x4, o, -+, Tp: One may
expand the set of predictor variables by including lagged values of the predictor
variables. A model such as

Yt = Po + P121t + Pazie—1 + Baxos + €t

is meaningful in an analysis of time series data but not with cross-sectional data.
The model given above implies that the value of Y in a given period is affected
not only by the values of X; and X» of that period but also by the value of
X1 in the preceding period (i.e., there is a lingering effect of X; on Y for one
period). Variables lagged by more than one period are also possibilities and could
be included in the set of predictor variables.

Time series data are also likely to contain trends. Data in which time trends
are likely to occur are often analyzed by including variables that are direct func-
tions of time (¢). Variables such as ¢ and ¢? are included in the list of predictor
variables. They are used to account for possible linear or quadratic trend. Simple
first differencing (y; — y:—1), or more complex lagging of the type (y: — ay—1)
as in the Cochrane-Orcutt procedure, are also possibilities. For a fuller discussion,
the reader should consult a book on time series analysis such as Shumway (1988),
Hamilton (1994).

To summarize, when performing regression analysis with time series data the
analyst should be watchful for autocorrelation and seasonal effects, which are often
present in the data. The possibility of using lagged predictor variables should also
be explored.
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EXERCISES

8.1

8.2

83

8.4

8.5

Fit model (8.6) to the data in Table 8.4.

(a) Compute the Durbin-Watson statistic d. What conclusion regarding the
presence of autocorrelation would you draw from d?

(b) Compare the number of runs to their expected value and standard devia-
tion when fitting model (8.6) to the data in Table 8.4. What conclusion
regarding the presence of autocorrelation would you draw from this com-
parison?

Oil Production Data: Refer to the oil production data in Table 6.19. The index

plot of the residuals obtained after fitting a linear regression of log(OIL) on

Year show a clear cyclical pattern.

(a) Compute the Durbin-Watson statistic d. What conclusion regarding the
presence of autocorrelation would you draw from d?

(b) Compare the number of runs to their expected value and standard devi-
ation. What conclusion regarding the presence of autocorrelation would
you draw from this comparison?

Refer to the Presidential Election Data in Table 5.19. Since the data come

over time (for 1916-1996 election years), one might suspect the presence of

the autocorrelation problem when fitting the model in (5.11) to the data.

(a) Do you agree? Explain.

(b) Would adding a time trend (e.g., year) as an additional predictor variable
improve or exacerbate the autocorrelation? Explain.

Dow Jones Industrial Average (DJIA): Tables 8.10 and 8.11 contain the values
of the daily DJIA for all the trading days in 1996. The data can be found at
the book’s Website. DJIA is a very popular financial index and is meant to
reflect the level of stock prices in the New York Stock Exchange. The Index
is composed of 30 stocks. The variable Day denotes the trading day of the
year. There were 262 trading days in 1996, and as such the variable Day goes

from 1 to 262.

(a) Fit a linear regression model connecting DJIA with Day using all 262
trading days in 1996. Is the linear trend model adequate? Examine the
residuals for time dependencies.

(b) Regress DJIA(;) against DJIA;_;), that is, regress DJIA against its own
value lagged by one period. Is this an adequate model? Are there any
evidences of autocorrelation in the residuals?

(c) The variability (volatility) of the daily DJIA is large, and to accommodate
this phenomenon the analysis is carried out on the logarithm of DJIA.
Repeat the above exercises using log(DJIA) instead of DJIA. Are your
conclusions similar? Do you notice any differences?

Refer again to the DJIA data in Exercise 8.4.
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Day Date DIJIA Day Date DJIA Day Date DIJIA
1 1/1/96  5117.12 | 45  3/1/96  5536.56 89  5/2/96  5498.27
2 1/2/96 517745 | 46  3/4/96  5600.15 90  5/3/96  5478.03
3 1/3/96  5194.07 | 47  3/5/96  5642.42 91 5/6/96  5464.31
4 1/4/96  5173.84 | 48  3/6/96  5629.77 92 5/7/96 542095
5 1/5/96 518143 | 49  3/7/96  5641.69 93  5/8/96  5474.06
6 1/8/96  5197.68 | 50  3/8/96  5470.45 94  5/9/96  5475.14
7 1/9/96  5130.13 | 51 3/11/96  5581.00 95  5/10/96  5518.14
8 1/10/96 503294 | 52 3/12/96  5583.89 96  5/13/96  5582.60
9 /1196 5065.10 { 53  3/13/96  5568.72 97 5/14/96  5624.71
10 1/12/96  5061.12 | 54  3/14/96  5586.06 98  5/15/96  5625.44
11 1/15/96 504378 | 55 3/15/96  5584.97 99  5/16/96  5635.05
12 1/16/96 508822 | 56  3/18/96 5683.60 | 100 5/17/96  5687.50
13 1/17/96 506690 | 57  3/19/96 5669.51 | 101  5/20/96  5748.82
14 1/18/96 512435 | 58  3/20/96 565542 | 102 5/21/96  5736.26
15  1/19/96 518468 | 59  3/21/96 5626.88 | 103  5/22/96  5778.00
16  1/22/96  5219.36 | 60  3/22/96 5636.64 | 104  5/23/96  5762.12
17 1/23/96 519227 | 61  3/25/96 5643.86 | 105 5/24/96  5762.86
18 1/24/96 524284 | 62  3/26/96  5670.60 | 106 5/27/96  5762.86
19  1/25/96  5216.83 | 63  3/27/96 5626.88 | 107 5/28/96  5709.67
20 1/26/96 527175 | 64  3/28/96  5630.85 | 108  5/29/96  5673.83
21 1/29/96 530498 | 65  3/29/96  5587.14 | 109  5/30/96  5693.41
22 1/30/96 538121 | 66  4/1/96  5637.72 | 110  5/31/96  5643.18
23 1/31/96 539530 | 67  4/2/96  5671.68 | 111 6/3/96  5624.71
24 2/1/96  5405.06 | 68  4/3/996  5689.74 | 112 6/4/96  5665.71
25  2/2/96 537399 | 69  4/4/96  5682.88 | 113  6/5/96  5697.48
26  2/5/96 540759 | 70  4/5/96 568288 | 114  6/6/96  5667.19
27 2/6/96  5459.61 | 71 4/8/96 559437 | 115  6/7/96  5697.11
28  2/7/96¢ 549212 | 72 4/9/96  5560.41 | 116 6/10/96  5687.87
29  2/8/96 553945 | 73  4/10/96 548598 | 117  6/11/96  5668.66
30 2/9/96  5541.62 | 74  4/11/96  5487.07 | 118 6/12/96  5668.29
31 2/12/96  5600.15 | 75 4/12/96  5532.59 | 119  6/13/96  5657.95
32 2/13/96 560123 | 76  4/15/96 559292 | 120 6/14/96  5649.45
33 2/14/96 557955 | 77 4/16/96  5620.02 | 121  6/17/96  5652.78
34 2/15/96 555137 | 78  4/17/96 554993 | 122  6/18/96  5628.03
35 2/16/96 550332 | 79 4/18/96  5551.74 | 123  6/19/96  5648.35
36 2/19/96 550332 | 80 4/19/96 553548 | 124  6/20/96  5659.43
37 2/20/96 545853 | 81  4/22/96  5564.74 | 125  6/21/96  5705.23
38  2/21/96 551597 | 82  4/23/96  5588.59 | 126  6/24/96  5717.79
39 2/22/96  5608.46 | 83  4/24/96 555390 | 127  6/25/96  5719.27
40  2/23/96 563049 | 84  4/25/96 556691 | 128  6/26/96  5682.70
41 2/26/96  5565.10 | 85  4/26/96  5567.99 | 129  6/27/96  5677.53
42 2/27/96  5549.21 | 86  4/29/96  5573.41 | 130 6/28/96  5654.63
43 2/28/96  5506.21 | 87  4/30/96  5569.08
44 2/29/96  5485.62 | 88  5/1/96  5575.22
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Table 8.11 DJIA Data for the Second Six Months of 1996
Day Date DIJIA Day Date DIIA Day Date DIIA
131 7/1/96 572998 | 175  8/30/96  5616.21 | 219 10/31/96  6029.38
132 7/2%6 572038 | 176 9/2/96 5616.21 | 220 11/1/96  6021.93
133 7/3/96  5703.02 | 177 9/3/96 5648.39 | 221 11/4/96  6041.68
134 7/4/96  5703.02 | 178 9/4/96 565690 | 222  11/5/96  6081.18
135  7/5/96  5588.14 | 179 9/5/96 5606.96 | 223 11/6/96  6177.71
136 7/8/96  5550.83 | 180 9/6/96 5659.86 | 224 11/7/96  6206.04
137 7/9/96  5581.86 | 181 9/9/96 5733.84 | 225 11/8/96  6219.82
138  7/10/96 5603.65 | 182  9/10/96  5727.18 | 226 11/11/96 6255.60
139 7/11/96 5520.50 | 183  9/11/96 575492 | 227 11/12/96 6266.04
140 7/12/96 5510.56 | 184  9/12/96  5771.94 | 228 11/13/96 6274.24
141  7/15/96 5349.51 | 185 9/13/96  5838.52 | 229 11/14/96 6313.00
142 7/16/96 5358.76 | 186  9/16/96  5889.20 | 230 11/15/96 6348.03
143 7/1796 5376.88 | 187  9/17/96  5888.83 | 231 11/18/96 6346.91
144 7/18/96 5464.18 | 188  9/18/96  5877.36 | 232 11/19/96 6397.60
145 7/19/96 5426.82 | 189  9/19/96  5867.74 | 233 11/20/96 6430.02
146  7/22/96 539094 | 190 9/20/96  5888.46 | 234 11/21/96 6418.47
147 7/23/96 5346.55 | 191 9/23/96  5894.74 | 235 11/22/96 6471.76
148  7/24/96 5354.69 | 192  9/24/96  5874.03 | 236 11/25/96 6547.79
149  7/25/96 5422.01 | 193  9/25/96  5877.36 | 237 11/26/96 6528.41
150 7/26/96 5473.06 | 194  9/26/96  5868.85 | 238 11/27/96 6499.34
151  7/29/96 543459 | 195 9/27/96 587292 | 239 11/28/96 6499.34
152 7/30/96 548193 | 196 9/30/96  5882.17 | 240 11/29/96 6521.70
153  7/31/96 552891 | 197 10/1/96  5904.90 | 241 12/2/96  6521.70
154  8/1/96  5594.75 | 198  10/2/96 593397 | 242  12/3/96  6442.69
155 8/2/96 5679.83 | 199  10/3/96  5932.85 | 243 12/4/96  6422.94
156  8/5/96 567428 | 200 10/4/96  5992.86 | 244  12/5/96  6437.10
157  8/6/96  5696.11 | 201 10/7/96  5979.81 | 245 12/6/96  6381.94
158 8/7/96  5718.67 | 202  10/8/96  5966.77 | 246  12/9/96  6463.94
159  8/8/96  5713.49 | 203  10/9/96  5930.62 | 247 12/10/96 6473.25
160 8/9/96  5681.31 | 204 10/10/96 5921.67 | 248 12/11/96 6402.52
161 8/12/96 570498 | 205 10/11/96 5969.38 | 249 12/12/96 6303.71
162 8/13/96 5647.28 | 206 10/14/96 6010.00 | 250 12/13/96 6304.87
163  8/14/96 5666.88 | 207 10/15/96 6004.78 | 251 12/16/96 6268.35
164 8/15/96 5665.78 | 208 10/16/96 6020.81 | 252 12/17/96 6308.33
165 8/16/96 5689.45 | 209 10/17/96 6059.20 | 253 12/18/96 6346.77
166 8/19/96 5699.44 | 210 10/18/96 6094.23 | 254 12/19/96 6473.64
167 82096 5721.26 | 211 10/21/96 6090.87 | 255 12/20/96 6484.40
168  8/21/96 5689.82 | 212 10/22/96 6061.80 | 256 12/23/96  6489.02
169 8/22/96 5733.47 | 213  10/23/96 6036.46 | 257 12/24/96 6522.85
170  8/23/96 5722.74 | 214 10/24/96 599248 | 258 12/25/96  6522.85
171 8/26/96 5693.89 | 215 10/25/96 6007.02 | 259 12/26/96 6546.68
172 8/27/96 5711.27 | 216 10/28/96 597273 | 260 12/27/96 6560.91
173 8/28/96 571238 | 217 10/29/96 6007.02 | 261 12/30/96 6549.37
174  8/29/96 5647.65 | 218 10/30/96 5993.23 | 262 12/31/96 6448.27
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(a) Use the form of the model you found adequate in Exercise 8.4 and refit
the model but using only the trading days in the first six months of 1996
(the 130 days in Table 8.10). Compute the residual mean square.

(b) Use the above model to predict the daily DJIA for the first 15 trading days
in July 1996 (Table 8.11). Compare your pedictions with the actual values
of the DJIA in Table 8.11 by computing the prediction errors, which is
the difference between the actual values of the DJIA for the first 15 days
of July, 1996 and their corresponding values predicted by the model.

(c) Compute the average of the squared prediction errors and compare with
the residual mean square.

(d) Repeat the above exercise but using the model to predict the daily DJIA
for the second half of the year (132 days).

(e) Explain the results you obtained above in the light of the scatter plot the
DJIA versus Day.

Continuing with modeling the DJIA data in Exercises 8.4 and 8.5. A simplified

version of the so-called random walk mode! of stock prices states that the best

prediction of the stock index at Day ¢ is the value of the index at Day ¢ — 1. In
regression model terms it would mean that for the models fitted in Exercises

8.4 and 8.5 the constant term is 0, and the regression coefficient is 1.

(a) Carry out the appropriate statistical tests of significance. (Test the values
of the coefficients individually and then simultaneously.) Which test is
the appropriate one: the individual or the simultaneous?

(b) The random walk theory implies that the first differences of the index (the
difference between successive values) should be independently normally
distributed with zero mean and constant variance. Examine the first
differences of DJIA and log(DJIA) to see if this hypothesis holds.

(c) DIIA is widely available. Collect the latest values available to see if the
findings for 1996 hold for the latest period.
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CHAPTER 9

ANALYSIS OF COLLINEAR DATA

9.1 INTRODUCTION

Interpretation of the multiple regression equation depends implicitly on the assump-
tion that the predictor variables are not strongly interrelated. It is usual to interpret
a regression coefficient as measuring the change in the response variable when the
corresponding predictor variable is increased by one unit and all other predictor
variables are held constant. This interpretation may not be valid if there are strong
linear relationships among the predictor variables. It is always conceptually possi-
ble to increase the value of one variable in an estimated regression equation while
holding the others constant. However, there may be no information about the result
of such a manipulation in the estimation data. Moreover, it may be impossible to
change one variable while holding all others constant in the process being studied.
When these conditions exist, simple interpretation of the regression coefficient as
a marginal effect is lost.

When there is a complete absence of linear relationship among the predictor
variables, they are said to be orthogonal. In most regression applications the
predictor variables are not orthogonal. Usually, the lack of orthogonality is not
serious enough to affect the analysis. However, in some situations the predictor
variables are so strongly interrelated that the regression results are ambiguous.
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Typically, it is impossible to estimate the unique effects of individual variables in
the regression equation. The estimated values of the coefficients are very sensitive
to slight changes in the data and to the addition or deletion of variables in the
equation. The regression coefficients have large sampling errors, which affect both
inference and forecasting that is based on the regression model.

The condition of severe nonorthogonality (that is, the existence of strong linear
relationships among the predictor variables) is also referred to as the problem of
collinear data, collinearity, or multicollinearity. The problem can be difficult to
detect. It is not a specification error that may be uncovered by exploring regression
residual. In fact, collinearity is not a modeling error. It is a condition of deficient
data. In any event, it is important to know when collinearity is present and to be
aware of its possible consequences. It is recommended that one should be very
cautious about any and all substantive conclusions based on a regression analysis
in the presence of collinearity.

This chapter focuses on three questions:

1. How does collinearity affect statistical inference and forecasting?
2. How can collinearity be detected?
3. What can be done to resolve the difficulties associated with collinearity?

When analyzing data, these questions cannot be answered separately. If collinearity
is a potential problem, the three issues must be treated simultaneously by necessity.

The discussion begins with two examples. They have been chosen to demonstrate
the effects of collinearity on inference and forecasting, respectively. A treatment
of methods for detecting collinearity follows and the chapter concludes with a
presentation of methods for resolving problems of collinearity. The obvious pre-
scription to collect better data is considered, but the discussion is mostly directed
at improving interpretation of the existing data. Alternatives to the ordinary least
squares estimation method that perform efficiently in the presence of collinearity
are considered in Chapter 10.

9.2 EFFECTS OF COLLINEARITY ON INFERENCE

This first example demonstrates the ambiguity that may result when attempting to
identify important predictor variables from among a linearly dependent collection
of predictor variables. The context of the example is borrowed from research
on equal opportunity in public education as reported by Coleman et al. (1966),
Mosteller and Moynihan (1972), and others.

In conjunction with the Civil Rights Act of 1964, the Congress of the United
States ordered a survey “concerning the lack of availability of equal educational
opportunities for individuals by reason of race, color, religion or national origin
in public educational institutions...." Data were collected from a cross section of
school districts throughout the country. In addition to reporting summary statistics
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on variables such as level of student achievement and school facilities, regression
analysis was used to try to establish factors that are the most important determinants
of achievement. The data for this example consist of measurements taken in 1965
for 70 schools selected at random. The data consist of variables that measure
student achievements (ACHV), faculty credentials (FAM), the influence of their
peer group in the school (PEER), and school facilities (SCHOOL). The objective
is to evaluate the effect of school inputs on achievement.

Assume that an acceptable index has been developed to measure those aspects
of the school environment that would be expected to affect achievement. The index
includes evaluations of the physical plant, teaching materials, special programs,
training and motivation of the faculty, and so on. Achievement can be measured
by using an index constructed from standardized test scores. There are also other
variables that may affect the relationship between school inputs and achievement.
Students’ performances may be affected by their home environments and the in-
fluence of their peer group in the school. These variables must be accounted for
in the analysis before the effect of school inputs can be evaluated. We assume
that indexes have been constructed for these variables that are satisfactory for our
purposes. The data are given in Tables 9.1 and 9.2, and can also be found at the
book’s Website. !

Adjustment for the two basic variables (achievement and school) can be accom-
plished by using the regression model

ACHV = fg + B1FAM + B,PEER + 83SCHOOL + . ©.1)

The contribution of the school variable can be tested using the ¢-value for [s.
Recall that the ¢-value for S5 tests whether SCHOOL is necessary in the equation
when FAM and PEER are already included. Effectively, the model above is being
compared to

ACHV — 3;FAM — B,PEER = f; + 83SCHOOL + ¢, 9.2)

that is, the contribution of the school variable is being evaluated after adjustment
for FAM and PEER. Another view of the adjustment notion is obtained by noting
that the left-hand side of (9.2) is an adjusted achievement index where adjustment
is accomplished by subtracting the linear contributions of FAM and PEER. The
equation is in the form of a regression of the adjusted achievement score on the
SCHOOL variable. This representation is used only for the sake of interpretation.
The estimated 3’s are obtained from the original model given in (9.1). The re-
gression results are summarized in Table 9.3 and a plot of the residuals against the
predicted values of ACHV appears as Figure 9.1.

Checking first the residual plot we see that there are no glaring indications of
misspecification. The point located in the lower left of the graph has a residual value
that is about 2.5 standard deviations from the mean of zero and should possibly be

! http://www.aucegypt.edu/faculty/hadi/RABES
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Table 9.1 First 50 Observations of the Equal Educational Opportunity (EEO) Data;

Standardized Indexes

Row ACHV FAM PEER SCHOOL
1 —-0.43148 0.60814 0.03509 0.16607
2 0.79969 0.79369 0.47924 0.53356
3 —0.92467 —0.82630 —0.61951 —0.78635
4 —-2.19081 —1.25310 —-1.21675 —1.04076
5 —2.84818 0.17399 —0.18517 0.14229
6 —0.66233 0.20246 0.12764 0.27311
7 2.63674 0.24184 -0.09022 0.04967
8 2.35847 0.59421 0.21750 0.51876
9 —0.91305 —0.61561 —0.48971 —0.63219
10 0.59445 0.99391 0.62228 0.93368
11 1.21073 1.21721 1.00627 1.17381
12 1.87164 0.41436 0.71103 0.58978
13 —0.10178 0.83782 0.74281 0.72154
14 —2.87949 —0.75512 —0.64411 —0.56986
15 3.92590 -0.37407 —0.13787 —0.21770
16 4.35084 1.40353 1.14085 1.37147
17 1.57922 1.64194 1.29229 1.40269
18 3.95689 —-0.31304 —0.07980 —0.21455
19 1.09275 1.28525 1.22441 1.20428
20 —0.62389 —1.51938 —1.27565 —1.36598
21 —0.63654 —0.38224 —0.05353 —0.35560
22 —2.02659 —0.19186 —0.42605 —0.53718
23 —1.46692 1.27649 0.81427 0.91967
24 3.15078 0.52310 0.30720 0.47231
25 —2.18938 —1.59810 -1.01572 —1.48315
26 1.91715 0.77914 0.87771 0.76496
27 —2.71428 —1.04745 —0.77536 —-0.91397
28 —6.59852 —-1.63217 —1.47709 —1.71347
29 0.65101 0.44328 0.60956 0.32833
30 —0.13772 —0.24972 0.07876 —0.17216
31 —2.43959 —0.33480 —0.39314 —0.37198
32 —3.27802 —0.20680 —0.13936 0.05626
33 —2.48058 —1.99375 —1.69587 —1.87838
34 1.88639 0.66475 0.79670 0.69865
35 5.06459 —0.27977 0.10817 —0.26450
36 1.96335 —0.43990 —0.66022 —0.58490
37 0.26274 —0.05334 —-0.02396 —0.16795
38 —2.94593 —2.06699 —1.31832 —1.72082
39 —1.38628 —1.02560 —1.15858 —1.19420
40 —0.20797 0.45847 0.21555 0.31347
41 —1.07820 0.93979 0.63454 0.69907
42 —1.66386 —0.93238 —0.95216 —1.02725
43 0.58117 —0.35988 -0.30693 —0.46232
44 1.37447 —0.00518 0.35985 0.02485
45 —2.82687 —0.18892 —0.07959 0.01704
46 3.86363 0.87271 0.47644 0.57036
47 -2.64141 —2.06993 —1.82915 -2.16738
48 0.05387 0.32143 —-0.25961 0.21632
49 0.50763 —1.42382 —0.77620 —1.07473
50 0.64347 —0.07852 —0.21347 -0.11750
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Table 9.2 Last 20 Observations of Equal Educational Opportunity (EEO) Data;

Standardized Indexes

Row ACHV FAM PEER SCHOOL
51 2.49414 —0.14925 —0.03192 —0.36598
52 0.61955 0.52666 0.79149 0.71369
53 0.61745 —1.49102 —1.02073 —1.38103
54 —1.00743 —0.94757 —1.28991 ~1.24799
55 —0.37469 0.24550 0.83794 0.59596
56 —2.52824 —0.41630 —0.60312 —0.34951
57 0.02372 1.38143 1.54542 1.59429
58 2.51077 1.03806 0.91637 0.97602
59 —4.22716 —0.88639 —-0.47652 —0.77693
60 1.96847 1.08655 0.65700 0.89401
61 1.25668 —1.95142 —1.94199 —1.89645
62 —0.16848 2.83384 2.47398 2.79222
63 —0.34158 1.86753 1.55229 1.80057
64 —2.23973 —1.11172 —0.69732 —0.80197
65 3.62654 1.41958 1.11481 1.24558
66 0.97034 0.53940 0.16182 0.33477
67 3.16093 0.22491 0.74800 0.66182
68 —1.90801 1.48244 1.47079 1.54283
69 0.64598 2.05425 1.80369 1.90066
70 —1.75915 1.24058 0.64484 0.87372

Table 9.3 EEO Data: Regression Results
ANOVA Table

Source Sum of Squares df Mean Square F-Test

Regression 73.506 3 24.502 5.72

Residuals 282.873 66 4.286

Coefficients Table

Variable Coefficient s.e. t-Test p-value
Constant -0.070 0.251 —0.28 0.7810
FAM 1.101 1.411 0.78 0.4378
PEER 2.322 1.481 1.57 0.1218
SCHOOL —2.281 2.220 —1.03 0.3080

n =70 R? =0.206 R2 =0.170 4§ =207 df = 66
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Figure 9.1 Standardized residuals against fitted values of ACHV.

looked at more closely. However, when it is deleted from the sample, the regression
results show almost no change. Therefore, the observation has been retained in the
analysis.

From Table 9.3 we see that about 20% of the variation in achievement score is
accounted for by the three predictors jointly (R? = 0.206). The F-value is 5.72
based on 3 and 66 degrees of freedom and is significant at better than the 0.01 level.
Therefore, even though the total explained variation is estimated at only 20%, it is
accepted that FAM, PEER, and SCHOOL are valid predictor variables. However,
the individual ¢-values are all small. In total, the summary statistics say that the
three predictors taken together are important but the ¢-values indicate that none of
the variables individually are significant. It follows that any one predictor may be
deleted from the model provided the other two are retained.

These results are typical of a situation where extreme collinearity is present.
The predictor variables are so highly correlated that each one may serve as a proxy
for the others in the regression equation without affecting the total explanatory
power. The low {-values confirm that any one of the predictor variables may be
dropped from the equation. Hence the regression analysis has failed to provide
any information for evaluating the importance of school inputs on achievement.
The culprit is clearly collinearity. The pairwise correlation coefficients of the three
predictor variables and the corresponding scatter plots (Figure 9.2), all show strong
linear relationships among all pairs of predictor variables. All pairwise correlation
coefficients are high. In all scatter plots, all the observations lie close to a straight
line.

Collinearity in this instance could have been expected. It is the nature of these
three variables that each is determined by and helps to determine the others. It is
not unreasonable to conclude that there are not three variables but in fact only one.
Unfortunately, that conclusion does not help to answer the original question about
the effects of school facilities on achievement. There remain two possibilities.
First, collinearity may be present because the sample data are deficient, but can
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Figure 9.2  Pairwise scatter plots of the three predictor variables FAM, PEER, and
SCHOOL and the corresponding pairwise correlation coefficients.

be improved with additional observations. Second, collinearity may be present
because the interrelationships among the variables are an inherent characteristic
of the process under investigation. Both situations are discussed in the following
paragraphs.

In the first case the sample should have been selected to ensure that the corre-
lations between the predictor variables were not large. For example, in the scatter
plot of FAM versus SCHOOL (the graph in the top right corner in Figure 9.2), there
are no schools in the sample with values in the upper-left or lower-right regions of
the graph. Hence there is no information in the sample on achievement when the
value of FAM is high and SCHOOL is low, or FAM is low and SCHOOL is high.
But it is only with data collected under these two conditions that the individual
effects of FAM and SCHOOL on ACHYV can be determined. For example, assume
that there were some observations in the upper-left quadrant of the graph. Then it
would at least be possible to compare average ACHV for low and high values of
SCHOOL when FAM is held constant.

Since there are three predictor variables in the model, then there are eight distinct
combinations of data that should be included in the sample. Using + to represent
a value above the average and — to represent a value below the average, the eight
possibilities are represented in Table 9.4.

The large correlations that were found in the analysis suggest that only com-
binations 1 and 8 are represented in the data. If the sample turned out this way
by chance, the prescription for resolving the collinearity problem is to collect ad-
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Table 9.4 Data Combinations for Three Predictor Variables

Variable
Combination FAM PEER SCHOOL
1 + + +
2 + + -
3 + - +
4 - + +
5 + - -
6 - + -
7 — - +
8 _ _ —

ditional data on some of the other combinations. For example, data based on
combinations 1 and 2 alone could be used to evaluate the effect of SCHOOL on
ACHYV holding FAM and PEER at a constant level, both above average. If these
were the only combinations represented in the data, the analysis would consist of
the simple regression of ACHV against SCHOOL. The results would give only a
partial answer, namely, an evaluation of the school-achievement relationship when
FAM and PEER are both above average.

The prescription for additional data as a way to resolve collinearity is not a
panacea. It is often not possible to collect more data because of constraints on bud-
gets, time, and staff. It is always better to be aware of impending data deficiencies
beforechand. Whenever possible, the data should be collected according to design.
Unfortunately, prior design is not always feasible. In surveys, or observational
studies such as the one being discussed, the values of the predictor variables are
usually not known until the sampling unit is selected for the sample and some costly
and time-consuming measurements are developed. Following this procedure, it is
fairly difficult to ensure that a balanced sample will be obtained.

The second reason that collinearity may appear is because the relationships
among the variables are an inherent characteristic of the process being sampled. If
FAM, PEER, and SCHOOL exist in the population only as data combinations 1 and
8 of Table 9.4, it is not possible to estimate the individual effects of these variables
on achievement. The only recourse for continued analysis of these effects would
be to search for underlying causes that may explain the interrelationships of the
predictor variables. Through this process, one may discover other variables that are
more basic determinants affecting equal opportunity in education and achievement.

9.3 EFFECTS OF COLLINEARITY ON FORECASTING

We shall examine the effects of collinearity in forecasting when the forecasts are
based on a multiple regression equation. A historical data set with observations
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Table 9.5 Data on French Economy

YEAR IMPORT DOPROD STOCK CONSUM
49 159 149.3 4.2 108.1
50 16.4 161.2 4.1 114.8
51 19.0 171.5 3.1 123.2
52 19.1 175.5 3.1 126.9
53 18.8 180.8 1.1 132.1
54 20.4 190.7 22 137.7
35 227 202.1 2.1 146.0
56 26.5 2124 5.6 154.1
57 28.1 226.1 5.0 162.3
58 27.6 231.9 5.1 164.3
59 26.3 239.0 0.7 167.6
60 31.1 258.0 5.6 176.8
61 333 269.8 39 186.6
62 37.0 288.4 3.1 199.7
63 433 304.5 4.6 213.9
64 49.0 323.4 7.0 223.8
65 50.3 336.8 1.2 232.0
66 56.6 353.9 4.5 2429

Source: Malinvaud (1968).

indexed by time is used to estimate the regression coefficients. Forecasts of the
response variable are produced by using future values of the predictor variables
in the estimated regression equation. The future values of the predictor variables
must be known or forecasted from other data and models. We shall not treat the
uncertainty in the forecasted predictor variables. In our discussion it is assumed
that the future values of the predictor variables are given.

We have chosen an example based on aggregate data concerning import activity
in the French economy. The data have been analyzed by Malinvaud (1968). Our
discussion follows his presentation. The variables are imports (IMPORT), domestic
production (DOPROD), stock formation (STOCK), and domestic consumption
(CONSUM), all measured in billions of French francs for the years 1949-1966.
The data are given in Table 9.5 and can be obtained from the book’s Website. The
model being considered is

IMPORT = & + $iDOPROD + 3,STOCK + 83CONSUM +¢.  (9.3)

The regression results are presented in Table 9.6. The index plot of residuals
(Figure 9.3) shows a distinctive pattern, suggesting that the model is not well
specified. Even though collinearity appears to be present (R? = 0.973 and all ¢-
values are small), it should not be pursued further in this model. Collinearity should
only be attacked after the model specification is satisfactory. The difficulty with
the model is that the European Common Market began operations in 1960, causing
changes in import-export relationships. Since our objective in this chapter is to
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Table 9.6 Import data (1949-1966): Regression Results

ANOVA Table
Source Sum of Squares df Mean Square F-Test
Regression 2576.92 3 858.974 168
Residuals 71.39 14 5.099
Coefficients Table
Variable Coefficient s.e. t-Test p-value
Constant —19.725 4.125 —4.78 0.0003
DOPROD 0.032 0.187 0.17 0.8656
STOCK 0.414 0.322 1.29 0.2195
CONSUM 0.243 0.285 0.85 0.4093
n=18 R? =0.973 R2 =0.967 & = 2.258 df = 14
24 /‘
e °
1
L1\ /
3 . .
i \. /
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Figure 9.3 Import data (1949-1966): Index plot of the standardized residuals.

study the effects of collinearity, we shall not complicate the model by attempting to
capture the behavior after 1959. We shall assume that it is now 1960 and look only
at the 11 years 1949-1959. The regression results for those data are summarized
in Table 9.7. The residual plot is now satisfactory (Figure 9.4).

The value of R2 = 0.99 is high. However, the coefficient of DOPROD is
negative and not statistically significant, which is contrary to prior expectation. We
believe that if STOCK and CONSUM were held constant, an increase in DOPROD
would cause an increase in IMPORT, probably for raw materials or manufacturing
equipment. Collinearity is a possibility here and in fact this is the case. The simple
correlation between CONSUM and DOPROD is 0.997. Upon further investigation
it turns out that CONSUM has been about two-thirds of DOPROD throughout the
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Table 9.7 Import data (1949-1959): Regression Results

ANOVA Table
Source Sum of Squares df Mean Square F-Test
Regression 204.776 3 68.2587 286
Residuals 1.673 7 0.2390
Coefficients Table
Variable Coefficient s.e. t-Test p-value
Constant —10.128 1.212 —-8.36 < 0.0001
DOPROD —0.051 0.070 -0.73 0.4883
STOCK 0.587 0.095 6.20 0.0004
CONSUM 0.287 0.102 2.81 0.0263
n=11 R? = 0.992 R2 =0.988 6 = 0.4889 df =7
[ ]
1.5
@ 1 e
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4
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Figure 9.4 Import data (1949-1959): Index plot of the standardized residuals.
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11-year period. The estimated relationship between the two quantities is
CONSUM = 6.259 + 0.686DOPROD.

Evenin the presence of such severe collinearity the regression equation may produce
some good forecasts. From Table 9.7, the forecasting equation is

IMPORT = -10.13 — 0.051DOPROD + 0.587STOCK
+ 0.287CONSUM.

Recall that the fit to the historical data is very good and the residual variation
appears to be purely random. To forecast we must be confident that the character
and strength of the overall relationship will hold into future periods. This matter
of confidence is a problem in all forecasting models whether or not collinearity is
present. For the purpose of this example we assume that the overall relationship
does hold into future periods.2 Implicit in this assumption is the relationship
between DOPROD and CONSUM. The forecast will be accurate as long as the
future values of DOPROD, STOCK, and CONSUM have the relationship that
CONSUM is approximately equal to 0.7x DOPROD.

For example, let us forecast the change in IMPORT next year corresponding to
an increase in DOPROD of 10 units while holding STOCK and CONSUM at their
current levels. The resulting forecast is

IMPORT 1960 = IMPORT 1959 — 0.051(10),

which means that IMPORT will decrease by —0.51 units. However, if the relation-
ship between DOPROD and CONSUM is kept intact, CONSUM will increase by
10(2/3) = 6.67 units and the forecasted result is

IMPORT 1960 = IMPORT 1959 — 0.51 + 0.287 x 6.67 = IMPORT 959 + 1.5.

IMPORT actually increases by 1.5 units, a more satisfying result and probably a
better forecast. The case where DOPROD increases alone corresponds to a change
in the basic structure of the data that were used to estimate the model parameters
and cannot be expected to produce meaningful forecasts.

In summary, the two examples demonstrate that multicollinear data can seriously
limit the use of regression analysis for inference and forecasting. Extreme care
is required when attempting to interpret regression results when collinearity is
suspected. In Section 9.4 we discuss methods for detecting extreme collinearity
among predictor variables.

2 For the purpose of convenient exposition we ignore the difficulties that arise because of our previous
finding that the formation of the European Common Market has altered the relationship since 1960.
But we are impelled to advise the reader that changes in structure make forecasting a very delicate
endeavor even when the historical fit is excellent.

www.it-ebooks.info


http://www.it-ebooks.info/

DETECTION OF COLLINEARITY 245

9.4 DETECTION OF COLLINEARITY

In the preceding examples some of the ideas for detecting collinearity were already
introduced. In this section we review those ideas and introduce additional criteria
that indicate collinearity.

9.4.1 Simple Signs of Collinearity

Collinearity is associated with unstable estimated regression coefficients. This sit-
uation results from the presence of strong linear relationships among the predictor
variables. It is not a problem of misspecification. Therefore, the empirical investi-
gation of problems that result from a collinear data set should begin only after the
model has been satisfactorily specified. However, there may be some indications
of collinearity that are encountered during the process of adding, deleting, and
transforming variables or data points in search of the good model. Indications of
collinearity that appear as instability in the estimated coefficients are as follows:

¢ Large changes in the estimated coefficients when a variable is added or
deleted.

o Large changes in the estimated coefficients when a data point is altered or
dropped.

Once the residual plots indicate that the model has been satisfactorily specified,
collinearity may be present if:

e The algebraic signs of the estimated coefficients do not conform to prior
expectations; and/or

o Coefficients of variables that are expected to be important have large standard
errors (small Z-values).

For the IMPORT data discussed previously, the coefficient of DOPROD was
negative and not significant. Both results are contrary to prior expectations. The
effects of dropping or adding a variable can be seen in Table 9.8. There we see
that the presence or absence of certain variables has a large effect on the other
coefficients. For the EEO data (Tables 9.1 and 9.2) the algebraic signs are all
correct, but their standard errors are so large that none of the coefficients are
statistically significant. It was expected that they would all be important.

The presence of collinearity is also indicated by the size of the correlation
coefficients that exist among the predictor variables. A large correlation between a
pair of predictor variables indicates a strong linear relationship between those two
variables. The correlations for the EEO data (Figure 9.2) are large for all pairs
of predictor variables. For the IMPORT data, the correlation coefficient between
DOPROD and CONSUM is 0.997.

The source of collinearity may be more subtle than a simple relationship between
two variables. A linear relation can involve many of the predictor variables. It may
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Table 9.8 Import Data (1949-1959): Regression Coefficients for All Possible
Regressions

Variable
Regression Constant DOPROD STOCK CONSUM
1 —6.558 0.146 - -
2 19.611 - 0.691 -
3 —-8.013 — - 0.214
4 —8.440 0.145 0.622 —
5 —8.884 -0.109 - 0.372
6 —9.743 — 0.596 0.212
7 —10.128 —0.051 0.587 0.287

not be possible to detect such a relationship with a simple correlation coefficient. As
an example, we shall look at an analysis of the effects of advertising expenditures
(Ay), promotion expenditures (F;), and sales expense (F;) on the aggregate sales
of a firm in year ¢. The data represent a period of 23 years during which the firm
was operating under fairly stable conditions. The data are given in Table 9.9 and
can be obtained from the book’s Website.

The proposed regression model is

St = Bo + B1As + B2 Py + B3Ey + ByAs—1 + BsPy—1 + €4, 9.4)

where A;_1 and P;_; are the lagged one-year variables. The regression results are
given in Table 9.10. The plot of residuals versus fitted values and the index plot
of residuals (Figures 9.5 and 9.6), as well as other plots of the residuals versus the
predictor variables (not shown), do not suggest any problems of misspecification.
Furthermore, the correlation coefficients between the predictor variables are small
(Table 9.11). However, if we do a little experimentation to check the stability of
the coefficients by dropping the contemporaneous advertising variable A from the
model, many things change. The coefficient of P; drops from 8.37 to 3.70; the
coefficients of lagged advertising A;—; and lagged promotions F;_; change signs.
But the coefficient of sales expense is stable and R? does not change much.

The evidence suggests that there is some type of relationship involving the
contemporaneous and lagged values of the advertising and promotions variables.
The regression of A; on P;, A;_1, and FP;_; returns an R? of 0.973. The equation
takes the form

Ay = 4.63 — 0.87P, — 0.86A:—1 — 0.95P,_;.

Upon further investigation into the operations of the firm, it was discovered that
close control was exercised over the expense budget during those 23 years of
stability. In particular, there was an approximate rule imposed on the budget that
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Figure 9.6 Index plot of the standardized residuals.
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Table 9.9 Annual Data on Advertising, Promotions, Sales Expenses, and Sales
(Millions of Dollars)

Row St At P E; A P
1 20.11371 1.98786 1.0 0.30 2.01722 0.0
2 15.10439 1.94418 0.0 0.30 1.98786 1.0
3 18.68375 2.19954 0.8 0.35 1.94418 0.0
4 16.05173 2.00107 0.0 0.35 2.19954 0.8
5 21.30101 1.69292 1.3 0.30 2.00107 0.0
6 17.85004 1.74334 0.3 0.32 1.69292 1.3
7 18.87558 2.06907 1.0 0.31 1.74334 0.3
8 21.26599 1.01709 1.0 0.41 2.06907 1.0
9 20.48473 2.01906 0.9 0.45 1.01709 1.0

10 20.54032 1.06139 1.0 0.45 2.01906 0.9
11 26.18441 1.45999 1.5 0.50 1.06139 1.0
12 21.71606 1.87511 0.0 0.60 1.45999 1.5
13 28.69595 2.27109 0.8 0.65 1.87511 0.0
14 25.83720 1.11191 1.0 0.65 2.27109 0.8
15 29.31987 1.77407 1.2 0.65 1.11191 1.0
16 24.19041 0.95878 1.0 0.65 1.77407 1.2
17 26.58966 1.98930 1.0 0.62 0.95878 1.0
18 22.24466 1.97111 0.0 0.60 1.98930 1.0
19 24.79944 2.26603 0.7 0.60 1.97111 0.0
20 21.19105 1.98346 0.1 0.61 2.26603 0.7
21 26.03441 2.10054 1.0 0.60 1.98346 0.1
22 27.39304 1.06815 1.0 0.58 2.10054 1.0

the sum of A, A1, P;, and P;_; was to be held to approximately five units over
every two-year period. The relationship

A+ P +A 1+B_1=5

is the cause of the collinearity.

The above indicators of the presence of collinearity (e.g., the computational
instability of the regression coefficients, the regression results do not conform to
prior expectations, and large values of pairwise correlation coefficients) are not
sufficient to see a complete picture of collinearity. Two methods for measuring
collinearity are the variance inflation factors and the condition indices. These are
explained below.

9.4.2 Variance Inflation Factors

A thorough investigation of collinearity will involve examining the value of R? that
results from regressing each of the predictor variables against all the others. The
relationship between the predictor variables can be judged by examining a quantity
called the variance inflation factor (VIF). Let R? be the square of the multiple
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Table 9.10 Regression Results for the Advertising Data

ANOVA Table
Source Sum of Squares df Mean Square F-Test
Regression 307.572 5 61.514 353
Residuals 27.879 16 1.742
Coefficients Table
Variable Coefficient s.e. t-Test p-value
Constant —14.194 18.715 —0.76 0.4592
A 5.361 4.028 1.33 0.2019
P, 8.372 3.586 2.33 0.0329
E; 22.521 2.142 10.51 < 0.0001
A 3.855 3.578 1.08 0.2973
P 4.125 3.895 1.06 0.3053
n=22 R%? =0.917 R? =0.891 & =1.320 df =16
Table 9.11 Pairwise Correlation Coefficients for the Advertising Data

A, P, E; Ay Py
At 1.000
P, —0.357 1.000
E, -0.129 0.063 1.000
A¢_1 —0.140 —0.316 —0.166 1.000
P, —0.496 —0.296 0.208 —0.358 1.000
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correlation coefficient that results when the predictor variable X; is regressed
against all the other predictor variables. Then the variance inflation for X; is

1 .

where p is the number of predictor variables. It is clear that if X; has a strong linear
relationship with the other predictor variables, R? would be close to 1, and VIF;
would be large. Values of variance inflation factors greater than 10 is often taken
as a signal that the data have collinearity problems.

In the absence of any linear relationship between the predictor variables (i.e.,
if the predictor variables are orthogonal), R;’f would be 0 and VIF; would be 1.
The deviation of the VIF; value from 1 indicates departure from orthogonality and
tendency toward collinearity.

The value of VIF; also measures the amount by which the variance of the jth
regression coefficient is increased due to the linear association of X; with other
predictor variables relative to the variance that would result if X; were not related
to them linearly. This explains the naming of this particular diagnostic.

As R? tends toward 1, indicating the presence of a linear relationship in the

predictor variables, the VIF for Bj tends to infinity. It is suggested that a VIF in
excess of 10 is an indication that collinearity may be causing problems in estimation.

The precision of an ordinary least squares (OLS) estimated regression coefficient
is measured by its variance, which is proportional to o2, the variance of the error
term in the regression model. The constant of proportionality is the VIF. Thus, the
VIFs may be used to obtain an expression for the expected squared distance of the
OLS estimators from their true values. Denoting the square of the distance by D?,
it can be shown that, on average,

p
D? =% VIF;.
j=1

This distance is another measure of precision of the least squares estimators. The
smaller the distance, the more accurate are the estimates. If the predictor variables
were orthogonal, the VIFs would all be 1 and D? would be po2. It follows that the
ratio
o2 yP | VIF; YD VIF;
pe2  p
which shows that the average of the VIFs measures the squared error in the OLS
estimators relative to the size of that error if the data were orthogonal. Hence, VIF
may also be used as an index of collinearity.

Most computer packages now furnish values of VIF'; routinely. Some have built-
in messages when high values of VIF; are observed. In any regression analysis
the values of VIF; should always be examined to avoid the pitfalls resulting from
fitting a regression model to collinear data by least squares.

VIF,
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Table 9.12 Variance Inflation Factors for Three Data Sets

EEO Import Advertising

Variable VIF | Variable VIF | Variable VIF
FAM 37.6 | DOPROD 469.7 | A 37.4
PEER 30.2 | STOCK 10| P 335
SCHOOL 83.2 | CONSUM 4694 | E; 1.1

A 26.6

P 44.1
Average 50.3 | Average 3134 | Average 28.5

In each of the three examples (EEO, Import, and Advertising) we have seen
evidence of collinearity. The VIF;’s and their average values for these data sets
are given in Table 9.12. For the EEO data the values of VIF; range from 30.2 to
83.2, showing that all three variables are strongly intercorrelated and that dropping
one of the variables will not eliminate collinearity. The average value of VIF of
50.3 indicates that the squared error in the OLS estimators is 50 times as large as it
would be if the predictor variables were orthogonal.

For the Import data, the squared error in the OLS estimators is 313 times as large
as it would be if the predictor variables were orthogonal. However, the VIF;’s
indicate that domestic production and consumption are strongly correlated but are
not correlated with the STOCK variable. A regression equation containing either
CONSUM or DOPROD along with STOCK will eliminate collinearity.

For the Advertising data, VIF g (for the variable F) is 1.1, indicating that this
variable is not correlated with the remaining predictor variables. The VIF';’s for the
other four variables are large, ranging from 26.6 to 44.1. This indicates that there
is a strong linear relationship among the four variables, a fact that we have already
noted. Here the prescription might be to regress sales S; against F; and three of the
remaining four variables (A;, P;, A;_1, S;—1) and examine the resulting VIF;’s to
see if collinearity has been eliminated.

We should note, however, that deleting some predictor variables is not always
the best way to reduce collinearity and sometimes it does not work at all. For
example, we have seen in Hamilton’s data (see Sections 4.5.2 and 4.5.3), that the
two predictor variables are mildly collinear but the response variable Y depends
on them collectively but not individually. So, when we delete one of the predictor
variables, one cannot predict Y using only one of the predictor variables. Better
ways of dealing with collinearity are presented in Chapter 10.

9.4.3 The Condition Indices

Another way to detect collinearity in the data is to examine the condition indices
of the correlation matrix of the predictor variables. The pairwise correlation co-
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efficients of a set of p variables, X1, -- -, X, can be neatly displayed in a square
matrix, which is known as the correlation matrix. For example, the correlation
matrix of the three predictor variables in the Import data for the years 1949-1959

is
DOPROD STOCK CONSUM

DOPROD 1.000 0.026 0.997 ©9.6)
STOCK 0.026 1.000 0.036 )
CONSUM 0.997 0.036 1.000

Thus, for example, Cor(DOPROD, CONSUM) = 0.997, which indicates that the
two variables are highly correlated. The elements on the diagonal that runs from the
upper-left corner to the lower-right corner of the matrix are known as the diagonal
elements. Note that all the diagonal elements of the correlation matrix are equal to
one.

Recall that a set of variables is said to be orthogonal if there exists no linear
relationships among them. If the standardized predictor variables are orthogonal,
their matrix of variances and covariances consists of 1 for the diagonal elements
and 0 for the off-diagonal elements.

Every correlation matrix of p predictor variables has a set of p-values called
eigenvalues.> These can be arranged in decreasing order and denoted by A; >
A2 > --- > Ap. If any one of the A’s is exactly equal to zero, there is a perfect linear
relationship among the original variables, which is an extreme case of collinearity.
If one of the A\’s is much smaller than the others (and near zero), collinearity is
present.

An empirical criterion for the presence of collinearity is given by the sum of the
reciprocals of the eigenvalues, that is,

Pl

/\—j . 9.7

j=1

If this sum is greater than, say, five times the number of predictor variables,
collinearity is present.

Another measure of the overall collinearity of the variables can be obtained by
computing the condition indices of the correlation matrix. The jth condition index
is defined by
A
3\;’
The first condition index, x3, is always 1 but the remaining indices are larger than
1. The largest condition index

Kj = j=12,--- p. 9.8)

=4/— 9.9
Minimum eigenvalue of the correlation matrix Ap’ ©9)

\/ Maximum eigenvalue of the correlation matrix A1
Kp =
P

3 Readers not familiar with eigenvalues may benefit from reading the book, Matrix Algebra as a Tool,
by Hadi (1996).
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Table 9.13 Condition Indices for Three Data Sets

EEO Import Advertising
J Aj Kj Aj Kj Aj Kj
1 2.952 1 1.999 1 1.701 1
2 0.040 8.59 (.998 1.42 1.288 1.14
3 0.008 19.26 0.003 27.26 1.145 1.21
4 0.859 1.40
5 0.007 15.29

is known as the condition number of the correlation matrix. If the condition
number «, is small, then the predictor variables are not collinear. But a large
condition number indicates evidence of strong collinearity. The harmful effects of
collinearity in the data become strong when the values of the condition number
exceeds 15 (which means that A; is more than 225 times A,). The cutoff value
of 15 is not based on any theoretical considerations but arises from empirical
observation. Corrective action should always be taken when the condition number
of the correlation matrix exceeds 30.

The eigenvalues and condition numbers for the three data sets EEO, Import, and
Advertising are shown in Table 9.13. The condition numbers for the three data sets
indicate that collinearity is present in all three data sets.

We end this section by noting that some data sets contain more than one subset
of collinear variables. The number of these subsets are indicated by the number
of large condition indices. In each of the three data sets, there is only one large
condition index, which means that there is one set of collinearity in each of the data
sets.

If a data set was found to be collinear as indicated by a large condition number,
the next question is: Which variables are involved in this collinearity? The answer
to this question involves the eigenvectors of the correlation matrix. We have seen
above that every correlation matrix of p predictor variables has a set of p eigenvalues
A1 = A2 = -+ > Ap. For every eigenvalue );, there exists an eigenvector, Vj,
Jj=1,2,---,p. The p eigenvectors Vi, V3, - - -, V,, are pairwise orthogonal. They
can be arranged in a p X p matrix as follows:

V = (Vi Vo - V)
oLl
V11 V12 - Vip
_ V1 V22 - Up 9.10)
'vpl ’Up2 .. ’Upp

For the Import data, the eigenvalues and the corresponding condition indices and
eigenvectors of the correlation matrix are shown in Table 9.14. Since there is
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Table 9.14 Import Data: Eigenvalues and Corresponding Condition Indices and
Eigenvectors of the Correlation Matrix of the Predictor Variables

by 1.999 0.998 0.003
K 1 1.42 27.26
V; Vi Va Va

DOPROD 0.706 -0.036 -0.707
STOCK 0.044 0.999 -0.007
CONSUM 0.707 -0.026 0.707

only one large condition index (x3), there is only one set of collinearity. The
variables involved in this set can be determined by setting a linear function of
the predictor variables to a constant. The constant is the smallest eigenvalue, A3,
and the coefficients of this linear function are the elements of the corresponding
eigenvectors, V3. That is, the variables are related by

vi3 X1 + vz Xo + vaz X3 = A
—0.707 X; — 0.007 X5 + 0.707 X3 = 0.003, 9.11)

where X j 18 the standardized"* version of the j th predictor variable. In (9.11), if we
approximate A3(0.003) and the coefficient of X, (—0.007) by zero, we obtain

—0.707 X1 +0.707 X3 = 0, 9.12)

or, equivalently . .
X = X, (9.13)

which represents the approximate relationship that exists between the standardized
versions of CONSUM and DOPROD. This result is consistent with our previous
finding based on the high simple correlation coefficient (r = 0.997) between the
predictor variables CONSUM and DOPROD. (The reader can confirm this high
value of r by examining the scatter plot of CONSUM versus DOPROD.) Since x3
is the only large condition index, the analysis tells us that the dependence structure
among the predictor variables as reflected in the data is no more complex than the
simple relationship between CONSUM and DOPROD as given in (9.13).

4 See Section 3.6.
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EXERCISES

9.1

The eigenvalues of the correlation matrix of a set of predictor variables are
4.603, 1.175, 0.203, 0.015, 0.003, 0.001

and the corresponding eigenvectors are given in Table 9.15.

Table 9.15 Six Eigenvectors of the Correlation Matrix of the Predictors.

Vi Va Vs Vs Vs Ve
X1 —0.462 0.058 —0.149 —0.793 0.338 —0.135
X —0.462 0.053 -0.278 0.122 -0.150 0.818
X3 -0.321 —0.596 0.728 —0.008 0.009 0.107
X4 -0.202 0.798 0.562 0.077 0.024 0.018
Xs -0.462 -0.046 —0.196 0.590 0.549 -0.312
X —0.465 0.001 -0.128 0.052 -0.750 -0.450

9.2

9.3

(a) How many sets of collinearity are there in this data set. Explain.
(b) What are the variables involved in each set? Explain.

In the analysis of the Advertising data in Section 9.4 it is suggested that the
regression of sales S; against F; and three of the remaining four variables
(A, P, At—1, St—1) may resolve the collinearity problem. Run the four
suggested regressions and, for each of them, examine the resulting VIF;’s to
see if collinearity has been eliminated.

Gasoline Consumption: To study the factors that determine the gasoline
consumption of cars, data were collected on 30 models of cars. Besides the
gasoline consumption (YY), measured in miles per gallon for each car, 11 other
measurements representing physical and mechanical characteristics are made.
Definitions of variables are given in Table 9.16. The source of the data in
Table 9.17 is Motor Trend magazine for the year 1975. We wish to determine
whether the data set is collinear.

(a) Compute the correlation matrix of the predictor variables X, ---, X1;
and the corresponding pairwise scatter plots. Identify any evidence of
collinearity.

(b) Compute the eigenvalues, eigenvectors, and the condition number of the
correlation matrix. Is collinearity present in the data?

(c) Identify the variables involved in collinearity by examining the eigenvec-
tors corresponding to small eigenvalues.

(d) Regress Y on the 11 predictor variables and compute the VIF for each of
the predictors. Which predictors are affected by the presence of collinear-
ity?
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Table 9.16 Variables for the Gasoline Consumption Data in Table 9.17

Variable Definition
Y Miles/gallon

X Displacement (cubic inches)

X5 Horsepower (feet/pound)

X3 Torque (feet/pound)

Xy Compression ratio

X5 Rear axle ratio

X Carburetor (barrels)

X4 Number of transmission speeds

X3 Overall length (inches)

Xy Width (inches)

X10 Weight (pounds)

X117 Type of transmission (1 = automatic; 0 = manual)

Table 9.17 Gasoline Consumption and Automotive Variables

Y X1 X X3 Xy X5 Xe X7 Xg Xg X Xu

189 3500 165 260 8.00 256 4 3 2003 699 3910 1
170 3500 170 275 850 256 4 3 199.6 729 3860 1
20.0 2500 105 185 825 273 1 3 196.7 722 3510 1
183 3510 143 255 800 3.00 2 3 1999 740 3890 1
20.1  225.0 95 170 840 2.76 1 3 194.1  71.8 3365 0
11.2 4400 215 330 820 288 4 3 1845 69.0 4215 1
22.1 2310 110 175 800 256 2 3 1793 654 3020 1
21.5 2620 110 200 850 256 2 3 1793 654 3180 1
34.7 89.7 70 81 820 390 2 4 1557 640 1905 0
30.4 96.9 75 83 9.00 430 2 5 1652 65.0 2320 0
16.5 3500 155 250 850 3.08 4 3 1954 744 3885 1
36.5 85.3 80 83 850 38 2 4 160.6 622 2009 0
21,5 171.0 109 146 820 322 2 4 1704 669 2655 0
19.7 2580 110 195 8.00 3.08 1 3 1715 77.0 3375 1
20.3 140.0 83 109 840 340 2 4 1688 694 2700 0
17.8 3020 129 220 8.00 3.00 2 3 199.9 740 3890 1
144 5000 190 360 850 273 4 3 2241 79.8 5290 1
149 4400 215 330 8.20 271 4 3 2310 79.7 5185 1
178 3500 155 250 8.50 3.08 4 3 1967 72.2 3910 1
164 3180 145 255 850 245 2 3 197.6 71.0 3660 1
23.5 2310 110 175 800 256 2 3 179.3 654 3050 1
21.5 3600 180 290 840 245 2 3 2142 763 4250 1
319 96.9 75 83 9.00 430 2 5 1652 61.8 2275 0
133 4600 223 366 8.00 3.00 4 3 2280 79.8 5430 1
239 1336 96 120 840 391 2 5 1715 634 2535 0
19.7 3180 140 255 850 271 2 3 2153 763 4370 1
139 3510 148 243 8.00 325 2 3 2155 785 4540 1
13.3 3510 148 243 8.00 326 2 3 2161 785 4715 1
1270 2NN 10K N [*a I 218 A 2 NN 2 7 A AN K 1
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9.5

EXERCISES 257

Refer to the Presidential Election Data in Table 5.19 and consider fitting a

model relating V' to all the variables (including a time trend representing year

of election) plus as many interaction terms involving two or three variables as
you possibly can.

(a) What is the maximum number of terms (coefficients) in a linear regression
model that you can fit to these data? {[Hint: Consider the number of
observations in the data.]

(b) Examine the predictor variables in the above model for the presence of
collinearity. (Compute the correlation matrix, the condition number, and
the VIFs.)

(c) Identify the subsets of variables involved in collinearity. Attempt to solve
the collinearity problem by deleting some of the variables involved in
collinearity.

(d) Fit a model relating V to the set of predictors you found to be free from
collinearity.

Refer to the Presidential Election Data in Table 5.19 and consider fitting the
model in (5.12).

(a) Examine the predictor variables in this model for the presence of collinear-
ity. (Compute the correlation matrix, the condition number, and the VIFs.)

(b) Identify the subsets of variables involved in collinearity. Attempt to solve
the collinearity problem by deleting some of the variables involved in
collinearity.

(c) Fit a model relating V' to the set of predictors you found to be free from
collinearity.

(d) Compare the results with those obtained in Exercise 9.4.
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CHAPTER 10

WORKING WITH COLLINEAR DATA

10.1 INTRODUCTION

It was demonstrated in Chapter 9 that when collinearity is present in a set of
predictor variables, the ordinary least squares estimates of the individual regression
coefficients tend to be unstable and can lead to erroneous inferences. In this chapter,
we present ways for dealing with collinearity when it is present in the data. We have
seen in Section 9.4.2 that deleting some predictor variables as a way of eliminating
or reducing collinearity is not always the best way to deal with the problem and
sometimes it does not work at all. We consider here two alternative approaches for
dealing with collinearity: (a) Imposing or searching for constraints on the regression
parameters and (b) Two estimation methods (principal components regression and
ridge regression) as alternative to the ordinary least squares method. We start
first by presenting the Principal Components approach, which is needed for the
explanation of the above methods.

10.2 PRINCIPAL COMPONENTS

The principal components method is based on the fact that any set of p variables,
X1, X2, -+, Xp, can be transformed to a set of p orthogonal variables. The new
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orthogonal variables are known as the principal components (PCs) and are denoted
by C1, - - -, Cp. Each variable Cj is a linear function of the standardized' variables
Xy, -+, Xp. Thatis,

Cj=v; X1 +voXo+ - +vpXp, 7=1,2,-,p. (10.1)

The coefficients of the linear functions are chosen so that the variables Cy, - - -,
Cp are orthogonal .2 The coefficients of the jth Principal Component, Cj, are the
elements of the jth eigenvector that corresponds to A;, the jth largest eigenvalue
of the correlation matrix of the p variables.> The eigenvectors of the correlation
matrix are

Vi1 V2 - Vlp
U1 V22 - V2

v=(v v - V)=|. T | (10.2)
Upl Up2 "+ Upp

It can be shown that the variance of the jth principal components is
Var(Cj) = Aj; 7 =,1,2,--,p (10.3)

The variance-covariance matrix of the PCs is of the form:

C, Co - G
Ci (M 0 - 0
Co |0 X - 0
C, \0 0 - X

All the off-diagonal elements are zero because the PCs are orthogonal. The value
on the jth diagonal element, ); is the variance of C;, the jth PC. The PCs are
arranged so that A1 > Ay > --- > A, that is, the first PC has the largest variance
and the last PC has the smallest variance. As mentioned in Section 9.4.2, if any
one of the \’s is exactly equal to zero, there is a perfect linear relationship among
the original variables, which is an extreme case of collinearity. If one of the A’s is
much smaller than the others (and near zero), collinearity is present.

For example, the correlation matrix of the three predictor variables in the Import
data for the years 19491959 is

DOPROD STOCK CONSUM

DOPROD 1.000 0.026 0.997 (10.4)
STOCK 0.026 1.000 0.036 '
CONSUM 0.997 0.036 1.000

! See Section 3.6.

2 A description of this technique employing matrix algebra is given in the Appendix to this chapter.
3 Readers not familiar with eigenvalues may benefit from reading the book, Matrix Algebra as a Tool,
by Hadi (1996).
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Table 10.1 The PCs for the Import Data (1949-1959)

Year Cl Cg 03
49 —2.126 0.639 —0.021
50 —-1.619 0.556 —0.071
51 -1.115 —0.073 —0.022
52 —0.894 —0.082 0.011
53 —0.644 —1.307 0.073
54 -0.190 -0.659 0.027
55 0.360 —0.744 0.043
56 0.972 1.354 0.063
57 1.559 0.964 0.024
58 1.767 1.015 —0.045
59 1.931 —1.663 —0.081

The eigenvalues of the correlation matrix in (10.4) are A; = 1.999, A5 = 0.998,
and A3 = 0.003. The corresponding eigenvectors are

0.706 —0.036 —0.707
Vi=| 0044 |, Vo= 0999 |, Vs | -0.007 |.
0.707 —0.026 0.707

Thus, the PCs for the Import data for the years 1949-1959 are

C: = 0.706X; + 0.044X; + 0.707X3,
C, = -0.036X; + 0999X, — 0.026X3, (10.5)
Cs = —0.707X; — 0.007X, + 0.707X;.

These PCs are given in Table 10.1. The variance-covariance matrix of the new

variables is
Ch Cy Cs

Ci 1.999 0 0
Cs 0 0.998 0 .
Cs 0 0 0.003

The PCs lack simple interpretation since each is, in a sense, a mixture of the original
variables. However, these new variables provide a unified approach for obtaining
information about collinearity and serve as the basis of one of the alternative
estimation techniques described later in this chapter.

One additional piece of information is available through this type of analysis.
Since A; is the variance of the jth PC, if A; is approximately zero, the corresponding
PC, C}, is approximately equal to a constant. It follows that the equation defining
the PC gives some idea about the type of relationship among the predictor variables
that is causing collinearity. For example, in the Import data, A3 = 0.003 = 0.
Therefore, C3 is approximately constant. The constant is the mean value of C3
which is zero. The PCs all have means of zero since they are linear functions of the
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standardized variables and each standardized variable has a zero mean. Therefore
Cs = —0.707X; — 0.007X5 + 0.707X5 = 0.

Rearranging the terms yields
X = X, (10.6)

where the coefficient of X5 (—0.007) has been approximated as zero. The equation
in (10.6) represents the approximate relationship that exists between the standard-
ized versions of CONSUM and DOPROD. This result is consistent with our previous
finding based on the high simple correlation coefficient (r = 0.997) between the
predictor variables CONSUM and DOPROD. (The reader can confirm this high
value of r by examining the scatter plot of CONSUM versus DOPROD.) Since A3
is the only small eigenvalue, the analysis of the PCs tells us that the dependence
structure among the predictor variables as reflected in the data is no more complex
than the simple relationship between CONSUM and DOPROD as given in (10.6).

For the advertising data, the eigenvalues of the correlation matrix of the five
predictor variables and the corresponding eigenvectors are given in Table 10.2. The
smallest eigenvalue is A5 = 0.007. The corresponding PC is

Cy = 0.514X; + 0.489.X5 — 0.010X3 + 0.428 X4 + 0.559.X5. (10.7)

Setting C’ to zero and solving for X leads to the approximate relationship,

X1 = —0.951X, — 0.833X4 — 1.087X5, (10.8)

where we have taken the coefficient of X3 to be approximately zero. This equation
reflects our earlier findings about the relationship between A;, P;, A;_1, and P;_;.
Furthermore, since Ay = 0.859 and the other A’s are all large, we can be confident
that the relationship involving A, P;, A;_1, and P,_ in (10.8) is the only source
of collinearity in the data.

Throughout this section, investigations concerning the presence of collinearity
have been based on judging the magnitudes of various indicators, either a correlation
coefficient or an eigenvalue. Although we speak in terms of large and small, there
is no way to determine these threshold values. The size is relative and is used to
give an indication either that everything seems to be in order or that something
is amiss. The only reasonable criterion for judging size is to decide whether the
ambiguity resulting from the perceived collinearity is of material importance in the
underlying problem.

We should also caution here that the data analyzed may contain one or a few
observations that can have an undue influence on the various measures of collinear-
ity (e.g., correlation coefficients, eigenvalues, or the condition number). These
observations are called collinearity-influential observations. For more details the
reader is referred to Hadi (1988).
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Table 10.2  Advertising Data: The Eigenvalues and Corresponding Eigenvectors of
the Correlation Matrix of the Predictor Variables.

Eigenvalues
Aj 1.701 1.288 1.145 0.859 0.007
Eigenvectors
V; i Va Vi Va Vs
/L 0.532 -0.024 -0.668 0.074 -0.514
ﬁt -0.232 0.825 0.158 -0.037 -0.489
E‘t -0.389 -0.022 -0.217 0.895 0.010
Ay 0.395 ~0.260 0.692 0.338 -0.428
Ist_l -0.596 -0.501 -0.057 -0.279 -0.559

10.3 COMPUTATIONS USING PRINCIPAL COMPONENTS

The computations required for this analysis involve something in addition to a
standard least squares computer program. The raw data must be processed through
a principal components subroutine that operates on the correlation matrix of the
predictor variables in order to compute the eigenvalues, the eigenvectors, and the
PCs. For example, for the Advertising data, the regression model stated in terms of
the original variables is

S¢ = Bo + At + B2 Py + B3Ey + BaAt—1 + Bs P11 + & (10.9)
and the regression model stated in terms of the standardized variables is
Y = 91X1 + 92)22 + 935(3 + 94X'4 + 95X'5 + &, (10.10)

where Y denotes the standardized version of the response variable and X; denotes
the standardized version of the jth predictor variable. The regression coefficients in
(10.10) are often referred to as the beta coefficients. They represent marginal effects
of the predictor variables in standard deviation units. For example, #; measures
the change in standardized units of sales (.S) corresponding to an increase of one
standard deviation unit in advertising (A).

Let Bj be the least squares estimate of 3; when model (10.9) is fit to the data.
Similarly, let 9j be the least squares estimate of §; obtained from fitting model
(10.10). Then $3; and ; are related by

Bj = Z_yé]7 j:172a3a475)
) T (10.11)
60 - ?j_ Z 511_;.71

J=1

where 7 is the mean of Y and s, and s; are standard deviations of the response and
Jth predictor variable, respectively.
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Table 10.3 Regression Results Obtained from Fitting the Model in (10.10)

Variable Coefficient s.e. t-Test p-value
X, 0.583 0.438 1.33 0.2019
X, 0.973 0417 2.33 0.0329
X5 0.786 0.075 10.50 < 0.0001
X4 0.395 0.367 1.08 0.2973
X5 0.503 0.476 1.06 0.3053
n =22 R? =0.917 R? =0.891 g = 0.3303 df=16

From the eigenvectors in Table 10.2, the six PCs are

C; = 0.532X; —0.232X, — 0.389X3 + 0.395X,; — 0.595X5,
Cy = —0.024X, + 0.825X, — 0.022X3 — 0.260X — 0.501.X5,
C; = —0.668X; +0.158X5 — 0.217X5 + 0.692X, — 0.057X5, (10.12)
Cy = 0.074X; — 0.037X5 + 0.895X3 + 0.338X, — 0.279X5,
Cs = —0.514X; —0.489X, + 0.010X; — 0.428X, — 0.559X;.

The coefficients in the equation defining C, are the components of the eigenvector
corresponding to the largest eigenvalue of the correlation matrix of the predictor
variables (see Table 10.2). Similarly, the coefficients defining C> through C5 are
components of the eigenvectors corresponding to the remaining eigenvalues in order
by size. The variables Cy, - -+, C5 are the PCs associated with the standardized
versions of the predictor variables, as described in Section 10.2.

In terms of the PCs, the model can then be written as

Y = a1C1 + a2Cy + 03C3 + 04Cy + as5Cs + €. (10.13)

The estimates 65, - - -, ép can be computed in two equivalent ways. They can be
obtained directly from a regression of the standardized variables as represented in
(10.10). The results of this regression are given in Table 10.3. Alternatively, we can
fit the model in (10.13) by the least squares regression of the standardized response
variable on the five PCs and obtain the estimates &1, - -+, &5. The results of this
regression are shown in Table 10.4. The estimates 01, -, ép can be obtained from
the estimates &y, - - -, &g as

6, =  0.532& — 0.0246 — 0.6686:3 + 0.0744,4 — 0.51445,
f; = —0.232&; + 0.82544 + 0.158d3 — 0.03744 — 0.489ds,
6; = —0.389&; — 0.022d2 — 0.217d3 + 0.89564 + 0.0104s, (10.14)
6, =  0.395&; — 0.2606 + 0.6926:3 + 0.33864 — 0.4286:s,
65 = —0.595&; — 0.5014; — 0.057ds — 0.27944 — 0.5594s.
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Table 10.4 Regression Results Obtained from Fitting the Model in (10.13)

Variable Coefficient s.e. t-Test p-value
Ch —0.346 0.053 —-6.55 < 0.0001
Cy 0.418 0.064 6.58 < 0.0001
Cs —0.151 0.067 —2.25 0.0391
Cy 0.660 0.078 8.46 < 0.0001
Cs —-1.220 0.846 —1.44 0.1683
n =22 R? =0.917 R2 =0.891 6 = 0.3303 df =16

Thus, for example,

~

0, = (0.532)(—0.3460) + (—0.024)(0.4179) + (—0.668)(—0.1513)
+ (0.074)(0.6599) + (—0.514)(—1.2203)
= 0.583,

which is the same as the coefficient of X 1 in Table 10.3; R
Using the coefficients in (10.14), the s}andard error of 61, - - -, 65 can be computed.
For example the estimated variance of 6; is

A

Var(f;) = (0.532 x s.e.(@1))? + (—0.024 x s.e.(@g))? + (—0.668 x s.e.(d3))?
+ (0.074 x s.e.(44))? + (—0.514 x s.e.(&5))?
= (0.532 x 0.0529)2 + (—0.024 x 0.0635)% + (—0.668 x 0.0674)?
+(0.074 x 0.0780) + (—0.514 x 0.8456)2 = 0.1918,

which means that the standard error of 91 is
s.e.(d;) = v0.1918 = 0.438,

which is the same as the standarad error of the coefficient of X; in Table 10.3.

It should be noted that the ¢-values for testing 3; and 8; equal to zero are identical.
The beta coefficient, §; is a scaled version of 3;. When constructing the ¢-values
as either Bj / s.e.(Bj) or éj / s.e.(éj), the scale factor is canceled.

10.4 IMPOSING CONSTRAINTS

We have noted that collinearity is a condition associated with deficient data and not
due to misspecification of the model. It is assumed that the form of the model has
been carefully structured and that the residuals are acceptable before questions of
collinearity are considered. Since it is usually not practical and often impossible to
improve the data, we shall focus our attention on methods of better interpretation
of the given data than would be available from a direct application of least squares.
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In this section, rather than trying to interpret individual regression coefficients, we
shall attempt to identify and estimate informative linear functions of the regression
coefficients. Alternative estimating methods for the individual coefficients are
treated in later sections of this chapter.

Before turning to the problem of searching the data for informative linear func-
tions of the regression coefficients, one additional point concerning model specifi-
cation should be discussed. A subtle step in specifying a relationship that can have
a bearing on collinearity is acknowledging the presence of theoretical relationships
among the regression coefficients. For example, in the model for the Import data,

IMPORT = By + f1DOPROD + 32STOCK + g3CONSUM +¢, (10.15)

one may argue that the marginal effects of DOPROD and CONSUM are equal.
That is, on the basis of economic reasoning, and before looking at the data, it is
decided the 5 = [ or equivalently, 57 — 33 = 0. As described in Section 3.10.3,
the model in (10.15) becomes

IMPORT = pSy+ 1DOPROD + 82STOCK + 5;CONSUM + ¢,
= Bo+ B2STOCK + $; (DOPROD + CONSUM) + €.

Thus, the common value of 3; and 3 is estimated by regressing IMPORT on
STOCK and a new variable constructed as NEWVAR = DOPROD + CONSUM.
The new variable has significance only as a technical manipulation to extract an
estimate of the common value of 5; and 33. The results of the regression appear
in Table 10.5. The correlation between the two predictor variables, STOCK and
NEWVAR, is 0.03 and the eigenvalues are Ay = 1.030 and Ao = 0.970. There
is no longer any indication of collinearity. The residual plots against time and the
fitted values indicate that there are no other problems of specification (Figures 10.1
and 10.2, respectively). The estimated model is

IMPORT = -9.007 + 0.086DOPROD + 0.612STOCK
+ 0.086 CONSUM.

Note that following the methods outlined in Section 3.10.3, it is also possible
to test the constraint, §; = f3, as a hypothesis. Even though the argument for
B1 = B3 may have been imposed on the basis of existing theory, it is still interesting
to evaluate the effect of the constraint on the explanatory power of the full model.
The values of R? for the full and restricted models are 0.992 and 0.987, respectively.
The F-ratio for testing Hp : (81 = B3) is 3.36 with 1 and 8 degrees of freedom.
Both results suggest that the constraint is consistent with the data.

The constraint that 5, = [ is, of course, only one example of the many types
of constraints that may be used when specifying a regression model. The general
class of possibilities is found in the set of linear constraints described in Chapter 3.
Constraints are usually justified on the basis of underlying theory. They may often
resolve what appears to be a problem of collinearity. In addition, any particular
constraint may be viewed as a testable hypothesis and judged by the methods
described in Chapter 3.
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Table 10.5 Regression Results of Import Data (1949-1959) with the Constraint
B1=0s
ANOVA Table
Source Sum of Squares df Mean Square F-Test
Regression 203.856 2 101.928 314
Residuals 2.593 8 0.324
Coefficients Table
Variable Coefficient s.e. t-Test p-value
Constant -9.007 1.245 -7.23 < 0.0001
STOCK 0.612 0.109 5.60 0.0005
NEWVAR 0.086 0.004 24.30 < 0.0001
n=11 R?=0.987 R? =0.984 & = 0.5693 df=8
_‘ [ ]
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Figure 10.1 Index plot of the standardized residuals. Import data (1949-1959) with the

constraint 3; = f3.
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Figure10.2  Standardized residuals against fitted values of Import data (1949-1959) with
the constraint 3 = (3.

10.5 SEARCHING FOR LINEAR FUNCTIONS OF THE 3'S

We assume that the model
Y=00+BX1+ -+ BXp+e

has been carefully specified so that the regression coefficients appearing are of
primary interest for policy analysis and decision making. We have seen that the
presence of collinearity may prevent individual 3’s from being accurately estimated.
However, as demonstrated below, it is always possible to estimate some linear
functions of the s accurately (Silvey, 1969). The obvious questions are: Which
linear functions can be estimated, and of those that can be estimated, which are of
interest in the analysis? In this section we use the data to help identify those linear
functions that can be accurately estimated and, at the same time, have some value
in the analysis.

First we shall demonstrate in an indirect way that there are always linear functions
of the 3’s that can be accurately estimated.* Consider once again the Import
data. We have argued that there is a historical relationship between CONSUM
and DOPROD that is approximated as CONSUM = (2/3) DOPROD. Replacing
CONSUM in the original model,

IMPORT = 8o + (81 + %ﬂg)DOPROD + BoSTOCK +e. (10.16)

Equivalently stated, by dropping CONSUM from the equation we are able to obtain
accurate estimates of 51 + (2/3)83 and S2. Collinearity is no longer present. The
correlation between DOPROD and STOCK is 0.026. The results are given in Table
10.6. R? is almost unchanged and the residual plots (not shown) are satisfactory.
In this case we have used information in addition to the data to argue that the

* Refer to the Appendix to this chapter for further treatment of this problem.
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Table 10.6 Regression Results When Fitting Model (10.16) to the Import Data
(1949-1959)

ANOVA Table

Source Sum of Squares df Mean Square F-Test
Regression 202.894 2 101.447 228
Residuals 3.555 8 0.444

Coefficients Table
Variable Coefficient s.e. t-Test p-value
Constant —8.440 1.435 —5.88 0.0004
DOPROD 0.145 0.007 20.70 < 0.0001
STOCK 0.622 0.128 4.87 0.0012
n=11 R? =0.983 R%2 =00978 g = 0.667 df=8

coefficient of DOPROD in the regression of IMPORT on DOPROD and STOCK
is the linear function 81 + (2/3)0s. Also, we have demonstrated that this linear
function can be estimated accurately even though collinearity is present in the data.
Whether or not it is useful to know the value of 51 + (2/3)/33, of course, is another
question. At least it is important to know that the estimate of the coefficient of
DOPROD in this regression is not measuring the pure marginal effect of DOPROD,
but includes part of the effect of CONSUM.

The above example demonstrates in an indirect way that there are always lin-
ear functions of the 3’s that can be accurately estimated. However, there is a
constructive approach for identifying the linear functions of the 3’s that can be
accurately estimated. We shall use the advertising data introduced in Section 9.4
to demonstrate the method. The concepts are less intuitive than those found in the
other sections of the chapter. We have attempted to keep things simple. A formal
development of this problem is given in the Appendix to this chapter.

We begin with the linear transformation introduced in Sections 10.2 and 10.3 that
takes the standardized predictor variables into a new orthogonal set of variables.
For the Advertising data, the transformation that takes X3, - - - , X5 into the new set
of orthogonal variables C1, - - - , Cy is given in (10.12). Note that the transformation
involves the same weights that are used to define (10.12). The advantage of the
transformed model is that the PCs are orthogonal. The precision of the estimated
regression coefficients as measured by the variance of the &’s is easily evaluated.
The estimated variance of &; is 62/ Aj. It is inversely proportional to the ith
eigenvalue. All but &5 may be accurately estimated since only A5 is small. (Recall
that A\; = 1.701, Ay = 1.288, A3 = 1.145, \y = 0.859, and A5 = 0.007.)

Our interest in the &’s is only as a vehicle for analyzing the 6’s. From the
representation in (10.14) it is a simple matter to compute and analyze the variances
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and, in turn, the standard errors of the §’s. The variance of 9]- is
. p
Var(9) = ) vj;Var(&s), §=1,-,p, (10.17)

where v;; is the coefficient of &; in the jth equation in (10.14). Since the estimated
variance of &; = &2 /Ai, where &2 is the residual mean square, (10.17) becomes

. o v%j
Var(6;) = & Zy- (10.18)
— )

For example, the estimated variance of 0, is

(0.532)2 N (—0.024)? N (—0.668)2 N (0.074)2 N (—0.514)2

N o X " W . (10.19)

Recall that \y > A2 > --- > A and only )5 is small (A5 = 0.007). Therefore, it is
only the last term in the expression for the variance that is large and could destroy
the precision of §;. Since expressions for the variances of the other 9j’s are similar
to (10.19), a requirement for small variance is equivalent to the requirement that the
coefficient of 1/ A5 be small. Scanning the equations that define the transformation
from {&;} to {éj}, we see that 03 is the most precise estimate since the coefficient
of 1/ )5 in the variance expression for f3 is (—0.01)2 = 0.0001.

Expanding this type of analysis, it may be possible to identify meaningful linear
functions of the §’s that can be more accurately estimated than individual @’s. For
example, we may be more interested in estimating ; — 65 than 6; and 0, separately.
In the sales model, §; — 6> measures the increment to sales that corresponds to
increasing the current year’s advertising budget, X, by one unit and simultaneously
reducing the current year’s promotions budget, X2, by one unit. In other words,
61 — 65 represents the effect of a shift in the use of resources in the current year.
The estimate of 6; — 6 is 6; — 92 The variance of this estimate is obtained simply
by subtracting the equation for 6y from that of f; in (10.14) and using the resulting
coefficients of the &’s as before. That is,

0, — by = 0.764G; — 0.84962 — 0.82643 + 0.11164 — 0.0254s5,
from which we obtain the estimated variance of (6; — 65) as

(0.764)2 Var(é) + (—0.849)2 Var(éz) + (—0.826)? Var(é3)
+ (0.111)2 Var(dy) + (—0.025)? Var(é1), (10.20)

or, equivalently, as

(0.764)? N (—0.849)? N (—0.826)2 N (0.111)2 N (—0.025)2

. (10.21
)\1 /\2 /\3 /\4 )\5 ( )
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The small coefficient of 1/A5 makes it possible to estimate 6 — 0 accurately

The estimate of 8; — @5 is 0.583 —0.973 = —0.390. The variance of 91 02
can be computed from (10.20) as 0.008. A 95% confidence interval for #; — 65 is
—0.390 +2.12+/0.008 or —0.58 to —0.20. That is, the effect of shifting one unit of
expenditure from promotions to advertising in the current year is a loss of between
0.20 and 0.58 standardized sales unit.

There are other linear functions that may also be accurately estimated. General-
izing the above procedure, one can see that any linear function of the §’s that results
in a small coefficient for 1/As in the variance expression can be estimated with
precision. Any function that produces a small coefficient for 1/As in the variance
expression is a possibility. For example, the equations in (10.14) suggest that all
differences involving 61, 92, 94, and 65 can be considered. However, some of the
differences are meaningful in the problem, whereas others are not. For example, the
difference (6; — 6,) is meaningful, as described previously. It represents a shift in
current expenditures from promotions to advertising. The difference §; — 64 is not
particularly meaningful. It represents a shift from current advertising expenditure
to a previous year’s advertising expenditure. A shift of resources backward in time
is impossible. Even though §; — 8,4 could be accurately estimated, it is not of
interest in the analysis of sales.

In general, when the weights in the equations in (10.14) are displayed and the
corresponding values of the eigenvalues are known, it is always possible to scan the
weights and identify those linear functions of the original regression coefficients
that can be accurately estimated. Of those linear functions that can be accurately
estimated, only some will be of interest for the problem being studied.

To summarize, where collinearity is indicated and it is not possible to supple-
ment the data, it may still be possible to estimate some regression coefficients
and some linear functions accurately. To investigate which coefficients and linear
functions can be estimated, we recommend the analysis (transformation to prin-
cipal components) that has just been described. This method of analysis will not
overcome collinearity if it is present. There will still be regression coefficients and
functions of regression coefficients that cannot be estimated. But the recommended
analysis will indicate those functions that are estimable and indicate the structural
dependencies that exist among the predictor variables.

10.6 BIASED ESTIMATION OF REGRESSION COEFFICIENTS

Two alternative estimation methods that provide a more informative analysis of
the data than the OLS method when collinearity is present are considered. The
estimators discussed here are biased but tend to have more precision (as measured
by mean square error) than the OLS estimators [see Draper and Smith (1998),
McCallum (1970), and Hoerl and Kennard (1970)]. These alternative methods do
not reproduce the estimation data as well as the OLS method; the sum of squared
residuals is not as small and, equivalently, the multiple correlation coefficient is not
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as large. However, the two alternatives have the potential to produce more precision
in the estimated coefficients and smaller prediction errors when the predictions are
generated using data other than those used for estimation.

Unfortunately, the criteria for deciding when these methods give better results
than the OLS method depend on the true but unknown values of the model regres-
sion coefficients. That is, there is no completely objective way to decide when
OLS should be replaced in favor of one of the alternatives. Nevertheless, when
collinearity is suspected, the alternative methods of analysis are recommended. The
resulting estimated regression coefficients may suggest a new interpretation of the
data that, in turn, can lead to a better understanding of the process under study.

We consider here two specific alternatives to OLS: (1) principal components
regression and (2) ridge regression. Principal components regression is introduced
and discussed in Sections 10.7, 10.8, and 10.10. It will be demonstrated that the
principal components estimation method can be interpreted in two ways; one inter-
pretation relates to the nonorthogonality of the predictor variables and the other has
to do with constraints on the regression coefficients (Section 10.9). Ridge regres-
sion also involves constraints on the coefficients. The ridge method is introduced
and discussed in Sections 10.11, 10.12, and 10.13 and it is applied again in Chapter
11 to the problem of variable selection. Both methods, principal components and
ridge regression, are examined using the French import data that were analyzed in
Chapter 9.

10.7 PRINCIPAL COMPONENTS REGRESSION

The model under consideration is

IMPORT = By + /1iDOPROD + 2STOCK + 3CONSUM +¢e.  (10.22)

The variables are defined in Section 9.3. The model in (10.22) stated in terms of
standardized variables (see Section 3.6) is

Y =0, X] +6,X0 +05X5+ €, (10.23)

where 7 and Z; are the means of Y and X, respectively; s, and s; are the standard
deviations of Y and X, respectively; and Y = (y; — §)/s, is the standardized
version of the response variable and X ; = (xij —Z;)/s, is the standardized version
of the jth predictor variable. Many regression packages produce values for both
the regular and standardized regression coefficients in (10.22) and (10.23). The
estimated coefficients satisfy

~ Sy A .

g = 6‘1 = 152737
b s (10.24)
Bo = §—Pi1T1 — PaZs — P3T3.
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Table 10.7 Regression Results of Fitting Model (10.23) to the Import Data
(1949-1959)

Variable Coefficient s.e. t-Test p-value
X —0.339 0.464 —0.73 0.4883
X 0.213 0.034 6.20 0.0004
X3 1.303 0.464 2.81 0.0263

n=11 R? =0.992 R2 =0.988 & = 0.034 df=7

The principal components of the standardized predictor variables are [see (10.5)]

C, = 0706X; + 0.044X, + 0.707Xs,
Cy = —0.036X; + 0999X, — 0.026Xs3, (10.25)
Cs = —0707X; - 0.007X: + 0.707X;.

These principal components were given in Table 10.1. The model in (10.23) may
be written in terms of the principal components as

Y = a1C1 + aaCq + a3C3 + g. (10.26)

The equivalence of (10.23) and (10.26) follows since there is a unique relationship
between the a’s and §’s. In particular,

o = 0.7060; + 0.0446, + 0.707653,
a; = -—0.0366; + 0.9996; — 0.02603, (10.27)
a3 = -—0.7078, — 0.007, + 0.7078;.

Conversely,
8, = 0706c; — 0.036as — 0.707as,
92 = 0.04401 + 0.99902 - 0.007&3, (1028)
03 = 0.707a; — 0.0260c + 0.7070g.

These same relationships hold for the least squares estimates, the &’s and @’s of
the o’s and ’s, respectively. Therefore, the &’s and s may be obtained by the
regression of Y against the principal components C, Cs, and Cs, or against the
original standardized variables. The regression results of fitting models (10.23)
and (10.26) to the import data are shown in Tables 10.7 and 10.8. From Table
10.7, the estimates of 6, #,, and 63 are —0.339, 0.213, and 1.303, respectively.
Similarly, from Table 10.8, the estimates of a1, g, and a3 are 0.690, 0.191, and
1.160, respectively. The results in one of these tables can be obtained from the
other table using (10.27) and (10.28).

Although the equations in (10.23) and (10.26) are equivalent, the C’s in (10.26)
are orthogonal. Observe, however, that the regression relationship given in terms
of the principal components in (10.25) are not easily interpreted. The predictor
variables of that model are linear functions of the original predictor variables. The
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Table 10.8 Regression Results of Fitting Model (10.26) to the Import Data
(1949-1959)

Variable Coefficient s.€. t-Test p-value
) 0.690 0.024 28.70 < 0.0001
Cs 0.191 0.034 5.62 0.0008
Cs 1.160 0.656 1.77 0.1204

n=11 R? =0.992 RZ =0.988 6 =0.034 df =7

o’s, unlike the 6’s, do not have simple interpretations as marginal effects of the
original predictor variables. Therefore, we use principal components regression
only as a means for analyzing the collinearity problem. The final estimation results
are always restated in terms of the ’s for interpretation.

10.8 REDUCTION OF COLLINEARITY IN THE ESTIMATION DATA

It has been mentioned that the principal components regression has two interpreta-
tions. We shall first use the principal components technique to reduce collinearity
in the estimation data. The reduction is accomplished by using less than the full
set of principal components to explain the variation in the response variable. Note
that when all three principal components are used, the OLS solution is reproduced
exactly by applying (10.28).

The C’s have sample variances A\; = 1.999, A = 0.998, and A3 = 0.003,
respectively. Recall that the A’s are the eigenvalues of the correlation matrix of
DOPROD, STOCK, and CONSUM. Since C3 has variance equal to 0.003, the
linear function defining C'3 is approximately equal to zero and is the source of
collinearity in the data. We exclude Cs and consider regressions of Y against C;
alone as well as against C and Cy, that is, we consider the two possible regression
models

Y =a:C1 +¢ (10.29)

and _
Y =010y + asCs + €. (10.30)

Both models lead to estimates for all three of the original coefficients, 61, 82, and
03. The estimates are biased since some information [C'3 in (10.30), C2 and C3 in
(10.29)] has been excluded in both cases. 3

The estimated values of «; or a; and o may be obtained by regressing Y in turn
against C and then against C; and C2. However, a simpler computational method
is available that exploits the orthogonality of C; Cs and C3.° For example, the

> In any regression equation where the full set of potential predictor variables under consideration
are orthogonal, the estimated values of regression coefficients are not altered when subsets of these
variables are either introduced or deleted.

www.it-ebooks.info


http://www.it-ebooks.info/

REDUCTION OF COLLINEARITY IN THE ESTIMATION DATA 275

same estimated value of «; will be obtained from regression using (10.26), (10.29),
or (10.30). Similarly, the value of oy may be obtained from (10.26) or (10.30).
It also follows that if we have the OLS estimates of the @’s, estimates of the a’s
may be obtained from (10.27). Then principal components regression estimates of
the 8’s corresponding to (10.29) and (10.30) can be computed by referring back to
(10.28) and setting the appropriate a’s to zero. The following example clarifies the
process.

Using o =0.690 and a3 = a3 = 0in (10.28) yields estimated &’s corresponding
to regression on only the first principal component, that is,

6, =0.706 x 0.690 = 0.487,
6, =0.044 x 0.690 = 0.030, (10.31)
63 =0.707 x 0.690 = 0.487,

which yields
Y = 0.487X; + 0.030X, + 0.487X;.

The estimates using the first two principal components, as in (10.30), are obtained
in a similar fashion using o = 0.690, a2 = 0.191, and a3 = 0 in (10.28). The
estimated of the regression coefficients, 3y, 81, B2, and 3, of the original variables
in (10.22), can be obtained by substituting 61, B, and 93 in (10.24).

The estimates of the standardized and original regression coefficients using
the three principal component models are shown in Table 10.9. It is evident
that using different numbers of principal components gives substantially different
results. It has already been argued that the OLS estimates are unsatisfactory.
The negative coefficient of X 1 (DOPROD) is unexpected and cannot be sensibly
interpreted. Furthermore, there is extensive collinearity which enters through the
principal component, Cs. This variable has almost zero variance (A3 = 0.003)
and is therefore approximately equal to zero. Of the two remaining principal
components, it is fairly clear that the first one is associated with the combined
effect of DOPROD and CONSUM. The second principal component is uniquely
associated with STOCK. This conclusion is apparent in Table 10.9. The coefficients
of DOPROD and CONSUM are completely determined from the regression of
IMPORT on C; alone. These coefficients do not change when Cs is used. The
addition of C causes the coefficient of STOCK to increase from 0.083 to 0.609.
Also, R? increases from 0.952 to 0.988. Selecting the model based on the first two
principal components, the resulting equation stated in original units is

IMPORT = -9.106 + 0.073DOPROD

+ 0.609STOCK + 0.106CONSUM. (10.32)

It provides a different and more plausible representation of the IMPORT relationship
than was obtained from the OLS results. In addition, the analysis has led to an
explicit quantification (in standardized variables) of the linear dependency in the
predictor variables. We have C3 = 0 or equivalently [from (10.25)]

—0.707X1 — 0.007X5 + 0.707X3 = 0.
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Table 10.9 Estimated Regression Coefficients for the Standardized and Original
Variables Using Different Numbers of Principal Components for IMPORT Data

(1949-1959)

First PC First and Second All PCs
Equation (10.29) PCs Equation (10.30) Equation (10.26)
Variable Stand. Original Stand. Original Stand. Original
Constant 0 —7.735 0 —9.106 0 —10.130
DOPROD 0.487 0.074 0.480 0.073 —0.339 —0.051
STOCK 0.030 0.083 0.221 0.609 0.213 0.587
CONSUM 0.487 0.107 0.483 0.106 1.303 0.287
o 0.232 0.121 0.108
R? 0.952 0.988 0.992

The standardized values of DOPROD and CONSUM are essentially equal. This
information can be useful qualitatively and quantitatively if (10.32) is used for
forecasting or for analyzing policy decisions.

10.9 CONSTRAINTS ON THE REGRESSION COEFFICIENTS

There is a second interpretation of the results of the principal components regression
equation. The interpretation is linked to the notion of imposing constraints on the
0’s which was introduced in Chapter 9. The estimates in (10.30) were obtained by
setting a3 equal to zero in (10.28). From (10.27), a3 = 0 implies that

—0.70761 — 0.00762 + 0.70703 =0 (10.33)
or 61 = 63. In original units, (10.33) becomes
—6.6083; +4.5483 =0 (10.34)

or B, = 0.6983. Therefore, the estimates obtained by regression on C} and Co
could have been obtained using OLS as in Chapter 9 with a linear constraint on the
coefficients given by (10.34).

Recall that in Chapter 9 we conjectured that 3; = f3 as a prior constraint on
the coefficients. It was argued that the constraint was the result of a qualitative
judgment based on knowledge of the process under study. It was imposed without
looking at the data. Now, using the data, we have found that principal components
regression on C; and C gives a result that is equivalent to imposing the constraint
in (10.34). The result suggests that the marginal effect of domestic production on
imports is about 69% of the marginal effect of domestic consumption on imports.

To summarize, the method of principal components regression provides both al-
ternative estimates of the regression coefficients as well as other useful information
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about the underlying process that is generating the data. The structure of linear
dependence among the predictor variables is made explicit. Principal components
with small variances (eigenvalues) exhibit the linear relationships among the orig-
inal variables that are the source of collinearity. Also elimination of collinearity
by dropping one or more principal components from the regression is equivalent to
imposing constraints on the regression coefficients. It provides a constructive way
of identifying those constraints that are consistent with the proposed model and the
information contained in the data.

10.10 PRINCIPAL COMPONENTS REGRESSION: A CAUTION

We have seen in Chapter 9 that principal components analysis is an effective
tool for the detection of collinearity. In this chapter we have used the principal
components as an alternative to the least squares method to obtain estimates of
the regression coefficients in the presence of collinearity. The method has worked
to our advantage in the Import data, where the first two of the three principal
components have succeeded in capturing most of the variability in the response
variable (see Table 10.9). This analysis is not guaranteed to work for all data sets.
In fact, the principal components regression can fail in accounting for the variability
in the response variable. To illustrate this point Hadi and Ling (1998) use a data
set known as the Hald’s data and a constructed response variable U. The original
data set can be found in Draper and Smith (1998, p. 348). It is given here in Table
10.10 and can also be found at the book’s Website.® The data set has four predictor
variables. The response variable U and the four PCs, C, - - -, (4, corresponding
to the four predictor variables are given in Table 10.11. The variable U is already
in a standardized form. The sample variances of the four PCs are A\; = 2.2357, As
= 1.5761, A3 = 0.1866, and A\, = 0.0016. The condition number, k = \/A1/Ag =
V/2.236/0.002 = 37, is large, indicating the presence of collinearity in the original
data.
The regression results obtained from fitting the model

U=a1C1+a3C; +a3C3+a4Cq+¢ (10.35)

to the data are shown in Table 10.12. The coefficient of the last PC, (4, is highly
significant and the other three coefficients are not significant. Now if we drop Cy,
the PC with the smallest variance, we obtain the results in Table 10.13. As it is
clear from a comparison of Tables 10.12 and 10.13, all four PCs capture almost all
the variability in U, while the first three account for none of the variability in U.
Therefore, one should be careful before dropping any of the PCs.

Another problem with the principal component regression is that the results
can be unduly influenced by the presence of high-leverage points and outliers (see
Chapter 4 for detailed discussion of outliers and influence). This is because the PCs

® http://www.aucegypt.edu/faculty/hadi/RABES
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Table 10.10 Hald’s Data

Y X, X, X3 X4
78.5 7 26 6 60
74.3 1 29 15 52
104.3 11 56 8 20
87.6 11 31 8 47
95.9 7 52 6 33
109.2 11 55 9 22
102.7 3 71 17 6
72.5 1 31 2 44
93.1 2 54 18 22
115.9 21 47 4 26
83.8 1 40 23 34
113.3 11 66 9 12
109.4 10 68 8 12

Source: Draper and Smith (1998, p. 348)

Table 10.11 Response Variable U and Set of Principal Components of Four
Predictor Variables

U Cy Cs Cs Cy
0.955 1.467 1.903 —0.530 0.039
—0.746 2.136 0.238 —0.290 —0.030
—2.323 —1.130 0.184 —0.010 —0.094
—0.820 0.660 1.577 0.179 —0.033
0.471 —0.359 0.434 —0.740 0.019
-0.299 —0.967 0.170 0.086 —-0.012
0.210 —0.931 -2.135 —0.173 0.008
0.558 2.232 —0.692 0.460 0.023
-1.119 0.352 —1.432 —0.032 —0.045
0.496 —1.663 1.828 0.851 0.020
0.781 1.641 -1.295 0.494 0.031
0918 —1.693 —0.392 —0.020 0.037
0.918 —1.746 —0.438 —0.275 0.037

www.it-ebooks.info


http://www.it-ebooks.info/

RIDGE REGRESSION 279

Table 10.12 Regression Results Using All Four PCs of Hald’s Data

Variable Coefficient s.e. t-Test p-value
Cy —0.002 0.001 —1.45 0.1842
Cy —0.002 0.002 -1.77 0.1154
Cs 0.002 0.005 049 0.6409
Cy 24.761 0.049 502.00 < 0.0001

n=13 R%?=1.00 R%2 =1.00 & = 0.0069 df =8

Table 10.13 Regression Results Using the First Three PCs of Hald’s Data

Variable Coefficient s.e. t-Test p-value
Cy —0.001 0.223 -0.01 0.9957
Cs —0.000 0.266 —-0.00 0.9996
Cs 0.002 0.772 0.00 0.9975

n =13 R? =0.00 R?2=-0.33 6 =1.155 df=9

are computed from the correlation matrix, which itself can be seriously affected by
outliers in the data. A scatter plot of the response variable versus each of the PCs
and the pairwise scatter plots of the PCs versus each other would point out outliers
if they are present in the data. The scatter plot of U versus each of the PCs (Figure
10.3) show that there are no outliers in the data and U is related only to C4, which is
consistent with the results in Tables 10.12 and 10.13. The pairwise scatter plots of
the PCs versus each other (not shown) also show no outliers in the data. For other
possible pitfalls of principal components regression see Hadi and Ling (1998).

10.11 RIDGE REGRESSION

Ridge regression’ provides another alternative estimation method that may be used
to advantage when the predictor variables are highly collinear. There are a number
of alternative ways to define and compute ridge estimates (see the Appendix to this
chapter). We have chosen to present the method associated with the ridge trace.
It is a graphical approach and may be viewed as an exploratory technique. Ridge
analysis using the ridge trace represents a unified approach to problems of detection
and estimation when collinearity is suspected. The estimators produced are biased
but tend to have a smaller mean squared error than OLS estimators (Hoerl and
Kennard, 1970).

7 Hoerl (1959) named the method ridge regression because of its similarity to ridge analysis used in
his earlier work to study second-order response surfaces in many variables.
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Figure 10.3 Scatter plots of I/ versus each of the PCs of the Hald’s data.

Ridge estimates of the regression coefficients may be obtained by solving a
slightly altered form of the normal equations (introduced in Chapter 3). Assume
that the standardized form of the regression model is given as

V=0X1+ 60X+ - +60,X, +¢. (10.36)

The estimating equations for the ridge regression coefficients are

(1 + k)91 + T12 92 + -+ T1ip Gp = Ty,

ro; 6 + (1 + k)92 + -+ Top 0 = T2y,
b . [ A (10.37)

rpp B+ rp2 B2 + - 4+ (14Kk)8, = 1y,

where r;; is the correlation between the ith and jth predictor variables and 7y, is
the correlation between the ith predictor variable and the response variable Y. The
solution to (10.13), 4y, - - -, ép, is the set of estimated ridge regression coefficients.
The ridge estimates may be viewed as resulting from a set of data that has been
slightly altered. See the Appendix to this chapter for a formal treatment.

The essential parameter that distinguishes ridge regression from OLS is k. Note
that when k = 0, the 6’s are the OLS estimates. The parameter k£ may be referred
to as the bias parameter. As k increases from zero, bias of the estimates increases.
On the other hand, the fotal variance (the sum of the variances of the estimated
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regression coefficients) is

%)

P p .
Total Variance(k Z = o2 Z (/\—/—\:k)i ) (10.38)
= j

j=1
which is a decreasing function of k. The formula in (10.38) shows the effect of

the ridge parameter on the total variance of the ridge estimates of the regression
coefficients. Substituting £ = 0 in (10.38), we obtain

P

| Variance(0) = 0 " — 10.39
Total Variance(0) = o g} vl ( )
which shows the effect of small eigenvalue on the total variance of the OLS estimates
of the regression coefficients.

As k continues to increase without bound, the regression estimates all tend
toward zero.? The idea of ridge regression is to pick a value of k for which the
reduction in total variance is not exceeded by the increase in bias.

It has been shown that there is a positive value of & for which the ridge estimates
will be stable with respect to small changes in the estimation data (Hoerl and
Kennard, 1970). In practice, a value of & is chosen by computing 01, - ,ép for a
range of k values between 0 and 1 and plotting the results against k. The resulting
graph is known as the ridge trace and is used to select an appropriate value for k.
Guidelines for choosing & are given in the following example.

10.12 ESTIMATION BY THE RIDGE METHOD

A method for detecting collinearity that comes out of ridge analysis deals with
the instability in the estimated coefficients resulting from slight changes in the
estimation data. The instability may be observed in the ridge trace. The ridge trace
is a simultaneous graph of the regression coefficients, 61, - Gp, plotted against k&
for various values of k such as 0.001, 0.002, and so on. Figure 10.4 is the ridge
trace for the IMPORT data. The graph is constructed from Table 10.14, which has
the ridge estimated coefficients for 29 values of k ranging from O to 1. Typically,
the values of k are chosen to be concentrated near the low end of the range. If the
estimated coefficients show large fluctuations for small values of k, instability has
been demonstrated and collinearity is probably at work.

What is evident from the trace or equivalently from Table 10.14 is that the
estimated values of the coefficients §; and 63 are quite unstable for small values
of k. The estimate of #; changes rapidly from an implausible negative value of
—0.339 to a stable value of about 0.43. The estimate of 3 goes from 1.303 to
stabilize at about 0.50. The coefficient of XQ (STOCK), 65 is unaffected by the
collinearity and remains stable throughout at about 0.21.

¥ Because the ridge method tends to shrink the estimates of the regression coefficients toward zero,
ridge estimators are sometimes generically referred to as shrinkage estimators.
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Table 10.14 Ridge Estimates éj (k), as Functions of the Ridge Parameter k, for the
IMPORT Data (1949-1959)

k b1(k) b (k) 03(k)
0.000 -0.339 0.213 1.303
0.001 —-0.117 0.215 1.080
0.003 0.092 0.217 0.870
0.005 0.192 0.217 0.768
0.007 0.251 0.217 0.709
0.009 0.290 0.217 0.669
0.010 0.304 0.217 0.654
0.012 0.328 0.217 0.630
0.014 0.345 0.217 0.611
0.016 0.359 0.217 0.597
0.018 0.370 0.216 0.585
0.020 0.379 0.216 0.575
0.022 0.386 0.216 0.567
0.024 0.392 0.215 0.560
0.026 0.398 0.215 0.553
0.028 0.402 0.215 0.548
0.030 0.406 0.214 0.543
0.040 0.420 0.213 0.525
0.050 0.427 0.211 0.513
0.060 0.432 0.209 0.504
0.070 0.434 0.207 0.497
0.080 0.436 0.206 0.491
0.090 0.436 0.204 0.486
0.100 0.436 0.202 0.481
0.200 0.426 0.186 0.450
0.300 0411 0.173 0.427
0.400 0.396 0.161 0.408
0.500 0.381 0.151 0.391
0.600 0.367 0.142 0.376
0.700 0.354 0.135 0.361
0.800 0.342 0.128 0.348
0.900 0.330 0.121 0.336
1.000 0.319 0.115 0.325
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Figure 10.4 Ridge trace: IMPORT data (1949-1959).

The next step in the ridge analysis is to select a value of k¥ and to obtain the
corresponding estimates of the regression coefficients. If collinearity is a serious
problem, the ridge estimators will vary dramatically as k is slowly increased from
zero. As k increases, the coefficients will eventually stabilize. Since & is a bias
parameter, it is desirable to select the smallest value of £ for which stability occurs
since the size of k is directly related to the amount of bias introduced. Several
methods have been suggested for the choice of k. These methods include:

1. Fixed Point. Hoerl, Kennard, and Baldwin (1975) suggest estimating k by

52
k=200 (10.40)
2 [0;(0)
Fj=1
where 6,(0), - -, ép(O) are the least squares estimates of 61, - - -, 6, when

the model in (10.36) is fitted to the data (i.e., when k = 0), and &2(0) is the
corresponding residual mean square.

2. Iterative Method. Hoerl and Kennard (1976) propose the following iterative
procedure for selecting k: Start with the initial estimate of k£ in (10.40).
Denote this value by kg. Then, calculate

~2
o= PO (10.41)

P .
22 [05(ko)]?
i=1
Then use k; to calculate k9 as

ko = (10.42)

S 6k
i=1

Repeat this process until the difference between two successive estimates of
k is negligible.
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3. Ridge Trace. The behavior of 9;(k) as a function of & is easily observed
from the ridge trace. The value of k selected is the smallest value for which
all the coefficients @(k) are stable. In addition, at the selected value of k,
the residual sum of squares should remain close to its minimum value. The
variance inflation factors,” VIF;(k), should also get down to less than 10.
(Recall that a value of 1 is a characteristic of an orthogonal system and a
value less than 10 would indicate a noncollinear or stable system.)

4. Other Methods. Many other methods for estimating k& have been suggested
in the literature. See, for example, Marquardt (1970), Mallows (1973),
Goldstein and Smith (1974), McDonald and Galarneau (1975), Lawless and
Wang (1976), Dempster et al. (1977), Wahba, Golub, and Health (1979),
Hoerl and Kennard (1981), Masuo (1988), Khalaf and Shukur (2005), and
Dorugade and Kashid (2010). The appeal of the ridge trace, however, lies in
its graphical representation of the effects that collinearity has on the estimated
coefficients.

For the IMPORT data, the fixed point formula in (10.40) gives

3 % 0.0101
k= (—0.339)2 + (0.213)2 + (1.303)2 0.0164. (10.43)
The iterative method gives the following sequence: ky = 0.0164, k; = 0.0161,
and ko = 0.0161. So, it converges after two iterations to & = 0.0161. The ridge
trace in Figure 10.4 (see also Table 10.14) appears to stabilize for k around 0.04.
We therefore have three estimates of k (0.0164, 0.0161, and 0.04).

From Table 10.14, we see that at any of these values the improper negative sign
on the estimate of #; has disappeared and the coefficient has stabilized (at 0.359
for k = 0.016 and at 0.42 for k = 0.04). From Table 10.15, we see that the sum
of squared residuals, SSE(k), has only increased from 0.081 at £ = 0 to 0.108 at
k =0.016,and to 0.117 at k = 0.04 . Also, the variance inflation factors, VIF; (k)
and VIF3(k), decreased from about 185 to values between 1 and 4. It is clear that
values of k in the interval (0.016, 0.04) appear to be satisfactory.

The estimated coefficients from the model stated in standardized and original
variables units are summarized in Table 10.16. The original coefficient /S’j is
obtained from the standardized coefficient 9j using (10.24). For example, 31 is
calculated by

Brj = (sy/51)01 = (4.5437/29.9995)(0.4196) = 0.0635.

Thus, the resulting model in terms for the original variables fitted by the Ridge
method using k¥ = 0.04 is

IMPORT = -8.5537 + 0.0635DOPROD
+ 0.5859STOCK + 0.11566CONSUM.

® The formula for VIF; (k) is given in the Appendix to this chapter.
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Table 10.15  Residual Sum of Squares, SSE(k), and Variance Inflation Factors,
VIF;(k), as Functions of the Ridge Parameter k, for the IMPORT Data (1949-1959)

k SSE(k) VIF, (k) VIF,(k) VIF;(k)
0.000 0.0810 186.11 1.02 186.00
0.001 0.0837 99.04 1.01 98.98
0.003 0.0911 41.80 1.00 41.78
0.005 0.0964 23.00 0.99 22.99
0.007 0.1001 14.58 0.99 14.57
0.009 0.1027 10.09 0.98 10.09
0.010 0.1038 8.60 0.98 8.60
0.012 0.1056 6.48 0.98 6.48
0.014 0.1070 5.08 0.97 5.08
0.016 0.1082 4.10 0.97 4.10
0.018 0.1093 3.39 097 3.39
0.020 0.1102 2.86 0.96 2.86
0.022 0.1111 2.45 0.96 2.45
0.024 0.1118 2.13 0.95 2.13
0.026 0.1126 1.88 0.95 1.88
0.028 0.1132 1.67 0.95 1.67
0.030 0.1139 1.50 0.94 1.50
0.040 0.1170 0.98 0.93 0.98
0.050 0.1201 0.72 0.91 0.72
0.060 0.1234 0.58 0.89 0.58
0.070 0.1271 0.49 0.87 0.49
0.080 0.1310 0.43 0.86 0.43
0.090 0.1353 0.39 0.84 0.39
0.100 0.1400 0.35 0.83 0.35
0.200 0.2052 0.24 0.69 0.24
0.300 0.2981 0.20 0.59 0.20
0.400 0.4112 0.18 0.51 0.18
0.500 0.5385 0.17 0.44 0.17
0.600 0.6756 0.15 0.39 0.15
0.700 0.8191 0.14 0.35 0.14
0.800 0.9667 0.13 0.31 0.13
0.900 1.1163 0.12 0.28 0.12
1.000 1.2666 0.1 0.25 0.11
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Table 10.16  OLS and Ridge Estimates of the Regression Coefficients for IMPORT
Data (1949-1959)

OLS (k=0) Ridge (k = 0.04)
Standardized Original Standardized Original
Variable Coefficients Coefficients Coefficients Coefficients
Constant 0 —10.1300 0 —8.5537
DOPROD —-0.3393 —0.0514 0.4196 0.0635
STOCK 0.2130 0.5869 0.2127 0.5859
CONSUM 1.3027 0.2868 0.5249 0.1156
R?2=0.992 R?2=0.988

The equation gives a plausible representation of the relationship. Note that the final
equation for these data is not particularly different from the result obtained by using
the first two principal components (see Table 10.9), although the two computational
methods appear to be very different.

10.13 RIDGE REGRESSION: SOME REMARKS

Ridge regression provides a tool for judging the stability of a given body of data
for analysis by least squares. In highly collinear situations, as has been pointed
out, small changes (perturbations) in the data cause very large changes in the
estimated regression coefficients. Ridge regression will reveal this condition. Least
squares regression should be used with caution in these situations. Ridge regression
provides estimates that are more robust than least squares estimates for small
perturbations in the data. The method will indicate the sensitivity (or the stability)
of the least squares coefficients to small changes in the data.

The ridge estimators are stable in the sense that they are not affected by slight
variations in the estimation data. Because of the smaller mean square error property,
values of the ridge estimated coefficients are expected to be closer than the OLS
estimates to the true values of the regression coefficients. Also, forecasts of the
response variable corresponding to values of the predictor variables not included in
the estimation set tend to be more accurate.

The estimation of the bias parameter k is rather subjective. There are many
methods for estimating k but there is no consensus as to which method is prefer-
able. Regardless of the method of choice for estimating the ridge parameter k, the
estimated parameter can be affected by the presence of outliers in the data. There-
fore a careful checking for outliers should accompany any method for estimating k
to ensure that the obtained estimate is not unduly influenced by outliers in the data.

As with the principal components method, the criteria for deciding when the
ridge estimators are superior to the OLS estimators depend on the values of the
true regression coefficients in the model. Although these values cannot be known,
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we still suggest that ridge analysis is useful in cases where extreme collinearity is
suspected. The ridge coefficients can suggest an alternative interpretation of the
data that may lead to a better understanding of the process under study.

Another practical problem with ridge regression is that it has not been imple-
mented in some statistical packages. If a statistical package does not have a routine
for ridge regression, ridge regression estimates can be obtained from the standard
least squares package by using a slightly altered data set. Specifically, the ridge
estimates of the regression coefficients can be obtained from the regression of Y* on
X7, X,. The new response variable Y is obtained by augmenting Y by p new
fictitious observations, each of which is equal to zero. Similarly, the new predictor
variable X is obtained by augmenting X ; by p new fictitious observations, each

of which is equal to zero except the one in the jth position which is equal to vk,
where k is the chosen value of the ridge parameter. It can be shown that the ridge
estimates 6y (k), - - -, @,(k) are obtained by the least squares regression of Y* on
Xi e X;,‘ without having a constant term in the model.

10.14 SUMMARY

Both alternative estimation methods, ridge regression and principal components
regression, provide additional information about the data being analyzed. We have
seen that the eigenvalues of the correlation matrix of predictor variables play an
important role in detecting collinearity and in analyzing its effects. The regression
estimates produced by these methods are biased but may be more accurate than
OLS estimates in terms of mean square error. It is impossible to evaluate the gain
in accuracy for a specific problem since a comparison of the two methods to OLS
requires knowledge of the true values of the coefficients. Nevertheless, when severe
collinearity is suspected, we recommend that at least one set of estimates in addition
to the OLS estimates be calculated. The estimates may suggest an interpretation of
the data that were not previously considered.

There is no strong theoretical justification for using principal components or
ridge regression methods. We recommend that the methods be used in the presence
of severe collinearity as a visual diagnostic tool for judging the suitability of the data
for least squares analysis. When principal components or ridge regression analysis
reveal the instability of a particular data set, the analyst should first consider using
least squares regression on a reduced set of variables (as indicated in Chapter 9). If
least squares regression is still unsatisfactory (high VIFs, coefficients with wrong
signs, large condition number), only then should principal components or ridge
regression be used.

10.15 BIBLIOGRAPHIC NOTES

The principal components techniques used in this chapter are derived in most books
on multivariate statistical analysis. It should be noted that principal components
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analysis involves only the predictor variables. The analysis is aimed at character-
izing and identifying dependencies (if they exist) among the predictor variables.
For a comprehensive discussion of principal components, the reader is referred to
Johnson and Wichern (1992) or Seber (1984). Several statistical software packages
are now commercially available to carry out the analysis described in this chapter.

More recently, Jensen and Ramirez (2008) cast some doubt about the ability
of ridge estimators to actually improve the condition of an ill-conditioned linear
system and provide stable estimated regression coefficients and smaller variance
inflation factors. They introduce Surrogate Ridge Regression as an improvement of
Ridge Regression estimators. A brief description of the Surrogate Ridge Estimators
is given in Hadi (2011) and in the Appendix to this chapter.

EXERCISES

10.1 Use the Advertising data in Table 9.9:
(a) Verify that the estimated coefficients and their standard errors, which are
obtained using (10.14), are the same as those given in Table 10.3.
(b) Compute the five PCs in (10.12).

(c) Verify the regression results in Table 10.4.

10.2 Suppose we fit the model
Y = fo+ A Xy + o Xa+ 03 X3 + ¢, (10.44)

to a set of data, where each of the three variables has a mean of 0 and a
variance of 1. The three eigenvalues of the correlation matrix of the three
predictor variables are 1.93, 1.06, and 0.01. The corresponding eigenvectors
are given in Table 10.17. Table 10.18 shows a computer output obtained when
regressing Y on the principal components Cj, Cy, and C’3.

Table 10.17 Three Eigenvectors of the Correlation Matrix of the Three Predictors
in Model (10.44)

Vi Va Vi
X1 0.500 -0.697 0.514
X 0.484 0.717 0.501
X3 0.718 0.002 -0.696

(a) Compute the least squares estimate of 5y when fitting the model in (10.44)
to the data?

(b) Is there evidence of collinearity in the predictor variables? Explain,
(c) Whatis R? when Y is regressed on X7, X, and X3?
(d) What is the formula used to obtain C1?
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Table 10.18 Regression Output from the Regression of ¥ on the Principal
Components C, Cs, and Cs

ANOVA Table
Source Sum of Squares df Mean Square F-Test
Regression 86.6542 3 28.8847 225
Residual 12.3458 96 0.128602
Coefficients Table

Variable Coefficient s.e. t-Test p-value
o 0.67 0.03 25.9 0.0001
C, -0.02 0.03 -0.56 0.5782
Cs -0.56 0.37 -1.53 0.1291

(e) Derive the principal components predicted equation ?pc of the model in
(10.44).

10.3 Refer to the eigenvectors given in Table 9.15.

(a) How many principal components can one construct for this data set?
(b) Write the formulas for two of these principal components.

10.4 Longley’s (1967) data set is a classic example of collinear data. The data

(Table 10.19) consist of a response variable Y and six predictor variables X,
---, Xg. The data can be found at the book’s Website. The initial model

Y=0%+060X1+ - +B:Xe +e, (10.45)

in terms of the original variables, can be written in terms of the standardized
variables as

Y =60 Xi+ - +60sX¢+ €. (10.46)

(a) Fit the model (10.46) to the data using least squares. What conclusion
can you draw from the data?

(b) From the results you obtained from the model in (10.46), obtain the least
squares estimated regression coefficients in model (10.45).

(c) Now fit the model in (10.45) to the data using least squares and verify that
the obtained results are consistent with those obtained above.

(d) Compute the correlation matrix of the six predictor variables and the cor-
responding scatter plot matrix. Do you see any evidence of collinearity?

(e) Compute the corresponding PCs, their sample variances, and the condition
number. How many different sets of collinearity exist in the data? What
are the variables involved in each set?
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Table 10.19 Longley (1967) Data

Y X1 X2 X3 X4 Xs X6
60323 830 234289 2356 1590 107608 1947
61122 885 259426 2325 1456 108632 1948
60171 882 258054 3682 1616 109773 1949
61187 895 284599 3351 1650 110929 1950
63221 962 328975 2099 3099 112075 1951
63639 981 346999 1932 3594 113270 1952
64989 990 365385 1870 3547 115094 1953
63761 1000 363112 3578 3350 116219 1954
66019 1012 397469 2904 3048 117388 1955
67857 1046 419180 2822 2857 118734 1956
68169 1084 442769 2936 2798 120445 1957
66513 1108 444546 4681 2637 121950 1958
68655 1126 482704 3813 2552 123366 1959
69564 1142 502601 3931 2514 125368 1960
69331 1157 518173 4806 2572 127852 1961
70551 1169 554894 4007 2827 130081 1962

(f) Based on the number of PCs you choose to retain, obtain the PC estimates
of the coefficients in (10.45) and (10.46).

(g2) Using the ridge method, construct the ridge trace. What value of & do
you recommend to be used in the estimation of the parameters in (10.45)
and (10.46)? Use the chosen value of £ and compute the ridge estimates
of the regression coefficients in (10.45) and (10.46).

(h) Compare the estimates you obtained by the three methods. Which one
would you recommend? Explain.

10.5 Repeat Exercise 10.4 using the Hald’s data discussed in Section 10.10 but
using the original response variable Y and the four predictors X, - -, X4.
The data appear in Table 10.10.

10.6 From your analysis of the Longley and Hald data sets, do you observe the sort
of problems pointed out in Section 10.10? Explain.

10.7 Consider the data set in Table 10.20, which consists of a dependent variable
Y and six predictor variables, X;, X2, -, Xe. Analyze the data set for
collinearity. In particular.

(a) Compute the condition number for the X -variables. Is there any evidence
of collinearity?

(b) Compute all principal components (PCs) and regress Y on all PCs. Which
PCs are significant?
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Table 10.20 A Data Set for Exercise 10.7.

Row Y X1 X2 X3 X4 X5 X6
1 17 7 48 39 32 17 0
2 25 12 86 20 26 22 2
3 52 68 90 84 87 34 12
4 39 83 99 20 19 23 16
5 37 89 22 25 58 17 18
6 26 75 37 1 5 7 16
7 34 57 86 3 52 27 11
8 6 6 1 52 14 2 2
9 57 96 97 63 64 33 19

10 39 42 29 71 74 21 8
11 26 10 7 34 95 19 3
12 42 95 18 87 54 12 19
13 26 63 58 63 46 20 11
14 37 94 38 33 31 14 20
15 49 90 41 93 88 25 17
16 38 19 88 55 99 35 4
17 22 40 28 91 20 8 8
18 55 75 75 88 84 31 15
19 35 70 58 34 48 20 13
20 38 32 85 80 63 29 4
21 55 85 94 69 83 35 16
22 24 45 90 9 1 17 10
23 21 14 72 89 25 18 2
24 22 96 19 61 23 6 19
25 14 73 6 60 18 4 14
26 12 34 3 23 11 2 6
27 31 41 67 27 84 30 7
28 30 48 53 33 13 12 9
29 43 50 58 81 96 32 9
30 18 3 8 94 73 16 1
31 27 51 47 37 11 12 10
32 41 65 39 68 73 22 12
33 43 98 67 36 9 16 21
34 32 60 17 55 41 11 13
35 17 17 35 5 51 17 3
36 36 88 12 97 75 16 17
37 23 63 27 15 2 5 12
38 28 86 21 42 24 9 17
39 36 85 25 9 85 21 16
40 27 60 44 23 32 14 10
41 29 24 39 24 77 22 6
42 53 90 38 91 65 21 19
43 41 51 90 85 57 30 8
44 32 6 25 60 64 17 0
45 50 82 98 68 56 31 15
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(c) Construct the scatter plot of the first two PCs. What would the slope of

the least squares regression line describing the relationship between these
two PCs be? Why?

(d) How many sets of collinearity exist in the data?
(e) Which of the variables are involved in each set?

(f) What is the relationship among the variables in each set of collinear
variables?

(g) How many principal components would you use to deal with collinearity
in this case?

(h) Which model would you recommend to describe the relationship between
Y and the other predictors variables?

Appendix: 10.A Principal Components

In this appendix we present the principal components approach to the detection of
collinearity using matrix notation.

A.1 The Model

The regression model can be expressed as
Y =270 +c¢, (A1)
where Y is an n x 1 vector of observations on the response variable,
Z = (Z1,, Zy)

is an n X p matrix of n observations on p predictor variables, 8 is a p x 1 vector
of regression coefficients, and € is an n x 1 vector of random errors. It is assumed
that E(e) = 0, E(ee”) = oI, where I is the identity matrix of order n. It is also
assumed, without loss of generality, that Y and Z have been centered and scaled
so that ZTZ and ZTY are matrices of correlation coefficients.!®

There exist square matrices, A and V satisfying'!

vI(ZTZ)V=A and VIV=VVT =1L (A.2)

The matrix A is diagonal with the ordered eigenvalues of ZTZ on the diagonal.
These eigenvalues are denoted by Ay > Ag > --- > Ap. The columns of V are

1 Note that Z; is obtained by transforming the original predictor variable X; by
P Lk N
V(@i — %)

Thus, Z; is centered and scaled to have unit length, that is, 3 2% = 1.
! See, for example, Strang (1988) or Hadi (1996).
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the normalized eigenvectors corresponding to Ap, - -, A,. Since V VT =1, the
regression model in (A.1) can be restated in terms of the PCs as

Y =2ZVVT0+e=Ca+e, (A.3)

where
C=ZV and a=VTe. (A.4)

The matrix C contains p columns Cy, - - -, Cp, each of which is a linear function
of the predictor variables Zj, - -, Zy. The columns of C are orthogonal and are
referred to as principal components (PCs) of the predictor variables Z,, - -, Zj.
The columns of C satisfy C] C; = A; and C] C; = 0 for i # j.

The PCs and the eigenvalues may be used to detect and analyze collinearity in
the predictor variables. The restatement of the regression model given in (A.3)
is a reparameterization of (A.1) in terms of orthogonal predictor variables. The
A’s may be viewed as sample variances of the PCs. If A; = 0, all observations
on the 7th PC are also zero. Since the jth PC is a linear function of Z, - - -, Zp,
when A; = 0 an exact linear dependence exists among the predictor variables. It
follows that when ), is small (approximately equal to zero) there is an approximate
linear relationship among the predictor variables. That is, a small eigenvalue is an
indicator of collinearity. In addition, from (A.4) we have

P
C; = viZi,
i=1
which identifies the exact form of the linear relationship that causes the collinearity.

A.2 Precision of Linear Functions of @

Denoting & and 0 as the least squares estimators for o and 8, respectively, it
can be shown that & = V78, and conversely,® = Vé. With ¢ = (CTC)1
CTY, it follows that the variance-covariance matrix of & is V(&) = 0?A ™!, and
the corresponding matrix for 6 is V(8) = 62VA~'VT. Let L be an arbitrary
p x 1 vector of constants. The linear function § = LT has least squares estimator
6 = LT and variance

Var(é) = o’LYVA~IVTL, (A.5)

Let V; be the jth column of V. Then L can be represented as L = Z;’:l r;Vj,

for appropriately chosen constants r1,---,7,. Then (A.S) becomes Var(é) =
o’RT AR or, equivalently,

K3

Var(8) = o > -

=17

; (A.6)

>

where A1 is the inverse of A..
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To summarize, the variance of § is a linear combination of the reciprocals of
the eigenvalues. It follows that § will have good precision either if none of the
eigenvalues are near zero or if 7"12. is at most the same magnitude as A; when J; is
small. Furthermore, it is always possible to select a vector, L, and thereby a linear
function of 9, so that the effect of one or a few small eigenvalues is eliminated and
LT has a small variance. Refer to Silvey (1969) for a more complete development
of these concepts.

Appendix: 10.B Ridge Regression
In this appendix we present the Ridge regression method in matrix notation.

B.1 The Model

The regression model can be expressed as in (A.1). The least squares estimator for
0is @ = (ZTZ)"'ZTY. It can be shown that

p
E[(0-6)T(8-0)]=0>> AT, (B.1)
j=1

where A\ > Ay > .- > ), are the eigenvalues of ZT7Z. The left-hand side of
(B.1) is called the total mean square error. 1t serves as a composite measure of the
squared distance of the estimated regression coefficients from their true values.

B.2 Effect of Collinearity

It was argued in Chapter 9 and in Appendix 10.A that collinearity is synonymous
with small eigenvalues. It follows from (B.1) that when one or more of the A’s
are small, the total mean square error of 0 is large, suggesting imprecision in the
least squares estimation method. The ridge regression approach is an attempt to
construct an alternative estimator that has a smaller total mean square error value.

B.3 Ridge Regression Estimators

Hoerl and Kennard (1970) suggest a class of estimators indexed by a parameter
k > 0. The estimator is (for a given value of k)

0(k) = (ZTZ + k1) 'ZTY = (ZTZ + k1) 27 Z6. (B.2)
The expected value of 8(k) is
E[6(k)] = (272 + k1)"127Z0 (B.3)
and the variance-covariance matrix is

Var[f(k)] = (ZTZ + k1) "1Z2TZ(Z7Z + kI)~'o?. (B.4)
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The variance inflation factor, VIF;(k), as a function of k is the jth diagonal element
of the matrix (ZTZ + kI)'ZTZ(ZTZ + kI)~L.
The residual sum of squares can be written as
SSE(k) = (Y —ZO(k))T(Y ~ Z8(k))
= (Y -ZT(Y — Z8) + (8(k) — )TZTZ(8(k) — 6). (B.5)
The total mean square error is
TMSE(k) = E[6(k)—6)"(8(k) - 6)]
= o2 trace[(ZTZ + kD) 12TZ(Z2TZ + k)7
+ k20T (ZTZ + k1) %0

P
= o®Y NN +k) 2+ k0T(ZTZ+ k)70, (B.6)
j=1
Note that the first term on the right-hand side of (B.6) is the sum of the variances
of the components of 8(k) (total variance) and the second term is the square of the
bias. Hoerl and Kennard (1970) prove that there exists a value of £ > 0 such that

E[(B(k) — 6)T(6(k) — 0)] < E[(6 — )" (8 — 0)],

that is, the mean square error of the ridge estimator, 8(k), is less than the mean
square error of the OLS estimator, 6. Hoerl and Kennard (1970) suggest that an
appropriate value of k¥ may be selected by observing the ridge trace and some
complementary summary statistics for @(k) such as SSE(k) and VIF;(k). The
value of k selected is the smallest value for which (k) is stable. In addition, at the
selected value of k, the residual sum of squares should remain close to its minimum
value, and the variance inflation factors are less than 10, as discussed in Chapter 9.

Ridge estimators have been generalized in several ways. They are sometimes
generically referred to as shrinkage estimators, because these procedures tend to
shrink the estimates of the regression coefficients toward zero. To see one possible
generalization, consider the regression model restated in terms of the principal
components, C = (Cy,-- -, Cy), discussed in the Appendix to this chapter. The
general model takes the form

Y =Ca +e¢, (B.7)
where
C=2ZV, a=V7e, (B.8)
VIZTZV =A, VIV=vVT =1,
and
M 0 0 - 0 0
0 X 0 -~ 0 O
A= : . : ;AL A2 > 2> Ay,
0 0 0 dp—1 O
0 0 0 0 XA
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is a diagonal matrix consisting of the ordered eigenvalues of Z7 Z. The total mean
square error in (B.6) becomes

TMSE(k) = E[(8(k) - 68)T(B(k) — )]

5 p p k2o 2
o B.
;Am Z(x sl )
where o = (oq,a9,-++,ap). Instead of taking a single value for k, we can
consider several different values k, say ki, kz, - - -, kp. We consider separate ridge

parameters (i.e., shrinkage factors) for each of the regression coefficients. The
quantity k, instead of being a scalar, is now a vector and denoted by k. The total
mean square error given in (B.9) now becomes

TMSE(k) = E[(é(k)— 0)T(6(k) — 0)]
L Kol
= 22(}\ +k) Zlm (B.10)

The total mean square error given in (B.10) is minimized by taking k; = 02/ a?.
An iterative estimation procedure is suggested. At Step 1, k; is computed by using
ordinary least squares estimates for 02 and ;. Then a new value of &(k) is
computed,

ak) = (CTC+K)CTy,

where K is a diagonal matrix with diagonal elements ki, -, k, from Step 1.
The process is repeated until successive changes in the components of &(k) are
negligible. Then, using (B.8), the estimate of 0 is

0(k) = Va(k). (B.11)

The two ridge-type estimators (one value of k, several values of k) defined previ-
ously, as well as other related alternatives to ordinary least squares estimation, are
discussed by Dempster et al. (1977). The different estimators are compared and
evaluated by Monte Carlo techniques. In general, the choice of the best estimation
method for a particular problem depends on the specific model and data. Dempster
et al. (1977) hint at an analysis that could be used to identify the best estimation
method for a given set of data. At the present time, our preference is for the simplest
version of the ridge method, a single ridge parameter k, chosen after an examination
of the ridge trace.

Appendix: 10.C Surrogate Ridge Regression
We give here a very brief description of Surrogate Ridge regression introduced

by Jensen and Ramirez (2008) who cast some doubt about the ability of ridge
estimators to actually improve the condition of an ill-conditioned linear system
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and provide stable estimated regression coefficients and smaller variance inflation
factors. Note that the ridge estimator in (B.2) is the solution of the linear system

(2TZ + k1,)3 = ZTY, (C.1)

The condition number of the matrix (Z7Z + kI,,) on the left-hand side of (C.1) is
\/ (A1 + k)/(Ap + k), which is smaller than the condition number of (ZT Z, which

is y/A1/Ap. Thus adding k to each of the diagonal elements of ZT'Z improves its
condition. But the matrix Z on the right-hand side of (C.1) remains ill-conditioned.
To also improve the condition of the right-hand side of (C.1), Jensen and Ramirez
(2008) propose replacing the ill-conditioned regression model in (A.1) by the
surrogate but less ill-conditioned model

Y =72,.8+c¢, (C2)

where Zy = U(A + kI,)Y/?VT, the matrices U and V are obtained from the
singular-value decomposition of Z = UDVT [see, e.g., Golub and van Loan
(1989)] with UTU = VIV = I,, and D is a diagonal matrix containing the
corresponding ordered singular values of Z. Note that the square of the singular
values of X are the eigenvalues of Z7Z, that is, D*> = A. Because Z] Z;, =
ZTZ + kI, the least squares estimator of the regression coefficients in (C.2) is the
solution of the linear system

(Z"Z + kL,)B8 = Z1Y, (C.3)

which is given by .
B, (k) = (ZTZ + k1) 'Z1Y. (C4)

Jensen and Ramirez (2008) study the properties of the surrogate ridge regression
estimator, ,33 (k),in (C.4), and using a case study they demonstrate that the surrogate
estimator is more conditioned than the classical ridge estimator, B(k), in (B.2).
For example, they observe that (a) the condition of the variance of ||3,(k)|| is
monotonically increasing in k¥ and (b) the maximum variance inflation factor is
monotonically decreasing in k. These properties do not hold for the classical ridge
estimator, ,@ (k).
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CHAPTER 11

VARIABLE SELECTION PROCEDURES

11.1 INTRODUCTION

In our discussion of regression problems so far we have assumed that the variables
that go into the equation were chosen in advance. Our analysis involved examining
the equation to see whether the functional specification was correct, and whether
the assumptions about the error term were valid. The analysis presupposed that the
set of variables to be included in the equation had already been decided. In many
applications of regression analysis, however, the set of variables to be included
in the regression model is not predetermined, and it is often the first part of the
analysis to select these variables. There are some occasions when theoretical or
other considerations determine the variables to be included in the equation. In those
situations the problem of variable selection does not arise. But in situations where
there is no clear-cut theory, the problem of selecting variables for a regression
equation becomes an important one.

The problems of variable selection and the functional specification of the equa-
tion are linked to each other. The questions to be answered while formulating a
regression model are: Which variables should be included, and in what form should
they be included; that is, should they enter the equation as an original variable X
or as some transformed variable such as X2, log X, or a combination of both?
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Although ideally the two problems should be solved simultaneously, we shall for
simplicity propose that they be treated sequentially. We first determine the variables
that will be included in the equation, and after that investigate the exact form in
which the variables enter it. This approach is a simplification, but it makes the
problem of variable selection more tractable. Once the variables that are to be
included in the equation have been selected, we can apply the methods described
in the earlier chapters to arrive at the actual form of the equation.

11.2 FORMULATION OF THE PROBLEM

We have a response variable Y and g predictor variables X1, X5, -+, X,. A linear
model that represents Y in terms of ¢ variables is
q
yi = Bo+ Y Bjzij + €, (11.1)
Jj=1

where 3; are parameters and &; represents random disturbances. Instead of dealing
with the full set of variables (particularly when g is large), we might delete a number
of variables and construct an equation with a subset of variables. This chapter is
concerned with determining which variables are to be retained in the equation. Let
us denote the set of variables retained by X1, X»,---, X, and those deleted by
Xp+1, Xp42, -+, Xq. Let us examine the effect of variable deletion under two
general conditions:

1. The model that connects Y to the X’s has all 5’s (89, £1, - - -, B4) nonzero.

2. The model has 5y, 81, - - -, B, nonzero, but 3,11, Bpy2,- - -, By zero.

Suppose that instead of fitting (11.1) we fit the subset model

P
Yi =,Bo+z,3jxij + ;. (11.2)
j=1

We shall describe the effect of fitting the model to the full and partial set of X’s
under the two alternative situations described previously. In short, what are the
effects of including variables in an equation when they should be properly left out
(because the population regression coefficients are zero) and the effect of leaving
out variables when they should be included (because the population regression
coefficients are not zero)? We will examine the effect of deletion of variables on
the estimates of parameters and the predicted values of Y. The solution to the
problem of variable selection becomes a little clearer once the effects of retaining
unessential variables or the deletion of essential variables in an equation are known.

11.3 CONSEQUENCES OF VARIABLES DELETION

Denote the estimates of the regression parameters by Ba, Bf, ceey B;‘ when the
model (11.1) is fitted to the full set of variables X3, Xs,-+,X,. Denote the
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estimates of the regression parameters by Bo, ,31, cee Bp when the model (11.2)
is fitted. Let 7;* and ¥; be the predicted values from the full and partial set
of variables corresponding to an observation (21, Z, - -, Ziq). The results can
now be summarized as follows (a summary using matrix notation is given in the
Appendix to this chapter): Bg, ﬁ}, ceey Bp are biased estimates of 3o, 81, -+, 3

unless the remaining 3’s in the model (8p+1, Bpt2, * - - , By) are zero or the variables
X1, X2, -+, X, are orthogonal to the variable set (Xp41, Xpi2,:--,X,). The
estimates g, 07, - - -, B, have less precision than Bo, B1,- -+, Bp; that is,

The variance of the estimates of regression coefficients for variables in the reduced
equation are not greater than the variances of the corresponding estimates for the
full model. Deletion of variables decreases or, more correctly, never increases
the variances of estimates of the retained regression coefficients. Since (3; are
biased and B; are not, a better comparison of the precision of estimates would be

obtained by comparing the mean square errors of Bj with the variances of B; The

mean squared errors (MSE) of Bj will be smaller than the variances of ﬁ}*, only
if the deleted variables have regression coefficients smaller in magnitude than the
standard deviations of the estimates of the corresponding coefficients. The estimate
of 02, based on the subset model, is generally biased upward.

Letus now look at the effect of deletion of variables on prediction. The prediction
1; 1s biased unless the deleted variables have zero regression coefficients, or the set
of retained variables are orthogonal to the set of deleted variables. The variance of
a predicted value from the subset model is smaller than or equal to the variance of
the predicted value from the full model; that is,

Var(g;) < Var(g;).

The conditions for MSE(;) to be smaller than Var(y; ) are identical to the conditions
for MSE(Bj) to be smaller than Var(,@;), which we have already stated. For further
details, refer to Chatterjee and Hadi (1988).

The rationale for variable selection can be outlined as follows: Even though the
variables deleted have nonzero regression coefficients, the regression coefficients
of the retained variables may be estimated with smaller variance from the subset
model than from the full model. The same result also holds for the variance of
a predicted response. The price paid for deleting variables is in the introduction
of bias in the estimates. However, there are conditions (as we have described
above), when the MSE of the biased estimates will be smaller than the variance of
their unbiased estimates; that is, the gain in precision is not offset by the square
of the bias. On the other hand, if some of the retained variables are extraneous
or unessential, that is, have zero coefficients or coefficients whose magnitudes are
smaller than the standard deviation of the estimates, the inclusion of these variables
in the equation leads to a loss of precision in estimation and prediction.
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The reader is referred to Sections 3.5, 4.12, and 4.13 for further elaboration on
the interpretation of regression coefficients and the role of variables in regression
modeling.

11.4 USES OF REGRESSION EQUATIONS

A regression equation has many uses. These are broadly summarized below.

11.4.1 Description and Model Building

A regression equation may be used to describe a given process or as a model
for a complex interacting system. The purpose of the equation may be purely
descriptive, to clarify the nature of this complex interaction. For this use there
are two conflicting requirements: (1) to account for as much of the variation as
possible, which points in the direction for inclusion of a large number of variables;
and (2) to adhere to the principle of parsimony, which suggests that we try, for ease
of understanding and interpretation, to describe the process with as few variables
as possible. In situations where description is the prime goal, we try to choose the
smallest number of predictor variables that accounts for the most substantial part
of the variation in the response variable.

11.4.2 Estimation and Prediction

A regression equation is sometimes constructed for prediction. From the regression
equation we want to predict the value of a future observation or estimate the mean
response corresponding to a given observation. When a regression equation is used
for this purpose, the variables are selected with an eye toward minimizing the MSE
of prediction.

11.4.3 Control

A regression equation may be used as a tool for control. The purpose for con-
structing the equation may be to determine the magnitude by which the value of a
predictor variable must be altered to obtain a specified value of the response (target)
variable. Here the regression equation is viewed as a response function, with Y as
the response variable. For control purposes it is desired that the coefficients of the
variables in the equation be measured accurately; that is, the standard errors of the
regression coefficients are small.

These are the broad uses of a regression equation. Occasionally, these functions
overlap and an equation is constructed for some or all of these purposes. The main
point to be noted is that the purpose for which the regression equation is constructed
determines the criterion that is to be optimized in its formulation. It follows that a
subset of variables that may be best for one purpose may not be best for another.
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The concept of the “best” subset of variables to be included in an equation always
requires additional qualification.

Before discussing actual selection procedures we make two preliminary remarks.
First, it is not usually meaningful to speak of the “best set" of variables to be included
in a multiple regression equation. There is no unique “best set" of variables. A
regression equation can be used for several purposes. The set of variables that may
be best for one purpose may not be best for another. The purpose for which a
regression equation is constructed should be kept in mind in the variable selection
process. We shall show later that the purpose for which an equation is constructed
determines the criteria for selecting and evaluating the contributions of different
variables.

Second, since there is no best set of variables, there may be several subsets that
are adequate and could be used in forming an equation. A good variable selection
procedure should point out these several sets rather than generate a so-called single
“best" set. The various sets of adequate variables throw light on the structure of
data and help us in understanding the underlying process. In fact, the process of
variable selection should be viewed as an intensive analysis of the correlational
structure of the predictor variables and how they individually and jointly affect the
response variable under study. These two points influence the methodology that
we present in connection with variable selection.

11.5 CRITERIA FOR EVALUATING EQUATIONS

To judge the adequacy of various fitted equations we need a criterion. Several have
been proposed in the statistical literature. We describe the two that we consider
most useful. An exhaustive list of criteria is found in Hocking (1976).

11.5.1 Residual Mean Square

One measure that is used to judge the adequacy of a fitted equation is the resid-
ual mean square (RMS). With a p-term equation (includes a constant and p — 1
variables), the RMS is defined as

SSE,
n—p

RMS, = (11.3)
where SSE,, is the residual sum of squares for a p-term equation. Between two
equations, the one with the smaller RMS is usually preferred, especially if the
objective is forecasting.

Itis clear that RMS,, is related to the square of the multiple correlation coefficient
RIZ, and the square of the adjusted multiple correlation coefficient Rﬁp which have
already been described (Chapter 3) as measures for judging the adequacy of fit of an
equation. Here we have added a subscript to B2 and R2 to denote their dependence
on the number of terms in an equation. The relationship between these quantities
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are given by
2 21 _ (n—p)FMSp
R,=1-(n-p) ) (11.4)
and RMS
2 1 _(n—1)2P
Ryp=1 (n 1)(SST) , (11.5)
where

SST =) (4 - §)*.
Note that R?,p is more appropriate than Rf, when comparing models with different

number of predictors because R?lp adjusts (penalizes) for the number of predictor
variables in the model.

11.5.2 Mallows C,,

We pointed out earlier that predicted values obtained from a regression equation
based on a subset of variables are generally biased. To judge the performance of
an equation we should consider the mean square error of the predicted value rather
than the variance. The standardized total mean squared error of prediction for the
observed data is measured by

1 & .
Jp= = ;MSE(yi), (11.6)
1=

where MSE(¢;) is the mean squared error of the ith predicted value from a p-
term equation, and o2 is the variance of the random errors. The MSE(g;) has
two components, the variance of prediction arising from estimation and a bias
component arising from the deletion of variables.

To estimate J,,, Mallows (1973) uses the statistic

SSE
Cp = &2p+(2p—n), W)

where 52 is an estimate of o2 and is usually obtained from the linear model with the
full set of g variables. It can be shown that the expected value of Cy, is p when there
is no bias in the fitted equation containing p terms. Consequently, the deviation of
C) from p can be used as a measure of bias. The C;, statistic therefore measures the
performance of the variables in terms of the standardized total mean square error of
prediction for the observed data points irrespective of the unknown true model. It
takes into account both the bias and the variance. Subsets of variables that produce
values of C), that are close to p are the desirable subsets. The selection of “good”
subsets is done graphically. For the various subsets a graph of C,, is plotted against
p. The line Cp = p is also drawn on the graph. Sets of variables corresponding
to points close to the line C,, = p are the good or desirable subsets of variables to
form an equation. The use of C), plots is illustrated and discussed in more detail
in the example that is given in Section 11.10. A very thorough treatment of the C),
statistic is given in Daniel and Wood (1980).
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11.5.3 Information Criteria

Variable selection in the regression context can be viewed as a model selection
problem. The Information criteria that we now describe arose first in the general
problem of model selection. The Akaike (1973) Information Criterion (AIC) in
selecting a model tries to balance the conflicting demands of accuracy (fit) and
simplicity (small number of variables). This is the principle of parsimony already
discussed in Section 3.10.2. AIC for a p-term equation (a constant, and p — 1
variables) is given by

AIC, = nIn(SSE,/n) + 2p. (11.8)

The models with smaller AIC are preferred. '

We can see from (11.8) that for two models with similar SSE, AIC penalizes
the model that has a larger number of variables. The numerical value of AIC for a
single model is not very meaningful or descriptive. AIC can be used, however, to
rank the models on the basis of their twin criteria of fit and simplicity. Models with
AIC not differing by 2 should be treated as equally adequate. Larger differences
in AIC indicate significant difference between the quality of the models. The one
with the lower AIC should be adopted.

A great advantage of AIC is that it allows us to compare non-nested models. A
group of models are nested if they can be obtained from a larger model as special
cases (see Section 3.10). We cannot perform an F'-Test, for example, to compare
the adequacy of a model based on (X3, X2, X3) with one based on (X4, X5). The
choice of these two sets of variables may be dictated by the nature of the problem
at hand. The AIC will allow us to make such comparisons but not the F'-Test
described earlier.

To compare models by AIC we must have complete data (no missing values).
The AIC must be calculated on the same set of observations. If there are many
missing values for some variables, application of AIC may be inefficient because
observations in which some variables were missing will be dropped.

Several modifications of AIC have been suggested. One popular variation called
Bayes Information Criterion (BIC), originally proposed by Schwarz (1978), is
defined as

BIC, = nIn(SSE,/n) + p(Inn). (11.9)

The difference between AIC and BIC is in the severity of penalty for p. The
penalty is far more severe in BIC when n > 8. This tends to control the overfitting
(resulting in a choice of larger p) tendency of AIC.

Another modification of AIC to avoid overfitting is the bias corrected vetsion,
AIC¢, proposed by Hurvich and Tsai (1989), which is given by

2(p+2)(p+ 3)‘

AIC, = AIC, + ==

(11.10)

The correction to AIC in (11.10) is small for large n and moderate p. The correction
is large when 7 is small and p large. One should never fit a large and complex
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model with a small number of observations. In general the correction to AIC will
be minor, and we will not discuss AIC® further. To guard against overfitting in our
analysis we will examine BIC.

11.6 COLLINEARITY AND VARIABLE SELECTION

In discussing variable selection procedures, we distinguish between two broad
situations:

1. The predictor variables are not collinear; that is, there is no strong evidence
of collinearity.

2. The predictor variables are collinear; that is, the data are highly multicollinear.

Depending on the correlation structure of the predictor variables, we propose dif-
ferent approaches to the variable selection procedure. If the data analyzed are not
collinear, we proceed in one manner, and if collinear, we proceed in another.

As a first step in variable selection procedure we recommend calculating the
variance inflation factors (VIFs) or the eigenvalues of the correlation matrix of the
predictor variables. If none of the VIFs are greater than 10, collinearity is not a
problem. Further, as we explained in Chapter 9, the presence of small eigenvalues
indicates collinearity. If the condition number! is larger than 15, the variables are
collinear. We may also look at the sum of the reciprocals of the eigenvalues. If
any of the individual eigenvalues are less than 0.01, or the sum of the reciprocals
of the eigenvalues is greater than, say, five times the number of predictor variables
in the problem, we say that the variables are collinear. If the conditions above do
not hold, the variables are regarded as noncollinear.

11.7 EVALUATING ALL POSSIBLE EQUATIONS

The first procedure described is very direct and applies equally well to both collinear
and noncollinear data. The procedure involves fitting all possible subset equations
to a given body of data. With ¢ variables the total number of equations fitted is
29 (including an equation that contains all the variables and another that contains
no variables). The latter is simply ¢; = ¥, which is obtained from fitting the
model Y = By + £. This method clearly gives an analyst the maximum amount
of information available concerning the nature of relationships between Y and the
set of X’s. However, the number of equations and supplementary information that
must be looked at may be prohibitively large. Even with only six predictor variables,
there are 64 (2°) equations to consider; with seven variables the number grows to
128 (27), neither feasible nor practical. An efficient way of using the results from

! Recall from Chapter 9 that the condition number is defined by &£ = 1/ Amax/Amin, Where Amax and
Amin are the maximum and minimum eigenvalues of the matrix of correlation coefficients.
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fitting all possible equations is to pick out the three “best" (on the basis of R?, Cyp,
RMS, or the information criteria outlined earlier) equations containing a specified
number of variables. This smaller subset of equations is then analyzed to arrive
at the final model. These regressions are then carefully analyzed by examining
the residuals for outliers, autocorrelation, or the need for transformations before
deciding on the final model. The various subsets that are investigated may suggest
interpretations of the data that might have been overlooked in a more restricted
variable selection approach.

When the number of variables is large, the evaluation of all possible equations
may not be practically feasible. Certain shortcuts have been suggested (Furnival
and Wilson, 1974; La Motte and Hocking, 1970) which do not involve computing
the entire set of equations while searching for the desirable subsets. But with
a large number of variables these methods still involve a considerable amount
of computation. There are variable selection procedures that do not require the
evaluation of all possible equations. Employing these procedures will not provide
the analyst with as much information as the fitting of all possible equations, but it
will entail considerably less computation and may be the only available practical
solution. These are discussed in Section 11.8. These procedures are quite efficient
with noncollinear data. We do not, however, recommend them for collinear data.

11.8 VARIABLE SELECTION PROCEDURES

For cases when there are a large number of potential predictor variables, a set
of procedures that does not involve computing of all possible equations has been
proposed. These procedures have the feature that the variables are introduced or
deleted from the equation one at a time, and involve examining only a subset of all
possible equations. With ¢ variables these procedures will involve evaluation of at
most g + 1 equations, as contrasted with the evaluation of 29 equations necessary
for examining all possible equations. The procedures can be classified into two
broad categories: (1) the forward selection (FS) procedure, and (2) the backward
elimination (BE) procedure. There is also a very popular modification of the FS
procedure called the stepwise method. The three procedures are described and
compared below.

11.8.1 Forward Selection Procedure

The forward selection procedure starts with an equation containing no predictor
variables, only a constant term. The first variable included in the equation is the
one which has the highest simple correlation with the response variable Y. If the
regression coefficient of this variable is significantly different from zero it is retained
in the equation, and a search for a second variable is made. The variable that enters
the equation as the second variable is one which has the highest correlation with
Y, after Y has been adjusted for the effect of the first variable, that is, the variable
with the highest simple correlation coefficient with the residuals from Step 1. The

www.it-ebooks.info


http://www.it-ebooks.info/

308 VARIABLE SELECTION PROCEDURES

significance of the regression coefficient of the second variable is then tested. If
the regression coefficient is significant, a search for a third variable is made in
the same way. The procedure is terminated when the last variable entering the
equation has an insignificant regression coefficient or all the variables are included
in the equation. The significance of the regression coefficient of the last variable
introduced in the equation is judged by the standard ¢-Test computed from the latest
equation. Most forward selection algorithms use a low ¢ cutoff value for testing
the coefficient of the newly entered variable; consequently, the forward selection
procedure goes through the full set of variables and provides us with ¢ + 1 possible
equations.

11.8.2 Backward Elimination Procedure

The backward elimination procedure starts with the full equation and successively
drops one variable at a time. The variables are dropped on the basis of their
contribution to the reduction of error sum of squares. The first variable deleted is
the one with the smallest contribution to the reduction of error sum of squares. This
1s equivalent to deleting the variable which has the smallest ¢-Test in the equation.
If all the ¢-Tests are significant, the full set of variables is retained in the equation.
Assuming that there are one or more variables that have insignificant ¢-Tests, the
procedure operates by dropping the variable with the smallest insignificant ¢-Test.
The equation with the remaining ¢ — 1 variables is then fitted and the ¢-Tests for
the new regression coefficients are examined. The procedure is terminated when
all the ¢-Tests are significant or all variables have been deleted. In most backward
elimination algorithms the cutoff value for the ¢-Test is set high so that the procedure
runs through the whole set of variables, that is, starting with the g-variable equation
and ending up with an equation containing only the constant term. The backward
elimination procedure involves fitting at most g 4 1 regression equations

11.8.3 Stepwise Method

The stepwise method is essentially a forward selection procedure but with the added
proviso that at each stage the possibility of deleting a variable, as in backward
elimination, is considered. In this procedure a variable that entered in the earlier
stages of selection may be eliminated at later stages. The calculations made for
inclusion and deletion of variables are the same as FS and BE procedures. Often,
different levels of significance are assumed for inclusion and exclusion of variables
from the equation.

AIC and BIC both can be used for setting up stepwise procedures (forward
selection and backward elimination). For forward selection one starts with a
constant as the fitting term, and adds variables to the model. The procedure is
terminated, when addition of a variable causes no reduction of AIC (BIC). In the
backward procedure, we start with the full model (containing all the variables) and
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drop variables successively. The procedure is terminated when dropping a variable
does not lead to any further reduction in the criteria.

The stepwise procedure based on information criteria differs in a major way from
the procedures based on the t-statistic that gauges the significance of a variable.
The information-based procedures are driven by all the variables in the model. The
termination of the procedure is based solely on the decrease of the criterion, and
not on the statistical significance of the entering or departing variable.

Most of the currently available software do not automatically produce AIC or
BIC. They all, however, provide SSE, from which it is easy to compute (11.8) and
(11.9) the information criteria.

11.9 GENERAL REMARKS ON VARIABLE SELECTION METHODS

The variable selection procedures discussed above should be used with caution.
These procedures should not be used mechanically to determine the “best" variables.
The order in which the variables enter or leave the equation in variable selection
procedures should not be interpreted as reflecting the relative importance of the
variables. If these caveats are kept in mind, the variable selection procedures are
useful tools for variable selection in noncollinear situations. All three procedures
will give nearly the same selection of variables with noncollinear data. They entail
much less computing than that in the analysis of all possible equations.

Several stopping rules have been proposed for the variable selection procedures.
A stopping rule that has been reported to be quite effective is as follows:

e In FS: Stop if minimum ¢-Test is less than 1.

e In BE: Stop if minimum ¢-Test is greater than 1.

In the following example we illustrate the effect of different stopping rules in
variable selection.

We recommend the BE procedure over FS procedure for variable selection. One
obvious reason is that in the BE procedure the equation with the full variable set is
calculated and available for inspection even though it may not be used as the final
equation. Although we do not recommend the use of variable selection procedures
in a collinear situation, the BE procedure is better able to handle collinearity than
the FS procedure (Mantel, 1970).

In an application of variable selection procedures several equations are generated,
each equation containing a different number of variables. The various equations
generated can then be evaluated using a statistic such as Cp, RMS, AIC, or BIC.
The residuals for the various equations should also be examined. Equations with
unsatisfactory residual plots are rejected. Only a total and comprehensive analysis
will provide an adequate selection of variables and a useful regression equation.
This approach to variable selection is illustrated by the following example.
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Table 11.1  Correlation Matrix for the Supervisor Performance Data in Table 3.3

X1 X X3 X4 Xs Xe
X, 1.000
X, 0.558 1.000
X3 0.597 0.493 1.000
Xa 0.669 0.445 0.640 1.000
X5 0.188 0.147 0.116 0.377 1.000
X6 0.225 0.343 0.532 0.574 0.283 1.000

11.10 A STUDY OF SUPERVISOR PERFORMANCE

To illustrate variable selection procedures in a noncollinear situation, consider the
Supervisor Performance data discussed in Section 3.3. A regression equation was
needed to study the qualities that led to the characterization of good supervisors
by the people being supervised. The equation is to be constructed in an attempt
to understand the supervising process and the relative importance of the different
variables. In terms of the use for the regression equation, this would imply that
we want accurate estimates of the regression coefficients, in contrast to an equation
that is to be used only for prediction. The variables in the problem are given in
Table 3.2. The data are shown in Table 3.3 and can also be obtained from the book’s
Website.2
The VIFs resulting from regressing Y on X7, Xa,---, X are

VIF; =2.7, VIF;=1.6, VIF3 =23,

VIF, =3.1, VIFs =12, VIF¢=20.

The range of the VIFs (1.2 to 3.1) shows that collinearity is not a problem for these
data. The same picture emerges if we examine the eigenvalues of the correlation
matrix of the data (Table 11.1). The eigenvalues of the correlation matrix are

A1 =3.169, Ay =1.006, Az =0.763,

Ay =0.553, A5 =0.317, As =0.192.

The sum of the reciprocals of the eigenvalues is 12.8. Since none of the eigenvalues
are small (the condition number is 4.1) and the sum of the reciprocals of the
eigenvalues is only about twice the number of variables, we conclude that the data
in the present example are not seriously collinear and we can apply the variable
selection procedures just described.

The result of forward selection procedure is given in Table 11.2. For successive
equations we show the variables present, the RMS, and the value of the C,, statistic.

2 htp://www.aucegypt.edu/faculty/hadi/RABES
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Table 11.2 Variables Selected by the Forward Selection Method

Variables in Equation ~ min(|t|) RMS C, p Rank AIC BIC
X1 7.74 6993 141 2 1 118.63 121.43
X1Xs 1.57 6.817 111 3 1 118.00  122.21
X1 X3Xs 1.29 6734 160 4 1 118.14 123,74
X1 X3X6X2 0.59 6820 328 5 1 119.73  126.73
X1 X3 X6X2X4 047 6928 507 6 1 121.45 129.86
X1 X3X6X2X4X5 0.26 7.068 7.00 7 — 12336  133.17

The column labeled Rank shows the rank of the subset obtained by FS relative to
best subset (on the basis of RMS) of the same size. The value of p is the number of
predictor variables in the equation, including a constant term. Two stopping rules
are used:

1. Stop if minimum absolute ¢-Test is less than tg g5(n — p).
2. Stop if minimum absolute ¢-Test is less than 1.

The first rule is more stringent and terminates with variables X; and X3. The
second rule is less stringent and terminates with variables X;, X3, and Xg.

The results of applying the BE procedure are presented in Table 11.3. They are
identical in structure to Table 11.2. For the BE we will use the stopping rules:

1. Stop if minimum absolute t-Test is greater than ¢y g5(n — p).
2. Stop if minimum absolute ¢-Test is greater than 1.

With the first stopping rule the variables selected are X; and X3. With the second
stopping rule the variables selected are X;, X3, and Xg. The FS and BE give
identical equations for this problem, but this is not always the case (an example is
given in Section 11.12). To describe the supervisor performance, the equation

Y =13.58 +0.62X1 4+ 0.31.X3 — 0.19X¢

is chosen. The residual plots (not shown) for this equation are satisfactory. Since
the present problem has only six variables, the total number of equations that can be
fitted which contain at least one variable is 63. The C,, values for all 63 equations
are shown in Table 11.4. The C,, values are plotted against p in Figure 11.1. The
best subsets of variables based on C), values are given in Table 11.5.

It is seen that the subsets selected by C}, are different from those arrived at by
the variable selection procedures as well as those selected on the basis of residual
mean square. This anomaly suggests an important point concerning the C,, statistic
that the reader should bear in mind. For applications of the C, statistic, an estimate
of o2 is required. Usually, the estimate of o2 is obtained from the residual sum
of squares from the full model. If the full model has a large number of variables
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Table 11.3 Variables Selected by Backward Elimination Method

Variables in Equation ~ min(|¢|]) = RMS Cp, p Rank AlIC BIC
X1 X0 X3X4 X5 X6 0.26 7.068 7.00 7 - 12336  133.17
X1 X2 X3 X4 X6 0.47 6928 507 6 1 12145  129.86
X1 X2 X3Xe 0.59 6.820 328 5 1 119.73 12673
X1X3Xe 1.29 6.734 160 4 1 118.14  123.74
X1X3 1.57 6.817 111 3 1 118.00  122.21
X1 7.74 6993 141 2 1 118.63 12143

Table 11.4 Values of C,, Statistic (All Possible Equations)

Variables Cy Variables Cp Variables Cp Variables Cp
1 1.41 15 341 16 3.33 156 5.32
2 44.40 25 45.62 26 46.39 256 47.91
12 3.26 125 5.26 126 5.22 1256 7.22
3 26.56 35 27.94 36 24.82 356 25.02
13 1.11 135 3.11 136 1.60 1356 3.46
23 26.96 235 28.53 236 24.62 2356 25.11
123 2.51 1235 4.51 1236 3.28 12356 5.14
4 30.06 45 31.62 46 27.73 45 29.50
14 3.19 145 5.16 146 470 1456 6.69
24 29.20 245 30.82 246 25.91 2456 27.74
124 4.99 1245 6.97 1246 6.63 12456 8.61
34 23.25 345 25.23 346 16.50 3456 18.42
134 3.09 1345 5.09 1346 3.35 13456 5.29
234 24.56 2345 26.53 2346 17.57 23456 19.51
1234 449 | 12345 648 | 12346 507 123456 7

5 57.91 6 57.95 56 58.76
Table 11.5 Variables Selected on the Basis of C;, Statistic

Variables in Equation ~ min(Jt|) RMS C, p Rank AIC BIC
X1 7.74 6.993 1.41 2 1 118.63 121.43
X1X4 0.47 7.093 319 3 2 12038 124.59
X1 X4 X6 0.69 7.163 470 4 5 121.84 127.45
X1X3X4 X5 0.07 7.080 509 5 6 12197 12797
X1 Xo X3 X4 X5 0.11 7139 648 6 4 123.24  131.65
X1 X2 X3X4X5Xs 0.26 7.068 7.00 7 - 133.17  133.17
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Figure 11.1  Supervisor’s Performance data: Scatter plot of C}, versus p for subsets with
Cp < 10.

with no explanatory power (i.e., population regression coefficients are zero), the
estimate of o2 from the residual sum of squares for the full model would be large.
The loss in degrees of freedom for the divisor would not be balanced by a reduction
in the error sum of squares. If 62 is large, then the value of Cy is small. For C,
to work properly, a good estimate of o> must be available. When a good estimate
of a2 is not available, Cj, is of only limited usefulness. In our present example,
the RMS for the full model with six variables is larger than the RMS for the model
with three variables X, X3, Xs. Consequently, the Cy, values are distorted and not
very useful in variable selection in the present case. The type of situation we have
described can be spotted by looking at the RMS for different values of p. RMS will
at first tend to decrease with p, but increase at later stages. This behavior indicates
that the latter variables are not contributing significantly to the reduction of error
sum of squares. Useful application of C}, requires a parallel monitoring of RMS to
avoid distortions.

Values of AIC and BIC for forward selection and backward elimination is given
in Tables 11.2 and 11.3. The lowest value of AIC (118.00) is obtained for X; and
X3. If we regard models with AIC within 2 to be equivalent, then X, X, X3,
X1X3Xs, and X1 X3XeXo should be considered. Among these four candidate
models we can pick one of them. The lowest value of BIC (121.43) is attained
by X;. There is only one other model (X7 X3) whose BIC lies within 2 units. It
should be noted that BIC selects models with smaller number of variables because
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of its penalty function. Variable selection should not be done mechanicaily. In
many situations there may not be a “best model"” or a “best set of variables.” The
aim of the analysis should be to identify all models of high equal adequacy.

11.11 VARIABLE SELECTION WITH COLLINEAR DATA

In Chapter 9 it was pointed out that serious distortions are introduced in standard
analysis with collinear data. Consequently, we recommend a different set of pro-
cedures for selecting variables in these situations. Collinearity is indicated when
the correlation matrix has one or more small eigenvalues. With a small number of
collinear variables we can evaluate all possible equations and select an equation by
methods that have already been described. But with a larger number of variables
this method is not feasible.

Two different approaches to the problem have been proposed. The first approach
tries to break down the collinearity of the data by deleting variables. The collinear
structure present in the variables is revealed by the eigenvectors corresponding to
the very small eigenvalues (see Chapters 9 and 10). Once the collinearities are
identified, a set of variables can then be deleted to produce a reduced noncollinear
data set. We can then apply the methods described earlier. The second approach
uses ridge regression as the main tool. We assume that the reader is familiar with
the basic terms and concepts of ridge regression (Chapter 10). The first approach
(by judicious dropping of correlated variables) is the one that is almost always used
in practice.

11.12 THE HOMICIDE DATA

In a study investigating the role of firearms in accounting for the rising homicide
rate in Detroit, data were collected for the years 1961-1973. The data are reported
in Gunst and Mason (1980, p. 360). The response variable (the homicide rate) and
the predictor variables believed to influence or be related to the rise in the homicide
rate are defined in Table 11.6 and given in Tables 11.7 and 11.8. The data can also
be found at the book’s Website.

We use these data to illustrate the danger of mechanical variable selection pro-
cedures, such as the FS and BE, in collinear situations. We are interested in fitting

the model
H =y + 51G + B2 M + B3W + €.

In terms of the centered and scaled version of the variables, the model becomes
H=0,G+0oM + 03w +¢'. (11.11)

The OLS results are shown in Table 11.9. Can the number of predictor variables
in this model be reduced? If the standard assumptions hold, the small ¢-Test for
the variable G (0.68) would indicate that the corresponding regression coefficient
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Table 11.6 Homicide Data: Description of Variables

Variable Symbol Description

1 FTP Number of full-time police per 100,000 population

2 UEMP Percent of the population unemployed

3 M Number of manufacturing workers (in thousands)

4 LIC Number of handgun licenses issued per 100,000

population
5 GR Number of handgun registration issued per 100,000
population

6 CLEAR Percent of homicides cleared by arrest

7 w Number of white males in the population

8 NMAN Number of nonmanufacturing workers (in thousands)

9 G Number of government workers (in thousands)

10 HE Average hourly earnings

11 WE Average weekly earnings

12 H Number of homicides per 100,000 population

Table 11.7  First Part of the Homicide Data

Year FTP UNEMP M LIC GR CLEAR
1961 260.35 11.0 455.5 178.15 215.98 934
1962 269.80 7.0 480.2 156.41 180.48 88.5
1963 272.04 5.2 506.1 198.02 209.57 94.4
1964 272.96 4.3 535.8 222.10 231.67 92.0
1965 272.51 35 576.0 301.92 297.65 91.0
1966 261.34 32 601.7 391.22 367.62 874
1967 268.89 4.1 577.3 665.56 616.54 88.3
1968 295.99 39 596.9 1131.21 1029.75 86.1
1969 319.87 3.6 613.5 837.80 786.23 79.0
1970 341.43 7.1 569.3 794.90 713.77 739
1971 356.59 8.4 548.8 817.74 750.43 63.4
1972 376.69 7.7 563.4 583.17 1027.38 62.5
1973 390.19 6.3 609.3 709.59 666.50 58.9

Source: Gunst and Mason (1980, p. 360)
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Table 11.8 Second Part of the Homicide Data

Year W NMAN G HE WE H

1961 558724 538.1 1339 2.98 117.18 8.60
1962 538584 547.6 137.6 3.09 134.02 8.90
1963 519171 562.8 143.6 3.23 141.68 8.52
1964 500457 591.0 150.3 3.33 147.98 8.89
1965 482418 626.1 164.3 3.46 159.85 13.07
1966 465029 659.8 179.5 3.60 157.19 14.57
1967 448267 686.2 187.5 3.73 155.29 21.36
1968 432109 699.6 1954 291 131.75 28.03
1969 416533 729.9 2103 4.25 178.74 31.49
1970 401518 757.8 2238 4.47 178.30 37.39
1971 398046 7553 . 22717 5.04 209.54 46.26
1972 373095 787.0 2309 5.47 240.05 47.24
1973 359647 819.8 230.2 5.76 258.05 52.33

Source: Gunst and Mason (1980, p. 360)

Table 11.9 Homicide Data: The OLS Results from Fitting Model (11.11)

Variable Coefficient s.e. t-Test VIF
G 0.235 0.345 0.68 42
M —-0.405 0.090 —4.47 3
w ~1.025 0.378 -2.71 51
n=13 R? =0.975 Rg = 0.966 o = 0.0531 df=9

is insignificant and G can be omitted from the model. Let us now apply the
forward selection and the backward elimination procedures to see which variables
are selected. The regression output that we need to implement the two methods
on the standardized versions of the variables are summarized in Table 11.10. In
this table we give the estimated coefficients, their ¢-Tests, and the adjusted squared
multiple correlation coefficient, R2 for each model for comparison purposes.

The first variable to be selected by the FS is G because it has the largest ¢-Test
among the three models that contain a single variable [Models (a)—(c) in Table
11.10]. Between the two candidates for the two-variable models [Models (d) and
(e)], Model (d) is better than Model (e). Therefore, the second variable to enter the
equation is M. The third variable to enter the equation is W [Model ()] because
it has a significant ¢-Test. Note, however, the dramatic change of the significance
of G in Models (a), (d), and (f). It was highly significant coefficient in Models (a)
and (d), but became insignificant in Model (f). Collinearity is a suspect!
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Table 11.10 Homicide Data: The Estimated Coefficients, Their ¢-Tests, and the
Adjusted Squared Multiple Correlation Coefficient, Rﬁ

Model
Variable (@) (b) (©) @ (e) H (2
G: Coeff. 0.96 1.15 0.87 0.24
t-Test 11.10 11.90 1.62 0.68
M: Coeff. 0.55 —0.27 —0.40 —043
t-Test 2.16 -2.79 —4.47 -5.35
W: Coeff. -0.95 —0.09 -1.02 —1.28
t-Test -9.77 -0.17 -2.71 —15.90
R? 0.91 0.24 0.89 0.95 0.90 0.97 0.97

The BE method starts with the three-variable Model (f). The first variable to
leave is GG (because it has the lowest ¢-Test), which leads to Model (g). Both M
and W in Model (g) have significant ¢-Tests and the BE procedure terminates.

Observe that the first variable eliminated by the BE (G) is the same as the first
variable selected by the FS. That is, the variable GG, which was selected by the FS
as the most important of the three variables, was regarded by the BE as the least
important! Among other things, the reason for this anomalous result is collinearity.
The eigenvalues of the correlation matrix, A\; = 2.65, A9 = 0.343, and A3 = 0.011,
give a large condition number (k = 15.6). Two of the three variables (G and
W) have large VIF (42 and 51). The sum of the reciprocals of the eigenvalues is
also very large (96). In addition to collinearity, since the observations were taken
over time (for the years 1961-1973), we are dealing with time series data here.
Consequently, the error terms can be autocorrelated (see Chapter 8). Examining
the pairwise scatter plots of the data will reveal other problems with the data.

This example shows clearly that automatic applications of variable selection
procedure in multicollinear data can lead to the selection of a wrong model. In
Sections 11.13 and 11.14 we make use of ridge regression for the process of variable
selection in multicollinear situations.

11.13 VARIABLE SELECTION USING RIDGE REGRESSION

One of the goals of ridge regression is to produce a regression equation with stable
coefficients. The coefficients are stable in the sense that they are not affected by
slight variations in the estimation data. The objectives of a good variable selection
procedure are (1) to select a set of variables that provides a clear understanding of
the process under study, and (2) to formulate an equation that provides accurate
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forecasts of the response variable corresponding to values of the predictor variables
not included in the study. It is seen that the objectives of a good variable selection
procedure and ridge regression are very similar and, consequently, one (ridge
regression) can be employed to accomplish the other (variable selection).

The variable selection is done by examining the ridge trace, a plot of the ridge
regression coefficients against the ridge parameter k. For a collinear system, the
characteristic pattern of ridge trace has been described in Chapter 10. The ridge
trace is used to eliminate variables from the equation. The guidelines for elimination
are

1. Eliminate variables whose coefficients are stable but small. Since ridge
regression is applied to standardized data, the magnitude of the various
coefficients are directly comparable.

2. Eliminate variables with unstable coefficients that do not hold their predicting
power, that is, unstable coefficients that tend to zero.

3. Eliminate one or more variables with unstable coefficients. The variables
remaining from the original set, say p in number, are used to form the
regression equation.

At the end of each of the above steps, we refit the model that includes the remaining
variables before we proceed to the next step.

The subset of variables remaining after elimination should be examined to see
if collinearity is no longer present in the subset. We illustrate this procedure by an
example.

11.14 SELECTION OF VARIABLES IN AN AIR POLLUTION STUDY

McDonald and Schwing (1973) present a study that relates total mortality to climate,
socioeconomic, and pollution variables. Fifteen predictor variables selected for the
study are listed in Table 11.11. The response variable is the total age-adjusted
mortality from all causes. We will not comment on the epidemiological aspects of
the study, but merely use the data as an illustrative example for variable selection.
A very detailed discussion of the problem is presented by McDonald and Schwing
in their article and we refer the interested reader to it for more information.

The original data were not available to us before the Fourth Edition of this
book was published. But now we have the data, which are shown in Tables 11.12
and 11.13. In the Fourth Edition we did the analysis starting with the correlation
matrix of the response and the 15 predictor variables and mentioned that it is not a
good practice to perform the analysis based only on the correlation matrix because
without the original data we will not be able to perform diagnostics checking which
is necessary in any thorough data analysis. Now that we have the data we can
perform some diagnostic checks regarding the validity of the standard assumptions
of the linear regression model. We have examined some of the diagnostic plots
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Table 11.11  Description of Variables, Means, and Standard Deviations, SD
(n = 60)

Variable Description Mean SD
X1 Mean annual precipitation (inches) 37.37 9.98
X5 Mean January temperature (degrees Fahrenheit) 33.98 10.17
X3 Mean July temperature (degrees Fahrenheit) 74.58 4.76
X4 Percent of population over 65 years of age 8.80 1.46
Xs Population per household 3.26 0.14
Xe Median school years completed 10.97 0.85
X7 Percent of housing units that are sound 80.91 5.14
Xs Population per square mile 3876.05 1454.10
Xy Percent of nonwhite population 11.87 8.92
X10 Percent employment in white-collar jobs 46.08 4.61
X1 Percent of families with income under $3000 14.37 4.16
X0 Relative pollution potential of hydrocarbons 37.85 91.98
X3 Relative pollution potential of oxides of nitrogen 22.65 46.33
X4 Relative pollution potential of sulfur dioxide 53.77 63.39
Xis Percent relative humidity 57.67 5.37

Y Total age-adjusted mortality from all causes. 940.36 62.21

discussed in Chapter 4 and found one outlier and a couple of high-leverage points,
but luckily, they are not consequential; that is, the results with them and without
them are not substantially different. As can be expected from the nature of the
variables, some of them are highly correlated with each other. The evidence of
collinearity is clearly seen if we examine the eigenvalues of the correlation matrix
(not shown). The eigenvalues of the correlation matrix of the 15 predictor variables
are
A1 =4.5284, X =0.9604, A3 = 0.1664,

Ao = 2.7548, A; = 0.6127, A = 0.1270,
Az = 2.0545, Ag = 0.4720, A3 = 0.1140,
Ay =1.3484, A9 =0.3709, A4 = 0.0460,

As = 1.2232, Ao = 0.2164, A;5 = 0.0049.

There are two very small eigenvalues; the largest eigenvalue is more than 930
times larger than the smallest eigenvalue. The sum of the reciprocals of the eigen-
values is 265, which is more than 17 times the number of variables. The data show
strong evidence of collinearity.
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Table 11.12 First Eight Variables of the Air Pollution Data

Row X1 X2 X4 X5 X6 X7 Xg
1 36 27 8.1 3.34 11.4 81.5 3243
2 35 23 11.1 3.14 11.0 78.8 4281
3 44 29 10.4 321 9.8 81.6 4260
4 47 45 6.5 341 11.1 775 3125
5 43 35 7.6 3.44 9.6 84.6 6441
6 53 45 7.7 3.45 10.2 66.8 3325
7 43 30 10.9 323 12.1 83.9 4679
8 45 30 9.3 3.29 10.6 86.0 2140
9 36 24 9.0 3.31 10.5 83.2 6582
10 36 27 9.5 3.36 10.7 79.3 4213
11 52 42 7.7 3.39 9.6 69.2 2302
12 33 26 8.6 3.20 10.9 834 6122
13 40 34 9.2 321 10.2 77.0 4101
14 35 28 8.8 3.29 11.1 86.3 3042
15 37 31 8.0 3.26 11.9 78.4 4259
16 35 46 7.1 3.22 11.8 79.9 1441
17 36 30 7.5 3.35 11.4 81.9 4029
18 15 30 8.2 3.15 12.2 84.2 4824
19 31 27 7.2 3.44 10.8 87.0 4834
20 30 24 6.5 3.53 10.8 79.5 3694
21 31 45 7.3 3.22 11.4 80.7 1844
22 31 24 9.0 3.37 10.9 82.8 3226
23 42 40 6.1 3.45 10.4 71.8 2269
24 43 27 9.0 3.25 11.5 87.1 2909
25 46 55 5.6 3.35 11.4 79.7 2647
26 39 29 8.7 3.23 11.4 78.6 4412
27 35 31 9.2 3.10 12.0 78.3 3262
28 43 32 10.1 3.38 9.5 79.2 3214
29 11 53 9.2 2.99 12.1 90.6 4700
30 30 35 8.3 3.37 9.9 77.4 4474
31 50 42 7.3 3.49 10.4 72.5 3497
32 60 67 10.0 2.98 11.5 88.6 4657
33 30 20 8.8 3.26 11.1 85.4 2934
34 25 12 9.2 3.28 12.1 83.1 2095
35 45 40 83 3.32 10.1 70.3 2682
36 46 30 10.2 3.16 11.3 83.2 3327
37 54 54 7.4 3.36 9.7 72.8 3172
38 42 33 9.7 3.03 10.7 83.5 7462
39 42 32 9.1 3.32 10.5 87.5 6092
40 36 29 9.5 3.32 10.6 77.6 3437
41 37 38 113 2.99 12.0 81.5 3387
42 42 29 10.7 3.19 10.1 79.5 3508
43 41 33 11.2 3.08 9.6 79.9 4843
44 44 39 8.2 3.32 11.0 79.9 3768
45 32 25 10.9 3.21 11.1 82.5 4355
46 34 32 9.3 3.23 9.7 76.8 5160
47 10 55 7.3 3.11 12.1 88.9 3033
48 18 48 9.2 2.92 12.2 87.7 4253
49 13 49 7.0 3.36 12.2 50.7 2702
50 35 40 9.6 3.02 12.2 82.5 3626
51 45 28 10.6 321 11.1 82.6 1883
52 38 24 9.8 3.34 11.4 78.0 4923
53 31 26 9.3 322 10.7 81.3 3249
54 40 23 11.3 3.28 10.3 73.8 1671
55 41 37 6.2 3.25 12.3 89.5 5308
56 28 32 7.0 3.27 12.1 81.0 3665
57 45 33 7.7 3.39 11.3 82.2 3152
58 45 24 11.8 3.25 11.1 79.8 3678
59 42 33 9.7 322 9.0 76.2 9699
on 20 "o on 2 A0 tnA O K 2481
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Table 11.13 Last Eight Variables of the Air Pollution Data

Row Xo X10 X1 X2 X3 X4 X1s Y
1 8.8 42.6 11.7 21 15 59 59 921.87
2 35 50.7 14.4 8 10 39 57 997.88
3 0.8 39.4 12.4 6 6 33 54 962.35
4 27.1 50.2 20.6 18 8 24 56 982.29
5 24.4 43.7 14.3 43 38 206 55 1071.29
6 38.5 43.1 25.5 30 32 72 54 1030.38
7 3.5 49.2 11.3 21 32 62 56 934.70
8 53 40.4 10.5 6 4 4 56 899.53
9 8.1 42.5 12.6 18 12 37 61 1001.90
10 6.7 41.0 13.2 12 7 20 59 912.35
11 22.2 41.3 242 18 8 27 56 1017.61
12 16.3 449 10.7 88 63 278 58 1024.89
13 13.0 45.7 15.1 26 26 146 57 970.47
14 14.7 44.6 11.4 31 21 64 60 985.95
15 13.1 49.6 13.9 23 9 15 58 958.84
16 14.8 51.2 16.1 1 1 1 54 860.10
17 12.4 44.0 12.0 6 4 16 58 936.23
18 4.7 53.1 12.7 17 8 28 38 871.77
19 15.8 43.5 13.6 52 35 124 59 959.22
20 13.1 33.8 12.4 11 4 11 61 941.18
21 11.5 48.1 18.5 1 1 1 53 891.71
22 5.1 45.2 12.3 5 3 10 61 871.34
23 22.7 41.4 19.5 8 3 5 53 971.12
24 7.2 51.6 9.5 7 3 10 56 887.47
25 21.0 46.9 17.9 6 5 1 59 952.53
26 15.6 46.6 13.2 13 7 33 60 968.67
27 12.6 48.6 13.9 7 4 4 55 919.73
28 2.9 43.7 12.0 11 7 32 54 844.05
29 7.8 48.9 12.3 648 319 130 47 861.83
30 13.1 42.6 17.7 38 37 193 57 989.27
31 36.7 43.3 26.4 15 18 34 59 1006.49
32 13.5 473 22.4 3 1 1 60 861.44
33 58 44.0 94 33 23 125 64 929.15
34 2.0 51.9 9.8 20 11 26 58 857.62
35 21.0 46.1 24.1 17 14 78 56 961.01
36 8.8 45.3 12.2 4 3 8 58 923.23
37 31.4 45.5 24.2 20 17 1 62 1113.16
38 11.3 48.7 12.4 41 26 108 58 994.65
39 17.5 45.3 13.2 29 32 161 54 1015.02
40 8.1 45.5 13.8 45 59 263 56 991.29
41 3.6 50.3 13.5 56 21 44 73 893.99
42 22 38.8 15.7 6 4 18 56 938.50
43 2.7 38.6 14.1 11 11 89 54 946.19
44 28.6 49.5 17.5 12 9 48 53 1025.5
45 5.0 46.4 10.8 7 4 18 60 874.28
46 17.2 45.1 15.3 31 15 68 57 953.56
47 5.9 51.0 14.0 144 66 20 61 839.71
48 13.7 51.2 12.0 311 171 86 71 911.70
49 3.0 51.9 9.7 105 32 3 71 790.73
50 5.7 54.3 10.1 20 7 20 72 899.26
51 3.4 419 12.3 5 4 20 56 904.16
52 3.8 50.5 11.1 8 5 25 61 950.67
53 9.5 43.9 13.6 11 7 25 59 972.46
54 2.5 47.4 13.5 5 2 11 60 912.20
55 259 59.7 10.3 65 28 102 52 967.80
56 7.5 51.6 13.2 4 2 1 54 823.76
57 12.1 47.3 10.9 14 11 42 56 1003.50
58 1.0 44 .8 14.0 7 3 8 56 895.70
59 48 422 145 8 8 49 54 9182
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Table 11.14  OLS Regression Output for the Air Pollution Data (Fifteen Predictor
Variables)

Variable Coefficient s.e. t-Test VIF
X, 0.306 0.148 2.06 4.11
X, —-0.317 0.181 -1.75 6.14
X3 —0.237 0.146 —-1.63 3.97
X4 -0.213 0.200 —-1.07 747
Xs —-0.232 0.152 —-1.53 4.31
Xe ~0.233 0.161 ~1.45 4.86
Xy —0.054 0.146 -0.37 3.99
Xg 0.084 0.094 0.89 1.66
Xy 0.640 0.190 3.36 6.78
X10 -0.014 0.123 -0.11 2.84
X1 -0.011 0.216 —0.05 8.72
X1z —0.994 0.726 —-1.37 98.64
X13 0.998 0.749 1.33 104.98
X14 0.088 0.150 0.59 4.23
X5 0.009 0.101 0.09 1.91

n = 60 R?% =0.765 R? = 0.685 & =0.56 df = 44

The initial OLS results from fitting a linear model to the centered and scaled data
are given in Table 11.14. Although the model has a high R?, some of the estimated
coefficients have small ¢-Tests. In the presence of collinearity, a small ¢-Test does
not necessarily mean that the corresponding variable is not important. The small
t-Test might be due of variance inflation because of the presence of collinearity. As
can be seen in Table 11.14, VIF;2 and VIF3 are very large.

The ridge trace for the 15 regression coefficients are shown in Figures 11.2-11.4.
Each figure shows five curves. If we put all 15 curves, the graph would be quite
cluttered and the curves would be difficult to trace. To make the three graphs
comparable, the scale is kept the same for all graphs. From the ridge trace, we see
that some of the coefficients are quite unstable and some are small regardless of the
value of the ridge parameter k.

We now follow the guidelines suggested for the selection of variables in multi-
collinear data. Following the first criterion we eliminate variables 7, 8, 10, 11, and
15. These variables all have fairly stable coefficients, as shown by the flatness of
their ridge traces, but are very small. Although variable 14 has a small coefficient
at k = O (see Table 11.14), its value increases sharply as k increases from zero. So,
it should not be eliminated at this point.

We now repeat the analysis using the ten remaining variables: 1, 2, 3, 4, 5, 6,
9, 12, 13, and 14. The corresponding OLS results are given in Table 11.15. There
is still evidence of collinearity. The largest eigenvalue, A; = 3.378, is about 619
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Figure 11.3  Air Pollution data: Ridge traces for g, - - -, 610 (the 15-variable model).
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Figure 11.4  Air Pollution data: Ridge traces for 911, e, 915 (the 15-variable model).

times the smallest value A9 = 0.005. The two VIFs for variable 12 and 13 are still
high. The corresponding ridge traces are shown in Figures 11.5 and 11.6. Variable
14 continues to have a small coefficient at kK = 0 but it increases as & increases from
zero. So, it should be kept in the model at this stage. None of the other 9 variables
satisfy the first criterion.
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Table 11.15  OLS Regression Output for the Air Pollution Data (Ten Predictor
Variables)

Variable Coefficient s.e. t-Test VIF
X1 0.306 0.135 ’ 2.26 3.75
X5 —0.345 0.119 -291 2.88
X3 -0.245 0.108 -2.26 2.39
X4 -0.224 0.175 —1.28 6.22
Xs —0.268 0.137 -1.97 3.81
Xs -0.292 0.103 —2.85 2.15
Xg 0.664 0.140 4.75 3.99
X9 -1.017 0.659 —1.54 88.86
X3 1.018 0.674 1.51 92.99
X4 0.096 0.127 0.76 3.30

n =160 R? =(.760 RZ =0.711 6 =0.537 df =49

Table 11.16  OLS Regression Output for the Air Pollution Data (Eight Predictor
Variables)

Variable Coefficient s.e. t-Test VIF
X, 0.331 0.120 2.76 2.91
X, —0.351 0.106 —3.31 2.28
X3 —0.217 0.104 -2.09 2.19
X4 —0.155 0.163 —0.95 5.42
Xs -0.221 0.134 —1.66 3.62
Xs —0.270 0.102 —2.65 2.10
X 0.692 0.133 5.219 3.57
X14 0.230 0.083 2.77 1.40

n = 60 R? =0.749 R2? =0.709 & =0.539 df = 51
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Figure 11.5  Air Pollution data: Ridge traces for 51, . é5 (the 10-variable model).
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Figure 11.6  Air Pollution data: Ridge traces for g, 09, 12, 013 and 614 (the ten-variable
model).

The second criterion suggests eliminating variables with unstable coefficients
that tend to zero. Examination of the ridge traces in Figures 11.5 and 11.6 shows
that variables 12 and 13 fall in this category.

The OLS results for the remaining eight variables are shown in Table 11.16.
Collinearity has disappeared. Now, the largest and smallest eigenvalues are 2.886
and 0.094, which give a small condition number (x« = 5.5). The sum of the
reciprocals of the eigenvalues is 23.5, about three times the number of variables.
All values of VIF are less than 10. Since the retained variables are not collinear,
we can now apply the variables selection methods for noncollinear data discussed
in Sections 11.7 and 11.8. This is left as an exercise for the reader.

An alternative way of analyzing these Air Pollution data is as follows: The
collinearity in the original 15 variables is actually a simple case of collinearity; it
involves only two variables (12 and 13). So, the analysis can proceed by eliminating
any one of the two variables. The reader can verify that the remaining 14 variables

www.it-ebooks.info


http://www.it-ebooks.info/

326 VARIABLE SELECTION PROCEDURES

are not collinear. The standard variables selection procedures for noncollinear data
can now be utilized. We leave this as an exercise for the reader.

In our analysis of the Air Pollution data, we did not use the third criterion, but
there are situations where this criterion is needed. We should note that ridge regres-
sion was used successfully in this example as a tool for variable selection. Because
the variables selected at an intermediate stage were found to be noncollinear, the
standard OLS was utilized.

An analysis of these data not using ridge regression has been given by Henderson
and Velleman (1981). They present a thorough analysis of the data and the reader
is referred to their article for details.

Some General Comments: We hope it is clear from our discussion that variable
selection is a mixture of art and science, and should be performed with care and
caution. We have outlined a set of approaches and guidelines rather than prescribing
a formal procedure. In conclusion, we must emphasize the point made earlier that
variable selection should not be performed mechanically as an end in itself but
rather as an exploration into the structure of the data analyzed, and as in all true
explorations, the explorer is guided by theory, intuition, and common sense.

11.15 A POSSIBLE STRATEGY FOR FITTING REGRESSION
MODELS

In the concluding section of the chapter we outline a possible sequence of steps
that may be used to fit a regression model satisfactorily. Let us emphasize at
the beginning that there is no single correct approach. The reader may be more
comfortable with a different sequence of steps and should feel free to follow such
a sequence. In almost all cases the analysis described here will lead to meaningful
interpretable models useful in real-life applications.

We assume that we have a response variable Y which we want to relate to
some or all of a set of variables Xy, X5, -+, X,. The set, X1, Xo, -+, Xp, is
often generated from external subject matter considerations. The set of variables is
often large and we want to come to an acceptable reduced set. Our objective is to
construct a valid and viable regression model. A possible sequence of steps are

1. Examine the variables (Y, X1, X2, -+, Xp) one at a time. This can be done
by calculating the summary statistics, and also graphically by looking at
histograms, dot plots, or box plots (see Chapter 4). The distributions of the
values should not be too skewed, nor the range of the variables very large.
Look for outliers (check for transcription errors). Make transformations to
induce symmetry and reduce skewness. Logarithmic transformations are
useful in this situation (see Chapter 6).

2. Construct pairwise scatter plots for each variable. When p, the number of
predictor variables, is large, this may not be feasible. Pairwise scatter plots
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are quite informative on the relationship between two variables. A look at
the correlation matrix will point out obvious collinearity problems. Delete
redundant variables. Calculate the condition number of the correlation matrix
to get an idea of the severity of the collinearity (Chapters 9 and 10).

3. Fit the full linear regression model. Delete variables with no significant
explanatory power (insignificant ¢-Tests). For the reduced model, examine
the residuals:

(a) Check linearity. If none, make a transformation on the variable (Chapter
6).

(b) Check for heteroscedasticity and autocorrelation (for time series data).
If present, take appropriate action (Chapters 7 and 8).

(c) Look for outliers, high-leverage points, and influential points. If
present, take appropriate action (Chapter 4).

4. Examine if additional variables can be dropped without compromising the
integrity of the model. Examine if new variables are to be brought into the
model (added variable plots, residual plus component plots) (Chapters 4 and
11). Repeat Step 3. Monitor the fitting process by examining the information
criteria (AIC or BIC). This is particularly relevant in examining non-nested
models.

5. For the final fitted model, check variance inflation factors. Ensure satisfactory
residual plots and no negative diagnostic messages (Chapters 3, 5, 6, and 9).
If need be, repeat Step 4.

6. Attempt should then be made to validate the fitted model. When the amount
of data is large, the model may be fitted by part of the data and validated by
the remainder of the data. Resampling methods such as bootstrap, jackknife,
and cross-validation are also possibilities, particularly when the amount of
data available is not large [see Efron (1982) and Diaconis and Efron (1983)].

The steps we have described are, in practice, often not done sequentially but
implemented synchronously. The process described is an iterative process and
it may be necessary to recycle through the outlined steps several times to arrive
at a satisfactory model. They enumerate the factors that must be considered for
constructing a satisfactory model.

One important component that we have not included in our outlined steps is
the subject matter knowledge of the analyst in the area in which the model is
constructed. This knowledge should always be incorporated in the model-building
process. Incorporation of this knowledge will often accelerate the process of
arriving at a satisfactory model because it will help considerably in the appropriate
choice of variables and corresponding transformations. After all is said and done,
statistical model building is an art. The techniques that we have described are the
tools by which this task can be attempted methodically.
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11.16 BIBLIOGRAPHIC NOTES

There is a vast amount of literature on variable selection scattered in statistical jour-
nals. A very comprehensive review with an extensive bibliography may be found in
Hocking (1976). A detailed treatment on variable selection with special emphasis
on C), statistic is given in the book by Daniel and Wood (1980). Refinements on
the application of C), statistic are given by Mallows (1973). The variable selection
procedures are discussed in the book by Draper and Smith (1998). Use of ridge
regression in connection with variable selection is discussed by Hoerl and Kennard
(1970) and by McDonald and Schwing (1973).

EXERCISES

11.1 As we have seen in Section 11.14, the three noncollinear subsets of predictor
variables below have emerged. Apply one or more variable selection methods
to each subset and compare the resulting final models:

(a) The subset of eight variables: 1,2, 3,4, 5, 6,9, and 14.
(b) The subset of 14 variables obtained after omitting variable 12.
(c) The subset of 14 variables obtained after omitting variable 13.

11.2 The estimated regression coefficients in Table 11.14 correspond to the stan-
dardized versions of the variables because they are computed using the cor-
relation matrix of the response and predictor variables. Using the means
and standard deviations of the variables in Table 11.11, write the estimated
regresion equation in terms of the original variables (before centering and
scaling).

11.3 Inthe Homicide data discussed in Section 11.12, we observed that when fitting
the model in (11.11), the FS and BE methods give contradictory results. In
fact, there are several other subsets in the data (not necessarily with three
predictor variables) for which the FS and BE methods give contradictory
results. Find one or more of these subsets.

11.4 Use the variable selection methods, as appropriate, to find one or more subsets
of the predictor variables in Tables 11.7 and 11.8 that best account for the
variability in the response variable H.

11.5 Property Valuation: Scientific mass appraisal is a technique in which lin-
ear regression methods applied to the problem of property valuation. The
objective in scientific mass appraisal is to predict the sale price of a home
from selected physical characteristics of the building and taxes (local, school,
county) paid on the building. Twenty-four observations were obtained from
Multiple Listing (Vol. 87) for Erie, PA, which is designated as Area 12 in the
directory. These data (Table 11.17) were originally presented by Narula and
Wellington (1977). The list of variables are given in Table 11.18.
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Table 11.17 Building Characteristics and Sales Price

Row X1 Xg X3 X4 X5 X6 X7 Xg Xg Y
1 4918 1000 3472 0998 1.0 7 4 42 0 25.90
2 5021 1.000 3531 1500 20 7 4 62 0 29.50
3 4543 1.000 2275 1175 10 6 3 40 0 27.90
4 4557 1000 4050 1232 1.0 6 3 54 0 25.90
5 5060 1.000 4455 1.121 1.0 6 3 42 0 29.90
6 3891 1.000 4455 0988 1.0 6 3 56 0 29.90
7 5898 1.000 5850 1240 1.0 7 3 51 1 30.90
8 5604 1.000 9520 1501 0.0 6 3 32 0 28.90
9 5828 1.000 6435 1225 20 6 3 32 0 35.90
10 5300 1.000 498 1552 1.0 6 3 30 0 31.50
11 6271 1000 5520 0975 10 5 2 30 0 31.00
12 5959 1000 6.666 1.121 2.0 6 3 32 0 30.90
13 5050 1.000 5000 1020 00 5 2 46 1 30.00
14 8246 1500 5.150 1.664 2.0 8 4 50 0 36.90
15 6.697 1500 6902 1488 1.5 7 3 22 1 41.90
16 7784 1500 7.102 1376 1.0 6 3 17 0 40.50
17 9.038 1000 7800 1500 1.5 7 3 23 0 43.90
18 5989 1.000 5520 125 20 6 3 40 1 37.90
19 7542 1500 5000 1690 1.0 6 3 22 0 37.90
20 8795 1500 9.890 1.820 20 8 4 50 1 44.50
21 6.083 1500 6.727 1652 10 6 3 44 0 37.90
22 8361 1500 9.150 1777 20 8 4 48 1 38.90
23 8.140 1.000 8.000 1504 20 7 3 3 0 36.90
24 9142 1500 7326 1.831 1.5 8 4 31 0 45.80

Table 11.18 List of Variables for Data in Table 11.17

Variable Definition

Y Sale price of the house in thousands of dollars

X Taxes (local, county, school) in thousands of dollars
X5 Number of bathrooms

X3 Lot size (in thousands of square feet)

X4 Living space (in thousands of square feet)

X5 Number of garage stalls

X Number of rooms

X7 Number of bedrooms

Xs Age of of the home (years)

Xy Number of fireplaces
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Answer the following questions, in each case justifying your answer by
appropriate analyses.
(a) In afitted regression model that relates the sale price to taxes and building
characteristics, would you include all the variables?

(b) A veteran real estate agent has suggested that local taxes, number of
rooms, and age of the house would adequately describe the sale price. Do
you agree?

(c) A real estate expert who was brought into the project reasoned as follows:
The selling price of a home is determined by its desirability and this is
certainly a function of the physical characteristic of the building. This
overall assessment is reflected in the local taxes paid by the homeowner;
consequently, the best predictor of sale price is the local taxes. The
building characteristics are therefore redundant in a regression equation
which includes local taxes. An equation that relates sale price solely
to local taxes would be adequate. Examine this assertion by examining
several models. Do you agree? Present what you consider to be the most
adequate model or models for predicting sale price of homes in Erie, PA.

11.6 Refer to the Gasoline Consumption data in Tables 9.16 and 9.17.

(a) Would you include all the variables to predict the gasoline consumption
of the cars? Explain, giving reasons.

(b) Six alternative models have been suggested:

(i) Regressionof Y on X3

(i) Regression of Y on Xjg

(iii) Regression of Y on X; and X9

(iv) Regression of Y on X5 and X1¢

(v) Regression of Y on Xg and Xjq

(vi) Regression of Y on Xg and X5, and X

Among these regression models, which would you choose to predict the
gasoline consumption of automobiles? Can you suggest a better model?

(¢) PlotY against X1, X2, Xg, and X1¢ (one at a time). Do the plots suggest
that the relationship between Y and the 11 predictor variables may not be
linear?

(d) The gasoline consumption was determined by driving each car with the
same load over the same track (a road length of about 123 miles). Instead
of using Y (miles per gallon), it was suggested that we consider a new
variable, W = 100/Y (gallons per hundred miles). Plot W against
X1, X2, X3, and X;o and examine if the relationship between W and
the 11 predictor variables is more linear than that between Y and the 11
predictor variables.

(e) Repeat Part (b) using W in place of Y. What are your conclusions?

(f) Regress Y on X3, where X33 = X5/ X0.

www.it-ebooks.info


http://www.it-ebooks.info/

APPENDIX 331

(g) Write a brief report describing your findings. Make a recommendation
on the model to be used for predicting gasoline consumption of cars.

11.7 Refer to the Presidential Election data in Table 5.19 and, as in Exercise 9.4,
consider fitting a model relating V' to all the variables (including a time trend
representing year of election) plus as many interaction terms involving two or
three variables as you possibly can.

(a) Starting with the model in Exercise 9.4(a). Apply two or more variable
selection methods to choose the best model or models that might be
expected to perform best in predicting future presidential elections.

(b) Repeat the above exercise starting with the model in Exercise 9.4(d).
(c) Which one of the models obtained above would you prefer?

(d) Use your chosen model to predict the proportion of votes expected to
be obtained by a presidential candidate in the United States presidential
elections in the years 2000, 2004, and 2008.

(e) Which one of the above three predictions would you expect to be more
accurate than the other two? Explain.

(f) The result of the 2000 presidential election was not known at the time
this edition went to press. If you happen to be reading this book after the
election of the year 2000 and beyond, were your predictions in Exercise
correct?

11.8 Cigarette Consumption Data: Consider the Cigarette Consumption data de-
scribed in Exercise 3.15 and given in Table 3.17. The organization wanted to
construct a regression equation that relates statewide cigarette consumption
(per capita basis) to various socioeconomic and demographic variables, and to
determine whether these variables were useful in predicting the consumption
of cigarettes.

(a) Construct a linear regression model that explains the per capita sale of
cigarettes in a given state. In your analysis, pay particular attention to
outliers. See if the deletion of an outlier affects your findings. Look at
residual plots before deciding on a final model. You need not include
all the variables in the model if your analysis indicates otherwise. Your
objective should be to find the smallest number of variables that describes
the state sale of cigarettes meaningfully and adequately.

(b) Write a report describing your findings.

Appendix: Effects of Incorrect Model Specifications

In this appendix we discuss the effects of an incorrect model specification on the
estimates of the regression coefficients and predicted values using matrix notation.
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Define the following matrix and vectors:

10 Zi1 - Tip | Tip+1) 0 Tig n
20 T21 ot T2p | To(p1) T T2g
X = . L] Y = ?
Yn
[ Tn0 Tnl ' Znp | Ta(p+1) °°° Tng
C e T
B
I €1
5] €2
IB = ___zi_ , E= . ’
ﬂp+1 En
[ By
where 2,0 = 1 for ¢ = 1,---,n. The matrix X, which has n rows and ¢ + 1

columns, is partitioned into two submatrices X, and X, of dimensions nn x (p+1)
and n x r, where r = ¢ — p. The vector 3 is similarly partitioned into 3, and 3,,
which have p + 1 and r components, respectively.

The full linear model containing all ¢ variables is given by

Y =XB+e=X,0, +X,0, +¢, (A.D

where ;s are independently normally distributed errors with zero means and unit
variance.

The linear model containing only p variables (i.e., an equation with p 4 1 terms)
is

Y =X,8,te. (A.2)
I:Et us denote the least squares estimate of 3 obtained from the full model (A.1) by
3 , where
g = ( ge ) = (XTx)"1xTY.

r

The estimate ,Bp of 3, obtained from the subset model (A.2) is given by
B, = (XIX,)'XTY.

Let &2 and 6, denote the estimates of o2 obtained from (A.1) and (A.2), respectively.
Then it follows that o
YTy -8 X7y

A2:
% n—q-1
and T
T 3l xT
o YTY -3, XIY
P n—p—1 )
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It is known from standard theory that B* and &g are unbiased estimates of 3 and
2. Tt can be shown that

E(B,) = B, + AB,,

where

A = (XIX,)'XTX,.
Further, )

var(B,) = (XIX,)"!o?

var(B) = (XTX)™! o?,
and

MSE(8,) = (XIX,) 'o? + AB,BTAT.
We can summarize the properties of ,Bp and ﬁ; as follows:
1. 31, is a biased estimate of 3, unless (1) 3, = 0 or (2) X;";XT =0.

2. The matrix Var(ﬁ*) - Var(,f‘]p) is positive semidefinite; that is, variances of
the least squares estimates of regression coefficients obtained from the full
model are larger than the corresponding variances of the estimates obtained
from the subset model. In other words, the deletion of variables always
results in smaller variances for the estimates of the regression coefficients of
the remaining variables.

3. If the matrix Var(ﬁ:) — B,BT is positive semidefinite, then the matrix
Var([i;) - MSE(BP) is positive semidefinite. This means that the least
squares estimates of regression coefficients obtained from the subset model
have smaller mean square error than estimates obtained from the full model
when the variables deleted have regression coefficients that are smaller than
the standard deviation of the estimates of the coefficients.

4. 6 g is generally biased upward as an estimate of 2.

To see the effect of model misspecification on prediction, let us examine the

prediction corresponding to an observation, say x? = (xg : xI). Let §* denote

the predicted vglue corresponding to x7 when the full set of variables are used.
Then §* = x73 with mean x” 3 and prediction variance Var(jj*):

Var(§) = o?(1 +x7 (XTX) "'x).

On the o}her hand, if the subset model (A.2) is used, the estimated predicted value
g = xgﬁp with mean
E(9) = X[ 8, + X, AB,

and prediction variance

Var(g) = o*(1 + 38 (XX,) ;).
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The prediction mean square error is given by
MSE(9) = o(1 + 3, (X7 Xp) 7'%p) + (3, AB, — X7 B,)%.
The properties of §* and § can be summarized as follows:
1. g is biased unless Xzi,r X8, =0.
2. Var(g*) = Var(j).

3. If the matrix Var([i:) — ﬁr,@TT is positive semidefinite, then Var(g*) >
MSE(§).

The significance and interpretation of these results in the context of variable selec-
tion are given in the main body of the chapter.
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CHAPTER 12

LOGISTIC REGRESSION

12.1 INTRODUCTION

In our discussion of regression analysis so far the response variable Y has been
regarded as a continuous quantitative variable. The predictor variables, however,
have been both quantitative, as well as qualitative. Indicator variables, which we
have described earlier, fall into the second category. There are situations, however,
where the response variable is qualitative. In this chapter we present methods for
dealing with this situation. The methods presented in this chapter are very different
from the method of least squares considered in earlier chapters.

Consider a procedure in which individuals are selected on the basis of their scores
inabattery of tests. After five years the candidates are classified as “good" or “poor."
We are interested in examining the ability of the tests to predict the job performance
of the candidates. Here the response variable, performance, is dichotomous. We
can code “good” as 1 and “poor” as 0, for example. The predictor variables are the
scores in the tests.

In a study to determine the risk factors for cancer, health records of several
people were studied. Data were collected on several variables, such as age, gender,
smoking, diet, and the family’s medical history. The response variable was the
person had cancer (Y = 1) or did not have cancer (Y = Q).
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In the financial community the “health" of a business is of primary concern.
The response variable is solvency of the firm (bankrupt = 0, solvent =1), and the
predictor variables are the various financial characteristics associated with the firm.
Situations where the response variable is a dichotomous variable are quite common
and occur extensively in statistical applications.

12.2 MODELING QUALITATIVE DATA

The qualitative data with which we are dealing, the binary response variable, can
always be coded as having two values, O or 1. Rather than predicting these two
values we try to model the probabilities that the response takes one of these two
values. The limitation of the previously considered standard linear regression model
is obvious.

We illustrate this point by considering a simple regression problem in which we
have only one predictor. The same considerations hold for the multiple regression
case. Let 7 denote the probability that Y = 1 when X = z. If we use the standard
linear model to describe 7, then our model for the probability would be

1 =Pr(Y =1|X = z) = S + Az (12.1)

Since 7 is a probability it must lic between 0 and 1. The linear function given
in (12.1) is unbounded, and hence cannot be used to model probability. There is
another reason why ordinary least squares method is unsuitable. The response vari-
able Y is a binomial random variable, consequently its variance will be a function
of 7, and depends on X. The assumption of equal variance (homoscedasticity)
does not hold. We could use the weighted least squares, but there are problems
with that approach. The values of 7 are not known. In order to use weighted least
squares approach, we will have to start with an initial guess for the value of 7, and
then iterate. Instead of this complex method we will describe an alternative method
for modeling probabilities.

12.3 THE LOGIT MODEL

The relationship between the probability 7 and X can often be represented by a
logistic response function. It resembles an S-shaped curve, a sketch of which is
given in Figure 12.1. The probability 7 initially increases slowly with increase in
X, then the increase accelerates, finally stabilizes, but does not increase beyond
1. Intuitively this makes sense. Consider the probability of a questionnaire being
returned as a function of cash reward, or the probability of passing a test as a
function of the time put in studying for it.

The shape of the S-curve given in Figure 12.1 can be reproduced if we model
the probabilities as follows:

eﬂo-HBlm

W:PI(Y:1|XZ$)=1—+—€;9(,T/31—¢’

(12.2)
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Figure 12,1 Logistic response function.

where e is the base of the natural logarithm. The probabilities here are modeled by
the distribution function (cumulative probability function) of the logistic distribu-
tion. There are other ways of modeling the probabilities that would also produce
the S-curve. The cumulative distribution of the normal curve has also been used.
This gives rise to the probit model. We will not discuss the probit model here, as
we consider the logistic model simpler and superior to the probit model.

The logistic model can be generalized directly to the situation where we have
several predictor variables. The probability 7 is modeled as

T = PI‘(Y= 1|X1 =.'E1,'--,Xp =.’Ep)
ePo+Brzi+Paza++Bpzp

= 1+ 6B0+,31$1+"'+6p13p ' (123)

Equation (12.3) is called the logistic regression function. It is nonlinear in the pa-
rameters 3o, 31, - - -, Bp. However, it can be linearized by the logit transformaz‘ion.l
Instead of working directly with m we work with a transformed value of 7. If 7 is
the probability of an event happening, the ratio /(1 — ) is called the odds ratio
for the event. Since

1
.'L'p) = 1 i 650+ﬂ11’1+"'+ﬂpxp )

1-7m=Pr(Y =0|X1 =21, ,Xp =

then
ﬁ = Pothrzttbpp, (12.4)

Taking the natural logarithm of both sides of (12.4), we obtain

g(x1,--,zp) =1n (1 :rw) = fo + frz1+ - + Bpzp. (12.5)

The logarithm of the odds ratio is called the logit. It can be seen from (12.5) that
the logit transformation produces a linear function of the parameters 3y, £1, - - - , Bp.

! See Chapter 6 for transformation of variables.
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Note also that while the range of values of 7 in (12.3) is between O and 1, the range
of values of In[n/(1 — 7)] is between —oo and +oo, which makes the logits (the
logarithm of the odds ratio) more appropriate for linear regression fitting.

Modeling the response probabilities by the logistic distribution and estimating
the parameters of the model given in (12.3) constitutes fitting a logistic regression.
In logistic regression the fitting is carried out by working with the logits. The
logit transformation produces a model that is linear in the parameters. The method
of estimation used is the maximum likelihood method. The maximum likelihood
estimates are obtained numerically, using an iterative procedure. Unlike least
squares fitting, no closed-form expression exists for the estimates of the parameters.
We will not go into the computational aspects of the problem but refer the reader to
McCullagh and Nelder (1989), Seber (1984), Hosmer and Lemeshow (1989), and
Dobson and Barnett (2008).

To fit a logistic regression in practice a computer program is essential. Most
regression packages have a logistic regression option. After the fitting one looks at
the same set of questions that are usually considered in linear regression. Questions
about the suitability of the model, the variables to be retained, and goodness of fit
are all considered. Tools used are not the usual B2, ¢-, and F-Tests, the ones
employed in least squares regression, but others which provide answers to these
same questions. Hypothesis testing is done by different methods, since the method
of estimation is maximum likelihood as opposed to least squares. Information
criteria such as AIC and BIC can be used for model selection. Instead of SSE, the
logarithm of the likelihood for the fitted model is used. An explicit formula is given
in Section 12.6.

12.4 EXAMPLE: ESTIMATING PROBABILITY OF BANKRUPTCIES

Detecting ailing financial and business establishments is an important function
of audit and control. Systematic failure to do audit and control can lead to grave
consequences, such as the savings-and-loan fiasco of the 1980s in the United States.
Table 12.1 gives some of the operating financial ratios of 33 firms that went bankrupt
after 2 years and 33 that remained solvent during the same period. The data can
also be found at the book’s Website.?

A multiple logistic regression model is fitted using variables X3, X7, and X3.
The output from fitting the model is given in Table 12.2. Three financial ratios were
available for each firm:

Retained Earnings

Xy =
! Total Assets
X, - Earnings Before Interest and Taxes
2 = Total Assets ’
Sales
X3 Total Assets

2 http:/iwww.aucegypt.edw/faculty/hadi/RABES
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Table 12.1 Financial Ratios of Solvent and Bankrupt Firms
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Row Y X1 X5 X3 | Row Y X1 X5 X3
1 0 —62.8 —89.5 1.7 34 1 430 16.4 1.3
2 0 33 -3.5 1.1 35 1 47.0 16.0 1.9
3 0 —120.8 —103.2 25 36 1 -3.3 4.0 2.7
4 0 —18.1 —28.8 1.1 37 1 35.0 20.8 1.9
5 0 -3.8 —50.6 0.9 38 1 46.7 12.6 0.9
6 0 —61.2 —56.2 1.7 39 1 20.8 12.5 24
7 0 —20.3 —-174 1.0 40 1 33.0 23.6 1.5
8 0 —194.5 —25.8 0.5 41 1 26.1 10.4 2.1
9 0 20.8 —-4.3 1.0 42 1 68.6 13.8 1.6

10 0 —106.1 -22.9 1.5 43 1 373 334 35
11 0 -394 —-35.7 1.2 44 1 59.0 23.1 5.5
12 0 —164.1 —17.7 13 45 1 49.6 23.8 1.9
13 0 —308.9 —65.8 0.8 46 1 12.5 7.0 1.8
14 0 7.2 -22.6 2.0 47 1 37.3 34.1 1.5
15 0 —118.3 —-34.2 1.5 48 1 35.3 4.2 0.9
16 0 —185.9 —280.0 6.7 49 1 49.5 25.1 2.6
17 0 —34.6 —-194 34 50 1 18.1 13.5 4.0
18 0 —-27.9 6.3 1.3 51 1 31.4 15.7 1.9
19 0 —48.2 6.8 1.6 52 1 21.5 —144 1.0
20 0 —49.2 —-17.2 03 53 1 8.5 5.8 1.5
21 0 —19.2 -36.7 0.8 54 1 40.6 5.8 1.8
22 0 —18.1 —6.5 0.9 55 1 34.6 26.4 1.8
23 0 -98.0 -20.8 1.7 56 1 19.9 26.7 23
24 0 —129.0 -14.2 1.3 57 1 174 12.6 1.3
25 0 —4.0 —15.8 2.1 58 1 54.7 14.6 1.7
26 0 —8.7 —-36.3 2.8 59 1 53.5 20.6 1.1
27 0 —59.2 —12.8 2.1 60 1 359 264 2.0
28 0 —13.1 —17.6 0.9 61 1 394 30.5 1.9
29 0 —38.0 1.6 1.2 62 1 53.1 7.1 1.9
30 0 -57.9 0.7 0.8 63 1 39.8 13.8 1.2
31 0 —8.8 -9.1 0.9 64 1 59.5 7.0 2.0
32 0 —64.7 —-4.0 0.1 65 1 16.3 20.4 1.0
33 0 —11.4 4.8 0.9 66 1 21.7 -7.8 1.6
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Table 12.2 Output from the Logistic Regression Using X, X5, and X3

Odds 95% C.1.
Variable Coeff. 5.e. Z-Test  p-value Ratio  Lower Upper

Constant —10.15 10.84 —-0.94 0.35

X, 0.33 0.30 1.10 0.27 1.39 0.77 2.51

Xo 0.18 0.11 1.69 0.09 1.20 0.97 1.48

X3 5.09 5.08 1.00 0.32 161.98 0.01 3.43 x108
Log-Likelihood = ~2.906 G =85.683 df=3 p-value < 0.000

The response variable is defined as

Y — 0, if bankrupt after 2 years,
1, if solvent after 2 years.

Table 12.2 has a certain resemblance to the standard regression output. Some
of the output serve similar functions. We now describe and interpret the output
obtained from fitting a logistic regression. If 7 denotes the probability of a firm
remaining solvent after 2 years, the fitted logit is given by

g(z1, -+, zp) = —10.15 4+ 0.33 z; + 0.18 2 + 5.09 z3. (12.6)

This corresponds to the fitted regression equation in standard analysis. Here instead
of predicting Y we obtain a model to predict the logits, log[n /(1 — 7)]. From the
logits, after transformation, we can get the predicted probabilities. The constant
and the coefficients are read directly from the second column in the table. The
standard errors (s.e.) of the coefficients are given in the third column. The fourth
column headed by Z is the ratio of the coefficient and the standard deviation. The
Z is sometimes referred to as the Wald Statistic (Test). The Z corresponding to
the coefficient of X5 is obtained from dividing 0.181 by 0.107. In the standard
regression this would be the ¢-Test. This ratio for the logistic regression has a
normal distribution as opposed to a ¢-distribution that we get in linear regression.
The fifth column gives the p-value corresponding to the observed Z value, and
should be interpreted like any p-value (see Chapters 2 and 3). These p-values are
used to judge the significance of the coefficient. Values smaller than 0.05 would
lead us to conclude that the coefficient is significantly different from O at the 5%
significance level. From the p-values in Table 12.2, we see that none of the variables
individually are significant for predicting the logits of the observations.

In the standard regression output the regression coefficients have a simple inter-
pretation. The regression coefficient of the jth predictor variable X is the expected
change in Y for unit change in X; when other variables are held fixed. The coeffi-
cient of X5 in (12.6) is the expected change in the logit for unit change in X2 when
the other variables are held fixed. The coefficients of a logistic regression fit have
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another interpretation that is of major practical importance. Keeping X; and X3
fixed, for unit increase in X the relative odds of

Pr(Firm solvent after 2 years)
Pr(Firm bankrupt)

is multiplied by e = €181 =1.198, that is, there is an increase of 20%. These

values for each of the variables is given in the sixth column headed by Odds Ratio.
They represent the change in odds ratio for unit change of a particular variable
while the others are held constant. The change in odds ratio for unit change in
variable X;, while the other variables are held fixed, is ebi. If X; was a binary

variable, taking values 1 or 0, then e®i would be the actual value of the odds ratio
rather than the change in the value of the odds ratio.

The 95% confidence intervals of the odds ratios are given in the last two columns
of the table. If the confidence interval does not contain the value 1, the variable has
a significant effect on the odds ratio. If the interval is below 1, the variable lowers
significantly the relative odds. On the other hand, if the interval lies above 1, the
relative odds is significantly increased by the variable.

To see whether the variables collectively contribute in explaining the logits a
test that examines whether the coefficients 31, - - -, 3, are all zero is performed.
This corresponds to the case in multiple regression analysis where we test whether
all the regression coefficients can be taken to be zero. The statistic G given at
the bottom of Table 12.2 performs that task. The statistic G has a chi-square
distribution. The p-value is considerably smaller than 0.05, and indicates that the
variables collectively influence the logits.

12.5 LOGISTIC REGRESSION DIAGNOSTICS

After fitting a logistic regression model certain diagnostic measures can be exam-
ined for the detection of outliers, high-leverage points, influential observations,
and other model deficiencies. The diagnostic measures developed in Chapter 4
for the standard linear regression model can be adapted to the logistic regression
model. Regression packages with a logistic regression option usually give various
diagnostic measures. These include:

1. The estimated probabilities 7;, 2 = 1,---,n.

2. One or more types of residuals, for example, the standardized deviance
residuals, DR;, and the standardized Personian residuals, PR;, i =1, - - -,
n.

3. The weighted leverages, p;;, which measure the potential effects of the obser-
vations in the predictor variables on the obtained logistic regression results.

4. The scaled difference in the regression coefficients when the ith observation
is deleted: DBETA;,i =1,---,n.
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5. The change in the chi-squared statistics G when the ¢th observation is deleted:
DFG;,i=1,---,n.

The formulas and derivations of these measures are beyond the scope of this book.
The interested reader is referred to Pregibon (1981), Landwehr, Pregibon, and
Shoemaker (1984), Hosmer and Lemeshow (1989) and the references therein. The
above measures, however, can be used in the same way as the corresponding mea-
sures obtained from a linear fit (Chapter 4). For example, the following graphical
displays can be examined:

1. The scatter plot of DR; versus 7;
2. The scatter plot of PR; versus 7;
3. The index plots of DR;, DBETA;, DG;, and p};

As an illustrative example using the Bankruptcy data, the index plots of DR;,
DBETA;, and DG; obtained from the fitted logistic regression model in (12.6) are
shown in Figures 12.2, 12.3, and 12.4, respectively. It can easily be seen from
these graphs that observations 9, 14, 52, and 53 are unusual and that they may have
undue influence on the logistic regression results. We leave it as an exercise for
the reader to determine if their deletion would make a significant difference in the
results and the conclusion drawn from the analysis.

12.6 DETERMINATION OF VARIABLES TO RETAIN

In the analysis of the Bankruptcy data we have determined so far that the variables
X1, Xs, and X3 collectively have explanatory power. Do we need all three
variables? This is analogous to the problem of variable selection in multiple
regression that was discussed in Chapter 11. Instead of looking at the reduction in
the error sum of squares we look at the change in the likelihood (more precisely,
the logarithm of the likelihood) for the two fitted models. The reason for this is
that in logistic regression the fitting criterion is the maximum likelihood, whereas
in least squares it is the least sum of squares. Let L(p) denote the logarithm of
the likelihood when we have a model with p variables and a constant. Similarly,
let L(p + gq) be the logarithm of the likelihood for a model in which we have
p + g variables and a constant. To see whether the ¢ additional variables contribute
significantly we look at 2[L(p + q) — L(p)]. This quantity is twice the difference
between the log-likelihood for the two models. This difference is distributed as a
chi-square variable with g degrees of freedom (see Table A.3).

The magnitude of this quantity determines the significance of the test. A small
value of chi-square would lead to the conclusion that the ¢ variables do not add
significantly to the improvement in prediction of the logits, and is therefore not
necessary in the model. A large value of chi-square would call for the retention of
the g variables in the model. The critical value is determined by the significance
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Figure 12.2 Bankruptcy data: Index plot of DR;, the standardized deviance residuals.
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Figure 12.3 Bankruptcy data: Index plot of DBETA;, the scaled difference in the
regression coefficients when the ith observation is deleted.
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Figure 124 Bankruptcy data: Index plot of DG;, the change in the chi-squared statistics
G when the ith observation is deleted.

level of the test. This test procedure is valid when n, the number of observations
available for fitting the model, is large.

An idea of the predictive power of a variable for possible inclusion in the
logistic model can be obtained from a simple graphical plot. Side-by-side boxplots
are constructed for each of the explanatory variable. Side-by-side boxplots will
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Table 12.3 Output From the Logistic Regression Using X; and X

Odds 95% C.I

Variable Coefficient  s.e. Z-Test p-value Ratio Lower  Upper
Constant —0.550 0951 —0.58 0.563
X, 0.157 0.075 2.10 0.036 1.17 1.01 1.36
X, 0.195 0.122 1.59 0.112 1.21 0.96 1.54
Log-Likelihood = —4.736 G =82.024 df=2  p-value < 0.000

Table 12.4 Output from the Logistic Regression Using X

Odds 95% C.I.

Variable Coefficient s.c. Z-Test p-value Ratio Lower  Upper
Constant —1.167 0.816 —1.43 0.153

X1 0.177 0.057 3.09 0.002 1.19 1.07 1.33
Log-Likelihood = —7.902 G =75.692 df=1 p-value < 0.000

indicate the variables that may be useful for this purpose. Variables with boxplots
different for the two groups are likely candidates. Note that this does not take into
account the correlation between the variables. The formal procedure described
above takes into account the correlations. With a large number of explanatory
variables the boxplots provide a quick screening procedure.

In the Bankruptcy data we are analyzing, let us see if the variable X3 can be
deleted without degrading the model. We want to answer the question: Should the
variable X3 be retained in the model? We fit a logistic regression using X and
Xo. The results are given in Table 12.3. The log-likelihood for the model with X1,
X, and X3 is —2.906, whereas with only X; and X it is —4.736. Here p = 2
and g = 1, and 2[L(3) — L(2)] = 3.66. This is a chi-square variable with 1 degree
of freedom. From Table A.3, we find that the 5% critical value of the chi-square
distribution with 1 degree of freedom is 3.84. At the 5% level we can conclude that
the variable X3 can be deleted without affecting the effectiveness of the model.

Let us now see if we can delete X;. The result of regressing Y on X is given
in Table 12.4. The resulting log-likelihood is —7.902. The test statistic, which
we have described earlier, has a value of 6.332. This is distributed as a chi-square
random variable with 1 degree of freedom. The 5% value, as we saw earlier,
was 3.84. The analysis indicates that we should not delete X from our model.
The p-value for this test, as can be verified, is 0.019. To predict probabilities of
bankruptcies of firms in our data we should include both X and X3 in our model.

The procedure that we have outlined above enables us to test any nested model.
A set of models are said to be nested if they can be obtained from a larger model as
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Table 12.5 The AIC and BIC Criteria for Various Logistic Regression models

Variables AIC BIC

X1 X0 X5 13.81 22.57
X1 X, 15.47 22.04
X1 X3 18.12 24.69
XX, 33.40 39.97
X, 19.80 24.18
X5 34.50 38.88
X3 92.46 96.84
None 93.50 95.69

special cases. The methodology is similar to that used in analyzing nested models
in multiple regression. The only difference is that here our test statistic is based on
the log of the likelihood instead of sum of squares.

The AIC and BIC criteria discussed in Section 11.5.3 can be used to judge the
suitability of various logistic models, and thereby the desirability of retaining a
variable in the model. In the context of p-term logistic regression, AIC and BIC are

AIC = -2(Log-Likelihood of the Fitted Model) + 2p, 12.7)
BIC = -2(Log-Likelihood of the Fitted Model) + plogn, (12.8)

where p denotes the number of variables in the model. Table 12.5 shows AIC
and BIC for all possible models. The best AIC model is the one that includes all
three variables (lowest AIC). While BIC picks X1 X5 as the best model, but the one
containing all three variables is equally adequate. The BIC for the two top models
differ by less than 2.

12.7 JUDGING THE FIT OF A LOGISTIC REGRESSION

The overall fit of a multiple regression model is judged, for example, by the value
of R? from the fitted model. No such simple satisfactory measure exists for logistic
regression. Some ad hoc measures have been proposed which are based on the
ratio of likelihoods. Most of these are functions of the ratio of the likelihood for
the model and the likelihood of the data under a binomial model. These measures
are not particularly informative and we will consider a different approach.

The logistic regression equation attempts to model probabilities for the two
values of Y (0 or 1). To judge how well the model is doing we will determine the
number of observations in the sample that the model is classifying correctly. Our
approach will be to fit the logistic model to the data, and calculate the fitted logits.
From the fitted logits we will calculate the fitted probabilities for each observation.
If the fitted probability for an observation is greater than 0.5, we will assign it to
Group 1 (Y = 1), and if less than 0.5 we will classify itin Group 0 (Y = 0). We will
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then determine what proportion of the data is classified correctly. A high proportion
of correct classification will indicate to us that the logistic model is working well.
A low proportion of correct classification will indicate poor performance.

Different cutoff values, other than 0.5, have been suggested in the literature. In
most practical situations, without any auxiliary information, such as the relative cost
of misclassification or the relative frequency of the two categories in the population,
0.5 is recommended as a cutoff value.

A slightly more problematical question is how high the correct classification
probability has to be before logistic regression is thought to be effective. Suppose
that in a sample of size n there are n; observations from Group 1, and ny from
Group 2. If we classify all the observations into one group or the other, then we will
get either n; /n or ny/n proportions of observations classified correctly. As a base
level for correct classification we can take the max(n;/n, na/n). The proportion
of observation classified correctly by the logistic regression should be much higher
than the base level for the logistic model to be deemed useful.

For the Bankruptcy data that we have been analyzing logistic regression performs
very well. Using variables X and X5, we find that the model misclassifies one ob-
servation from the solvent group (observation number 36) and one observation from
the bankruptcy group (observation number 9). The overall correct classification
rate (64/66) = 0.97. This is considerably higher than the base level rate of 0.5.

The concept of overall correct classification for the observed sample to judge the
adequacy of the logistic model that we have discussed has been generalized. This
generalization is used to produce a statistic to judge the fit of the logistic model.
It is sometimes called the Concordance Index and is denoted by C'. This statistic
is calculated by considering all possible pairs formed by taking one observation
from each group. Each of the pairs is then classified by using the fitted model. The
Concordance Index is the percent of all possible pairs that is classified correctly.
Thus, C lies between 0.5 and 1. Values of C close to 0.5 shows the logistic
model performing poorly (no better than guessing). The value of C for the logistic
model with X; X2 X3 is 0.99. Several currently available software computes the
value of C.

The observed correct classification rate should be treated with caution. In
practice, if this logistic regression was applied to a new set of observations from this
population, it would be very unlikely to do as well. The classification probability
has an upward bias. The bias arises due to the fact that the same data that were
used to fit the model was used to judge the performance of the model. The model
fitted to a given body of data is expected to perform well on the same body of
data. The true measure of the performance of the logistic regression model for
classification is the probability of classifying a future observation correctly and not
a sample observation. This upward bias in the estimate of correct classification
probability can be reduced by using resampling methods, such as jack-knife or
bootstrap. These will not be discussed here. The reader is referred to Efron (1982)
and Diaconis and Efron (1983).
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12.8 THE MULTINOMIAL LOGIT MODEL

In our discussion of logistic regression we have so far assumed that the qualitative
response variable assumes only two values, generically, 1 for success and O for
failure. The logistic regression model can be extended to situations where the
response variable assumes more than two values. In a study of the choice of mode
of transportation to work, the response variable may be private automobile, car
pool, public transport, bicycle, or walking. The response falls into five categories.
There is no natural ordering of the categories. We might want to analyze how the
choice is related to factors such as age, gender, income, distance traveled, and so
forth. The resulting model can be analyzed by using slightly modified methods
that were used in analyzing the dichotomous outcomes. This method is called the
multinomial (polytomous) logistic regression.

The response categories are not ordered in the example described above. There
are situations where the response categories are ordered. In an opinion survey,
the response categories might be strongly agree, agree, no opinion, disagree, and
strongly disagree. The response categories are naturally ordered. In a clinical trial
the responses to a treatment could be classified as improved, no change, or worse.
For these situations a different method called the Proportional Odds Model is used.
We discuss it in Section 12.8.3.

12.8.1 Multinomial Logistic Regression

We have n independent observations with p explanatory variables. The qualitative
response variable has k categories. To construct the logits in the multinomial case
one of the categories is considered the base level and all the logits are constructed
relative to it. Any category can be taken as the base level. We will take category
k as the base level in our description of the method. Since there is no ordering,
it is apparent that any category may be labeled k. Let 7; denote the multinomial
probability of an observation falling in the jth category. We want to find the rela-
tionship between this probability and the p explanatory variables, X1, X2, - -+, Xp.
The multiple logistic regression model then is

i (222

Tk (z:)

j:1’2a"'7(k—1),

) = Poj + B1x1i + Bojz2i + - + BpjTpis; i=1,2,--,n.

Since all the 7’s add to unity, this reduces to

exp (Boj + P1j21i + Baj®ai + - -+ + Bpjpi)

In(7(x;)) = ’
T L+ S exp (Boj + Brjmai + Bojai + - + Byicepi)

for j = 1,2,---,(k — 1). The model parameters are estimated by the method
of maximum likelihood. Statistical software is available to do this fitting. We
illustrate the method by an example.
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Boxplot of RW vs. CC Boxplot of IR vs. CC Boxplot of SSPG vs. CC
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Figure 12.5 Side-by-side boxplots for the Diabetes data.

12.8.2 Example: Determining Chemical Diabetes

To determine the treatment and management of diabetes it is necessary to determine
whether the patient has chemical diabetes or overt diabetes. The data presented in
Tables 12.6 and 12.7 is from a study conducted to determine the nature of chemical
diabetes. The measurements were taken on 145 nonobese volunteers who were
subjected to the same regimen. Many variables were measured, but we consider
only three of them. These are, insulin response (IR), the steady-state plasma glucose
(SSPG), which measures insulin resistance, and relative weight (RW). The diabetic
status of each subject was recorded. The clinical classification (CC) categories
were overt diabetes (1), chemical diabetes (2), and normal (3). The data set is
found in Andrews and Herzberg (1985). More details of the study are found in
Reaven and Miller (1979).

Side-by-side boxplots of the explanatory variables indicate that the distribution
of IR and SSPG differ for the three categories. The distribution of RW on the
other hand does not differ substantially for the three categories. The boxplots are
shown in Figure 12.5. The results of fitting a multinomial logistic model using the
variables IR, SSPG, and RW are given in Table 12.8. Each of the logistic models
is given relative to normal patients.

We see that RW has insignificant values in each of the logit models. This is
consistent with what we observed in the side-by-side boxplots. We now fit the
multinomial logistic model with two variables, SSPG and IR. The results are given
in Table 12.9.
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Table 12.6 Diabetes Data: Blood Glucose, Insulin Levels, Relative Weight,

Clinical Classification (Patients 1 to 90)

349

Patient RW IR SSPG CC | Patient RW IR SSPG CC
1 0.81 124 55 3 46 0.91 106 56 3
2 0.95 117 76 3 47 0.95 118 122 3
3 0.94 143 105 3 48 0.95 112 73 3
4 1.04 199 108 3 49 1.03 157 122 3
5 1.00 240 143 3 50 0.87 292 128 3
6 0.76 157 165 3 51 0.87 200 233 3
7 0.91 221 119 3 52 1.17 220 132 3
8 1.10 186 105 3 53 0.83 144 138 3
9 0.99 142 98 3 54 0.82 109 83 3

10 0.78 131 94 3 55 0.86 151 109 3
11 0.90 221 53 3 56 1.01 158 96 3
12 0.73 178 66 3 57 0.88 73 52 3
13 0.96 136 142 3 58 0.75 81 42 3
14 0.84 200 93 3 59 0.99 151 122 2
15 0.74 208 68 3 60 1.12 122 176 3
16 0.98 202 102 3 61 1.09 117 118 3
17 1.10 152 76 3 62 1.02 208 244 2
18 0.85 185 37 3 63 1.19 201 194 2
19 0.83 116 60 3 64 1.06 131 136 3
20 0.93 123 50 3 65 1.20 162 257 2
21 0.95 136 47 3 66 1.05 148 167 2
22 0.74 134 50 3 67 1.18 130 153 3
23 0.95 184 91 3 68 1.01 137 248 3
24 0.97 192 124 3 69 0.91 375 273 3
25 0.72 279 74 3 70 0.81 146 80 3
26 1.11 228 235 3 71 1.10 344 270 2
27 1.20 145 158 3 72 1.03 192 180 3
28 1.13 172 140 3 73 0.97 115 85 3
29 1.00 179 145 3 74 0.96 195 106 3
30 0.78 222 99 3 75 1.10 267 254 3
31 1.00 134 90 3 76 1.07 281 119 3
32 1.00 143 105 3 77 1.08 213 177 2
33 0.71 169 32 3 78 0.95 156 159 3
34 0.76 263 165 3 79 0.74 221 103 3
35 0.89 174 78 3 80 0.84 199 59 3
36 0.88 134 80 3 81 0.89 76 108 3
37 1.17 182 54 3 82 1.11 490 259 3
38 0.85 241 175 3 83 1.19 143 204 2
39 0.97 128 80 3 84 1.18 73 220 3
40 1.00 222 186 3 85 1.06 237 111 2
41 1.00 165 117 3 86 0.95 748 122 2
42 0.89 282 160 3 87 1.06 320 253 2
43 0.98 94 71 3 88 0.98 188 211 2
44 0.78 121 29 3 89 1.16 607 271 2
45 0.74 73 42 3 90 1.18 297 220 2
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Table 12.7 Diabetes Data: Blood Glucose, Insulin Levels, Relative Weight,
Clinical Classification (Patients 91 to 145)

Patient = RW IR SSPG CC | Patient RW IR SSPG CcC

91 1.20 232 276 119 1.06 76 260
92 1.08 480 233 120 0.92 42 346
93 0.91 622 264 121 1.20 102 319
94 1.03 287 231 122 1.04 138 351
95 1.09 266 268 123 1.16 160 357
96 1.05 124 60 124 1.08 131 248
97 1.20 297 272 125 0.95 145 324
98 1.05 326 235 126 0.86 45 300
99 1.10 564 206 127 0.90 118 300
100 1.12 408 300 128 0.97 159 310
101 0.96 325 286 129 1.16 73 458
102 1.13 433 226 130 1.12 103 339
103 1.07 180 239 131 1.07 460 320
104 1.10 392 242 132 0.93 42 297
105 0.94 109 157 133 0.85 13 303
106 1.12 313 267 134 0.81 130 152
107 0.88 132 155 135 0.98 44 167
108 0.93 285 194 136 1.01 314 220
109 1.16 139 198 137 1.19 219 209
110 0.94 212 156 138 1.04 100 351
111 091 155 100 139 1.06 10 450
112 0.83 120 135 140 1.03 83 413
113 0.92 28 455 141 1.05 41 480
114 0.86 23 327 142 091 77 150
115 0.85 232 279 143 0.90 29 209
116 0.83 54 382 144 1.11 124 442
117 0.85 81 378 145 0.74 15 253
118 1.06 87 374

—mt et e = = NN NN NN NNNNDNDNNNNDDNDND DN
O T T S S S S S = W S S S e T T T o T Yy Sy Ve

Looking at Logit (1/3), we see that higher values of SSPG increases the odds
of overt diabetes, while a decrease in IR reduces the same odds when compared
to normal subjects. Looking at Logit (2/3), we see that the higher values SSPG
increases the odds of chemical diabetes when compared to the normal subjects.
The IR value does not significantly affect the odds. This indicates the difference
between chemical and overt diabetes and has implications for the treatment of the
two conditions.

Although we have taken 3 as the base level, from our computation we can derive
other comparisons. We can get Logit (1/2) from the relation

Logit(1/2) = Logit(1/3) — Logit(2/3). (12.9)

We can judge how well the multinomial logistic regression classifies the obser-
vations into different categories. The methodology is similar to binary logistic
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Table 12.8 Multinomial Logistic Regression Output with RW, SSPG, and IR (Base
Level =3)

Odds 95% C.I.

Variable Coefficient  s.e. Z-Test p-value Ratio Lower  Upper
Logit 1: (2/3)

Constant -7.615 2336 -3.26 0.001

RW 3.473 2.446 1.42 0.156 32.23 0.27 3894.2
SSPG 0.016 0.005 3.29 0.001 1.02 1.01 1.03
IR 0.004 0.002 1.53 0.127 1.00 1.00 1.01
Logit 2: (1/3)

Constant -1.845 3463 053 0.594

RW -5.868 3.867 -1.52 0.129 0.00 0.00 5.53
SSPG 0.046 0.009 4.92 0.000 1.05 1.03 1.07
IR —0.0134 0.005 -2.66 0.008 0.99 0.98 1.00

Log-Likelihood = —68.415 G =159.369 df=6  p-value < 0.000

Table 12.9 Multinomial Logistic Regression Output with SSPG and IR (Base
Level = 3)

Odds 95% C.1.

Variable Coefficient  s.e. Z-Test  p-value Ratio Lower  Upper
Logit 1: (2/3)

Constant —4.549 0771  -5.90 0.000

SSPG 0.020 0.004 4.38 0.000 1.02 1.01 1.03
IR 0.003 0.002 1.42 0.155 1.00 1.00 1.01
Logit 2: (1/3)

Constant —7.111 1.688 —4.21 0.000

SSPG 0.043 0.008 5.34 0.000 1.04 1.03 1.06
IR —0.013 0.005 2.8 0.004 0.99 0.98 1.00

Log-Likelihood = —72.029 G =152.141 df=4  p-value < 0.000
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Table 12.10  Classification Table of Diabetes Data Using Multinomial Logistic
Regression

Predict
cC 1 2 3 All
1 27 3 3 33
2 1 22 13 36
3 2 5 69 76
All 30 30 85 145

regression. An observation is classified to that category for which it has the highest
estimated probability. The classification table for the multinomial logistic regres-
sion is given in Table 12.10.

One can see that 118 out of 145 subjects studied are classified correctly by
this procedure. Thus, 81% of the observations are correctly classified. This is
considerably higher than the maximum correct rate 59% (85/145), which would
have been obtained if all the observations were put in one category. Multinomial
logistic regression has performed well on this data. It is a powerful technique that
should be used more extensively.

12.8.3 Ordinal Logistic Regression

The response variable in many studies, as has been pointed out earlier, can be
qualitative and fall in more than two categories. The categories may sometimes be
ordered. In a consumer satisfaction study, the responses might be highly satisfied,
satisfied, dissatisfied, and highly dissatisfied. An analyst may want to study the
socioeconomic and demographic factors that influence the response. The logistic
model, slightly modified, can be used for this analysis. The logits here are based on
the cumulative probabilities. Several logistic models can be based on the cumulative
logits. We describe one of these, the proportional odds model.

Again, we have n independent observations with p predictors. The response
variable falls into k categories (1,2,---, k). The k categories are ordered. Let Y
denote the response variable. The cumulative distribution for Y is

FJ(.’El) =PI‘(Y§j'XZ' =.’L‘i1,'-',Xp =:Cip,); j=1,2,--‘,(k—1).

The proportional odds model is given by,

Fi(z;
Lj(z;) =1n (1—_%) = foj + Prjr1i + Bajx + - + BpiTpi,
forj =1,2,---,(k — 1). The comulative logit has a simple interpretation. It can

be interpreted as the logit for a binary response in which the categories from 1 to j
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Table 12.11  Ordinal Logistic Regression Model (Proportional Odds) Using SSPG
and IR

Odds 95% C.1.

Variable Coefficient  s.e. Z-Test p-value Ratio Lower Upper
Constant 1 -6.794 0.872 -7.79 0.000

Constant 2 —4.189 0.665 -6.30 0.000

IR -0.004 0.002 -2.30 0.021 1.00 0.99 1.00
SSPG 0.028 0.004 1.73 0.000 1.03 1.02 1.04

Log-Likelihood = —81.749 G =132.700 df=2  p-value < 0.000

is one category, and the remaining categories from j + 1 to k is the second category.
The model is fitted by the maximum likelihood method. Several statistical software
packages will carry out this procedure. Increase in the value of a response variable
with a positive § will increase the probability of being in a lower numbered category,
all other variables remaining the same. The number of parameters estimated to
describe the data is fewer in the ordinal than in the nominal model. For a more
detailed discussion the reader is referred to Agresti (2002) and Simonoff ( 2003).

12.8.4 Example: Determining Chemical Diabetes Revisited

We will use the data on chemical diabetes considered in Section 12.8.2 to illustrate
ordinal logistic regression. The clinical classifications in the previous categories are
ordered but we did not take it into consideration in our analysis. The progression of
diabetes goes from normal (3), chemical (2) , to overt diabetes (1). The classification
states have a natural order and we will use them in our analysis. We will fit the
proportional odds logit model. The results of the fit are given in Table 12.11.

The fit for the model is good. Both variables have a significant relationship to the
group membership. The coefficient of SSPG is positive. This indicates that higher
values of SSPG increase the probability of being in a lower numbered category,
other factors being the same. The coefficient of IR is negative, indicating that
higher values of this variable increase the probability of being in a higher numbered
category, other factors remaining the same. The coefficient of concordance is high
(0.90) showing the ability of the model to classify the group membership is high.
In Table 12.12, we give the classification table for the ordinal logistic regression.

Of the 145 subjects ordinal logit regression classifies 114 subjects to their correct
group. This gives the correct classification rate as 79%. This is comparable to the
rate achieved by the multinomial logit model. It is generally expected that the
ordinal model will do better than the multinomial model because of the additional
information provided by the ordering of the categories. It should be also noted
the ordinal logit model uses fewer parameters than the multinomial model. In
our example the ordinal model uses 4 parameters, while the nominal version uses
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Table 12.12 Classification Table of Diabetes Data Using Multinomial Logistic
Regression

Predict
CC 1 2 3 All
1 26 5 2 33
2 3 20 13 36
3 0 8 68 76
All 29 33 83 145

6. For a more detailed discussion the reader is referred to Agresti (2002) and
Simonoff (2003).

12.9 CLASSIFICATION PROBLEM: ANOTHER APPROACH

The method of logistic regression has been used to model the probability that an
observation belongs to one group given the measurements on several characteristics.
We have described how the fitted logits could then be used for classifying an
observation into one of two categories. A different statistical methodology is
available if our primary interest is classification. When the sole interest is to
predict the group membership of each observation, a statistical method called
discriminant analysis is commonly used. Without discussing discriminant analysis
here, we indicate a simple regression method that will accomplish the same task.
The reader can find a discussion of discriminant analysis in McLachlan (1992),
Rencher (1995), and Johnson (1998).

The essential idea in discriminant analysis is to find a linear combination of the
predictor variables X, - - -, X}, such that the scores given by this linear combination
separate the observations from the two groups as far as possible. One way that this
separation can be accomplished is by fitting a multiple regression model to the data.
The response variable is Y, taking values 0 and 1, and the predictors are X7, - - -, X.
As has been pointed out earlier, some of the fitted values will be outside the range
of 0 and 1. This does not matter here, as we are not trying to model probabilities,
but only to predict group membership. We calculate the average of the predicted
values of all the observations. If the predicted value for a given observation is
greater than the average predicted value we assign that observation to the group
which has Y = 1; if the predicted value is smaller than the average predicted value
we assign it to the group with Y = 0. From this assignment we determine the
number of observations classified correctly in the sample. The variables used in
this classification procedure are determined exactly by the same methods as those
used for variable selection in multiple regression.
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Table 12.13 Resuits from the OLS Regression of Y on X1, X2, X3

Variable Coefficient s.e. t-Test p-value
Constant 0.322 0.087 3.68 0.0005
X, 0.003 0.001 3.76 0.0004
o 0.004 0.001 2.96 0.0044
z3 0.149 0.045 3.28 0.0017
n = 66 R? = 0.57 RZ =0.55 & = 0.3383 df =62

We illustrate this method by applying it to the Bankruptcy data that we have used
earlier to illustrate least squares regression. Table 12.13 gives the OLS regression
results using the three predictor variables X, X», and X3. All three variables have
significant regression coefficients and should be retained for classification equation.

Table 12.14 displays the observed Y, the predicted Y, and the assigned group for
the Bankruptcy data. The average value of the predicted Y is 0.5. All observations
with predicted value less than 0.5 is assigned to Y = 0, and those with predicted
value greater than 0.5 is assigned to the group with Y = 1. The wrongly classified
observations are marked with an asterisk. It is seen that five bankrupt firms are
classified as solvent, and one solvent firm is classified as bankrupt. The logistic re-
gression, it should be noted, classified only two observations wrongly. One solvent
firm and one bankrupt firm were misclassified. For the Bankruptcy data presented
in Table 12.2, the logistic regression performs better than the multiple regression in
classifying the sample data. In general this is true. The logistic regression does not
have to make the restrictive assumption of multivariate normality for the predictor
variables. For classification problems we recommend the use of logistic regres-
sion. If a logistic regression package is not available, then the multiple regression
approach may be tried.

EXERCISES

12.1 The diagnostic plots in Figures 12.2, 12.3, and 12.4 show three unusual
observations in the Bankruptcy data. Fit a logistic regression model to the 63
observations without these three observations and compare your results with
the results obtained in Section 12.5. Does the deletion of the three points
cause a substantial change in the logistic regression results?

12.2 Examine the various logistic regression diagnostics obtained from fitting the
logistic regression Y on X; and X, (Table 12.3) and determine if the data
contain unusual observations.

12.3 The O-rings in the booster rockets used in space launching play an important
part in preventing rockets from exploding. Probabilities of O-ring failures are
thought to be related to temperature. A detailed discussion of the background
of the problem is found in The Flight of the Space Shuttle Challenger in
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Table 12.14 Classification of Observations by Fitted Values

Row Y Fitted Assigned Row Y Fitted Assigned
1 0 —0.00 0 34 1 0.72 1
2 0 0.48 0 35 1 0.82 1
3 0 —0.12 0 36 1 0.73 1
4 0 0.31 0 37 1 0.80 1
5 0 0.23 0 38 1 0.65 1
6 0 0.14 0 39 1 0.80 1
7 0 0.33 0 40 1 0.75 1
8 0 —-0.32 0 41 1 0.76 1
9 0 0.52 1* 42 1 0.83 1

10 0 0.12 0 43 1 1.10 1
11 0 0.23 0 44 1 1.42 1
12 0 —0.07 0 45 1 0.86 1
13 0 —0.80 0 46 1 0.66 1
14 0 0.55 1* 47 1 0.81 1
15 0 0.03 0 48 1 0.58 1
16 0 —045 0 49 1 0.97 1
17 0 0.64 1* 50 1 1.03 1
18 0 045 0 51 1 0.77 1
19 0 0.44 0 52 1 0.48 0*
20 0 0.14 0 53 1 0.60 1
21 0 0.22 0 54 1 0.74 1
22 0 0.37 0 55 1 0.81 1
23 0 0.18 0 56 1 0.84 1
24 0 0.05 0 57 1 0.62 1
25 0 0.55 1* 58 1 0.81 1
26 0 0.56 1* 59 1 0.74 1
27 0 0.39 0 60 1 0.84 1
28 0 0.34 0 61 1 0.86 1
29 0 0.39 0 62 1 0.80 1
30 0 0.26 0 63 1 0.68 1
31 0 0.39 0 64 1 0.83 1
32 0 0.12 0 65 1 0.61 1
33 0 0.44 0 66 1 0.59 1

* Wrongly classified observations.

Chatterjee and Simonoff (1995, pp. 33-35). Each flight has six O-rings that
could be potentially damaged in a particular flight. The data from 23 flights
are given in Table 1.11 and can also be found at the book’s Website. For each
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Table 12.15  Field-Goal-Kicking Performances of the American Football League
(AFL) and National Football League (NFL) for the 1969 Season. The Variable Z is
an Indicator Variable Representing League.

League Distance Success Attempts Z
NFL 14.5 68 77 0
NFL 24.5 74 95 0
NFL 34.5 61 113 0
NFL 44.5 38 138 0
NFL 52.0 2 38 0
AFL 14.5 62 67 1
AFL 24.5 49 70 1
AFL 34.5 43 79 1
AFL 44.5 25 82 1
AFL 52.0 7 24 1

Source: Morris and Rolph (1981, p. 200).

flight we have the number of O-rings damaged and the temperature of the

launch.

(a) Fit a logistic regression connecting the probability of an O-ring failure
with temperature. Interpret the coefficients.

(b) The data for Flight 18 that was launched when the launch temperature was
75 degrees Fahrenheit was thought to be problematic, and was deleted.
Fit a logistic regression to the reduced data set. Interpret the coefficients.

(c) From the fitted model, find the probability of an O-ring failure when the
temperature at launch was 31 degrees Fahrenheit. This was the tempera-
ture forecast for the day of the launching of the fatal Challenger flight on
January 20, 1986.

(d) Would you have advised the launching on that particular day?

12.4 Field-goal-kicking data for the entire American Football League (AFL) and
National Football League (NFL) for the 1969 season are given in Table 12.15
and can also be found at the book’s Website. Let (X ') denote the probability
of kicking a field goal from a distance of X yards.

(a) For each of the leagues, fit the model

ePo+B1 X+p2 X?
m(X) = 1 + ePo+B X+P2 X2 °

(b) Let Z be an indicator variable representing the league, that is,

7 _ 1, for the AFL,
"] 0, forthe NFL.
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Fit a single model combining the data from both leagues by extending the
model to include the indicator variable Z; that is, fit

ebo+BL X+B2 X> 483 Z
1 + ePotBL X+p2X?+P3 Z

(X, 2Z) =

(c) Does the quadratic term contribute significantly to the model?

(d) Are the probabilities of scoring field goals from a given distance the same
for each league?

12.5 Using the data given in Table 1.12 (A description of the data is found in
Section 1.3.8):

(a) Are rural facilities different from nonrural facilities? Use logistic regres-
sion to determine the best fitting model.

(b) How do the hospital characteristics affect patient care revenue? Use a
sequential approach to arrive at the best model.

12.6 Using the data on diabetes analyzed in Tables 12.6 and 12.7:

(a) Show that inclusion of the variable RW does not result in a substantial
improvement in the classification rate from the multinomial logistic model
using IR and SSPG.

(b) Fit an ordinal logistic model using RW, IR, and SSPG to explain CC.
Show that there is no substantial improvement in fit, and the correct
classification rate from a model using only IR and SSPG.
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CHAPTER 13

FURTHER TOPICS

13.1 INTRODUCTION

In this chapter we discuss two topics that have come up several times earlier but we
did not focus on them. We will be discussing generalized linear models (GLM) and
robust regression. These are two vast topics that would require full-length books.
We will give brief descriptions of the topics and provide examples that illustrate
the concepts. GLM unifies the concept of linear model building, a primary activity
of statistical analysts.

The importance of robust models in any statistical analysis cannot be overempha-
sized. The earlier chapters have provided us with methods for constructing robust
models. In Section 13.5 we discuss methods that exclusively aim at robustness.
The discussion on these two topics will not be exhaustive but reflect our personal
experience and preferences.

13.2 GENERALIZED LINEAR MODEL

As in Chapter 3, given a response variable Y and p predictor variables X, Xs, - - -,
X, the linear regression model can be described as follows: An observation Y; can
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be written as

Y, = Bo+BiXa+BeXo+ -+ BpXp+e
= pi+te, : (13.1)

where u; is called the linear predictor and ¢; is a random error assumed to have a
Gaussian (normal) distribution.

The GLM extends the linear regression model in two ways. The ¢; is assumed
to have a distribution coming from the exponential family. The exponential family
includes several standard distributions, in addition to the Gaussian. For example,
it includes the binomial, Poisson, Gamma, and Inverse Gaussian distributions.

The second generalization is that the mean function y; is not necessarily the
linear predictor, but some monotonic differentiable function of the linear predictor,

h{p;) = Bo + B1.Xi1 + B2 Xiz + - -+ + BpXip, (13.2)

where h(u) denotes the function that links 4 to the linear predictor. The function
relating the mean to the linear predictor is called the link function.

These two generalizations considerably increase the flexibility of linear models.
The GLM can be used in situations where a linear regression model would not be
appropriate. These models are fitted by the method of maximum likelihood. Most
statistical packages have programs that can be used to fit and analyze generalized
linear models.

The GLM were first proposed by Nelder and Wedderburn (1972) and extensively
developed by McCullagh and Nelder (1989). For computational details the reader
should consult the references given above. A very accessible discussion is given in
Simonoff (2003).

The logistic regression, which we discussed in the previous chapter, is an example
of GLM although we did not describe it in those terms. We now describe logistic
regression as a GLM. The probability distribution of the random error was binomial,
since there are only two outcomes. Instead of the mean, 7;, being the linear
predictor, we took a function of ;, namely, In[r; /(1 — ;)] as the linear predictor.
The logistic regression model can now be described as a GLM from the binomial
family with a logit link function. Another example of GLM is the Poisson regression
model. This is discussed in the next section.

13.3 POISSON REGRESSION MODEL

Poisson regression models are appropriate when the response variable is count data.
A researcher in the public health area may be interested in studying the number of
hospitalizations of a group of people and the characteristics associated with these
patients. Simonoff (2003) studies the number of tornado deaths in relation to the
month, year, and the classification of the tornado’s severity. In Section 6.4, we
have analyzed injury accidents in airlines. These data can be analyzed by Poisson
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regression, because here we are dealing with count data. We analyzed these data
earlier by using the square root transformation, which is an approximation to the
exact method that we are now considering. Note that in these data sets the counts
are small numbers, and small values are observed more frequently than large values.

The Poisson regression model can be described as follows: The random compo-
nent has a Poisson distribution (see Section 6.4 for the Poisson distribution), and
the mean is linked to the linear predictor by a logarithmic function

In(ps) = Bo + i Xa1 + BoXio + - + BpXip. (13.3)

The test and the inferences on the Poisson model are carried out in the same way
as the logit model (logistic regression). In some analysis instead of analyzing the
number of cases (y) we may be interested in analyzing the rates of occurrence. Let
y; be the number observed out of a; that are exposed to the risk. To construct a
model for the rate we have only to modify the link function. The link function for
the rate is

In(;) = Bo + 1 Xar + BoXio + - -+ + BpXip + In(as). (13.4)

The quantity In(a;) is called the off-set, and the In(p;) now represents the logarithm
of the mean rate of occurrence instead of the logarithm of the mean occurrence.
We now illustrate Poisson regression by an example.

13.4 INTRODUCTION OF NEW DRUGS

The number of new drugs (D) for 16 diseases brought to the U.S. market between
1992 and 2005 is given in Table 13.1. Also provided are the prevalence rates (P)
of these diseases for 100,000 people. The money allocated for research by the
National Institute of Health (M) during the year 1994 for a specific disease in
millions of dollars is also given. This data set was kindly provided to us by Dr.
Salomeh Keyhani of Mount Sinai Medical School. This is a part of a much larger
database. We are using these three variables to illustrate the application of Poisson
regression.

We are interested in studying the relationship between D (the response variable),
with P and M. It should be noted that D is an integer variable with small values.
A new drug coming to the market is a rare event. Poisson distribution is often used
to model rare events. We now will fit a GLM with a Poisson random component
and log link function. The result is given in Table 13.2

The large values of the Wald’s (Z-Test) shows that the two variables are strongly
related to the response variable D. The value of AIC! is 82.14. The fitted values
(D) are given in the last column of Table 13.1. The agreement between observed
and fitted values is satisfactory.

We will fit the data by least squares and compare this AIC value with that
obtained from the least squares fit. The least squares fit is given in Table 13.3.

! See Section 11.5.3.
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Table 13.1 New Drugs Data: Number of New Drugs Introduced (D), Prevalent
Rate (P), Expenditure on Research by the National Institute of Health (M), and the
Predicted Number of Drugs (D))

D P M D
1 Ischemic Heart Disease 6 8976 1984 455
2 Lung Cancer 3 874 80.2 2.89
3 HIV/AIDS 21 1303 1049.6 20.29
4 Alcohol Use 2 18092 2226 6.12
5 Cerebrovascular Disease 2 9467 108.5 3.86
6 COPD® 1 427 489 298
7  Depression 7 12785 1495 458
8  Diabetes 13 37850 2784 11.66
9  Osteoarthritis 5 12345 1513 554
10 Drug Abuse 1 4000 4421 648
11  Dementia 9 8931 344.1 6.09
12 Asthma 3 15919 41.8 4.02
13 Colon Cancer 2 1926 706 292
14  Prostate Cancer 4 2020 40.1 2.75
15 Breast Cancer 9 2262 1595 352
16 Bipolar Disorder 2 2418 350 275

@ Chronic Obstructive Pulmonary Disease.

Table 13.2 Output from the Poisson Regression Using P and M

Variable Coefficient s.€. Z-Test p-value
Constant 0.8778 0.2074 4.233 0.0000
P 2.700x107° 9.508x 1076 2.840 0.0045
M 1.998x1073 3.008x 1074 6.642 0.0000
Log-Likelihood = -9.721 df=2 AIC =182.14
Table 13.3 Output from the Linear Regression Using P and M
Variable Coefficient s.e. t-Test p-value
Constant 0.8362 1.379 0.607 0.5546
p 1.317x10~* 8.973x107° 1.467 0.1661
M 0.01688 3.378x1073 4.996 0.0002
R? =0.671 R2 =0.620 & = 3.292 df=13 AIC = 88.207
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Only the M coefficient is significant in the least squares fit. As we have pointed
out earlier, the linear regression model is not appropriate here as the response
variable is count data. The value of AIC is 82.1 for the Poisson model compared
to 88.2 for the linear regression model. The AIC indicates that the Poisson model
fits the data better than does the linear regression model. The pattern of residuals
is also more satisfactory for the Poisson model. The Poisson regression model is
more appropriate for these data.

13.5 ROBUST REGRESSION

The regression model fitted to data should be robust, in the sense that deletion
of one or two observations should not cause a drastic change in the model. In
Chapter 4 (particularly Sections 4.8—4.9), we have described how to detect these
points. Our prescription was to delete these points to get a more stable and realistic
model. We will now consider a method in which instead of deleting these points
(which may be considered subjective), we reduce the impact of these points. There
are several ways of getting a regression model which is robust. We describe a
method which is simple and effective. The problem with the least squares is that
the procedure gives too much weight to outliers and high-leverage points in the
fitting. This has been illustrated extensively in Sections 4.8-4.9. The effect of
these points can be reduced by down weighting these points in the fitting. We
use weighted least squares (WLS), in which low weight is given to points with
(i) high leverage and (ii) large residuals. Since the weights are determined by
the residuals, and as these change from iteration to iteration, the procedure is an
iterative one. The explicit form of the weights and the procedure are given in Algo-
rithm 13.1 below, where we use @’ to denote the value of  in the jth iteration step.

Algorithm 13.1
Input: Annx1response vector Y and the corresponding 7 x p predictors matrix X.

Output: A weighted least squares robust estimates of the regression coefficients
and the corresponding residual vector.

Step 0: Compute the weighted least squares estimate of the regression coefficients

when using w) = 1/ max(p;;, p/n) as a weight for the ith observation, where p;;
is the ith diagonal element of the projection matrix P = X(X7X)~1X7. Let this

estimate be denoted by ,30.

Step j: For j = 1,2, - - -, until convergence, compute

gy Vi-loy_xg ™, (13.5)
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Table 13.4 Data Illustrating Robust Regression

Y X Y X
18.8 34 92.7 12.5
20.5 5.7 124.2 14.2
29.4 7.5 142.4 152
45.0 8.8 154.7 15.8
724 11.1 118.4 17.9

which is the residuals of the fit at Step 5 — 1. Compute the new weights

j 1 —pa)®
w] = ( Y= T (13.6)
max(| e |,me )
where mJ~! is the median of (| &l ™' |,---,| ei=1 |). Compute the weighted least

squares estimate of the regression coefficients when using w] as a weight for the

ith observation. Let this estimate be denoted by ,8’7 .

As can be seen from the weighting scheme, those points with high leverage (high
pii), or with large residuals (e;) get low weights. The details of this procedure can
be found in Chatterjee and Méchler (1997).

We provide two examples to illustrate the procedure.

13.6 FITTING A QUADRATIC MODEL

We illustrate the problem with least squares fit by a simple artificial data set given
in Table 13.4. There are 10 observations on two variables Y and X. The plot of
the data in Figure 13.1 shows clearly a quadratic pattern. The least squares fit is
given in Table 13.5.

The least squares fit shows that both the linear and quadratic terms are statistically
insignificant. We will now fit the model by the robust regression method that we
have outlined. The results are given in Table 13.6.

Figure 13.2 shows the least squares and the robust fits superposed on the scatter
plot of Y and X. The robust fit tracks the data considerably better than the least
squares fit. The least squares fit is pulled away from the main body of the data by the
high-leverage outlier points in the top right and the bottom left. The robust fit does
not suffer from this because such points are down weighted. Here this is visually
obvious. In higher dimensions this would not be apparent, but the robust procedure
would automatically take this into account. This is a commonly occurring situation.

We now illustrate robust regression by using real-life data.

www.it-ebooks.info


http://www.it-ebooks.info/

FITTING A QUADRATIC MODEL 365

Table 13.5 Least Squares Quadratic Fit for the Data Set in Table 13.4

ANOVA Table
Source Sum of Squares df Mean Square F-Test p-value
Regression 21206 2 10603 25.14 0.001
Residuals 2952 7 422
Coefficients Table
Variable Coefficient s.e. t-Test p-value
Constant -28.77 37.69 -0.76 0.470
X 9.329 7.788 1.20 0.270
X2 0.041 0.359 0.12 0.911
n=10 R% =0.878 R% =0.843 G = 20.5349 df=7
140 .
120 - * .
100
Y 80
60
40 .
20 . .
T T !
5 10 15
X

Figure 13.1 Scatter plot of Y versus X for the Data Set in Table 13.4.

Table 13.6 Robust Regression Quadratic Fit for the Data Set in Table13.4

Variable Coefficient s.e. Z-Test p-value
Constant 15.2614 0.8003 19.07 0.000
X —3.5447 0.1829 -19.38 0.000
X2 0.7831 0.0099 79.10 0.000
n=10 R? =0.837 R% =0.780 o =41.425 df =7
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140 —
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Y 80

60 —
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Figure 13.2 Least Squares and Robust Fits Superposed on the Scatter Plot of Y versus
X for the Data Set in Table 13 .4.

13.7 DISTRIBUTION OF PCB IN U.S. BAYS

Table 13.7 gives the Poly Chlorinated Biphenyl (PCB) concentrations in 1984 and
1985 in 29 U.S. bays and estuaries. PCB is a health hazard found in water from
industrial waste and city drainage. The concentration is measured in parts per
billion. We do not include any bay or estuary in which no PCB was detected in the
two years. We want to study the relationship of PCB level for the two years. The
data is taken from Environmental Quality 1987—-1988, published by the Council on
Environmental Quality. An exhaustive description of the data along with a thorough
analysis can be found in Chatterjee, Handcock, and Simonoff (1995).

To overcome the skewness of the data we will transform the data. We will work
with the logarithm of the PCB concentrations. The result of the least squares fit is
given in Table 13.8.

The fit is problematic. Two observations (Boston Harbor and Delaware Bay)
require attention. Both are outliers with standardized residuals of —2.12 and 4.11,
respectively. Boston Harbor is a high-leverage point with a large value of Cook’s
distance. Delaware Bay is not a high-leverage point, but has a high value of Cook’s
distance. These two points have a significant effect on the fit. We will examine
the relationship between the PCB levels in two succeeding years when these two
aberrant points are removed. The regression result with the two observations deleted
is given in Table 13.9.

This fit has no problems, and is an acceptable description of the relationship of
the PCB levels between the years 1984 and 1985. It should be pointed out that
this relationship does not hold for Boston Harbor and Delaware Bay. These two
bays present special conditions and should be investigated. The deletion of the two
points from the fit gives us a better picture of the overall relationship of PCB levels
for U.S. bays and estuaries.
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Table 13.7 Distribution of PCB in 1984 and 1985 in U.S. Bays

Bay PCB84 PCB85 In(PCB84) In(PCB85)
Casco Bay 95.3 77.55 4.55682 4.35092
Merrimack River 53.0 29.23 3.96973 3.37520
Salem Harbor 533.6 403.10 6.27961 5.99918
Boston Harbor 171049  736.00 9.74712 6.60123
Buzzards’ Bay 308.5 192.15 5.73159 5.25828
Narragansett Bay 160.0  220.60 5.07492 5.39635
E. Long Island Sound 10.0 8.62 2.30259 2.15409
W. Long Island Sound 2344 17431 5.45716 5.16084
Raritan Bay 4439 529.28 6.09558 6.27152
Delaware Bay 25 130.67 0.91629 4.87268
Lower Chesapeake Bay 51.0  39.74 3.93183 3.68236
Charleston Harbor 9.1 8.43 2.20827 2.13180
St. Johns River 140  120.04 4.94164 4.78783
Apalachicola Bay 12.0 11.93 2.48491 2.47906
Mississippi R. Delta 34.0 30.14 3.52636 3.40585
San Diego Harbor 422.1 531.67 6.04524 6.27602
San Diego Bay 6.7 9.30 1.90806 2.23001
Dana Point 7.1 5.74 1.95445 1.74746
Seal Beach 46.7 4647 3.84396 3.83881
San Pedro Canyon 159.6 17690 5.07242 5.17558
Santa Monica Bay 14.0 13.69 2.63906 2.61667
Bodega Bay 4.2 4.89 1.43031 1.58719
Coos Bay 3.2 6.60 1.16002 1.88707
Columbia River Mouth 8.8 6.73 2.17134 1.90658
Nisqually Beach 4.2 4.28 1.44220 1.45395
Commencement Bay 20.6 20.50 3.02529 3.02042
Elliott Bay 206  20.50 3.02529 3.02042
Lutak Inlet 55 5.80 1.70475 1.75786
Nahku Bay 6.6 5.08 1.88707 1.62531
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Table 13.8 Least Squares Regression of In(PCB85) on In(PCB84) for the Data Set

in Table 13.7

ANOVA Table
Source Sum of Squares df Mean Square F-Test p-value
Regression 59.605 1 59.605 87.96 0.000
Residual Error 18.296 27 0.678
Coefficients Table

Variable Coefficient s.e. t-Test p-value
Constant 1.001 0.315 3.17 0.004
In(PCB84) 0.718 0.077 9.38 0.000
n=29 R% =0.765 R? =0.756 o =0.823 df =27

Table 13.9 Least Squares Regression of In(PCB85) on In(PCB84) for the Data Set
in Table 13.7, when Boston and Delaware Are Deleted

ANOVA Table
Source Sum of Squares df Mean Square F-Test p-value
Regression 64.712 1 64.712 908.24 0.000
Residual Error 1.781 25 0.071
Coefficients Table

Variable Coefficient s.e. t-Test p-value
Constant 0.093 0.122 0.76 0.456
In(PCB84) 0.960 0.032 30.14 0.000
n =27 R?=10.973 RZ =0.972 & = 0.267 df = 25
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Robust Fit
Least Squares Fit

In(PCBS5)
S
1

T ! T T T
2 4 6 8 10
In(PCB84)

Figure 13.3  Least squares and robust fits superposed on scatter plot of In(PCB85) versus
In(PCB84) for the data set in Table 13.7.

Robust regression provides us an alternative approach. Using the robust regres-
sion algorithm outlined earlier, we get the following fitted model:

In (PCB85) = 0.175 4 0.927 In (PCB84). (13.7)

The standard errors of the two coefficients in (13.7) are 0.25 and 0.0056, respec-
tively. The robust regression applied to the complete data gives results similar
to those obtained by the diagnostic prescription of deleting the two observations.
The weights given to the deleted points are very small compared to the other data
points. This is done mechanically by the rules built into the algorithm. The robust
procedure does not require a detailed analysis of regression diagnostics. The final
weights used in the iteration point out the problematic observations for further
investigation.

Figure 13.3 shows the least squares and robust fit superposed on the scatter
plot. It is seen that the least squares line is influenced strongly by the outliers and
high-leverage points. The robust fit tracks the data more accurately without being
unduly influenced by high-leverage points and outliers.

As can be seen from (13.6), in the presence of masking, observations in a high-
leverage group tend to have large weights because they tend to have small values
of p;;. For this reason the Chatterjee-Méchler procedure is not very effective in
the presence of masking. The algorithm we have given has been extended to cover
problems of masking and swamping, but that is beyond the scope of this book. For
details, the reader is referred to Billor, Chatterjee, and Hadi (2006).

Much work has been done on robust regression but it is not widely used in
practice. We hope this brief exposition will bring it to public attention.
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EXERCISES

13.1 Use the data on injury incidents in airlines given in Table 6.6 to fit a Poisson
regression model. Compare the three fits (least squares, transformed least
squares, and Poisson), and decide which procedure provides the best descrip-
tion of the data.

13.2 Using the data on the distribution of PCB in U.S. bays and estuaries given in
Table 13.7, do a thorough analysis that relates the 1985 PCB levels to 1984
levels. Compare the results of your analysis to the robust fit given in the text.

13.3 Use the data set given in Table 3.3 and regress Y on X; and X3 by least
squares and the robust procedure. Verify that both procedures give similar
results.

13.4 Use the data on Magazine Advertising given in Table 6.17 and regress In R
on In P using least squares. Observations 15, 22, 23, and 41 are problematic.
Do these points have any special feature? Show that the robust fit for the full
data set gives results comparable to the least squares results after deleting the
four points.

13.5 Use the data on Field-Goal Kicking given in Table 12.15:

(a) Fit a Poison regression model to relate Success with the Distance from
which the kick is taken. Use Attempts as offset.

(b) Fit a logistic model relating the probability of a successful kick to the
distance from which the kick is taken.

(c) Show that the logistic model gives a better fit than the Poisson regression
model.
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Regression Analysis by Example, Fifth Edition. By Samprit Chatterjee and Ali S. Hadi
Copyright (©) 2012 John Wiley & Sons, Inc.
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0 @

The probability density function of the standard normal distribution.

Table A.1  Critical Values z,, Where Pr(Z > 2,) = a and Z is the Standard
Normal Distribution

o Za a Za o Za o Zi Q Z5

.50 0.00 .050 1.64 030 1.88 .020 2.05 010 233
45 0.13 .048 1.66 029 1.90 019 2.07 009 2.37
40 0.25 .046 1.68 028 1.91 018 2.10 008 241
35 0.39 .044 1.71 027 1.93 017 212 007 2.46
30 0.52 042 1.73 .026 1.94 016 2.14 006 2.51
25 0.67 .040 1.75 025 1.96 015 217 .005 2.58
20 0.84 .038 1.77 024 1.98 014 2.20 004 2.65
15 1.04 .036 1.80 023 2.00 013 2.23 .003 2.75
10 1.28 .034 1.83 022 201 012 2.26 .002 2.88
.05 1.64 .032 1.85 021 2.03 011 229 .001 3.09

Source: Adapted from Table 2 of Lindley and Miller (1958), Cambridge Elementary Statistical Tables,
published by Cambridge University Press, with kind permission of the authors and publishers.
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t

0 n o
The probability density function of the Student’s ¢-distribution with n degrees of
freedom.

Table A.2  Critical Values t,, o, Where Pr(T),, > t, ,) = o and T, is the Student’s
t-Distribution with n Degrees of Freedom

Q

n 0.10 0.05 0.025 0.010 0.005
1 3.08 6.31 1271 31.82 63.66
2 1.89 2.92 430 6.97 9.92
3 1.64 2.35 3.18 4.54 53.84
4 1.53 213 2.78 3.75 4.60
3 1.48 2.02 2.57 3.36 4.03
6 1.44 1.94 245 3.14 371
7 1.42 1.89 2.36 3.00 3.50
8 1.40 1.86 2.31 290 3.36
9 1.38 1.83 2.26 2.82 3.25
10 1.37 1.81 223 276 317
12 1.36 1.78 2,18 2.68 3.06
14 1.34 1.76 2.14 2.62 298
16 1.34 1.75 2.12 2.58 2.92
18 1.33 1.73 2.10 2.55 2.88
20 1.32 1.72 2.09 2.53 2.84
30 131 1.70 2,04 2.46 2.75
40 1.30 1.68 202 242 2.70
60 1.30 1.67 2.00 2.39 2.66
120 1.29 1.66 1.98 2.36 2.62
oo 1.28 1.64 1.96 233 2.58

Source: Adapted from Table III of Fisher and Yates (1963), Statistical Tables for Biological, Agricui-
tural and Medical Research, 6th Ed., published by Oliver and Boyd, Edinburgh, with kind permission
of the authors and publishers.
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2
X,n. a

The probability density function of the x? distribution with n degrees of freedom.
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Table A.3  Critical Values xZ ,, Where Pr(x2 > x2 ,) = o and x2 is the x?

Distribution with n Degrees of Freedom

375

o’

n 0.10 0.05 0.025 0.010 0.005
1 27 3.84 5.02 6.63 7.88
2 4.61 5.99 7.38 9.21 10.60
3 6.25 7.81 9.35 11.34 12.84
4 7.78 9.49 11.14 13.28 14.86
5 9.24 11.07 12.83 15.09 16.75
6 10.65 12.59 14.45 16.81 18.55
7 12.02 14.07 16.01 18.48 20.28
8 13.36 15.51 17.53 20.09 21.96
9 14.68 16.92 19.02 21.67 23.59
10 15.99 18.31 20.48 23.21 25.19
11 17.28 19.68 21.92 24.72 26.76
12 18.55 21.03 23.34 26.22 28.30
13 19.81 22.36 24.74 27.69 29.82
14 21.06 23.68 26.12 29.14 31.32
15 22.31 25.00 27.49 30.58 32.80
16 23.54 26.30 28.85 32.00 34.27
17 24.77 27.59 30.19 33.41 35.72
18 25.99 28.87 31.53 34.81 37.16
19 27.20 30.14 32.85 36.19 38.58
20 28.41 31.41 34.17 37.57 40.00
21 29.62 32.67 35.48 38.93 41.40
22 30.81 33.92 36.78 40.29 42.80
23 32.01 35.17 38.08 41.64 44.18
24 33.20 36.42 39.36 42.98 45.56
25 34.28 37.65 40.65 44.31 46.93
26 35.56 38.89 41.92 45.64 48.29
27 36.74 40.11 43.19 46.96 49.65
28 37.92 41.34 44.46 48.28 50.99
29 39.09 42.56 45.72 49.59 52.34
30 40.26 43.77 46.98 50.89 53.67
40 51.81 55.76 59.34 63.69 66.77
50 63.17 67.50 71.42 76.15 79.49
60 74.40 79.08 83.30 88.38 91.95
70 85.53 90.53 95.02 100.42 104.22
80 96.58 101.88 106.63 112.33 116.32
90 107.57 113.14 118.14 124.12 128.30
100 118.50 124.34 129.56 135.81 140.17
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F

ny, g, o

The probability density function of the F-distribution with n; (numerator) and no
(denomenator) degrees of freedom.

Table A4 The 5% Critical Values £, n,.0.05, Where
Pr(Fn, ng > fring0.05) = 0.05 and F,, ., is the F-Distribution with n,
{numerator) and 7o (denominator) (df)

71
Ny 1 2 4 6 8 10 12 24 oo

1614 1995 2246 2340 2339 2419 2439 249.1 25430
1851 19.00 1925 1933 1937 1940 1941 1945 19.50
10.13 955 9.12 8.94 8.85 8.79 8.74 8.64 8.53
7.7 6.94 6.39 6.16 6.04 5.96 591 577 5.63
6.61 5.79 5.19 4.95 4.82 4.74 4.68 4.53 4.36

Wb —

6 5.99 5.14 453 4.28 4.15 4.06 4.00 3.84 3.67
7 5.59 4.74 4.12 3.87 3.73 3.64 3.57 3.41 3.23
8 5.32 4.46 3.84 3.58 344 3.35 3.28 3.12 293
9 5.12 4.26 3.63 3.37 3.23 3.14 3.07 2.90 21
10 4.96 4.10 3.48 3.22 3.07 2.98 291 274 2.54

11 4.84 3.98 3.36 3.09 2.95 2.85 2.79 2.61 2.40
12 4.75 3.89 3.26 3.00 2.85 2.75 2.69 2.51 2.30
13 4.67 3.81 3.18 292 217 2.67 2.60 2.42 221
14 4.60 374 3.11 2.85 2.70 2.60 2.53 2.35 2.13
15 4.54 3.68 3.06 2.79 2.64 2.54 2.48 2.29 2.07

20 4.35 3.49 2.87 2.60 245 2.35 2.28 2.08 1.34
25 4.24 3.39 2.76 2.49 234 2.24 2.16 1.96 1.71
30 4.17 332 2.69 2.42 227 2.16 2.09 1.89 1.62

40 4.08 3.23 2.61 2.34 2.18 2.08 2.00 1.79 1.51
60 4.00 3.15 253 2.25 2.10 1.99 1.92 1.70 1.39
120 3.92 3.07 245 2.17 2.02 1.91 1.83 1.61 1.25
00 3.84 3.00 2.37 2.10 1.94 1.83 1.75 1.52 1.00

Source: Abridged from Table 18 of Pearson and Hartley (1954), Biometrika Tables for Statisticians,
Volume I, published by the Cambridge University Press for the Biometrika Trustees, with kind
permission of the authors and publishers.
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The probability density function of the ['-distribution with n; (numerator) and ns

Table A.5 The 1% Critical Values Jryna:0.01, Where
Pr(Fy, ny = fnyng001) = 0.01 and F,, ,, is the F-Distribution with n;
{numerator) and ns (df)

(denomenator) degrees of freedom (df).

n

o 1 2 4 6 8 10 12 24 o0
1 4052 5000 5625 5859 5982 6056 6106 6235 6366
2 9850 99.00 9925 99.33 99.37 9940 9942 9946 99.50
3 3412 3082 2871 27.91 27.49 2723 27.05 26.60 26.13
4 2120 18.00 15.98 15.21 14.80 14.55 14.37 13.93 13.46
5 16.26 13.27 11.39 10.67 10.29 10.05 9.89 947 9.02
6 13.75 10.92 9.15 847 8.10 7.87 7.72 7.31 6.88
7 12.25 9.55 7.85 7.19 6.84 6.62 6.47 6.07 5.65
8 11.26 8.65 7.01 6.37 6.03 5.81 5.67 5.28 4.86
9 10.56 8.02 642 5.80 547 5.26 5.11 4.73 4.31
10 10.04 7.56 5.99 5.39 5.06 4.85 471 4.33 3.91
11 9.65 7.21 5.67 5.07 474 4.54 4.40 4.02 3.60
12 9.33 6.93 541 4.82 4.50 4.30 4.16 3.78 3.36
13 9.07 6.70 5.21 4.62 4.30 4.10 3.96 3.59 3.17
14 8.86 6.51 5.04 4.46 4.14 3.94 3.80 343 3.00
15 8.68 6.36 4.89 432 4,00 3.80 3.67 3.29 2.87
20 8.10 5.85 443 3.87 3.56 3.37 3.23 2.86 242
25 7.77 5.57 4.18 3.63 3.32 3.13 2,99 2.62 2.17
30 7.56 5.39 4,02 3.47 3.17 2.98 2.84 2.47 2.01
40 7.31 5.18 3.83 3.29 2.99 2.80 2.66 2,29 1.80
60 7.08 498 3.65 3.12 2.82 2.63 2.50 2.12 1.60
120 6.85 4.79 3.48 2.96 2.66 2.47 2.34 1.95 1.38
oo} 6.63 4.61 3.32 2.80 2.51 2.32 2.18 1.79 1.00

Source: Abridged from Table 18 of Pearson and Hartley (1954), Biometrika Tables for Statisticians,
Volume 1, published at the Cambridge University Press for the Biomefrika Trustees, with kind
permission of the authors and publishers.
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Table A.6 Distribution of Durbin-Watson Statistic d: The 5% Significance Points
of d, and dyy (p is the Number of Predictor Variables)

p=1 p=2 p=3 p=4 p=35
n dL dU dL dU dL dU dL dU dL dU
15| 108 136 | 095 | 154 | 082 175 069 | 197 056 | 221
16| 110 137 | 098 154 | 086 | 1.73| 074 193 062 | 215
17| 113} 138} 102 | 154 | 09 | 171 | 0.78 190 | 067 | 210
18 1.16 | 139} 105| 153 | 093] 169 082 | 187 | 0.71 ] 2.06
19 1.18| 140 | 108 | 153 | 097 | 168 | 086 | 185 | 075 | 202
20 120 141 | 1.10| 154 | 1.00| 168 | 090 | 183 | 079 | 199
21 122 142} 113 | 154 | 1.03 | 1.67 | 0.93 1.81 | 083 | 196
22| 124 143 1.15| 154 | 1054 166 09 | 1.80 | 086 | 194
23| 126 | 144 | 117 | 154 | 108 166| 099 179 | 090 | 192
24 127 | 145| 1194 155 | 110| 166 | 1.01 178 | 093] 190
25| 129 145) 121 155 112 166 104 | 177 | 095 1.89
26| 130 | 146 | 122 | 155 | 114 | 165 1.06 | 176 [ 098 | 1.88
27| 132 147 | 124 | 156 | 116 | 165 | 1.08 1.76 | 1.01 1.86
28 | 1.33 148 | 126 | 156 | 118 165 1.10{ 1.75| 103 | 1.85
29| 134 | 148 | 127 | 156 | 120| 1.65| 112| 174 | 105 | 184
301 135 149 128 | 157 | 1.21 165 114} 174 | 107 | 183
31 136 | 150 130 157 | 123 165| 1.16 | 174 | 1.09| 1.83
32 137 | 150 1.31 157 | 124 | 1.65 1.18 1.73 | 111 1.82
33| 138 | 151 132 | 158 | 126 | 1.65| 1.19 1.73 | 113 | 1.81
34 139 | 131 133 | 158 | 127 | 1.65 1.21 1.73 | 115 | 1.81
35| 140 | 152 134 | 158 | 128 | 1.65| 122| 173 | 116 | 180
36 | 141 1.52 | 135| 159 | 129 | 165| 124 | 173 | 1.18 | 1.80
37| 142 | 153 136 159 131 1.66 | 1.25 .72} 1.19 | 1.80
38| 143 | 154 | 137 159 132| 166 | 126 | 172 1.21 1.79
39| 143 154 138} 160} 133 | 166 | 127 172y 122 | 179
40| 144 | 154 | 139 160 134 | 166 | 1.29 172 | 123 | 179
45 | 148 | 157 | 143 | 162 1381 167 | 134 172 129 | 178
50| 150 159 | 146 | 163 | 142 | 167 | 138 | 172 | 134 | 177
55 1.53 160 | 149 | 1.64 | 145 1.68 1.41 1.72 1.38 1.77
60 | 1.55 1.62 1.51 1.65 1.48 1.69 1.44 1.73 1.41 1.77
65| 157 | 163 | 154 | 166 | 1.50| 170 | 147 1.73 1.4 | 1.77
70| 158 | 164 | 155 | 167 | 152 | 170 | 149 1.74 | 146 | 177
75| 1.60| 165 157 | 168 | 154 | 171 1.51 174 | 149 | 177
80 | Ll.61 166 159 | 169 | 156 | 1.72| 1.53 1.74 | 1.51 1.77
85| 162 | 167 160 | 170 | 157 | 172 1.55 175 | 152 1.77
9 | 1.63| 168 | 1.61 .70 { 159 | 173 | 1.57 1.75 1.54 | 1.78
951 164} 169 162 | 171 160 | 173} 1.58 175 | 156 1.78
100 165} 169| 163 | 1721 161 174 | 159 176 | 157 | 1.78

Source: Durbin and Watson (1951).
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Table A.7 Distribution of Durbin-Watson Statistic d: The 1% Significance Points
of d;, and dy; (p is the Number of Predictor Variables)

379

p=1 p=2 p=3 p=4 p=35
n dL dU dL dU dL dU dL dU dL dU
151 0.81 107 070 | 125| 059 | 146 | 049 | 170 { 0.39 1.96
16| 084 | 109 074 | 125| 0.63 144 { 0.53 1.66 | 0.44 1.90
17 | 0.87 1.10 | 0.77 1.25 | 067 | 143 | 057 1.63 | 048 1.85
18| 090 | 112 080 | 126 | 0.71 142 | 061 1.60 [ 0.52 1.80
19 | 093 1.13 | 0.83 126 | 074 | 1411 0.65 1.58 | 0.56 1.77
20 | 095 1.1s| 086 127 | 077 141} 068 1.57 | 060 | 1.74
21| 097 1.16 | 0.89 127 | 080 | 141 | 072 | 155 0.63 1.71
22 1.00| 1.17| 091 1.28 | 0.83 140 | 075 | 154 | 0.66 1.69
23] 1.02| 119 094 129 | 086 ] 140 | 0.77 153 | 070 1.67
24| 104 | 120 096 | 130 088 | 141 | 080 153 | 072 1.66
25 1.05 1.21 0.98 1.30 | 0.90 1.41 0.83 1.52 | 0.75 1.65
26 | 1.07 1.22 | 100 | 131 | 093 141 | 0.85 1.52 | 0.78 1.64
27 1.09 1.23 1.02 1.32 | 095 1.41 0.88 1.51 0.81 1.63
28 1.10 1.24 1.04 1.32 | 097 1.41 0.90 1.51 0.83 1.62
29 1.12 1.25 1.05 1.33 ] 099 142 | 092 1.51 0.85 1.61
30| 1.13 1.26 | 1.07 1.34 | 1.01 142 | 094 | 151 | 0.88 1.61
31 1.15 1.27 | 1.08 1.34 | 1.02| 142 096 | 151 090 | 1.60
32 1.16 1.28 1.10 1.35 1.04 1.43 | 098 1.51 0.92 1.60
331 117 | 1.29 1.11 136 | 1.05 1.43 1.00 | 1.51| 094 1.59
34| 118 | 130 | 1.13 1.36 | 1.07 1.43 1.01 1.51 0.95 1.59
35 1.19 1.31 1.14 1.37 1.08 1.44 1.03 1.51 0.97 1.59
36 | 1.21 1.32 1.15 1.38 1.10 | 144 | 104 | 151 | 099 1.59
37 1.22 1.32 1.16 1.38 1.11 1.45 1.06 1.51 1.00 1.59
38| 123 | 133 | 1.18 1.39 | 1.12 | 1.45 1.07 1.52 | 1.02 1.58
39| 124 134 | 1.19 1.39 | 1.14 | 145 1.09 | 1.52 1.03 1.58
40 1.25 1.34 1.20 1.40 1.15 1.46 1.10 1.52 1.05 1.58
45 1.29 1.38 1.24 1.42 1.20 1.48 1.16 1.53 1.11 1.58
50| 132 | 140 | 1.28 145 | 124 149 | 120 | 154 | 1.16 1.59
55 136 | 143 | 132 147 | 1.28 1.51 1.25 1.55 1.21 1.59
60 | 1.38 1.45 1.35 148 | 1.32] 152 ] 128 | 1.56 1.25 1.60
65 1.41 1.47 1.38 1.50 1.35 1.53 1.31 1.57 1.28 1.61
70 1.43 1.49 1.40 1.52 1.37 1.55 1.34 1.58 1.31 1.61
75 1.45 1.50 1.42 1.53 1.39 1.56 1.37 1.59 1.34 1.62
80 1.47 1.52 1.44 1.54 142 1.57 1.39 1.60 1.36 1.62
85 1.48 1.53 1.46 1.55 1.43 1.58 1.41 1.60 1.39 1.63
90 1.50 1.54 1.47 1.56 1.45 1.59 1.43 1.61 1.41 1.64
95 1.51 1.55 1.49 1.57 1.47 1.60 1.45 1.62 1.42 1.64
100 1.52 1.56 1.50 1.58 1.48 1.60 1.46 1.63 1.44 1.65

Source: Durbin and Watson (1951).
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Cook’s distance, 111, 114, 125 full, 71

Hadi’s, 113-114, 125 no-intercept, 195, 199
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regression plot, 118
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sequence, 211
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Prediction errors, 231
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assumptions, 94
coefficients, 2, 32, 57
definition, 1
elements of, 13
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model through the origin, 46
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Residual
adjusted, 113
internally studentized, 98
mean square, 48, 303
ordinary least squares, 34, 61
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method, 19
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variance of estimators, 295
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Sample standard deviation, 27
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mean, 26

standard deviation, 48

variance, 49
Sampling distribution of

Bo, 41

1, 37,41
Scaling, 64

unit-length, 65
Sequence plot, 211
Shrinkage estimators, 281
Simple regression, 18, 58, 70, 77, 81

ANOVA table, 77
Simultaneous confidence region, 41
Standard error of estimate, 37, 90
Standard normal distribution, 98
Standardized

deviance residuals, 341
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variables, 66
Standardizing, 65
Stepwise method, 307
Stimulus-response relationships, 206
Sum of squared residuals, 61
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Time series data, 138, 211, 226
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mean square error, 294-296
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variance of OLS estimators, 281
variance of ridge estimators, 280
Transformation, 17, 22, 36
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to achieve linearity, 165
to achieve normality, 165
variance-stabilizing, 165
Trivial regression models, 48
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Uniqueness of LS solution, 34, 61
Unit-length scaling, 65
Univariate regression, 18

\'
Variable

INDEX 393

binary, 16, 336, 341
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predictor, 1

qualitative, 15, 22

quantitative, 15

Tegressor, 2

response, 1

role of, 331

selection, 22

selection procedures, 299
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Variance-covariance matrix, 293
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w
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