v < A
% : i 2 o

Outlier Analysis

Charu C. Aggarwal

Outlier Analysis

Second Edition

@ Springer

Charu C. Aggarwal
IBM T.J. Watson Research Center
Yorktown Heights, New York, USA

ISBN 978-3-319-47577-6 ISBN 978-3-319-47578-3 (eBook)
DOI 10.1007/978-3-319-47578-3

Library of Congress Control Number: 2016961247

© Springer International Publishing AG 2017

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are
exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in
this book are believed to be true and accurate at the date of publication. Neither the publisher
nor the authors or the editors give a warranty, express or implied, with respect to the material
contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper
This Springer imprint is published by Springer Nature

The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

To my wife, my daughter Sayani,
and my late parents Dr. Prem Sarup and Mrs. Pushplata Aggarwal.

Contents

1 An Introduction to Outlier Analysis 1
1.1 Imtroduction 1
1.2 The Data Model is Everything 5

1.2.1 Connections with Supervised Models 8

1.3 The Basic Outlier Detection Models 10
1.3.1 Feature Selection in Outlier Detection 10
1.3.2 Extreme-Value Analysis 11
1.3.3 Probabilistic and Statistical Models 12
1.3.4 Linear Models 13
1.3.4.1 Spectral Models 14

1.3.5 Proximity-Based Models 14
1.3.6 Information-Theoretic Models 16
1.3.7 High-Dimensional Outlier Detection 17

1.4 Outlier Ensembles o 18
1.4.1 Sequential Ensembles o 19
1.4.2 Independent Ensembles 20

1.5 The Basic Data Types for Analysis 21
1.5.1 Categorical, Text, and Mixed Attributes 21
1.5.2 When the Data Values have Dependencies 21
1.5.2.1 Times-Series Data and Data Streams 22

1.5.2.2 Discrete Sequences 24

1.5.2.3 Spatial Data 24

1.5.2.4 Network and Graph Data 25

1.6 Supervised Outlier Detection 25
1.7 Outlier Evaluation Techniques 26
1.7.1 Interpreting the ROC AUC 29
1.7.2 Common Mistakes in Benchmarking 30

1.8 Conclusions and Summary oL 31
1.9 Bibliographic Survey 31
1.10 Exercises e 33

vii

viii CONTENTS
2 Probabilistic Models for Outlier Detection 35
2.1 Imtroduction 35
2.2 Statistical Methods for Extreme-Value Analysis 37
2.2.1 Probabilistic Tail Inequalities 37
2.2.1.1 Sum of Bounded Random Variables 38
2.2.2 Statistical-Tail Confidence Tests 43
2221 tValue Test o 43
2.2.2.2 Sum of Squares of Deviations 45
2.2.2.3 Visualizing Extreme Values with Box Plots 45
2.3 Extreme-Value Analysis in Multivariate Data 46
2.3.1 Depth-Based Methods 47
2.3.2 Deviation-Based Methods 48
2.3.3 Angle-Based Outlier Detection 49
2.3.4 Distance Distribution-based Techniques: The Mahalanobis Method . 51
2.3.4.1 Strengths of the Mahalanobis Method 53
2.4 Probabilistic Mixture Modeling for Outlier Analysis 54
2.4.1 Relationship with Clustering Methods 57
2.4.2 The Special Case of a Single Mixture Component 58
2.4.3 Other Ways of Leveraging the EM Model 58
2.4.4 An Application of EM for Converting Scores to Probabilities 59
2.5 Limitations of Probabilistic Modeling 60
2.6 Conclusions and Summaryl 61
2.7 Bibliographic Survey 61
2.8 EXerciseso 62
3 Linear Models for Outlier Detection 65
3.1 Imtroduction 65
3.2 Linear Regression Models 68
3.2.1 Modeling with Dependent Variables 70
3.2.1.1 Applications of Dependent Variable Modeling 73
3.2.2 Linear Modeling with Mean-Squared Projection Error 74
3.3 Principal Component Analysis 75
3.3.1 Connections with the Mahalanobis Method 78
3.3.2 Hard PCA versus Soft PCA 79
3.3.3 Semsitivity to Noise 79
3.3.4 Normalization Issues 0. 80
3.3.5 Regularization Issues oL 80
3.3.6 Applications to Noise Correction 80
3.3.7 How Many Eigenvectors? 81
3.3.8 Extension to Nonlinear Data Distributions 83
3.3.8.1 Choice of Similarity Matrix 85
3.3.8.2 Practical Issues.o L 86
3.3.8.3 Application to Arbitrary Data Types 88
3.4 One-Class Support Vector Machines 88
3.4.1 Solving the Dual Optimization Problem 92
3.4.2 Practical Issues 92
3.4.3 Connections to Support Vector Data Description and Other Kernel
Models e 93
3.5 A Matrix Factorization View of Linear Models 95

CONTENTS ix

3.5.1 Outlier Detection in Incomplete Data 96
3.5.1.1 Computing the Outlier Scores 98

3.6 Neural Networks: From Linear Models to Deep Learning 98
3.6.1 Generalization to Nonlinear Models 101
3.6.2 Replicator Neural Networks and Deep Autoencoders 102
3.6.3 Practical Issueso 105
3.6.4 The Broad Potential of Neural Networks 106

3.7 Limitations of Linear Modeling 106
3.8 Conclusions and Summaryo 107
3.9 Bibliographic Survey 108
3.10 EXerciseso 109
4 Proximity-Based Outlier Detection 111
4.1 Introduction L e 111
4.2 Clusters and Outliers: The Complementary Relationship 112
4.2.1 Extensions to Arbitrarily Shaped Clusters 115
4.2.1.1 Application to Arbitrary Data Types 118

4.2.2 Advantages and Disadvantages of Clustering Methods 118

4.3 Distance-Based Outlier Analysis 118
4.3.1 Scoring Outputs for Distance-Based Methods 119
4.3.2 Binary Outputs for Distance-Based Methods 121
4.3.2.1 Cell-Based Pruning 122

4.3.2.2 Sampling-Based Pruning 124

4.3.2.3 Index-Based Pruning 126

4.3.3 Data-Dependent Similarity Measures 128
4.3.4 ODIN: A Reverse Nearest Neighbor Approach. 129
4.3.5 Intensional Knowledge of Distance-Based Outliers 130
4.3.6 Discussion of Distance-Based Methods 131

4.4 Density-Based Outliers o 131
4.4.1 LOF: Local Outlier Factor 132
4.4.1.1 Handling Duplicate Points and Stability Issues 134

4.4.2 LOCI: Local Correlation Integral 135
4421 LOCIPlot 136

4.4.3 Histogram-Based Techniques 137
4.4.4 Kernel Density Estimation 138
4.4.4.1 Connection with Harmonic k-Nearest Neighbor Detector . 139

4.4.4.2 Local Variations of Kernel Methods 140

4.4.5 Ensemble-Based Implementations of Histograms and Kernel Methods 140

4.5 Limitations of Proximity-Based Detection 141
4.6 Conclusions and Summary Lo 142
4.7 Bibliographic Survey Lo 142
4.8 Exercises e 146
5 High-Dimensional Outlier Detection 149
5.1 Imtroduction 149
5.2 Axis-Parallel Subspaces 152
5.2.1 Genetic Algorithms for Outlier Detection 153
5.2.1.1 Defining Abnormal Lower-Dimensional Projections 153

5.2.1.2 Defining Genetic Operators for Subspace Search 154

CONTENTS

5.2.2 Finding Distance-Based Outlying Subspaces 157
5.2.3 Feature Bagging: A Subspace Sampling Perspective 157
5.2.4 Projected Clustering Ensembles 158
5.2.5 Subspace Histograms in Linear Time 160
5.2.6 Isolation Forests 161
5.2.6.1 Further Enhancements for Subspace Selection 163

5.2.6.2 FEarly Termination 163

5.2.6.3 Relationship to Clustering Ensembles and Histograms . . . 164

5.2.7 Selecting High-Contrast Subspaces 164
5.2.8 Local Selection of Subspace Projections 166
5.2.9 Distance-Based Reference Sets 169

5.3 Generalized Subspaces L 170
5.3.1 Generalized Projected Clustering Approach 171
5.3.2 Leveraging Instance-Specific Reference Sets 172
5.3.3 Rotated Subspace Sampling 175
5.3.4 Nonlinear Subspaces 176
5.3.5 Regression Modeling Techniques 178

5.4 Discussion of Subspace Analysis. L L. 178
5.5 Conclusions and Summary Lo 180
5.6 Bibliographic Survey Lo 181
5.7 ExXercises e 184
Outlier Ensembles 185
6.1 Introduction e 185
6.2 Categorization and Design of Ensemble Methods 188
6.2.1 Basic Score Normalization and Combination Methods 189

6.3 Theoretical Foundations of Outlier Ensembles 191
6.3.1 What is the Expectation Computed Over? 195
6.3.2 Relationship of Ensemble Analysis to Bias-Variance Trade-Off 195

6.4 Variance Reduction Methods 196
6.4.1 Parametric Ensembles o000 197
6.4.2 Randomized Detector Averaging 199
6.4.3 Feature Bagging: An Ensemble-Centric Perspective 199
6.4.3.1 Connections to Representational Bias 200

6.4.3.2 Weaknesses of Feature Bagging 202

6.4.4 Rotated Bagging L o 202
6.4.5 Isolation Forests: An Ensemble-Centric View 203
6.4.6 Data-Centric Variance Reduction with Sampling 205
6.4.6.1 Bagging 205

6.4.6.2 Subsampling oL oL 206

6.4.6.3 Variable Subsampling 207

6.4.6.4 Variable Subsampling with Rotated Bagging (VR) 209

6.4.7 Other Variance Reduction Methods 209

6.5 Flying Blind with Bias Reduction 211
6.5.1 Bias Reduction by Data-Centric Pruning 211
6.5.2 Bias Reduction by Model-Centric Pruning 212
6.5.3 Combining Bias and Variance Reduction 213

6.6 Model Combination for Outlier Ensembles 214

6.6.1 Combining Scoring Methods with Ranks 215

CONTENTS

6.6.2 Combining Bias and Variance Reduction
6.7 Conclusions and Summaryo
6.8 Bibliographic Survey
6.9 Exercises e

Supervised Outlier Detection
7.1 Imtroduction L
7.2 Full Supervision: Rare Class Detection
7.2.1 Cost-Sensitive Learning o000
7.2.1.1 MetaCost: A Relabeling Approach
7.2.1.2 Weighting Methods
7.2.2 Adaptive Re-sampling L
7.2.2.1 Relationship between Weighting and Sampling
7.2.2.2 Synthetic Over-sampling: SMOTE
7.2.3 Boosting Methods o
7.3 Semi-Supervision: Positive and Unlabeled Data
7.4 Semi-Supervision: Partially Observed Classes
7.4.1 One-Class Learning with Anomalous Examples
7.4.2 One-Class Learning with Normal Examples
7.4.3 Learning with a Subset of Labeled Classes
7.5 Unsupervised Feature Engineering in Supervised Methods
7.6 Active Learning
7.7 Supervised Models for Unsupervised Outlier Detection
7.7.1 Connections with PCA-Based Methods
7.7.2 Group-wise Predictions for High-Dimensional Data
7.7.3 Applicability to Mixed-Attribute Data Sets
7.7.4 Incorporating Column-wise Knowledge
7.7.5 Other Classification Methods with Synthetic Outliers
7.8 Conclusions and Summary
7.9 Bibliographic Survey
7.10 Exercises e

Categorical, Text, and Mixed Attribute Data
8.1 Imtroduction
8.2 Extending Probabilistic Models to Categorical Data
8.2.1 Modeling Mixed Data
8.3 Extending Linear Models to Categorical and Mixed Data
8.3.1 Leveraging Supervised Regression Models
8.4 Extending Proximity Models to Categorical Data
8.4.1 Aggregate Statistical Similarity 0L
8.4.2 Contextual Similarity 0.
8.4.2.1 Connections to Linear Models
8.4.3 Issues with Mixed Data
8.4.4 Density-Based Methods
8.4.5 Clustering Methods,
8.5 Outlier Detection in Binary and Transaction Data
8.5.1 Subspace Methods
8.5.2 Novelties in Temporal Transactions
8.6 Outlier Detection in Text Data

xi

xii

CONTENTS
8.6.1 Probabilistic Models oo 262
8.6.2 Linear Models: Latent Semantic Analysis 264
8.6.2.1 Probabilistic Latent Semantic Analysis (PLSA). 265
8.6.3 Proximity-Based Models 268
8.6.3.1 First Story Detection 269
8.7 Conclusions and Summary 270
8.8 Bibliographic Survey 270
8.9 EXercises e 272
Time Series and Streaming Outlier Detection 273
9.1 Imtroduction 273
9.2 Predictive Outlier Detection in Streaming Time-Series 276
9.2.1 Autoregressive Models L o oL 276
9.2.2 Multiple Time Series Regression Models 279
9.2.2.1 Direct Generalization of Autoregressive Models 279
9.2.2.2 Time-Series Selection Methods 281

9.2.2.3 Principal Component Analysis and Hidden Variable-Based
Models 282
9.2.3 Relationship between Unsupervised Outlier Detection and Prediction 284
9.2.4 Supervised Point Outlier Detection in Time Series 284
9.3 Time-Series of Unusual Shapes 286
9.3.1 Transformation to Other Representations 287
9.3.1.1 Numeric Multidimensional Transformations 288
9.3.1.2 Discrete Sequence Transformations. 290
9.3.1.3 Leveraging Trajectory Representations of Time Series . . . 291
9.3.2 Distance-Based Methods 293
9.3.2.1 Single Series versus Multiple Series. 295
9.3.3 Probabilistic Models oo oo 295
9.3.4 Linear Models 295
9.3.4.1 Univariate Series 295
9.3.4.2 Multivariate Series 296
9.3.4.3 Incorporating Arbitrary Similarity Functions 297
9.3.4.4 Leveraging Kernel Methods with Linear Models 298
9.3.5 Supervised Methods for Finding Unusual Time-Series Shapes 298
9.4 Multidimensional Streaming Outlier Detection 298
9.4.1 Individual Data Points as Outliers 299
9.4.1.1 Proximity-Based Algorithms 299
9.4.1.2 Probabilistic Algorithms 301
9.4.1.3 High-Dimensional Scenario 301
9.4.2 Aggregate Change Points as Outliers 301
9.4.2.1 Velocity Density Estimation Method 302
9.4.2.2 Statistically Significant Changes in Aggregate Distributions 304
9.4.3 Rare and Novel Class Detection in Multidimensional Data Streams . 305
9.4.3.1 Detecting Rare Classes 305
9.4.3.2 Detecting Novel Classes 306
9.4.3.3 Detecting Infrequently Recurring Classes 306
9.5 Conclusions and Summary L. 307
9.6 Bibliographic Survey Lo 307
9.7 Exercises 310

CONTENTS xiii

10 Outlier Detection in Discrete Sequences 311
10.1 Introduction 311
10.2 Position Outliers L 313

10.2.1 Rule-Based Models 315
10.2.2 Markovian Models L L 316
10.2.3 Efficiency Issues: Probabilistic Suffix Trees 318
10.3 Combination Outliers o 320
10.3.1 A Primitive Model for Combination Outlier Detection 322
10.3.1.1 Model-Specific Combination Issues 323
10.3.1.2 Easier Special Cases 323
10.3.1.3 Relationship between Position and Combination Outliers . 324

10.3.2 Distance-Based Models 0L 324
10.3.2.1 Combining Anomaly Scores from Comparison Units 326
10.3.2.2 Some Observations on Distance-Based Methods 327
10.3.2.3 Easier Special Case: Short Sequences 327

10.3.3 Frequency-Based Models L. 327

10.3.3.1 Frequency-Based Model with User-Specified Comparison Unit327
10.3.3.2 Frequency-Based Model with Extracted Comparison Units 328

10.3.3.3 Combining Anomaly Scores from Comparison Units 329
10.3.4 Hidden Markov Models 329
10.3.4.1 Design Choices in a Hidden Markov Model 331
10.3.4.2 Training and Prediction with HMMs 333

10.3.4.3 Evaluation: Computing the Fit Probability for Observed Se-
QUENCES . . v v v v e e e e e e e e 334

10.3.4.4 Explanation: Determining the Most Likely State Sequence
for Observed Sequence 334
10.3.4.5 Training: Baum-Welch Algorithm 335
10.3.4.6 Computing Anomaly Scores. 336
10.3.4.7 Special Case: Short Sequence Anomaly Detection 337
10.3.5 Kernel-Based Methods 337
10.4 Complex Sequences and Scenarios 338
10.4.1 Multivariate Sequences Lo oL 338
10.4.2 Set-Based Sequences Lo 339
10.4.3 Online Applications: Early Anomaly Detection 340
10.5 Supervised Outliers in Sequences 340
10.6 Conclusions and Summary oL 342
10.7 Bibliographic Surveyo 342
10.8 Exercises e e e 344
11 Spatial Outlier Detection 345
11.1 Introduction L 345
11.2 Spatial Attributes are Contextual 349
11.2.1 Neighborhood-Based Algorithms 349
11.2.1.1 Multidimensional Methods 350
11.2.1.2 Graph-Based Methods 351
11.2.1.3 The Case of Multiple Behavioral Attributes 351
11.2.2 Autoregressive Models L oo 352
11.2.3 Visualization with Variogram Clouds 353

11.2.4 Finding Abnormal Shapes in Spatial Data 355

xiv CONTENTS
11.2.4.1 Contour Extraction Methods 356

11.2.4.2 Extracting Multidimensional Representations 360

11.2.4.3 Multidimensional Wavelet Transformation 360

11.2.4.4 Supervised Shape Discovery 360

11.2.4.5 Anomalous Shape Change Detection 361

11.3 Spatiotemporal Outliers with Spatial and Temporal Context 362
11.4 Spatial Behavior with Temporal Context: Trajectories 363
11.4.1 Real-Time Anomaly Detection 363
11.4.2 Unusual Trajectory Shapes 363
11.4.2.1 Segment-wise Partitioning Methods 363

11.4.2.2 Tile-Based Transformations 364

11.4.2.3 Similarity-Based Transformations 365

11.4.3 Supervised Outliers in Trajectories 365

11.5 Conclusions and Summary L 366
11.6 Bibliographic Survey Lo 366
11.7 Exercises L 367
12 Outlier Detection in Graphs and Networks 369
12.1 Introduction oL L 369
12.2 Outlier Detection in Many Small Graphs 371
12.2.1 Leveraging Graph Kernels 371

12.3 Outlier Detection in a Single Large Graph 372
12.3.1 Node Outliers 372
12.3.1.1 Leveraging the Mahalanobis Method 374

12.3.2 Linkage Outliers oo 374
12.3.2.1 Matrix Factorization Methods 374

12.3.2.2 Spectral Methods and Embeddings 378

12.3.2.3 Clustering Methods 379

12.3.2.4 Community Linkage Outliers 380

12.3.3 Subgraph Outliers 381

12.4 Node Content in Outlier Analysis 382
12.4.1 Shared Matrix Factorization 382
12.4.2 Relating Feature Similarity to Tie Strength 383
12.4.3 Heterogeneous Markov Random Fields 384

12.5 Change-Based Outliers in Temporal Graphs 384
12.5.1 Discovering Node Hotspots in Graph Streams 385
12.5.2 Streaming Detection of Linkage Anomalies 386
12.5.3 Outliers Based on Community Evolution. 388
12.5.3.1 Integrating Clustering Maintenance with Evolution Analysis 388

12.5.3.2 Online Analysis of Community Evolution in Graph Streams 390

12.5.3.3 GraphScope 390

12.5.4 Outliers Based on Shortest Path Distance Changes 392
12.5.5 Matrix Factorization and Latent Embedding Methods 392

12.6 Conclusions and Summary oL Lo 393
12.7 Bibliographic Survey L o 394
12.8 Exerciseso 396

CONTENTS XV

13 Applications of Outlier Analysis 399
13.1 Introduction oL L 399
13.2 Quality Control and Fault Detection Applications 401
13.3 Financial Applications 404
13.4 Web Log Analytics o oo 406
13.5 Intrusion and Security Applications L. 407
13.6 Medical Applications L o 410
13.7 Text and Social Media Applications 411
13.8 Earth Science Applications 413
13.9 Miscellaneous Applications 415
13.10Guidelines for the Practitioner 416

13.10.1 Which Unsupervised Algorithms Work Best? 418
13.11Resources for the Practitioner 0L 421

13.12Conclusions and Summary 422

Preface

“All things excellent are as difficult as they are rare.”— Baruch Spinoza

First Edition

Most of the earliest work on outlier detection was performed by the statistics community.
While statistical methods are mathematically more precise, they have several shortcomings,
such as simplified assumptions about data representations, poor algorithmic scalability, and
a low focus on interpretability. With the increasing advances in hardware technology for data
collection, and advances in software technology (databases) for data organization, computer
scientists have increasingly been participating in the latest advancements of this field. Com-
puter scientists approach this field based on their practical experiences in managing large
amounts of data, and with far fewer assumptions— the data can be of any type, structured
or unstructured, and may be extremely large. Furthermore, issues such as computational
efficiency and intuitive analysis of the data are generally considered more important by
computer scientists than mathematical precision, though the latter is important as well.
This is the approach of professionals from the field of data mining, an area of computer
science that was founded about 20 years ago. This has led to the formation of multiple
academic communities on the subject, which have remained separated, partially because of
differences in technical style and opinions about the importance of different problems and
approaches to the subject. At this point, data mining professionals (with a computer science
background) are much more actively involved in this area as compared to statisticians. This
seems to be a major change in the research landscape. This book presents outlier detection
from an integrated perspective, though the focus is towards computer science professionals.
Special emphasis was placed on relating the methods from different communities with one
another.

The key advantage of writing the book at this point in time is that the vast amount of
work done by computer science professionals in the last two decades has remained largely
untouched by a formal book on the subject. The classical books relevant to outlier analysis
are as follows:

e P. Rousseeuw and A. Leroy. Robust Regression and Outlier Detection, Wiley, 2003.
e V. Barnett and T. Lewis. Outliers in Statistical Data, Wiley, 1994.

e D. Hawkins. Identification of OQutliers, Chapman and Hall, 1980.

xvii

xviil CONTENTS

We note that these books are quite outdated, and the most recent among them is a decade
old. Furthermore, this (most recent) book is really focused on the relationship between
regression and outlier analysis, rather than the latter. Outlier analysis is a much broader
area, in which regression analysis is only a small part. The other books are even older, and
are between 15 and 25 years old. They are exclusively targeted to the statistics community.
This is not surprising, given that the first mainstream computer science conference in data
mining (KDD) was organized in 1995. Most of the work in the data-mining community
was performed after the writing of these books. Therefore, many key topics of interest
to the broader data mining community are not covered in these books. Given that outlier
analysis has been explored by a much broader community, including databases, data mining,
statistics, and machine learning, we feel that our book incorporates perspectives from a much
broader audience and brings together different points of view.

The chapters of this book have been organized carefully, with a view of covering the
area extensively in a natural order. Emphasis was placed on simplifying the content, so
that students and practitioners can also benefit from the book. While we did not originally
intend to create a textbook on the subject, it evolved during the writing process into a
work that can also be used as a teaching aid. Furthermore, it can also be used as a reference
book, since each chapter contains extensive bibliographic notes. Therefore, this book serves
a dual purpose, providing a comprehensive exposition of the topic of outlier detection from
multiple points of view.

Additional Notes for the Second Edition

The second edition of this book is a significant enhancement over the first edition. In par-
ticular, most of the chapters have been upgraded with new material and recent techniques.
More explanations have been added at several places and newer techniques have also been
added. An entire chapter on outlier ensembles has been added. Many new topics have been
added to the book such as feature selection, one-class support vector machines, one-class
neural networks, matrix factorization, spectral methods, wavelet transforms, and supervised
learning. Every chapter has been updated with the latest algorithms on the topic.

Last but not least, the first edition was classified by the publisher as a monograph,
whereas the second edition is formally classified as a textbook. The writing style has been
enhanced to be easily understandable to students. Many algorithms have been described in
greater detail, as one might expect from a textbook. It is also accompanied with a solution
manual for classroom teaching.

Acknowledgments

First Edition

I would like to thank my wife and daughter for their love and support during the writing
of this book. The writing of a book requires significant time that is taken away from family
members. This book is the result of their patience with me during this time. I also owe my
late parents a debt of gratitude for instilling in me a love of education, which has played an
important inspirational role in my book-writing efforts.

I would also like to thank my manager Nagui Halim for providing the tremendous support
necessary for the writing of this book. His professional support has been instrumental for
my many book efforts in the past and present.

Over the years, I have benefited from the insights of numerous collaborators. An in-
complete list of these long-term collaborators in alphabetical order is Tarek F. Abdelzaher,
Jiawei Han, Thomas S. Huang, Latifur Khan, Mohammad M. Masud, Spiros Papadimitriou,
Guojun Qi, and Philip S. Yu. I would like to thank them for their collaborations and insights
over the course of many years.

I would also like to specially thank my advisor James B. Orlin for his guidance during
my early years as a researcher. While I no longer work in the same area, the legacy of what
I learned from him is a crucial part of my approach to research. In particular, he taught
me the importance of intuition and simplicity of thought in the research process. These
are more important aspects of research than is generally recognized. This book is written
in a simple and intuitive style, and is meant to improve accessibility of this area to both
researchers and practitioners.

Finally, I would like to thank Lata Aggarwal for helping me with some of the figures
created using PowerPoint graphics in this book.

Acknowledgments for Second Edition

I received significant feedback from various colleagues during the writing of the second
edition. In particular, I would like to acknowledge Leman Akoglu, Chih-Jen Lin, Saket
Sathe, Jiliang Tang, and Suhang Wang. Leman and Saket provided detailed feedback on
several sections and chapters of this book.

XiX

Author Biography

Charu C. Aggarwal is a Distinguished Research Staff Member (DRSM) at the IBM
T. J. Watson Research Center in Yorktown Heights, New York. He completed his under-
graduate degree in Computer Science from the Indian Institute of Technology at Kan-
pur in 1993 and his Ph.D. from the Massachusetts Institute of Technology in 1996.
He has worked extensively in the field of data mining. He has pub-
lished more than 300 papers in refereed conferences and journals and
authored over 80 patents. He is the author or editor of 15 books,
including a textbook on data mining and a comprehensive book on
outlier analysis. Because of the commercial value of his patents, he
has thrice been designated a Master Inventor at IBM. He is a recipi-
ent of an IBM Corporate Award (2003) for his work on bio-terrorist
threat detection in data streams, a recipient of the IBM Outstand-
ing Innovation Award (2008) for his scientific contributions to privacy
technology, a recipient of two IBM Outstanding Technical Achievement Awards (2009, 2015)
for his work on data streams and high-dimensional data, respectively. He received the EDBT
2014 Test of Time Award for his work on condensation-based privacy-preserving data min-
ing. He is also a recipient of the IEEE ICDM Research Contributions Award (2015), which
is one of the two highest awards for influential research contributions in the field of data
mining.

He has served as the general co-chair of the IEEE Big Data Conference (2014) and as
the program co-chair of the ACM CIKM Conference (2015), the IEEE ICDM Conference
(2015), and the ACM KDD Conference (2016). He served as an associate editor of the IEEE
Transactions on Knowledge and Data Engineering from 2004 to 2008. He is an associate
editor of the ACM Transactions on Knowledge Discovery from Data, an associate editor of
the IEEE Transactions on Big Data, an action editor of the Data Mining and Knowledge
Discovery Journal, editor-in-chief of the ACM SIGKDD Explorations, and an associate
editor of the Knowledge and Information Systems Journal. He serves on the advisory board
of the Lecture Notes on Social Networks, a publication by Springer. He has served as the
vice-president of the STAM Activity Group on Data Mining and is a member of the STAM
industry committee. He is a fellow of the STAM, ACM, and the IEEE, for “contributions to
knowledge discovery and data mining algorithms.”

XX1

Chapter 1

An Introduction to Outlier Analysis

“Never take the comment that you are different as a condemnation, it might
be a compliment. It might mean that you possess unique qualities that, like the
most rarest of diamonds is ... one of a kind.” — Eugene Nathaniel Butler

1.1 Introduction

An outlier is a data point that is significantly different from the remaining data. Hawkins
defined [249] an outlier as follows:

“An outlier is an observation which deviates so much from the other observations
as to arouse suspicions that it was generated by a different mechanism.”

Outliers are also referred to as abnormalities, discordants, deviants, or anomalies in the
data mining and statistics literature. In most applications, the data is created by one or
more generating processes, which could either reflect activity in the system or observations
collected about entities. When the generating process behaves unusually, it results in the
creation of outliers. Therefore, an outlier often contains useful information about abnormal
characteristics of the systems and entities that impact the data generation process. The
recognition of such unusual characteristics provides useful application-specific insights. Some
examples are as follows:

e Intrusion detection systems: In many computer systems, different types of data
are collected about the operating system calls, network traffic, or other user actions.
This data may show unusual behavior because of malicious activity. The recognition
of such activity is referred to as intrusion detection.

e Credit-card fraud: Credit-card fraud has become increasingly prevalent because of
greater ease with which sensitive information such as a credit-card number can be
compromised. In many cases, unauthorized use of a credit card may show different
patterns, such as buying sprees from particular locations or very large transactions.
Such patterns can be used to detect outliers in credit-card transaction data.

© Springer International Publishing AG 2017 1
C.C. Aggarwal, Outlier Analysis, DOI 10.1007/978-3-319-47578-3 1

2 CHAPTER 1. AN INTRODUCTION TO OUTLIER ANALYSIS

e Interesting sensor events: Sensors are often used to track various environmen-
tal and location parameters in many real-world applications. Sudden changes in the
underlying patterns may represent events of interest. Event detection is one of the
primary motivating applications in the field of sensor networks. As discussed later in
this book, event detection is an important temporal version of outlier detection.

e Medical diagnosis: In many medical applications, the data is collected from a va-
riety of devices such as magnetic resonance imaging (MRI) scans, positron emission
tomography (PET) scans or electrocardiogram (ECG) time-series. Unusual patterns
in such data typically reflect disease conditions.

e Law enforcement: Outlier detection finds numerous applications in law enforcement,
especially in cases where unusual patterns can only be discovered over time through
multiple actions of an entity. Determining fraud in financial transactions, trading
activity, or insurance claims typically requires the identification of unusual patterns
in the data generated by the actions of the criminal entity.

e Earth science: A significant amount of spatiotemporal data about weather patterns,
climate changes, or land-cover patterns is collected through a variety of mechanisms
such as satellites or remote sensing. Anomalies in such data provide significant insights
about human activities or environmental trends that may be the underlying causes.

In all these applications, the data has a “normal” model, and anomalies are recognized as
deviations from this normal model. Normal data points are sometimes also referred to as
inliers. In some applications such as intrusion or fraud detection, outliers correspond to
sequences of multiple data points rather than individual data points. For example, a fraud
event may often reflect the actions of an individual in a particular sequence. The specificity
of the sequence is relevant to identifying the anomalous event. Such anomalies are also
referred to as collective anomalies, because they can only be inferred collectively from a set
or sequence of data points. Such collective anomalies are often a result of unusual events
that generate anomalous patterns of activity. This book will address these different types
of anomalies.
The output of an outlier detection algorithm can be one of two types:

e Outlier scores: Most outlier detection algorithms output a score quantifying the
level of “outlierness” of each data point. This score can also be used to rank the data
points in order of their outlier tendency. This is a very general form of output, which
retains all the information provided by a particular algorithm, but it does not provide
a concise summary of the small number of data points that should be considered
outliers.

e Binary labels: A second type of output is a binary label indicating whether a data
point is an outlier or not. Although some algorithms might directly return binary
labels, outlier scores can also be converted into binary labels. This is typically achieved
by imposing thresholds on outlier scores, and the threshold is chosen based on the
statistical distribution of the scores. A binary labeling contains less information than
a scoring mechanism, but it is the final result that is often needed for decision making
in practical applications.

It is often a subjective judgement, as to what constitutes a “sufficient” deviation for
a point to be considered an outlier. In real applications, the data may be embedded in a

1.1. INTRODUCTION 3

FEATURE Y
©
>
FEATURE Y

(] 5 10 15] 2 4 6 8 10 12 14 16
FEATURE X FEATURE X

(a) No noise (b) With noise

Figure 1.1: The difference between noise and anomalies

WEAK OR STRONG OUTLIERS

|

NORMAL DATA | NOISE ANOMALIES |

I |
>

INCREASING OUTLIERNESS SCORE FROM LEFT TO RIGHT

Figure 1.2: The spectrum from normal data to outliers

significant amount of noise, and such noise may not be of any interest to the analyst. It
is usually the significantly interesting deviations that are of interest. In order to illustrate
this point, consider the examples illustrated in Figures 1.1(a) and (b). It is evident that
the main patterns (or clusters) in the data are identical in both cases, although there are
significant differences outside these main clusters. In the case of Figure 1.1(a), a single data
point (marked by ‘A’) seems to be very different from the remaining data, and is therefore
very obviously an anomaly. The situation in Figure 1.1(b) is much more subjective. While
the corresponding data point ‘A’ in Figure 1.1(b) is also in a sparse region of the data, it
is much harder to state confidently that it represents a true deviation from the remaining
data set. It is quite likely that this data point represents randomly distributed noise in the
data. This is because the point ‘A’ seems to fit a pattern represented by other randomly
distributed points. Therefore, throughout this book, the term “outlier” refers to a data
point that could either be considered an abnormality or noise, whereas an “anomaly” refers
to a special kind of outlier that is of interest to an analyst.

In the wunsupervised scenario, where previous examples of interesting anomalies are
not available, the noise represents the semantic boundary between normal data and true
anomalies— noise is often modeled as a weak form of outliers that does not always meet the
strong criteria necessary for a data point to be considered interesting or anomalous enough.
For example, data points at the boundaries of clusters may often be considered noise. Typ-

4 CHAPTER 1. AN INTRODUCTION TO OUTLIER ANALYSIS

ically, most outlier detection algorithms use some quantified measure of the outlierness of a
data point, such as the sparsity of the underlying region, nearest neighbor based distance,
or the fit to the underlying data distribution. Every data point lies on a continuous spec-
trum from normal data to noise, and finally to anomalies, as illustrated in Figure 1.2. The
separation of the different regions of this spectrum is often not precisely defined, and is
chosen on an ad hoc basis according to application-specific criteria. Furthermore, the sepa-
ration between noise and anomalies is not pure, and many data points created by a noisy
generative process may be deviant enough to be interpreted as anomalies on the basis of
the outlier score. Thus, anomalies will typically have a much higher outlier score than noise,
but this is not a distinguishing factor between the two as a matter of definition. Rather, it
is the interest of the analyst that regulates the distinction between noise and an anomaly.

Some authors use the terms weak outliers and strong outliers in order to distinguish
between noise and anomalies [4, 318]. The detection of noise in the data has numerous
applications of its own. For example, the removal of noise creates a much cleaner data
set, which can be utilized for other data mining algorithms. Although noise might not be
interesting in its own right, its removal and identification continues to be an important
problem for mining purposes. Therefore, both noise and anomaly detection problems are
important enough to be addressed in this book. Throughout this book, methods specifically
relevant to either anomaly detection or noise removal will be identified. However, the bulk
of the outlier detection algorithms could be used for either problem, since the difference
between them is really one of semantics.

Since the semantic distinction between noise and anomalies is based on analyst interest,
the best way to find such anomalies and distinguish them from noise is to use the feedback
from previously known outlier examples of interest. This is quite often the case in many
applications, such as credit-card fraud detection, where previous examples of interesting
anomalies may be available. These may be used in order to learn a model that distinguishes
the normal patterns from the abnormal data. Supervised outlier detection techniques are
typically much more effective in many application-specific scenarios, because the charac-
teristics of the previous examples can be used to sharpen the search process towards more
relevant outliers. This is important, because outliers can be defined in numerous ways in
a given data set, most of which may not be interesting. For example, in Figures 1.1(a)
and (b), previous examples may suggest that only records with unusually high values of
both attributes should be considered anomalies. In such a case, the point ‘A’ in both figures
should be regarded as noise, and the point ‘B’ in Figure 1.1(b) should be considered an
anomaly instead! The crucial point to understand here is that anomalies need to be unusual
in an interesting way, and the supervision process re-defines what one might find interesting.
Generally, unsupervised methods can be used either for noise removal or anomaly detection,
and supervised methods are designed for application-specific anomaly detection. Unsuper-
vised methods are often used in an exploratory setting, where the discovered outliers are
provided to the analyst for further examination of their application-specific importance.

Several levels of supervision are possible in practical scenarios. In the fully supervised
scenario, examples of both normal and abnormal data are available that can be clearly dis-
tinguished. In some cases, examples of outliers are available, but the examples of “normal”
data may also contain outliers in some (unknown) proportion. This is referred to as classifi-
cation with positive and unlabeled data. In other semi-supervised scenarios, only examples
of normal data or only examples of anomalous data may be available. Thus, the number of
variations of the problem is rather large, each of which requires a related but dedicated set
of techniques.

1.2. THE DATA MODEL IS EVERYTHING 5

Finally, the data representation may vary widely across applications. For example, the
data may be purely multidimensional with no relationships among points, or the data
may be sequential with temporal ordering, or may be defined in the form of a network
with arbitrary relationships among data points. Furthermore, the attributes in the data
may be numerical, categorical, or mixed. Clearly, the outlier detection process needs to be
sensitive to the nature of the attributes and relationships in the underlying data. In fact,
the relationships themselves may often provide an outlier-detection criterion in the form of
connections between entities that do not usually occur together. Such outliers are referred
to as contertual outliers. A classical example of this is the concept of linkage outliers in
social network analysis [17]. In this case, entities (nodes) in the graph that are normally not
connected together may show anomalous connections with each other. Thus, the impact of
data types on the anomaly detection process is significant and will be carefully addressed
in this book.

This chapter is organized as follows. In section 1.2, the importance of data modeling in
outlier analysis is discussed. In section 1.3, the basic outlier models for outlier detection are
introduced. Outlier ensembles are introduced in section 1.4. Section 1.5 discusses the basic
data types used for analysis. Section 1.6 introduces the concept of supervised modeling of
outliers for data analysis. Methods for evaluating outlier detection algorithms are discussed
in section 1.7. The conclusions are presented in section 1.8.

1.2 The Data Model is Everything

Virtually all outlier detection algorithms create a model of the normal patterns in the data,
and then compute an outlier score of a given data point on the basis of the deviations
from these patterns. For example, this data model may be a generative model such as a
Gaussian-mixture model, a regression-based model, or a proximity-based model. All these
models make different assumptions about the “normal” behavior of the data. The outlier
score of a data point is then computed by evaluating the quality of the fit between the
data point and the model. In many cases, the model may be algorithmically defined. For
example, nearest neighbor-based outlier detection algorithms model the outlier tendency of
a data point in terms of the distribution of its k-nearest neighbor distance. Thus, in this
case, the assumption is that outliers are located at large distances from most of the data.
Clearly, the choice of the data model is crucial. An incorrect choice of data model
may lead to poor results. For example, a fully generative model such as the Gaussian
mixture model may not work well, if the data does not fit the generative assumptions of
the model, or if a sufficient number of data points are not available to learn the parameters
of the model. Similarly, a linear regression-based model may work poorly, if the underlying
data is clustered arbitrarily. In such cases, data points may be incorrectly reported as
outliers because of poor fit to the erroneous assumptions of the model. Unfortunately, outlier
detection is largely an unsupervised problem in which examples of outliers are not available
to learn! the best model (in an automated way) for a particular data set. This aspect of
outlier detection tends to make it more challenging than many other supervised data mining
problems like classification in which labeled examples are available. Therefore, in practice,
the choice of the model is often dictated by the analyst’s understanding of the kinds of
deviations relevant to an application. For example, in a spatial application measuring a
behavioral attribute such as the location-specific temperature, it would be reasonable to
assume that an unusual deviation of the temperature attribute in a spatial locality is an

n supervised problems like classification, this process is referred to as model selection.

6 CHAPTER 1. AN INTRODUCTION TO OUTLIER ANALYSIS

RELATIVE FREQUENCY
RELATIVE FREQUENCY

0 5 10 15 20 25 0 5 10 15 20 25
DATA VALUE DATA VALUE

(a) Normal distribution (b) Zipf distribution

Figure 1.3: Applying Z-value test on the Normal and Zipf distributions

indicator of abnormality. On the other hand, for the case of high-dimensional data, even
the definition of data locality may be ill-defined because of data sparsity. Thus, an effective
model for a particular data domain may only be constructed after carefully evaluating the
relevant modeling properties of that domain.

In order to understand the impact of the model, it is instructive to examine the use of a
simple model known as the Z-value test for outlier analysis. Consider a set of 1-dimensional
quantitative data observations, denoted by X; ... Xy, with mean y and standard deviation
0. The Z-value for the data point X; is denoted by Z; and is defined as follows:

_ | X — pl
ag

Z; (1.1)
The Z-value test computes the number of standard deviations by which a data point is
distant from the mean. This provides a good proxy for the outlier score of that point. An
implicit assumption is that the data is modeled from a normal distribution, and therefore the
Z-value is a random variable drawn from a standard normal distribution with zero mean
and unit variance. In cases where the mean and standard deviation of the distribution
can be accurately estimated, a good “rule-of-thumb” is to use Z; > 3 as a proxy for the
anomaly. However, in scenarios in which very few samples are available, the mean and
standard deviation of the underlying distribution cannot be estimated robustly. In such
cases, the results from the Z-value test need to be interpreted more carefully with the use
of the (related) Student’s t-distribution rather than a normal distribution. This issue will
be discussed in Chapter 2.

It is often forgotten by practitioners during modeling that the Z-value test implicitly
assumes a normal distribution for the underlying data. When such an approximation is
poor, the results are harder to interpret. For example, consider the two data frequency
histograms drawn on values between 1 and 20 in Figure 1.3. In the first case, the histogram
is sampled from a normal distribution with (u,0) = (10,2), and in the second case, it is
sampled from a Zipf distribution 1/i. It is evident that most of the data lies in the range
[10 — 2% 3,104 23] for the normal distribution, and all data points lying outside this range
can be truly considered anomalies. Thus, the Z-value test works very well in this case. In
the second case with the Zipf distribution, the anomalies are not quite as clear, although
the data points with very high values (such as 20) can probably be considered anomalies.
In this case, the mean and standard deviation of the data are 5.24 and 5.56, respectively.
As a result, the Z-value test does not declare any of the data points as anomalous (for a

1.2. THE DATA MODEL IS EVERYTHING 7

FEATURE Z

FEATURE Y

X ANOMALY

X ANOMALY

FEATURE Y

o 1 2 3 4
FEATURE X FEATURE X

(a) 2-d data (b) 3-d data

Figure 1.4: Linearly Correlated Data

threshold of 3), although it does come close. In any case, the significance of the Z-value from
the Zipf-distribution is not very meaningful at least from the perspective of probabilistic
interpretability. This suggests that if mistakes are made at the modeling stage, it can result
in an incorrect understanding of the data. Such tests are often used as a heuristic to provide
a rough idea of the outlier scores even for data sets that are far from normally distributed,
and it is important to interpret such scores carefully.

An example in which the Z-value test would not work even as a heuristic, would be
one in which it was applied to a data point that was an outlier only because of its relative
position, rather than its extreme position. For example, if the Z-value test is applied to an
individual dimension in Figure 1.1(a), the test would fail miserably, because point ‘A’ would
be considered the most centrally located and normal data point. On the other hand, the
test can still be reasonably applied to a set of extracted 1-dimensional values corresponding
to the k-nearest neighbor distances of each point. Therefore, the effectiveness of a model
depends both on the choice of the test used, and how it is applied.

The best choice of a model is often data-specific. This requires a good understanding
of the data itself before choosing the model. For example, a regression-based model would
be most suitable for finding the outliers in the data distributions of Figure 1.4, where most
of the data is distributed along linear correlation planes. On the other hand, a clustering
model would be more suitable for the cases illustrated in Figure 1.1. An poor choice of
model for a given data set is likely to provide poor results. Therefore, the core principle of
discovering outliers is based on assumptions about the structure of the normal patterns in
a given data set. Clearly, the choice of the “normal” model depends highly on the analyst’s
understanding of the natural data patterns in that particular domain. This implies that it
is often useful for the analyst to have a semantic understanding of the data representation,
although this is often not possible in real settings.

There are many trade-offs associated with model choice; a highly complex model with
too many parameters will most likely overfit the data, and will also find a way to fit the
outliers. A simple model, which is constructed with a good intuitive understanding of the
data (and possibly also an understanding of what the analyst is looking for), is likely to
lead to much better results. On the other hand, an oversimplified model, which fits the data
poorly, is likely to declare normal patterns as outliers. The initial stage of selecting the data
model is perhaps the most crucial one in outlier analysis. The theme about the impact of
data models will be repeated throughout the book, with specific examples.

8 CHAPTER 1. AN INTRODUCTION TO OUTLIER ANALYSIS

1.2.1 Connections with Supervised Models

One can view the outlier detection problem as a variant of the classification problem in
which the class label (“normal” or “anomaly”) is unobserved. Therefore, by virtue of the
fact that normal examples far outnumber the anomalous examples, one can “pretend” that
the entire data set contains the normal class and create a (possibly noisy) model of the
normal data. Deviations from the normal model are treated as outlier scores. This connection
between classification and outlier detection is important because much of the theory and
methods from classification generalize to outlier detection [32]. The unobserved nature of
the labels (or outlier scores) is the reason that outlier detection methods are referred to
as unsupervised whereas classification methods are referred to as supervised. In cases where
the anomaly labels are observed, the problem simplifies to the imbalanced version of data
classification, and it is discussed in detail in Chapter 7.

The model of normal data for unsupervised outlier detection may be considered a one-
class analog of the multi-class setting in classification. However, the one-class setting is
sometimes far more subtle from a modeling perspective, because it is much easier to dis-
tinguish between examples of two classes than to predict whether a particular instance
matches examples of a single (normal) class. When at least two classes are available, the
distinguishing characteristics between the two classes can be learned more easily in order
to sharpen the accuracy of the model.

In many forms of predictive learning, such as classification and recommendation, there
is a natural dichotomy between instance-based learning methods and explicit generalization
methods. Since outlier detection methods require the design of a model of the normal data
in order to make predictions, this dichotomy applies to the unsupervised domain as well.
In instance-based methods, a training model is not constructed up front. Rather, for a
given test instance, one computes the most relevant (i.e., closest) instances of the training
data, and makes predictions on the test instance using these related instances. Instance-
based methods are also referred to as lazy learners in the field of classification [33] and
memory-based methods in the field of recommender systems [34].

A simple example of an instance-based learning method in outlier analysis is the use of
the 1-nearest-neighbor distance of a data point as its outlier score. Note that this approach
does not require the construction of a training model up front because all the work of de-
termining the nearest neighbor is done after specifying the identity of the instance to be
predicted (scored). The 1-nearest neighbor outlier detector can be considered the unsuper-
vised analog of the 1-nearest neighbor classifier in the supervised domain. Instance-based
models are extremely popular in the outlier analysis domain because of their simplicity, ef-
fectiveness, and intuitive nature. In fact, many of the most popular and successful methods
for outlier detection, such as k-nearest neighbor detectors [58, 456] and Local Outlier Factor
(LOF) [96] (cf. Chapter 4), are instance-based methods.

The popularity of instance-based methods is so great in the outlier analysis community
that the vast array of one-class analogs of other supervised methods are often overlooked. In
principle, almost any classification method can be re-designed to create a one-class analog.
Most of these methods are explicit generalization methods, in which a summarized model
needs to be created up front. Explicit generalization methods use a two-step process on the
data set D:

1. Create a one-class model of the normal data using the original data set D. For example,
one might learn a linear hyperplane describing the normal data in Figure 1.4(b).
This hyperplane represents a summarized model of the entire data set and therefore
represents an explicit generalization of the data set.

1.2. THE DATA MODEL IS EVERYTHING 9

Table 1.1: Classification methods and their unsupervised analogs in outlier analysis

H Supervised Model H Unsupervised Analog(s) \ Type H

k-nearest neighbor k-NN distance, LOF, LOCI Instance-based
(Chapter 4)

Linear Regression Principal Component Analysis Explicit Generalization
(Chapter 3)

Naive Bayes Expectation-maximization Explicit Generalization
(Chapter 2)

Rocchio Mahalanobis method (Chapter 3) | Explicit Generalization
Clustering (Chapter 4)

Decision Trees Isolation Trees Explicit generalization

Random Forests Isolation Forests
(Chapters 5 and 6)

Rule-based FP-Outlier Explicit Generalization
(Chapter 8)

Support-vector One-class support-vector Explicit generalization

machines machines (Chapter 3)

Neural Networks Replicator neural networks Explicit generalization
(Chapter 3)

Matrix factorization || Principal component analysis Explicit generalization

(incomplete data Matrix factorization

prediction) (Chapter 3)

2. Score each point in D based on its deviation from this model of normal data. For
example, if we learn a linear hyperplane using the data set of Figure 1.4(b) in the first
step, then we might report the Euclidean distance from this hyperplane as the outlier
score.

One problem with explicit generalization methods is that the same data set D is used
for both training and scoring. This is because it is hard to exclude a specific test point
during the scoring process (like instance-based methods). Furthermore, unlike classification
in which the presence or absence of ground-truth (labeling) naturally partitions the data
into training and test portions, there is no labeling available in unsupervised problems.
Therefore, one typically wants to use the entire data set D for both training and testing in
unsupervised problems, which causes overfitting. Nevertheless, the influence of individual
points on overfitting is often small in real-world settings because explicit generalization
methods tend to create a concise summary (i.e., generalized representation) of a much larger
data set. Since the same data D is used for training and testing, one can view outlier scores
as the training data errors made in the assumption of “pretending” that all training data
points belong to the normal class. Often an effective approach to reduce overfitting is to
repeatedly partition the data into training and test sets in a randomized way and average
the outlier scores of test points from the various models. Such methods will be discussed in
later chapters.

Virtually all classification models can be generalized to outlier detection by using an
appropriate one-class analog. Examples of such models include linear regression models,
principal component analysis, probabilistic expectation-maximization models, clustering
methods, one-class support vector machines, matrix factorization models, and one-class

10 CHAPTER 1. AN INTRODUCTION TO OUTLIER ANALYSIS

neural networks. For the reader who has a familiarity with the classification problem, we
have listed various classification models and their corresponding one-class analogs for outlier
detection in Table 1.1. The table is not comprehensive and is intended to provide intuition
about the connections between the supervised and unsupervised settings with representative
examples. The connections between supervised and unsupervised learning are very deep; in
section 7.7 of Chapter 7, we point out yet another useful connection between outlier detec-
tion and regression modeling. This particular connection has the merit that it enables the
use of hundreds of off-the-shelf regression models for unsupervised outlier detection with an
almost trivial implementation.

1.3 The Basic Outlier Detection Models

This section will present an overview of the most important models in the literature, and
also provide some idea of the settings in which they might work well. A detailed discussion of
these methods are provided in later chapters. Several factors influence the choice of an outlier
model, including the data type, data size, availability of relevant outlier examples, and the
need for interpretability in a model. The last of these criteria merits further explanation.

The interpretability of an outlier detection model is extremely important from the per-
spective of the analyst. It is often desirable to determine why a particular data point should
be considered an outlier because it provides the analyst further hints about the diagnosis
required in an application-specific scenario. This process is also referred to as that of dis-
covering the intensional knowledge about the outliers [318] or that of outlier detection and
description [44]. Different models have different levels of interpretability. Typically, models
that work with the original attributes and use fewer transforms on the data (e.g., principal
component analysis) have higher interpretability. The trade-off is that data transformations
often enhance the contrast between the outliers and normal data points at the expense
of interpretability. Therefore, it is critical to keep these factors in mind while choosing a
specific model for outlier analysis.

1.3.1 Feature Selection in Outlier Detection

It is notoriously difficult to perform feature selection in outlier detection because of the
unsupervised nature of the outlier detection problem. Unlike classification, in which labels
can be used as guiding posts, it is difficult to learn how features relate to the (unobserved)
ground truth in unsupervised outlier detection. Nevertheless, a common way of measuring
the non-uniformity of a set of univariate points x; ...xy is the Kurtosis measure. The first
step is to compute the mean p and standard deviation o of this set of values and standardize
the data to zero mean and unit variance as follows:

(1.2)

Note that the mean value of the squares of z; is always 1 because of how z; is defined. The
Kurtosis measure computes the mean value of the fourth power of z;:

N
Doim1 Z?

K(z...2y) = ~

(1.3)

Feature distributions that are very non-uniform show a high level of Kurtosis. For example,
when the data contains a few extreme values, the Kurtosis measure will increase because

1.3. THE BASIC OUTLIER DETECTION MODELS 11

of the use of the fourth power. Kurtosis measures are often used [367] in the context of
subspace outlier detection methods (see Chapter 5), in which outliers are explored in lower-
dimensional projections of the data.

One problem with the Kurtosis measure is that it does not use the interactions between
various attributes well, when it analyzes the features individually. It is also possible to use
the Kurtosis measure on lower-dimensional distance distributions. For example, one can
compute the Kurtosis measure on the set of N Mahalanobis distances of all data points
to the centroid of the data after the data has been projected into a lower-dimensional
subspace S. Such a computation provides the multidimensional Kurtosis of that subspace
S, while taking into account the interactions between the various dimensions of S. The
Mahalanobis distance is introduced in Chapter 2. One can combine this computation with
a greedy method of iteratively adding features to a candidate subset .S of features in order to
construct a discriminative subset of dimensions with the highest multidimensional Kurtosis.

A second methodology for feature selection [429] is to use the connections of the outlier
detection problem to supervised learning. The basic idea is that features that are uncor-
related with all other features should be considered irrelevant because outliers often corre-
spond to violation of the model of normal data dependencies. Uncorrelated features cannot
be used to model data dependencies. Therefore, if one uses a regression model to predict
one of the features from the other features, and the average squared error is too large,
then such a feature should be pruned. All features are standardized to unit variance and
the root-mean squared error RM SE), of predicting the kth feature from other features is
computed. Note that if RMSFE}) is larger than 1, then the error of prediction is greater
than the feature variance and therefore the kth feature should be pruned. One can also use
this approach to weight the features. Specifically, the weight of the kth feature is given by
max{0,1 — RMSE}}. Details of this model are discussed in section 7.7 of Chapter 7.

1.3.2 Extreme-Value Analysis

The most basic form of outlier detection is extreme-value analysis of 1-dimensional data.
These are very specific types of outliers in which it is assumed that the values that are
either too large or too small are outliers. Such special kinds of outliers are also important
in many application-specific scenarios.

The key is to determine the statistical tails of the underlying distribution. As illustrated
earlier in Figure 1.3, the nature of the tails may vary considerably depending upon the
underlying data distribution. The normal distribution is the easiest to analyze, because most
statistical tests (such as the Z-value test) can be interpreted directly in terms of probabilities
of significance. Nevertheless, even for arbitrary distributions, such tests provide a good
heuristic idea of the outlier scores of data points, even when they cannot be interpreted
statistically. The problem of determining the tails of distributions has been widely studied
in the statistics literature. Details of such methods will be discussed in Chapter 2.

Extreme-value statistics [437] is distinct from the traditional definition of outliers. The
traditional definition of outliers, as provided by Hawkins, defines such objects by their gen-
erative probabilities rather than the extremity in their values. For example, in the data set
{1,2,2,50,98,98,99} of 1-dimensional values, the values 1 and 99 could, very mildly, be
considered extreme values. On the other hand, the value 50 is the average of the data set,
and is most definitely not an extreme value. However, the value 50 is isolated from most of
the other data values, which are grouped into small ranges such as {1, 2,2} and {98, 98,99}.
Therefore, most probabilistic and density-based models would classify the value 50 as the
strongest outlier in the data, and this result would also be consistent with Hawkins’s gener-

12 CHAPTER 1. AN INTRODUCTION TO OUTLIER ANALYSIS

ative definition of outliers. Confusions between extreme-value analysis and outlier analysis
are common, especially in the context of multivariate data. This is quite often the case,
since many extreme-value models also use probabilistic models in order to quantify the
probability that a data point is an extreme value.

Although extreme-value analysis is naturally designed for univariate (one-dimensional)
data, it is also possible to generalize it to multivariate data, by determining the points
at the multidimensional outskirts of the data. It is important to understand that such
outlier detection methods are tailored to determining specific kinds of outliers even in the
multivariate case. For example, the point ‘A’ in both Figures 1.1(a) and (b) will not be
deemed an extreme value by such methods, since it does not lie on the outer boundary of
the data, even though it is quite clearly an outlier in Figure 1.1(a). On the other hand,
the point ‘B’ in Figure 1.1(b) can be considered an extreme value, because it lies on the
outskirts of the multidimensional data set.

Extreme-value modeling plays an important role in most outlier detection algorithms
as a final step. This is because most outlier modeling algorithms quantify the deviations of
the data points from the normal patterns in the form of a numerical score. Extreme-value
analysis is usually required as a final step on these modeled deviations, since they are now
represented as univariate values in which extreme values correspond to outliers. In many
multi-criteria outlier detection algorithms, a vector of outlier scores may be obtained (such
as extreme values of temperature and pressure in a meteorological application). In such
cases, multivariate extreme-value methods can help in unifying these outlier scores into a
single value, and also generate a binary label output. Therefore, even though the original
data may not be in a form where extreme-value analysis is directly helpful, it remains an
integral part of the outlier detection process. Furthermore, many real-world applications
track statistical aggregates, in which extreme-value analysis provides useful insights about
outliers.

Extreme-value analysis can also be extended to multivariate data with the use of
distance- or depth-based methods [295, 343, 468]. However, these methods are applica-
ble only to certain types of specialized scenarios in which outliers are known to be present
at the boundaries of the data. Many forms of post-processing on multi-criteria outlier scores
may use such methods. On the other hand, such methods are not very useful for generic
outlier analysis, because of their inability to discover outliers in the sparse interior regions
of a data set.

1.3.3 Probabilistic and Statistical Models

In probabilistic and statistical models, the data is modeled in the form of a closed-form
probability distribution, and the parameters of this model are learned. Thus, the key as-
sumption here is about the specific choice of the data distribution with which the modeling
is performed. For example, a Gaussian mixture model assumes that the data is the output of
a generative process in which each point belongs to one of k Gaussian clusters. The parame-
ters of these Gaussian distributions are learned with the use of an expectation-mazimization
(EM) algorithm on the observed data so that the probability (or likelihood) of the process
generating the data is as large as possible. A key output of this method is the membership
probability of the data points to the different clusters, as well as the density-based fit to
the modeled distribution. This provides a natural way to model the outliers, because data
points that have very low fit values may be considered outliers. In practice, the logarithms of
these fit values are used as the outlier scores because of the better propensity of the outliers
to appear as extreme values with the use of log-fits. As discussed earlier, an extreme-value

1.3. THE BASIC OUTLIER DETECTION MODELS 13

test may be applied to these fit values to identify the outliers.

A major advantage of probabilistic models is that they can be easily applied to virtually
any data type (or mixed data type), as long as an appropriate generative model is available
for each mixture component. For example, if the data is categorical, then a discrete Bernoulli
distribution may be used to model each component of the mixture. For a mixture of different
types of attributes, a product of the attribute-specific generative components may be used.
Since such models work with probabilities, the issues of data normalization are already
accounted for by the generative assumptions. Thus, probabilistic models provide a generic
EM-based framework, which is relatively easy to apply to any specific data type. This is
not necessarily the case with many other models.

A drawback of probabilistic models is that they try to fit the data to a particular kind
of distribution, which may sometimes not be appropriate. Furthermore, as the number of
model parameters increases, over-fitting becomes more common. In such cases, the outliers
may fit the underlying model of normal data. Many parametric models are also harder to
interpret in terms of intensional knowledge, especially when the parameters of the model
cannot be intuitively presented to an analyst in terms of underlying attributes. This can
defeat one of the important purposes of anomaly detection, which is to provide diagnostic
understanding of the abnormal data generative process. A detailed discussion of probabilistic
methods, including the EM algorithm, is provided in Chapter 2.

1.3.4 Linear Models

These methods model the data along lower-dimensional subspaces with the use of linear
correlations [467]. For example, in the case of Figure 1.4, the data is aligned along a 1-
dimensional line in a 2-dimensional space. The optimal line that passes through these points
is determined with the use of regression analysis. Typically, a least-squares fit is used to
determine the optimal lower-dimensional hyperplane. The distances of the data points from
this hyperplane are used to quantify the outlier scores because they quantify the deviations
from the model of normal data. Extreme-value analysis can be applied on these scores in
order to determine the outliers. For example, in the 2-dimensional example of Figure 1.4, a
linear model of the data points {(z;,y;),% € {1... N} in terms of two coefficients a and b
may be created as follows:

y=a-x;,+b+e¢ Vie{l...N} (1.4)

Here, ¢; represents the residual, which is the modeling error. The coefficients a and b need to
be learned from the data to minimize the least-squares error, which is denoted by Zfil €.
This is a convex non-linear programming problem whose solution can be obtained in closed
form. The squared residuals provide the outlier scores. One can use extreme-value analysis
to identify the unusually large deviations, which should be considered outliers.

The concept of dimensionality reduction and principal component analysis (PCA) is
quite similar [296], except that it uses a non-parametric approach in order to model the data
correlations. PCA can be derived through multivariate regression analysis by determining
the hyperplane that minimizes the least-squares error (i.e., distance) to the hyperplane. In
other words, it provides a subspace of lower dimensionality with the least reconstruction
error after projection. Outliers have large reconstruction errors because they do not conform
to the aggregate subspace patterns in the data. Therefore, the reconstruction errors may
be used as outlier scores. In addition, principal component analysis can be used for noise
correction [21], in which the attributes of data points are modified to reduce noise. Outlier

14 CHAPTER 1. AN INTRODUCTION TO OUTLIER ANALYSIS

4000 POINTS

FEATURE Y
~
T

3 ISOLATED POINTS

L L L L L L
0 1 2 3 4 5 6 7 8
FEATURE X

Figure 1.5: Small groups of anomalies can be a challenge to density-based methods

points are likely to be corrected more significantly than normal points. Methods like dimen-
sionality reduction are special cases of the generic methodology of matriz factorization; the
main advantage of the generic methodology is that it can even be used for incomplete data
sets.

Dimensionality reduction and regression modeling are particularly hard to interpret in
terms of the original attributes. This is because the subspace embedding is defined as a
linear combination of attributes with positive or negative coefficients. This cannot easily
be intuitively interpreted in terms specific properties of the data attributes. Nevertheless,
some forms of dimensionality reduction, such as nonnegative matrix factorization, are highly
interpretable. Dimensionality reduction, regression analysis, and matrix factorization meth-
ods for outlier detection are discussed in Chapter 3. Their natural nonlinear extensions such
as kernel PCA, kernel SVMs, and neural networks, are also discussed in the same chapter.
Furthermore, various forms of nonnegative matrix factorization are discussed in Chapters 8
and 12.

1.3.4.1 Spectral Models

Many of the matrix decomposition methods such as PCA are also used in the context of
graphs and networks. The main difference is in how the matrix is created for decomposition.
Some variations of these methods, which are used in certain types of data such as graphs
and networks, are also referred to as spectral models. Spectral methods are used commonly
for clustering graph data sets, and are often used in order to identify anomalous changes
in temporal sequences of graphs [280]. Spectral methods are closely related to matrix fac-
torization, which can also be used in such settings [551]. Such models will be discussed in
Chapters 3, 4, 5, and 12.

1.3.5 Proximity-Based Models

The idea in proximity-based methods is to model outliers as points that are isolated from the
remaining data on the basis of similarity or distance functions. Proximity-based methods are
among the most popular class of methods used in outlier analysis. Proximity-based methods
may be applied in one of three ways, which are clustering methods, density-based methods

1.3. THE BASIC OUTLIER DETECTION MODELS 15

and nearest-neighbor methods. In clustering and other density-based methods, the dense
regions in the data are found directly, and outliers are defined as those points that do not
lie in these dense regions. Alternatively, one might define outliers as points that are located
far away from the dense regions. The main difference between clustering and density-based
methods is that clustering methods segment the data points, whereas the density-based
methods such as histograms segment the data space. This is because the goal in the latter
case is to estimate the density of test points in the data space, which is best achieved by
space segmentation.

In nearest-neighbor methods [317, 456], the distance of each data point to its kth nearest
neighbor is reported as its outlier score. By selecting a value of k£ > 1, small groups of tightly-
knit points that are far away from the remaining data set can be identified and scored as
outliers. It is reasonable to treat such sets of data points as outliers, because small related
sets of points can often be generated by an anomalous process. For example, consider the
case illustrated in Figure 1.5, which contains a large cluster containing 4000 data points,
and a small set of isolated but three closely spaced and related anomalies. Such situations
are quite common, because anomalies caused by the same (rare) process may result in small
sets of data points that are almost identical. In this case, the points within an anomaly set
are close to one another, and cannot be distinguished on the basis of the 1-nearest neighbor
distance. Such anomalies are often hard to distinguish from noise by using certain types
of density-based algorithms that are not sensitive to the global behavior of the data. On
the other hand, the k-nearest neighbor approach can sometimes be effective. In the case
of Figure 1.5, such sets of related anomalies may be identified by using k£ > 3. The kth
nearest neighbor score provides an outlier score of the data set. This method can typically
be computationally expensive, because it is required to determine the kth nearest neighbor
of every point in the data set, which requires O(N?) operations for a data set containing
N points. However, in cases in which it is acceptable to report binary labels instead of
scores, many of these distance computations can be pruned because some points can be
shown to be non-outliers after a small number of distance computations. For example, if
after computing the distances of a small fraction of the points to a particular point ‘A’
the k-nearest neighbor distance of ‘A’ is lower than that of all the top-r outliers found
so far, then point ‘A’ is guaranteed to be a non-outlier. Therefore, no further distance
computations to point ‘A’ need to be performed. As a result, the binary version of outlier
detection often allows faster algorithms than the score-wise version of the problem. The
latter is always quadratically related to the number of points in computational complexity.
Quadratic computational complexity turns out to be surprisingly slow in real settings; it is
often difficult to use these methods even for data sets containing a few hundred-thousand
points, without leveraging some form of sampling.

In the case of clustering methods, the first step is to use a clustering algorithm in order
to determine the dense regions of the data set. In the second step, some measure of the fit
of the data points to the different clusters is used in order to compute an outlier score for
the data point. For example, in the case of a k-means clustering algorithm, the distance
of a data point to its nearest centroid may be used to measure its propensity to be an
outlier. One needs to be careful with the use of clustering methods, because the specific
data partitioning (and corresponding outlier scores) may vary significantly with the choice
of clustering methodology. Therefore, it is usually advisable to cluster the data multiple
times and average the scores obtained from the different runs [184, 406]. The results of such
an approach are often surprisingly robust.

Density-based methods like histograms divide the data space into small regions, and the
number of points in these regions are used to computed the outlier scores. Density-based

16 CHAPTER 1. AN INTRODUCTION TO OUTLIER ANALYSIS

methods provide a high level of interpretability, when the sparse regions in the data can
be presented in terms of combinations of the original attributes. For example, consider a
sparse region constructed on the following subsets of attributes:

Age < 20, Salary > 100,000

Clearly, these constraints define a segment of the data space that is highly interpretable
from a semantic point of view. It presents a clear description of why a data point should be
considered an outlier. Some other methods such as kernel density estimation do not partition
the data space, but are nevertheless focused on estimating the density of regions in the data
space by replacing space segmentation with smoother kernel functions. Proximity-based
methods for outlier detection are discussed in Chapter 4.

1.3.6 Information-Theoretic Models

Many of the aforementioned models for outlier analysis use various forms of data summa-
rization such as generative probabilistic model parameters, clusters, or lower-dimensional
hyperplanes of representation. These models implicitly generate a small summary of the
data, and the deviations from this summary are flagged as outliers. Information-theoretic
measures are also based on the same principle but in an indirect way. The idea is that out-
liers increase the minimum code length (i.e., minimum length of the summary) required to
describe a data set because they represent deviations from natural attempts to summarize
the data. For example, consider the following two strings:

ABABABABABABABABABABABABABABABABAB
ABABACABABABABABABABABABABABABABAB

The second string is of the same length as the first, and is different only at a single position
containing the unique symbol ‘C.” The first string can be described concisely as “AB 17
times.” However, the second string has a single position corresponding to the symbol ‘C.’
Therefore, the second string can no longer be described as concisely. In other words, the
presence of the symbol ‘C’ somewhere in the string increases its minimum description length.
It is also easy to see that this symbol corresponds to an outlier. Information-theoretic models
are closely related to conventional models, because both use a concise representation of the
data set as a baseline for comparison. For example, in the case of multidimensional data
sets, both types of models use the following concise descriptions:

e A probabilistic model describes a data set in terms of generative model parameters,
such as a mixture of Gaussian distributions or a mixture of exponential power distri-
butions [92].

e A clustering or density-based summarization model describes a data set in terms
of cluster descriptions, histograms, or other summarized representations, along with
maximum error tolerances [284].

e A PCA model or spectral model describes the data in terms of lower dimensional
subspaces of projection of multi-dimensional data or a condensed representation of a
network [519], which is also referred to as its latent representation.

e A frequent pattern mining method describes the data in terms of an underlying code
book of frequent patterns. These are among the most common methods used for
information-theoretic anomaly detection [42, 151, 497].

1.3. THE BASIC OUTLIER DETECTION MODELS 17

All these models represent the data approximately in terms of individual condensed compo-
nents representing aggregate trends. In general, outliers increase the length of the descrip-
tion in terms of these condensed components to achieve the same level of approximation.
For example, a data set with outliers will require a larger number of mixture parameters,
clusters, PCA-based subspace dimensionality, or frequent patterns in order to achieve the
same level of approzimation. Correspondingly, in information-theoretic methods, the key
idea is to construct a code book in which to represent the data, and outliers are defined as
points whose removal results in the largest decrease in description length [151], or the most
accurate summary representation in the same description length after removal [284]. The
term “code book” is rather loosely defined in outlier analysis and refers to the condensed
aggregate components of the data in terms of which the data is described. The actual con-
struction of the coding is often heuristic, and an effective choice is key to the success of the
approach. In general, the determination of the minimum-length coding is a computationally
intractable problem for a given data set, and therefore a variety of heuristic models (or code
books) may be used for representation purposes [42, 151, 284, 497]. In many cases, these
techniques can be related to conventional data summarization models for outlier analysis.
In some cases, the coding is not explicitly constructed, but measures such as the entropy
or Kolmogorov complexity are used as a surrogate in order to estimate the level of uneven-
ness of a specific segment of the data [352, 312]. Segments with greater unevenness may
be selectively explored to identify outliers. This represents a good use-case for information
theoretic models because it is algorithmically simpler to quantify coding complexity than
actually constructing the coding.

Conventional models look at this problem in a complementary way by directly defining
outliers as points that are expressed in the least precise way by (or deviations from) from a
fized compression (e.g., clustering or factorization). On the other hand, information-theoretic
models quantify the differential impact on compression size of removing an outlier point on
a compression of fixed error (i.e., aggregate deviation). The two are clearly closely related,
although the former is a more direct way of scoring points than the latter. Since information-
theoretic methods largely differ from conventional models in terms of how the measure
is defined, they often use similar methods as conventional techniques (e.g., probabilistic
models [92], frequent pattern mining [42, 497], histograms [284], or PCA [519]) to create the
coding representation. Therefore, most information-theoretic models cannot be considered a
separate family from conventional models, and they will be discussed at various places in this
book along with their conventional counterparts. It is noteworthy that the indirect approach
used by information-theoretic models to score points can sometimes blunt the scores because
of the impact of other points on the aggregate error. As a result, information-theoretic models
often do not outperform their conventional counterparts. The best use-cases, therefore, arise
is settings where quantifying the coding cost is algorithmically more convenient than directly
measuring the deviations.

1.3.7 High-Dimensional Outlier Detection

The high-dimensional case is particularly challenging for outlier detection. The reason for
this behavior is that many dimensions may be noisy and irrelevant for anomaly detection,
which might also increase the propensity for pairwise distances to become more similar. The
key point here is that irrelevant attributes have a dilution effect on the accuracy of distance
computations and therefore the resulting outlier scores might also be inaccurate. When using
distance-based algorithms to score outliers, one often observes the effect of weakly correlated
and irrelevant attributes in the concentration of distances. In high-dimensional space, the

18 CHAPTER 1. AN INTRODUCTION TO OUTLIER ANALYSIS

data becomes increasingly sparse, and all pairs of data points become almost equidistant
from one another [25, 263]. As a result, the outlier scores become less distinguishable from
one another.

In such cases, outliers are best emphasized in a lower-dimensional local subspace of rel-
evant attributes. This approach is referred to as subspace outlier detection [4], which is
an important class of algorithms in the field of outlier analysis. The assumption in sub-
space outlier detection is that outliers are often hidden in the unusual local behavior of
low-dimensional subspaces, and this deviant behavior is masked by full-dimensional analy-
sis. Therefore, it may often be fruitful to explicitly search for the subspaces in which the
anomalous behavior of points is best emphasized. This approach is a generalization of both
(full-dimensional) clustering and (full-data) regression analysis. It combines local data pat-
tern analysis with subspace analysis in order to mine the significant outliers. This can be a
huge challenge, because the simultaneous discovery of relevant data localities and subspaces
in high dimensionality can be computationally very difficult. It is easy to make mistakes in
selecting the “correct” subspace, and it has been suggested [31, 35] that such techniques
can be meaningfully used only by identifying multiple relevant subspaces and combining the
predictions from these different subspaces. This approach is closely related to the notion of
outlier ensembles [31, 35], which will be discussed in the next section and also in Chapter 6.

Subspace methods are useful for interpreting outliers, especially when the subspaces are
described in terms of the original attributes. In such cases, the outputs of the algorithms
provide specific combinations of attributes along with data locality that are relevant to the
anomalous characteristics. This type of interpretability is useful in cases where a small
number of explanatory attributes need to be identified from a high-dimensional data set.
Methods for high-dimensional outlier detection are discussed in Chapter 5.

1.4 Outlier Ensembles

In many data mining problems such as clustering and classification, a variety of meta-
algorithms are used in order to improve the robustness of the underlying solutions. Such
meta-algorithms combine the outputs of multiple algorithms and are referred to as en-
sembles. For example, common ensemble methods in classification include bagging, sub-
sampling, boosting and stacking [11, 33, 176]. Similarly, ensemble methods are often used
to improve the quality of the clustering [23]. Therefore, it is natural to ask whether such
meta-algorithms also exist for outlier detection. The answer is in the affirmative, although
the work on meta-algorithms for outlier detection is relatively recent as compared to other
problems like classification and clustering in which it is well-established. A position paper
that formalizes these issues may be found in [31] and a book on outlier ensembles may be
found in [35]. In recent years, significant theoretical and algorithmic advancements have
been made in the field of outlier ensembles [32]. This chapter will provide a broad overview
of the field of outlier ensembles, and a more detailed discussion is provided in Chapter 6.
There are two primary types of ensembles in outlier analysis:

e In sequential ensembles, a given algorithm or set of algorithms are applied sequentially,
so that future applications of the algorithms are influenced by previous applications,
in terms of either modifications of the base data for analysis or in terms of the specific
choices of the algorithms. The final result is either a weighted combination of, or the
final result of the last application of an outlier analysis algorithm. For example, in the
context of the classification problem, boosting methods may be considered examples
of sequential ensembles.

1.4. OUTLIER ENSEMBLES 19

Algorithm SequentialEnsemble(Data Set: D
Base Algorithms: A; ... A,)
begin
J=1
repeat
Pick an algorithm A; based on results from
past executions;
Create a new data set f;(D) from D based
on results from past executions;
Apply A; to f;(D);
J=J+1
until(termination);
report outliers based on combinations of results
from previous executions;
end

Figure 1.6: Sequential ensemble framework

e In independent ensembles, different algorithms, or different instantiations of the same
algorithm are applied to either the complete data or portions of the data. The choices
made about the data and algorithms applied are independent of the results obtained
from these different algorithmic executions. The results from the different algorithm
executions are combined together in order to obtain more robust outliers.

At a fundamental level, outlier ensembles are not very different from classification ensembles
in terms of the underlying theoretical foundations [32]. Even though outlier detection is an
unsupervised problem, the basic bias-variance theory from classification can be adapted to
outlier detection by treating the underlying labels as unobserved [32]. As a result, many
natural ensemble methods such as bagging and subsampling can be generalized easily to
outlier detection with minor variations.

1.4.1 Sequential Ensembles

In sequential-ensembles, one or more outlier detection algorithms are applied sequentially to
either all or portions of the data. The core principle of the approach is that each application
of the algorithm enables a more refined execution with either a modified algorithm or data
set. Thus, depending on the approach, either the data set or the algorithm may be changed
in sequential executions. If desired, this approach can either be applied for a fixed number of
times or executed to convergence. The broad framework of a sequential-ensemble algorithm
is provided in Figure 1.6.

In each iteration, a successively refined algorithm is used on refined data based on
results from previous executions. The function f;(-) is used to create a refinement of the
data, which could correspond to data subset selection, attribute-subset selection, or generic
data transformation methods. The description above is provided in a very general form,
and many special cases can be instantiated from this framework. For example, in practice,
only a single algorithm may be used on successive modifications of the data, as data is
refined over time. The sequential ensemble may be applied for a fixed number of iterations

20 CHAPTER 1. AN INTRODUCTION TO OUTLIER ANALYSIS

Algorithm IndependentEnsemble(Data Set: D
Base Algorithms: A; ... A,)
begin
J=1
repeat
Pick an algorithm Aj;
Create a new data set f;(D) from D;
Apply A; to f;(D);
J=J+1L
until(termination);
report outliers based on combinations of results
from previous executions;
end

Figure 1.7: Independent ensemble framework

or to convergence. The broad principle of sequential ensembles is that a greater knowledge
of data with successive algorithmic execution helps focus on techniques and portions of the
data that can provide fresh insights.

Sequential ensembles have not been sufficiently explored in the outlier analysis literature
as general purpose meta-algorithms. However, many specific techniques in the outlier liter-
ature use methods that can be recognized as special cases of sequential ensembles. A classic
example of this is the use of two-phase algorithms for building a model of the normal data.
In the first-phase, an outlier detection algorithm is used in order to remove the obvious out-
liers. In the second phase, a more robust normal model is constructed after removing these
obvious outliers. Thus, the outlier analysis in the second stage is more accurate because
many of the training points that contaminate the model of normal data have been removed.
Such approaches are commonly used for cluster-based outlier analysis (for constructing more
robust clusters in later stages) [70], or for more robust histogram construction and density
estimation (see Chapter 4).

1.4.2 Independent Ensembles

In independent ensembles, different instantiations of the algorithm or different portions of
the data are used for outlier analysis. Alternatively, the same algorithm may be applied with
a different initialization, parameter set, or random seed. The results from these different
algorithm executions can be combined in order to obtain a more robust outlier score. Such
algorithms comprise the vast majority of outlier ensemble methods in use today. A general-
purpose description of independent-ensemble algorithms is provided in the pseudo-code
description of Figure 1.7.

The broad principle of independent ensembles is that different algorithms might per-
form better on different parts of the data; therefore, a combination of the results from these
algorithms might provide more robust results than any of the individual ensemble com-
ponents. The resulting output is therefore no longer as dependent on the specific artifacts
of a particular algorithm or data set. Independent ensembles are used frequently for high-
dimensional outlier detection, because they enable the exploration of different subspaces of
the data in which different types of deviants may be found. In fact, the area of subspace

1.5. THE BASIC DATA TYPES FOR ANALYSIS 21

outlier detection is deeply interconnected with outlier ensemble analysis (see Chapter 5).

There is a significant number of different ways in which different algorithms and training
data sets may be leveraged for model combination. For example, the methods in [31, 32,
344, 367] sample subspaces from the underlying data in order to independently score outliers
from each of these executions. Then, the scores from these different executions are unified
into a single point-specific value. Similarly, methods such as bagging and subsampling,
which combine the results from different training data sets in classification, have also been
generalized to outlier detection [31, 32]. In some cases, randomized models are constructed
by making randomized choices within an outlier scoring algorithm [368]. These methods
will be discussed in Chapters 5 and 6.

1.5 The Basic Data Types for Analysis

Most of our aforementioned discussion is focused on multidimensional numerical data. Fur-
thermore, it is assumed that the data records are independent of one another. However,
in practice, the underlying data may be more complex both in attribute type and point-
to-point dependence. Some examples of such real-world data types are discussed in this
section.

1.5.1 Categorical, Text, and Mixed Attributes

Many data sets in real applications may contain categorical attributes that take on dis-
crete unordered values. For example, demographic data might contain attributes such as
race, gender, or ZIP code. Such attribute values are not ordered, and therefore require dif-
ferent analytical techniques. Mixed attribute data contain both numerical and categorical
attributes. Most of the existing models can be extended to this case. In many cases, the
major challenge is to construct a distance (or similarity) function that remains semantically
meaningful for the case of discrete data.

Regression-based models can be used in a limited way over discrete attribute values,
when the number of possible values of an attribute is not too large. The typical methodology
is to convert the discrete data to binary data by creating one attribute for each categorical
value. Regression models such as principal component analysis may then be applied to
this binary data set. Such methods can be more easily extended to text, in which there is
an inherent ordering among word frequencies. In such cases, the correlations among word
occurrences can be used to create regression models. In fact, some of the most successful
models for text de-noising are based on latent semantic analysis (LSA), which is a form of
linear regression analysis [162]. Other common methods for text and categorical data include
clustering [29], proximity-based methods [622], probabilistic models [578], and methods
based on frequent pattern mining [42, 253, 497]. Methods for outlier detection in categorical,
text, and mixed attribute data sets are discussed in Chapter 8.

1.5.2 When the Data Values have Dependencies

Most of the aforementioned discussion in this chapter is about the common multidimensional
scenario, where it is assumed that the data records can be treated independently of one
another. In practice, the different data values may be related to each other temporally,
spatially, or through explicit network relationship links between the data items. The presence
of such dependencies greatly changes the anomaly detection process even at the definition

22 CHAPTER 1. AN INTRODUCTION TO OUTLIER ANALYSIS

TIME-SERIES VALUE

L L L i L L
0 2 4 6 8 10 12 14 16 18
TIME STAMP

Figure 1.8: Example of Time Series

level. In such cases, the expected values of data items are influenced by their contextual
dependencies, and therefore outliers are defined on the basis of such contextually modeled
deviations. When a single data item (e.g., value from a time series) is declared as an anomaly
because of its relationship to its related data items, it is referred to as a contextual outlier
or anomaly. This is because such an outlier can only be understood in the context of its
relationship with items in the temporal neighborhood. Such outliers are also sometimes
referred to as conditional anomalies [503]. For example, a sudden spike in a time series is
a contextual anomaly because it is very different from the values of its most recent time
stamps; the key is to understand is that the most recent time stamps define the expected
value of the series. Deviations from expected values represent outliers.

When a set of data items is declared anomalous as a group of points, it is referred to
as a collective anomaly or outlier. For example, an unusual and rapid oscillation over time
for a stock ticker value may be considered a collective anomaly, and it includes all the data
items in the oscillation. Virtually, all anomalies in dependency-oriented data are contextual
or collective anomalies, because they compute ezpected values based on relationships with
adjacent data points in order to determine unexpected patterns. Furthermore, in such data
sets, there are usually multiple ways to model anomalies, depending on what an analyst
might be looking for. Some examples of such data domains are presented in this section.

1.5.2.1 Times-Series Data and Data Streams

Time series contains a set of values that are typically generated by continuous measurement
over time. Therefore, the values in consecutive time stamps do not change very significantly,
or change in a smooth way. In such cases, sudden changes in the underlying data records can
be considered anomalous events. Therefore, the discovery of anomalous points in time series
is closely related to the problem of anomalous event detection, and such events are often
manifested as either contextual or collective anomalies over related time stamps [9, 19, 315].
The events are often created by sudden changes in the underlying system and may be of
considerable interest to an analyst. For example, consider the following time series of values
over consecutive time-stamps:

3,2, 3,2, 3, 87, 86, 85 87, 89, 86, 3, 84, 91, 86, 91, 88

The time series is illustrated in Figure 1.8. It is evident that there is a sudden change in
the data value at time-stamp 6 from 3 to 87. This corresponds to an outlier. Subsequently,

1.5. THE BASIC DATA TYPES FOR ANALYSIS 23

the data stabilizes at this value, and this becomes the new normal. At time-stamp 12, the
data value again dips to 3. Even though this data value was encountered before, it is still
considered an outlier because of the sudden change in the consecutive data values. Thus,
it is critical to understand that in this case, treating the data values as independent of one
another is not helpful for anomaly detection, because the data values are highly influenced
by the adjacent values of the data points. In other words, temporal contezt is important.
Thus, the problem of outlier detection in time-series data is highly related to the problem of
change detection because the normal models of data values are highly governed by adjacency
in temporal ordering. When completely new data values are encountered, they are referred
to as novelties [391, 392, 388], although outlier detection is relevant to any form of abrupt
change, rather than only new data values.

It should be emphasized that change analysis and outlier detection (in temporal data)
are closely related problems, but they are not necessarily identical. The change in a temporal
data set could occur in one of two possible ways:

e The values and trends in the data stream change slowly over time, a phenomenon
that is referred to as concept drift [390, 10]. In such cases, the concept drift can only
be detected by careful analysis over a longer period of time, and is not immediately
obvious in many circumstances.

e The values and trends in the data stream change abruptly, so as to immediately arouse
suspicion that the underlying data generation mechanism has somehow changed fun-
damentally.

Of the two scenarios, only the second one can be used to identify outliers. It is also easy
to see the parallels between the second scenario and Hawkins’s definition of outliers [249],
which was introduced at the very beginning of this chapter.

A common challenge in such scenarios is to perform the outlier detection in real time, as
new data values arrive. Many scenarios of change analysis and anomaly detection in tem-
poral data are too tightly integrated to be treated separately. In such settings, solutions for
one can be used for the other and vice versa. On the other hand, the modeling formulations
of anomaly detection in temporal data are very diverse, not all of which are directly related
to change detection. Usually, online analysis is suited to change detection, whereas offline
analysis may explore other unusual aspects of the data. Some examples are as follows:

e When the data is in the form of a time series (e.g., sensor data) large changes in trends
may correspond to anomalies. These can be discovered as deviations from forecasted
values using window-based analysis. In some cases, it may be desired to determine
time-series subsequences of unusual shapes rather than change points in the data.

e For multidimensional data streams, changes in the aggregate distribution of the
streaming data may correspond to unusual events. For example, network intrusion
events may cause aggregate change points in a network stream. On the other hand,
individual point novelties may or may not correspond to aggregate change points.
The latter case is similar to multidimensional anomaly detection with an efficiency
constraint for the streaming scenario.

Methods for anomaly detection in time-series data and multidimensional data streams are
discussed in Chapter 9.

24 CHAPTER 1. AN INTRODUCTION TO OUTLIER ANALYSIS

1.5.2.2 Discrete Sequences

Many discrete sequence-based applications such as intrusion-detection and fraud-detection
are clearly temporal in nature. This scenario can be considered a categorical or discrete
analog of time-series data in which individual positions contain categorical (symbolic) val-
ues. Discrete sequences may not necessarily be temporal in nature, but may be based on
their relative placement with respect to one another. An example is the case of biological
data in which the sequences are defined by their relative placement.

As in the case of autoregressive models of continuous data, it is possible to use (typi-
cally Markovian) prediction-based techniques to forecast the value of a single position in the
sequence. Deviations from forecasted values are identified as contertual outliers. It is often
desirable to perform the prediction in real time in these settings. In other cases, anoma-
lous events can be identified only by variations from the normal patterns exhibited by the
subsequences over multiple time stamps. This is analogous to the problem of unusual shape
detection in time-series data, and it represents a set of collective outliers.

Therefore, discrete sequences are analogous to continuous sequences, except that the cat-
egorical values in the individual positions necessitate the use of different similarity functions,
representation data structures, and predictive techniques. For example, discrete sequence
forecasting requires (more complex) Markovian models as opposed to (simpler) autore-
gressive techniques. The problem formulations in the two cases are, however, similar at a
conceptual level. The specific techniques used are different because numerical time-series
values are ordered and comparable across a continuous spectrum, whereas discrete values
are not. As a result of these differences, the case of discrete sequences has been addressed
in a different chapter from time-series data.

Discrete data are common in many real applications. Most biological sequences are dis-
crete, and therefore the value of each position is drawn from a set of categorical possibilities.
Similarly, host-based intrusion applications typically lead to discrete data, because numer-
ous diagnostic events are drawn from a discrete set of instances [126]. Methods for anomaly
detection in discrete sequences are discussed in Chapter 10.

1.5.2.3 Spatial Data

In spatial data, many non-spatial attributes (e.g., temperature, pressure, image pixel color
intensity) are measured at spatial locations. Unusual local changes in such values are re-
ported as outliers. It should be pointed out that outlier detection in temporal data shares
some resemblance to that in spatial data [523]. Both typically require the attribute of in-
terest to exhibit a certain level of continuity. For example, consider the measurement of
the temperature in which the measurement could be associated with a time-stamp and
spatial coordinates. Just as it is expected that temperatures at consecutive time-stamps do
not vary too much (temporal continuity), it is also expected that temperatures at spatially
close locations do not vary too much (spatial continuity). In fact, such unusual spatial varia-
tions in sea-surface temperatures and pressures [523] are used in order to identify significant
and anomalous spatiotemporal events in the underlying data (e.g., formation of cyclones).
Spatiotemporal data is a generalization of both spatial and temporal data, and the meth-
ods used in either domain can often be generalized to such scenarios. Methods for finding
outliers in spatial and spatiotemporal data are discussed in Chapter 11.

1.6. SUPERVISED OUTLIER DETECTION 25

(a) Node Outlier (b) Edge Outlier

Figure 1.9: Examples of Node and Edge Outliers

1.5.2.4 Network and Graph Data

In network or graph data, the data values may correspond to nodes in the network, and
the relationships among the data values may correspond to the edges in the network. In
such cases, outliers may be modeled in different ways depending on the irregularity of
either the nodes in terms of their relationships to other nodes, or the edges themselves.
For example, a node that shows irregularity in its structure within its locality may be
considered an outlier [41]. Similarly, an edge that connects disparate communities of nodes
may be considered a relationship or community outlier [17, 214]. In Figure 1.9, two examples
of outliers in networks are illustrated. Figure 1.9(a) illustrates an example of a node outlier
because the node 6 has an unusual locality structure that is significantly different from other
nodes. On the other hand, the edge (2, 5) in Figure 1.9(b) may be considered a relationship
outlier or community outlier, because it connects two distinct communities. Thus, there is
greater complexity and flexibility in the definitions of outliers in complex data like graphs.
There is also no unique way of defining the outliers and it is heavily dependent on the
application domain at hand. In general, the more complex the data is, the more the analyst
has to make prior inferences of what is considered normal for modeling purposes.

It is also possible to combine different types of dependencies for outlier modeling. For ex-
ample, graphs may be temporal in nature. In such a case, the data may have both structural
and temporal dependencies that change and influence each other over time [17]. Therefore,
outliers may be defined in terms of significant changes in the underlying network commu-
nity or distance structure. Such models combine network analysis and change detection to
detect structural and temporal outliers. A detailed discussion of methods for temporal and
non-temporal outlier detection in graphs is provided in Chapter 12. Relevant surveys are
available in [14, 43, 457].

1.6 Supervised Outlier Detection

In many scenarios, previous examples of outliers may be available. A subset of the data may
be labeled as anomalies, whereas the remaining data may be considered normal. In such
cases, the anomaly identification process is referred to as supervised outlier detection, be-
cause labels are used in order to train a model that can determine specific types of anomalies.
As a result, supervised models often provide very different results from the unsupervised
case. For example, consider the following time-series:

3,2,3,2, 387,22 3, 3,3, 84, 91, 86, 91, 81

26 CHAPTER 1. AN INTRODUCTION TO OUTLIER ANALYSIS

In this case, sudden changes in the data values (at 87 and 84) may be considered anomalies
in the unsupervised scenario. However, in an application such as credit-card transaction
levels, previous labeled examples of time-series may suggest that high consecutive values of
the data should be considered anomalous. In such cases, the first occurrence of 87 should
not be considered anomalous, whereas the occurrence of 84 along with its following values
should be considered (collectively) anomalous.

As a general rule, one should always use supervision when labels are available because of
its ability to discover application-specific anomalies of interest. Supervised outlier detection
is a (difficult) special case of the classification problem. The main characteristic of this
problem is that the labels are extremely unbalanced in terms of relative presence [132].
Since anomalies are far less common than normal points, it is possible for off-the-shelf
classifiers to predict all test points as normal points and still achieve excellent accuracy.
However, such results are not useful from a practical point of view. Therefore, the classifier
is tuned, so that errors in classification of the anomalous class are penalized more heavily
than the errors in classification of the majority class. The idea is that it is better to predict a
negative class as an anomaly (false positive), rather than miss a true outlier (false negative).
This leads to different trade-offs between false positives and false negatives than in other
classification applications. These methods are referred to as cost-sensitive learning, because
differential error costs are applied to different classes to regulate these trade-offs.

The supervised setting also supports several other variations of the classification problem
that are quite challenging:

e A limited number of instances of the positive (outlier) class may be available, whereas
the “normal” examples may contain an unknown proportion of outliers [183]. This is
referred to as the Positive-Unlabeled Classification (PUC) problem in machine learn-
ing. This variation is still quite similar to the fully supervised rare-class scenario,
except that the classification model needs to be more cognizant of the contaminants
in the negative (unlabeled) class.

e Only instances of a subset of the normal and anomalous classes may be available, but
some of the anomalous classes may be missing from the training data [388, 389, 538].
Such situations are quite common in scenarios such as intrusion detection in which
some intrusions may be known, but other new types of intrusions are continually
discovered over time. This is a semi-supervised setting for outlier detection. A combi-
nation of supervised and unsupervised methods may need to be used in such cases.

e In active learning, the problem of label acquisition is paired with the learning pro-
cess [431]. The main assumption is that it is expensive to acquire examples of outliers,
and therefore it is important to select the correct examples to label in order to perform
accurate classification with the least number of labels.

Supervised methods for anomaly detection are discussed in Chapter 7.

1.7 Outlier Evaluation Techniques

A key question arises as to how the effectiveness of an outlier detection algorithm should
be evaluated. Unfortunately, this is often a difficult task, because outliers, by definition, are
rare. This means that the ground-truth labeling of data points as outliers or non-outliers
is often not available. This is especially true for unsupervised algorithms, because if the

1.7. OUTLIER EVALUATION TECHNIQUES 27

ground-truth were indeed available, it could have been used to create a more effective su-
pervised algorithm. In the unsupervised scenario (without ground-truth), it is often difficult
to judge the effectiveness of the underlying algorithms in a rigorous way. Therefore, much
of the research literature uses case studies to provide an intuitive and qualitative evaluation
of the underlying outliers in unsupervised scenarios.

In other unsupervised problems like data clustering, a common approach is to use inter-
nal validity measures, in which a model of “goodness” is used to measure the effectiveness
of the algorithm. For example, a common measure of goodness in data clustering is the
mean-squared radius of a cluster. The main problem with such measures is that they only
provide an idea of how well the model of “goodness” matches the model of learning. After
all, there is no way of knowing the “correct” model of goodness in unsupervised problems;
the paradox is that if we knew this correct model then we should use it in the algorithm
rather than for evaluation. In fact, it is relatively easy to game such internal validity models
by choosing an algorithm that is related to the model of goodness; this problem is well-
known in the clustering domain [33]. This is also referred to as the problem of over-fitting
in internal evaluation. In outlier detection, this problem is far more severe because a small
number of changes in the labels of the outliers can drastically affect the performance. For
example, a distance-based internal measure would favor a distance-based algorithm over a
linear (e.g., PCA-based) technique. Conversely, a linear model of internal validity would
favor a PCA-based technique over a distance-based algorithm. Therefore, internal validity
measures are rarely used for outlier detection, which seems to be a wiser approach than has
been adopted by the data-clustering community.

In outlier detection, a more reasonable (albeit imperfect) approach is to use external va-
lidity measures. In some cases, the data sets may be adapted from imbalanced classification
problems, and the rare labels may be used as surrogates for the ground-truth outliers. In
such cases, a natural question arises as to how the ground-truth can be used to evaluate
effectiveness. Most outlier-detection algorithms output an outlier score, and a threshold
on this score is used to convert the scores into outlier labels. If the threshold is selected
too restrictively to minimize the number of declared outliers, then the algorithm will miss
true outlier points (false negatives). On the other hand, if the algorithm declares too many
data points as outliers, then it will lead to too many false positives. This trade-off can
be measured in terms of precision and recall, which are commonly used for measuring the
effectiveness of set-based retrieval.

For any given threshold ¢ on the outlier score, the declared outlier set is denoted by
S(t). As t changes, the size of S(t) changes as well. G represent the true set (ground-truth
set) of outliers in the data set. Then, for any given threshold ¢, the precision is defined as
the percentage of reported outliers that truly turn out to be outliers.

[S(t) NG

Precision(t) = 100 -
) 500

(1.5)
The value of Precision(t) is not necessarily monotonic in ¢, because both the numerator

and denominator may change with ¢ differently. The recall is correspondingly defined as the
percentage of ground-truth outliers that have been reported as outliers at threshold t.

1S(t) NG|

Recall(t) = 100 -
(t) G

(1.6)

By varying the parameter ¢, it is possible to plot a curve between the precision and the recall.
This is referred to as the Precision-Recall curve. This curve is not necessarily monotonic.

28

1001

90

80

70F

60

PRECISION

a0

30-

201

501

CHAPTER 1. AN INTRODUCTION TO OUTLIER ANALYSIS

ALGORITHM A

—~ = — ~ ALGORITHM B

— —-— RANDOM ALGORITHM
— —O— - PERFECT ORACLE

TRUE POSITIVE RATE (RECALL)

ALGORITHM A

— — — — ALGORITHM B
——-— RANDOM ALGORITHM
~ -O- - PERFECT ORACLE

50
RECALL

L
30

40 50 60
FALSE POSITIVE RATE

L L L |
70 80 90 100

(a) Precision-recall

(b) Receiver operating characteristic

Figure 1.10: Precision-recall and receiver operating characteristic curves

I Algorithm | Rank of Ground-truth Outliers ||
Algorithm A 1,5, 8,15, 20
Algorithm B 3,7,11, 13, 15
Random Algorithm 17, 36, 45, 59, 66
Perfect Oracle 1,2,3,4,5

Table 1.2: Rank of ground-truth outliers can be used to construct precision-recall curves

For more effective algorithms, high values of precision may often correspond to low values
of recall and vice-versa. The precision-recall (PR) curve can also be generated by using
thresholds on the rank of the data points, when sorted by outlier score. In the absence of
ties in the outlier scores, a rank-based and score-based PR curve would be identical.

A Receiver Operating Characteristic Curve (ROC) is closely related to a Precision-
Recall curve, but is sometimes visually more intuitive. In this case, the True Positive Rate
is graphed against the False Positive Rate. The true positive rate TPR(t) is defined in
the same way as the recall. The false positive rate F'PR(t) is the percentage of the falsely
reported positives out of the ground-truth negatives. In other words, the false-positive rate
is a kind of “bad” recall, which reports the percentage of the negatives that are wrongly
reported as outliers. Therefore, for a data set D with ground truth positives G, these
definitions are as follows:

TPR(t) = Recall(t) = 100 - |S(t|)GmG| (1.7)
_ _ |S(t) — G
FPR(t) = BadRecall(t) = 100 - D-q (1.8)

Therefore, the ROC curve plots the “bad” recall (FPR(t)) on the X-axis, and the “good”
recall (TPR(t)) on the Y-axis. Note that both good and bad recall increase monotonically
with the more relaxed values of the threshold ¢ at which more outliers are reported. There-
fore, the end points of the ROC curve are always at (0,0) and (100,100), and a random
method is expected to exhibit performance along the diagonal line connecting these points.
The lift obtained above this diagonal line provides an idea of the additional accuracy of

1.7. OUTLIER EVALUATION TECHNIQUES 29

the approach over a random method. The ROC curve is simply a different way to charac-
terize the trade-offs than the precision-recall curve, although it has the advantage of being
monotonic and more easily interpretable in terms of its lift characteristics.

In order to illustrate the insights gained from these different graphical representations,
consider an example of a data set with 100 points, from which five points are outliers. Two
algorithms A and B are applied to this data set, which rank all data points from 1 to 100,
with a lower rank representing a greater propensity to be an outlier. Thus, the precision and
recall values can be generated by determining the ranks of the 5 ground truth outlier points.
In Table 1.2, some hypothetical ranks for the 5 ground truth outliers have been illustrated
for the different algorithms. In addition, the ground truth ranks for a random algorithm have
been indicated. This algorithm outputs a random outlier score for each point. Similarly, the
ranks for a “perfect oracle” algorithm which ranks the correct top 5 points as outlier have
also been illustrated in the table. The corresponding PR curve for this hypothetical output
of outlier scores are illustrated in Figure 1.10(a). Other than the oracle algorithm, all the
trade-off curves are non-monotonic. This is because the discovery of a new outlier at any
particular relaxation in rank threshold results in a spike in the precision, which becomes
less pronounced at higher values of the recall. The corresponding ROC curve is illustrated
in Figure 1.10(b). Unlike the PR curve, this curve is clearly monotonic.

What do these curves really tell us? For cases in which one curve strictly dominates
another the relative superiority between the two algorithms is unambiguous. For example,
it is immediately evident that the oracle algorithm is superior to all algorithms, and the
random algorithm is inferior to all the other algorithms. On the other hand, the algorithms
A and B exhibit better performance at different parts of the ROC curve. In such cases,
it is hard to say that one algorithm is strictly superior. From Table 1.2, it is clear that
Algorithm A ranks three of the correct ground-truth outliers very highly, but the remaining
two outliers are ranked poorly. In the case of Algorithm B, the highest ranked outliers are
not as well ranked as the case of Algorithm A, although all five outliers are determined
much earlier in terms of rank threshold. Correspondingly, Algorithm A dominates on the
earlier part of the PR (or ROC) curve, whereas Algorithm B dominates on the later part.
Some practitioners use the area under the ROC curve as a proxy for the overall effectiveness
of the algorithm. A trapezoidal rule is used to compute the area, wherein the staircase-like
ROC curve is replaced with a more convex approximation.

1.7.1 Interpreting the ROC AUC
The ROC AUC has the following simple probabilistic interpretation [246]:

Theorem 1.7.1 Given a ranking or scoring of a set of points in order of their propensity
to be outliers (with higher ranks/scores indicating greater outlierness), the ROC AUC is
equal to the probability that a randomly selected outlier-inlier pair is ranked correctly (or
scored in the correct order).

In other words, one can also define the ROC AUC by computing the following mean over
all outlier-inlier pairs in the data set:

1 X, ranked/scored higher than X;
ROC AUC = MEAN%- x7ep_ { 05 X; ranked/scored equal to X (1.9)
0 X, ranked/scored lower than X

A nice characteristic of this definition is that it is easy to intuitively understand why a
random algorithm would provide an AUC of around 0.5. This definition is also related to

30 CHAPTER 1. AN INTRODUCTION TO OUTLIER ANALYSIS

the Kendall rank-correlation coefficient, in which a similar computation is performed over all
pairs of objects rather than only outlier-inlier pairs, and the range? of the reward function
is drawn from {—1,0,+1} rather than {0,0.5,1}.

A measure, such as the AUC, should be used very carefully, because all parts of the
ROC curve may not be equally important for different applications. This is because the
initial part of the ROC curve is usually far more important. For example, for a data set
containing 1000 points, it makes little difference whether an outlier data point is ranked
at the 501th or 601th position. On the other hand, it makes a lot of difference whether
an outlier data point is ranked at the 1st or 101th position. The AUC of the ROC makes
little distinction between these two types of errors. In this sense, measures like precision
can sometimes be more realistic in many settings. Other top-heavy measures such as the
normalized discounted cumulative gain (NDCG) can also be adapted from the information
retrieval and recommendation literature to outlier detection [34]. This measure computes
the utility of a ranked list by given greater credit for outliers that are ranked at the top of
the list.

1.7.2 Common Mistakes in Benchmarking

A common mistake made during the benchmarking of outlier detection algorithms occurs
in cases where the algorithm is dependent on one or more user-defined parameters. For
example, a k-nearest neighbor outlier detector scores a data point based on its k-nearest
neighbor distance, where k is a user-defined parameter. It is common to run the algorithm
repeatedly in order to select the best parameter at which the ROC AUC is optimized. Such
an approach is not acceptable in outlier detection because one has effectively used knowledge
of the outlier labels in selecting the parameters. In other words, the algorithm is no longer
unsupervised. In problems like outlier detection, the only proper way to benchmark between
a pair of algorithms is to run both over a “reasonable” range of parameters and compare
the two algorithms using some central estimator of the performance over the resulting runs.
For example, one can compare the median AUC performance or boz-plot performance® of
the two algorithms over the various parameter choices. Furthermore, different detectors
might require the identification of a completely different range of parameters, which creates
further challenges for comparison purposes. For example, a one-class support-vector machine
might have a completely different choice of parameters than a nearest-neighbor detector,
which further complicates a proper understanding of their relative performance. Unlike
supervised settings, in which cross-validation is possible for selecting an approximately
optimum parameter value for each classifier, the reasonable range for each outlier detector
is often set on the basis of simple meta-characteristics of the data set such as its size and
dimensionality. Clearly, these choices require some understanding and experience on the
part of the analyst with various algorithms. There is only limited guidance available in the
research literature on proper parameter choices for various algorithms.

A natural question arises as to whether one can use the best choice of parameters for each
of the candidate algorithms to compare them. After all, such an approach does not seem
to favor any particular algorithm over another since all algorithms are seeded with similar

2In the case of the Kendall rank-correlation coefficient, agreements are rewarded with +1, whereas
disagreements are penalized with —1. Neutrals are credited values of 0. An outlier pair or an inlier pair
would always belong to the neutral category. As a result, the absolute magnitude of the Kendall coefficient
is more sensitive to the proportion of outliers in the data.

3See Figure 6.1 of Chapter 6 for an example. Box-plots are formally introduced in section 2.2.2.3 of
Chapter 2.

1.8. CONCLUSIONS AND SUMMARY 31

knowledge. There are two problematic issues in doing so. First, the best choice of parameters
cannot be known in unsupervised problems and therefore the results do not reflect the
experience of an analyst in real-world settings. Second, such an evaluation will favor the
more unstable algorithm, which is prone to overfitting into specific parameter choices. This
will provide a skewed view of the algorithm to the analyst if the stable algorithm performs
better than the unstable algorithm most of the time but the unstable algorithm performs
extremely well at very specific parameter choices. After all, in an unsupervised setting, the
likelihood of being correctly able to guess such parameter choices is similar to stumbling
over a needle in a haystack. A second way of avoiding parametrization bias in comparing
a pair of detectors [32] is to create an ensemble average of the execution of the algorithm
over different settings, and compare the ensemble AUC of the different detectors. This
truly provides an idea of the relative performance of the best possible avatars of various
algorithms. At the end of the day, comparing two algorithms is somewhat of an art-form
in the unsupervised setting, and one must rely at least a little on the experience and good
judgement of the analyst in making proper experimental design choices.

1.8 Conclusions and Summary

The problem of outlier detection finds applications in numerous domains, where it is de-
sirable to determine interesting and unusual events in the underlying generating process.
The core of all outlier detection methods is the creation of a probabilistic, statistical or
algorithmic model that characterizes the normal data. The deviations from this model are
used to identify the outliers. A good domain-specific knowledge of the underlying data is
often crucial designing simple and accurate models that do not overfit the underlying data.
The problem of outlier detection becomes especially challenging, when significant relation-
ships exist among the different data points. This is the case for time-series and network
data in which the patterns in the relationships among the data points (whether temporal or
structural) play the key role in defining the outliers. Outlier analysis has tremendous scope
for further research, especially in the area of structural and temporal analysis.

1.9 Bibliographic Survey

A number of books and surveys have been written on the problem of outlier analysis. The
classic books [74, 249, 467] in this area have mostly been written from the perspective
of the statistics community. Most of these books were written before the wider adoption
of database technology, and are therefore not written from a computational perspective.
More recently, this problem has been studied quite extensively by the computer science
community. These works consider practical aspects of outlier detection, corresponding to
the cases where the data may be very large, or may have very high dimensionality. Numerous
surveys have also been written that discuss the concept of outliers from different points of
view, methodologies, or data types [38, 77, 125, 126, 313, 388, 389]. These surveys study
outlier detection from different points of view such as the neural network setting [388, 389]
or the one-class setting [313]. Among these, the survey by Chandola et al. [125] is the
most recent and arguably the most comprehensive. This excellent review covers outlier
detection quite broadly from the perspective of multiple communities. Detailed experimental
comparisons of various outlier detection algorithms may be found in [35, 114, 184, 221, 419].

The basic models discussed in this chapter have also been researched extensively, and
have been studied widely in the literature. Details of these methods (along with the corre-

32 CHAPTER 1. AN INTRODUCTION TO OUTLIER ANALYSIS

sponding bibliographic notes) will be provided in later chapters. Here, only the most im-
portant works in each area are covered. The key statistical techniques on regression-based
modeling are covered in [467]. The Z-value test discussed in section 1.2 is used commonly
in the statistical literature, and many variants for limited sample sizes such as the Grubb’s
test [225] and ¢-value test are also available. The basic EM-algorithm for unsupervised mod-
eling of data sets was first proposed in [164] and leveraged for outlier detection in [578].
The non-parametric technique of principal component analysis (PCA) discussed in section
1.2 is described well in [296]. The core technique of PCA was extended to text (with some
minor variations) as Latent Semantic Indexing [162]. A variety of distance-based methods
for outlier detection are proposed in [317, 456, 533], and density-based methods for out-
lier detection were proposed in [96]. Methods for interpreting distance-based outliers were
first proposed in [318]. A variety of information-theoretic methods for outlier detection are
discussed in [42, 57, 92, 122, 151, 256, 257, 352, 497].

The issues of poor behavior of high-dimensional applications (such as clustering and
nearest-neighbor search) have been observed in several prior works in the literature [5, 7,
8, 25, 263]. The problem of high-dimensional outlier detection was first proposed in [4].
Subspace approaches for outlier detection were proposed in this paper, and a number of
other recent methods have followed a similar line of work [308, 327, 402, 403, 404, 406, 604,
605, 606, 607, 619].

Outliers have been studied extensively in the context of different data domains. While
numeric data is the most commonly studied case, numerous methods have also been pro-
posed for categorical and mixed data [38, 578]. Methods for unsupervised outlier detection in
text corpora are proposed in [240]. The problem of detecting outliers with dependencies has
also been studied extensively in the literature. Methods for detecting outliers and changes
in time series and streams were proposed in [9, 17, 19, 29, 310, 311, 312, 315]. Novelty detec-
tion [388] is an area that is closely related to outlier analysis, and it is often studied in the
context of supervised models, where novel classes from a data stream are detected in real
time [391, 392] with the use of learning methods. However, novelty detection is also studied
often in the unsupervised scenario, particularly in the context of first story detection in topic
detection and tracking in text streams [622]. Spatial outliers [2, 324, 376, 487, 488, 489, 490]
are closely related to the problem of finding outliers in temporal data, since such data also
show spatial continuity, just as temporal data show temporal continuity. Some forms of
spatial data also have a temporal component to them, which requires the determination of
spatiotemporal outliers [141, 142]. Outlier detection in discrete sequences is related to the
problem of temporal outlier detection in continuous sequences. For discrete sequences, an
excellent survey may be found in [126]. General surveys on anomaly detection in various
types of temporal data may be found in [231, 232].

Methods for finding node outliers with unusual neighborhood behavior in graphs were
proposed in [41], and techniques for finding relationship outliers, subgraph outliers and
community outliers were proposed in [17, 214, 416, 452]. The primary ideas in all these
methods is that outlier regions in a network are caused by unusual relationships in the form
of edges, subgraphs, and communities. The problem of evolutionary network analysis in
temporal networks is studied in [20, 233, 234, 519]. Surveys on anomaly detection in static
and dynamic networks may be found in [14, 43, 457].

Recently, methods for outlier ensembles have been proposed. The work in [344] designs
methods for using different subsets of features in outlier detection methods, and combining
them in order to provide more effective results. The work in [402, 403, 404] shows how
to combine the scores from different subspaces found by outlier detection algorithms in
order to provide a unified and more robust result. The work in [367] proposes the notion of

1.10. EXERCISES 33

isolation forests that are analogs of the successful notion of random forests in classification.
Recently, the field has been formalized by positioning the existing (informal) work in the
field of outlier ensembles, and also establishing theoretical foundations [31, 32, 35].

The supervised version of the outlier detection problem has been studied extensively
in the form of rare class detection. For the supervised case, readers are referred to a gen-
eral book on classification [176], since this problem is essentially a cost-sensitive varia-
tion [132, 182] on the standard classification problem, in which the class distributions are
very imbalanced. In particular, the readers are referred to [132, 182] for a thorough dis-
cussion on the foundations of cost-sensitive learning from imbalanced data sets. A number
of methods for classification from positive and unlabeled data are discussed in [183], and
a good review of the previous work in this area may also be found from the references in
this paper. The work in [431, 618, 619] first showed how human supervision could be used
to significantly improve the effectiveness of outlier detection. Finally, the semi-supervised
scenario of novelty detection has been discussed extensively in [388, 389, 538].

Evaluation methods in outlier analysis are identical to the techniques used in information
retrieval, recommender systems, and (supervised) rare-class learning. In fact, most of the
evaluation methods discussed in the Chapter 7 of a recent recommender systems book [34]
can also be used for outlier analysis. A detailed discussion of ROC curves may be found
in [192]. While the ROC and PR curves are the traditional methods for outlier evaluation,
it has recently been noted [402] that these methods may not necessarily provide all the
insights needed for different types of analysis. Therefore, the work in [402] has proposed a
coefficient based on the Spearman correlation between the best possible ranking and the
ranking determined by the algorithm.

1.10 Exercises

1. Which of the following points from each of the following sets of points below is an
outlier? Why?

o (1-dimensional) { 1,3,2,1,3,2,75,1,3,2,2,1,2,3,2, 1}
e (1-dimensional) { 1, 2, 3, 4, 2, 19, 9, 21, 20, 22 }
o (2-dimensional) { (1, 9), (2, 9), (3, 9), (10, 10), (10, 3), (9, 1), (10, 2) }

2. Use MATLAB or any other mathematical software to create a histogram of the data
distribution along each of the dimensions in the different cases of Exercise 1. Can you
see the outliers visually? Which ones? In which case are the outliers not clear and
why?

3. For the 2-dimensional case of Exercise 1, plot the data points on a 2-dimensional
plane. Can you see the outliers visually? Which ones?

4. Apply the Z-value test to each of the cases in Exercise 1. For the 2-dimensional
case, apply the Z-value test to the individual dimensions. Do you discover the correct
outliers?

5. For the 2-dimensional case in Exercise 1, construct the function f(z1,z2) = |21 — z2].
Apply the Z-value test to f(x1,22) over each of the data points. Do you obtain the
correct outliers, as suggested by your visual analysis in Exercise 37 Why?

34

6.

10.

11.

CHAPTER 1. AN INTRODUCTION TO OUTLIER ANALYSIS

Determine the nearest neighbor of each data point for the cases in Exercise 1. Which
data points have the largest value of the nearest neighbor distance? Are they the
correct outliers?

Apply a k-means clustering algorithm to each of the cases in Exercise 1, while setting
k = 2. Which data points lie furthest from the two means thus found? Are these the
correct outliers?

Consider the following time-series:
e 1,2,3,3,2,1,73,1,2,3,5
e 1,2,3,4,3,2,1,3,73,72,74,73,74,1, 2, 3, 4, 2
e 1,2, 3,5,6,19, 11, 15, 17, 2,17, 19, 17, 18
Which data points would you consider outliers? How does the temporal component

influence your choice of outliers? Now examine the points at which the time series
changes significantly? How do these points relate to the outliers?

. Consider the undirected network G' = (IV, A) of 8 nodes in N indexed from 1 through

8. Let the edge set A be { (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (1, 8) }. Draw
the network on paper to visualize it. Is there any node, which you would consider an
outlier? Why?

e Now delete the edge (1, 7). Does this change the set of nodes you would consider
outliers? Why?

Consider the undirected network G' = (N, A) of 8 nodes in N indexed from 1 through
8. Let the edge set A be { (1, 2), (1, 3), (1, 4), (2, 3), (2,4), (5, 7), (4, 7), (5, 6), (6,
8), (5, 8), (6, 7) }. Draw the network on paper to visualize it. Is there any edge, which
you would consider an outlier? Why?

Consider three algorithms A, B and C, which are run on a data set with 100 points
and 5 outliers. The rank of the outliers by score for the three algorithms are as follows:
A:1,3,5,8, 11

B:2,56,7,9

C:2,4,6,10,13

Draw the PR curves for each of the algorithms. Would you consider any of the algo-
rithms strictly superior to any of the others? Why?

Chapter 2

Probabilistic and Statistical Models for
Outlier Detection

“With four parameters, I can fit an elephant, and with five, I can make him
wiggle his trunk.” — John von Neumann

2.1 Introduction

The earliest methods for outlier detection were rooted in probabilistic and statistical models
and date back to the nineteenth century [180]. These methods were proposed well before
the advent and popularization of computer technology and were therefore designed without
much focus on practical issues such as data representation or computational efficiency.
Nevertheless, the underlying mathematical models are extremely useful and have eventually
been adapted to a variety of computational scenarios.

A popular form of statistical modeling in outlier analysis is that of detecting extreme
univariate values. In such cases, it is desirable to determine data values at the tails of a
univariate distribution along with a corresponding level of statistical significance. Although
extreme univariate values belong to a very specific category of outliers, they have numerous
applications. For example, virtually all outlier detection algorithms use numerical scores
to measure the anomalousness of data points, and the final step in these algorithms is to
determine the extreme values from these scores. The identification of statistically significant
extreme values helps in the conversion of outlier scores into binary labels. Some examples of
outlier scoring mechanisms, which are used by different classes of algorithms, are as follows:

e In probabilistic modeling, the likelihood fit of a data point to a generative model is
the outlier score.

e In proximity-based modeling, the k-nearest neighbor distance, distance to closest clus-
ter centroid, or local density value is the outlier score.

e In linear modeling, the residual distance of a data point to a lower-dimensional rep-

resentation of the data is the outlier score.

© Springer International Publishing AG 2017 35
C.C. Aggarwal, Outlier Analysis, DOI 10.1007/978-3-319-47578-3_2

36 CHAPTER 2. PROBABILISTIC MODELS FOR OUTLIER DETECTION

X <= POINT B

FEATURE Y
e
T

X <= POINT A

L L L L L L \
0 1 2 3 4 5 6 7 8
FEATURE X

Figure 2.1: Example of the distinction between multivariate extreme values and outliers

e In temporal modeling, the deviation of a data point from its forecasted value is used
to create the outlier score.

Thus, even when extreme-value modeling cannot be performed on the original data, the
ability to determine the extreme values effectively from a set of outlier scores forms the
cornerstone of all outlier detection algorithms as a final step. Therefore, the issue of extreme-
value modeling will be studied extensively in this chapter.

Extreme-value modeling can also be easily extended to multivariate data. Data points
that lie on the pareto-extremes of the data are referred to as multivariate extreme values. For
example in Figure 2.1, data point ‘B’ is a multivariate extreme value. On the other hand,
data point ‘A’ is an outlier but not a multivariate extreme value. Multivariate extreme-value
analysis methods are sometimes also used for general outlier analysis. These techniques can
sometimes perform surprisingly well in real-world outlier analysis applications, although
they are not intended to be general outlier analysis methods. The reasons for this behavior
are mostly rooted in the fact that real-world feature extraction methods sometimes create
representations in which outliers are caused by extremes in values. For example, in a credit-
card fraud detection application, it is common to extract features corresponding to the size
and frequency of transactions. Unusually large or frequent transactions often correspond
to outliers. Even if a subset of features is extracted in this way, it can greatly increase
the effectiveness of multivariate extreme-value analysis methods for outlier detection. The
drawback of using such methods in the general case is that data points like ‘A’ in Figure 2.1
are missed by such methods. Nevertheless, such methods should not be ignored in real
applications in spite of this obvious drawback. In many cases, such techniques can be added
as one or more components of an ensemble method (see Chapter 6) to enhance its accuracy.

It is also possible to use probabilistic modeling for finding general outliers beyond ex-
treme values. For example, in Figure 2.1, one can model the data set as a mizture of three
Gaussian components and therefore discover both outliers ‘A’ and ‘B.” Mixture models can
be considered probabilistic versions of clustering algorithms that discover the outliers as a
side-product. A significant advantage of these methods is that they are easy to generalize to
different data formats or even mixed attribute types, once a generative model for the data
has been defined. Most probabilistic models assume a particular form to the underlying
distribution for each mixture component (e.g., Gaussian) to model the normal patterns of
data points. Subsequently, the parameters of this model are learned so that the observed

2.2. STATISTICAL METHODS FOR EXTREME-VALUE ANALYSIS 37

data has the maximum likelihood of being generated by the model [164]. This model is,
therefore, a generative model for the data, and the probability of a particular data point
being generated can be estimated from this model. Data points that have an unusually low
probability of being generated by the model are identified as outliers. Mixture models are
natural generalizations of multivariate extreme-value analysis; for example, if we modeled
the mixture to contain a single Gaussian component, the approach specializes to one of the
most well-known multivariate extreme-value analysis methods (see Mahalanobis method in
section 2.3.4).

This chapter is organized as follows. The next section discusses statistical models for
univariate extreme-value analysis. Methods for extreme-value analysis in multivariate data
are discussed in section 2.3. Section 2.4 discusses methods for probabilistic modeling of
outliers. Section 2.5 discusses the limitations of probabilistic models for outlier analysis.
Section 2.6 presents the conclusions and summary.

2.2 Statistical Methods for Extreme-Value Analysis

In this section, we will present probabilistic and statistical methods for extreme-value anal-
ysis in univariate data distributions. The extreme values in a probability distribution are
collectively referred to as the distribution tail. Statistical methods for extreme-value analysis
quantify the probabilities in the tails of distributions. Clearly, a very low probability value
of a tail indicates that a data value inside it should be considered anomalous. A number
of tail inequalities bound these probabilities in cases where the actual distribution is not
available.

2.2.1 Probabilistic Tail Inequalities

Tail inequalities can be used in order to bound the probability that a value in the tail of a
probability distribution should be considered anomalous. The strength of a tail inequality
depends on the number of assumptions made about the underlying random variable. Fewer
assumptions lead to weaker inequalities but such inequalities apply to larger classes of
random variables. For example, the Markov and Chebychev inequalities are weak inequalities
but they apply to very large classes of random variables. On the other hand, the Chernoff
bound and Hoeffding inequality are both stronger inequalities but they apply to restricted
classes of random variables.

The Markov inequality is one of the most fundamental tail inequalities, and it is defined
for distributions that take on only non-negative values. Let X be a random variable, with
probability distribution fx(z), a mean of F[X], and a variance of Var[X].

Theorem 2.2.1 (Markov Inequality) Let X be a random variable that takes on only
non-negative random values. Then, for any constant o satisfying E[X] < «, the following
18 true:

P(X > a) < E[X|/a (2.1)

Proof: Let fx(x) represent the density function for the random variable X. Then, we have:
BIX| = [afx(@)do= [afx@) ot [o fx) s
x 0<z<a >

Z/m>ax-fx(as)-dxZ/m>aa-fx(x)~dx

38 CHAPTER 2. PROBABILISTIC MODELS FOR OUTLIER DETECTION

The first inequality follows from the non-negativity of x, and the second follows from the
fact that the integral is defined only over the cases in which x > «. Furthermore, the term
on the right-hand side of the last equation is exactly equal to « - P(X > «). Therefore, the
following is true:

EX]>a-P(X >a) (2.2)

The aforementioned inequality can be re-arranged in order to obtain the final result. [|
The Markov inequality is defined only for probability distributions of non-negative values
and provides a bound only on the upper tail. In practice, it is often desired to bound
both tails of arbitrary distributions. Consider the case where X is an arbitrary random
variable, which is not necessarily non-negative. In such cases, the Markov inequality cannot
be used directly. However, the (related) Chebychev inequality is very useful in such cases.
The Chebychev inequality is a direct application of the Markov inequality to a non-negative
derivative of random variable X:

Theorem 2.2.2 (Chebychev Inequality) Let X be an arbitrary random variable. Then,
for any constant «, the following is true:

P(|X — E[X]| > a) < Var[X]|/a? (2.3)

Proof: The inequality | X — F[X]| > « is true if and only if (X — E[X])? > o?. By defining
Y = (X — E[X])? as a (non-negative) derivative random variable from X, it is easy to see
that E[Y] = Var[X]. Then, the expression on the left hand side of the theorem statement
is the same as determining the probability P(Y > o?). By applying the Markov inequality
to the random variable Y, one can obtain the desired result. [|
The main trick used in the aforementioned proof was to apply the Markov inequality to a
non-negative function of the random variable. This technique can generally be very useful
for proving other types of bounds, when the distribution of X has a specific form (such as the
sum of Bernoulli random variables). In such cases, a parameterized function of the random
variable can be used in order to obtain a parameterized bound. The underlying parameters
can then be optimized for the tightest possible bound. Several well-known bounds such as
the Chernoff bound and the Hoeffding inequality are derived with the use of this approach.

The Markov and Chebychev inequalities are relatively weak inequalities and often do
not provide tight enough bounds to be useful in many practical scenarios. This is because
these inequalities do not make any assumptions on the nature of the random variable X.
Many practical scenarios can however be captured, when stronger assumptions are used on
the random variable. In such cases, much tighter bounds on tail distributions are possible.
A particular case is one in which a random variable X may be expressed as a sum of other
independent bounded random variables.

2.2.1.1 Sum of Bounded Random Variables

Many practical observations, which are defined in the form of aggregates, can be expressed
as sums of bounded random variables. Some examples of such scenarios are as follows:

Example 2.2.1 (Sports Statistics) The National Basketball Association (NBA) draft
teams have access to college basketball statistics for the different candidate players. For each
player and each game, a set of quantitative values describe their various scoring statistics
over different games. For example, these quantitative values could correspond to the number

2.2. STATISTICAL METHODS FOR EXTREME-VALUE ANALYSIS 39

of dunks, assists, rebounds, and so on. For a particular statistic, the aggregate performance
of any player can be expressed as the sum of their statistics over N different games:

All values of X; lie in the range [l,u]. The performances of a player over different games
are assumed to be independent of one another. The long-term global mean of the statistic
represented by X; over all players is known to be p. The NBA draft teams would like to
identify the anomalous players on the basis of each statistic.

In this example, the aggregate statistic is represented as a sum of bounded random variables.
The corresponding tail bounds can be quantified with the use of the Hoeffding inequality.

In many cases, the individual random variable components in the aggregation are not
only bounded, but also binary. Thus, the aggregate statistic can be expressed as a sum of
Bernoulli random variables.

Example 2.2.2 (Grocery Shopping) A grocery store keeps track of the number of cus-
tomers (from its frequent purchaser program), who have frequented the store on a particular
day. The long term probability of any customer ¢ attending the store on a given day is
known to be p;. The behavior of the different customers is also known to be independent of
one another. For a given day, evaluate the probability that the store receives more than n
(frequent purchase program) customers.

In the second example, the number of customers can be expressed as a sum of independent
Bernoulli random variables. The corresponding tail distributions can be expressed in terms
of the Chernoff bound. Finally, we provide a very common application of anomaly detection
from aggregates, which is that of fault diagnosis in manufacturing.

Example 2.2.3 (Manufacturing Quality Control) A company uses a manufacturing
assembly line to produce a product, which may have faults in it with a pre-defined (low)
probability p. The quality-control process samples N products from the assembly line, and
examines them closely to count the number of products with defects. For a given count of
faulty products, evaluate the probability that the assembly line is behaving anomalously.

The sample size N is typically large, and, therefore, it is possible to use the Central Limit
Theorem to assume that the samples are normally distributed. According to this theorem,
the sum of a large number of independent and identical normal distributions converges to
a normal distribution.

The different types of bounds and approximations will be formally introduced in this
section. The Chernoff bounds and the Hoeffding inequality will be discussed first. Since the
expressions for the lower tail and upper tails are slightly different, they will be addressed
separately. The lower-tail Chernoff bound is introduced below.

Theorem 2.2.3 (Lower-Tail Chernoff Bound) Let X be random variable that can be
expressed as the sum of N independent binary (Bernoulli) random variables, each of which
takes on the value of 1 with probability p;.

40 CHAPTER 2. PROBABILISTIC MODELS FOR OUTLIER DETECTION

Then, for any 6 € (0,1), we can show the following:
P(X < (1—16)- E[X]) < e EXI0°/2 (2.4)
where e is the base of the natural logarithm.

Proof: The first step is to show the following inequality:

- E[X]
P(X < (1-0)-E[X]) < ((1—5)“‘”> (2.5)

The unknown parameter ¢ > 0 is introduced in order to create a parameterized bound. The
lower-tail inequality of X is converted into an upper-tail inequality on the exponentiated
expression e~ ¥ X . This random expression can be bounded by the Markov inequality, and it
provides a bound as a function of ¢. This function of ¢ can be optimized, in order to obtain

the tightest possible bound. By using the Markov inequality on the exponentiated form, the
following can be derived:

Ele=tX]

By expanding X = Zfil X, in the exponent, the following can be obtained:

P(X<(1-9) -PX)]) < HiE[e_t'Xi]

= —t-(1-5)-B[X] (2.6)

The aforementioned simplification uses the fact that the expectation of the product of
independent variables is equal to the product of the expectations. Since each X; is Bernoulli,
the following can be shown:

E[e—t.Xi] =14+ E[XZ] A (e—t o 1) < eE[Xi}.(e*t_l)
The second inequality follows from polynomial expansion of e? [Xil-(e7 1) By substituting

this inequality back into Equation 2.6, and using E[X] =)", F[X,], the following may be

obtained:
eBIX]-(e7"=1)

P(X <(1-9)- EIX]) < —a—pmm

The expression on the right is true for any value of ¢ > 0. It is desired to determine the
value of ¢ that provides the tightest possible bound. Such a value of ¢ may be obtained by
computing the derivative of the expression with respect to ¢ and setting it to 0. It can be
shown that the resulting value of ¢ = t* from this optimization process is as follows:

#* =In(1/(1 - 8)) (2.7)

By using this value of t* in the aforementioned inequality , it can be shown to be equivalent
to Equation 2.5. This completes the first part of the proof.

The first two terms of the Taylor expansion of the logarithmic term in (1 —4) -In(1 —§)
can be expanded to show that (1 — 6)(1*5) > e0+0°/2, By substituting this inequality in
the denominator of Equation 2.5, the desired result is obtained. [|
A similar result for the upper-tail Chernoff bound may be obtained, albeit in a slightly
different form.

2.2. STATISTICAL METHODS FOR EXTREME-VALUE ANALYSIS 41

Theorem 2.2.4 (Upper-Tail Chernoff Bound) Let X be random variable, which is ex-
pressed as the sum of N independent binary (Bernoulli) random variables, each of which
takes on the value of 1 with probability p;.

Then, for any § € (0,2-e — 1), the following is true:
P(X > (1+40) BE[X]) < e EXI9°/4 (2.8)
where e is the base of the natural logarithm.

Proof: The first step is to show the following inequality:

el E[X]

P(X > (1+9)-E[X]) < <(1+5)(1+5)> (2.9)

As before, this can be done by introducing the unknown parameter ¢ > 0, and converting

the upper-tail inequality on X into that on e**. This can be bounded by the Markov

Inequality as a function of ¢. This function of ¢ can be optimized, in order to obtain the
tightest possible bound.

It can be further shown by algebraic simplification that the inequality in Equation 2.9
provides the desired result for all values of § € (0,2-e —1). |
Next, the Hoeffding inequality will be introduced. The Hoeffding inequality is a more general
tail inequality than the Chernoff bound, because it does not require the underlying data
values to be drawn from a Bernoulli distribution. In this case, the ith data value needs to be
drawn from the bounded interval [l;, u;]. The corresponding probability bound is expressed
in terms of the parameters [; and ;. Thus, the scenario for the Chernoff bound is a special
case of that for the Hoeffding inequality. We state the Hoeffding inequality below, for which
both the upper- and lower-tail inequalities are identical.

Theorem 2.2.5 (Hoeffding Inequality) Let X be a random wvariable that can be ex-
pressed as the sum of N independent random variables, each of which is bounded in the
range [l;, u;].

Then, for any 0 > 0, the following can be shown:

_ 2.92

P(X — E[X]>0) <e Zita(ui-t)? (2.10)
_ 2.92

PE[X]— X >0) <e Zita(ui-t)? (2.11)

Proof: The proof of the upper-tail portion will be briefly described here. The proof of the
lower-tail inequality is identical. For any choice parameter ¢t > 0, the following is true:

P(X — E[X] > 0) = P(et(X—EIXD » ¢t9) (2.12)

The Markov inequality can be used to show that the right-hand probability is at most
E[eX=EXD] . ¢=9 The expression within E[e(X~FIXD] can be expanded in terms of the

42 CHAPTER 2. PROBABILISTIC MODELS FOR OUTLIER DETECTION

Table 2.1: Comparison of different methods used to bound tail probabilities

H Result H Scenario \ Strength H
Chebychev Any random variable Weak
Markov Nonnegative random variable | Weak
Hoeffding Sum of independent bounded | Strong (Exponentially
random variables reduces with samples)
Chernoff Sum of i.i.d. Bernoulli Strong (Exponentially
random variables reduces with samples)
CLT Sum of many i.i.d. variables | Almost exact
Generalized CLT || Sum of many independent Almost exact
and bounded variables

individual components X;. Since the expectation of the product is equal to the product of
the expectations of independent random variables, the following can be shown:

P(X - E[X] > 0) < e "][Ble" XD (2.13)

The key is to show that the value of E[et"Xi—EXi)] is at most equal to e’ "(4i=1)°/8 This
can be shown with the use of an argument that uses the convexity of the exponential function
et (Xi=FIXi) in conjunction with Taylor’s theorem (see Exercise 12).

Therefore, the following is true:

P(X — BIX] >) < e 0 [et (wmt%/5 (2.14)

This inequality holds for any positive value of ¢t. Therefore, in order to find the tightest
bound, the value of ¢ that minimizes the right-hand side of the above equation needs to be
determined. The optimal value of ¢ = t* can be shown to be the following:
4.0
= - (2.15)
Zi:1(ui —1;)

By substituting the value of ¢ = t*, the desired result may be obtained. The lower-tail
bound may be derived by applying the aforementioned steps to P(E[X] — X >) rather
than P(X — E[X] > 0). |
Thus, the different inequalities may apply to scenarios of different generality, and may also
have different levels of strength. These different scenarios are presented in Table 2.1.

An interesting observation is that the Hoeffding tail bounds decay exponentially with 62,
which is exactly how the normal distribution behaves. This is not very surprising, because
the sum of a large number of independent bounded random variables converges to the
normal distribution according to the Central Limit Theorem (CLT). Such a convergence is
useful, because the bounds provided by an exact distribution (or a close approximation) are
much tighter than any of the aforementioned tail inequalities.

Theorem 2.2.6 (Central Limit Theorem) The sum of a large number N of indepen-
dent and identically distributed random wvariables with mean p and standard deviation o
converges to a normal distribution with mean p- N and standard deviation o - V' N.

2.2. STATISTICAL METHODS FOR EXTREME-VALUE ANALYSIS 43

A more generalized form of the CLT can also be applied to sums of independent variables
(not necessarily identical), in which the variables are sufficiently bounded in terms of under-
lying moment measures. An example of such a generalization of the CLT is the Lyapunov
CLT [88]. The basic idea is that the means and variances of a sum of a large number of
independent (but not identically distributed) random variables can be approximated by
the corresponding sums of the means and variances, respectively. Some weak assumptions
on the underlying distributions are also imposed for the condition to hold. Refer to the
bibliographic notes.

2.2.2 Statistical-Tail Confidence Tests

The normal distribution has numerous applications such as statistical-tail confidence testing.
In statistical-tail confidence tests, the extreme values from a set of data values distributed
according to a normal distribution are identified. The assumption of a normal distribution
is rather ubiquitous in real domains. This is true not just for variables that are expressed
as sums of random samples (as discussed in the previous section), but many variables that
are generated by different random processes. The density function fx(z) for the normal
distribution with mean p and standard deviation o is defined as follows:
1 (@)
S 202

fx(x) P o e (2.16)
In some settings, it is appropriate to assume that the mean p and standard deviation o of
the modeling distribution are known. This is the case, when a very large number of samples
of the data are available for accurate estimation of p and o. In other cases, 1 and o might
be available from domain knowledge. Then, the Z-value z; of an observed value x; can be
computed as follows:

zi=(xi—p)/o (2.17)

Since the normal distribution can be directly expressed as a function of the Z-value (and no
other parameters), it follows that the tail probability of point z; can also be expressed as a
function of z;. In fact, the Z-value corresponds to a scaled and translated normal random
variable, which is also known as the standard normal distribution with mean 0 and variance
1. Therefore, the cumulative standard normal distribution can be used directly in order
to determine the exact value of the tail probability at that value of z;. From a practical
perspective, since this distribution is not available in closed form, normal distribution tables
are used in order to map the different values of z; to probabilities. This provides a statistical
level of significance, which can be interpreted directly as a probability of the data point
being an outlier. The underlying assumption is that the data was generated by a normal
distribution.

2.2.2.1 t-Value Test

The aforementioned discussion assumes that the mean and standard deviation of the model-
ing distribution can be estimated very accurately from a large number of samples. However,
in practice, the available data sets might be small. For example, for a sample with 20 data
points, it is much harder to model the mean and standard deviations accurately. How do
we accurately perform statistical-significance tests in such cases?

The Student’s t-distribution provides an effective way to model anomalies in such scenar-
ios. This distribution is defined by a parameter known as the number of degrees of freedom
v, which is closely defined by the available sample size. The t-distribution approximates the

44 CHAPTER 2. PROBABILISTIC MODELS FOR OUTLIER DETECTION

0.4

031

025

02F

PROBABILITY DENSITY FUNCTION

0.1

——— NORMAL DISTRIBUTION
—6— t-DISTRIBUTION(5)
—— t-DISTRIBUTION(2)

0.05

. .
-3 -2 -1

0
t-VALUE

Figure 2.2: The t-distributions for different numbers of degrees of freedom (corresponding
to different sample sizes)

normal distribution extremely well for larger degrees of freedom (> 1000), and converges to
the normal distribution in the limit where it goes to co. For fewer degrees of freedom (or
sample size), the t-distribution has a similar bell-shaped curve as the normal distribution,
except that it has heavier tails. This is quite intuitive, because the heavier tail accounts for
the loss in statistical significance from the inability to accurately estimate the mean and
standard deviation of the modeling (normal) distribution from fewer samples.

The t-distribution is expressed as a function of several independent identically-distributed
standard normal distributions. It has a single parameter v that corresponds to the number
of degrees of freedom. This regulates the number of such normal distributions, in terms of
which it is expressed. The parameter v is set to N — 1, where N is the total number of
available samples. Let Uy...U, be v 4 1, independent and identically distributed normal
distributions with zero mean and unit standard deviation. Such a normal distribution is
also referred to as the standard normal distribution. Then, the t-distribution is defined as

follows:
Uy

vV (Z;/:l Uz'z)/V

The intuition for using the t¢-distribution is that the denominator explicitly models the
randomness of estimating the standard deviation of the underlying normal distribution
with the use of only a small number of independent samples. The term >, U? in the
denominator is a y? distribution with parameter v, and the entire (scaled) denominator
converges to 1, when v = oo. Therefore, in the limiting case, when a large number of
samples are available, the randomness contributed by the denominator disappears, and the
t-distribution converges to the normal distribution. For smaller values of v (or sample sizes),
this distribution has a heavier tail. Examples of the ¢-distribution for different values of v
are provided in Figure 2.2. It is evident that ¢-distributions with fewer degrees of freedom
have heavier tails.

The process of extreme-value detection with a small number of samples z; ...xx pro-
ceeds as follows. First, the mean and standard deviation of the sample are estimated. This
is then used to compute the t-value of each data point directly from the sample. The t-value
is computed in an identical way as the Z-value. The tail probability of each data point is
computed from the cumulative density function of the t-distribution with (N —1)-degrees of

T(v) = (2.18)

2.2. STATISTICAL METHODS FOR EXTREME-VALUE ANALYSIS 45

freedom. As in the case of the normal distribution, standardized tables are available for this
purpose. From a practical perspective, if more than 1000 samples are available, then the
t-distribution (with at least 1000 degrees of freedom) is so close to the normal distribution,
that it is possible to use the normal distribution as a very good approximation.

2.2.2.2 Sum of Squares of Deviations

A common situation in outlier detection is the need to unify the deviations along indepen-
dent criteria into a single outlier score. Each of these deviations is typically modeled as
a Z-value from an independent and identically distributed standard normal distribution.
The aggregate deviation measure is then computed as the sum of the squares of these val-
ues. For a d-dimensional data set, this is a y2-distribution with d degrees of freedom. A
x2-distribution with d degrees of freedom is defined as the sum of the squares of d indepen-
dent standard normal random variables. In other words, consider the variable V| which is
expressed as the squared sum of independent and identically distributed standard normal
random variables Z; ~ N (0, 1):

d
V=> 7
i=1
Then, V is a random variable drawn from a y2-distribution with d degrees of freedom.
Vo~ x*(d)

Although a detailed discussion of the characteristics of the y2-distribution is skipped here,
its cumulative distribution is not available in closed form, but it needs to computationally
evaluated. From a practical standpoint, cumulative probability tables are typically avail-
able for modeling purposes. The cumulative probability tables of the y2-distribution can
then be used in order to determine the probabilistic level of significance for that aggregate
deviation value. This approach is particularly useful when the deviations are modeled to be
statistically independent of one another. As we will see in Chapter 3, such situations could
arise in models such as principal component analysis, where the errors along the different
components are often modeled as independent normal random variables.

2.2.2.3 Visualizing Extreme Values with Box Plots

An interesting approach to visualize univariate extreme values is the use of box plots or box
and whisker diagrams. Such an approach is particularly useful in the context of visualizing
outlier scores. In a box-plot, the statistics of a univariate distribution are summarized in
terms of five quantities. These five quantities are the “minimum/maximum” (whiskers), the
upper and lower quartiles (boxes), and the median (line in middle of box). We have enclosed
quotations around two of these quantities because they are defined in a non-standard way.
The distance between the upper and lower quartiles is referred to as the inter-quartile range
(IQR). The “minimum” and “maximum” are defined in a (non-standard) trimmed way in
order to define the location of the whiskers. If there are no points more than 1.5 IQR above
the top quartile value (upper end of the box), then the upper whisker is the true maximum.
Otherwise, the upper whisker is set at 1.5 times the IQR from the upper end of the box. An
exactly analogous rule holds true for the lower whisker, which is set at 1.5 IQR from the
lower end of the box. In the special case of normally distributed data, a value of 1.5 IQR
more than the top quartile corresponds to a distance of 2.7 times the standard deviation

46 CHAPTER 2. PROBABILISTIC MODELS FOR OUTLIER DETECTION

*

i

3r MAXIMUM + <—_| OUTLIERS
VALUE (NO

OUTLIERS)

[

|

2F |
e |

[|

|

|

|

L

/ /

MINIMUM
VALUE (NO

| |
| |
L MEDIAN | OUTLIERS)
|
b |
1

UNIFORM NORMAL EXPONENTIAL

s T

Figure 2.3: Visualizing univariate extreme values with box plots

(from the mean). Therefore, the whiskers are roughly placed at locations similar to the 3-o
cut-off points in a normal distribution.

An example of a box plot is illustrated in Figure 2.3. In this case we have shown 100
data points corresponding to each of the (i) uniform distribution with zero mean and unit
variance, (ii) standard normal distribution, and (iii) an exponential distribution with unit
mean. Note that the first two distributions are symmetric about the mean, whereas the last
is not. The corresponding box plots are shown in Figure 2.3. In each case, the upper and
lower ends of the box represent! the upper and lower quartiles. In the case of the uniform
distribution, there no outliers, and therefore, the upper and lower whiskers represent the
true maximum and minimum values. On the other hand, there are outliers at the upper end
in the case of the normal and exponential distributions. Therefore, the whiskers are placed
at 1.5 IQR above the upper ends of the boxes in each of the cases.

Many other conventions exist on the placement of whiskers, such as the use of the
actual minimum/maximum or the use of particular percentiles of the data distribution.
The specific convention used in this book is referred to as the Tukey boz-plot. Aside from
visualizing extreme values, this type of diagram is useful for visualizing the performance of
a randomized outlier detection algorithm and is often used in outlier ensemble analysis. We
will revisit this issue in section 6.4 of Chapter 6.

2.3 Extreme-Value Analysis in Multivariate Data

Extreme-value analysis can also be applied to multivariate data in a variety of ways. Some
of these definitions try to model the underlying distribution explicitly, whereas others are
based on more general statistical analysis, which does not assume any particular statistical
distribution of the underlying data. In this section, we will discuss four different classes of
methods that are designed to find data points at the boundaries of multivariate data. The
first of these classes of methods (depth-based) is not a statistical or probabilistic approach.
Rather, it is based on convex hull analysis of the point geometry. However, we have included
it in this chapter, because it naturally fits with the other multivariate extreme-value methods
in terms of the types of outliers it finds.

1t is possible to change the percentile levels of the boxes, although the use of quartiles is ubiquitous.

2.3. EXTREME-VALUE ANALYSIS IN MULTIVARIATE DATA 47

Algorithm FindDepthOutliers(Data Set: D, Score Threshold: r);
begin
k=1,
repeat
Find set S of corners of convex hull of D;
Assign depth & to points in S|
D=D-5;
k=k+1,;
until(D is empty);
Report points with depth at most r as outliers;
end

Figure 2.4: Pseudocode for finding depth-based outliers

While the methods discussed in this section are effective in finding outliers at the outer
boundaries of a data space, they are not good at finding outliers within the inner regions
of the data space. Such methods can effectively find outliers for the case illustrated in Fig-
ure 2.7, but not the outlier ‘A’ illustrated in Figure 2.1. Nevertheless, the determination of
such outliers can be useful in many specialized scenarios. For example, in cases where mul-
tiple deviation values may be associated with records, multivariate extreme-value analysis
may be useful. Consider a weather application in which multiple attributes such as tempera-
ture and pressure are measured at different spatial locations, and the local spatial deviations
from the expected values are computed as an intermediate step. These deviations from ex-
pected values on different attributes may need to be transformed into a single meaningful
outlier score. An example is illustrated in section 11.2.1.3 of Chapter 11, where deviations
are computed on the different measured values of spatial data. In general, such methods are
useful for post-processing a multidimensional vector of outlier scores, in which each outlier
score is derived using a different and possibly independent criterion. As discussed in Chap-
ter 1, it is particularly common to confuse methods for extreme-value analysis with general
outlier analysis methods that are defined in terms of generative probabilities. However, it is
important to distinguish between the two, since the application-specific scenarios in which
the two kinds of methods are used are quite different.

2.3.1 Depth-Based Methods

In depth-based methods, convex hull analysis is used in order to find outliers. The idea is
that the points in the outer boundaries of the data lie at the corners of the convex hull.
Such points are more likely to be outliers. A depth-based algorithm proceeds in an iterative
fashion. In the kth iteration, all points at the corners of the convex hull of the data set are
removed from the data set. These points are assigned a depth of k. These steps are repeated
until the data set is empty. All points with depth at most r are reported as the outliers.
Alternatively, the depth of a data point may be directly reported as the outlier score. The
steps of the depth-based approach are illustrated in Figure 2.4.

The algorithm is also pictorially illustrated on a sample data set in Figure 2.5. A number
of efficient methods for finding depth-based outliers have been discussed in [295, 468]. The
computational complexity of convex-hull methods increases exponentially with dimension-
ality. Furthermore, with increasing dimensionality, a larger proportion of data points lie at

48 CHAPTER 2. PROBABILISTIC MODELS FOR OUTLIER DETECTION

Depth 2
Depth 1 A
n

. Depth 3 Depth 4

(a) Data points (b) Convex hulls

Figure 2.5: Depth-based outlier detection

the corners of a convex hull. This is because the number of points at the corners of a convex
hull can be exponentially related to the data dimensionality. Therefore, such methods are
not only computationally impractical, but also increasingly ineffectual in higher dimension-
ality because of increasing ties in outlier scores. Depth-based methods are generally quite
different from most of the probabilistic and statistical models discussed in this chapter. In
fact, they cannot really be considered probabilistic or statistical methods. However, they are
presented here because of their relationship to other multivariate extreme-value methods.
Such methods share many characteristics in common, in spite of being methodologically
different. For example, they work well only in scenarios where outliers lie at the boundaries
of data space, rather than as isolated points in the interior of the data.

2.3.2 Deviation-Based Methods

Deviation-based methods measure the impact of outliers on the data variance. For example,
the method proposed in [62] tries to measure how much the variance in the underlying data
is reduced, when a particular data point is removed. Since the basic assumption is that
the outliers lie at the boundary of the data, it is expected that the removal of such data
points will significantly reduce the variance. This is essentially an information-theoretic
method, since it examines the reduction in complexity, when a data point is removed.
Correspondingly, the smoothing factor for a set of data points R is defined as follows:

Definition 2.3.1 The smoothing factor SF(R) for a set R is the reduction in the data set
variance, when the set of points in R are removed from the data.

Outliers are defined as exception sets E such that their removal causes the maximum re-
duction in variance of the data. In other words, for any subset of data points R, it must be
the case that:

SF(E)> SF(R)

If more than one set have the same reduction in variance, then the smaller set is preferred.
This follows the standard information theoretic principle of finding the sets that increase
the description length of the data as much as possible, in as little space. The determination
of the optimal set E is a very difficult problem, because 2V possibilities exist for a data
set containing N points. The work in [62] uses a number of heuristics such as best-first
search and random sampling. One good aspect of this approach is that it is distribution-
independent, and can be applied to any kind of data set, as long as an appropriate definition

2.3. EXTREME-VALUE ANALYSIS IN MULTIVARIATE DATA 49

(a) Data points (b) Spectrum of angles

Figure 2.6: Angle-based outlier detection

of the smoothing factor can be constructed. In the original work in [62], this approach has
been applied to the case of sequence data.

2.3.3 Angle-Based Outlier Detection

This method was originally proposed as a general outlier analysis method, although this
book has reclassified it to a multivariate extreme-value analysis method. The idea in angle-
based methods is that data points at the boundaries of the data are likely to enclose the
entire data within a smaller angle, whereas points in the interior are likely to have data
points around them at different angles. For example, consider the two data points ‘A’ and
‘B’ in Figure 2.6, in which point ‘A’ is an outlier, and point ‘B’ lies in the interior of the
data. It is clear that all data points lie within a limited angle centered at ‘A.” On the other
hand, this is not the case for data point ‘B,” which lies within the interior of the data. In
this case, the angles between different pairs of points can vary widely. In fact, the more
isolated a data point is from the remaining points, the smaller the underlying angle is likely
to be. Thus, data points with a smaller angle spectrum are outliers, whereas those with a
larger angle spectrum are not outliers.

Consider three data points X, Y, and Z. Then, the angle between the vectors Y —
X and the Z — X, will not vary much for different values of ¥ and Z, when X is an
outlier. Furthermore, the angle is inversely weighted by the distance between the points.
The corresponding angle (weighted cosine) is defined as follows:

<Y -X),(Z-X)>
1Y = XI5 112 - X|I3

WCos(Y —X,Z - X) =

Here, || - ||2 represents the Lo-norm, and < - > represents the scalar product. Note that
this is a weighted cosine, since the denominator contains the squares of the Lo-norms. The
inverse weighting by the distance further reduces the weighted angles for outlier points,
which also has an impact on the spectrum of angles. Then, the variance in the spectrum of
this angle is measured by varying the data points Y and Z, while keeping the value of X
fixed. Correspondingly, the angle-based outlier factor (ABOF) of the data point X € D is
defined as follows:

ABOF (X) =Vary,zepyWCos(Y — X,Z — X)

Data points that are outliers will have a smaller spectrum of angles, and will therefore have
lower values of the angle-based outlier factor ABOF(X).

50 CHAPTER 2. PROBABILISTIC MODELS FOR OUTLIER DETECTION

The angle-based outlier factor of the different data points may be computed in a number
of ways. The naive approach is to pick all possible triples of data points and compute the
O(N?) angles between the different vectors. The ABOF values can be explicitly computed
from these values. However, such an approach can be impractical for very large data sets.
A number of efficiency-based optimizations have therefore been proposed.

In order to speed up the approach, a natural possibility is to use sampling in order to
approximate this value of the angle-based outlier factor. A sample of k& data points can
be used in order to approximate the ABOF of a data point X. One possibility is to use
an unbiased sample. However, since the angle-based outlier factor is inversely weighted by
distances, it follows that the nearest neighbors of a data point have the largest contribution
to the angle-based outlier factor. Therefore, the k-nearest neighbors of X can be used to
approximate the outlier factor much more effectively than an unbiased sample of the all the
data points. It has also been shown in [325] that many data points can be filtered out on
the basis of approximate computation, since their approximate values of the ABOF are too
high, and they cannot possibly be outliers. The exact values of the ABOF are computed only
for a small set of points, and the points with the lowest values of the ABOF are reported
as outliers. We refer the reader to [325] for the details of these efficiency optimizations.

Because of the inverse weighting by distances, the angle-based outlier analysis method
can be considered a hybrid between distance-based and angle-based methods. As discussed
earlier with the use of the illustrative example, the latter factor is primarily optimized to
finding multivariate extreme values in the data. The precise impact of each of these factors?
does not seem to be easily quantifiable in a statistically robust way. In most data sets such
as in Figure 2.1, outliers lie not just on the boundaries of the data, but also in the interior
of the data. Unlike extreme values, outliers are defined by generative probabilities. While
the distance factor can provide some impact for the outliers in the interior, the work is
primarily focused on the advantage of angular measures, and it is stated in [325] that the
degree of impact of distance factors is minor compared to the angular factors. This implies
that outliers on the boundaries of the data will be highly favored in terms of the overall
score, because of the lower spectrum of angles. Therefore, the angle-based method treats
outliers with similar generative probabilities in the interior and the boundaries of the data in
a differential way, which is not statistically desirable for general outlier analysis. Specifically,
the outliers at the boundaries of the data are more likely to be favored in terms of the outlier
score. Such methods can effectively find outliers for the case illustrated in Figure 2.7, but
the outlier ‘A’ illustrated in Figure 2.1 will be favored less. Therefore, while this approach
was originally presented as a general outlier analysis method, it has been classified in the
section on multivariate extreme-value analysis methods in this book.

It has been claimed in [325] that the approach is more suitable for high-dimensional data
because of its use of angles, as opposed to distances. However, it has been shown in earlier
work [455], that angle-based measures are not immune to the dimensionality curse, because
of concentration effects in the cosine measure. Such concentration effects would also impact
the spectrum of the angles, even when they are combined with distances. The variation in
the angle spectrum in Figure 2.6 is easy to show visually in 2-dimensional data, but the
sparsity effects will also impact the spectrum of angles in higher dimensions. If the main
problem, as suggested in [325], is the lack of contrast between pairwise distances, then this
is not resolved with the use of angles instead of distances. In a setting where all pairs of
distances are similar, all triangles will be equilateral, and therefore all (cosines of) angles

2When a random variable is scaled by a factor of a, its variance is scaled by a factor of a2. However, the
scaling here is not by a constant factor.

2.3. EXTREME-VALUE ANALYSIS IN MULTIVARIATE DATA 51

X <= POINT B

10 \
PRINCIPAL

DIRECTIONS
8 OF CORRELATION

FEATURE Y
e
T

X <= POINT A

3
FEATURE X

Figure 2.7: Extreme-value analysis in multivariate data with Mahalanobis distance

will converge to 0.5. In fact, the cosine can be shown to be a direct function of Euclidean
pairwise distances:

oy X 0P Y 0] — [1X — Y2
7 2.1
Cosine(X,Y) 2-|1X =0 -]|[Y =0 Y

If distances retain little information about the relative contrasts, there is little reason to
believe that an indirect function of the distances (like the cosine spectrum) will do any
better. A clear explanation of why the spectrum of angles should be more robust to high
dimensionality than distances has not® been provided in [325]. More importantly, such
methods do not address the issue of locally irrelevant attributes [4], which are the primary
impediment to effective outlier analysis methods with increasing dimensionality. Another
important point to note is that multivariate extreme-value analysis is much simpler than
general outlier analysis in high dimensionality, because the parts of the data to explore are
approximately known, and therefore the analysis is global rather than local. The evidence
over different dimensions can be accumulated with the use of a very simple classical distance-
distribution method [343, 493]. The approach, discussed in the next section, is also suitable
for high-dimensional extreme-value analysis, because it implicitly weights globally relevant
and irrelevant directions in the data in a different way, and is statistically sound in terms
of probabilistic interpretability of the extreme values.

2.3.4 Distance Distribution-based Techniques: The Mahalanobis
Method

A distribution-dependent approach is to model the entire data set to be normally dis-
tributed about its mean in the form of a multivariate Gaussian distribution. Let 7z be the

3The use of the cosine function in some high-dimensional domains such as text has been cited as an
example in a later work [326]. In domains with small and varying non-zero attributes, the cosine is preferred
because of important normalization properties, and not because of greater dimensionality resistance. By
substituting || X|| = ||Y]| = 1 in Equation 2.19, it is evident that the cosine is equivalent to the Euclidean
distance if all points are normalized to lie on a unit ball. The cosine function is not immune to the dimen-
sionality curse even for the unique structure of text [455]. An increasing fraction of non-zero attributes,
towards more general distributions, directly impacts the data hubness.

52 CHAPTER 2. PROBABILISTIC MODELS FOR OUTLIER DETECTION

d-dimensional mean (row) vector of a d-dimensional data set, and ¥ be its d x d covariance
matrix. In this case, the (¢, 7)th entry of the covariance matrix is equal to the covariance
between the dimensions 7 and j. Then, the probability distribution f(X) for a d-dimensional
(row vector) data point X can be defined as follows:

— 1 1

1) = TSy =P [_2'

The value of |%| denotes the determinant of the covariance matrix. We note that the term
in the exponent is (half) the squared Mahalanobis distance of the data point X to the
centroid 1z of the data. This term is used as the outlier score and may be directly computed
as follows:

X-ps ' (X -n)7 (2.20)

Mahalanobis(X, 7, %) = /(X — 1)5-1(X —)" (2.21)

The computation of the Mahalanobis distance requires the inversion of the covariance matrix
Y. In cases where the matrix X is not invertible, it is possible to use regularization with a
d x d identity matrix I. The basic idea is to replace ¥ with 3 + AI for some small value of
A > 0 in Equation 2.21. Here, A > 0 represents the regularization parameter.

The Mahalanobis distance of a point is similar to its Euclidean distance from the centroid
of the data, except that it normalizes the data on the basis of the inter-attribute correlations.
For example, if the axis system of the data were to be rotated to the principal directions
(shown in Figure 2.7), then the data would have no inter-attribute correlations. As we will
see in section 3.3 of Chapter 3, it is actually possible to determine such directions of cor-
relations generally in d-dimensional data sets with the use of principal component analysis
(PCA). The Mahalanobis distance is simply equal to the Euclidean distance between X and
7 in such a transformed (axes-rotated) data set after dividing each of the transformed coor-
dinate values by the standard-deviation of that direction. Therefore, principal component
analysis can also be used in order to compute the Mahalanobis distance (see section 3.3.1
of Chapter 3).

This approach recognizes the fact that the different directions of correlation have differ-
ent variance, and the data should be treated in a statistically normalized way along these
directions. For example, in the case of Figure 2.7, the data point ‘A’ can be more reasonably
considered an outlier than data point ‘B,” on the basis of the natural correlations in the
data. On the other hand, the data point ‘A’ is closer to the centroid of the data (than
data point ‘B’) on the basis of Euclidean distance, but not on the basis of the Mahalanobis
distance. Interestingly, data point ‘A’ also seems to have a much higher spectrum of angles
than data point ‘B,” at least from an average sampling perspective. This implies that, at
least on the basis of the primary criterion of angles, the angle-based method would incor-
rectly favor data point ‘B.” This is because it is unable to account for the relative relevance
of the different directions, an issue that becomes more prominent with increasing dimen-
sionality. The Mahalanobis method is robust to increasing dimensionality, because it uses
the covariance matrix in order to summarize the high dimensional deviations in a statis-
tically effective way. It is noteworthy that the Mahalanobis method should not be merely
considered an extreme-value method. In fact, as section 3.3.1 shows, its correlation-sensitive
characteristics are more powerful than its extreme-value characteristics.

We further note that each of the distances along the principal correlation directions
can be modeled as a 1-dimensional standard normal distribution, which is approximately
independent from the other orthogonal directions of correlation. As discussed earlier in this
chapter, the sum of the squares of d variables drawn independently from a standard normal
distribution, will result in a variable drawn from a y2-distribution with d degrees of freedom.

2.3. EXTREME-VALUE ANALYSIS IN MULTIVARIATE DATA 53

Therefore, the cumulative probability distribution tables of the x? distribution can be used
in order to determine the outliers with the appropriate level of significance.

2.3.4.1 Strengths of the Mahalanobis Method

Although the Mahalanobis method seems simplistic at first sight, it is easy to overlook
the fact that the Mahalanobis method accounts for the inter-attribute dependencies in
a graceful way, which become particularly important in high-dimensional data sets. This
simple approach turns out to have several surprising advantages over more complex distance-
based methods in terms of accuracy, computational complexity, and parametrization:

1. Tt is short-sighted to view the Mahalanobis method only as a multivariate extreme-
value analysis method because most of its power resides in its use of inter-attribute
correlations. The use of the covariance matrix ensures that inter-attribute depen-
dencies are accounted for in the outlier detection process. In fact, as discussed in
Chapter 3, one can view the Mahalanobis method as a soft version of PCA. Although
it is not immediately obvious, the merits of some of the sophisticated linear models
such as one-class support-vector machines (SVMs)? and matrix factorization are in-
herently built into the approach. In this sense, the Mahalanobis method uses a more
powerful model than a typical multivariate extreme-value analysis method. A detailed
discussion of the connections of PCA with the Mahalanobis method and its nonlinear
extension is provided in Chapter 3. Aside from its PCA-based interpretation, it also
has a natural probabilistic interpretation as a special case of the EM-method discussed
in the next section.

2. The Mahalanobis method is parameter-free. This is important in unsupervised prob-
lems like outlier detection, in which there is no meaningful way of setting the param-
eters by testing its performance on the data set. This is because ground-truth is not
available for parameter tuning.

3. The features in real data sets are often extracted in such a way that extremes in
values expose the outliers, which is an easy case for the Mahalanobis method. If
the analyst has an intuitive understanding that extremes in (many of the) feature
values are indicative of outliers, then the Mahalanobis method can sometimes be used
confidently. Even in cases where all features do not show this characteristic, the natural
aggregation effects in the Mahalanobis distance are able to expose the outliers. At the
very least, one can leverage the Mahalanobis method as one of the components of an
ensemble method (cf. Chapter 6) to exploit the subset of features that are friendly to
extreme-value analysis. A simple combination of a nearest-neighbor detector and the
Mahalanobis method can perform surprisingly robustly as compared to a variety of
other complex detectors. The addition of a distance-based component to an ensemble
method also ensures that outliers like data point ‘A’ in Figure 2.1 are not missed
completely.

4. As discussed later in Chapter 4, most distance-based methods require O(N?) time
for a data set containing N points. Even for data sets containing a few hundred
thousand points, it often becomes computationally challenging to compute the outlier

4Some one-class SVMs [538, 539] learn a circular separator wrapped around the centroid of the data,
albeit in a transformed kernel space. As discussed in the next chapter, it is also possible to kernelize the
Mahalanobis method because of its PCA-based interpretation. Furthermore, the solutions in the two cases
can be shown to be closely related (cf. section 3.4.3).

54 CHAPTER 2. PROBABILISTIC MODELS FOR OUTLIER DETECTION

101 . X ANOMALY
(EXTREMELY LOW FIT)

FEATURE Y
~
T

i X NOISE
s . (LowFm

* (HIGH FIT)
X POINT IN DENSE REGION

FEATURE X

Figure 2.8: Relating fit probabilities to anomalous behavior

scores. On the other hand, the Mahalanobis method is linear in the number of data
points, although it does require at least quadratic time and space in terms of the
data dimensionality. Nevertheless, since the number of points is typically orders of
magnitude greater than the number of dimensions, the Mahalanobis method has a
significant advantage in terms of computational time in most real-world settings.

Therefore, the Mahalanobis method can often be used as an additive component of ensemble
methods, even when it is not desirable to use it on a stand-alone basis.

2.4 Probabilistic Mixture Modeling for Outlier Analy-
sis

The previous section was focused on the problem of extreme-value analysis for outlier mod-
eling. The simple Mahalanobis method is effective for the example of Figure 2.7, because
the entire data set is distributed in one large cluster about the mean. For cases in which the
data may have many different clusters with different orientations, such an extreme-value
approach may not be effective. An example of such a data set is illustrated in Figure 2.1.
For such cases, more general distribution-based modeling algorithms are needed.

The key idea in this generalization is to use probabilistic mixture modeling of the data
points. Such models are typically gemerative models, where for each data point, we can
estimate the generative probability (or the fit probability) to the model. First, we assume a
specific form of the generative model (e.g., a mixture of Gaussians), and then estimate the
parameters of this model with the use of the expectation-maximization (EM) algorithm.
The parameters are estimated so that the observed data has a mazimum likelihood fit to
the generative model. Given this model, we then estimate the generative probabilities (or
fit probabilities) of the underlying data points. Data points that fit the distribution will
have high fit probabilities, whereas anomalies will have very low fit probabilities. Some
examples of how different types of data points relate to the fit probability in such a model
are illustrated in Figure 2.8.

The broad principle of a mixture-based generative model is to assume that the data was
generated from a mixture of & distributions with the probability distributions G; ... Gy with
the repeated application of the following stochastic process:

2.4. PROBABILISTIC MIXTURE MODELING FOR OUTLIER ANALYSIS 55

e Select the rth probability distribution with probability «,., where r € {1...k}.
e Generate a data point from G,.

We denote this generative model by M. The value «,. indicates the prior probability, and
intuitively represents the fraction of the data generated from mixture component r. We
note that the different values of «,., and the parameters of the different distributions G,
are not known in advance, and they need to be learned in a data-driven manner. In some
simplified settings, the values of the prior probabilities o, may be fixed to 1/k, although
these values also need to be learned from the observed data in the most general case. The
most typical form of the distribution G, is the Gaussian distribution. The parameters of
the distribution G, and the prior probabilities a,. need to be estimated from the data, so
that the data has the maximum likelihood fit of being generated. Therefore, we first need
to define the concept of the fit of the data set to a particular component of the mixture.
Let us assume that the density function of G, is given by f"(-). The probability (density
function) of the data point X; being generated by the model is given by the following:

k
fpoint(fle> — Zai . fz(Yj) (2.22)
i=1

Then, for a data set D containing N records denoted by X; ... Xy, the probability of the
data set being generated by the model M is the product of the corresponding individual
point-wise probabilities (or probability densities):

N
feem) = [T o (X51m) (2.23)

Jj=1

The log-likelihood fit £(D|M) of the data set D with respect to M is the logarithm of the
aforementioned expression and can be (more conveniently) represented as a sum of values
over the different data points.

N N k
L(DIM) =log [[] 7o (X5 M) | = log [Zarf"(Xj)] (2.24)
j=1 i=1

Jj=1

This log-likelihood fit needs to be optimized to determine the model parameters, and there-
fore maximize the fit of the data points to the generative model. The log-likelihood fit is
preferable to the likelihood fit because of its additive nature across different data points,
and its numerical convenience.

It is noteworthy that it is much easier to determine the optimal model parameters sep-
arately for each component of the mixture, if we knew (at least probabilistically), which
data point was generated by which component of the mixture. At the same time, the prob-
ability of generation of these different data points from different components is dependent
on these optimal model parameters. This circularity in dependence naturally suggests an
iterative EM-algorithm in which the model parameters and probabilistic data point assign-
ments to components are iteratively refined and estimated from one another. Let © be a
vector representing the entire set of parameters describing all components of the mixture
model. For example, in the case of the Gaussian mixture model, © would contain all the
component mixture means, variances, co-variances, and the parameters o ... ax. Then, the
EM-algorithm starts off with an initial set of values of © (possibly corresponding to random
assignments of data points to mixture components), and proceeds as follows:

56 CHAPTER 2. PROBABILISTIC MODELS FOR OUTLIER DETECTION

o (E-step) : Given current value of the parameters in ©, determine the posterior prob-
ability P(X;|G,,©) that the point X; was generated by the rth mixture component.
This computation is performed for all point-component pairs (X;,G,).

e (M-step): Given current probabilities of assignments of data points to clusters, use
maximum likelihood approach to determine the value of all the parameters ©, which
maximizes the log-likelihood fit on the basis of current assignments. Therefore, in
the Gaussian setting, all cluster means, covariance matrices, and prior probabilities
a1 ...ap need to be estimated.

It now remains to explain the details of the E-step and the M-step. The E-step simply
computes the probability density of the data point X, being generated by each component
of the mixture, and then computes the fractional value for each component. This is defined
by the Bayes posterior probability that the data point X; was generated by component r
(with model parameters fixed to the current set of the parameters ©). Therefore, we have:
ar - f T’@(Xj)
Yy f1O(X;)
With some abuse of notation, a superscript © has been added to the probability density
functions in order to denote the fact that they are evaluated at the current set of model
parameters ©.

Next, we describe the parameter estimation of the M-step, which maximizes the like-
lihood fit. In order to optimize the fit, we need to compute the partial derivative of the
log-likelihood fit with respect to corresponding model parameters, and set them to 0 in
order to determine the optimal value. The values of «,. are easy to estimate and are equal
to the expected fraction of the points assigned to each cluster, based on the current values
of P(G,|X,,0©). In practice, in order to obtain more robust results for smaller data sets, the
expected number of data points belonging to each cluster in the numerator is augmented
by 1, and the total number of points in the denominator is N + k. Therefore, the estimated
value of a, is (1 + Z;\;l P(G,|X;,0))/(k + N). This approach is a form of regularization,
and it is also referred to as Laplacian smoothing. For example, if NV is extremely small, such
an approach pushes the assignment probability towards 1/k. This represents a natural prior
assumption about the distribution of points in clusters.

In order to determine the other parameters specific to a particular component r of
the mixture, we simply treat each value of P(G,.|X;,©) as a weight of that data point
in that component, and then perform maximum likelihood estimation of the parameters
of that component. This is generally a much simpler process than having to deal with all
components of the mixture at one time. The precise estimation process depends on the
probability distribution at hand. For example, consider a setting in which the rth Gaussian
mixture component in d dimensions is represented by the following distribution:

P(G/|X;,0) = (2.25)

1 I~ vl T

\/m . (2 . ﬂ_)(d/2) exp 9 (X] /’[’T) Zr (X] :LLT) (226)
Here, 7, is the d-dimensional mean vector and X, is the d x d co-variance matrix of the
generalized Gaussian distribution of the rth component. The value of |X,| denotes the
determinant of the covariance matrix. When the number of mixture components is large,
the non-diagonal entries are often set to 0 in order to reduce the number of estimated
parameters. In such cases, the determinant of X, simplifies to the product of the variances
along the individual dimensions.

Fro(%;) =

2.4. PROBABILISTIC MIXTURE MODELING FOR OUTLIER ANALYSIS 57

X <= POINT B

FEATURE Y
e
T

X <= POINT A

L L L L L L \
0 1 2 3 4 5 6 7 8
FEATURE X

Figure 2.9: EM-Algorithm can determine clusters with arbitrary correlations (Revisiting
Figure 2.1)

It can be shown that the maximum-likelihood estimation of 7, and [X,];; are equal to the
(probabilistically weighted) means and co-variances of the data points in that component.
Recall that these probabilistic weights were derived from the assignment probabilities in the
E-step. Thus, the E-step and the M-step depend on each other and can be probabilistically
executed to convergence in order to determine the optimum parameter values O.

At the end of the process, we have a probabilistic model that describes the entire data
set as the observed output of a generative process. This model also provides a probabilistic
fit value for each data point in the form of Equation 2.22. This value provides the outlier
score. Thus, we can use this fit in order to rank all the data points, and determine the most
anomalous ones. The idea is that points that are far away from the dense regions in the
data (such as the one shown in the upper region of Figure 2.8) will have very low fit values.
These points are the anomalies in the data. If desired, statistical hypothesis testing can be
applied for identification of outliers with unusually low fit values. However, for statistical
testing, the logarithm function should be applied to the fit values (i.e., log-likelihood fits
should be used) to reduce the relative variance of inliers (large fit values), so that points
with very low fit values will pass an extreme-value test.

The approach requires the number of mixture components as an input parameter. In
some cases, domain-specific insights about the data can be used to make meaningful choices.
In cases where such insights are not available, an ensemble of mixture models with different
parameter settings is useful [184]. In particular, the work in [184] averages the point-wise
log-likelihood scores obtained on models with different numbers of mixture components.
Furthermore, these models are built on different samples of the data set. Excellent results
have been reported using this approach.

2.4.1 Relationship with Clustering Methods

Probabilistic mixture modeling is a stochastic version of clustering methods, which can
also be used for outlier detection (cf. Chapter 4). It is noteworthy that the fit values in a
Gaussian mixture model use the distances of points from cluster centroids in the exponent
of the Gaussian. Therefore, the log-likelihood fit of a single Gaussian is the Mahalanobis
distance, although the additive fits from multiple Gaussians cannot be simplified in this

58 CHAPTER 2. PROBABILISTIC MODELS FOR OUTLIER DETECTION

manner. Nevertheless, the effect of the nearest cluster is often predominant in the fit values.
In the clustering models of Chapter 4, only the distance to the nearest cluster centroid is
used directly as the outlier score. Therefore, the clustering techniques of Chapter 4 can be
viewed as hard versions of the EM-algorithm in which a specific (nearest) cluster is used for
scoring the points rather than using the combined fit values from all the clusters in a soft
probabilistic combination.

The EM-algorithm can identify arbitrarily oriented clusters in the data, when the clus-
ters have elongated shapes in different directions of correlation. This can help in better
identification of outliers. For example, in the case of Figure 2.9, the fit of point ‘A’ would
be lower than that for point ‘B,” even though point ‘B’ is closer to a cluster on the basis of
absolute distances. This is because the Mahalanobis distance in the exponent of the Gaus-
sian normalizes for the distances along the different directions of correlation in the data.
Indeed, data point ‘A’ is more obviously an outlier.

2.4.2 The Special Case of a Single Mixture Component

Interestingly, the special case in which the mixture distribution contains a single Gaus-
sian component (cf. Equation 2.26) works surprisingly well in real settings. This is in part
because using a single Gaussian component corresponds to the Mahalanobis method of sec-
tion 2.3.4. The specific merits of this method are discussed in section 2.3.4.1. As we will see
in Chapter 3, this leads to a soft version of Principal Component Analysis (PCA), which is
known to be effective because of its ability to identify data points that violate interattribute
dependencies. The Mahalanobis method can therefore be explained both from the point of
view of probabilistic methods and linear models.

Although the use of a single mixture component seems to miss true outliers (like the
outlier ‘A’ of Figure 2.9), it also has the advantage that none of the mixture components
can overfit a small but tightly-knit cluster of outliers. When a larger number of mixture
components are used, one of the components might correspond to a small tightly knit group
of outliers like the outlier cluster illustrated in Figure 2.10. The Mahalanobis method will
correctly label the points in this cluster as outliers, whereas a mixture model (with a larger
number of components) runs the risk of modeling this small cluster as a legitimate mixture
component. Interesting anomalies often occur in small clusters because they might have
been caused by similar underlying causes (e.g., a specific disease or type of credit-card
fraud). The Mahalanobis method is able to identify such clusters as outliers because they
are often inconsistent with the global mean and covariance structure of the data. Because
of these typical characteristics of real data sets, very simple methods like the Mahalanobis
method sometimes outperform significantly more complex models.

As discussed in section 3.3.8 of the next chapter, one can also combine the Mahalanobis
method with kernel methods to model more general distributions. For example, some vari-
ations of these methods can correctly identify the outlier ‘A’ in Figure 2.9. An ensemble-
centric version of this approach has been shown to provide high-quality results [35].

2.4.3 Other Ways of Leveraging the EM Model

The EM model discussed in the previous section quantifies the outlier score as the fit of the
point to any of the mixture components. Therefore, all mixture components are assumed to
be instances of the normal class. A different approach is one in which some domain-specific
insights are available about the differences in distribution of the normal classes and the
anomalous class. In such a case, different probability distributions are used to model the

2.4. PROBABILISTIC MIXTURE MODELING FOR OUTLIER ANALYSIS 59

X <-POINT B

X <~ POINT A

FEATURE Y
e

OUTLIER
CLUSTER

3
FEATURE X

Figure 2.10: The use of a single mixture component is robust to the presence of small outlier
clusters

normal and anomalous classes. The outlier score of a point is quantified as its fit to the
anomalous class and larger scores are indicative of anomalies. This approach is generally
difficult to use in the absence of specific insights about the differences in distribution of
the normal and anomalous classes. For example, such an approach has been used for the
identification of particular types of outliers such as noise [110]. In the next section, we will
provide another example of a setting in which it is possible to model normal and outlier
classes with realistic (and different) distributions.

2.4.4 An Application of EM for Converting Scores to Probabilities

Interestingly, EM algorithms can also be used as a final step after many such outlier de-
tection algorithms for converting the scores into probabilities [213]. Note that the fit value
returned by the EM algorithm of the previous section (cf. Equation 2.22) is a probability
density value, and cannot be interpreted as a numerical probability. The ability to charac-
terize an outlier in terms of numerical probabilities is a very useful step for intuition and
interpretability.

The idea is that the distribution of the scores can be treated as a univariate data set,
which can then be fit to a probabilistic generative model. In this case, the outlier points
are explicitly assumed to belong to a component of the mixture model (rather than simply
treating them as points with low fit values). Note that one can differentiate the outlier
and non-outlier classes in this setting only if some additional insight is available about
the natural distributions of the outlier and non-outlier classes. Therefore, different types of
distributions can be used to model the outlier and non-outlier components. The work in [213]
uses a bimodal mixture of exponential and Gaussian functions. The assumption is that the
non-outlier points are distributed according to the exponential distribution, whereas the
outlier points are distributed according to the Gaussian distribution. This assumption is
made on the basis of the “typical” behavior of outlier scores in real applications. The EM
algorithm is used to compute the parameters of each component of the mixture distribution,
and the corresponding prior probabilities of assignment. These can be used in order to
convert the outlier scores into probabilities with the use of the Bayes rule, since it is now

60 CHAPTER 2. PROBABILISTIC MODELS FOR OUTLIER DETECTION

possible to compute the posterior probability (see Equation 2.25) that the data point belongs
to the outlier component. We note that the assignment of a component of the mixture to the
outlier class is critical in being able to estimate the probability that a data point is an outlier,
which is facilitated by the difference in the distributions (Gaussian versus exponential) of
outliers scores in the two classes.

2.5 Limitations of Probabilistic Modeling

Parametric methods are very susceptible to noise and overfitting in the underlying data.
Mixture models always assume a specific distribution of the data, and then try to learn
the parameters of this distribution. A natural trade-off exists between the generality of this
distribution and the number of parameters that need to be learned. If this trade-off is not
calibrated carefully, then one of the following two scenarios could occur:

e When the particular assumptions of the model are inaccurate (e.g., inappropriate use
of Gaussian distribution), the data is unlikely to fit the model well. As a result, a lot
of spurious data points may be reported as outliers.

e When the model is too general, the number of parameters to describe the model
increases. For example, when one uses an inappropriately large number of mixture
components, a small but tightly-knit outlier cluster may fit one of the mixture com-
ponents. An example of such a small cluster is illustrated in Figure 2.10. In fact, the
technique in the previous section of converting scores to probabilities leverages the fact
that univariate outlier scores often cluster together in a Gaussian distribution. Unfor-
tunately, there is no way of generalizing this approach easily to multidimensional data
sets. As a result, when reporting points of low fit as outliers (rather than a specially
modeled outlier class), it is always possible to miss the true outliers as a result of the
overfitting caused by small clusters of outliers. One possibility for reducing overfitting
is to fix the prior probabilities to 1/k, although such assumptions might sometimes
result in under-fitting.

The proper selection of simplifying assumptions is always tricky. For example, the clusters
in the data may be of arbitrary shape or orientation, and may not fit a simplified Gaussian
assumption in which the data values along different dimensions are independent of one
another. This corresponds to setting the non-diagonal entries of X, to 0 in the Gaussian
case. In real data sets, significant correlations may exist among the different dimensions. In
such cases, one cannot assume that the matrix X, is diagonal, which would necessitate the
learning of O(d?) parameters for each cluster. This can cause overfitting problems when the
number of points in the data set is small. On the other hand, efficiency remains a concern in
the case of larger data sets, especially if a larger number of parameters are estimated. This
is because these methods use the iterative EM algorithm, which needs to scan the entire
data step in each iteration of the E- and M-steps. However, these methods are still more
efficient than many point-to-point distance-based methods, which require O(N?) time for
a data set containing N points. These methods will be discussed in Chapter 4.

Finally, the issue of interpretability remains a concern for many parametric methods. For
example, consider the generalized Gaussian model, which tries to learn clusters with non-
zero covariances. In such a case, it is difficult to intuitively interpret the clusters with the
use of these parameters. Correspondingly, it is also difficult to define simple and intuitive
rules that provide critical ideas about the underlying outliers. We note that this issue

2.6. CONCLUSIONS AND SUMMARY 61

may not necessarily be a problem for all parametric methods. If the parameters are chosen
carefully enough, then the final model can be described simply and intuitively. For example,
simplified versions of the Gaussian model without co-variances may sometimes be described
simply and intuitively in terms of the original features of the data. On the other hand, such
simplifications might cause under-fitting and other qualitative challenges. These trade-offs
are, however, endemic to almost all outlier detection methods and not just probabilistic
models.

2.6 Conclusions and Summary

In this chapter, a number of fundamental probabilistic and statistical methods for outlier
analysis were introduced. Such techniques are very useful for confidence testing and extreme-
value analysis. A number of tail inequalities for extreme-value analysis were also introduced.
These methods can also be generalized to the multivariate scenario. Extreme-value analysis
has immense utility as a final step in converting the scores from many outlier analysis
algorithms into binary labels. In many specific applications, such techniques turn out to
be very useful even for general outlier analysis. The EM approach for probabilistic mixture
modeling of outliers can be viewed as a generalization of the Mahalanobis method. This
technique can also be viewed as one of the clustering methods that are commonly used for
outlier detection.

2.7 Bibliographic Survey

The classical inequalities (e.g., Markov, Chebychev, Chernoff, and Hoeflding) are widely
used in probability and statistics for bounding the accuracy of aggregation-based statistics.
A detailed discussion of these different methods may be found in [407]. A generalization of
the Hoeffding’s inequality is the McDiarmid’s inequality [393], which can be applied to a
more general function of the different values of X; (beyond a linearly separable sum). The
main restriction on this function is that if the ith argument of the function (i.e., the value
of X;) is changed to any other value, the function cannot change by more than c¢;.

The central limit theorem has been studied extensively in probability and statistics [88].
Originally, the theorem was proposed for the case of sums of independent and identically
distributed variables. Subsequently, it was extended by Aleksandr Lyapunov to cases where
the variables are not necessarily identically distributed [88], but do need to be independent.
A weak condition is imposed on these distributions, ensuring that the sum is not dominated
by a few of the components. In such a case, the sum of the variables converges to the normal
distribution as well. Thus, this is a generalized version of the Central Limit Theorem.

Statistical hypothesis testing has been used widely in the literature in order to determine
statistical levels of significance for the tails of distributions [74, 462]. A significant literature
exists on hypothesis testing, where the anomalous properties of not just individual data
points, but also the collective behavior of groups of data points can be tested. Such tech-
niques are also used in online analytical processing scenarios where the data is organized
in the form of data cubes. It is often useful to determine outliers in different portions of a
data cube with the use of hypothesis testing [474].

The statistical method for deviation detection with variance reduction was first pro-
posed in [62]. Angle-based methods for extreme-value analysis in multivariate data were
proposed in [325]. The multivariate method for extreme-value analysis with the use of the

62 CHAPTER 2. PROBABILISTIC MODELS FOR OUTLIER DETECTION

Mahalanobis distance was proposed in [343, 493]. This technique does not work well when
the outliers lie in sparse regions between clusters. A number of depth-based methods have
been proposed in [295, 468]. These methods compute the convex hull of a set of data points,
and progressively peel off the points at the corners of this hull. The depth of a data point
is defined as the order of convex hull that is peeled. These techniques have not found much
popularity because they suffer the same drawback as the method of [343] for finding inter-
nally located outliers. Furthermore, convex hull computation is extremely expensive with
increasing dimensionality. Furthermore, with increasing dimensionality an increasing pro-
portion of the points will lie on the outermost convex hull. Therefore, such methods can
only be applied to 2- or 3-dimensional data sets in practice.

It should be noted that the use of probabilistic methods for outlier detection is distinct
from the problem of outlier detection in probabilistic or uncertain data [26, 290, 559]. In the
former case, the data is uncertain, but the methods are probabilistic. In the latter case, the
data itself is probabilistic. The seminal discussion on the EM-algorithm is provided in [164].
This algorithm has a particularly simple form, when the components of the mixture are
drawn from the exponential family of distributions. The work in [578] proposed an online
mixture learning algorithm, which can handle both categorical and numerical variables.
An interesting variation of the EM-algorithm treats one component of the mixture model
specially as an anomaly component [187]. Correspondingly, this component is drawn from
a uniform distribution [187], and is also assigned a low a priori probability. Therefore,
instead of determining the anomalous points that do not fit any mixture component well,
this approach tries to determine the points which fit this special component of the mixture.
Such an approach would generally be more effective at modeling noise rather than anomalies,
because the special component in the mixture model is likely to model the noise patterns.
Finally, a Gaussian mixture model has also been used recently in order to create a global
probabilistic model for outlier detection [583].

The EM-algorithm has also been used for clutter removal from data sets [110]. In this
case, noise is removed from the data set by modeling the derived data as a mixture of
Poisson distributions. We note that the approach in [110] is designed for noise detection,
rather than the identification of true anomalies. It was shown in [110] that the improvement
in data quality after removal of the clutter (noise) was significant enough to greatly ease the
identification of relevant features in the data. The approach of using a special component of
the mixture in order to convert the distribution of outlier scores into probabilities has been
used in [213]. In addition to the approach discussed in section 2.4.4, a different modeling
approach with the use of the logistic sigmoid function is discussed in [213]. Methods for
converting outlier scores into probabilities in the supervised scenario have been discussed
in [599].

An implicit assumption made by EM methods is that the attributes are conditionally
independent of one another once the mixture component has been selected. A probabilistic
approach that makes stronger assumptions on attribute interdependence is the Bayesian
Network. The Bayesian network approach for outlier detection [66] models dependencies
among attributes with an off-the-shelf network and uses these dependencies to score points
as outliers based on the violations of these dependencies.

2.8 Exercises

1. [Upper-Tail Chernoff Bound] The chapter provides a proof sketch of the upper-tail
Chernoff bound, but not the full proof. Work out the full proof of bound on the upper

2.8.

EXERCISES 63

tail using the lower-tail proof as a guide. Where do you use the fact that 6 < 2-e—17

. Suppose you flip an “unbiased” coin 100 times. You would like to investigate whether

the coin is showing anomalous behavior (in terms of not being “unbiased” as claimed).
Determine the mean and standard deviation of the random variable representing the
number of “tails”, under the assumption of an unbiased coin. Provide a bound on the
probability that you obtain more than 90 tails with the use of the (i) Markov Inequality
(ii) Chebychev Inequality (iii) Chernoff Upper Tail Bound, (iv) Chernoff Lower Tail
Bound and (v) Hoeflding Inequality. [Hint: Either the upper-tail or lower-tail Chernoff
bound can be used, depending on which random variable you look at.]

. Repeat Exercise 2, when you know that the coin is rigged to show “tails” every eight

out of nine flips.

. Use the central limit theorem to approximate the number of tails by a normal distri-

bution. Use the cumulative normal distribution to approximate the probability that
the number of “tails” should be more than 90 for both the cases of Exercises 2 and 3.

. A manufacturing process produces widgets, each of which is 100 feet long, and has a

standard deviation of 1 foot. Under normal operation, these lengths are independent
of one another.

e Use the normal distribution assumption to compute the probability that some-
thing anomalous is going on in the manufacturing process, if a sampled widget
is 101.2 feet long?

e How would your answer change, if the sampled widget was 96.3 feet long?

. In the example above, consider the case where 10,000 widgets from the assembly line

were sampled, and found to have an average length of 100.05. What is the probability
that something anomalous is going on in the manufacturing process?

. Use MATLAB or any other mathematical software to plot the ¢-distribution with 100

degrees of freedom. Superimpose a standard normal distribution on this plot. Can you
visually see the difference? What does this tell you?

. Work out the steps of the EM-algorithm, when all non-diagonal elements of the covari-

ance matrix Y are set to zero, and each diagonal element in a given component has the
same value. Furthermore, the prior probabilities of assignment are equal to 1/k, where
k is the number of mixture components. Now perform the following modifications:

e Change the E-step, so that each data point is deterministically assigned to the
cluster with the highest probability (hard assignment), rather than a soft proba-
bilistic assignment. Under what distance-based conditions does a data point get
assigned to a cluster?

e How does this algorithm relate to the k-means algorithm?

e How would your answers change, if all components were constrained to have the
same cluster variance?

. Using the insights gained from Exercise 8, work out how the EM-algorithm with a

Gaussian mixture model with a complete set of covariance matrices %, and a fixed
set of priors, relates to a generalized k-means algorithm. [Hint: Consider the concept
of Mahalanobis distance computations for assignments in k-means. How should the
prior probabilities be defined?]

64 CHAPTER 2. PROBABILISTIC MODELS FOR OUTLIER DETECTION

10. Download the KDD Cup 1999 data set from the UCI Machine Learning Reposi-
tory [203]. Extract the quantitative attributes from the data set. Apply the EM-
algorithm with 20 mixture components, when non-diagonal elements are set to 0.

e Determine the fit of each data point to the learned distribution. Determine the
top 10 points with the least fit. Do these data points correspond to intrusion
attacks or normal data?

e Repeat the process while allowing non-zero non-diagonal elements. How does
your answer change?

e Randomly sample 990 points from the data set, and then add the 10 points found
in the first case above. Repeat the procedure on this smaller data set. Do you find
significant anomalies in terms of fit probabilities? Do the lowest fit probabilities
correspond to the same data points as in the first case above?

e Repeat the same procedure with the second case above.

11. Repeat the first two portions of Exercise 10 on the Ionosphere data set from the UCI
Machine Learning Repository. Note that the Ionosphere data set has much higher
dimensionality (of quantitative attributes) and smaller number of records. Do you
determine the same top-10 anomalies in the two cases? What are the absolute fit

probabilities? What does this tell you about applying such algorithms to small and
high dimensional data sets?

12. Let Z be a random variable satisfying E[Z] = 0, and Z € [a, b].

o Show that E[et?] < et (b=a)*/8,

e Use the aforementioned result to complete the proof of the Hoeffding inequality.

Chapter 3

Linear Models for Outlier Detection

“My nature is to be linear, and when I’'m not, I feel really proud of
myself.” — Cynthia Weil

3.1 Introduction

The attributes in real data are usually highly correlated. Such dependencies provide the
ability to predict attributes from one another. The notions of prediction and anomaly de-
tection are intimately related. Outliers are, after all, values that deviate from expected (or
predicted) values on the basis of a particular model. Linear models focus on the use of inter-
attribute dependencies to achieve this goal. In the classical statistics literature, this process
is referred to as regression modeling.

Regression modeling is a parametric form of correlation analysis. Some forms of corre-
lation analysis attempt to predict dependent variables from other independent variables,
whereas other forms summarize the entire data in the form of latent variables. An example
of the latter is the method of principal component analysis. Both forms of modeling can be
very useful in different scenarios of outlier analysis. The former is more useful for complex
data types such as time-series (see Chapters 9 and 11), whereas the latter is more useful
for the conventional multidimensional data type. A unified discussion of these two forms of
linear modeling also lays the foundations for some of the discussions in later chapters.

The main assumption in linear models is that the (normal) data is embedded in a
lower-dimensional subspace. Data points that do not naturally fit this embedding model
are, therefore, regarded as outliers. In the case of proximity-based methods, which will
be discussed in the next chapter, the goal is to determine specific regions of the space in
which outlier points behave very differently from other points. On the other hand, in linear
methods, the goal is to find lower-dimensional subspaces, in which the outlier points behave
very differently from other points. This can be viewed as an orthogonal point of view to
clustering- or nearest-neighbor methods, which try to summarize the data horizontally (i.e.,
on the rows or data values), rather than vertically (i.e., on the columns or dimensions). As
will be discussed in the chapter on high-dimensional outlier detection, it is, in principle,

© Springer International Publishing AG 2017 65
C.C. Aggarwal, Outlier Analysis, DOI 10.1007/978-3-319-47578-3_3

66 CHAPTER 3. LINEAR MODELS FOR OUTLIER DETECTION

possible to combine these methods to obtain more general local subspace models, which can
identify outliers by integrating the horizontal and vertical criteria in a holistic way.

The assumption of linear correlations is a critical leap of faith used by linear models.
This may or may not be true for a particular data set, which will have a crucial impact
on modeling effectiveness. In order to explain this point, we will use the Autompg and
Arrythmia data sets from the UCI Machine Learning Repository [203]. The first data set
contains features describing various car measurements and the corresponding mileage (mpg).
The second data set contains features derived from electrocardiogram (ECG) readings of
human patients.

In Figures 3.1(a) and (b), the dependence of the Miles per Gallon attribute has been
shown on each of the displacement and horsepower attributes, respectively, for the Autompg
data set. It is evident that these attributes are highly correlated. Although a significant
level of noise is also present in this particular data set, the linear dependence between
the attributes is readily apparent. In fact, it can be shown for this data set, that with
increasing dimensionality (by selecting more attributes from the data set), the data can
be aligned along much lower-dimensional planes. This is also evident in the 3-dimensional
plot of Figure 3.1(e). On the other hand, when various views along three of the measured
dimensions of the Arrythmia data set (Figures 3.1(c), (d) and (f)) are examined, it is
evident that the data separates out into two clusters, one of which is slightly larger than
the other. Furthermore, it is rather hard to embed this type of data distribution into a
lower-dimensional subspace. This data set is more suitable for proximity-based analysis,
which will be presented in Chapter 4. The reason for introducing this example is to revisit
the point made in the first chapter about the impact of the choices made during the crucial
phase of selecting the correct model of normal data. In this particular case, it is evident
that the linear model is more appropriate for data sets in which the data naturally aligns
along lower-dimensional hyperplanes.

For unsupervised problems like outlier detection, it is hard to guarantee that a specific
model of normal data will be effective. For example, in some data sets, different subsets
of attributes may be suitable for different models. Such data sets are best addressed with
the use of subspace methods discussed in Chapter 5, which can combine the power of row
and column selection for outlier analysis. However, in many cases, simplified models such as
linear models or proximity-based models are sufficient, without incurring the complexity of
subspace methods. From a model-selection perspective, exploratory and visual analysis of
the data is rather critical in the first phase of outlier detection in order to find out whether
a particular data model is suitable for a particular data set. This is particularly true in the
case of unsupervised problems like outlier detection in which ground-truth is not available
in order to test the effectiveness of various models.

In this chapter, two main classes of linear models will be studied. The first class of
models uses statistical regression modeling between dependent and independent variables
in order to determine specific types of dependencies in the data. Such forms of modeling are
more useful when some of the attributes are naturally predictive of others. For example, it
is natural to predict the last value of a time-series based on a window of previous history of
values in the time-series. In such cases, dependency-oriented regression modeling is leveraged
by creating a derived data set of dependent and independent variables and quantifying
deviations in the observed value of the dependent variable from its predicted value. Even
for multidimensional data, we will show in section 7.7 of Chapter 7 that dependency-oriented
models for regression can be used to decompose the unsupervised outlier detection problem
into d different regression modeling problems for d-dimensional data. The second class of
models uses principal component analysis to determine the lower-dimensional subspaces

3.1. INTRODUCTION 67

MILES PER GALLON

Q-T INTERVAL

MILES PER GALLON

50 T T T T T T T T 50 T T T T
x x
st 1 st ,
¥ X: x
® *
w2 1 b * 4
% “° X x %
% x S x
sl xR 5 5 Koo ocx
Eox 1 L % i
ES 1 S ke P
RFE z X x N
SRS % 3 B R
30+ xxgx % q < 301 g Bex x 4
x o M o} ¢ PR %
Ko B) - o R
e g x o 2
BreEs K T x] 8 %7 X SRR T 7
SR x E x o <X
«OF ok ox H x mxgx
20} x ><§%x§)>(< ¥ ZS% X x B 20} RIS« x R
x S “o e o % Xx
X H o §§ gg(3] x X”%"Xg(ixix;{;gx x
% - Ixx XN x % x
151 XX %% § & x 1 151 x KR e o E x 4
xx x X xx ok X% x xxx
X YEx . ox % x ke Exk % H
oxx x"x WK X x x
x X Ok x H <
10l x x 4 10| x Tx 4
3 x
s . , , . , , . . 5 , , , ,
50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250
DISPLACEMENT HORSEPOWER
(a) View 1 (Autompg) (b) View 2 (Autompg)
550 T T T T T T T
x x
so0 1 500 —
x
450 x 1 450 1
x x
x
x x x
o x
400 . 1 < 4001 x 1
x % z
x =
5 x
= x
350 B | 3501 1
x (<]
x
300 1 300 1
x
x x
x x
250 A 250 b
xox Xy
« «
200 , , , , . , ,
50 100 150 200 o 100 200 300 400 500 600
QRS DURATION P-R INTERVAL
(¢c) View 1 (Arrythmia) (d) View 2 (Arrythmia)
50—
45
40—
x
x
354 550
30 500
_ 450
25 * <
x @ 400
x 3
20 gt Z 350
I 200
G 300

250

200
600

300

200

300 200
400 500

DISPLACEMENT HORSEPOWER P-R INTERVAL °

(e) 3-d View (Autompg) (f) 3-d View (Arrythmia)

50 QRS DURATION

Figure 3.1: Effectiveness of linear assumption is data-set dependent

68 CHAPTER 3. LINEAR MODELS FOR OUTLIER DETECTION

of projection. These models are useful for traditional multidimensional data because all
attributes are treated in a homogeneous way with no distinction between dependent and
independent variables. At a technical and mathematical level, both forms of modeling are
quite similar, and use very similar methods in order to derive the optimal lower-dimensional
representations. The main difference is in how the objective function of the two models is
formulated. Some of the dependency-oriented models discussed in this chapter will also
be useful in formulating outlier-detection models in the dependency-oriented data types
discussed in later chapters.

It should be emphasized that regression-analysis is used extensively to detect anomalies
in time-series data, and many of the basic techniques discussed in this chapter are applicable
to that scenario as well. This techniques will be discussed in more detail in Chapter 9. How-
ever, since the time-series aspect of the problem is also based on dependencies of temporally
adjacent data values, there are a number of subtle differences in the modeling process for
multidimensional data and that for time-series data. Therefore, in this chapter, the much
simpler case of multidimensional outlier analysis will be addressed. At the same time, the
discussion will be general enough, so that the technical machinery required for applying
regression analysis to the time-series scenario (Chapter 9) is introduced.

This chapter is organized as follows. In section 3.2, the basic linear regression models
for outlier analysis will be introduced. In section 3.3, the principal component method for
outlier analysis will be discussed. This can be considered an important special case of lin-
ear regression models, which is used frequently in outlier analysis, and it uses a similar
optimization model. Therefore it is given a dedicated treatment in its own section. We dis-
cuss both the hard and soft versions of principal component analysis and show that the
latter is equivalent to the Mahalanobis method discussed in the previous chapter. Further-
more, this technique can be easily extended to the nonlinear case with kernel methods.
The related problem of one-class support-vector machines is discussed in section 3.4. A
matrix-factorization view of linear models is discussed in section 3.5. Neural networks are
introduced in section 3.6. Section 3.7 will study the limitations of linear models for outlier
analysis. Section 3.8 contains the conclusions and summary.

3.2 Linear Regression Models

In linear regression, the observed values in the data are modeled using a linear system of
equations. Specifically, the different dimensions in the data are related to one another using a
set of linear equations, in which the coefficients need to be learned in a data-driven manner.
Since the number of observed values is typically much larger than the dimensionality of
the data, this system of equations is an over-determined one and cannot be solved exactly
(i.e., zero error). Therefore, these models learn the coefficients that minimize the squared
error of the deviations of data points from values predicted by the linear model. The exact
choice of the error function determines whether a particular variable is treated specially
(i.e., error of predicted variable value), or whether variables are treated homogeneously
(i.e., error distance from estimated lower-dimensional plane). These different choices of the
error function do not lead to the same model. In fact, the discussion in this chapter will show
that the models can be qualitatively very different especially in the presence of outliers.
Regression analysis is generally considered an important application in its own right in
the field of statistics. In classical instantiations of this application, it is desired to learn
the value of a specific dependent variable from a set of independent variables. This is a
common scenario in time-series analysis, which will be discussed in detail in Chapter 9.

3.2. LINEAR REGRESSION MODELS 69

Thus, a specific variable is treated specially from the other variables. Independent variables
are also referred to as explanatory variables. This is a common theme with contextual data
types, in which some attributes (e.g., time, spatial location, or adjacent series values) are
treated as independent, whereas others (e.g., temperature or environmental measurements)
are treated as dependent. Therefore, much of the framework in this section will also set the
stage for the analysis of dependency-oriented data types in later chapters. However, for the
straightforward multidimensional data type, all dimensions are treated in a homogeneous
way, and the best-fitting linear relation among all the attributes is estimated. Therefore,
there are subtle differences in the modeling (i.e., optimization formulation) of these two
different settings.

Consider a domain such as temporal and spatial data, in which the attributes are par-
titioned into contextual and behavioral attributes. In such cases, a particular behavioral
attribute value is often predicted as a linear function of the behavioral attributes in its con-
tertual neighborhood in order to determine deviations from expected values. This is achieved
by constructing a multidimensional data set from the temporal or spatial data in which a
particular behaviorial attribute value (e.g., temperature at current time) is treated as the
dependent variable, and its contextual neighborhood behaviorial values (e.g., temperatures
in previous window) are treated as the independent variables. Therefore, the importance
of predicting the dependent variable is paramount in estimating deviations and thereby
quantifying outlier scores. In such cases, outliers are defined on the basis of the error of pre-
dicting the dependent variable, and anomalies within the interrelationships of independent
variables are considered less important. Therefore, the focus of the optimization process is
on minimizing the predicted error of the dependent variable(s) in order to create the model
of normal data. Deviations from this model are flagged as outliers.

The special case of regression analysis with dependent variables will be studied first.
The discussion of this case also sets the stage for a more detailed discussion for the cases of
time-series data in Chapter 9 and spatial data in Chapter 11. Furthermore, the use of this
technique for decomposition of the multidimensional outlier detection problem into a set of
regression modeling problems will be studied in section 7.7 of Chapter 7. The identification
of outliers in such cases is also very useful for noise reduction in regression modeling [467],
which is an important problem in its own right.

In a later section, we will introduce a more general version of linear models in which
no distinction is made between dependent and independent variables. The basic idea here
is that the (normal) data are assumed to lie on a lower-dimensional hyperplane in the
feature space. The normalized deviation of a point from this lower-dimensional hyperplane
(in a direction perpendicular to the hyperplane) is used to compute the outlier score. As
we will show later, these simple linear models can be greatly enriched with the use of
data transformations that are able to map these linear models to more complex nonlinear
models. Interestingly, certain types of transformations even allow the use of these linear
models for outlier detection in more complex data types such as time-series data, discrete
sequence data, and graph data. Furthermore, many other linear and nonlinear models such
as one-class support-vector machines and neural networks can be viewed as variants of these
models.

70 CHAPTER 3. LINEAR MODELS FOR OUTLIER DETECTION

3.2.1 Modeling with Dependent Variables

A variable y can be modeled as a linear function of d dependent variables (or dimensions)

as follows:
d

Y= Zwi “ X+ Wdt1
i=1
The variable y is the response variable or the dependent variable, and the variables x1 ... x4
are the independent or the explanatory variables. The coefficients ws ...wg+1 need to be
learned from the training data. The data set might contain N different instances denoted
by Xi...Xn. The d dimensions in the jth point YJ are denoted by (z;1...2;4). The jth
response variable is denoted by y;. These N instance-pairs (fj, y;) provide examples of how
the dependent variable is related to the d independent variables with a linear function. The
parameters of the linear function are learned with an optimization model that minimizes
the aggregate squared error of predicting the dependent variable. The key assumption here
is that the dependent variable is central to the application at hand, and therefore errors
are defined only with respect to this variable. Outliers are defined as those data points in
which the linear function learned from the N instances provides an unusually large error.
Therefore, the jth instance of the response variable is related to the explanatory variables

as follows:
d

yj:Zwi-xji—i-wdH—kej V]E{L,N} (31)
i=1
Here, €; represents the error in modeling the jth instance, and it provides the outlier score

of the pair (X;,y;). In least-squares regression, the goal is to determine the regression
coefficients w; ... wg41 that minimize the error Zjvzl €.

We will first introduce the notations needed to convert the system of N equations in
Equation 3.1 into matrix form. The N x (d + 1)-matrix whose jth row is (zj1...2;4,1) is
denoted by D, and the N x 1 matrix (column vector) of the different values of y;...yn
is denoted by . The value of 1 is included as the final dimension in each row of D in
order to address the effect of the constant term wg11. Thus, the first d dimensions of D
can be considered a d-dimensional data set containing the N instances of the independent
variables, and 7 is a corresponding N-dimensional column-vector of response variables. The
(d + 1)-dimensional row-vector of coefficients wy ... w441 is denoted by W. This creates an
over-determined system of equations corresponding to the rows of the following matrix-wise
representation of Equation 3.1:

—T

y~ DW (3.2)
Note the use of “~” because we have not included the error term €; of Equation 3.1. The
least-squares error Zjvzl e? of predicting the response variable is optimized by minimizing

— J—
the squared error ||[DW — 7||? in order to learn the coefficient vector W. By applying
differential calculus to the objective function, we obtain the following condition:

2oDTDW' —2DTg =0 (3.3)

Therefore, the optimal coefficients for this minimization problem are provided by the fol-
lowing equation:

W' = (DTD)"'DTy (3.4)
Note that DT D is a (d+1) x (d+1) matrix, which needs to be inverted in order to solve this
system of equations. In cases where the matrix D is of rank less than (d + 1), the matrix

3.2. LINEAR REGRESSION MODELS 71

DT D will not be invertible. In such cases, Equation 3.2 represents an under-determined
system, which has infinitely many solutions with zero error (outlier scores). In such cases,
it is impossible to score the in-sample data points in a reasonable way because of paucity
of data. Nevertheless, it is still possible to score out-of-sample data points by using the
learned coeflicients. To minimize overfitting, regularization is used. Given a regularization
parameter o« > 0, we add the term «||W||? to the objective function. Therefore, the new
objective function J is as follows:

T
J=[[DW" —g[|* +af|W|[(3.5)

This optimization problem can be solved in a similar way by setting the gradient of J with
respect to W to 0.

2DTD +al)W' —2DT5=0 (3.6)

Here, I represents a (d+ 1) x (d+ 1) identity matrix. The regularized solution is as follows:
W' =(D'D+al)"'DTy (3.7)

The closed-form solution to this problem is particularly convenient, and is one of the cor-
nerstones of regression analysis in classical statistics. The outlier scores then correspond

to the absolute values of the elements in the N-dimensional error vector € = 57 — DW .
However, it is important to note that using different attributes as the dependent variable
will provide different outlier scores.

To understand this point, it is useful to examine the special case of 2-dimensional data:

Y =w - X + wy (3.8)

In this case, the estimation of the coefficient w; has a particularly simple form, and it can
be shown that the best estimate for w; is as follows:

_ Cou(X,Y)
= Var(X)

Here, Var(-) and Cov(-) correspond to the variance and covariance of the underlying random
variables. The value wy can further be easily estimated, by plugging in the means of X and
Y into the linear dependence, once w; has been estimated. In general, if X is regressed on
Y instead of the other way around, one would have obtained w; = % Note that the
regression dependencies would have been different for these cases.

The set of coefficients wy ... wg41 define a lower-dimensional hyperplane which fits the
data as well as possible in order to optimize the error in the dependent variable. This
hyperplane may be different for the same data set, depending upon which variable is chosen
as the dependent variable. In order to explain this point, let us examine the behavior of two
attributes from the Auto-Mpg data set of the UCI Machine Learning Repository [203].

Specifically, the second and the third attributes of the Auto-Mpg data set correspond to
the Displacement and Horsepower attributes in a set of records corresponding to cars. The
scatter plot for this pair of attributes is illustrated in Figure 3.2. Three regression planes
have been shown in this figure, which are as follows:

e One regression plane is drawn for the case, when the Horsepower (Y-azis) is dependent
on the Displacement (X-axis). The residual in this case is the error of prediction of
the Horsepower attribute. The sum of squares of this residual over various data points
is optimized.

72 CHAPTER 3. LINEAR MODELS FOR OUTLIER DETECTION

250 T T
DATA POINT
REGRESS (Y on X) o

— — — - REGRESS (XonY) . ’ .7 _
2001 _ _ . _ MIN. PROJ. ERR. (PCA) N s 1

HORSEPOWER
@
3

=]
3

L " . s L L L L L
0 50 100 150 200 250 300 350 400 450 500
DISPLACEMENT

Figure 3.2: Optimal regression plane depends upon the choice of residual which is optimized

e The second regression plane is drawn for the case, when the Displacement (X-axis)
is dependent on the Horsepower (Y-axis). The residual in this case is the error in
prediction of the Displacement attribute.

e In the last case, the goal is to estimate a hyperplane that optimizes the aggregate
mean-squared distance (i.e., residual error) of the data points from it. Thus, the
residual in this case is the distance of each point to the hyperplane in a normal
direction to the hyperplane, and it provides an outlier score. The computation of

such a hyperplane will be discussed in a later section on principal component analysis
(PCA).

It is evident from Figure 3.2 that the optimal hyperplanes in these different cases are
quite different. While the optimization of the mean square projection distance produces a
hyperplane which is somewhat similar to the case of Y-on-X regression, the two are not the
same. This is because these different cases correspond to different choices of errors on the
residuals that are optimized, and therefore correspond to different best fitting hyperplanes.
It is also noteworthy that the three projection planes are collinear and pass through the
mean of the data set.

When the data fits the linear assumption well, all these hyperplanes are likely to be
similar. However, the presence of noise and outliers can sometimes result in drastic negative
effects on the modeling process. In order to illustrate this point, a variation of an example
from [467] is used. In Figure 3.3, the different regression planes for two sets of five data
points have been presented corresponding to different dependent variables. The two sets
of five data points in Figures 3.3(a) and (b) are different by only one point, in which the
Y-coordinate is distorted during data collection. As a result, this point does not fit the
remaining data very well.

The original data set in Figure 3.3(a) fits the linear assumption very well. Therefore,
all the three regression planes tend to be very similar to one another. However, after the
perturbation of a single data point, the resulting projection planes are drastically perturbed.
In particular, the X on Y-regression plane is significantly perturbed so as to no longer
represent the real trends in the underlying data set. It is also noteworthy that the optimal
projection plane is closer to the more stable of the two regression models. This is a general
property of optimal projection planes, since they optimize their orientation in a stable way

3.2. LINEAR REGRESSION MODELS 73

O DATAPOINT °.7 O DATAPOINT
REGRESS (Y on X)

— - - ~ REGRESS (XonY)

— == MIN. PROJ. ERR. (PCA)

REGRESS (Y on X)
— - - — REGRESS (Xon Y)
— == MIN. PROJ. ERR. (PCA)

FEATURE Y
o
FEATURE Y

1.05 4 o

0 1 3 4 5 6 1 15 2 5 3 4 45 5
FEATURE X FEATURE X

(a) Regression with no (b) Regression with one
outliers perturbed point

Figure 3.3: Drastic effects of outliers on quality of regression analysis

so as to globally fit the data well. The determination of such planes will be discussed in the
next section.

The residual ¢; provides useful information about the outlier score of the data point j.
The mean of these residuals is expected to be 0, and the variance of these residuals can be
estimated directly from the data. The Z-values of these residuals can also be used as outlier
scores. The most common assumption in regression modeling is to assume that the error
term ¢; is a normal distribution, which is centered at zero. Then, the t-value test discussed in
Chapter 2 can be used directly on the different residuals, and the outlying observations can
be subsequently removed. The normal assumption on the residuals implies that the vector
of coefficients is also normally distributed with mean and variances, as discussed earlier.

One problem with the approach is its instability to the presence of outliers. When the
outliers have drastic effects on the regression, such as in the case of the X-on-Y regression
in Figure 3.3(b), the removal of outliers is likely to result in the removal of the wrong ob-
servations, since the regression parameters are drastically incorrect. Ironically, the presence
of outliers prevents the proper modeling of outlier scores. One approach to address this
problem is to use ensemble methods in which different subsets of points are sampled repeat-
edly to score the data points differently and average the scores. Note that all points can be
scored with a given model because out-of-sample points can also be scored with the linear
regression model. In cases where the number of training points is small, only out-of-sample
points are scored for the averaging process. In other words, half the points are sampled to
construct the model and the remaining half are scored. This process is repeated multiple
times in order to score all the data points and provide the averaged predictions.

3.2.1.1 Applications of Dependent Variable Modeling

These scores can be used in a variety of applications associated with dependency-oriented
data types. For example, in contextual data types, such as spatial and temporal data, these
scores can be used to discover anomalous contextual outliers. These techniques will be
discussed in detail in Chapters 9 and 11. These scores can also be used to remove those
data points that are detrimental for learning and regression modeling applications. For
example, in a regression modeling application, one can remove training data points with
large training errors in order to improve the learning model.

It turns out that such models are useful even for unsupervised outlier detection of multidi-

74 CHAPTER 3. LINEAR MODELS FOR OUTLIER DETECTION

mensional data [429]. The basic idea is to repeatedly apply the regression modeling approach
by fixing one of the attributes as the dependent variable and the remaining attributes as
the independent variables. Thus, for a d-dimensional data set, a total of d regression models
can be created. The squared errors of predicting each attribute are added in a weighted
way in order to define the outlier score of a data point. This model is discussed in detail in
section 7.7 of Chapter 7.

3.2.2 Linear Modeling with Mean-Squared Projection Error

The previous section discussed the case in which a particular variable (behavioral attribute)
is considered special, and the optimal plane is determined in order to minimize the mean-
squared error of the residuals for this variable. A more general form of regression modeling
is one in which all variables are treated in a similar way, and the optimal regression plane
is determined the minimize the projection error of the data to the plane. In the following
discussion, it will be assumed that the data set containing N points is mean-centered, so
that the mean of each dimension is 0.

The projection error of the data to the plane is the sum of the squares of the distances
of the points to their projection into the plane. The projection of a point ‘A’ on the plane
is the closest point on the plane to ‘A,” and is computed using a line passing through ‘A’
in a normal direction to the plane. The point at which this line intersects the plane is the
projection point. Thus, in this case, let us assume that we have a set of variables 7 ... x4,
and the corresponding regression plane is as follows:

Wy -T14+...+wg-xq=0 (3.9)

It is assumed that the data is mean-centered, and therefore the constant term wg41 is miss-
ing in this case. Each variable is associated with a coefficient, and the “special” (dependent)
variable y is missing in this case. Consider a setting in which we have N instances corre-
sponding to the d-dimensional data points, denoted by X; ... Xy. If the number of points
N is greater than the dimensionality d, the system of equations is over-determined and all
the points in the data may not satisfy Equation 3.9, no matter how the vector of coefficients
W = (w; ...wq) is selected. Therefore, we need to allow for an error value €;:

W-X;=¢ Vje{l...N} (3.10)

Therefore, the goal is to determine the row vector W = (wy ...wq) of coefficients, so that
the sum of the squared errors Zfil e? is minimized. In order to address issues of scaling
and avoid the trivial solution W = 0, a normalization constraint is assumed:

d
W2 =Y wi=1 (3.11)
i=1

Note that this scaling constraint ensures that the absolute value of W - 73 = ¢; is exactly
equal to the distance of data point 7] from the hyperplane in Equation 3.9.

As before, let D be an N x d matrix containing d-dimensional points in its rows, which
are denoted by X;...Xy. One can succinctly write the N-dimensional column vector of
distances of the different data points to this regression plane as € = DWT according to

. . . . 1
Equation 3.10. This column vector contains the outlier scores. The Lo-norm |[[DW " || of
the column vector of distances is the objective function, which needs to be minimized to

3.3. PRINCIPAL COMPONENT ANALYSIS 75

determine the optimal coefficients w; ...wq. This is a constrained optimization problem
because of the normalization constraint in Equation 3.11. One can set the gradient of the
Lagrangian relaxation ||[DTW " ||2 — A(|[¥][2 — 1) to 0 in order to derive a constraint on the
optimal parameter vector W. This constraint turns out to be in eigenvector form:

DTDW' = W' (3.12)
Which eigenvector of the positive semi-definite matrix D” D provides the lowest objective
function value? Substituting for [DTD]W from Equation 3.12 in the original objective
function evaluates it to A|[|W||?> = \. The aggregate squared error along a particular eigen-
vector is equal to the eigenvalue. Therefore, the optimal vector W is the smallest eigenvector
of DT D. Note that the matrix DT D is a scaled version of the covariance matrix ¥ of the
mean-centered data matrix D:

DTD
N

The scaling of a matrix does not affect its eigenvectors but it scales the eigenvalues to
the wariances along those directions instead of the aggregate errors. The data is there-
fore assumed to be compactly represented by the (d — 1)-dimensional hyperplane, which
is perpendicular to the smallest eigenvector of the covariance matrix 3. The outlier scores
correspond to the distances of the data points from their nearest point on (i.e., perpendic-
ular distance to) this hyperplane. However, a dimensionality of (d — 1) is often too large
to discover sufficiently discriminative outlier scores. The aforementioned solution, neverthe-
less, provides a first step to an effective (and more general) solution to the problem, which
is referred to as principal component analysis (PCA). The PCA method generalizes the
aforementioned solution to a k-dimensional hyperplane, in which the value of k can vary at
any value between {1...d — 1}. Because of its importance to outlier analysis, this method
will be discussed in a dedicated section of its own along with corresponding applications.

y =

(3.13)

3.3 Principal Component Analysis

The least-squares formulation of the previous section simply tries to find a (d — 1)-
dimensional hyperplane which has an optimum fit to the data values and the score is com-
puted along the remaining orthogonal direction. Principal component analysis can be used
to solve a general version of this problem. Specifically, it can find optimal representation
hyperplanes of any dimensionality. In other words, the PCA method can determine the k-
dimensional hyperplane (for any value of k < d) that minimizes the squared projection error
over the remaining (d — k) dimensions. The optimization solution in the previous section is
a special case of principal component analysis, which is obtained by setting k = d — 1.

In principal component analysis, the d x d covariance matrix over d-dimensional data
is computed, where the (4,j)th entry is equal to the covariance between the dimensions
i and j for the set of N observations. As discussed in the previous section, consider a
multidimensional data set D of dimensionality d and size N. The N different rows of D
are denoted by X; ... Xy. Each row is a d-dimensional instance in the data. The individual
dimensions of the ith row are denoted by X; = [x1 ... %;q4), where 245 is the jth dimension
of the ith instance X;. Let us denote the d x d covariance matrix of the data set by ¥, in
which the (7, 7)th entry is the covariance between the ith and jth dimensions. Since the
data set D is mean-centered, the covariance matrix ¥ may be expressed as follows:

D™D

D)
N

(3.14)

76 CHAPTER 3. LINEAR MODELS FOR OUTLIER DETECTION

This matrix can be shown to be symmetric and positive semi-definite. It can therefore be
diagonalized as follows:
¥ = PAPT

Here, A is a diagonal matrix, and P is an a matrix, whose columns correspond to the
(orthonormal) eigenvectors of X. The corresponding entries in the diagonal matrix A provide
the eigenvalues. In the aforementioned section, we stated that the normal hyperplane to the
smallest eigenvector of ¥ provides the (d—1)-dimensional hyperplane that approximates the
data with the least-squared error. Another way of stating this is that the subspace that is a
linear combination of the (d — 1) largest eigenvectors provides an axis system in which the
data can be approximately represented with very little loss. It is possible to generalize this
argument with the k largest eigenvectors to define a corresponding k-dimensional subspace
of (approximate) representation. Here, k can be any value in {1...d — 1} and it might not
be set to only (d — 1). Outliers are data points for which the error of this approximation is
high.

Therefore, in principal component analysis, the first step is to transform the data into
a new axis system of representation. The orthonormal eigenvectors provides the axes direc-
tions along which the data should be projected. The key properties of principal component
analysis, which are relevant to outlier analysis, are as follows:

Property 3.3.1 (PCA Properties) Principal component analysis provides a set of
eigenvectors satisfying the following properties:

e [f the data is transformed to the axis-system corresponding to the orthogonal eigen-
vectors, the variance of the transformed data along each axis (eigenvector) is equal
to the corresponding eigenvalue. The covariances of the transformed data in this new
representation are 0.

e Since the variances of the transformed data along the eigenvectors with small eigen-
values are low, significant deviations of the transformed data from the mean values
along these directions may represent outliers.

More details and properties of PCA may be found in [33, 296]. PCA provides a more general
solution than the 1-dimensional optimal solution of the previous section, because the PCA-
solution provides a recursive solution of any dimensionality depending on the choice of
parameter k. It is also noteworthy that the PCA approach potentially uses all the solutions
of Equation 3.12 rather than using only the smallest eigenvector.

The data can be transformed to the new axis system of orthonormal eigenvectors, with
transformed d-dimensional records denoted by 71/ .. .TN/. This can be achieved by using
the product between the original row-vector representation X; and the matrix P containing
the new axes (orthonormal eigenvectors) in its columns:

/

X, =[¢)y... 2l = X;P (3.15)

Let D’ be the transformed data matrix for which the ith row contains the transformed point
—

X; . The transformed data matrix D’ in the de-correlated axis-system can be expressed in
terms of the original data matrix D as follows:

D' =DP (3.16)

In this new representation, the inter-attribute covariances in the new data matrix D’ are
zero, and the variances along the individual attributes correspond to the coordinates along

3.3. PRINCIPAL COMPONENT ANALYSIS 7

30

20

X Outlier

FEATURE Z

DATA POINTS
EIGENVECTOR 1
— — — — EIGENVECTOR 2
— — — EIGENVECTOR 3

FEATURE Y -40

FEATURE X

Figure 3.4: Eigenvectors correspond to directions of correlations in the data. A small number
of eigenvectors can capture most of the variance in the data.

the eigenvectors eigenvalues. For example, if the jth eigenvalue is very small, then the value
of x{; in this new transformed representation does not vary much over the different values
of ¢ and fixed j. For mean-centered data, these values of x;j are approximately equal to the
mean value of 0, unless the data point is an outlier.

The beautiful part about PCA is that the largest eigenvectors provide the key directions
of global correlation in a single shot. These directions are also referred to as the principal
components, which are uncorrelated and retain most of the data variance. In real settings, it
is common for a large fraction of the eigenvalues to be very small. This means that most of
the data aligns along a much lower-dimensional subspace. This is very convenient from the
perspective of outlier analysis, because the observations that do not respect this alignment
can be assumed to be outliers. For example, for an eigenvector j that has a small eigenvalue,
a large deviation of x7; for the ith record from other values of) ; is indicative of outlier
behavior. This is because the values of z, ; do not vary much, when j is fixed and k is varied.
Therefore, the value zgj may be deemed to be unusual in these settings.

The effectiveness of principal component analysis in exposing outliers from the underly-
ing data set can be illustrated with an example. Consider the scatterplot of the 3-dimensional
data illustrated in Figure 3.4. In this case, the corresponding eigenvectors have been ordered
by decreasing eigenvalues (variances), although this is not immediately obvious from the
figure in this 2-dimensional perspective. In this case, the standard deviation along the first
eigenvector is three times that along the second eigenvector and nine times that along the
third eigenvector. Thus, most of the variance would be captured in the lower-dimensional
subspace formed by the top two eigenvectors, although a significant amount of variance
would also be captured by selecting only the first eigenvector. If the distances of the origi-
nal data points to the 1-dimensional line corresponding to the first eigenvector (and passing
through the mean of the data) are computed, the data point ‘X’ in the figure would be
immediately exposed as an outlier. In the case of high-dimensional data, most of the vari-
ance of the data can be captured along a much lower k-dimensional subspace. The residuals
for the data points can then be computed by examining the projection distances to this
k-dimensional hyperplane passing through the mean of the data points. Data points that
have very large distances from this hyperplane can be identified as outliers. Although it is

78 CHAPTER 3. LINEAR MODELS FOR OUTLIER DETECTION

possible to use this distance as an outlier score, it is possible to sharpen the score further
with normalization as follows. The squared Euclidean distance to this hyperplane can be
decomposed into the sum of the squares of the (d — k) distances along the smallest eigen-
vectors. Each of these (d — k) squared distances should be divided by the corresponding
eigenvalue (for variance standardization) and the scaled values should be added to provide
the final result. The intuition behind this scaling is that the variance along an eigenvector is
its eigenvalue, and therefore a large deviation along a smaller eigenvalue should be rewarded
to a greater degree.

3.3.1 Connections with the Mahalanobis Method

In the aforementioned method, we remove the k largest eigenvectors in a hard way and
compute a weighted sum of these squared distances along the remaining (d — k) distances
as the outlier score. A simpler special case would be to use a soft approach for weighting
the distances along all the different eigenvectors rather than selecting a particular set of
eigenvectors in a hard way. This special case turns out to be the same as the Mahalanobis
method in section 2.3.4 of Chapter 2.

This computation is achieved by evaluating the normalized distance of the data point to
the centroid along the direction of each principal component. Let €; be the jth eigenvector
with a variance (eigenvalue) of \; along that direction. The overall normalized outlier score
of a data point X, to the centroid®
values:

1 of the data is given by the sum of squares of these

Score(X) =

d
j=

&= 5 o
1 J

Note the presence of A; in the denominator, which provides a soft weighting. A simple
algorithm to compute these scores for the rows of an n x d data matrix D is as follows:

1. Compute the covariance matrix X of the original data matrix D and diagonalize it as
¥ = PAPT.

2. Transform the data D to a new de-correlated axis-system as D’ = DP.

3. Standardize each column of D’ to unit variance by dividing it with its standard devi-
ation.

4. For each row of D', report its (squared) Euclidean distance from the centroid of D’
as its outlier score.

It is important to note that most of the contribution to the outlier score in Equation 3.17
is provided by deviations along the principal components with small values of A;, when
a data point deviates significantly along such directions. This is also captured by the im-
portant standardization step in the aforementioned description. This step recognizes that
the principal components represent the independent concepts in the data and implements
a form of soft weighting of the transformed dimensions by standardization rather than se-
lecting a subset of transformed dimensions in a hard way. The sum of the squares of the
Euclidean distances of the point from the centroid along the transformed dimensions is a
x2-distribution with d degrees of freedom. The value of the aggregate residual is compared

L Although the centroid is the origin for mean-centered data, it is also possible to transform non-centered
data once the eigenvectors of the covariance matrix have been computed. The expression of Equation 3.17
continues to hold for settings in which p is not necessarily 0.

3.3. PRINCIPAL COMPONENT ANALYSIS 79

to the cumulative distribution for the x2-distribution in order to determine a probability
value for the level of anomalousness. The aforementioned approach was first used in [493].

Although it might not be immediately apparent, the score computed above is the same
as the Mahalanobis method discussed in section 2.3.4 of Chapter 2 (cf. Exercise 11). Specif-
ically, the Mahalanobis distance value between X and 77 computed in Equation 2.21 of that
section is exactly the same as the score in Equation 3.17 above, except that the eigenvector
analysis above provides a better understanding of how this score is decomposed along the
different directions of correlation. Another advantage of this interpretation of the method is
that it can be naturally extended to settings in which the data is distributed on a non-linear
manifold rather than the linear setting of Figure 3.4. This extension will be discussed in
section 3.3.8.

3.3.2 Hard PCA versus Soft PCA

The Mahalanobis method can be viewed as a type of soft PCA in which the principal
components are weighted rather than pre-selected. The PCA decomposition also allows the
option of ignoring the large eigenvectors and using only the smallest § < d eigenvectors
in order to compute the outlier scores. However, the benefits of doing so are unclear be-
cause the Mahalanobis approach already performs a kind of soft pruning with the inverse
weighting of the contributions of each eigenvector by the eigenvalues. It is not uncommon
for a rare value to align along a long eigenvector when all attributes are extreme values
in a correlated data set. By explicitly pruning the long eigenvectors, such outliers can be
missed. Therefore, hard PCA focuses only on finding dependency-oriented outliers, whereas
the Mahalanobis method (soft PCA) can discover both dependency-oriented outliers and
extreme values. In this sense, the Mahalanobis method can be viewed as a more elegant
generalization of hard PCA. Hard PCA focuses on the reconstruction error of representing
the data in a low-dimensional space, which introduces an additional parameter of selecting
the dimensionality of the representation space. Introducing parameters always results in
data-specific unpredictability of results in unsupervised settings, where there is no guided
way of tuning the parameters.

3.3.3 Sensitivity to Noise

Principal component analysis is generally more stable to the presence of a few outliers
than the dependent variable analysis methods. This is because principal component anal-
ysis computes the errors with respect to the optimal hyperplane, rather than a particular
variable. When more outliers are added to the data, the optimal hyperplane usually does
not change too drastically. Nevertheless, in some settings, the presence of outliers can cause
challenges. In such cases, several techniques exist for performing robust PCA. For example,
this approach can be used in order to determine the obvious outliers in the first phase. In
the second phase, these outliers can be removed, and the covariance matrix can be con-
structed more robustly with the remaining data. The scores are then recomputed with the
adjusted covariance matrix. This approach can also be applied iteratively. In each iteration,
the obvious outliers are removed, and a more refined PCA model is constructed. The final
outlier scores are the deviation levels in the last iteration.

80 CHAPTER 3. LINEAR MODELS FOR OUTLIER DETECTION

3.3.4 Normalization Issues

PCA can sometimes yield poor results when the scales of the different dimensions are
very different. For example, consider a demographic data set containing attributes such
as Age and Salary. The Salary attribute may range in the tens of thousands, whereas the
Age attribute is almost always less than a hundred. The use of PCA would result in the
principal components being dominated by the high-variance attributes. For example, for a
2-dimensional data set containing only Age and Salary, the largest eigenvector will be almost
parallel to the Salary axis, irrespective of very high correlations between the Age and Salary
attributes. This can reduce the effectiveness of the outlier detection process. Therefore, a
natural solution is to normalize the data, so that the variance along each dimension is one
unit. This is achieved by dividing each dimension with its standard deviation. This implicitly
results in the use of a correlation matriz rather than the covariance matriz during principal
component analysis. Of course, this issue is not unique to linear modeling, and it is often
advisable to use such pre-processing for most outlier detection algorithms.

3.3.5 Regularization Issues

When the number of data records NNV is small, the covariance matrix cannot be estimated
very accurately, or it might be ill-conditioned. For example, a data set containing a small
number of records might have zero variance along some of the dimensions, which might
underestimate the true variability. In such cases, it is desirable to use regularization to
avoid overfitting. This type of regularization intuitively similar to the notion of Laplacian
smoothing discussed for the EM method in Chapter 2. The basic idea is to adjust the
covariance matrix ¥ by adding af to it, where I is a d x d identity matrix and o > 0 is a
small regularization parameter. The eigenvectors of (X + al) are then used for computing
the scores. The basic effect of this modification is intuitively equivalent to adding a small
amount of independent noise with variance « to each dimension before computing the
covariance matrix.

Alternatively, one can use cross-validation for scoring. The data is divided into m folds,
and the PCA model is constructed only on (m — 1) folds. The remaining fold is scored.
This process is repeated for each fold. An ensemble-centric variant is to sample a subset of
the data to build the model, and score all the points. The process is repeated over multiple
samples and the scores are averaged. The effectiveness of this approach is shown in [35].

3.3.6 Applications to Noise Correction

Most of this book is devoted to either removal of outliers as noise or identification of
outliers as anomalies. However, in some applications, it may be useful to correct the errors
in outliers so that they conform more closely to the broad patterns in the data. PCA is
a natural approach for achieving this goal because the principal components represent the
broad patterns. The basic idea is that the projection of the data point on the k-dimensional
hyperplane corresponding to the largest eigenvalues (and passing through the data mean)
provides a corrected representation. Obviously such an approach is likely to correct the
outlier points significantly more than most of the other normal data points. Some theoretical
and experimental results on why such an approach is likely to improve data quality is
provided in [21].

A similar approach to PCA, referred to as Latent Semantic Indexing (LSI) has also been
used for text data to improve retrieval quality [162, 425]. Text representations are inherently

3.3. PRINCIPAL COMPONENT ANALYSIS 81

noisy because the same word may mean multiple things (synonymy) or the same concept
can be represented with multiple words (polysemy). This leads to numerous challenges in
virtually all similarity-based applications. In particular, it has been observed in [425] that
the use of such dimensionality reduction methods in text data significantly improves the
effectiveness of similarity computations, because of the reduction in the noise effects of
synonymy and polysemy. It has been observed [425] that such dimensionality reduction
methods significantly improve similarity computations in text because of the reduction in
the noise effects of synonymy and polysemy. The technique of LSI [162] is a variant of
PCA, which was originally developed for efficient indexing and retrieval. However, it was
eventually observed that the quality of similarity computations improves as well [425]. This
observation was taken to its logical conclusion in [21], where significant noise reduction was
shown both theoretically and experimentally with PCA-based techniques.

An even more effective approach to noise correction is to combine outlier removal and
re-insertion with the correction process. The first step is to perform PCA, and remove the
top outliers on the basis of a t-test with respect to the optimal plane of representation.
Subsequently, PCA is performed again on this cleaner data set in order to generate the pro-
jection subspaces more accurately. The projections can then be performed on this corrected
subspace. This process can actually be repeated iteratively, if desired in order to provide
further refinement. A number of other approaches to perform regression analysis and outlier
removal in a robust way are presented in [467].

3.3.7 How Many Eigenvectors?

As discussed earlier, the eigenvectors with the largest variance provide the most informative
subspaces for data representation, outlier analysis, and noise correction. In some cases, it
is not necessary to select a subset of the dimensions in a hard way because a soft inverse
weighting with eigenvalues is sufficiently effective. However, in many applications such as
noise correction, the data needs to be projected into a subspace of lower dimensionality by
selecting a specific number of eigenvectors. Therefore, a natural question arises, as to how
the dimensionality k of the projection subspace should be determined.

One observation in most real data sets is that the vast number of eigenvalues are rel-
atively small, and most of the variance is concentrated in a few eigenvectors. An example
illustrated in Figure 3.5 shows the behavior of the 279 eigenvectors of the Arrythmia data
set of the UCT Machine Learning Repository [203]. Figure 3.5(a) shows the absolute magni-
tude of the eigenvalues in increasing order, whereas Figure 3.5(b) shows the total amount of
variance retained in the top-k eigenvalues. In essence, Figure 3.5(b) is derived by using the
cumulative sum over the eigenvalues in Figure 3.5(a). While it was argued at the beginning
of the chapter that the Arrythmia data set is weakly correlated along many of the dimen-
sions, on a pairwise basis, it is interesting to note that it is still possible? to find a small
number of directions of global correlation along which most of the variance is retained. In
fact, it can be shown that the smallest 215 eigenvalues (out of 279) cumulatively contain
less than 1% of the variance in the data set.

In other words, most eigenvalues are very small. Therefore, it pays to retain the eigen-
vectors corresponding to extremely large values, with respect to the average behavior of the

2This is partially because the data set is relatively small with only 452 records. For example, the results
in Figures 3.5(c) and (d) show that even for a uniformly distributed data set of the same size, it is possible to
find some skews in the eigenvalues because of (undesirable) overfitting. On the other hand, a strength of PCA
is that the cumulative effects of even weak correlations become magnified with increasing dimensionality,
and it becomes possible to find a much lower-dimensional subspace contain the informative projections.

82

EIGENVALUE MAGNITUDE

EIGENVALUE MAGNITUDE

CHAPTER 3. LINEAR MODELS FOR OUTLIER DETECTION

T T T T T 45 T T T
J
6000 - 1
351
5000 4 w
g
4000 b Q 25
3000 1 g 2F
g 150
I
i
051
o 5‘0 10‘0 1 ‘50 200 250 300 0 5‘0 1(;0 15‘0 200 250 300
INCREASING INDEX OF EIGENVALUE INCREASING INDEX OF EIGENVALUE
(a) Magnitude of eigenvalues (b) Variance in smallest k
(Increasing index): Arrythmia eigenvalues: Arrythmia
0. T T T T T T T T T T
03 4

50 250

100 150 200
INCREASING INDEX OF EIGENVALUE

(¢) Magnitude of eigenvalues
Uniform: 452 records only

20

TOTAL CUMULATIVE VARIANCE

50 250 300

100 150 200
INCREASING INDEX OF EIGENVALUE

(d) Variance in smallest k eigenvalues

Uniform: 452 records only

Figure 3.5: A few eigenvalues contain most of the variance (Arrythmia)

3.3. PRINCIPAL COMPONENT ANALYSIS 83

POINT B POINT G
POINT A 04
/ POINT A
e POINT C 02 oted
. 0

(a) Nonlinear manifold with outlier (b) Transformed representation of (a)

Figure 3.6: Nonlinear transformations can expose outliers that are hard to discover with
linear models

eigenvalues. How to determine, what is “extremely large?” This is a classical case of extreme
value analysis methods, which were introduced in Chapter 2. Therefore, each eigenvalue is
treated as a data sample, and the statistical modeling is used to determine the large values
with the use of hypothesis testing. A challenge in this case is that the sample sizes are often
small unless the data set is very high dimensional. Even for relatively high-dimensional data
sets (e.g., 50-dimensional data sets), the number of samples (50 different eigenvalues) avail-
able for hypothesis testing is relatively small. Therefore, this is a good candidate for the
t-value test. The t-value test can be used in conjunction with a particular level of significance
and appropriate degrees of freedom to determine the number of selected eigenvectors.

3.3.8 Extension to Nonlinear Data Distributions

Although the PCA methodology works well for linearly aligned data distributions such
that those discussed in Figure 3.4, the vanilla version of PCA is not effective in cases
where the data is aligned along nonlinear manifolds. An example of such a manifold is
illustrated in Figure 3.6(a). In such cases, PCA can be extended to nonlinear settings
with the use of a technique known as the kernel trick. The basic idea in nonlinear PCA
is to use a data transformation so that the data aligns along a linear hyperplane in the
transformed space. In other words, the mapping unfurls the non-linear manifold into a linear
embedding. An illustrative example of such an embedding is illustrated in Figure 3.6(b).
After such an embedding has been constructed, we can use the score computation method
of Equation 3.17.

How can such embeddings be constructed? A naive approach would be to use explicit
polynomial transformations of the data. For example, a second-order polynomial transfor-
mation would represent each point with d+ d? dimensions. In other words, the d original di-
mensions are included and d? new dimensions are added corresponding to pairwise products
of data values. Subsequently, all nonzero eigenvectors can be extracted from the covariance
matrix of this new representation. Note that the number of nonzero eigenvectors can be
larger than d in this setting because we do not know the dimensionality of the transformed
space. However, the number of nonzero eigenvectors is always no larger than the number of
data points. Equation 3.17 can be applied to this new representation in order to determine
the scores. Unfortunately, this is not a practical approach because it expands the number of

84 CHAPTER 3. LINEAR MODELS FOR OUTLIER DETECTION

dimensions to O(d?), and the size of the covariance matrix is O(d*). Such an approach would
be impractical from a computational point of view. Fortunately, these transformations need
not be done explicitly; rather, they can be done implicitly with the use of carefully designed
N x N similarity matrices between all pairs of data points. This technique is also referred to
as the kernel trick, although a generalized point of view encompasses various methods such
as spectral embeddings [297] and ISOMAP [542]. The approach described in this section is
a direct nonlinear generalization of the Mahalanobis method with kernel functions, and is
introduced in [35] as an ensemble-centric adaptation. Some of these ideas are also related
to the concept of kernel whitening [541], which advocates scaling of all kernel features to
unit variance before applying any learning method.

In order to simplify further exposition, we will first describe an alternative method for
extracting (linear) PCA from a dot-product similarity matriz rather than a covariance ma-
trix. This alternative description of linear PCA is easier to generalize to the nonlinear case.
In our earlier description of PCA, we first construct the covariance matrix ¥ = D;D from
the mean-centered matrix D and diagonalize it to extract its d x d eigenvector matrix P,
the columns of which are the new basis vectors. Subsequently, the transformed representa-
tion of data is given by projecting the data on these basis vectors as D’ = DP. After the
new representation has been determined, the outlier score is simply equal to the distance
from the centroid, after standardizing the transformed data to unit variance along each
(transformed) dimension. Therefore, the key is to extract the new embedding D' of the data
representation in order to extract the outlier scores. The basis representation in the columns
of P only provides an intermediate step for computing the embedding D’, and is itself not
essential for computing the outlier scores. The similarity-matrix approach to PCA extracts
this embedding D’ directly without computing these basis vectors.

In the similarity-matrix approach to PCA, the N x N dot product matrix S = DD”
is constructed instead of the d x d covariance matrix DT D. Note that S is a dot-product
similarity matrix in which the (7, j)th entry is equal to the dot-product between the ith and
jth data points. Subsequently, the positive-semidefinite similarity matrix S is diagonalized
as follows:

S =DDT = QA*QT (3.18)

Here, @ is an N x N matrix whose columns contain orthonormal eigenvectors, although
only the top-d eigenvectors have non-zero eigenvalues because the matrix DD7T has rank
at most d. A? is a diagonal matrix containing the non-negative eigenvalues of the positive
semi-definite matrix. Then, in the alternative similarity-matrixz approach to PCA, it can
be shown that the top-d scaled eigenvectors QA (i.e., first d columns of QA) yield the new
N x d data representation D' [515]. Therefore, this alternative approach® to PCA directly
extracts the embedding from the eigenvectors and eigenvalues of the N x N dot-product
similarity matrix S = DD” without computing a basis matrix P. This is particularly useful
for nonlinear dimensionality reduction because it is often hard to interpret the transformed
basis in terms of the original features.

The key idea in nonlinear PCA is that by replacing the dot-product similarity ma-
trix S = DDT with a carefully chosen kernel similarity matriz in the aforementioned ap-
proach, nonlinear manifolds are mapped on linear hyperplanes such as the mapping from
Figure 3.6(a) (data matrix D) to Figure 3.6(b) (transformed embedding QA). Such similar-
ity matrices will be discussed in section 3.3.8.1. This approach is the essence of a well-known
technique known as the kernel trick and the corresponding approach is referred to as kernel

3This equivalence can be shown using the SVD decomposition of matrix D. In fact, the nonzero eigen-
values of DDT and DT D are the same.

3.3. PRINCIPAL COMPONENT ANALYSIS 85

PCA. The key is to assume that the (i, j)th value of S is equal to ®(X;) - ®(X;) in some
transformed space according to some unknown transformation ®(X;) of higher dimension-
ality. Therefore, the similarity matrix S can be used to compute the Mahalanobis scores as
follows:

1. Construct the positive semi-definite IV x N kernel similarity function S using an off-
the-shelf kernel function or other similarity matrix computation (e.g., sparsified and
normalized similarity matrix used in spectral methods [378]).

2. Diagonalize the matrix S = QA%2QT and set the new N x k embedding D’ to the first
k columns of QA corresponding to largest eigenvalues. The default assumption is to
set k so that all nonzero eigenvectors of S are included. Note that k can be larger
than d in the nonlinear setting.

3. Standardize each column of D’ to unit variance by dividing it with its standard devi-
ation.

4. For each row of D', report its (squared) Euclidean distance from the centroid of D’
as its outlier score.

Why did we use all nonzero eigenvectors? In problems like outlier detection, aggregate
trends are not sufficient because one is looking for exceptions. In fact, most outliers are
emphasized along the smaller eigenvectors. Even a single data point deviating significantly
along a small eigenvector is important for outlier detection. It is important to select all
nonzero eigenvectors, so that important outliers are not missed. Assume that the columns
of @ and A are sorted in order of decreasing eigenvalue. One should select the (unique) value
of k such that Ag; > 0, and Agy1 x+1 = 0. In practice, the value of the latter will not be
exactly zero because of numerical errors during eigenvalue computation. Furthermore, such
computational errors magnify the inaccuracy in scoring along small eigenvectors. Therefore,
some conservative threshold € on the eigenvalue (e.g., 10~8) can be used to select the cut-
off point. Another caveat is that the approach can give poor results because of overfitting
when all N eigenvectors are nonzero; in such cases, either dropping the largest eigenvectors
or using an out-of-sample implementation (see section 3.3.8.2) is helpful.

3.3.8.1 Choice of Similarity Matrix

How does one choose the similarity matrix S? The (i,7)th entry of S is defined by the
kernel similarity K(X;, YJ) between the data points X; and YJ There are a number of
off-the-shelf kernel functions that are commonly used in such settings, although the general
consensus is in favor of the Gaussian kernel [270, 541]. Some common choices of the kernel
function S = [K(X;, X;)| are as follows:

[Function | Form |
Linear Kernel KX, X;) =X X;
(Defaults to PCA)
Gaussian Radial Basis Kernel | K(X;, X;) = e_HY Xj1/o*
Polynomial Kernel K(X:, X;)=(X; - Xj + o)t
Sigmoid Kernel K(X;, X;) = tanh(kX; - X; — 6)

86 CHAPTER 3. LINEAR MODELS FOR OUTLIER DETECTION

Note that the special case of linear PCA without any transformation (section 3.3) corre-
sponds to K (X, YJ) = ZYJ, and the corresponding kernel is also referred to as the linear
kernel. Since PCA is technically defined for mean-centered kernel matrices, it is possible to
mean-center? the kernel matrix. However, it is not essential in either the linear or nonlinear
setting, and can sometimes cause unexpected problems in the nonlinear setting when all
eigenvectors are nonzero.

Many of these kernel functions have parameters associated with them. The shape of the
embedding will depend on the choice of the kernel function and its parameters. Note that
the use of an arbitrary kernel function might result in a embedding somewhat different from
Figure 3.6(b), which is only illustrative in nature. Furthermore, different choices of kernel
functions or parameters might have different levels of effectiveness in exposing the outliers.
Unfortunately, in unsupervised methods there is no meaningful way of choosing such kernel
functions or parameters. The use of the Gaussian® kernel is particularly common because
of its stability across different data sets. In that case, the parameter o should be of the
same order of magnitude as the pairwise distances between points. Smaller values of ¢ can
model complex distributions but also cause overfitting. Large values of o yield results similar
to the linear Mahalanobis method. For small data sets with less than 1000 points, values
of o between two and three times the median pairwise distance between points might be
desirable [35].

Kernel functions provide only one of many ways of computing the similarity matrix .S.
Some other ways of computing the similarity matrix are as follows:

1. One can sparsify the similarity matrix by keeping only the mutual k-nearest neighbors
of each data point. All other entries in the similarity matrix are set to 0. This type
of similarity matrix is used in spectral methods [378] and it tends to favor local
embeddings. Furthermore, the (4, j)th entry can be normalized by the geometric mean
of the sum of row ¢ and row j in order to provide local normalization [297]. Such
local normalization is used in many settings such as the LOF method discussed in
section 4.2.1 of Chapter 4.

2. One can use the pairwise distance-computation between points by using the geodesic
methodology of ISOMAP. Subsequently, the pairwise distances are transformed to
pairwise similarities with the use of the cosine law. This approach is discussed in [33].
Unlike spectral methods, this type of approach will tend to favor global embeddings.

By selecting a particular type of similarity matrix one can effectively control the types of
outliers that one will discover in various applications.

3.3.8.2 Practical Issues

It is noteworthy that the kernel embedding can be N-dimensional for a data set containing
N points. In the case of the Gaussian kernel, the embedding dimensionality is often more
than the dimensionality of the input data set. Each eigenvector defines a dimension of the
embedding. Although large eigenvectors are more important for applications like cluster-
ing, the variations along the small eigenvectors are more important for outlier detection.

4A kernel matrix can be mean-centered by using the update S < (I — U/N)S(I — U/N), where I is an
identity matrix and U is an N X N matrix containing only 1s.

5Tt is the noteworthy that a factor of 2 is omitted from the denominator in the exponent of the Gaussian
kernel function for simplicity. All discussions on choice of o are consistent with this convention.

3.3. PRINCIPAL COMPONENT ANALYSIS 87

The standardization of the dimensions of the transformed representation to unit variance
emphasizes the importance of these eigenvectors, as in the case of the linear Mahalanobis
method. The conservative approach is to use all the nonzero eigenvectors (while excluding
those nonzero eigenvectors caused by numerical errors). However, when nearly all N eigen-
values are nonzero, it is sometimes the result of overfitting, and the results can be poor. A
second issue is that the size of the kernel matrix S is O(N?) which can be very large. For
example, for a data set containing a hundred thousand points, this type of approach is not
practical.

One way of resolving both problems is to use an ensemble-centric adaptation [35] based
on variable subsampling [32]. One can repeatedly draw a random sample from the data of
size s between 50 and 1000 points. Each such sample is used to (efficiently) construct an
embedding of each of the N points in a space whose dimensionality is at most s.

The first step is to construct the sx s similarity matrix S using the sample. Subsequently,
we extract the s eigenvectors and eigenvalues of S as S = QA?Q”, where Q and A are both
s X s matrices. However, we drop the zero eigenvectors of @ and therefore retain only
the k < s nonzero® eigenvectors of Q. The corresponding s x k matrices are @Q; and Ay,
respectively. Therefore, QA provides the embedding of the s in-sample points.

For the remaining (N — s) out-of-sample points, an (N — s) X s kernel similarity S, is
constructed” between the out-of-sample points and in-sample points. In other words, the
(i,7)th entry in this matrix is the kernel similarity between the ith out-of-sample point
and the jth in-sample point, which can also be expressed as the dot product between
the points in transformed space. We will show how to use this matrix in order to derive
the k-dimensional embedding of each out-of-sample data point that is consistent with the
aforementioned embedding of the in-sample points.

Let the unknown (N — s) X k matrix containing the k-dimensional embedding of the out-
of-sample points (in its rows) be denoted by Vj. Since the matrix Vj is unknown, the goal is
to use S, and the in-sample embedding QA in order to estimate it. Note that each entry
in the similarity matrix S, can be approximately expressed as the pairwise dot product of
the out-of-sample points (rows of V%) and in-sample points (rows of QrAg) in transformed
space. One can express this relationship using matrix products as S, = Vi (QxAx)T. Then, by
post-multiplying this relationship with QkAk_,l, it is evident that the (N — s) x k embedding
matrix of these out-of-sample points is given [481] by V, = SOQ;CAIZI. The s x k matrix
QA (which is the embedding of in-sample points) is stacked with the (N — s) x k matrix
Vi = SOQ;CA,;1 to create a single N x k embedding matrix F of all N data points:

_ QrAy
E= < e > (3.19)

Each column of F is standardized to zero mean and unit variance. This embedding is used to
score all data points in one shot. Note that the mean row-vector of the standardized matrix
E is a vector of zeros because of the standardization operation. The squared distance of
each row of E to this row-wise mean of E (which is the origin) is reported as the outlier
score of that row. As a result, each point will receive one outlier score. The score is divided
by the dimensionality of E to ensure that the average score over all points in each ensemble

6Some eigenvectors might be nonzero or negative due to numerical errors. In such cases, it is advisable to
use a very conservative threshold like 10~8 to distinguish truly nonzero values from those caused by numer-
ical errors. This is also important because numerical errors hurt the computations along small eigenvalues
more severely due to re-scaling of D’.

"For some data-dependent kernels like spectral methods and ISOMAP, it is not possible to construct
out-of-sample similarity matrices like S, exactly, although approximate methods exist [79].

88 CHAPTER 3. LINEAR MODELS FOR OUTLIER DETECTION

component is 1 (because of standardization). The entire process is repeated m times with
different sample sets, so that each point receives m different outlier scores. The average
score of each point is reported as the final result.

3.3.8.3 Application to Arbitrary Data Types

One of the beautiful aspects of this approach is that as long as a positive semidefinite
similarity matriz exists between a set of N objects, one can always use this approach by
extracting a multidimensional embedding from the similarity matrix. The main technical
obstacle is that any matrix S, which can be expressed as DD to obtain the embedding D in
transformed space, can be shown to be positive semi-definite. For example, if we computed
the N x N similarity matrix between a set of N time-series using some domain-specific
function and did not find the similarity matrix S to be positive semi-definite, it means that
no embedding exists whose dot products will give you the required similarities. There are
two ways in which we can avoid this problem:

e Kernel similarity functions have been designed for a variety of data types such as
time-series, strings, and graphs. These similarity functions are special because they
are guaranteed to be positive semi-definite. A discussion of these different types of
kernel functions may be found in [33]. Note that it is not always possible to use
kernels because the similarity matrix might be defined in a domain-dependent way.

e For an arbitrary similarity matrix S with negative eigenvalues, we can drop the eigen-
vectors with negative eigenvalues, if their absolute magnitude is relatively small. One
can view this approach as an indirect way of slightly adjusting the similarity matrix
to force it to satisfy the requirements of a multidimensional embedding. The level of
approximation of the similarity matrix can be shown to be dependent on the abso-
lute magnitude of the dropped eigenvalues. Therefore, it is desirable for the absolute
magnitudes of the negative eigenvalues to be small. An alternative approach is to
regularize S to the positive semidefinite matrix S+ af, where a > 0 is the magnitude
of the most negative eigenvalue. This approach restricts itself to increasing only the
self-similarity (norms) of data points without changing inter-point similarity.

The second approach should be used in cases in which one cannot use an off-the-shelf kernel,
and the similarity function is domain-dependent. Nevertheless, the dropping of eigenvectors
does have the drawback that some outliers might be missed.

3.4 One-Class Support Vector Machines

One-class support vector machines (SVMs) can be viewed as variants of linear and logis-
tic regression models in which the notion of margin is used to avoid overfitting, just as
regularization is used in regression models. These error penalties are computed with the
notion of slack variables. Although it is possible to use squared loss (as in regression), it
is more common to use other forms of the loss function (such as hinge-loss) in support
vector machines. This section assumes a familiarity with support-vector machines for clas-
sification. The uninitiated reader is referred to [33] for an introduction to the basics of the
support-vector machines.

The main problem in using support-vector machines for outlier detection is that the
model is primarily designed for two classes which need to be separated with the use of a
decision boundary (and their associated margin hyperplanes). However, in outlier detection,

3.4. ONE-CLASS SUPPORT VECTOR MACHINES 89

the data are not labeled, and therefore (a possibly noisy) model is constructed assuming
that all the provided examples belong to the normal class. In order to address this issue, it is
assumed that the origin of a kernel-based transformed representation belongs to the outlier
class. Note that the quality of the separation between the normal class and the outliers in a
particular data domain and corresponding transformation will depend significantly on the
validity of this assumption.

For now, we will assume that the data point X is transformed to ®(X) using the unknown
function ®(-). This transformation need not be performed explicitly, as it is performed
implicitly within the optimization problem with the use of kernel similarity matrices (like
the nonlinear PCA method of section 3.3.8). Note that ®(X) is itself a high-dimensional
vector in some transformed space, and the corresponding coefficients of ®(X) is the vector
W, which has the same dimensionality as the transformed space. The corresponding decision
boundary that separates the normal class from the outlier class is given by the following:

W-®(X)—b=0 (3.20)

Here, b is a variable that controls the bias. We should formulate the optimization problem
so that the value of W - ®(X) — b is positive for as many of the N training examples as
possible, because all training examples are assumed to belong to the normal (positive) class.
Therefore, to account for any training example in which W -®(X) —b is negative, we impose
the slack penalty max{b— W - ®(X),0}. On the other hand, the origin is rewarded for lying
on the opposite side of this separator and therefore a negative value of W - ®(X) — b is
desirable in the case when ®(X) = 0. This is possible only when b is positive. This situation
is illustrated in Figure 3.7(a). Therefore, in order to reward the origin for being as far away
from the separator as possible on the opposite side of the normal points, we subtract b from
the objective function formulation. This has the effect of pushing the separator as far away
from the origin as possible towards the normal points. Furthermore, we add the margin
regularizer term, which is %||W||2 Therefore, the overall objective function is as follows:

N
1, — — S
Minimize J = §||VV||2 —|—% E max{b— W ®(X;),0} — b (3.21)
— =t Origin Reward
Regularizer

Training Data Penalty

The constant C' > 1 can be viewed as the differential weight of the normal points as
compared to the outlier points. Specifically, one can view v = 1/C as a prior probability
that a data point in the training set is an outlier. In other words, the value of C' regulates
the trade-off between false positives and false negatives in this model. It is noteworthy that
W =0 and b = 0 is a degenerate solution to this optimization problem with zero objective
function value. Therefore, it is never possible for b to be strictly negative at optimality
because negative values of b lead to a strictly positive value of the objective function J. The
situation with a negative value of b is shown in Figure 3.7(b), which is always suboptimal
with respect to the degenerate solution. It is noteworthy that if the wrong® type of kernel
transformation is used, in which the origin is not linearly separable from the data points,
and the value of C is very large, it can lead to the unfortunate situation® of the degenerate
solution W = 0 and b = 0.

8Mean-centering the kernel matrix could result in a degenerate solution. On the other hand, any nonneg-
ative kernel matrix like an uncentered Gaussian kernel can always avoid the degenerate solution because all
pairwise angles between points are less than 90° in transformed space; therefore, the origin is always linearly

90 CHAPTER 3. LINEAR MODELS FOR OUTLIER DETECTION

POINTS ON THE
POINTS ON THE POSITIVE SIDE ARE
POSITIVE SIDE ARE NOT PENALIZED
NOT PENALIZED \ *
¥;, X, AND X, \ *
ARE PENALIZED * *
*
* *
*
¥,
*
(a) Origin and normal points on (b) Origin and normal points on
opposite sides (b is positive) same side (b is negative)

Figure 3.7: The useful solutions correspond to the case shown in (a). The case shown in (b)
is always suboptimal with respect to the degenerate solution W = 0 and b = 0. Therefore,
b can never be negative at optimality. Nonnegative kernels transform all points to a single
orthant with a linearly separable origin and so a nontrivial solution always exists.

The positive side of the linear separator in the kernel representation corresponds to a
“small” region of arbitrary shape in the input representation containing most of the points.
Penalties are caused by points lying outside this region. An illustrative example of how the
linear separator of Figure 3.7(a) might create an arbitrarily shaped region in the original
input space is shown in Figure 3.8. Note that the three outliers X;, X5 and X3 lie outside this
region because they violate the linear decision boundary in transformed space. Increasing
the value of C increases the volume of the enclosed region containing inliers and also changes
its shape.

Note that this optimization formulation is defined in an unknown transformed space
®(-). Furthermore, the transformation ®(-) is often defined indirectly in terms of pairwise
(kernel) similarities among points. Rather than solving directly for W, a more common
approach is to predict the (optimized) value of W - ®(X) + b for test point X by using
the kernel trick within a dual formulation. This is achieved by explicitly materializing the
(non-negative) slack variables &; ... &y for the N training points:

&>b—W-9(X;) (3.22)

One can then incorporate this constraint into the optimization formulation (together with
non-negativity constraints on slack variables), and substitute max{b — W - ®(X;),0} with
& in the objective function J. This constrained formulation allows for an approach based
on Lagrangian relaxation for which the dual formulation can be constructed. The dual

separable from the orthant in which all the data lies, and one rarely notices this problem in software execu-
tions. Nevertheless, the quality of the results from one-class SVMs tend to be highly unpredictable [184, 384].
9The original paper [479] incorrectly states that large training data penalties lead to negative values of
b. The sensitivity of this approach to the kernel representation is, in fact, its major weakness. One possible
solution to the degeneracy problem is to impose the constraint [|[W|| = 1 and get rid of the regularizer.

3.4. ONE-CLASS SUPPORT VECTOR MACHINES 91

SVM BOUNDARY
IN INPUT SPACE

INLIERS

Figure 3.8: A hypothetical illustration of the linear SVM boundary of Figure 3.7(a) in the
original input space. This is only an illustrative example and does not reflect an actual
computation. The shape of the enclosed region is sensitive to the kernel and the parameter

C.

formulation has N variables @ = [...ay]T, each of which is a Lagrangian parameter
corresponding to one of the constraints in Equation 3.22 for a training point. Interestingly,
the dual formulation can be expressed in terms of the N x N kernel similarity matrix
S =[K(X;,X;)] = [®(X;)- ®(X;)] (rather than explicitly transformed points), which is the
essence of the kernel trick. This similarity matrix is the same as the one that was used for
nonlinear PCA in section 3.3.8. The dual formulation, described in [480], is as follows:

1
Minimize 5& Sal
subject to:

C
0<a; < Vie{l...N}

N
ZO@ =1
=1

Although the coefficient vector W is not explicitly computed by the ‘dual approach, it can
still be determined which side of the decision boundary a data point Y lies on by using the
following equivalence, which is shown in [128, 479]:

N
W-oY)-b=> a;-K(Y,X;)—b (3.23)

The right-hand side can be computed as long as «a;...ay and b are known. The values
of aq...an can be computed by solving the aforementioned dual optimization problem
with gradient descent (cf. section 3.4.1). The value of b can be learned by computing b =
W (YY) = Zf\;l a; - K(Y, X;) for any training data point Y which lies on the separating
hyperplane (i.e., the data point is a free support vector). It can be shown that any data
point Y] for which 0 < a; < C'/N is a free support vector. We can average the computed
value of b over all such data points.

Once the model has been trained, any data point X (including out-of-sample points not
included in the training data) can be scored using the following expression derived from the
decision boundary of Equation 3.23:

N
Score(X) =Y ;- K(X,X;) — b (3.24)

i=1

92 CHAPTER 3. LINEAR MODELS FOR OUTLIER DETECTION

From the perspective of the modeling assumptions of the support-vector machine, a negative
value of the score indicates that the data point is an outlier, whereas a positive value
indicates that the data point is a non-outlier. However, one can also treat the computed
value as a score, although it is sensitive to the value of C, which regulates the trade-off
between outliers and inliers.

3.4.1 Solving the Dual Optimization Problem

The dual optimization problem can be solved using gradient-descent. However, during the
descent, it is important to ensure that the constraints are not violated. The gradient of the
dual objective function, which is %ES @’ can be shown to be the N-dimensional vector
Sa. Therefore, the gradient-descent approach iteratively repeats the following steps after
initializing each «; to 1/N:

l.a<sa—n-Sa
2. Set any negative values in @ to 0 and any value of «; larger than C//N to C/N.
3. Scale the vector @ so that Ef\il a; = 1.

Here, n > 0 is the learning rate. These steps are repeated to convergence. The last two steps
are executed to force the current solution to (roughly) satisfy the optimization constraints
although the constraints may not be fully satisfied in the early iterations because executing
step 3 might again result in «; exceeding C'/N. At convergence, all the constraints will
typically be satisfied. More effective steps for SVM training may be found in [128].

A number of off-the-shelf libraries such as LIBSVM [128] and scikit-learn [629] provide
off-the-shelf implementations of one-class support vector machines. The scikit-learn code,
which provides a different interface, calls the LIBSVM solver under the covers. It is note-
worthy that LIBSVM uses a more sophisticated coordinate descent method rather than the
simplified gradient-descent method described above. Like kernel PCA methods, one class
support-vector machines have the desirable property that they can be used for arbitrary
data types provided that a kernel similarity function can be defined between data objects.

3.4.2 Practical Issues

An insightful evaluation of some of these models for outlier detection in document data is
provided in [384]. In particular, the main challenge associated with support-vector machines
is that these methods can be sensitive to the choice of the kernels and the many hidden
parameters associated with the method such as the value of C' and the parameters associated
with the kernel. The evaluation in [384] makes the following observations about the one-class
support-vector machine:

“However, it turns out to be surprisingly sensitive to specific choices of repre-
sentation and kernel in ways which are not very transparent. For example, the
method works best with binary representation as opposed to tf-idf or Hadamard
representations which are known to be superior in other methods. In addition,
the proper choice of a kernel is dependent on the number of features in the bi-
nary vector. Since the difference in performance is very dramatic based on these
choices, this means that the method is not robust without a deeper understand-
ing of these representation issues.”

3.4. ONE-CLASS SUPPORT VECTOR MACHINES 93

In another recent experimental evaluation of several detectors [184], the one-class SVM was
the most poorly performing detector and frequently provided worse-than-random perfor-
mance.

The one-class SVM assumes that the origin is a prior for the outlier class, which is not
optimal even in kernel feature space. For example, a simple operation such as mean-centering
the kernel matrix can have unfortunate effects. As a general rule, it is harder to use kernels in
unsupervised problem settings (as compared to supervised settings) because of the natural
difficulties in model selection and parameter tuning. For example, for the Gaussian kernel,
the median of the pairwise distance between points provides a rough approximation to the
bandwidth o, although the value of ¢ is also sensitive to the data distribution and size. A
second issue is that the size of the kernel matrix S, which also defines the number of terms
in the dual objective function, is O(N?). For example, for a data set containing a hundred
thousand points, this type of approach is not practical.

Both these problems can be partially solved using variable subsampling [32], which works
particularly well in the context of unpredictable data size-sensitive parameters. The basic
idea is to repeatedly sample a variable number of training points from the data, which
vary between n,;, = 50 and n,,4, = 1000. Therefore, in each training model the size
of the kernel matrix is at most 1000 x 1000. Subsequently, all N points are scored with
respect to this training model, and the scores are normalized to Z-values. This is possible
in kernel support-vector machines, because out-of-sample points can be scored with the
learned model. In fact, the out-of-sample scores can often be more robust because of less
overfitting. In each training model constructed from the sample, a different kernel function
and choice of parameters (within a reasonable range) may be used. This process can be
repeated as many times as needed. The final outlier score can be reported as the average
of the score across various detectors. This approach is an ensemble technique, which is
discussed in detail in Chapter 6.

3.4.3 Connections to Support Vector Data Description and Other
Kernel Models

The one-class SVM is intimately connected to many other kernel models. The support-
vector data description (SVDD) [539] is a different kernel SVM method in which data
is enclosed in a hypersphere of radius R in the transformed feature space (rather than a
linear separator from the origin). The squared radius is minimized together with penalties
for margin violation. The SVDD approach is closely related both to the one-class SVM of
section 3.4 as well as to the kernel Mahalanobis method discussed in section 3.3.8.

The SVDD and linear SVM models are roughly'® equivalent if the embedded points
have an origin-centered spherical geometry [539]. The most common example is that of a
Gaussian kernel, which embeds all points on the unit sphere. The solutions are otherwise
quite different. For example, the degeneracy problem of one-class SVMs, which is discussed
in section 3.4, is not encountered in SVDD even with mean-centered kernels. In fact, the
SVDD predictions do not change by mean-centering the kernel matrix, because the origin
is not assumed as a prior. On the other hand, the SVDD approach performs poorly with
polynomial kernels because the data tends to be elongated in particular directions in the

10We use the term “roughly” because the SVDD optimization formulation (with the Gaussian kernel)
can be transformed into a formulation like one-class SVM in which a normalization constraint |[W]|| = 1
is imposed instead of including the regularizer ||[TW]|?/2 in the objective function [539]. The experimental
results in [184] suggest that SVDD provides slightly better solutions than one-class SVMs with the Gaussian
kernel.

94 CHAPTER 3. LINEAR MODELS FOR OUTLIER DETECTION

SCALE

KERNEL OR DROP APPLY ANY
ORIGINAL |[TRANSFORM KERNEL FEATURES || ENHANCED MODEL FINAL
—————
FEATURES FEATURES FEATURES (FLEXIBLE RESULT
OPTIONS)

ONE-CLASS SVMS AND SVDD USE KERNEL TRICK WITHOUT EXPLICIT TRANSFORMATION

KERNEL TRICK DOES NOT BENEFIT FROM MODELING FLEXIBILITY OR ENHANCED
FEATURE REPRESENTATION RESULTING FROM SCALING OR DROPPING FEATURES

Figure 3.9: Relationship between explicit and implicit kernel transformations

transformed feature space, and a sphere fits poorly around it.

The kernel Mahalanobis method is closely related to SVDD. The former can be viewed
as a way of creating a new representation of the data in which the distance to the center
of the transformed data directly provides the outlier score, and there is no need to find a
hard boundary of specific radius R with an optimization model. A key difference between
the kernel Mahalanobis method and other one-class methods is the use of feature-space
scaling of all transformed dimensions to unit variance in the former. This type of normal-
ization is especially helpful because it prevents high-variance directions from masking the
outliers. The normalization step can provide additional benefits that are not available in
the original one-class SVM or SVDD solution based on the kernel trick within the dual.
For example, one could very easily transform the data to unit-variance directions in feature
space using the approach in section 3.3.8 and then apply a linear one-class SVM on the
embedded representation to earn these additional benefits. In fact, the use of a circular
separator (like SVDD) on the normalized kernel representation works reasonably well with
a polynomial kernel, which is generally known to work poorly with SVDD. It is helpful
to think of the nonlinear transformation in section 3.3.8 as a (normalized) data-specific
Mercer kernel map, on top of which many trivially simple anomaly detection models (e.g.,
distance from centroid) become extremely effective. Furthermore, one gains the flexibility of
using any other outlier detection method on the extracted representation. For example, one
might use mixture modeling, distance-based methods [475], or clustering (cf. section 4.2.1
of Chapter 4) on the kernel representation. Explicit feature mapping with kernels is highly
under-appreciated in spite of its obvious flexibility in enabling the use of other models, or
in enhancing the underlying representation by feature scaling/selection. For example, drop-
ping small eigenvectors leads to better accuracy in clustering and two-class SVMs [33, 481]
because of de-noising effects. Similarly, dropping large eigenvectors sometimes leads to bet-
ter accuracy of one-class SVMs because of outlier enhancement effects; this is simply a hard
version of the softer feature scaling. Furthermore, the computational advantages of working
with the dual are not guaranteed with respect to out-of-sample implementations of explicit
feature mapping (see Equation 3.19); the only “disadvantage” of explicit transformation is
that it renders the use of the endearing kernel trick as redundant within the SVM formu-
lation once it has been used for creating the embedding. The relationship between explicit
and implicit kernel transformation methods is illustrated in Figure 3.9.

The one-class support-vector machine may also be viewed as an approach that (roughly)
finds a maximum margin separation of the data matrix D with its negative set —D (instead
of separating D from the origin) in kernel feature space. This intuitive view provides a clearer
understanding of the relationship to two-class SVMs, and it also facilitates the adaptation
of other two-class optimization models such as the Fisher’s linear discriminant to the one-
class setting. This view has been used to adapt the kernel Fisher discriminant method to

3.5. A MATRIX FACTORIZATION VIEW OF LINEAR MODELS 95

anomaly detection [466]. The main difference between the kernel Fisher approach [466] and
kernel SVMs is that the former identifies a direction that maximizes the ratio of inter-
class separation to intra-class separation (between D and —D), whereas the latter finds
the maximum margin separator between D and —D. However, both methods implicitly
transform these data to the same kernel feature representation before optimization.

Among all these models, the kernel Mahalanobis method has the advantage of requiring
the least number of free parameters (which only correspond to the kernel setting). The
other methods attempt to find a hard boundary (cf. Figure 3.8) between outliers and inliers
and therefore must use parameters like C' to regulate the trade-off between outliers and
inliers early on in the modeling. The Mahalanobis method is a soft approach that focuses
on finding scores and (appropriately) leaves the hard labeling to the end, when more insight
is available on the score distribution. Minimizing the number of user-driven parameters
is always desirable in unsupervised problems like outlier detection especially because the
underlying kernel feature representations are semantically opaque. An evaluation of the
kernel Mahalanobis method in an ensemble-centric setting may be found in [35].

3.5 A Matrix Factorization View of Linear Models

PCA can be viewed as a type of matrix factorization. In order to understand this point,
consider the rank-k representation of PCA from a mean-centered data matrix D.

D' = DP, (3.25)

Here, D’ is the N x k reduced representation of matrix D, and P, is a d X k matrix containing
the largest k (orthonormal) eigenvectors of the covariance matrix ¥ = £ "D iy its columns.
As discussed earlier, D’ also corresponds to QrAj, where the rank-k diagonalization of the
dot-product (i.e., similarity) matrix DD? is given by QxA2Q%. Here, Qj, is an N x k matrix
containing the orthonormal eigenvectors of DD™. Therefore, we have:

D, = DPk ~ QkAk (326)

Interestingly, it can be shown that the matrices Qp, Ax and Py can be used to create a rank-k
factorization of the original matrix D. By post-multiplying each expression in Equation 3.26
with the matrix P! and setting Py Pl = I, we obtain:

D ~ QuAxPT (3.27)

This particular relationship is also referred to as the rank-k Singular Value Decomposition
(SVD) of the data matrix D. By absorbing the diagonal matrix in one of the factors, one can
express D as a factorization into two matrices, each of which have orthogonal columns. In
particular, we define the N x k matrix U as Qi Ay and the d x k matrix V as P.. Therefore,
SVD can be expressed as a factorization into two low-rank matrices as follows:
D~UVT (3.28)
Interestingly, the matrices U and V, can be learned by solving the following optimization
problem:
Minimize ||D — UVT||2
subject to:
Columns of U are mutually orthogonal

Columns of V' are mutually orthonormal

96 CHAPTER 3. LINEAR MODELS FOR OUTLIER DETECTION

Here, || - ||? represents the Frobenius norm of the error matrix (D — UVT). The Frobenius
norm is defined as the sum of the squares of the entries. Note that this interpretation is
consistent with mean-squared error optimization of PCA. It is also noteworthy that the
absolute values of the entries of D — UV provide entry-wise outlier scores, which are more
detailed than the row-wise outlier scores discussed in earlier sections. These values represent
the inability of the compressed representation UV to fully explain the values in the original
matrix because of their deviations from the underlying correlation structure.

This view of SVD is particularly useful because it paves the way for using other types
of matrix factorization methods. For example, the objective function can be changed in
a variety of ways, regularization can be added, and the constraints can be modified to
incorporate specific (desired) properties into the factor matrices U and V. The simplest
generalization is one in which the orthogonality constraints on U and V are removed; this
leads to unconstrained matrix factorization. Alternatively, for a non-negative data matrix
D, we can impose non-negativity constraints on the factors to create non-negative represen-
tations, which are more interpretable. This type of factorization is very useful in text data
and network data. In Chapter 12, we will provide a specific example of such a factorization.
Finally, the most useful aspect of this type of matrix factorization is that it can be used
for anomaly detection in incomplete data sets, and even provide insights about the specific
entries of the matrix that lead to anomalies. This is not possible with the straightforward
version of PCA, which is undefined for incomplete data matrices. In the next section, we
will provide an example of unconstrained matrix factorization of incomplete data.

3.5.1 Outlier Detection in Incomplete Data

In this section, we will show how unconstrained matrix factorization can be used to discover
anomalous rows or even anomalies entries of an incomplete data matrix. The latter can be
useful in an application such as recommender systems. In a recommender system, we might
have an N X d ratings matrix D with N users and d items. It may be desirable to discover
anomalous ratings, such as the fake ratings created by “shills” in the recommender system.
In such applications, each column (item) might typically contain less than 100 ratings over
a population of millions of users. In such sparse settings, even the covariance matrix cannot
be estimated accurately, as needed in PCA. In other applications, many data values might
be missing because of weaknesses in data collection mechanism. For example, in a user
survey, users might choose to leave many fields bank. In such settings, it might be desirable
to discover anomalous rows of the data matrix. All these complex settings can be addressed
with a straightforward generalization of the aforementioned PCA model.

For, the purpose of the following discussion, we will assume that the (i, j)th entry of D
(when not missing) is denoted by x;;. Consider a setting in which the set of entries in the
matrix that are specified (i.e., not missing) is denoted by H. In other words, we have the
following:

H = {(i,j) : z;; is observed (not missing)} (3.29)

Then, we would like to factorize the data matrix D into the representation UV”, so that
U = [u;s] is an N x k matrix, V = [vj,] is a d x k matrix, and k is the rank of the factorization.
The predicted value of an entry (7, j) is Zl;:l UisVjs, and we wish to minimize the aggregate
error with respect to observed values. However, since we know only the subset of entries H in
the data matrix, we must formulate the optimization problem only over the specified entries.
Furthermore, it is important to use regularization to avoid overfitting because the number
of specified entries might be small. This optimization problem can be written (together with

3.5. A MATRIX FACTORIZATION VIEW OF LINEAR MODELS 97

a regularization term) as follows:

- 1
Minimize J = B (‘;H Tij — Zumvjs ||U||2 +IVI[%)
i

- Regularizer
Error on observed entries

subject to:

No constraints on U and V'

Here, o > 0 is the regularization parameter and the squared Frobenius norm on the factor
matrices is included in the objective function. We have dropped the constraints on U and V'
to simplify the optimization process. For observed entries in D, the error e;; of the (4, j)th

entry is the difference between the observed value z;; and the predicted values Zle UisVjs:

€ij = Tij — Z UisVjs (3.30)

Note that the error term is defined only for the observed entries in H. We can, therefore,
rewrite the objective function J as follows:

Z %Jr SR+ V) (3.31)
(1,j)EH

This error term is key; solving the optimization problem yields the (squared) error terms
as the outlier scores of the individual entries in the data matrix.

The optimization problem can be solved using gradient descent. Therefore, we can com-
pute the partial derivatives of the objective function with respect to the parameters u;s and

Vjs:
oJ
g 6"(_U‘q)+a'U‘g
9 s Z ij K (E
Yis jGgen
oJ
= > eij(—uis) + v,
9vjs i:(i,j)€H

In gradient-descent, we create an [(N + d) - k]-dimensional vector W of parameters cor-
responding to the entries in U and V and make the updates W < W — nV.J. Note that
V.J is defined by the entire vector of (N + d) - k-dimensional vector of partial derivatives
computed above. One can equivalently perform these updates with sparse matrix multipli-
cation. Let F be an N X d sparse matrix in which only specified entries (i.e., entries in H)
take on the value of e;;. The missing entries take on zero values. Note that it makes sense
to compute only the observed entries in E and use a sparse data structure to represent F.
The aforementioned gradient-descent steps can be shown to be equivalent to the following
matrix-wise updates:

U<=UQl—-a-n)+nEV
V<eV(l-a-n)+nETU

98 CHAPTER 3. LINEAR MODELS FOR OUTLIER DETECTION

These iterations can be executed to convergence. The value of n > 0 corresponds to the
learning rate. Selecting the learning rate to be too large might result in overflows. On
the other hand, a very small learning rate will lead to convergence which is too slow. A
faster variant of this approach is stochastic gradient descent in which we cycle through the
observed entries x;; in H in random order and make the following updates:

Uis <= wis(1—a-n) +nejvjs Vse{l...k}
Vjs =vjs(l—a-n)+neju,s Vse{l...k}

The resulting iterations are also executed to convergence. More details may be found in [34].

3.5.1.1 Computing the Outlier Scores

It remains to show how one can compute the entry-wise or row-wise outlier scores from the
factors. Note that factorization approximated reconstructs the original data matrix (as in
SVD). Deviations from the reconstructed values are presumed to be outliers. The error e;;
for the observed entry z;; is defined according to Equation 3.30:

k
eij = xij - Z uisvjs (332)
s=1

These errors are also referred to as residuals. Entries with large positive or negative resid-
uals tend to be outliers because they do not conform to the normal model of low-rank
factorization. Therefore, we use the squares of these entries as the outlier scores.

We can define the row-wise outlier score in a similar way. For any particular row of the
data matrix, its outlier score is defined as the mean of the squared-residuals in its observed
entries. Therefore, for the ith row X; of D, we define its outlier score as follows:

2
Zj:(i,j)EH €ij
Uz

Score(X;) = (3.33)
Here, n; denotes the number of observed entries in X;. Interestingly, it is possible to define
column-wise outlier scores in an exactly analogous way. This can be useful in some applica-
tions. For example, in a collaborative filtering application, the merchant might be interested
in items (columns) with unusual ratings patterns. Matrix factorization is one of the most
general forms of linear modeling and it finds applications in network data as well. Some of
these applications will be discussed in Chapter 12.

3.6 Neural Networks: From Linear Models to Deep
Learning

Neural networks are computational learning models that simulate the human nervous
system. In humans, learning is performed by changing the strength of synaptic connections
between cells, which are referred to as neurons. The strengths of synaptic connections
are changed in response to artificial stimuli. In the case of artificial neural networks, the
individual nodes are referred to as neurons. The neurons receive inputs from other neurons
using weighted connections (or from external training data), and might in turn transmit
their outputs to other neurons after performing a computation on their inputs. Just as
synaptic strengths are changed in biological neural networks for learning, artificial neural

3.6. NEURAL NETWORKS: FROM LINEAR MODELS TO DEEP LEARNING 99

INPUT NODES INPUT LAYER

Ou
UTPUT LAYER

‘%.V Oz
N O

(a) Perceptron (b) Multilayer

Figure 3.10: Single- and multilayer neural networks

networks change their weights in response to their inputs. The most basic form of input to a
neuron is a feature of the training data, which can be considered the analog of the external
stimulus used in biological neural networks.

The simplest form of a neural network is the perceptron. In its most basic form, the
perceptron is virtually identical to a simple linear regression model or PCA /matrix fac-
torization model. However, its neat conceptualization as a unit of computation allows us
to put multiple perceptrons together in a multlayer network. This type of multilayer net-
work allows the computation of any nonlinear function. For this reason, neural networks
are referred to as universal function approximators. The perceptron contains two layers of
nodes, which correspond to the input nodes and a single output node. The number of in-
put nodes is exactly equal to the dimensionality d of the data. Let X = (z1...24) be the
d inputs, which correspond to the d feature values of the data records. The output of a
perceptron is computed as a function of the underlying inputs with the associated weight

vector W = (wy ... wq):
d

z2=W -X = Z Wi T (3.34)
i=1
This function is also referred to as the linear activation function. It is noteworthy that the
weights in the activation function are exactly analogous to those used in section 3.2 for
linear regression and rank-1 PCA. In general settings, however, we can use an arbitrary
activation function of this linear model and also incorporate a bias term:

2= ®(W-X +1b) (3.35)

As we will discuss later, the activation function ® is often a nonlinear function like the
sigmoid or tanh functions. However, for now, we will work with the simpler form discussed
in section 3.34 because of its similarity to the other models discussed in this chapter. A
pictorial representation of the perceptron architecture is illustrated in Figure 3.10(a).

Neural networks can be used for either of the two settings discussed in section 3.2; recall
that in one setting (cf. section 3.2.1) the dependent variable is treated as special, whereas
in the other setting (cf. section 3.2.2) all attributes are treated in a homogeneous way and
the mean-squared projection error on the hyperplane is minimized. The first type of setting
is used to create replicator neural networks [160, 250] in which each attribute of the data
is predicted using other attributes, and the errors of the prediction are used to quantify
outlier scores. Such types of neural networks are also referred to as autoencoders and are
discussed in section 3.6.2. A generalization of this approach with the use of any regression
model (and not just neural networks) is discussed in section 7.7 of Chapter 7.

100 CHAPTER 3. LINEAR MODELS FOR OUTLIER DETECTION

In this section, we will focus on two different types of neural networks. First, we will focus
on a setting in which we are trying to create one-class neural networks in which the output
of the network is always zero in spite of the fact that the weights are nonzero. This setting is
somewhat less common and used rarely. However, we include it because it is directly related
to the optimization approach discussed in section 3.2.2. In section 3.6.2, we will discuss the
use of replicator neural networks and autoencoders for outlier detection. Both types of
methods can be understood within the framework of dimensionality reduction methods,
although the autoencoder framework is more general and potentially more powerful. This
approach is used more commonly in outlier detection.

Since all training points are assumed to be normal points in the one-class setting, the
prediction z of Equation 3.34 is expected to be 0. Note that this is ezactly identical to the
assumption in Equation 3.9 for linear modeling which is replicated here:

d
> wi-wi~0 (3.36)
1=1

Therefore, any non-zero value of z predicted by the one-class neural network is assumed to
be a result of outliers that do not conform to the model of normal data. Therefore, for a
single instance X, in which the neural network predicts z;, the squared error for the ith
point from our one-class assumption is as follows:

Ji =22 = (W -X;)? (3.37)

Therefore, one must update the weights of the neural network to account for this error.
This is achieved with a gradient-descent update. This update may be written as follows:

W@W—UVJZ'
ZW—U’%E

Here, > 0 is the learning rate. Also, in order to avoid the trivial solution W = 0, the
updated vector W is scaled to unit norm. The training phase of the neural network feeds the
d-dimensional records X; ... Xx to the perceptron one by one, and performs the aforemen-
tioned updates to the vector W until convergence is reached. This entire process is a version
of stochastic-gradient descent, and the result would be almost identical to the solution we
would obtain with PCA (cf. section 3.2.2) or with matrix factorization (cf. section 3.5) with
the rank set to (d — 1).
In order to score a given data point X;, we use the learned model to compute its outlier
score as follows:
Score(X;) = (W - X;)? (3.38)

Outliers will have larger scores. It is possible to score out-of-sample points using this model.
In fact, as discussed later in section 3.6.3, out-of-sample points will have more robust outlier
scores because they do not overfit the training data. The perceptron is equivalent to the
use of matrix factorization or PCA with rank (d — 1), which is equivalent to scoring the
data only along the smallest eigenvector after projecting it into the space of top-(d — 1)
principal components. With this type of conservative approach to scoring, it is possible for
all points to have outlier scores of 0 if the data set has rank strictly less than d. As a result,
many true outliers will be missed. This is a classical manifestation of overfitting. Therefore,
a more reasonable approach is to train the neural network using only half the points, and
then score the remaining half as out-of-sample test points. The scores of the test points are

3.6. NEURAL NETWORKS: FROM LINEAR MODELS TO DEEP LEARNING 101

standardized to zero mean and unit variance. The process is repeated multiple times over
multiple random samples, and the scores of points are averaged. An alternative approach
with the use of multiple output nodes will be discussed later.

3.6.1 Generalization to Nonlinear Models

So far, it does not seem as if one-class neural networks have achieved anything different from
what we would be able to accomplish with a special case of matrix factorization or PCA.
So, what is the point of this entire exercise? The major point is that the conceptualization
of such models as neural network units helps us put them together in a multilayer neural-
network architecture, which can model arbitrarily complex patterns in the underlying data.
In other words, the conceptualization of a perceptron provides a black-box framework for
“putting together” these simpler models into a more complex model. In fact, the generality of
neural networks is even greater than the nonlinear PCA approach discussed in section 3.3.8
in terms of the types of decision boundaries that such a technique can model. Technically,
given sufficient data, a multilayer neural network with a modest number of units can model
virtually any one-class data distribution without making any assumptions about the shape
of this distribution. As a result, neural networks are also sometimes referred to as “universal
function approximators.”

Multi-layer neural networks have an additional hidden layer, in addition to the input and
output layers. The hidden layer might itself be connected in different types of topologies.
A common type of topology is one in which the hidden layer has multiple layers, and the
nodes in one layer feed forward into the nodes of the next layer. This is referred to as
a feed-forward network. An example of a feed-forward network with two hidden layers is
illustrated in Figure 3.10(b). Furthermore, one need not use linear functions in any of the
layers. Various activation functions ®(-) (based on Equation 3.35) such as the tanh and
sigmoid functions are used.

e?? —1
D(z2) = P (tanh function)
d(z) = T5e= (sigmoid function)
(z — p)?
D(z) = exp Ty (Gaussian Radial Basis Function)
o

In the single-layer neural network, the training process is simple because the expected
output of the neuron is known to be 0. The problem in the case of the hidden layer is that
we do not know what the outputs of neurons in these units should be. We only know that
the final output at the output layer should be 0. In other words, some type of feedback is
required from later layers to earlier layers about the expected output. This is achieved with
the use of the backpropagation algorithm. The backpropagation algorithm has a forward
phase and a backward phase, which is applied during the training of each instance. In the
forward phase, the activation function is applied first in the input layer, then in the hidden
layer, until the output propagates to the output layer. Then the error is computed, and
the error estimates of various neurons also propagate backwards. These are then used to
update the weights of various nodes. As in the case of the perceptron, it is important to
scale the weights of the output node to unit norm throughout the update process. This
is done in order to avoid the trivial solution where all weights in the output node are Os.
Furthermore, if W is the hy X ho matrix of weights between any particular pair of hidden

102 CHAPTER 3. LINEAR MODELS FOR OUTLIER DETECTION

layers with h; and hy nodes (where ho < h1), we need to impose the constraint WITW =1
to avoid trivial transformations in which each node in a hidden layer corresponds to the
same transformation or a zero output. These additional requirements necessitate the use of
constrained gradient-descent methods, which are generally much harder.

As in the case of the perceptron, this process is applied for each training data point;
furthermore, we cycle through the various training data points until convergence is reached.
A detailed discussion of the backpropagation algorithm is provided in [84]. By increasing
the number of layers in the network and using different types of activation functions, we
can model arbitrarily complex non-linear patterns. The process of learning the parameters
of a neural network with a large number of layers requires a number of specialized tricks;
this class of methods is referred to as deep learning [223].

Reducing Representation Rank with Multiple Outputs: The aforementioned ap-
proach uses only one output node. In the case of the perceptron, this corresponds to a
linear reduction of rank (d — 1). This is equivalent to using only the scores along the small-
est eigenvector in PCA. In practice, this is too large a representation rank to obtain a
meaningful reduction. One way of reducing the representation rank is to use multiple (say
r) output nodes so that the output of each node is expected to be zero. This case is analo-
gous to scoring along the r smallest eigenvectors in PCA (i.e., using a representation rank
of (d — r)). Therefore, the error is equal to the sum of the squares of the outputs of the
various nodes. In addition, we need to incorporate some constraints on the weights in the
output layer. Let W be the h x r matrix of weights in the output layer, where h > r is
the number of nodes in the last hidden layer. In order to ensure mutual orthogonality and
normalization of the weight vector, we need to impose the additional constraint W7 W = I.
Such an approach will require constrained gradient descent for the weights in the output
layer. This makes the optimization problem more challenging. A more satisfactory and in-
terpretable way of achieving these goals is the use of replicator neural networks, which will
be discussed in the next section.

Outlier Scoring: For any given point X;, if the multilayer network with a single output
node outputs z;, the outlier score is z2. If the neural network has r outputs 2;(1)...2(r),
the outlier score is 2221 2i(7)?. Note that these scores are constructed in a very similar
way to the approach used in matrix factorization and PCA.

3.6.2 Replicator Neural Networks and Deep Autoencoders

Although the approach in the previous section is intuitively appealing because of its natural
relationship to supervised learning in traditional neural networks, it is rarely used. This is
because of the constraints in the underlying optimization problem and the fact that it cannot
be used to derive a compressed representation of the data. A more common methodology
is to use autoencoders. An example of an autoencoder with three hidden layers is shown in
Figure 3.11. Note that the number of outputs is the same as the number of inputs, and each
input @; is reconstructed to x} for the ith dimension. The aggregate error of reconstruction
2?21 (z; —})? over all d dimensions is summed up over all data points, and is minimized by
neural network training. The point-specific error of reconstruction, which is Zle (x; —ah)?,
provides the outlier score of that point. The use of three hidden layers in replicator neural
networks is common, and was also used in the approach discussed in [250].

Autoencoders are a natural choice for outlier detection because they are commonly used
for dimensionality reduction of multidimensional data sets as an alternative to PCA or
matrix factorization. Note that the number of nodes in the middle hidden layer of Figure 3.11
is much less than the number of nodes in the input layer (which is very typical), and the

3.6. NEURAL NETWORKS: FROM LINEAR MODELS TO DEEP LEARNING 103

INPUT LAYER OUTPUT LAYER
X (O=—x,
o HIDDEN LAYER _ _ __
X, O O=—x,
N
e v e,
X3 Pt w.‘\y& O== x4
N 0\
AK L HORS TRS

OUTPUT OF THIS LAYER PROVIDES
REDUCED REPRESENTATION (CODE)

Figure 3.11: The autoencoder architecture: It is instructive to compare the autoencoder
architecture with that in Figure 3.10(b).

output of the nodes in the middle hidden layer can be viewed as a reduced representation of
the data. The use of neural networks for dimensionality reduction is discussed in [259, 264].
In this context, it has been shown [68] that certain simplified architectures of autoencoders
yield dimensionality reductions that are closely related to those obtained using principal
component analysis. Note that the architecture of the neural network on both sides of the
middle hidden layer is often (but not necessarily) symmetric. In fact, one can divide the
autoencoder on two sides of the middle hidden layer into two portions corresponding to
an encoder and a decoder, which provides a point of view very similar to that in matrix
factorization and PCA.

In order to understand why autoencoders are effective for outlier detection, we will
first understand traditional matrix factorization as a method for encoding and decoding
data. The factorization D ~ UV can be viewed as a kind of encoder that compresses the
data matrix D into low-rank factors U and V. Furthermore, the product UVT provides
a reconstructed matrix D’ = UVT. Therefore, the multiplication of U and V7T can be
viewed as a type of decoder. Note that D’ is not exactly the same as D and the absolute
values of the entries in (D — D’) provide the entry-wise outlier scores. The entire process
of matrix factorization (in the context of an encoder-decoder architecture) is illustrated in
Figure 3.12(a).

When using PCA or matrix factorization, one makes the implicit assumption of linear
compression. However, the multilayer neural network architecture provides a more general
type of dimensionality reduction in which any type of nonlinear reduction is possible with the
neural network model. In fact, by splitting up the replicator neural network of Figure 3.11
on two sides of the middle hidden layer, we obtain a multilayer neural network on each
side of the middle hidden layer corresponding to the encoder and the decoder portions.
This situation is illustrated in Figure 3.12(b). The first part of the network learns the
encoding function ¢ and the second part of the neural network learns the decoding function
1. Therefore, ¢(D) represents a compressed representation (i.e, dimensionality reduction)
of the data set D, and applying the decoder function ¢ to ¢(D) yields the reconstructed
data D’ = (¢ 0 ¢)(D), which may not be exactly the same as D. Outlier entries are resistant
to compression and will show the greatest variation between D and D’. The absolute values
of the entries in the residual matrix (D — D’) provide the entry-wise outlier scores. As in
the case of matrix factorization, one can convert these entry-wise scores to either row-wise
scores or column-wise scores. The main difference from matrix factorization is the greater
power of autoencoders in representing arbitrary data distributions. With a larger number

104 CHAPTER 3. LINEAR MODELS FOR OUTLIER DETECTION

ENCODER DECODER
(MULTILAYER NEURAL (MULTILAYER NEURAI
NETWORK) NETWORK)
FUNCTION ¢ FUNCTION ¢

MULTIPLY
FACTORIZATION FACTORS
D =~ UV uvT— D!

< <
= >
8 &
o o

<
E z
] (]
I~ e
o o

RECONSTRUCTED DATA
RECONSTRUCTED DATA

b M b D'= (W0 ¢) (D)
OUTLIER SCORES IN ENTRIES OF D-D'=D - UVT OUTLIER SCORES IN ENTRIES OF D-D'=D - ({ 0 ¢) (D)

(a) Matrix factorization (b) Autoencoder

Figure 3.12: Similarities between autoencoders and dimensionality reduction/matrix factor-
ization methods

of hidden units, one can obtain a low-dimensional representation of any data distribution
whether it is linear or not. In fact, one can often model more complex distributions with
autoencoders than with kernel PCA.

Although the splitting of the replicator neural network into an encoder and a decoder
is useful in understanding the relationship to dimensionality reduction, it is not necessary
in practice. The splitting of a replicator neural network into an encoder-decoder pair is a
particular type of architecture (referred to as n/p/n-architecture) that allows the creation of
a compressed representation. One can work with even more general architectures if one does
not explicitly need the reduced representation of the data. In the original work on replicator
neural networks [250], three hidden layers were used. The tanh activation function was used
in the hidden layers, and the linear or sigmoid function is used in the output layer. The
middle hidden layer used a stepwise variation on the tanh function. The error in the output
layer is given by the reconstruction error and backpropagation of these errors is used to train
the neural network. The trade-off between the generality of the approach and the tendency
to overfit is regulated by the number of hidden layers, and the number of units in each
hidden layer. The number of hidden layers and the number of hidden nodes in each layer
can be determined empirically with the use of a validation set [160]. The validation set is
also useful for determining the termination criterion for the training process. The training
phase is terminated when the error on the validation set begins to rise.

The success of the approach follows from its ability to model complex nonlinear dis-
tributions, although one must always guard against excessively increasing the number of
hidden layers and causing overfitting. As shown in [264], careful design choices can provide
better reductions than PCA with neural networks. In particular, when working with very
deep networks, an unsupervised method, referred to as pretraining [80, 459] is essential in
achieving a meaningful dimensionality reduction. In pretraining, a greedy approach is used
to train the network one layer at a time by learning the weights of the outer hidden layers
first and then learning the weights of the inner hidden layers. The resulting weights are used
as starting points for a final phase of traditional neural network backpropagation in order
to fine tune them.

An example of pretraining for the network of Figure 3.11 is shown in Figure 3.13. The
basic idea is to assume that the two (symmetric) outer hidden layers contain a first-level
reduced representation of larger dimensionality, and the inner hidden layer contains a second
level reduced representation of smaller dimensionality. Therefore, the first step is to learn
the first-level reduced representation and the corresponding weights associated with the
outer hidden layers using the simplified network of Figure 3.13(a). In this network, the

3.6. NEURAL NETWORKS: FROM LINEAR MODELS TO DEEP LEARNING 105

INPUT LAYER OUTPUT LAYER

HIDDEN LAYER

N

X ’
X7

AT
5,

FIRST-LEVEL SECOND-LEVEL
FIRST-LEVEL REDUCTION REDUCTION REDUCTION

(a) Pretraining first-level reduction (b) Pretraining second-level reduction
and outer weights and inner weights

Figure 3.13: Pretraining the neural network of Figure 3.11.

middle hidden layer is missing and the two symmetric outer hidden layers are collapsed
into a single hidden layer. The assumption is that the two outer hidden layers are related
to one another in a symmetric way like a smaller replicator neural network. In the second
step, the reduced representation in the first step is used to learn the second-level reduced
representation (and weights) of the inner hidden layers. Therefore, the inner portion of the
neural network is treated as a smaller replicator neural network in its own right. Since each
of these pretrained subnetworks is much smaller, the weights can be learned without much
overfitting. This initial set of weights is then used to train the entire neural network of
Figure 3.11 with backpropagation. Note that this process can be performed in layerwise
fashion for a deep neural network containing any number of hidden layers. It is noteworthy
that the symmetric autoencoder naturally constructs hierarchically related dimensionality
reductions of different levels of compression.

Without pretraining, it is possible for the approach to obtain a trivial reduction, so that
the reconstruction always returns the average of the training data [264]. This occurs because
of overfitting in the large parameter space of a deep network. From the point of view of
optimization of parameters, one can view overfitting as a process of getting stuck in local
minima. Pretraining helps in conditioning the parameters towards a basin of more attractive
local minima by selecting a good initialization point. These techniques are recent results in
deep learning that can only be described as breakthrough advancements [186]. For example,
it has been shown in [264] that one can convert a 784 pixel image into just 6 real numbers
with deep autoencoders. This is not possible with PCA. Just as deep autoencoders provide
better reconstruction than matrix-factorization and PCA [264], such methods are also likely
to be more accurate for anomaly detection. A number of different implementations of neural
networks in different domains are provided in [147, 160, 249, 552].

3.6.3 Practical Issues

There are two problematic issues with the use of neural networks. The first issue is that
neural networks are slow to train. There is little that one can do to address this issue because
computational complexity is an inherent problem with neural networks. Nevertheless, recent
hardware and algorithmic advancements have made neural networks (in general) and deep
learning (in particular) more feasible.

The second problem with neural networks is that they are sensitive to noise. In fact,
since outliers are treated as normal points during the training phase, there will inevitably

106 CHAPTER 3. LINEAR MODELS FOR OUTLIER DETECTION

be errors in the model. The problem of treating outliers as normal points will be manifested
as overfitting. This problem is particularly significant in the case of multilayer networks.
For a sufficiently complex multilayer network, every point in the training data will be able
to obtain an outlier score of 0 even when pretraining is used to avoid overfitting. However,
out-of-sample points would continue to have more realistic scores because they were not
included in the training process. Therefore, it is advisable to use only a random subset
of the data to train the model and score the remaining points with the resulting model.
The size of this random subset depends on the complexity of the multilayer network used.
For more complex networks, larger training data sets are required. Therefore, one should
select the complexity of the neural network depending on the amount of available training
data. A natural approach is to repeatedly sample points from the training data, create
the model, and score the remaining points with the resulting model. The scores of each
point over various random samples (in which they are scored) are then averaged in order to
provide the final result. One challenge with the use of this approach is that neural networks
are slow to train and therefore it is sometimes computationally infeasible to train multiple
models. Nevertheless, some recent methods like dropout training [510] can be leveraged
to simulate ensemble performance in an efficient way without explicitly creating multiple
network models.

3.6.4 The Broad Potential of Neural Networks

The aforementioned sections showed two different ways of modeling outliers in the neural
network setting by using outputs with different interpretations. In practice, there are almost
an unlimited number of ways in which one could use neural networks to model outliers. For
example, neural networks can be used to capture various unsupervised models such as self-
organizing maps [593], mixture modeling and clustering methods by appropriately defining
the output nodes and corresponding optimization problem. Since methods like clustering
and mixture modeling can be used for outlier detection (cf. Chapters 2 and 4), one can
also adapt these neural network methods for scoring data points as outliers. Given the
recent advances in deep learning, these directions represent an untapped potential of neural
networks. However, one always needs to be careful to design the model in such a way so as
to avoid the pervasive problem of overfitting with neural networks.

3.7 Limitations of Linear Modeling

Regression analysis has a few limitations as a tool for outlier detection. The most significant
of these shortcomings was discussed at the very beginning of this chapter, in which the
data-specific nature of regression analysis was explored. In particular, the data needs to
be highly correlated, and aligned along lower-dimensional subspaces for regression analysis
techniques to be effective. When the data is uncorrelated, but highly clustered in certain
regions, such methods may not work effectively. In such cases, nonlinear models and kernel
methods provide a useful choice. However, such methods are computationally intensive and
may often result in overfitting.

Another related issue is that the correlations in the data may not be global in nature. A
number of recent analytical observations [7] have suggested that the subspace correlations
are specific to particular localities of the data. In such cases, the global subspaces found by
PCA are suboptimal for outlier analysis. Therefore, it can sometimes be useful to combine
linear models with proximity-models (discussed in the next chapter), in order to create

3.8. CONCLUSIONS AND SUMMARY 107

more general local subspace models. This will be the topic of high-dimensional and subspace
outlier detection, which is discussed in detail in Chapter 5.

As with any model-based approach, overfitting continues to be an issue, when used with
a small set of data records. In this context, the relationship of the number of records to the
data dimensionality is important. For example, if the number of data points are less than
the dimensionality, it is possible to find one or more directions along which the variance is
zero. Even for cases, where the data size is of greater (but similar) magnitude as the data
dimensionality, considerable skew in the variances may be observed. This is evident from
the results of Figure 3.5(c) and (d), where there is considerable skew in the eigenvalues for
a small set of uniformly distributed data. This skew reduces as the data size is increased.
This is a classic case of overfitting, and it is important to interpret the results carefully,
when the data set sizes are small.

The interpretability of regression-based methods is rather low. These methods project
the data into much lower-dimensional subspaces, which are expressed as a linear (positive
or negative) combination of the original feature space. This cannot be easily interpreted
in terms of physical significance in many real application. This also has the detrimental
effect of reducing the intensional knowledge of the user for a particular application. This is
undesirable, because it is usually interesting to be able to explain why a data point is an
outlier in terms of the features of the original data space.

Finally, the computational complexity of the approach may be an issue when the di-
mensionality of the data is large. When the data has dimensionality of d, this results in an
d x d covariance matrix, which may be rather large. Furthermore, the diagonalization of
this matrix will slow down at least quadratically with increasing dimensionality. A number
of techniques have recently been proposed, which can perform PCA in faster time than
quadratic dimensionality [230]. The computational issue is particularly challenging in the
case of kernel generalizations of linear methods. These issues can also be ameliorated with
ensemble methods [32]. With advances in methods for matrix computation and the increas-
ing power of computer hardware, this issue has ceased to be as much of a problem in recent
years. Such dimensionality reduction techniques are now easily applied to large text collec-
tions with a dimensionality of several hundreds of thousands of words. In fact, methods like
neural networks and deep learning have become increasingly feasible in recent years. If one
can overcome the computational challenges associated with these methods, they can often
be used to provide robust results.

3.8 Conclusions and Summary

This chapter presents linear models for outlier detection. Many data sets show significant
correlations among the different attributes. In such cases, linear modeling may provide an
effective tool for removing the outliers from the underlying data. In most cases, principal
component analysis provides the most effective methods for outlier removal, because it is
more robust to the presence of a few outliers in the data. Such methods can also be extended
to nonlinear models, although the approach is computationally complex and can sometimes
overfit the data. Many other mathematical models such as SVMs, matrix factorization and
neural networks uses different variations of these concepts. Multilayer neural networks can
model complex and nonlinear patterns, especially with the use of deep-learning methods.
Other than neural networks, most of these models are global models, which do not recog-
nize the varying subspace and correlation patterns in different data localities. However, it
provides a general framework, which can be used for generalized local linear models, which

108 CHAPTER 3. LINEAR MODELS FOR OUTLIER DETECTION

are discussed in Chapters 4 and 5.

3.9 Bibliographic Survey

The relationships between the problems of regression and outlier detection has been explored
extensively in the literature [467]. Outlier analysis is generally seen as an enormous challenge
to robust regression in terms of the noise effects, and this has motivated an entire book
on the subject. In many cases, the presence of outliers may lead to unstable behavior of
regression analysis methods. An example of this was illustrated in Figure 3.3(b) of this
chapter, where a single outlier completely changed the regression slope to one that does not
reflect the true behavior of the data. It can be shown that under specific conditions, outliers
can have an arbitrarily large effect on the estimation of the regression coefficients. This is
also referred to as the breakdown point [245, 269] of regression analysis. Such circumstances
are very undesirable in outlier analysis, because of the likelihood of very misleading results.
Subsequently, numerous estimators have been proposed with higher breakdown points [467].
In such cases, a higher level of contamination would need to be present in the data for
breakdown to occur.

The method of principal component analysis is also used frequently in the classical lit-
erature [296] for regression analysis and dimensionality reduction. Its application for noise
correction in the text domain was first observed in [425], and then modeled theoretically
in [21]. It was shown that the projection of the data points onto the hyperplanes with the
greatest variance provides a data representation, with higher quality of similarity compu-
tations because of the removal of noise from the data. Latent Semantic Indexing [162, 425],
a variant of PCA, was initially proposed in the context of text data for the purpose of
reducing dimensionality for retrieval, rather than for noise reduction. However, many years
of experience with LSI have revealed that the quality of retrieval actually improved, as was
explicitly noted in [425]. Later, this was theoretically modeled for relational data [21]. PCA
and LSI are dimensionality reduction techniques that summarize the data by finding linear
correlations among the dimensions.

PCA-based techniques have been used in order to detect outliers in a wide variety of
domains such as statistics [116], astronomy [177], ecological data [282], network intrusion
detection [334, 493, 544], and many kinds of time-series data. Some of the aforementioned
applications are temporal, whereas others are not. Because of the relationship between PCA
and time series correlation analysis, much of the application of such regression methods has
been to the temporal domain. Regression-based methods will be re-visited in Chapter 9,
where a number of methods for temporal outlier analysis will be discussed. In the context
of temporal data, the outlier analysis problem is closely related to the problem of time
series forecasting, where deviations from forecasted values in a time series are flagged as
outliers. A variety of regression-based methods for noise reduction and anomaly detection in
time-series sensor data streams are also discussed in [22]. In addition, a number of methods
that resemble structural and temporal versions of PCA have been used for anomaly detec-
tion in graphs [280, 519]. In such methods, an augmented form of the adjacency matrix, or
the similarity matrix, may be used for eigenvector analysis. Such methods are commonly
referred to as spectral methods, and are discussed in Chapter 12. Nonlinear dimensionality
reduction methods are discussed in [481], and applications to novelty detection is discussed
in [270, 541]. The work in [270], however, uses reconstruction error (hard kernel PCA) as
the anomaly score, rather than the soft approach [35] discussed in this book. The kernel
Mahalanobis method is formally proposed and tested as a distinct method in [35]. The ap-

3.10. EXERCISES 109

plication of such nonlinear dimensionality reductions for outlier detection is also discussed
in [475]. However, the approach in [475] uses spectral methods instead of global dimension-
ality reduction to enhance the local nature of the reduction process. This type of approach
will be more effective if different portions of the data show different manifold structures.

Another general model beyond global PCA is one in which the data is modeled as a
probabilistic mixture of PCAs [549]. This is referred to as Probabilistic PCA (PPCA).
Such methods are quite prone to noise in the underlying data during the process of mixture
modeling. A method proposed in [161] increases the robustness of PCA by modeling the un-
derlying noise in the form of a Student’s ¢-distribution. The effects of outliers on PCA-based
clustering algorithms are significant. The work in [7] provides a methods for providing the
outliers as a side product of the output of the clustering algorithm. Furthermore, methods
for using local PCA in outlier analysis will be discussed in detail in Chapter 5 on outlier
analysis in high-dimensional data. A recent technique for using dimensionality reduction
methods in high-dimensional data is provided in [591]. A complementary approach to di-
mensionality reduction is the RODS framework in which sparse coding is used [178]. Sparse
coding methods transform the data to a high-dimensional and sparse representation. Out-
liers are defined as data points containing dictionary atoms that do not normally occur in
other data points are therefore specific to the anomalies. A framework that discovers sparse
codings and outliers jointly is discussed in [3].

Kernel support vector machines have been used frequently for novelty detection with
the use of a one-class version of the model [480, 384]. A general discussion of support
vector machines may be found in [33]. The work in [384] is particularly noteworthy because
it provides an interesting evaluation of such models with respect to their performance in
different data sets. One-class support-vector machines can be sensitive to the data domain,
feature representations, and the choice of the kernel function. The variations and sensitivity
in the performance of support-vector machines are discussed in [384, 460]. Other one-class
methods for support-vector machine classification are discussed in [52, 113, 303, 384, 460,
538, 539].

In principle, any matrix factorization technique can be used for outlier analysis. An
example of an outlier analysis method that uses matrix-factorization is discussed in [576].
The core principle is that dimensionality reduction methods provide an approximate rep-
resentation of the data along with a corresponding set of residuals. These residuals can be
used as the outlier scores. The matrix factorization methodology discussed in this chapter
is commonly used in recommender systems [34].

Neural networks are discussed in detail in [84]; the problem of deep learning is discussed
in [223]. The application of one-class neural networks to outlier detection is discussed in [268,
388, 389, 529]. A specific application of one-class neural networks to document classification
is provided in [385]. Another class of neural networks that is commonly used is the replicator
neural network [53, 147, 250, 567, 552], which is used to score data points as outliers. A
recent implementation of replicator neural networks may be found in [160]. The use of
deep-learning autoencoders for anomaly detection is explored in [53].

3.10 Exercises

1. Consider the data set of the following observations: { (1, 1), (2, 0.99), (3, 2), (4, 0.98),
(5, 0.97) }. Perform a regression with Y as the dependent variable. Then perform a
regression with X as the dependent variable. Why are the regression lines so different?
Which point should be removed to make the regression lines more similar?

110

10.

11.

CHAPTER 3. LINEAR MODELS FOR OUTLIER DETECTION

. Perform Principal Component Analysis on the data set of Exercise 1. Determine the

optimal 1-dimensional hyperplane to represent the data. Which data point is furthest
from this 1-dimensional plane?

Remove the outlier point found in Exercise 2, and perform PCA on the remaining
four points. Now project the outlier point onto the optimal regression plane. What is
the value of the corrected point

Suppose that you have survey containing numerical data. You know that participants
have occasionally made mistakes in exactly one of the fields, because it is so difficult
to fill correctly. Discuss how you would detect such outliers.

. How would your answer to the previous question change if the participants could have

made mistakes in any of the fields and not just a specific field.

Download the KDD CUP 1999 data set from the UCI Machine Learning Reposi-
tory [203], and perform PCA on the quantitative attributes. What is the dimension-
ality of the subspace required to represent (i) 80% of the variance, (ii) 95% of the
variance, and (iii) 99% of the variance.

Repeat Exercise 6 with the use of the Arrythmia data set from the UCI Machine
Learning Repository [203].

Generate 1000 data points randomly in 100-dimensional space, where each dimension
is generated from the uniform distribution in (0, 1). Repeat Exercise 6 with this data
set. What happens, when you use 1,000,000 data points instead of 10007

Consider a 2-dimensional data set with variables X and Y. Suppose that Var(X) <
Var(Y). How does this impact the slope of the X-on-Y regression line, as compared
to the slope of the Y-on-X regression lines. Does this provide you with any insights
about why one of the regression lines in Figure 3.3(b) shifts significantly compared to
that in Figure 3.3(a), because of the addition of an outlier?

Scale each dimension of the Arrythmia data set, such that the variance of each dimen-
sion is 1. Repeat Exercise 7 with the scaled data set. Does the scaling process increase
the number of required dimensions, or reduce them? Why? Is there any general infer-
ence that you can make about an arbitrary data set from this?

Let X be the covariance matrix of a data set. Let the ¥ be diagonalized as follows:
¥ =prppP"

Here, D is a diagonal matrix containing the eigenvalues);, and D~! is also a diagonal
matrix containing the inverse of the eigenvalues (i.e. 1/X;)

e Show that ¥~! = pD- !PT

e For a given data point zfrom a data set with mean 7z, show that the value of the
Mahalanobis distance (X —)X~ 1(X —)T between X and the mean [z reduces
to the same expression as the score in Equation 3.17.

Chapter 4

Proximity-Based Outlier Detection

“To lead the orchestra, you have to turn your back to the crowd.” — Max Lucado

4.1 Introduction

Proximity-based techniques define a data point as an outlier when its locality (or prozimity)
is sparsely populated. The proximity of a data point may be defined in a variety of ways,
which are subtly different from one another but are similar enough to merit unified treatment
within a single chapter. The most common ways of defining proximity for outlier analysis
are as follows:

e Cluster-based: The non-membership of a data point in any of the clusters, its dis-
tance from other clusters, the size of the closest cluster, or a combination of these
factors are used to quantify the outlier score. The clustering problem has a comple-
mentary relationship to the outlier detection problem in which points either belong
to clusters or they should be considered outliers.

e Distance-based: The distance of a data point to its k-nearest neighbor (or other
variant) is used in order to define proximity. Data points with large k-nearest neigh-
bor distances are defined as outliers. Distance-based algorithms typically perform the
analysis at a much more detailed granularity than the other two methods. On the
other hand, this greater granularity often comes at a significant computational cost.

e Density-based: The number of other points within a specified local region (grid
region or distance-based region) of a data point, is used in order to define local density.
These local density values may be converted into outlier scores. Other kernel-based
methods or statistical methods for density estimation may also be used. The major
difference between clustering and density-based methods is that clustering methods
partition the data points, whereas density-based methods partition the data space.

Clearly, all these techniques are closely related because they are based on some notion of
prozimity (or similarity). The major difference is at the detailed level of how this proximity

© Springer International Publishing AG 2017 111
C.C. Aggarwal, Outlier Analysis, DOI 10.1007/978-3-319-47578-3_4

112 CHAPTER 4. PROXIMITY-BASED OUTLIER DETECTION

is defined. These different ways of defining outliers may have different advantages and
disadvantages. In many cases, the distinctions between these different classes of methods
become blurred when the outlier scores are defined using! more than one of these concepts.
This chapter addresses these issues in a unified way.

One major difference between distance-based and the other two classes of methods lies in
the level of granularity at which the analysis is performed. In both clustering- and density-
based methods, the data is pre-aggregated before outlier analysis by either partitioning the
points or the space. The data points are compared to the distributions in this pre-aggregated
data for analysis. On the other hand, in distance-based methods, the k-nearest neighbor
distance to the original data points (or a similar variant) is computed as the outlier score.
Thus, the analysis in nearest-neighbor methods is performed at a more detailed level of gran-
ularity than clustering methods. Correspondingly, these methods provide different trade-offs
between effectiveness and efficiency for data sets of different sizes. Nearest-neighbor meth-
ods may require O(N?) time to compute all k-nearest neighbor distances for a data set with
N records, unless indexing or pruning techniques are used to speed up the computations.
However, indexing and pruning techniques generally work well only in some restricted set-
tings such as lower-dimensional data sets. Furthermore, pruning is not designed for outlier
score computation, and it can only be used in settings in which the binary labels (indi-
cating whether points are outliers) need to be reported. In spite of these disadvantages,
nearest-neighbor methods remain exceedingly popular. This is because such methods can
often provide more detailed and accurate analysis, especially for smaller data sets in which
robust clustering or density analysis is not possible. Thus, the particular choice of the model
depends on the nature of the data and its size.

Proximity-based methods are naturally designed to detect both noise and anomalies,
although different methods are suited to these different kinds of outliers. For example, weak
definitions of proximal sparsity, such as the non-membership of data points in clusters are
naturally designed to detect weak outliers (or noise), whereas large levels of deviation or
sparsity in terms of density- or distance-based definitions can also detect strong outliers
(or anomalies). These methods are extremely popular because of their intuitive simplicity
and interpretability. In fact, a number of methods for intuitive exploration and explanation
of outliers [318] are based on proximity-centered definitions. Because of the simplicity of
the underlying methods, they can be easily generalized to almost all types of data such as
time-series data, sequence data, or graph data.

This chapter is organized as follows. Section 4.2 discusses methods for using clusters in
outlier analysis. Section 4.3 discusses distance-based methods for outlier detection. Density-
based methods are discussed in section 4.4. The limitations of proximity-based outlier de-
tection are discussed in section 4.5. Section 4.6 presents the conclusions and summary.

4.2 Clusters and Outliers: The Complementary Rela-
tionship

A well-known complementary relationship exists between clustering and outlier detection.
A simplistic view would be that every data point is either a member of a cluster or an
outlier. In clustering, the goal is to partition the points into dense subsets, whereas in
outlier detection, the goal is to identify points that do not seem to fit naturally in these

11t will be discussed later in this chapter, that the well-known LOF method [96] can be interpreted either
as a distance-based or density-based method, depending on how it is presented.

4.2. CLUSTERS AND OUTLIERS: THE COMPLEMENTARY RELATIONSHIP 113

X <= POINT B

FEATURE Y
e
T

X <= POINT A

L L L L L L \
0 1 2 3 4 5 6 7 8
FEATURE X

Figure 4.1: The example of Figure 2.9 revisited: Proper distance computations can detect
better outliers

dense subsets. In fact, most clustering algorithms report outliers as a side-product of their
analysis.

However, it is important to understand that using only the complementary relationship
of points to clusters in order to define outliers results in the discovery of weak outliers or
noise. This is because non-membership of data points in clusters is a rather blunt hammer
to measure the level of deviation of a data point from the normal patterns. For example, a
data point that is located at the fringes of a large cluster is very different from one that is
completely isolated from all the other clusters. Furthermore, all data points in very small
clusters may sometimes also be considered outliers. Therefore, when using clustering for
outlier detection, a more nuanced approach (than that of cluster non-membership) is used
for computing the outlier scores.

A simple definition of the outlier score may be constructed by using the distances of data
points to cluster centroids. Specifically, the distance of a data point to its closest cluster
centroid may be used as a proxy for the outlier score of a data point. Since clusters may be of
different shapes and orientations, an excellent distance measure to use is the Mahalanobis
distance, which scales the distance values by local cluster variances along the directions
of correlation. Consider a data set containing k clusters. Assume that the rth cluster in
d-dimensional space has a corresponding d-dimensional row vector [, of attribute-wise
means, and a d X d co-variance matrix X,. The (i, j)th entry of this matrix is the local
covariance between the dimensions ¢ and j in that cluster. Then, the squared Mahalanobis
distance MB(X,7i;,,)? between a data point X (expressed as row vector) and the cluster
distribution with centroid 7z, and covariance matrix 3, is defined as follows:

MBX, 77,2, = (X - 1), (X -)" (4.1)

After the data points have been scored with the local Mahalanobis distance, any form of
extreme-value analysis can be applied to these scores to convert them to binary labels.
One can also view the Mahalanobis distance as an adjusted Euclidean distance between a
point and the cluster centroid after some transformation and scaling. Specifically, the point
and the centroid are transformed into an axis system defined by the principal component
directions (of the cluster points). Subsequently, the squared distance between the candidate
outlier point and cluster centroid is computed along each of the new axes defined by these

114 CHAPTER 4. PROXIMITY-BASED OUTLIER DETECTION

principal components, and then divided by the variance of the cluster points along that
component. The sum of these scaled values over all the components provides the squared
Mahalanobis distance. The effect of the Mahalanobis distance is to provide statistical nor-
malization based on the characteristics of a particular data locality. Even small distances
along directions in which cluster variances are small may be statistically significant within
that data locality. Similarly, large distances along directions in which cluster variances are
large may not be statistically significant within that data locality. Such an approach will
yield more refined results than a global use of the Euclidean distance because it is better
tailored to the data locality at hand. This is evident from the example illustrated in Figure
4.1, in which the data point ‘A’ is more obviously an outlier than data point ‘B’ because
the latter could be (weakly) related to one of the elongated clusters. However, this subtle
distinction cannot be detected with the use of the Euclidean distance, according to which
the data point ‘A’ is closest to the nearest cluster centroid. It is noteworthy that the use of
the Mahalanobis distance achieves similar goals of local normalization as achieved by some
other local density-based methods discussed later in this chapter (like LOF and LOCT).

The outlier scoring criterion should always be tied closely to the objective function
that is optimized in the clustering algorithm. When the Mahalanobis distance is used for
scoring, it should also be used within the clustering process for distance computations.
For example, the Mahalanobis k-means algorithm [33] can be used in the clustering phase.
Therefore, in each assignment iteration, data points are assigned to clusters based on their
Mahalanobis distance to the various cluster centroids. As a result, the clustering process
will be sensitive to the different shapes and orientations of the underlying clusters (as in
Figure 4.1). In fact, the EM algorithm discussed in Chapter 2 can be considered a soft
version of a Mahalanobis k-means algorithm [23]. Note that the term in the exponent of the
Gaussian distribution for each mixture component of the probabilistic model in Chapter 2
is the (squared) Mahalanobis distance. Furthermore, the fit value computed by the EM
algorithm is generally dominated by the exponentiated Mahalanobis distance to the nearest
cluster centroid. The Mahalanobis k-means algorithm converts the soft probabilities into
hard assignments. Thus, cluster-based outlier analysis methods are hard avatars of the (soft)
probabilistic mixture models introduced in Chapter 2.

In addition to distance-based criteria, it is common to use cluster cardinality as a com-
ponent of the outlier score. For example, the negative logarithm of the fraction of points
in the nearest cluster can be used as a component of the outlier score. One can create two
separate IN-dimensional vectors of scores based on the distance and cardinality criteria,
standardize each of the vectors to unit variance, and then add them. The cardinality cri-
terion is especially popular in histogram-based methods in which the space is partitioned
into regions of roughly equal size. It is noteworthy that histogram-based methods are vari-
ants of clustering methods. Incorporation of cluster cardinality into the scores is helpful
in distinguishing small groups of clustered outliers from normal points occurring in larger
clusters. The identification of clustered anomalies can be achieved even more effectively
by using a minimum threshold on the number of data points in each cluster. An example
is illustrated in Figure 4.2, where the use of a threshold of 4 is sufficient to identify the
three isolated data points. Such outliers are common in real applications, because the same
(rare) process might generate these outliers multiple times, albeit a small number of times.
In general, clustering methods are much better than histogram-based methods in handling
clustered anomalies because they partition the data points rather than the data space in
a more flexible way; they can therefore detect and adjust for these types of small clusters
more easily during the partitioning process.

Clustering-based methods naturally have a high variability of prediction depending on

4.2. CLUSTERS AND OUTLIERS: THE COMPLEMENTARY RELATIONSHIP 115

4000 POINTS

FEATURE Y
~
T

3 ISOLATED POINTS

L L L L L L
0 1 2 3 4 5 6 7 8
FEATURE X

Figure 4.2: The example of Figure 1.5 revisited: Proper combination of global and local
analysis in proximity-based methods can identify such outliers

the specific choice of model, randomized initialization, or parameter setting. As discussed
in Chapter 6, this type of variability is a theoretical indication of a suboptimal detector in
expectation. To improve the performance, it is often advisable to use an average of the outlier
scores from multiple clusterings (with different parameter settings) to obtain better results.
Even in cases where the optimal parameter setting is known, it is helpful to average the
(normalized) outlier scores over different runs of a randomized clustering algorithm to obtain
good results. A deterministic clustering algorithm can be suitably randomized by running it
on samples of the data, using different initialization points, or explicitly randomizing specific
steps of the algorithm. In general, sufficient randomization is often more important than the
quality of the base clustering method. A particularly useful method in this context is the
use of extremely-randomized clustering forests [401]. Even though the scores from a single
application of clustering are often suboptimal, the use of this type of ensemble approach
provides surprisingly good results. More details on such methods are provided in Chapter 6.

One interesting property of clustering ensembles is that the type of outlier discovered
will be sensitive to the type of clustering that is used. For example, a subspace clustering
will yield a subspace outlier (cf. section 5.2.4 of Chapter 5); a correlation-sensitive clustering
will yield correlation sensitive outliers, and a locally-sensitive clustering will yield locally-
sensitive outliers. By combining different base clustering methods, diverse types of outliers
may be discovered. One can even extend this broad approach to other data types. Clustering
ensembles have been used for discovering edge outliers [17] in graph data (see section 12.3.2.3
of Chapter 12).

4.2.1 Extensions to Arbitrarily Shaped Clusters

The discussion in the previous section on the use of the (local) Mahalanobis distance shows
that the computation of distances to the nearest cluster centroid should be sensitive to
the shape of the corresponding cluster. Although the Mahalanobis computation is effective
for the case of elliptically shaped (Gaussian) clusters, it is not quite as effective for the
case of clusters that are of arbitrary and non-convex shape. Examples of such clusters are
illustrated in Figure 4.3. In the case of Figure 4.3(a) (cf. Figure 3.6(a) of Chapter 3), the
entire data is arranged into a single, spiral-like, global manifold. The case of Figure 4.3(b)

116 CHAPTER 4. PROXIMITY-BASED OUTLIER DETECTION

POINT B
15—
POINT A
i

POINT A B
s/ [PONTC
. / 05—

e , -0.5— i il
| =
B) 2 -5 1 s o o5 2 °
(a) Global data distribution (b) Local data distributions

Figure 4.3: Different clusters might have different shapes. The sparsification of similarity
matrices is crucial for creating embeddings that respect the varying cluster shapes in dif-
ferent localities.

is even more challenging because different localities of the data contain clusters of different
shapes. It is also noteworthy that some of the outliers in Figures 4.3(a) and (b) are actually
placed inside sparse regions of the non-convex clusters. An example of such an outlier is
point ‘A’ of cluster 1 in Figure 4.3(b). The point ‘A’ is much closer to the centroid of cluster
1 than many of the other points belonging to the cluster. Clearly, we need some type of data
transformation that can map the points to a new space in which such outliers are exposed.

The case of Figure 4.3(a) is somewhat simpler than 4.3(b), because the entire data
set is arranged in a single global distribution in the former but not in the latter. For the
case of Figure 4.3(a) it suffices to use methods like nonlinear principal component (or kernel
principal component) analysis to map the points to a new space in which Euclidean distances
can be used effectively. Such an approach is discussed in section 3.3.8 of Chapter 3. However,
such methods require some modifications to adjust for the effect of varying data locality in
Figure 4.3(b). Before reading further, the reader is advised to revisit the nonlinear PCA
approach discussed in section 3.3.8 of Chapter 3.

As in the case of nonlinear PCA, we can use the largest eigenvectors of an N x N
kernel similarity matrix S = [s;;] to embed the data into a multidimensional space in which
Euclidean distance functions can be used effectively for clustering. The (4, 7)th entry of S
is equal to the kernel similarity between the ith and jth data points. In this sense, the
kernel similarity functions described in section 3.3.8.1 of Chapter 3 provide a good starting
point. The Gaussian kernel is typically preferred and the bandwidth is set to the median
distance between sampled pairs of data points. However, these methods are best suited to
discovering global embeddings of the data for cases like Figure 4.3(a) in which the entire
data set is arranged in a single distribution. There is, therefore, a crucial modification in
the construction of these similarity matrices in order to handle the varying distributions of
the data in different localities (as in Figure 4.3(b)). These modifications, which are derived
from the notion of spectral clustering [378], are those of similarity matrix sparsification and
local normalization [297, 378]:

e Sparsification: In this case, we retain the computed similarities in S for the entry
(i,7),1f i is among the k-nearest neighbors of j, or if j is among the k-nearest neighbors
of i. Otherwise such entries of S are set to 0. This step helps in reducing the similarity

4.2. CLUSTERS AND OUTLIERS: THE COMPLEMENTARY RELATIONSHIP 117

between points from different clusters, albeit in a noisy way. Therefore, it helps in
creating embeddings in which different clusters dominate different dimensions of the
embedding. After performing this step, the matrix S becomes sparse, because most
values of s;; are Os.

e Local normalization: This step is useful for performing a type of local normalization
that helps? in adjusting to the varying density of different local regions. This step is,
however, optional. Let p; be the sum of the similarities in the ith row of S. Note that
p; represents a kind of local density near the ith data point because it is defined by
the sum of its similarities to its neighbors. Each similarity value s;; is then divided
by the geometric mean of p; and p; [297]. In other words, we set s;; <= si;/\/pi - p;-

Subsequently, the top-m eigenvectors of the matrix S are extracted and are stacked in the
columns of an N x m matrix D’. Typically, the value of m is quite small such as 10 to 15,
although it might be data set dependent. Each column of the matrix D’ is scaled to unit
norm. This matrix provides the m-dimensional representation of the N data points. The
value of m should be roughly set to the number of clusters that are extracted. Subsequently,
the data in D’ is clustered into m different clusters using the k-means algorithm on this new
representation. All points are assigned to their closest cluster even if they seem like outliers.
By clustering the data in the transformed representation, clusters of arbitrary shape can be
discovered.

The distance of each point to its closest centroid is reported as the outlier score. However,
while computing the outlier scores, it is important to use a larger number of eigenvectors
than m because outliers are often emphasized along the small eigenvectors. Clustering can
be performed using only a small number of eigenvectors but anomalies are often (but not
always) hidden along the smaller eigenvectors. Therefore, all non-zero eigenvectors of S
are extracted (while throwing away the nonzero eigenvalues caused by obvious numerical
errors). This results in an N x n representation D,,, where n > m. The rows of matrix
D,, are partitioned into the points belonging to the various clusters, which were discovered
using the m-dimensional representation. Let the data matrices containing the n-dimensional
representations of these clusters be denoted by D,(Ll) o Dgf). The columns of each ng) are
scaled® to unit norm in order to compute the local Mahalanobis distance in the embedded
space. The n-dimensional representations of the aforementioned cluster centroids are con-
structed by computing the means of the n-dimensional points in each cluster Dﬁf) (even
though the clustering itself was performed in m-dimensional space). The squared Euclidean
distance of each point to its cluster centroid in this n-dimensional space is reported as the
outlier score.

One problem in the use of such methods is that some of the entries of the similarity
matrix S are noisy. For example, an entry with high similarity between points from different
clusters is noisy. This is possible in the original representation because it is hard to compute
similarities accurately with kernel similarity functions that are dependent on the Euclidean
distances in the original space (like the Gaussian kernel). Even a small number of such
noisy entries can seriously hurt the spectral embedding. An approach is discussed in [475]
for iteratively clustering the points and using the clusters to correct the noisy entries in S.
This process is repeated to convergence. However, the algorithm in [475] uses a k-nearest
neighbor method for scoring the points rather than the cluster-centroid distance.

2 Although we do not describe the rationale for this local normalization in detail, it is similar to that
described in section 4.4 for the Local Outlier Factor (LOF) algorithm.

3Some of the columns may again need to be removed, as they might have zero (local) variance. Therefore,
some clusters might have less than n dimensions.

118 CHAPTER 4. PROXIMITY-BASED OUTLIER DETECTION

Robustness can be obtained by using cluster ensemble methods in which the number of
clusters, number of eigenvectors, sparsity level and kernel bandwidth are varied within a
modest range over different executions of the basic method. The final outlier score of a point
is obtained by using the average score over different ensemble components. One can also
construct the clusters over samples of data points to improve diversity and the efficiency of
the clustering process.

4.2.1.1 Application to Arbitrary Data Types

An important advantage of such spectral methods is that they can be applied to arbitrary
data types as long as a similarity function can be defined between the objects. One can
use any of the available kernel similarity methods in the literature that have been defined
for different data types such as time series, strings, and graphs [33]. Once the similarity
function has been defined, one can create a sparsified similarity matrix by removing the
edges with low weight. The eigenvectors of this matrix are used to create an embedding
and perform the clustering. For each data point, its nearest distance to the closest cluster
centroid is used to define its outlier score.

4.2.2 Advantages and Disadvantages of Clustering Methods

An important advantage of clustering methods is that they are relatively fast compared to
the (more popular) distance-based methods. Distance-based methods have a running time
that is quadratic in data dimensionality. On the other hand, many fast clustering algorithms
exist in various data domains. One can also use the spectral methods discussed earlier in
this section to discover outliers embedded near arbitrarily shaped clusters, or for arbitrary
data types by defining appropriate similarity functions.

The main disadvantage of clustering methods is that they might not always provide
insights at the required level of detail in smaller data sets. The granularity of outlier analysis
methods is generally better when using distance computations directly with respect to the
original data points, rather than with respect to aggregated representatives such as cluster
centroids. Therefore, clustering methods are most effective when the number of available
data points is sufficiently large; in such cases, these methods also have efficiency advantages.
Another issue with clustering methods is that the scores have a high level of variability
between different randomized executions or parameter choices. Therefore, averaging the
(standardized) vector of outlier scores from different executions is essential to obtain robust
results.

4.3 Distance-Based Outlier Analysis

Distance-based methods are a popular class of outlier-detection algorithms across a wide
variety of data domains, and define outlier scores on the basis of nearest neighbor distances.
The simplest example is the case in which the k-nearest neighbor distance of a point is
reported as its outlier score. Because of the simplicity of this definition, it is often easy to
generalize this technique to other data types. While this chapter focuses on multidimensional
numerical data, such methods have been generalized to almost all other domains such as
categorical data, text data, time-series data, and sequence data. The later chapters of this
book will present distance-based methods for those cases.

Distance-based methods work with the natural assumption that the k-nearest neighbor
distances of outlier data points are much larger than those of normal data points. A major

4.3. DISTANCE-BASED OUTLIER ANALYSIS 119

FEATURE Y
©
FEATURE Y

(] 5 10 15] 2 4 6 8 10
FEATURE X FEATURE X

(a) No noise (b) With noise

Figure 4.4: The example of Figure 1.1 re-visited: Nearest neighbor algorithms may be more
effective than clustering-based algorithms in noisy scenarios because of better granularity
of analysis

difference between clustering and distance-based methods is in the granularity of the ana-
lytical process. Distance-based methods generally have a higher granularity of analysis as
compared to clustering-based methods. This property of distance-based methods can enable
a more refined ability to distinguish between weak and strong outliers in noisy data sets.
For example, in the case of Figure 4.4, a clustering-based algorithm will not be able to
distinguish between noise and anomalies easily. This is because the distance to the nearest
cluster centroid for the data point ‘A’ will remain the same in Figures 4.4(a) and (b). On
the other hand, a k-nearest neighbor algorithm will distinguish between these situations be-
cause the noisy data points will be included among the distance evaluations. On the other
hand, the clustering approach will not be able to distinguish between these situations quite
as well because the cluster centroids are relatively insensitive to the noise in the underlying
data. Of course, it is also possible to modify cluster-based methods to include the effects of
noise. In those cases, the two approaches converge to very similar schemes. This is because
the two types of methods are closely related.

Distance-based methods are also able to identify isolated clusters of closely related out-
liers. For example, in order to identify a small (anomalous) cluster containing ko data
points, one needs to use a value of k& > kg in the k-nearest neighbor algorithm. Although
such anomalies can also be identified by clustering methods by setting a threshold on the
number of points in each cluster, such points may sometimes enter clusters and bias the
corresponding cluster centroids. This can affect the outlier scoring process in a detrimental
way.

The most general output of distance-based methods is in the form of scores. However, if
the outlier score of each data point is required, then the (vanilla version of the) algorithm
requires operations ezactly proportional to N2. In the binary decision version of identify-
ing whether a data point is an outlier, it is possible to use various types of pruning and
indexing structures to substantially speed up the approach. In the following, we will discuss
algorithms for both types of outputs.

4.3.1 Scoring Outputs for Distance-Based Methods

The distance-based outlier score of a point is based on its kth nearest-neighbor distance
to the remaining data set. There are two simple variations of this scoring mechanism cor-

120 CHAPTER 4. PROXIMITY-BASED OUTLIER DETECTION

responding to the exact k-nearest neighbor and the average k-nearest neighbor detectors.
Most of the earliest methods for outlier detection focused on the use of the exact k-nearest
neighbor detector.

Definition 4.3.1 (Exact k-Nearest Neighbor Score) In a database D = X;...Xn,
the outlier score of any data point X; is equal to its kth nearest neighbor distance to points
in D —{X;}.

Note that the scored point X; is itself not included among the k-nearest neighbors in order
to avoid overfitting. For example, if we used k = 1 and allowed the inclusion of the candidate
point among the 1-nearest neighbors, every point would be its own nearest neighbor and
the outlier scores of all points would be 0. The exclusion of the candidate point from among
the neighbors avoids this situation.

The main problem with this definition is that it is difficult to know the “correct” value
of k for any particular data point. In unsupervised problems like outlier detection, there is
often no way of parameter tuning with methods like cross-validation, because such methods
require knowledge of the ground-truth. An alternative [58] that is more robust to varying
choices of k is the average k-nearest neighbor detector, which is also referred to as the
weighted k-nearest neighbor detector.

Definition 4.3.2 (Average k-Nearest Neighbor Score) Consider a database D =
Xi1...XnN. The outlier score of any data point X; is equal to its average distance to its
k nearest neighbors in D — {X;}.

In general, if we know the “correct” value of k, the exact k-nearest neighbor tends to give
better results than that given by the best value of k for the average k-nearest neighbor
detector. However, in unsupervised problems like outlier detection, it is impossible to know
the correct value of k for any particular algorithm, and an analyst might use a range of
values of k. For example an analyst might test the algorithm with equally spaced values
of k in [1, N/10]. In such cases, the average k-nearest neighbor method is less sensitive to
different choices of k, because it effectively averages the exact k-nearest neighbor scores over
a range of different values of k. A related approach, which is rarely employed, is the use of
the harmonic average instead of the arithmetic average.

Definition 4.3.3 (Harmonic k-Nearest Neighbor Score) Consider a database D =
X1...Xn. The outlier score of any data point X; is equal to the harmonic mean of its
distances to its k nearest neighbors in D — {X;}.

Care must be taken to remove repeated points from the data set in order to use this
approach robustly, because the harmonic mean of any set of numbers containing 0 is always
0. Harmonic averages are always dominated by smaller distances (as compared to arithmetic
averages), and therefore using a large value of the parameter k is advisable for greater
robustness. In fact, one can set kK = N in the case of harmonic averaging and still obtain
high-quality scores. For example, if we set k = N in an (arithmetically) averaged k-nearest
neighbor detector, then only multivariate extreme values will be discovered, and isolated
central points might be ignored. On the other hand, the harmonically averaged scores at
k = N will also be able to discover isolated central points in the data, especially for large
data sets. The reason for this behavior of the harmonic average is rooted in its connection to
density-based methods (cf. section 4.4.4.1). The main advantage with the harmonic average
is that we now have a parameter-free detector by setting & = N, and the results are still
of high quality. Although harmonic nearest neighbor detectors remain unexplored in the
literature, their potential is significant.

4.3. DISTANCE-BASED OUTLIER ANALYSIS 121

Computing the scores of all the data points is generally computationally intensive. All
pairs of distances between data points need to be computed. Therefore, exactly O(N?)
operations are required. This can be very expensive when the number of data points is large.
For example, even for data sets containing a few hundred thousand points, the approach
may not return results in a reasonable amount of time. Although it is often claimed that one
can use indexing structures for efficiently finding k-nearest neighbors in O(N -log(N)) time,
the approach is useful for only low-dimensional data sets (i.e., dimensionality less than 10).
This is because index structures are not very effective at pruning in the high-dimensional
case. Furthermore, such index structures have large constant overheads, which further hurts
performance.

A more effective approach is to pre-select a sample of the data points. All N data points
are scored with respect to this sample after excluding the candidate point from the sample
(if needed). The results can be averaged over various samples in order to improve the quality
of the results with the ensemble [35]. This is especially the case for the less stable variants
such as harmonic averaging.

4.3.2 Binary Outputs for Distance-Based Methods

Although score-based outputs are more general than binary outputs, they have limited prac-
tical application beyond the binary problem of discovering which points are outliers. The
advantage of using binary outputs is that it is possible to prune many of the O(N?) compu-
tations. Therefore, only the top-scored points are reported as outliers, and we do not care
about the scores of non-outlier points. This can be achieved either by specifying a minimum
threshold on the nearest-neighbor distance [317] (score) or by using a maximum threshold
on the rank of the k-nearest neighbor distance [456]. The former parametrization presents a
challenge to the analyst in selecting? a (possibly nonintuitive) value of an absolute distance
threshold up front. The original threshold-based definition of distance-based outliers [317]
was based on parameterizing it with fraction f and distance-threshold 3:

Definition 4.3.4 (Score Threshold-Based Distance Outliers) An object O in a data
set D is a DB(f, B) outlier, if at least fraction f of the objects in D lies greater than distance
B from O.

Note that score-based algorithms have a single parameter k corresponding to the kth near-
est neighbor, whereas binary-thresholding algorithms have two parameters f and . The
parameter f is virtually equivalent to using a parameter like k in the original definition.
Instead of using a fraction f, we can use the exact kth nearest neighbor distance by set-
ting k = [N(1 — f)]. For uniformity in discussion throughout this chapter, we restate this
definition in terms of the kth nearest-neighbor distance:

Definition 4.3.5 (Score Threshold-Based Distance Outliers) An object in a data
set D is an outlier, if its exact kth-nearest neighbor distance is at least 3.

A second definition [456] is based on top-r thresholding rather than the thresholding of the
absolute values of the scores. Therefore, the points are ranked in decreasing order of the
k-nearest neighbor distance. The top-r such data points are reported as outliers. Therefore,
the threshold is on the distance rank rather than the distance value.

41t is possible to compute the outlier scores of a sample of the data points and set the estimate based
on the mean and standard deviation of these scores.

122 CHAPTER 4. PROXIMITY-BASED OUTLIER DETECTION

Definition 4.3.6 (Rank Threshold-Based Distance Outliers) An object in a data
set D is an outlier, if its exact kth-nearest neighbor distance is among the top-r such values
in the data set.

The two definitions are virtually identical, except for the parameter choice presented to
the user. In fact, for every choice of distance threshold 3, an appropriate value of r can be
selected in order to yield the same result in the two cases.

Note that the most straightforward approach for solving this problem is to first compute
all pairwise k-nearest neighbor distances with a nested loop approach. Subsequently, the
appropriate thresholding criterion can be applied to report the relevant points as outliers.
However, this naive approach is computationally inefficient. After all, the main advantage
of computing binary outputs over scoring outputs is that we can couple the outlier detection
process with a pruning methodology to make the approach more efficient.

In all the aforementioned definitions, we have used the exact k-nearest neighbor dis-
tance because of the preponderance of this definition in the literature. However, all the
aforementioned definitions and some of the associated pruning methods can be generalized
to the average k-nearest neighbor distance. In the following, we will discuss various pruning
methods for the exact k-nearest neighbor distance, and also investigate their generalizations
to the average k-nearest neighbor distance.

4.3.2.1 Cell-Based Pruning

The cell-based technique [317] is based on the score-wise thresholding of Definition 4.3.5.
The method is designed for the exact k-nearest neighbor distance, and it cannot be easily
generalized to the average k-nearest neighbor distance. In the cell-based technique, the data
space is divided into cells, the width of which is a function of the distance threshold 5 and
the data dimensionality d. Specifically, each dimension is divided into cells of width at most

(2_’(\3/3). This odd value of the width is chosen to force certain distance-centric properties

of the points in the cells, which are exploited for pruning and efficient processing. The
approach is best explained in the 2-dimensional case. Consider the 2-dimensional case, in
which successive grid-points are at a distance of at most 3/(2 - \/5) An important point to
be kept in mind is that the number of grid-cells is based on a partitioning of the data space,
and is independent of the number of data points. This is an important factor in the efficiency
of the approach for low dimensional data, in which the number of grid-cells is likely to be
modest. On the other hand, this approach is not suited to data of higher dimensionality.

For a given cell, its L1 neighbors are the cells reached by crossing a single cell-to-cell
boundary. Note that two cells touching at a corner are also L; neighbors. The Ly neighbors
are the cells obtained by crossing either 2 or 3 boundaries. A particular cell marked X,
along with its set of Ly and Lo neighbors, is illustrated in Figure 4.5. It is evident that an
interior cell has 8 L1 neighbors and 40 Ly-neighbors. Then, the following properties can be
immediately observed.

1. The distance between a pair of points in a cell is at most /2.
2. The distance between a point and a point in its L; neighbor is at most 5.

3. The distance between a point and a point in its L, neighbor (where r > 2) is at least
5.
The only cells for which immediate conclusions cannot be drawn, are those in Lo. This

represents the region of uncertainty for the data points in a particular cell. All the dis-
tance computations in the approach are performed between pairs of points in this region

4.3. DISTANCE-BASED OUTLIER ANALYSIS 123

L2 L2 L2 L2 L2 L2 L2

L2 L2 L2 L2 | L2 L2 L2

L2 2| g1 |||z |2

L2) L2 | p1 |#x | L1 | 2| L2

L2 2| g1 || |2 |2

L2 L2 L2 L2 L2 L2 L2

2| 2| L2 |2 |2 |2 | L2

Figure 4.5: Cell-based partitions of data space

of uncertainty. However, further pruning gains are possible with a number of rules that are
able to efficiently identify some of the points as outliers or non-outliers without having to
materialize all these distance computations. These are as follows:

1. If more than k data points are contained in a cell together with its L1 neighbors, then
none of these data points are outliers.

2. If no more than k data points are contained in a cell ‘A’ and its L and Ly neighbors,
then all points in cell ‘A’ are outliers.

The approach uses these various properties and rules to label points as outliers or non-
outliers in an efficient way. The first step is to directly label all points in cells containing
more than k& points as non-outliers because of the first rule. Furthermore, all neighbor cells
of such cells exclusively contain non-outliers. In order to obtain the full pruning power of
the first rule, the sum of the points in each cell and its L; neighbors is computed. If the
total number is greater than k, then all these points are labeled as non-outliers as well.

Next, the pruning power of the second rule is leveraged. For each cell ‘A’ containing at
least one data point, the sum of the number of points in it, and the numbers in its L; and
L5 neighbors is computed. If this number is no more than &, then all points in cell ‘A’ are
labeled as outliers. At this point, many cells may been labeled as outliers or non-outliers.
This provides major pruning gains.

The data points in cells that have not been labeled as either outlier or non-outlier need
to have their k-nearest neighbor distance computed explicitly. Even for such data points,
the computation of the k-nearest neighbor distances can be made faster with the use of the
cell structure. Consider a cell ‘A’ which has not been labeled as a pure outlier or pure non-
outlier cell so far. Such cells may possibly contain a mixture of outliers and non-outliers.
The main region of uncertainty for the data points in cell ‘A’ are the set of points in the
Lo-neighbors of this cell ‘A’. It cannot be known whether the points in the Lo neighbors
of ‘A’ are within the threshold distance of 8 for the points in cell ‘A’. Explicit distance
computations are required in order to determine the number of points within the threshold
[for the data points in cell ‘A’. Those data points for which no more than k points in L,
and Lo have distance less than 8 are declared outliers. Note that distance computations
need to be explicitly performed only from points in cell ‘A’ to the points in the Ly neighbors

124 CHAPTER 4. PROXIMITY-BASED OUTLIER DETECTION

of cell ‘A.” This is because all points in Ly neighbors are already known to be at a distance
less than § from any point in ‘A’, and all points in L, for r > 2 are already known to be
at least a distance of § from any point in ‘A’. Therefore, an additional level of savings is
achieved in the distance computations.

The aforementioned description is for the 2-dimensional case. The approach can also be
extended to higher dimensions. The main difference for the d-dimensional case is in terms of
the width of a cell (which is now 3/(2-v/d)) and the definition of Lo-neighbors. In the case
of 2-dimensional data, the Lo-neighbors of a cell are defined as is non-neighbor cells that
are at most three cells away. In the general case of higher dimensions, Lo is defined as the
set of cells that are at most [2-+/d] cells away but not immediate neighbors. All other steps
of the algorithm remain identical. However, for the high-dimensional case, this approach
becomes increasingly expensive because the number of cells increases exponentially with
data dimensionality. Thus, this approach is generally suited to low-dimensional data.

In many cases, the data sets may not be available in main memory, but may be stored
on disk. The data-access efficiency therefore becomes a concern. It has been shown in [317]
how this approach can be applied to disk-resident data sets with the use of clustered page
reads. This algorithm requires at most three passes over the data. More details are available
in [317].

4.3.2.2 Sampling-Based Pruning

Sampling methods are extremely flexible, in that they can handle the score-based thresh-
olding (Definition 4.3.5) or the rank-based thresholding (Definition 4.3.6). Furthermore,
they can be used with either the exact k-nearest neighbor detector or the average k-nearest
neighbor detector. They are extremely efficient at pruning, and can also be used as ro-
bust ensemble methods [32] (cf. Chapter 6). For these reasons, sampling methods should
be considered the first line of attack for efficient distance-based outlier detection. In the
following discussion, we will use the rank-based thresholding definition together with an
exact k-nearest neighbor detector. However, the generalization of the methodology to any
other combination of thresholding and detection is straightforward and therefore omitted.

The first step is to select a sample S of size s < N from the data D, and compute all
pairwise distances between the data points in sample S and those in database D. There are
a total of N - s such pairs. This process requires O(N - s) < O(N?) distance computations.
Thus, for each of the sampled points in S, the k-nearest neighbor distance is already known
exactly. The top rth ranked outlier in sample S is determined, where r is the number of
outliers to be returned. The score of the rth rank outlier provides a lower bound® L on the
rth ranked outlier score over the entire data set D. For the data points in D — S, only an
upper bound V*(X) on the k-nearest neighbor distance is known. This upper bound is equal
to the k-nearest neighbor distance of each point in D — S to the sample S C D. However,
if this upper bound V*(X) is no larger than the lower bound L already determined, then
such a data point X € D — S can be excluded from further consideration as a top-r outlier.
Typically, this will result in the removal of a large number of outlier candidates from D — &
immediately, as long as the underlying data set is clustered well. This is because most of
the data points in clusters will be removed, as long as at least one point from each cluster is
included in the sample S, and at least 7 points in S are located in somewhat sparse regions.
This can often be achieved with modest values of the sample size s in real-world data sets.
After removing these data points from D — S, the remaining set of points is R C D — S.
The k-nearest neighbor approach can be applied to a much smaller set of candidates R.

5Note that higher k-nearest neighbor distances indicate greater outlierness.

4.3. DISTANCE-BASED OUTLIER ANALYSIS 125

The top-r ranked outliers in R US are returned as the final output. Depending on the level
of pruning already achieved, this can result in a very significant reduction in computational
time, especially when |R US| < |D].

Early Termination Trick with Nested Loops

The approach discussed in the previous section can be improved even further by speeding
up the second phase of computing the k-nearest neighbor distances of each data point in
R. The idea is that the computation of the k-nearest neighbor distance of any data point
X € R need not be followed through to termination once it has been determined that X
cannot possibly be among the top-r outliers. In such cases, the scan of the database D for
computation of the k-nearest neighbor of X can be terminated early.

Note that one already has an estimate (upper bound) V*(X) of the k-nearest neighbor
distance of every X € R, based on distances to sample S. Furthermore, the k-nearest neigh-
bor distance of the rth best outlier in S provides a lower bound on the “cut-off” required
to make it to the top-r outliers. This lower-bound is denoted by L. This estimate V*(X) of
the k-nearest neighbor distance of X is further tightened (reduced) as the database D — S
is scanned, and the distance of X is computed to each point in D — S. Because this running
estimate V*(X) is always an upper bound on the true k-nearest neighbor distance of X, the
process of determining the k-nearest neighbor of X can be terminated as soon as V¥(X)
falls below the known lower bound L on the top-r outlier distance. This is referred to as
early termination and provides significant computational savings. Then, the next data point
in R can be processed. In cases where early termination is not achieved, the data point X
will almost® always be among the top-r (current) outliers. Therefore, in this case, the lower
bound L can be tightened (increased) as well, to the new rth best outlier score. This will
result in even better pruning when the next data point from R is processed to determine
its k-nearest neighbor distance value. To maximize the benefits of pruning, the data points
in R should not be processed in arbitrary order. Rather, they should be processed in de-
creasing order of the initially sampled estimate V*(-) of the k-nearest neighbor distances
(based on S). This ensures that the outliers in R are found early on, and the bound L is
tightened as fast as possible for even better pruning. Furthermore, in the inner loop, the
data points Y in D — S can be ordered in the opposite direction, based on increasing value
of V¥(Y). Doing so ensures that the k-nearest neighbor distances are updated as fast as
possible, and the advantage of early termination is maximized. The nested loop approach
can also be implemented without the first phase’ of sampling, but such an approach will
not have the advantage of proper ordering of the data points processed. Starting with an
initial lower bound L on the rth best outlier score obtained from the sampling phase, the
nested loop is executed as follows:

6We say “almost,” because the very last distance computation for X may bring V(X) below L. This
scenario is unusual, but might occasionally occur.

"Most descriptions in the literature omit the first phase of sampling, which is very important for efficiency
maximization. A number of implementations in time-series analysis [311] do order the data points more
carefully but not with sampling.

126 CHAPTER 4. PROXIMITY-BASED OUTLIER DETECTION

for each X € R do begin
for each Y € D — S do begin
Update current k-nearest neighbor distance estimate V*(X) by
computing distance of Y to X;
if V*(X) < L then terminate inner loop;
endfor
if V¥(X) > L then
include X in current r best outliers and update L to
the new rth best outlier score;
endfor

Note that the k-nearest neighbors of a data point X do not include the data point itself.
Therefore, care must be taken in the nested loop structure to ignore the trivial cases where
X =Y while updating k-nearest neighbor distances.

4.3.2.3 Index-Based Pruning

Indexing and clustering are two other common forms of data localization and access. There-
fore, it is natural to explore, whether some of the traditional clustering methods or index
structures can be used in order to improve the complexity of distance-based computations.
The original approach [456] uses the ranking-based thresholding (Definition 4.3.6) with an
exact k-nearest neighbor detector.

As in the case of sampling-based pruning, an upper bound V*(X) of the k-nearest
neighbor distance of candidate data point X = (x1...24) is progressively tightened in
conjunction with pruning. The approach uses minimum bounding rectangles of sets of points
to estimate distance bounds of the candidate X to any point in the set. These bounds can be
used to prune these sets without explicit distance computation in a manner that is discussed
later. Let R be a minimum bounding rectangle, where the lower and upper bounds along
the ith dimension are denoted by [r;,r:]. Then, the minimum distance min; of x; along
the ¢th dimension to any point in the minimum bounding rectangle R is potentially 0, if
x; € [ri,r}]. Otherwise, the minimum distance is min{|z; — 4], |z; — r}|}. Therefore, by
computing this minimum value along each dimension, it is possible to estimate the total
minimum bound to the entire rectangle R by Z?zl min?. Similarly, the maximum distance
max; of X along the ith dimension to the bounding rectangle R is given by max{|z; —
i, |z; — ri|}. The corresponding total maximum value can be estimated as Zle max?.
The aforementioned bounds can be used in conjunction with index structures such as the
R*-Tree [78] for estimating the k-nearest neighbor distance of data points. This is because
such index structures use minimum bounding rectangles in order to represent the data at
the nodes. In order to determine the outliers in the data set, the points are processed one by
one in order to determine their k-nearest neighbor distances. The highest r such distances
are maintained dynamically over the course of the algorithm. A branch-and-bound pruning
technique is used on the index structure in order to determine the value of V*(X) efficiently.
When the minimum distance estimate to a bounding rectangle is larger than the value of
V¥(X), then the bounding rectangle obviously does not contain any points which would be
useful for updating the value of V*(X). Such subtrees of the R*-Tree can be completely
pruned from consideration.

Aside from the index-based pruning, individual data points can also be discarded from
consideration early. The score (i.e., k-nearest neighbor distance) of the rth best outlier found
so far is denoted by Dmin. Note that Dmin is exactly the same as the bound L used in the

4.3. DISTANCE-BASED OUTLIER ANALYSIS 127

previous section on sampling. The estimate of V*(X) for a data point X is monotonically
decreasing with algorithm progression, as better nearest neighbors are found. When this
estimate falls below Dmin, the point X can be discarded from consideration.

Many variations of this basic pruning technique have been proposed for different data
domains [311]. Typically, such algorithms work with a nested loop structure, in which the
outlier scores of candidate data points are computed one by one in a heuristically ordered
outer loop which approximates a decreasing level of outlier score. For each point, the near-
est neighbors are computed in the inner loop in a heuristic ordering that approximates
increasing distance to the candidate point. The inner loop can be abandoned, when its cur-
rently approximated nearest neighbor distance is less than the rth best outlier found so far
(VF(X) < Dmin).

A good heuristic ordering in the outer and inner loops can ensure that the data point
can be discarded from consideration early. Different tricks can be used to determine this
heuristic ordering in various application settings. In many cases, the method for finding the
heuristic ordering in the outer loop uses the complementarity of the clustering and outlier
detection problem, and orders the data points on the basis of the cardinality of the clusters
they are contained in. Data points in clusters containing very few (or one) point(s) are
examined first. Typically, a very simple and efficient clustering process is used to create
the outer-loop ordering. The method for finding the heuristic ordering in the inner loop
typically requires a fast approximation of the k-nearest neighbor ordering, and is dependent
upon the specific data domain or application. An adaptation of this approach for time-series
data [311] is discussed in Chapter 9.

Partition-based Speedup

The approach discussed above may require the reasonably accurate computation of V*(X)
for a large number of points, if the bound estimation process discussed above is not suffi-
ciently robust. This can still be expensive in spite of pruning. In practice, the value of r
is quite small, and many data points X can be excluded from consideration without es-
timating V*(X) explicitly. This is achieved by using clustering [456] in order to perform
partitioning of the data space, and then analyzing the data at this level of granularity. A
partition-based approach is used to prune away those data points which could not possibly
be outliers in a computationally efficient way. This is because the partitioning represents
a less granular representation of the data, which can be processed at lower computational
costs. For each partition, a lower bound and an upper bound on the k-nearest neighbor
distances of all included data points is computed. If the aforementioned upper bound on
the k-nearest neighbor distance estimate of any point in the partition is less than a current
value of Dmin, then the entire partition can be pruned from consideration of containing
any outlier points. The partition-based method also provides a more efficient way for ap-
proximating Dmin. First, the partitions are sorted by decreasing lower bound. The first [
partitions containing at least r points are determined. The lower bound on the [-th parti-
tion provides an approximation for Dmin. The upper and lower bound for each partition
is computed using the minimum bounding rectangle of the node in the index structure
containing the points. More savings may be obtained by using the fact that the distances
from each (unpruned) candidate data point X do not need to be computed to data points
in partitions that are guaranteed to be further away than the current upper bound on the
k-nearest neighbor distance of the point X (or its containing partition).

Thus, this analysis is performed at a less detailed level of granularity. This makes its
efficiency closer to that of clustering-based methods. In fact, the partitions are themselves

128 CHAPTER 4. PROXIMITY-BASED OUTLIER DETECTION

generated with the use of a clustering algorithm such as BIRCH [611]. Thus, this approach
prunes many data points, and then works with a much smaller set of candidate partitions
on which the analysis is performed. This greatly improves the efficiency of the approach.
The exact details of computing the bounds on the partitions use the aforementioned esti-
mations on the minimum and maximum distances to the bounding rectangles of different
partitions and are discussed in detail in [456]. Because of the close relationship between
distance-based and clustering methods, it is natural to use clustering methods to improve
the approximations on the k-nearest neighbor distance. A number of other techniques in the
literature use clustering in order to achieve better pruning and speedups in distance-based
algorithms [58, 219, 533].

4.3.3 Data-Dependent Similarity Measures

The k-nearest neighbor method can be paired with other types of similarity and distance
functions. Unlike the Euclidean distance, data-dependent similarity measures depend not
just on the pair of points at hand but also on the statistical distribution of the other
points [33]. This can help in incorporating various data-dependent characteristics into the
similarity function such as locality-sensitivity, correlation-sensitivity, or both. An intuitive
example of locality-sensitivity is that the same pair of Caucasians would be considered more
similar in Asia than in Europe [548].

A well-known locality-sensitive similarity measure is the shared nearest neighbor simi-
larity measure [287], in which the intersection cardinality of the k-nearest neighbor sets of
two points is used as the similarity value. The basic idea here is that in a dense region, two
points have to be very close® in order to have a large number of common nearest neighbors,
whereas in a sparse region it is possible for reasonably distant points to have a larger number
of common neighbors. The main drawback of the shared nearest-neighbor measure is that
we now have two parameters for the number of nearest neighbors, which can potentially be
different; one parameter is for the similarity computation and the other is for the distance-
based outlier detection algorithm. A larger number of parameters creates uncertainty in
unsupervised problems because of difficulty in setting the parameters optimally. The com-
putation of the shared nearest-neighbor measure is also expensive. It is possible to compute
this similarity in a robust and efficiently way by repeatedly sampling the data, computing
the measure, and averaging the measure over different samples. When computing the simi-
larity with sampled data, the shared nearest neighbor distances are computed between all
pairs of points (whether they are sampled or not), but only the number of shared neighbors
within the sample are counted.

The pairwise Mahalanobis distance, which adapts the Mahalanobis method to compute
distances between pairs of points, is a correlation-sensitive distance measure. This measure
is equivalent to computing the Euclidean distance between pairs of points after transform-
ing the data to uncorrelated directions with PCA and normalizing each dimension in the
transformed data to unit variance. One advantage of this measure is that it uses the cor-
relation structure of the underlying data. Two data points at unit Euclidean distance in
the (untransformed) data will have larger Mahalanobis distance if they were aligned along
a low-variance direction rather than a high-variance direction in the untransformed data.
One can also use the nonlinear Mahalanobis method in conjunction with a kernel or spec-
tral similarity matrix to make the distance function sensitive to arbitrary shapes in the

8 As discussed in section 4.4.1, this intuition is directly used by locality-sensitive algorithms like the Local
Outlier Factor (LOF) method. Therefore, by appropriately changing the similarity function in the exact
k-nearest neighbor algorithm, one can achieve similar goals as locality-sensitive algorithms like LOF.

4.3. DISTANCE-BASED OUTLIER ANALYSIS 129

underlying data distribution [475].

Random forests can be used to compute data-dependent similarity [99, 491, 555] be-
cause of their ability [359] to define data locality in a distribution-dependent way. In the
unsupervised setting, the basic idea is to generate synthetic data for the outlier class, and
treat the provided data set as the normal class. As discussed in [491], the outliers are gen-
erated uniformly at random between the minimum and maximum range of each attribute.
A random forest is constructed on the synthetically labeled data. The similarity between
a pair of instances (say, A and B) can be defined as either (i) the number of trees in the
random forest in which they occur in the same leaf node, or (ii) the average length of the
common path traversed by the two instances A and B in each tree. The main advantage of
this approach is that it is very efficient to compute the similarity between a pair of instances
once the random forest has been constructed.

In principle, any hierarchical representation of the data that preserves its clustering
structure can be used to measure similarity with the aforementioned approach as long as
the clustering adjusts well to varying local density and correlations. Other unsupervised
methods for creating random trees include the use of randomized hierarchical clustering
methods [401, 555] and the isolation forest [548]. The former [401] also provides the option
to create a “bag-of-words” representation of the data containing the identifiers of the leaf
and/or internal tree nodes to which data points are assigned. The computation of hamming
distance on this representation is almost equivalent to random-forest similarity measures.
Data-dependent similarity measures for categorical data are discussed in section 8.4.2 of
Chapter 8.

4.3.4 ODIN: A Reverse Nearest Neighbor Approach

Most of the distance-based methods directly use the k-nearest neighbor distribution in order
to define outliers. A different approach is to use the number of reverse k-nearest neighbors
in order to define outliers [248]. Therefore, the concept of a reverse k-nearest neighbor is
defined as follows:

Definition 4.3.7 A data point p is a reverse k-nearest neighbor of q, if and only if q is
among the k-nearest neighbors of p.

Data points that have large k-nearest neighbor distances, will also have few reverse neigh-
bors, because they will lie among the k-nearest neighbors of very few data points. Thus, an
outlier is defined as a point for which the number of reverse k-nearest neighbors is less than
a pre-defined user-threshold.

The reverse nearest neighbor approach can also be easily understood in terms of the
underlying k-nearest neighbor graph. Consider a graph in which the nodes correspond to
the data points. A directed edge (p, ¢) is added to the graph if and only if ¢ is among the k-
nearest neighbors of p. Thus, every node has an outdegree of k in this graph. However, the in-
degree of the nodes may vary, and is equal to the number of reverse k-nearest neighbors. The
nodes with few reverse k-nearest neighbors are declared outliers. Alternatively, the number
of reverse k-nearest neighbors may be reported as the outlier score. Smaller values are more
indicative of a greater degree of outlierness. The reverse nearest-neighbor method is also
referred to as Outlier Detection using In-degree Number (ODIN). Like the shared nearest
neighbor similarity in the previous section, all methods that use the k-nearest neighbor
graph [100, 248] are locality sensitive.

This approach requires the determination of all the k-nearest neighbors of each node.
Furthermore, distance-based pruning is no longer possible since the nearest neighbors of

130

CHAPTER 4. PROXIMITY-BASED OUTLIER DETECTION

Table 4.1: Example of Outliers in NHL Player Statistics [318]

Player Short- | Power- | Game- | Game- | Games
Name Handed Play Winning | Tying | Played
Goals Goals Goals Goals
Mario Lemieux 31 8 8 0 70
Jaromir Jagr 20 1 12 1 82
John Leclair 19 0 10 2 82
R. Brind’Amor 4 4 5 4 82

each node need to be determined explicitly. Thus, the approach may potentially require
O(N?) time for construction of the k-nearest neighbor graph. The other problem with the
approach is that many data points might be ties in terms of the number of reverse nearest
neighbors (outlier score). Both these problems can be addressed with ensemble methods [32].
Data points are repeatedly scored with a subsample of s points, where s is chosen to be a
random value in a constant range. The average score over various samples is reported as
the outlier score.

4.3.5 Intensional Knowledge of Distance-Based Outliers

An important issue in outlier analysis is to retain a high level of interpretability for provid-
ing intuitive explanations and insights. This is very important in many application-driven
scenarios. The concept of intensional knowledge of distance-based outliers was first pro-
posed in [318]. The idea is to explain the outlier behavior of objects in terms of subsets of
attributes. Thus, in this case, a minimal bounding box on the subsets of attributes is pre-
sented in order the explain the outlier behavior of the data points. For example, consider the
case of National Hockey League (NHL) player statistics, which was first presented in [318].
An example set of statistics is illustrated in Table 4.1. The sample output from [318], which
explains these outliers is as follows:

An outlier in the 1-d space
of power play goals
An outlier in the 2-d space of
short-handed goals and
game-winning goals
An outlier in the 1-d space
of game-tying goals.

Mario Lemieux

R. Brind’Amor

Several notions are defined in [318] in order to understand the importance of an outlier:
1. Is a particular set of attributes the minimal set of attributes in which an outlier exists?
2. Is an outlier dominated by other outliers in the data?

The intensional knowledge can be directly characterized in terms of cells, because they
define the bounding rectangles along different attributes. The work in [318] proposes a
number of roll-up and drill-down methods in order to define the interesting combinations of
attributes for intensional knowledge. The concept of strong and weak outliers is also defined.
Outliers that are defined by minimal combinations of attributes are generally considered

4.4. DENSITY-BASED OUTLIERS 131

stronger from an intensional perspective. It should be emphasized that this definition of
strong and weak outliers is specific to an intensional knowledge-based approach and is
different from the more general form in which this book uses these terms (as the outlier
tendency of an object).

4.3.6 Discussion of Distance-Based Methods

Distance-based methods have a number of qualitative advantages over clustering-based tech-
niques because of the more detailed granularity of the analysis. For example, distance-based
algorithms can distinguish between noise and anomalies much better than cluster-based
techniques. Furthermore, distance-based methods can also find isolated groups of outliers
just like clustering methods. On the other hand, clustering methods have the advantage that
they can provide insights about the local distributions of data points for defining distances.
For example, in the case of Figure 4.1, the local cluster structure can be used in order to
define a locally sensitive Mahalanobis distance, which is much more effective at identifying
outliers, than a blind application of the Euclidean metric. However, it is also possible to
design a distance-based algorithm based on the Mahalanobis distance, which is also referred
to as instance-specific Mahalanobis method [33]. These correspond to the data-dependent
similarity measures discussed in section 4.3.3.

Although the density-based methods explained later in this chapter do incorporate some
notions of locality, they are still unable to provide the detailed level of local insights that
an effective combination of a clustering- and distance-based approach can provide. In this
context, some recent research has incorporated local clustering insights into distance-based
methods [7, 153, 475]. Furthermore, the efficiency advantages of clustering methods should
be incorporated into generalized distance-based methods in order to obtain the best results.

4.4 Density-Based Outliers

Density-based methods use the number of points in specific regions of the space to de-
fine outliers. They are very closely related to clustering and distance-based methods. In
fact, some of these algorithms can be more easily considered clustering or distance-based
methods, depending on how they are presented. This is because the notions of distances,
clustering, and density are closely related and inter-dependent. Many of these algorithms
discover locality-sensitive outliers. This section discusses both local and global algorithms.

The sensitivity of distance-based outliers to data locality was first noticed in [96]. While
the Figure 4.1 illustrates the general effect of data locality on both data density and cluster
orientation, the work in [96, 97] specifically addresses the issue of varying local density. In
order to understand this specific issue, consider the specific example of a data set with vary-
ing density in Figure 4.6. The figure contains two outliers labeled ‘A’ and ‘B.” Furthermore,
the figure contains two clusters, one of which is much sparser than the other. It is evident
that the outlier ‘A’ cannot be discovered by a distance-based algorithm unless a smaller
distance-threshold is used by the algorithm. However, if a smaller distance threshold is used,
then many data points in the sparser cluster may be incorrectly declared as outliers. This
also means that the ranking returned by a distance-based algorithm is incorrect when there
is significant heterogeneity in the local distributions of the data. This observation was also
noted (more generally) in section 4.2, where it was shown that the outliers in Figure 4.1
are sensitive to both the local cluster density and the cluster orientation (local attribute
correlation). However, much of the work in density-based clustering has generally focused

132 CHAPTER 4. PROXIMITY-BASED OUTLIER DETECTION

o
©
T

=}
)
T

o
3
T

FEATURE Y
o o o o
w S o o
T T T T

=}
S
T

X<--OUTLIER A
o1f oE X<-—-OUTLIER B
0 Il Il Il Il Il Il Il Il Il J
0 0.1 02 03 0.4 05 06 07 08 09 1

FEATURE X

Figure 4.6: Impact of local density on outliers

on issues of varying data density rather than the varying shape and orientation of clusters.

The k-nearest neighbor algorithm can be paired with the data-dependent similarity
measures of section 4.3.3 to address problems caused by local density variations. However,
the LOF method [96] uses a different approach by defining the outlier score in a locally-
adjusted manner.

4.4.1 LOF: Local Outlier Factor

The Local Outlier Factor (LOF) is a quantification of the outlierness of the data points,
which is able to adjust for the variations in the different local densities. For a given data
point X, let D¥(X) be its distance to the k-nearest neighbor of X, and let Ly(X) be the
set of points within the k-nearest neighbor distance of X. Note that L (X) will typically
contain k£ points, but may sometimes contain more than k£ points because of ties in the
k-nearest neighbor distance.

Then, the reachability distance Ry (X,Y) of object X with respect to Y is defined as
the maximum of dist(X,Y) and the k-nearest neighbor distance of Y:

Ri(X,Y) = max{dist(X,Y), D*(Y)}

The reachability distance is not symmetric between X and Y. Intuitively, when Y is in a
dense region and the distance between X and Y is large, the reachability distance of X
with respect to it is equal to the true distance dist(X,Y). On the other hand, when the
distances between X and Y are small, then the reachability distance is smoothed out by the
k-nearest neighbor distance of Y. The larger the value of k is, the greater the smoothing
will be. Correspondingly, the reachability distances with respect to different points will also
become more similar.

Then, the average reachability distance ARy (X) of data point X is defined as the average

of its reachability distances to all objects in its neighborhood Ly (X) :

AR(X) = MEANy ;5 Rie(X,Y)

4.4. DENSITY-BASED OUTLIERS 133

Here, the MEAN function simply represents the mean of a set of values. The work in [96]
also defines the reachability density as the inverse of this value, though this particular pre-
sentation omits this step, since the LOF values can be expressed more simply and intuitively
in terms of the average reachability distance ARy (X). The Local Outlier Factor is then sim-
ply equal to the mean ratio of ARy(X) to the corresponding values of all points in the
k-neighborhood of X:

- ARy (X
LOF(X) = MEANy | %) i (Y)) (4.2)
— 1
= AR(X) MEANy ;) AT (4.3)

The use of distance ratios in the definition ensures that the local distance behavior is well
accounted for in this definition. As a result, the LOF values for the objects in a cluster are
often close to 1, when the data points in the cluster are homogeneously distributed. For
example, in the case of Figure 4.6, the LOF values of data points in both clusters will be
close to 1, even though the densities of the two clusters are different. On the other hand, the
LOF values of both the outlying points will be much higher since they will be computed in
terms of the ratios to the average neighbor reachability distances. The LOF scores can also
be viewed as normalized reachability distance of a point, where the normalization factor is
the harmonic mean of the reachability distances in its locality. For example, Equation 4.3
can be rewritten as follows:

B ARy(X)
HMEANg,) AR(Y)

LOF,(X) (4.4)

Here, HMEAN denotes the harmonic mean of the reachability distances of all the points in
its locality. In principle, we could use any type of mean in the denominator. For example, if
we had used a arithmetic mean of the reachability distances in the denominator, the results
would have a similar interpretation. One observation about the LOF method is that while it
is popularly understood in the literature as a density-based approach, it can be more simply
understood as a relative distance-based approach with smoothing. The relative distances are
computed on the basis of the local distribution of reachability distances. The LOF method
was originally presented in [96] as a density-based approach because of its ability to adjust
to regions of varying density. The density is loosely defined as the inverse of the smoothed
reachability distances of a point. This is, of course, not a precise definition of density, which
is traditionally defined in terms of the number of data points within a specified area or
volume. The presentation in this chapter omits this intermediate density variable, both for
simplicity, and for a definition of LOF directly in terms of reachability distances. The real
connection of LOF to data density lies in its insightful ability to adjust to varying data
density with the use of relative distances. While this book has also classified this method
as a density-based approach, it can be equivalently understood in terms of either a relaxed
definition of density or distances. There are a small number of simplifications that one could
make to LOF without affecting its performance very significantly:

1. Instead of using the reachability distances, one might use the raw distances.

2. Instead of using the harmonic mean in Equation 4.4, one can simply use the arithmetic
mean. Another variant known as LDOF (local distance-based outlier factor) [610] uses
the averaged pairwise-distances between points in Ly (X) instead of the harmonic mean
of arithmetic means.

134 CHAPTER 4. PROXIMITY-BASED OUTLIER DETECTION

With such modifications, the relationship to distance-based methods is more obvious. It is
also possible to use data-dependent similarity measures (cf. section 4.3.3) in combination
with an exact k-nearest neighbor outlier detector to achieve similar goals as LOF.

4.4.1.1 Handling Duplicate Points and Stability Issues

The use of the harmonic mean in Equation 4.4 has some interesting consequences for the
stability of the algorithm because the harmonic mean is often not a very stable central
representative of a set of values. The occurrence of a single value of 0 in a set of values will
result in a harmonic mean of 0. This has consequences in a data set containing duplicate
points (or points in dense regions that are very close to one another). For example, if even one
of the reachability values in the denominator of Equation 4.4 is 0, the entire expression will
be set to co. In other words, all points in the immediate neighborhood of duplicate points are
at risk of having their scores set to co. It is clear that such an outcome is not desirable. Note
that this problem is reduced with the use of the arithmetic mean instead of the harmonic
mean in Equation 4.4. Another possibility is to use k-distinct-distances, which is essentially
equivalent to removing duplicates from the data set for model construction [96]. However,
removing duplicates is beneficial only if these duplicates are a result of noise or errors in
the data. If the duplicates represent true densities, then the computed LOF score will be
biased. Therefore, it is hard to use the solution of k-distinct-distances without a deeper
semantic understanding of the duplicates in the data set. Finally, a reasonable approach is
to use regularization by modifying Equation 4.4 with a small value o > 0:

o+ HMEAN?EL;C(Y)ARIC (?)

LOF,(X) = (4.5)

Intuitively, the value of o regulates the prior probability that a data point is a normal point.

Although the issue of duplicates can be effectively handled using the aforementioned
methods, harmonic normalization does result in broader issues of stability with respect to
the value of the parameter k. For example, it is recommended in [96] to use the maximum
value of LOF}(X) over a range of different values of k as the outlier score [96]. However,
at small values of k, groups of points might be close to one another by chance, which
will increase the outlier scores of points in their locality. This problem can be viewed as
soft version of the duplicate problem discussed earlier. Because of the unstable nature of
harmonic normalization, even a single tightly knit group can increase the outlier scores of
many points in a given locality.

This type of instability tends to make the LOF detector more sensitive to the value
of k than other detectors such as the average k-nearest neighbor method. Therefore, if
one can determine the best value of k for LOF, it is possible to obtain better results for
LOF than those obtained using the best value of k for other detectors like the exact or
average k-nearest neighbor methods. However, one must be careful in interpreting such
results, because it is impossible to know the correct value of k in a particular detector for
unsupervised problems like outlier detection. Furthermore, the good results of (the relatively
unstable) LOF at particular values of k might simply be a manifestation of overfitting.
In practice, a better performance measure is to compute various measures of the average
performance over a range of parameter choices. In such cases, LOF is often outperformed by
simpler detectors such as the exact k-nearest neighbor detector and the average k-nearest
neighbor detector [32, 35]. Indeed, the trusty old k-nearest neighbor detectors should never
be underestimated.

4.4. DENSITY-BASED OUTLIERS 135

4.4.2 LOCI: Local Correlation Integral

An interesting method proposed in [426] uses a local density-based method for outlier analy-
sis. The LOCI method is truly a density-based method, since it defines the density M (X, ¢)
of a data point X in terms of the number of data points within a pre-specified radius e
around a point. This is referred to as the counting neighborhood of the data point X. Cor-
respondingly, the average density AM (X, ¢, d) in the J-neighborhood of X is defined as the
mean value of M (X, e¢) for all data points at a distance at most § from X. The value of §
is also referred to as the sampling neighborhood of X, and is always larger than e. Further-
more, the value of € is always chosen as a constant fraction of §, no matter what value of
0 is used. The value of ¢ is a critical parameter in the analysis, and multiple values of this
parameter are used in order to provide analytical insights at different levels of granularity.
The average density in the neighborhood of X is formally defined as follows:

AM(X,€,0) = MEAN[?:dist(YY)gé]M(Yv €) (4.6)
Correspondingly, the multi-granularity deviation factor MDEF (X ,¢,0) at level § is ex-
pressed in terms of the ratio of the densities at a point and the average density in its
neighborhood:

M(X,€)
AM(X,€,6)
Note the similarity to LOF in terms of using the local ratios while defining the outlier score
of a data point. The larger the value of the MDEF is, the greater the outlier score. In order
to convert the MDEF score into a binary label, the deviation o(X,e¢,§) of the different
values of M (X, €) within the sampling neighborhood of X is computed.

MDEF(X,e,6)=1— (4.7)

STD[7 ginx.7)<s) MY €)

AM(X,€,6)

o(X,€,0) =

Here, the function ST D computes the standard deviation over the entire sampling neigh-
borhood. The denominator accounts for the fact that the MDEF value of Equation 4.7 is
scaled by the same expression in the denominator.

The value of € is always chosen to be half that of ¢ in order to enable fast approximate
computation. Therefore, throughout this presentation, it is assumed that the value of € is
automatically decided by the choice of §. Multiple values of § are used in order to provide
a multi-granularity approach for outlier analysis. These methods vary the sampling radius
from a minimum radius containing at least 20 points to a maximum radius that spans most
of the data. A data point is an outlier if its MDEF value is unusually large among any
of the values computed at different granularity levels. Specifically, the value of the MDEF
needs to be at least k- o(X, ¢, 6), where k is chosen to be 3. This choice of k is common in
statistical analysis with the use of the normal distribution assumption.

The algorithmic efficiency can be improved with the following modifications:

e Only a limited set of sampling neighborhoods need to be considered. In particular, if
the sampling or counting neighborhoods do not change for small changes in J, then
those neighborhoods do not need to be considered.

e Fast methods for approximating the neighbor counts are also provided in [426]. This
provides high-quality approximations to MDEF. It has been shown in [426], that a
box count of a grid-based division of the data provides a fast approximation, when L,
distances are used. This approximation is also referred to as the aLOCI algorithm.

136 CHAPTER 4. PROXIMITY-BASED OUTLIER DETECTION

a0
—e— AVERAGE COUNT OF NEARBY POINTS e —e—AVERAGE COUNT OF NEARBY POINTS —e—AVERAGE COUNT OF NEARBY POINTS
- v-COUNT OF POINT - -GOUNT OF POINT - -COUNT OF POINT

P 5 s

N CO%JNT R
COUNT

s 0 i 20 3] o B 70 W5 2 = El T 0 W5 £ 2
NEIGHBORHOOD RADIUS NEIGHBORHOOD RADIUS NEIGHBORHOOD RADIUS

(a) Cluster point (b) Micro-clustered anomaly (¢) Outstanding anomaly

Figure 4.7: Illustrative example of a simplified version of the LOCI plot without ranges
shown. The ranges can further help in distinguishing when the true density of a point falls
below the average density of its neighborhood. The figure is drawn for illustrative purposes
only to show the typical types of trends one would see in various settings.

4.4.2.1 LOCI Plot

The LOCI plot compresses the information about a data point in a two dimensional repre-
sentation, where the outlier behavior is visually interpretable from a multi-granular perspec-
tive. Since the value of MDEF(X e, d) is constructed by examining the relative behavior of
M(X,€) and AM (X, ¢,0d) over different values of §, it makes sense to visualize each of these
quantities by separately plotting them against the sampling neighborhood . Therefore, the
LOCIT plot shows the value of § on the X-axis against the following count-based quantities
on the Y-axis:

e Density behavior of point: The value of M(X,e) = M(X,d/2) is plotted on the
Y -axis. This shows the actual density behavior of the data point X at different gran-
ularity levels.

e Average density behavior of nearby points: The values of AM(X,¢,d) and

AM(X,€,6) + STD[?:dist(Y,?)gé]M(?v €) are plotted on the Y-axis. This shows the

density behavior of the neighborhood of X (along with statistical ranges) for different
granularity levels. The ranges help in identifying cases in which the actual density of
the point falls significantly below the true density of its neighborhood.

When a data point is an outlier, its density behavior will often fall below that of the point
neighborhood, and it might even fall below the lower end of the neighborhood-density range.

The LOCI plot provides a visual understanding of how the deviations of the data point
relate to extreme values of the deviation at different granularity levels, and it explains why a
particular data point may have a high MDEF value. The use of different granularity levels is
helpful in adjusting the algorithm to the vagaries of different data sets. For example, in the
case of Figure 4.2, any distance-based or the LOF method would need to select the value of
k (for the k-nearest neighbor method) very carefully in order to identify these data points as
outliers. However, the LOCI plot would always visually enable a correct point-specific level
of granularity of analysis. In some cases, specific data points may show up as outliers only
at particular granularity levels, which would also show up in the LOCI plot. This type of
visual insight is helpful for building intuition and interpretability in unsupervised problems
like outlier detection.

An illustrative example of the LOCI plot is shown in Figure 4.7. Here, we have shown
a simplified version of the plot without showing the upper and lower ranges of the aver-

4.4. DENSITY-BASED OUTLIERS 137

age neighborhood density. In other words, we have shown only the neighborhood density
AM (X ,€,6) without showing the ranges AM (X, ¢,0) & STD[?;dist(?,?)gﬁ]M(?7 €). These
ranges are further helpful in distinguishing when the point density falls far below neigh-
borhood density. Figure 4.7(a) shows the typical behavior of a clustered point in which the
density of a point is roughly similar to the neighborhood density over all values of the radius.
In the case of a clustered anomaly, which co-occurs with a small number of points, the two
densities diverge only after sufficiently increasing the neighborhood size (see Figure 4.7(b))
beyond the size of the small cluster. Clustered anomalies tend to be common because of
the propensity of outliers to occur in small groups. In the case of an outstanding outlier,
as shown in Figure 4.7(c), the two densities diverge at the very beginning. Thus, these dif-
ferent plots provide insights about why specific points should be considered outliers. It is
also noteworthy that the LOCI plot is specific to a single data point; therefore, it is usually
leveraged only over a small set of interesting points identified by the LOCT algorithm.

4.4.3 Histogram-Based Techniques

Histograms use a space-partitioning methodology for density-based summarization. In the
simplest case of univariate data, the data is discretized into bins of equal width between the
minimum and maximum values, and the frequency of each bin is estimated. Data points that
lie in bins with very low frequency are reported as outliers. In the context of multivariate
data, the approach can be generalized in two different ways:

e The outlier scores are computed separately for each dimension, and then the scores
can be aggregated.

e The discretization along each dimension can be generated at the same time, and a
grid structure can be constructed. The distribution of the points in the grid structure
can be used in order to create a model of the sparse regions. The data points in these
sparse regions are the outliers.

In some cases, the histogram is constructed only on a sample of the points (for efficiency
reasons), but all points are scored based on the frequency of a bin in which a point lies. Let
fi ... fv be the (raw) frequencies of the b univariate or multivariate bins. These frequencies
represent the outlier scores of the points inside these bins. Smaller values are more indicative
of outlierness. In some cases, the frequency count (score) of a data point is adjusted by
reducing it by 1. This is because the inclusion of the data point itself in the count can mask
its outlierness during extreme value analysis. This adjustment is particularly important if a
sample of the data is used to construct the histogram, but out-of-sample points are scored
using the frequencies of their relevant bins in the constructed histogram. In such cases, the
scores of only the in-sample points are reduced by 1. Therefore, the adjusted frequency F}
of the jth point (belonging to the ith bin with frequency f;) is given by the following:

Fy=fi—1I; (4.8)

Here, I; € {0,1} is an indicator variable depending on whether or not the jth point is
an in-sample point. Note that F}; is always nonnegative, because bins containing in-sample
points always have a frequency of at least 1.

It is noteworthy the logarithm of the adjusted frequency F} represents a log-likelihood
score, which enables better extreme-value analysis for score to label conversion. For regular-
ization purposes, we use log, (F; +a) as the outlier score of the jth point, where o > 0 is the

138 CHAPTER 4. PROXIMITY-BASED OUTLIER DETECTION

regularization parameter. To convert the scores to binary labels, a Student’s ¢-distribution
or normal distribution can be used to determine unusually low scores with extreme-value
analysis. Such points are labeled as outliers. Histograms are very similar to clustering meth-
ods because they summarize the dense and sparse regions of the data in order to compute
outlier scores; the main difference is that clustering methods partition the data points,
whereas histogram methods tend to partition the data space into regions of equal size.

The major challenge with histogram-based techniques is that it is often hard to determine
optimal histogram width well. Histograms that are too wide or too narrow will not model
the frequency distribution at the level of granularity needed to optimally detect outliers.
When the bins are too narrow, the normal data points falling in these bins will be identified
as outliers. On the other hand, when the bins are too wide, anomalous data points may fall
in high-frequency bins, and will therefore not be identified as outliers. In such a setting, it
makes sense to vary the histogram width and obtain multiple scores for the same data point.
These (log-likelihood) scores are then averaged over the different base detectors to obtain
a final result. Like clustering, histogram-based methods tend to have a high variability in
prediction depending on parameter choices, which makes them ideal candidates for ensemble
methods. For example, the RS-Hash method (cf. section 5.2.5 of Chapter 5) varies the
dimensionality and size of grid regions to score points as outliers. Similarly, some recent
ensemble methods like isolation forests (cf. section 5.2.6) can be viewed as randomized
histograms in which the grid regions of varying size and shapes are created in hierarchical
and randomized fashion. Instead of measuring the number of points in a grid region of
fixed size, an indirect measure of the expected size of the grid region required to isolate a
single point is reported as the outlier score. This type of approach can avoid the problem
of selecting a fixed grid size up front.

A second (related) challenge with the use of histogram-based techniques is that their
space-partitioning approach makes them myopic to the presence of clustered anomalies. For
example, in the case of Figure 4.2, a multivariate grid-based approach may not be able
to classify an isolated group of data points as outliers, unless the resolution of the grid
structure is calibrated carefully. This is because the density of the grid only depends on the
data points inside it, and an isolated group of points may create an artificially dense grid
cell, when the granularity of representation is high. This issue can also be partially resolved
by varying the grid width and averaging the scores.

Histogram methods do not work very well in higher dimensionality because of the spar-
sity of the grid structure with increasing dimensionality, unless the outlier score is computed
with respect to carefully chosen lower dimensional projections. For example, a d-dimensional
space will contain at least 2¢ grid-cells, and therefore, the number of data points expected to
populate each cell reduces exponentially with increasing dimensionality. As discussed in sec-
tion 4.4.5, the use of some techniques like rotated bagging [32] and subspace histograms (cf.
section 5.2.5 of Chapter 5) can partially address this issue. Although histogram-based tech-
niques have significant potential, they should be used in combination with high-dimensional
subspace ensembles (see Chapters 5 and 6) for best results.

4.4.4 Kernel Density Estimation

Kernel-density estimation methods are similar to histogram techniques in terms of building
density profiles. However, a smoother version of the density profile is constructed by using
kernel functions rather than discrete counting. Because of the similarity between the two
classes of methods, one tends to obtain similar results in the two cases, especially if ensemble
methods are used to smooth out the implementation- and parameter-specific effects.

4.4. DENSITY-BASED OUTLIERS 139

In kernel density estimation [496], which is also known as the Parzen-Rosenblatt method,
a continuous estimate of the density is generated at a given point. The value of the density
at a given point is estimated as the sum of the smoothed values of kernel functions K7, (-)
associated with each point in the data set. Each kernel function is associated with a kernel
width h that regulates the level of smoothing. The kernel density estimate, f (X), based on
N data points and kernel function K} (-) is defined as follows:

=5 Y KX -X) (1.9

Thus, each discrete point X; in the data set is replaced by a continuous function K n ()
which peaks at X; and has a variance that is determined by the smoothing parameter h. An
example of such a distribution would be the Gaussian kernel with width A for d-dimensional
data:

Kj(X X)—(! >d- - (4.10)

h)=\ e .

The estimation error is defined by the kernel width A, which is chosen in a data-driven
manner. It has been shown [496] that for most smooth functions Kj, (-), when the number of

data points goes to infinity, the estimator f(X) asymptotically converges to the true density
function f(X), provided that the width & is chosen appropriately. For a data set containing
N points, the Silverman approximation rule [496] suggests a bandwidth of h = 1.06 5§ N —1/5
where the 62 is the estimated sample variance. This choice is, however, only a rule-of-thumb;
in general, the best choice of bandwidth is data-specific. The kernel density estimate at a
given point is a data-driven estimate of the value of the probability density function of
the generating data distribution. Good results have been shown in [184] with a density-
estimation method proposed in [316]. One should exclude the test point from the summation
of Equation 4.9 to avoid overfitting, which is particularly important with certain types of
kernel functions.

One can view the kernel density estimate as a simple non-parametric alternative to the
fit values computed by the expectation-maximization algorithm in Chapter 2. Therefore,
the kernel density estimates can be viewed as outlier scores in which smaller values indicate
a greater degree of outlierness. The data points with unusually low density are declared
outliers with the use of a Student’s ¢-distribution or normal distribution assumption. How-
ever, the logarithmic function should be applied to the scores before extreme-value analysis,
because such analysis is more effective on the log-likelihood scores.

Density-based methods face similar implementation challenges as histogram techniques.
Just as the choice of grid-width causes a dilemma in histogram methods, the proper choice of
bandwidth in kernel density methods is often data-distribution specific, which is not known
a priori. Furthermore, the use of a global bandwidth in order to estimate density may not
work very well in cases where there are wide variations in local density such as Figures 4.2
and 4.6. In a sense, the bandwidth plays a similar role in kernel-density estimation as the
grid width in histogram methods, because both regulate the locality size of the estimation
process. Furthermore, these methods are not very effective for higher dimensionality, because
the accuracy of the density estimation process degrades with increasing dimensionality.

4.4.4.1 Connection with Harmonic k-Nearest Neighbor Detector

The harmonic k-nearest neighbor detector of Definition 4.3.3 is a special case of density-
based methods. Specifically, the kernel function is simply set to the inverse distance to the

140 CHAPTER 4. PROXIMITY-BASED OUTLIER DETECTION

target. We replicate Equation 4.9 here:

>

-

~
Il
—

K (X - X3)

==

f(X) =

>

- Xi|

v

Il
—

1l

2|~

K2

Note that the second expression is simply the inverse of the harmonic score when the
value of k is set to N in Definition 4.3.3. It is important to remove any training point X;
that is identical to X to avoid infinity scores caused by overfitting. Note that this kernel
function does not use the bandwidth, and it is therefore a parameter-free detector. One
can also use only the nearest £ < N points for the estimation in lieu of the bandwidth,
although reasonably good results are often obtained at £ = N. It is noteworthy that an
(arithmetically) averaged k-nearest neighbor detector cannot discover isolated points near
the center of the data distribution when & is set to IN. For example, a single outlier at the
center of a ring of points would receive the most inlier-like score in an average N-nearest
neighbor detector. However, a harmonic N-nearest neighbor detector will do an excellent
job in scoring the outlier appropriately, particularly if the value of N is large. This is because
kernel densities are always estimated more accurately with larger data sets.

With an increasing number of points, this approach will indeed become a good heuristic
estimate of the relative density. However, in many cases, one can obtain better results by
repeatedly estimating f (X) with different samples of the data and averaging the scores
to create an ensemble method. As in the case of all density-based methods, a logarithm
function should be applied to f(Y) (to convert it into a log-likelihood) before applying
extreme-value analysis or ensemble methods.

4.4.4.2 Local Variations of Kernel Methods

It is possible to make kernel methods more locality sensitive by using a variety of tricks
either in isolation or in combination:

1. The bandwidth for estimating the density at a point can be computed locally by using
its k-nearest neighbor distance rather than using a global value.

2. The kernel density at a point can be normalized using the average kernel densities at
its neighboring points.

These two tricks were used in combination in [342]. In addition, the distance in the exponent
of the kernel function was replaced with the reachability distance (as defined for the LOF
algorithm).

4.4.5 Ensemble-Based Implementations of Histograms and Kernel
Methods

Histogram- and kernel-based techniques can be significantly strengthened using ensemble
methods. The main problem in histogram-based techniques is to use them effectively in the
context of high-dimensional data. In this context, it is possible to design effective imple-
mentations for high-dimensional data with the use of rotated bagging [32], because rotated
bagging drastically reduces the dimensionality of the data from O(d) to O(v/d). The basic

4.5. LIMITATIONS OF PROXIMITY-BASED DETECTION 141

idea is to generate a randomly rotated subspace of dimensionality 2+ [\/E /2] and project the
data points in this subspace before applying a multidimensional histogram-based method
(or any other detector). One might choose even less than 2 4 [v/d/2] dimensions to amelio-
rate the effects of high dimensions. The specific details of the rotation process are described
in section 5.3.3 of Chapter 5 and in section 6.4.4 of Chapter 6.

This approach is repeated multiple times with different random projections, and the
scores of a point o