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1 INTRODUCTION

Analysis of variance (ANOVA) is a powerful and popular technique for
analyzing data. This handbook is an introduction to ANOVA for those
who are not familiar with the subject. It is also a suitable reference for
scientists who use ANOVA to analyze their experiments.

Most researchers in applied and social sciences have learned ANOVA at
college or university and have used ANOVA in their work. Yet, the
technique remains a mystery to many. This is likely because of the
traditional way ANOVA is taught — loaded with terminology, notation,
and equations, but few explanations. Most of us can use the formulae to
compute sums of squares and perform simple ANOVAs, but few actually
understand the reasoning behind ANOVA and the meaning of the F-test.

Today, all statistical packages and even some spreadsheet software (e.g.,
EXCEL) can do ANOVA. It is easy to input a large data set to obtain a
great volume of output. But the challenge lies in the correct usage of the
programs and interpretation of the results. Understanding the technique is
the key to the successful use of ANOVA.

The concept of ANOVA is really quite simple: to compare different
sources of variance and make inferences about their relative sizes. The
purpose of this handbook is to develop an understanding of ANOVA
without becoming too mathematical.

It is crucial that an experiment is designed properly for the data to be
useful. Therefore, the elements of experimental design are discussed in
Chapter 2. The concept of ANOVA is explained in Chapter 3 using a one-
way fixed factor example. The meaning of degrees of freedom, sums of
squares, and mean squares are fully explored. The idea behind ANOVA
and the basic concept of hypothesis testing are also explained in this
chapter. In Chapter 4, the various techniques for comparing several means
are discussed briefly; recommendations on how to perform multiple
comparisons are given at the end of the chapter. In Chapter 5, a
completely randomized factorial design is used to illustrate the procedures
for recognizing an experimental design, setting up the ANOVA table, and
performing an ANOVA using SAS statistical software. Many designs
commonly used in forestry trials are described in Chapter 6. For each
design, the ANOVA table and SAS program for carrying out the analysis
are provided. A set of rules for determining expected means squares is
given in Appendix 1.

This handbook deals mainly with balanced ANOVAs, and examples are
analyzed using SAS statistical software. Nonetheless, the information will
be useful to all readers, regardless of which statistical package they use.

2 THE DESIGN OF AN EXPERIMENT

Experimental design involves planning experiments to obtain the
maximum amount of information from available resources. This chapter
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defines the essential elements in the design of an experiment from a
statistical point of view.

2.1 Factor A factor is a variable that may affect the response of an experiment. In
general, a factor has more than one level and the experimenter is
interested in testing or comparing the effects of the different levels of a
factor. For example, in a seedlot trial investigating seedling growth, height
increment could be the response and seedlot could be a factor. A
researcher might be interested in comparing the growth potential of
seedlings from five different seedlots.

2.2 Quantitative and
Qualitative Factors

A quantitative factor has levels that represent different amounts of a
factor, such as kilograms of nitrogen fertilizer per hectare or opening sizes
in a stand. When using a quantitative factor, we may be concerned with
the relationship of the response to the varying levels of the factor, and
may be interested in an equation to relate the two.

A qualitative factor contains levels that are different in kind, such as
types of fertilizer or species of birds. A qualitative factor is usually used to
establish differences among the levels, or to select from the levels.

A factor with a numerical component is not necessarily quantitative.
For example, if we are considering the amount of nitrogen in fertilizer,
then the amount of nitrogen must be specific (e.g., 225 kg N/ha, 450 kg
N/ha, 625 kg N/ha) for the factor to be quantitative. If, however, only two
levels of nitrogen are to be considered — none and some amount — and
the objective of the study is to compare fertilizers with and without
nitrogen, then nitrogen is a qualitative factor (Mize and Schultz 1985;
Mead 1988, Section 12.4).

2.3 Random and
Fixed Factors

A factor can be classified as either fixed or random, depending on how its
levels are chosen. A fixed factor has levels that are determined by the
experimenter. If the experiment is repeated, the same factor levels would
be used again. The experimenter is interested in the results of the
experiment for those specific levels. Furthermore, the application of the
results would only be extended to those levels. The objective is to test
whether the means of each of the treatment levels are the same. Suppose
an experimenter is interested in comparing the growth potentials of
seedlings from seedlots A, B, C, D, and E in a seedlot trial. Seedlot is a
fixed factor because the five seedlots are chosen by the experimenter
specifically for comparison.

A random factor has levels that are chosen randomly from the
population of all possible levels. If the experiment is repeated, a new
random set of levels would be chosen. The experimenter is interested in
generalizing the results of the experiment to a range of possible levels
and not just to the levels used. In the seedlot trial, suppose the five
seedlots are instead randomly selected from a defined population of
seedlots in a particular seed orchard. Seedlot then becomes a random
factor; the researcher would not be interested in comparing any
particular seedlots, but in testing whether the variation among seedlots is
the same.
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It is sometimes difficult to determine whether a factor is fixed or
random. Remember that it is not the nature of the factor that
differentiates the two types, but the objectives of the study and the
method used to select factor levels. Comparisons of random and fixed
factors have been discussed in several papers (Eisenhart 1947;
Searle 1971a, 1971b (Chapter 9); Schwarz 1993; Bennington and
Thayne 1994).

2.4 Variance The sample variance is a measure of spread in the response. Large
variance corresponds to a wide spread in the data, while small variance
corresponds to data being concentrated near the mean. The dispersion of
the data can have a number of sources.

In the fixed factor seedlot example, different seedling heights could be
attributed to the different seedlot, to the inherited differences in the
seedlings, or to different environmental conditions. Analysis of variance
compares the sources of variance to determine if the observed differences
are caused by the factor of interest or are simply a part of the nature of
things. Many sources of variance cannot be identified. The variance of
these sources are combined and referred to as residual or error variance.
A complete list of sources of variance in an experiment is a non-
mathematical way of describing the ‘‘model’’ used for the experiment
(refer to Section 3.3.1 for the definition of model). Section 5.3 presents a
method to compile the list of sources in an experiment. Examples are
given in chapters 5 and 6.

2.5 Crossed and
Nested Factors

An experiment often contains more than one factor. These factors can be
combined or arranged with one another in two different ways: crossed or
nested.

Two factors are crossed if every level of one factor is combined with
every level of the other factor. The individual factors are called main
effects, while the crossed factors form an interaction effect. Suppose we
wish to find out how two types of fertilizers (OLD and NEW) would
perform on seedlings from five seedlots (A, B, C, D, and E.) We might
design an experiment in which 10 seedlings from each seedlot would be
treated with the OLD fertilizer and another 10 seedlings would be treated
with the NEW fertilizer. Both fertilizer and seedlot are fixed factors
because the levels are chosen specifically. This design is illustrated in
Figure 1.

Fertilizer:

Seedlot:

OLD NEW

A B C D E A B C D E

 1 Design structure of an experiment with two factors crossed with one
another.
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Figure 1 is called a stick diagram. The lines, or sticks, indicate the
relationships between the levels of the two factors. Five lines are extended
from both the OLD and NEW fertilizers to the seedlots, indicating that
the OLD and NEW fertilizers are applied to seedlings from the five
seedlots. The same seedlot letter designations appear under the OLD and
NEW fertilizers because the seedlings are from the same five seedlots.
Hence, the two factors are crossed. The crossed, or interaction factor is
denoted as fertilizer*seedlot, or seedlot*fertilizer, as the crossed
relationship is symmetrical. We could also draw the stick diagram with
seedlot listed first, as in Figure 2.

Seedlot:

Fertilizer:

A B C D E

NEW NEW NEW NEW NEWOLD OLD OLD OLD OLD

 2 Alternative stick diagram for the two-factor crossed experiment.

A factor is nested when each level of the nested factor occurs with only
one or a combination of levels of the other factor or factors. Suppose ten
seedlots are randomly selected from all seedlots in an orchard, and
seedlings from five of these are treated with the OLD fertilizer, while
seedlings from the other five are treated with the NEW fertilizer. The
assignment of the fertilizer to the seedlots is completely random. Fertilizer
is a fixed factor but seedlot is a random factor. This design is displayed in
Figure 3.

Fertilizer: OLD

Seedlot:

NEW

F G H I JF G H I JA B C D E

 3 Design structure of a one-factor nested experiment.

Figure 3 is very similar to Figure 1 except at the seedlot level. The five
seedlots under the OLD fertilizer are different from those under the NEW
fertilizer because seedlings from different seedlots are treated by the two
fertilizers. The non-repeating seedlot letter designations indicate that the
seedlot is nested within the fertilizer treatments. The nested factor
‘‘seedlot’’ would never occur by itself in an ANOVA table; rather it would
always be denoted in the nested notation seedlot(fertilizer). The nested
factor is usually random, but unlike the crossed relationship, the nested
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relationship is not symmetrical. In a stick diagram, the nested factor is
always drawn below the main factor.

A nested factor never forms an interaction effect with the main
factor(s) within which it is nested. It can, however, be crossed with other
factors. For example, the factor relationship temperature*seedlot
(fertilizer) is valid. It indicates that each level of the temperature factor
combines with each level of the seedlot factor which is nested within the
fertilizer factor. If the temperature factor has three levels (e.g., high,
medium, and low), then there are thirty (3 × 10 = 30) combinations of
temperature, seedlot, and fertilizer. On the other hand, the factor
relationship fertilizer*seedlot(fertilizer) is not valid because the seedlot
factor cannot be nested with, and crossed with, the fertilizer factor at the
same time.

The stick diagram is a very useful tool to identify the structure of an
experiment. Its construction is discussed in detail in Section 5.2.

2.6
Experimental

Unit

An experimental unit (e.u.), also referred to as a treatment unit, is the
smallest collection of the experimental material to which one level of a
factor or some combination of factor levels is applied. We need to identify
the experimental unit in a study to determine the study’s design. To do
this, we must know how the factor levels are assigned to the experimental
material. Suppose we want to study the effect of a mycorrhizal fungus
treatment (e.g., mycelial slurry) on seedling performance. ‘‘Fungus’’ is a
fixed and qualitative factor; it has two levels: with fungus treatment and
without. The experiment could be performed on 40 seedlings, as arranged
in Figure 4.

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

 4 Forty seedlings arranged in eight vertical rows with five seedlings per
row.

There are many ways to perform the experiment. Three possible cases are:
1. Randomly assign a treatment level to each seedling so that 20 seedlings

are inoculated with the fungus, and 20 are not. Here, a seedling is the
experimental unit for the ‘‘fungus’’ factor.

2. Randomly assign a treatment level to a row of seedlings (five seedlings
per row) so that exactly four rows of seedlings are inoculated with the
fungus and four are not. In this case, a row of seedlings is the
experimental unit for the ‘‘fungus’’ factor.
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3. Randomly assign a treatment level to a plot of seedlings (four rows of
seedlings per plot) so that one plot of seedlings is inoculated with the
fungus, and one is not. A plot of seedlings is now the experimental
unit for the ‘‘fungus’’ factor.

2.7 Element An element is an object on which the response is measured. In the fungus
example, if the response (e.g., height or diameter) is measured on each
seedling, then a seedling is the element. Elements can be the same as the
experimental units, as in the first case of the previous example, where the
fungus treatment is assigned to each seedling. If the two are different,
then elements are nested within experimental units.

2.8 Replication A replication of a treatment is an independent observation of the
treatment. A factor level is replicated by applying it to two or more
experimental units in an experiment. The number of replications of a
factor level is the number of experimental units to which it is applied.

In the fungus treatment example of Section 2.6, all three experimental
cases result in 20 seedlings per treatment level. In the first case, where a
seedling is the experimental unit, each level of fungus treatment is
replicated 20 times. In the second case, where a row of five seedlings is
the experimental unit, each level is replicated four times. In the last case,
where a plot of seedlings is the experimental unit, the fungus treatments
are not replicated.

Too often, elements or repeated measurements are misinterpreted as
replications. Some researchers may claim that in the last example of the
fungus treatment, the experiment is replicated 20 times as there are 20
seedlings in a plot. This is incorrect because the 20 seedlings in a plot are
considered as a group in the random assignment of the treatments — all
20 seedlings receive the same treatment regardless of the treatment type.
This situation is called pseudo-replication.

Replication allows the variance among the experimental units to be
estimated. If one seedling is inoculated with mycorrhiza and another
seedling is used as a control, and a difference in seedling height is then
observed, the only possible conclusion is that one seedling is taller than
the other. It is not possible to determine if the observed height difference
is caused by the fungus treatment, or by the natural variation among
seedlings, or by some other unknown factor. In other words, treatment
effect is confounded with natural seedling variability.

Replication increases the power of an experiment. It increases the
probability of detecting differences among means if these differences exist.
In the fungus example, an experiment performed according to the first
case with treatments replicated twenty times would be more powerful than
the same experiment with treatments replicated four times.

Replication can be accomplished in many ways and will depend on the
type of comparison desired. But regardless of how it is done, it is
essential. Without replication we can not estimate experimental error or
decide objectively whether the differences are due to the treatments or to
other hidden sources. See Bergerud (1988a), Mead (1988, Chapter 6), and
Thornton (1988) for more discussion of the importance of replication.
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Milliken and Johnson (1989) also offer some advice about performing
unreplicated experiments.

2.9 Randomization In many experimental situations, there are two main sources of
experimental error: unit error and technical error. Unit errors occur when
different experimental units are treated alike but fail to respond
identically. These errors are caused by the inherent variation among the
experimental units. Technical errors occur when an applied treatment can
not be reproduced exactly. These errors are caused by the limitation of the
experimental technique. The technical errors can be reduced with more
careful work and better technologies. Unit errors can be controlled, in a
statistical sense, by introducing an element of randomness into the
experimental design (Wilk 1955). This should provide a valid basis for the
conclusions drawn from an experiment. In any experiment, the following
randomization steps should occur:
1. experimental units are selected randomly from a well-defined

population, and
2. treatments are randomly assigned to the experimental units.

If a seedling is the experimental unit, as in the fungus study example,
we would first select 40 seedlings at random from all possible seedlings in
the population of interest (e.g., Douglas-fir seedlings from a particular
seed orchard). Then one of the two fungus treatments would be assigned
at random to each seedling.

These randomization steps ensure that the chosen experimental units
are representative of the population and that all units have an equal
chance of receiving a treatment. If experimental units are selected and
assigned treatments in this manner, they should not show different
response values in the presence or absence of a treatment. Thus, any
significant differences that are found should be related only to the
treatments and not to differences among experimental units.

Randomization of treatments can be imposed in an experimental
design in many ways. Two common designs are the completely
randomized design and the randomized block design.
• In a completely randomized design, each treatment is applied

randomly to some experimental units and each unit is equally likely to
be assigned to any treatment. One method of random assignment is
used for all experimental units.

• In a randomized block design, homogeneous experimental units are
first grouped into blocks. Each treatment is assigned randomly to one
experimental unit in each block such that each unit within a block is
equally likely to receive a treatment. A separate method of random
assignment should be used in each block.

These designs are detailed in Chapter 6.

2.10 Balanced and
Unbalanced Designs

An experiment is balanced if all treatment level combinations have the
same number of experimental units and elements. Otherwise, the
experiment is unbalanced. To illustrate this idea, let us consider the
following example.
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A study is designed to compare the effectiveness of two different
fertilizers (NEW and OLD) on seedling growth. The experiment is
performed on six styroblocks of seedlings. Each styroblock of seedlings is
randomly assigned a fertilizer treatment. Three styroblocks are treated
with each fertilizer. After three weeks, 10 seedlings from each styroblock
are randomly selected for outplanting. Heights are measured three months
after outplanting.

Fertilizer is a fixed and qualitative factor with two levels, the styroblock
is the experimental unit for the fertilizer, and the individual seedling is
the element. This study has a balanced design because each level of the
fertilizer factor has the same number of experimental units and each of
these has the same number of elements. The corresponding stick diagram
is shown in Figure 5.

Unbalanced data can occur at the experimental unit level, at the
element level, or at both. For instance, the design given in Figure 6 is
unbalanced at the element level since styroblock 6 has only five elements.
In contrast, the design shown in Figure 7 is unbalanced at both the

Seedling:
(element)

Styroblock:
(e.u.)

Fertilizer:
(factor)

1 2 3 4 5 6

...
...

...

...
...

...

1 10
11 20

21 30

31 40
41 50

51 60

OLDNEW

 5 Stick diagram of a balanced one-factor design.

Seedling:
(element)

Styroblock:
(e.u.)

Fertilizer:
(factor)

1

...

2

...

3

...

4

...

5

...

6

...

1 10
11 20

21 30

31 40
41 50

51 55

OLDNEW

 6 Stick diagram of a one-factor design: unbalanced at the element level.
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Seedling:
(element)

Styroblock:
(e.u.)

Fertilizer:
(factor)

1

...

2

...

3

...

4

...

5

...
1 10

11 20
21 30

31 40
41 48

OLDNEW

 7 Stick diagram for a one-factor design: unbalanced at both the
experimental unit and element levels.

experimental unit and element levels. Many experiments are designed to
be balanced but produce unbalanced data. In a planting experiment, for
example, some of the seedlings may not survive the duration of the
experiment, resulting in unequal sample sizes.

We should note that balanced data is simpler to analyze than
unbalanced data. For unbalanced data, analysis is easier if the design is
balanced at the experimental unit level. An example of unbalanced data
analysis is given in Section 6.1.2.

3 ANALYSIS OF VARIANCE

We must consider the method of analysis when designing a study. The
method of analysis depends on the nature of the data and the purpose of
the study. Analysis of variance, ANOVA, is a statistical procedure for
analyzing continuous data1 sampled from two or more populations, or
from experiments in which two or more treatments are used. It extends
the two-sample t-test to compare the means from more than two groups.

This chapter discusses the concept of ANOVA using a one-factor
example. The basic idea of hypothesis testing is briefly discussed in
Section 3.2. Terms commonly used in ANOVA are defined in Section 3.3,
while the basic assumptions of ANOVA are discussed in Section 3.4.
Section 3.5 presents the idea behind ANOVA. The meanings of the sum of
squares and mean square terms in the ANOVA model are explained in
detail. The testing mechanism and the ANOVA F-test are described in
Section 3.6. Some concluding remarks about ANOVA are given in

1 Continuous data can take on any value within a range. For example, tree heights, tree
diameters, and percent cover of vegetation are all continuous data.
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Section 3.7. We will begin by introducing an example which will be used
throughout this chapter.

3.1 Example A study is designed to investigate the effect of two different types of
fertilizer (types A and B) on the height growth of Douglas-fir seedlings.
Thirty Douglas-fir seedlings are randomly selected from a seedlot; each
seedling is randomly assigned one of the three treatments: fertilizer A,
fertilizer B, or no fertilizer, so that ten seedlings receive each type of
fertilizer treatment. Seedling heights are measured before the treatments
are applied and again five weeks later. The purpose of the study is to
determine whether fertilizer enhances seedling growth over this time
period and whether the two fertilizers are equally effective in enhancing
seedling growth for this particular seedlot.

This is a one-factor completely randomized design.2 It can also be
called a one-way fixed factor completely randomized design, with
fertilizer as the fixed factor. An individual seedling is both an
experimental unit and an element. The fertilizer has three levels (A, B, or
none) with each level replicated 10 times.

The objective of the study is to compare the true mean height
increments (final height – initial height) of three populations of seedlings:
• all seedlings treated with fertilizer A,
• all seedlings treated with fertilizer B, and
• all seedlings not fertilized.
Since the true mean height increments of the three populations of
seedlings are unknown, the comparison is based on the sample means of
the three groups of seedlings in the study.

3.2 Hypothesis Testing Hypothesis testing is a common technique that is used when comparing
several population means. It is an integral part of many common analysis
procedures such as ANOVA and contingency table analysis. The objective
is to reject one of two opposing mutually exclusive hypotheses based on
observed data. The null hypothesis states that the population means are
equal; the alternative hypothesis states that not all the populations means
are the same.

In hypothesis testing, the null hypothesis is first assumed to be true.
Under this assumption, the data are then combined into a single value
called the ‘‘test statistic.’’ The choice of the test statistic depends on the
analysis method (e.g., F  for ANOVA and χ 2 for chi-square contingency
table analysis). The distribution of the test statistic or the probability of
observing different values of the test statistic, is often known from
statistical theory. The probability of obtaining a test statistic at least as
extreme as the observed value is computed from the distribution. This
probability is called the p-value. A large p-value (e.g., p = 0.9) implies
that the observed data represent a likely event under the null hypothesis;
hence there is no evidence to reject the null hypothesis as false. On the

2 This and other experimental designs are described in detail in Chapter 6.
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other hand, a small p-value (e.g., p = 0.001) suggests that the observed
data represent a highly improbable event if the null hypothesis is true.
Therefore, the observed data contradict the initial assumption and the null
hypothesis should be rejected.

The cut-off point for the p-value is called the level of significance, or
alpha (α) level. It depends on how often we can afford to be wrong when
we conclude that some treatment means are different. By setting α = 0.05,
for example, we declare that events with probabilities under 5% (i.e.,
p < α) are considered rare. These events are not likely to occur by chance
and indicate that the null hypothesis is false; that is, the population means
are not equal. When we reject the null hypothesis, there is, at most, a 5%
chance that this decision will be wrong. We would retain the null
hypothesis when p > α, as there is not enough evidence in the data to
reject it. More specific discussion of testing hypotheses in ANOVA is given
in Section 3.6.

3.3 Terminology Before proceeding with the discussion of analysis of variance, several
frequently used terms must be defined.

3.3.1 Model An ANOVA model is a mathematical equation that relates
the measured response of the elements to the sources of variation using a
number of assumptions. In the fertilizer example, height increment is the
response. The assumptions associated with an ANOVA model will be
discussed in Section 3.4.

The ANOVA model of the fertilizer study can be expressed in words as:

  observed average height increment
height = height + due to treatment + experimental error
increment increment applied

This model assumes that the observed height increment of a seedling can
be divided into three parts. One part relates to the average performance
of all seedlings; another part to the fertilizer treatment applied. The third
part, called experimental error, represents all types of extraneous
variations. These variations can be caused by inherent variability in the
experimental units (i.e., seedlings) or lack of uniformity in conducting the
study. The concept of experimental error is crucial in the analysis of
variance and it plays an important part in the discussions in subsequent
sections.

3.3.2 Sum of squares The term sum of squares refers to a sum of
squared numbers. For example, in the calculation of variance (s 2) of a
sample of n  independent observations (Y1, Y2 . . . Yn ),

s 2 = i =1
(Yi − Y )2Σ

n

, (1)
n − 1

the numerator of s 2 is a sum of squares: the squares of the differences
between the observed values (Yi ) and the sample mean (Y

–
). In ANOVA,



12

the sum of squares of a source of variation is a measure of the variability
due to that source. Sum of squares is usually denoted as ‘‘SS’’ with a
subscript identifying the corresponding source.

3.3.3 Degrees of freedom The degrees of freedom refers to the
number of independent observations that are calculated in the sum of
squares (Keppel 1973). It is often denoted as ‘‘df. ’’ For example, suppose
Y1, Y2, . . . , Yn  are n  observations in a random sample. The quantity

Σ Y 2
i has n  degrees of freedom because the n Yi values are independent.

n

i =1
Independent means that the value of one observation does not affect the
values of the other observations. On the other hand, the quantity nY

– 2 has
only one degree of freedom because for any specific value of n, its value
depends only on Y

–
.

Li (1964: 35–36) postulated that the degrees of freedom for the
difference between (or sum of) two quantities is equal to the difference
between (or sum of) the two corresponding number of degrees of
freedom. Thus, the quantity

Σ (Yi − Y
–

) 2 = Σ Y i
2 − nY

– 2 (2)
n n

i =1 i =1

has (n  − 1) degrees of freedom.
The degrees of freedom of a source of variation can also be determined

from its structure, regardless of whether it contains a single factor or
several factors combined in a nested or crossed manner. The following are
rules for determining degrees of freedom of a source in balanced designs.
• A source containing a single factor has degrees of freedom one less

than its number of levels.
• A source containing nested factors has degrees of freedom equal to the

product of the number of levels of each factor inside the parentheses,
and the number of levels minus one of each factor outside the
parentheses.

• A source containing crossed factors has degrees of freedom equal to the
product of the number of levels minus one of each factor in the
source.

• The total degrees of freedom in a model is one less than the total
number of observations.

 1 Hypothetical sources of variation and their degrees of freedom

Source df Comments

A a − 1 single factor
B(A) (b − 1)(a ) B nested within A
A*B (a − 1)(b − 1) A crossed with B
D*B(A) (d − 1)(b − 1)(a ) D crossed with B nested within A
B(AD) (b − 1)(a )(d ) B nested within A and D
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As an illustration, assume factor A has a  levels, factor B has b  levels, and
factor D has d  levels. Table 1 shows some hypothetical sources of
variations and the formulae to compute their degrees of freedom.

We will not discuss the rules for determining degrees of freedom in
unbalanced designs, as they are quite involved. Interested readers can
consult Sokal and Rohlf (1981, Sections 9.2 and 10.3).

3.3.4 Mean squares The mean square of a source of variation is its
sum of squares divided by its associated degrees of freedom. It is denoted
as ‘‘MS,’’ often with a subscript to identify the source.

MS = (3)SS
df

Mean square is an ‘‘average’’ of the sum of squares. It is an estimate of the
variance of that source. For instance, as shown in the last section, the sum
of squares

SS = Σ (Yi − Y
–

) 2 (4)
n

i =1

has (n − 1) degrees of freedom. Dividing this sum of squares by its
degrees of freedom yields

MS =

Σ (Yi − Y
–

) 2

(5)

n

i =1 ,
n − 1

which is the sample variance (s 2) used to estimate the population variance
based on a set of n  observations (Y1, Y2, . . . , Yn ).

3.4 ANOVA
Assumptions

The objective of the fertilizer study outlined in Section 3.1 is to compare
the true mean height increments of the three groups of seedlings, and
determine whether they are statistically different. This objective cannot be
achieved unless some assumptions are made about the seedlings (Cochran
1947; Eisenhart 1947).

Analysis of variance assumes the following:
1. Additivity. Height measurement is viewed as a sum of effects, which

includes (1) the average performance in the seedling population,
(2) the fertilizer treatment applied, and (3) the experimental error
(inherent variation in the seedlings and variation introduced in
conducting the experiment).

2. Equality of variance (homoscedasticity). The experimental errors
should have a common variance (σ2).

3. Normality. The experimental error should be normally distributed with
zero mean and σ2 variance.
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4. Independence. The experimental errors are independent for all
seedlings. This means that the experimental error for one seedling is
not related to the experimental error for any other seedlings.
The last three assumptions restrict the study to subjects that have

similar initial characteristics and have known statistical properties. The
assumption of independence can be met by using a randomized design.

3.5 The Idea
behind ANOVA

If fertilizer treatments in the study were applied to thousands and
thousands of seedlings, we could then infer that the height increment (Yij )
of any seedling that received a particular treatment, say fertilizer A, is
simply the average height (µi ) increment of all seedlings treated with
fertilizer A, plus the experimental error (eij ). This relationship can be
expressed in symbolic form as:

Yij = µi + eij . (6)

The index i  indicates the fertilizer treatment that a seedling received; the
index j  identifies the seedling that received each treatment. The group
mean, µ i, can be further split into two components: the grand mean (µ),
which is common to all seedlings regardless of the fertilizer treatment
applied, and the group mean (α i ), which represents the effect of the
treatment applied. That is,

µi = µ + αi . (7)

Combining equations (6) and (7) we get:

Yij = µi + αi + eij . (8)

This equation is equivalent to the ANOVA model introduced in Section
3.3.1. Note that:

αi = µi − µ (group mean − grand mean)

and eij = Yij − µi (individual observation − group mean).

We can express equation (8) solely in terms of Yij, µ, and µi as

Yij = µ + (µi − µ) + (Yij − µi )

or (9)Yij − µ = (µi − µ) + (Yij − µi ).

Now we can use the corresponding sample values:

Y
–

 ≈ µ (sample grand mean for true grand mean), and

Y
–

i ≈ µi (sample group mean for true group mean)

to express the model as:

(10)Yij − Y
–

 = (Y
–

i − Y
–

) + (Yij − Y
–

i ) .
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Equation (10) provides an important basis for computations in ANOVA.
The objective of the fertilizer experiment is to compare the true mean

height increment of seedlings given fertilizer A, fertilizer B, or no
fertilizer. Suppose that the average height increment of the 10 seedlings
given fertilizer A was 10 cm, of those given fertilizer B was 12 cm, and of
those given no fertilizer was 9 cm. Before we conclude that fertilizer B
best enhances height growth in seedlings, we need to establish that the
difference in their means is statistically significant; that is, the difference is
caused by the fertilizer treatment and not by chance. Natural variation
among seedlings can be measured by the variance among seedlings within
groups. Variation attributed to the treatments can be measured by the
variance among the group means. If the estimated natural variation is
large compared to the estimated treatment variation, then we would
conclude that the observed differences among the group means is caused
largely by natural variation among the seedlings and not by the different
treatments. On the other hand, if the estimated natural variation is small
compared to the estimated treatment variation, then we would conclude
that the observed differences among group means is caused mainly by the
treatments. Hence, comparison of treatment means is equivalent to
comparison of variances.

To extend our discussion to a general one-factor fixed design, suppose
that the fixed factor has k  levels (compared to three levels in the fertilizer
example). Level 1 is applied to n 1 experimental units, level 2 is applied to
n 2 experimental units, and so on up to level k, which is applied to nk

experimental units. There are in total N = n 1 + n 2 + . . . + nk

experimental units (compared to 10 + 10 + 10 = 30 seedlings in the
fertilizer example).

If we square each side of the model expressed in equation (10) and
sum over all experimental units in all levels (compared to 10 seedlings
receiving each of the 3 levels of fertilizer treatment), we obtain:

Σ Σ (Yij − Y
–

)2 = Σ ni (Y
–

ij − Y
–

)2 + Σ Σ (Yij − Y
–

i )
2, or

k ni k k ni

i =1 j =1 i =1 i =1 j =1

SStotal = SStreat + SSe . (11)

This is the sum of squares identity for the one-factor fixed ANOVA
model. We will now examine each sum of squares term in the equation
more closely.

The term on the left is called ‘‘Total Sum of Squares’’ (SStotal). The
squares are performed on the differences between individual observations
and the grand mean. It is a measure of the total variation in the data. The
sum is performed on all N  observations; hence it has N − 1 degrees of
freedom (compared to 30 − 1 = 29 df  in the fertilizer example).

The first term on the right-hand side is called ‘‘Treatment Sum of
Squares’’ (SStreat). The squares are performed on the differences between
treatment group means and the grand mean. It is a measure of the
variation among the group means. The sum is performed on the k  group
means weighted by the number of experimental units in each group;
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hence it has (k − 1) degrees of freedom (compared to 3 − 1 = 2 df  in the
fertilizer example).

The last term on the right is called ‘‘Error Sum of Squares’’ (SSe). It
measures the variation within each group of experimental units. This sum
of squares is a sum of k  sums of squares. The squares are performed on
the differences between individual observations and their corresponding
group means. The degrees of freedom of the k  sums of squares are
(n1 − 1), (n2 − 1), . . . , (nk − 1). By the rule stated in Section 3.3.3, the
degrees of freedom for the error sum of squares is the sum of the
individual degrees of freedom, Σ (ni − 1) = N − k  (compared to
30 − 3 = 27 df  in the fertilizer example).3

We can divide the sums of squares by their corresponding degrees of
freedom to obtain estimates of variance:

MStotal = SStotal / (N − 1) (12)

MStreat = SStreat / (k − 1) (13)

MSe = SSe /(N − k ) (14)

The meaning of these equations can be found when we examine the
structure of the sums of squares terms.

In equation (12), MStotal represents differences between individual data
and the grand mean; therefore, it is an estimate of the total variance in
the data. In equation (13), MStreat represents differences between group
means and the grand mean; it is an estimate of the variance among the k
groups of experimental units. This variance has two components that are
attributed to:
1. the different treatments applied, and
2. the natural differences among experimental units (experimental error).

In equation (14), MSe represents k  sum of squares. It is the pooled
variance; that is, a weighted average of the variances within each group.
We can pool the variances because of the equality of variances assumption
in ANOVA. The error mean squares is an unbiased estimator for the true
variance of experimental error, σ2.

ANOVA uses MStreat and MSe to test for treatment effects. A ratio of
MStreat to MSe is computed as:

F = (15)
MStreat

MSe

If treatments have no effect (all group means are equal), then MStreat will
contain only the variance that is due to experimental error, and the
F-ratio will be approximately one. If the treatments have an effect on the

3 The sum of the individual degrees of freedom would be computed as:
(n1 − 1) + (n2 − 1) + . . . + (nk − 1) = n1 + n2 + . . . + nk − k = N − k
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response measure (at least two group means are different), then MStreat

will tend to be bigger then MSe , and the F-ratio will be larger than one.

3.6 ANOVA F -test The F-ratio is the test statistic for the null hypothesis that treatment
means are equal. According to probability theory, the ratio of two
independent variance estimates of a normal population will have an
F-distribution. Since means squares in an ANOVA model are estimated
variances of normally distributed errors, F  has an F-distribution. The
shape of the distribution depends on the degrees of freedom
corresponding to the numerator and denominator mean squares in the
F-ratio, and the non-centrality parameter λ. We will not discuss λ at
length here. Interested readers can refer to Nemec (1991). We can
simplify the meaning of λ by saying that it is a measure of the differences
among the treatment means. In ANOVA, the null hypothesis is assumed
to be true unless the data contain sufficient evidence to indicate
otherwise. Under the null hypothesis of equal treatment means, λ = 0 and
F  has a central F-distribution; otherwise, λ > 0, and F  has a non-central
F-distribution.

In the fertilizer example, the fertilizer factor has three levels, and each
level is applied to 10 experimental units. Therefore the numerator mean
squares has 3 − 1 = 2 degrees of freedom, and the denominator mean
squares has 30 − 3 = 27 degrees of freedom. The central F-distribution
curve at (2,27) degrees of freedom is shown in Figure 8. This is the curve
on which hypothesis testing will be based.

The X-axis in Figure 8 represents the F-values; the Y-axis represents
the probability of obtaining an F-value. The total area under the
F-distribution curve is one.
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 8 Central F-distribution curve for (2,27) degrees of freedom.

Let Fc be the cut-off point such that the null hypothesis is rejected
when the observed F-ratio, Fo, is greater than Fc . The tail area to the right
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of Fc is the probability of observing an F-value at least as large as Fc .
Hence, it represents the probability of rejecting the null hypothesis. On
the central F-curve (which assumes the null hypothesis is true), this tail
area also represents the probability of rejecting the null hypothesis by
mistake. Therefore, we can set the maximum amount of error (called the
significance level α) that we will tolerate when rejecting the null
hypothesis, and find the corresponding critical Fc  value on the central
F-curve. Figure 9 shows the critical F-value and decision rule for the
fertilizer example. The shaded area on the right corresponds to α = 0.05,
with Fc = 3.35.
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 9 F-distribution curve with critical F value and decision rule.

Alternatively, we can find the right tail area that corresponds to Fo.
This area, called the p-value, represents the probability that an F-value at
least as large as Fo is observed. If this probability is large, then the
observed event is not unusual under the null hypothesis. If the probability
is small, then it implies that the event is unlikely under the null
hypothesis and that the assumed null hypothesis is not true. In this case,
α is the minimum probability level below which the event’s occurrence is
deemed improbable under the null hypothesis. Therefore, when p < α, the
decision is to reject the null hypothesis of no treatment effect. For this
example, suppose that Fo is 3.8. At (2,27) degrees of freedom, the
corresponding p-value is 0.035. At α = 0.05, we would reject the null
hypotheses and conclude that not all the fertilizer treatments are equally
effective in promoting growth. However, at α = 0.01 (more conservative),
we would not reject the null hypothesis of equal population means
because of lack of evidence.

3.7 Concluding
Remarks about ANOVA

The F-test is used to draw inferences about differences among the
treatment means. When this is not significant, we may conclude that there
is no evidence that the treatment means are different. Before finishing the
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analysis, however, we should determine the power of the F-test to ensure
that it is sensitive enough to detect the presence of real treatment
differences as often as possible. Interested readers can consult Cohen
(1977), Peterman (1990), and Nemec (1991).

When the F-test is significant, we may conclude that treatment effects
are present. Because the alternative hypothesis is inexact (i.e., ‘‘not all
treatment means are the same’’), so is the conclusion based on the
ANOVA. To investigate which treatment means are different, more
detailed comparisons need to be made. This is the topic of the next
chapter.

ANOVA assumes that the additive model is appropriate, the
experimental errors are independent, normally distributed, and have equal
variance. These assumptions must be checked before accepting the results.
ANOVA is a robust procedure in that it is insensitive to slight deviations
from normality or equal variance. However, the procedure is invalid if the
experimental errors are dependent. In practice, it is unlikely that all
ANOVA assumptions are completely satisfied. Therefore, we must
remember that the ANOVA procedure is at best an approximation. For
more discussion about methods for checking the ANOVA assumptions
and the consequences when they are not satisfied, see Bartlett (1947),
Cochran (1947), and Hahn and Meeker (1993).

4 MULTIPLE COMPARISONS

There are two ways to compare treatment means: planned comparisons
and post-hoc, or unplanned, comparisons. Planned comparisons are
determined before the data are collected. They are therefore relevant to
the experiment objectives and represent concerns of the experimenter.
They can be performed regardless of the outcome of the basic F-test of
equal means. Unplanned comparisons occur after the experimenter has
seen the data and are performed only if the basic F-test of equal means is
significant. They are exploratory and are used to search for interesting
results but with no particular hypothesis in mind.

In this chapter, we will first examine comparisons in general. This is
followed by separate discussions on planned and unplanned comparisons.
Finally, some recommendations on performing planned and unplanned
comparisons are provided.

4.1 What is a
Comparison?

All comparisons can be expressed as an equation. For example,
suppose we have three treatment groups (as in the fertilizer example in
Section 3.1):
• Group 1: control group to which no treatment is applied
• Group 2: treatment group to which fertilizer A is applied
• Group 3: treatment group to which fertilizer B is applied
Let µ1, µ2, and µ3 denote the true means of the response variable, (height
increments) of the three groups. The null hypothesis that the average
height increment of seedlings treated with fertilizer A is the same as the
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average height increment of seedlings treated with fertilizer B can be
expressed as:

µ2 = µ3 (16)

or (17)µ2 − µ3 = 0

or (18)µ3 − µ2 = 0.

We can include µ1 in equation (17) explicitly by writing the coefficients
associated with the means:

0µ1 + 1µ2 + (−1)µ3 = 0. (19)

The left side of equation (19) is a weighted sum of the means µ1, µ2, and
µ3; the weights (0, 1, −1), which are the coefficients of the means, sum to
zero.

Equation (19) is also a comparison. It is usually referred to as a
contrast; that is, a weighted sum of means with weights that sum to zero.
The weights are called contrast coefficients.

We can also develop a contrast from equation (18), with contrast
coefficients (0, −1, 1). This set of weights has the opposite sign to those
in equation (17). In fact, any comparison, or contrast, can be expressed
by two sets of weights that have opposite signs.

The comparison µ2 = µ3 can also be expressed as 2µ2 = 2µ3, or
5µ2 = 5µ3, or 11.2µ2 = 11.2µ3. The corresponding weights are (0, 1, −1),
(0, 2, −2), (0, 5, −5), and (0, 11.2, −11.2), respectively. All four sets of
weights represent the same comparison of µ2 versus µ3. Indeed, there are
an infinite number of possible weights for each contrast; the sets of
weights differ only by a multiplicative factor. For convenience, it is
customary to express a contrast with the lowest set of whole numbers; in
this example, they are (0, 1, −1) or (0, −1, 1).

All comparisons, planned or unplanned, can be expressed as contrasts.
Nevertheless, it is conventional to call planned comparisons ‘‘contrasts,’’
and unplanned comparisons ‘‘multiple comparisons.’’ This nomenclature
relates to the way these two types of comparisons are usually carried out.
In planned comparisons, experimenters design the contrast beforehand;
that is, they set the weights or contrast coefficients. In unplanned
comparisons, all possible comparisons are made between pairs of means.
In this handbook, the term planned contrasts refers to planned
comparisons and the term multiple comparisons refers to unplanned
comparisons.

4.2 Drawbacks of
Comparisons

Additional comparisons, planned or unplanned, can inflate the overall
error rates in an experiment.

All statistical tests are probabilistic. Each time a conclusion is made,
there is a probability or chance that the conclusion is incorrect. If we
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conclude that the null hypothesis of equal means is false when it is
actually true, we are making a type I error. The probability of making this
error is α. On the other hand, if we conclude that the null hypothesis is
true when it is actually false, we are making a type II error. The
probability of making this error is β. These two types of errors are related
to each other like the two ends of a seesaw: as one type of error is kept
low, the other type of error is pushed up.

If only one comparison is performed in an experiment, the type I and
type II error rates of this test are α and β, respectively. If two
comparisons are performed, and the error rates for each comparison are
still α and β, the overall error rates would increase to approximately 2α
and 2β  as there are more chances to make mistakes. In general, the more
comparisons we make, the more inflated are the overall error rates. If we
conduct n  independent comparisons, each with type I error rate of α,
then the overall type I error rate, αE is

αE = 1 − (1 − α)n, (20)
or approximately

αE = nα (21)

when α is small (Keppel 1973). For example, suppose we want to
consider five pairwise comparisons simultaneously. To maintain an overall
type I error of αE = 0.05, we should use α = 0.01 for each comparison.
Many procedures are available to control the overall error rates. These
procedures are briefly discussed in Section 4.4.

4.3 Planned Contrasts Planned contrasts are constructed before the data are collected to test for
specific hypotheses. They are useful when analyzing experiments with
many types and levels of treatments (Mize and Schultz 1985).

Planned contrasts can be used to compare treatment means when
qualitative treatments are grouped by similarities. For example, consider a
planting experiment in which seedlings are outplanted at six different
dates, three during the summer and three during the spring. If the
objective is to compare the effect of summer and spring planting, then a
contrast can be used to test the difference between the averages of the
three summer and spring means.

Contrasts can also be used in experiments that involve quantitative
treatments. Consider an experiment that examines the effect of various
amounts of nitrogen fertilizer on seedling performance. Suppose four
levels are used: 200 kg N/ha, 150 kg N/ha, 100 kg N/ha, and a control
with no fertilizer. We could construct a contrast to compare the control to
the three other levels to test whether the fertilizer applications improve
seedling performance. We could also construct a contrast to test whether a
linear trend existed among the means; that is, if seedling performance got
better or worse with increased amounts of nitrogen fertilizer.

We will not discuss how to obtain contrast coefficients for various
types of contrasts. Interested readers should consult Keppel (1973),
Rosenthal and Rosnow (1985), or Bergerud (1988b, 1989c).
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Some authors (Hays 1963; Kirk 1968) suggest that planned contrasts
must be statistically independent or orthogonal to one another. Winer
(1962) argued that, in practice, contrasts are constructed for meaningful
comparisons; whether they are independent or not makes little or no
difference. Mize and Schultz (1985) supported this view and stated that
contrasts do not need to be orthogonal if they are meaningful and have a
sound basis for consideration. I agree with Winer (1962) and Mize and
Schultz (1985), but emphasize that the number of contrasts tested must
be kept to a minimum to reduce the overall error rates.

4.4 Multiple
Comparisons

Unplanned multiple comparisons are often ‘‘data sifting’’ in nature. They
are performed to squeeze as much information as possible from the data.
A common approach is to conduct multiple comparison tests on all
possible pairs of means. There are many procedures available for multiple
comparisons. In these tests, a critical difference is computed for each pair
of means. Two means are declared significantly different if their difference
is larger than the critical difference. The critical difference is computed
differently for each of the tests. Some tests use the same critical difference
for all comparisons while others compute a new value for each
comparison. We will briefly describe the characteristics of several popular
procedures in this section. Readers should refer to standard textbooks
such as Keppel (1973), Steel and Torrie (1980), Sokal and Rohlf (1981),
and Milliken and Johnson (1992) for the formulae and exact test
procedures.

Least Significant Difference (LSD) is one of the simplest multiple
comparison procedures available for comparing pairs of means. Each
comparison is a paired t-test. No protection is made against inflating the
α-level, so this procedure tends to give significant results. It is called
unrestricted LSD if it is used without regard to the outcome of the basic
F-test of equal means. Fisher (1935) recommended that LSD tests should
be performed only if the basic F-test is significant, in which case it is
called Fisher’s LSD or restricted LSD. In an experiment with several
treatments, if two treatment means are different but the remaining means
are equal, it is possible that the basic F-test is non-significant. Therefore,
while Fisher’s LSD improves the overall α-level, it may not detect existing
differences between some pairs of treatment means (Milliken and Johnson
1992, Chapter 3).

A quick way to adjust the overall α-level is to apply the Bonferroni
correction. Suppose an experimenter wants to make k  comparisons. The k
tests will give an overall error of less than or equal to α if the error rate
of each test is set at α/k. The Bonferroni procedure is valid for data with
either equal or unequal sample sizes.

Scheffé’s test is very general, allowing an infinite number of
comparisons to be made while maintaining a reasonable overall type I
error rate. Scheffé’s test is more conservative than the LSD as it is less
likely to declare differences between means. It has very low power and will
not identify any significant differences unless the basic F-test of equal
means is significant. Scheffé’s test does not require equal numbers of
observations for each mean.
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Tukey’s Honestly Significant Difference (Tukey’s HSD) requires that
the means be based on the same number of observations. Nonetheless, an
approximation procedure can be used if the observations are not too
unequal. Tukey’s test gives an overall error rate of less than or equal to α.
When only pairs of means are compared, Tukey’s HSD will always use a
smaller critical difference than Scheffé’s test.

Newman-Keul’s test does not make all possible pairwise comparisons.
Instead, it compares the means in a systematic way. A t-test is first used to
compare the largest and smallest means. If the means are not significantly
different, the procedure will stop. Otherwise, the means will be grouped
into two sets, one containing all of the means except the largest, the other
containing all of the means except the smallest. A t-test will be performed
on the largest and the smallest means in each set. The procedure continues
to examine smaller subsets of means until all t-tests are non-significant.
Since the number of comparisons performed varies according to the means,
the exact α error rate is unknown. Newman-Keul’s test is more liberal than
Tukey’s HSD, but is more conservative than LSD.

Duncan’s Multiple Range test is one of the most popular multiple
comparison procedures. This procedure also requires equal numbers of
observations for each mean. It is similar to Newman-Keul’s test except
that it uses a variable α level depending on the number of means involved
at each stage. As a result, Duncan’s test is less conservative than the
Newman-Keul’s test.

4.5 Recommendations There are many debates over the use of multiple comparison procedures.
The following are suggestions made by different authors.
• Saville (1990) stated that all multiple comparison procedures, except

unrestricted LSD, are inconsistent. A given procedure can return a
verdict of ‘‘not significant’’ for a given difference in one experiment,
but return a verdict of ‘‘1% significant’’ for the same difference in a
second experiment, with no change in the standard error of the
difference or the number of error degrees of freedom. He felt that the
biggest misuse of multiple comparison procedures was the attempt to
formulate and test hypotheses simultaneously. Saville suggested that
unrestricted LSD should be used to generate hypotheses of differences.
These differences must be confirmed in subsequent studies.

• Mize and Schultz (1985) stated that test selection should be based on
how conservative or liberal the researcher wants to be in declaring
means to be significantly different. They quoted Chew’s (1976) ranking
of multiple comparison procedures by increasing the likelihood of
declaring differences significant: Scheffé’s test, Tukey’s HSD, Newman-
Keul’s test, Duncan’s multiple range test, and Fisher’s LSD.

• Mead (1988, Section 12.2) opposed the use of multiple comparison
methods. He argued that these are routinely used in inappropriate
situations and thereby divert many experimenters from proper analysis
of their data.

• Milliken and Johnson (1992, Section 8.5) recommended that if the
basic F-test of equal means is significant, LSD should be used for any
planned comparison and Scheffé’s test for unplanned comparisons. If
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the basic F-test of equal means is not significant, then only planned
contrasts with the Bonferroni procedure should be performed.

I agree with some of the above suggestions and recommend the following:
1. Formulate planned contrasts according to the objectives of the study.

These contrasts should be performed regardless of the result of the
basic F-test of equal means.

2. If the basic F-test of equal means is significant, then a multiple
comparison method of the experimenter’s choice can be used for data
exploration. The method chosen will depend on how conservative or
liberal the experimenter wishes to be in declaring means to be
significantly different. The experimenter must ensure that the selected
method is appropriate. For example, use Duncan’s test only if there are
equal numbers of observations for all treatment means.

3. Use the Bonferroni correction with the LSD method.
4. Remember that significant results from unplanned comparisons are

only indications of possible differences. Any differences of interest must
be confirmed in later studies.

5. If the basic F-test of equal means is not significant, then unplanned
comparisons should not be carried out.

6. Always plot the means on a graph for visual comparison.
7. Always examine the data from the biological point of view as well as

from the statistical point of view. For example, a difference of 3 cm in
seedling growth may be statistically insignificant but biologically
significant.

5 CALCULATING ANOVA WITH SAS: AN EXAMPLE

In this chapter, we demonstrate how to:
• recognize the design of an experiment,
• set up the ANOVA table, and
• write an SAS program to perform the analysis.
All discussions are based on the following example.

5.1 Example Suppose we want to test the effect of three types of fertilizer and two
root-pruning methods on tree growth. We have twelve rows of trees, with
four trees in each row. We randomly assign a fertilizer and a root-pruning
treatment to a row of trees so that each fertilizer and root treatment
combination is replicated twice. We measure the height of each tree at the
end of five weeks.

5.2 Experimental
Design

To determine the design of an experiment, we must ask the following
questions:
• What are the factors?
• Are the factors fixed or random, nested or crossed?
• What are the experimental units and elements?
We can draw a ‘‘stick’’ diagram to help answer some of these questions.



A stick diagram is drawn in a hierarchical manner to illustrate the
design structure of an experiment. In the diagram, the experiment’s
factors are positioned so that the one with the largest experimental unit is
listed first, followed by its experimental unit. The factor with the next
largest experimental unit and its experimental unit come next, and so on
to the smallest elements. If several factors have the same experimental
unit, then all of these would be listed before the experimental unit. The
order is not usually important except for nested factors, where the nested
factor must follow the main factor. The levels of each factor are
numbered, with distinct levels being denoted by different numbers; each
experimental unit has a different number as each unit is unique. The
relationships between levels of different factors and experimental units are
indicated by straight lines or sticks. For the example, we observe that:
• there are two factors, fertilizer, F, and root-pruning treatment, T;
• both F and T are fixed factors; they are crossed with each other; and
• the experimental unit for both F and T is a row of trees; a tree is an

element.
The stick diagram for this example is shown in Figure 10.

  Design structure for the fertilizer and root-pruning treatment example.

Note that we could also begin the diagram with T since both F and T
have the same experimental unit (see Figures 1 and 2, for example). Two
sticks come under each level of F, one for each of the two root-pruning
methods. Since each level of F is combined with the same two levels of T,
the numbers for T repeat across F. This implies that F and T are crossed.

The next level in the stick diagram corresponds to the row of trees, R,
the experimental units for F and T. Two sticks come out from each F*T
combination as each is replicated twice. A different number is used for
each row of trees because each row is distinct. The non-repeating
numbers imply that the row of trees unit is nested within the fertilizer
and root-pruning treatment factors; that is, R(FT). Finally, four trees in
each row are sampled. As the trees are different, a unique number is
assigned to each. The element tree is nested within the row of trees unit,
fertilizer, and root-pruning treatment factors; that is, E(RFT).

This is a completely randomized factorial design. It is a completely
randomized design because the levels of the treatment factors are
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randomly assigned to the experimental units with no restriction. It is
factorial because more than one factor is involved, and the factors have
the same experimental unit and are crossed with each other. A complete
description of this and other common designs is provided in Chapter 6.

5.3 ANOVA Table The ANOVA table contains the stick diagram information and the
necessary values to perform the F-test. Because it reveals the experimental
design, it is useful even when ANOVA is not the method of analysis. The
ANOVA table generated by statistical software usually has six columns:
Source, df, SS, MS, F, and p ; the last four columns (SS, MS, F, and p ) are
excluded in the planning stage of a study when no data are available.
Another column called ‘‘Error’’ is often added to the ANOVA table to
indicate the error term (that is, the denominator in the F-ratio) used to
test the significance of a source of variation. To simplify the discussion in
this chapter, factors, experimental units, and elements are referred to
collectively as variates (in this example, F, T, R, and E are variates).

To complete an ANOVA table, we must know all the sources of
variation in the study, the degrees of freedom (df ) for each source of
variation, and the nature (fixed or random) of each source of variation.

To compile the list of sources:
• List all variates. This should include all the entries in the stick diagram.
• List all possible interaction terms by combining all the variates in every

possible way.
• Delete all meaningless interaction terms; that is, terms in which the

same variate appears both inside and outside of any parentheses.
Steps 2 and 3 can be tedious for a complicated model. To save time, we
could examine the stick diagram and note how the numbers vary at each
level; repeated numbers imply a crossed relationship, while unique
numbers imply a nested relationship. For example, in Figure 10, the
numbers for T repeat for each level of F because T is crossed with F. The
numbers for the nested factors, R and E, do not repeat. Note that for
crossed relations, both of the main factors (F and T in our example) and
their interaction term (F*T) are sources of variation. However, for nested
relations, only the nested terms are sources. For our example, R(FT) and
E(RFT) are sources of variation, but R and E alone are not. A source can
be fixed or random depending on its composition; it is fixed if every
variate in that source is fixed, otherwise it is random. For our example,
F, T, and F*T are fixed sources while R(FT) and E(RFT) are random.

When the list is complete, we can find the degrees of freedom for each
source of variation by using the rules stated in Section 3.3.3. The sum of
all the degrees of freedom should be the total number of elements minus
one. Examining the sum provides a good check to see if all the sources
are included. Table 2 below shows a partial ANOVA table for our example
with only the sources and their degrees of freedom.

The sum of squares (SS) and mean square (MS) values are required to
calculate the F-ratio. Formulae for SS exist but are quite involved for
complex designs. Statistical software such as SAS, SYSTAT, and S-Plus are
often used to do the calculations. Therefore, we will use the software and
not concern ourselves with the SS computation equations.
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Recall from Section 3.5 that the MS of a source is a variance estimate
at that source level and that the variance can have more than one
component. For the fertilizer example of Chapter 3, the MS for fertilizer
has a component linked to the fertilizer treatment applied and a
component linked to the natural differences among the seedlings. The
makeup of an MS is often revealed in the expected means square (EMS)
equation. This equation shows a particular source’s variance components.
It is used to determine the error term for the source’s F-ratio. The rules
for determining the EMS for any source are given in Appendix 1. Table 3
below is a partial ANOVA table for our factorial example. It is essentially
Table 2 with an added column for EMS.

 2 Partial ANOVA table for the fertilizer and root-pruning treatment
example

Source df

Fertilizer, F 3 − 1 = 2
Root treatment, T 2 − 1 = 1
F *T (3 − 1)(2 − 1) = 2
Row, R(FT) (2 − 1)(3)(2) = 6
Tree, E(RFT) (4 − 1)(2)(3)(2) = 36

Total (3)(2)(2)(4) − 1 = 47

 3 Partial ANOVA table for the fertilizer and root-pruning treatment
example

Source df EMS

Fertilizer, F 2 σ2
E (RFT) + 4σ2

R (FT) + 16φF

Root treatment, T 1 σ2
E (RFT) + 4σ2

R (FT) + 24φT

F *T 2 σ2
E (RFT) + 4σ2

R (FT) + 8φF *T

Row, R(FT) 6 σ2
E (RFT) + 4σ2

R (FT)

Tree, E(RFT) 36 σ2
E (RFT)

Total 47

Notice in the EMS equations that a variance component linked to a
random source is denoted by σ2 and one linked to a fixed source is
denoted by φ.

The F-ratio of a source of variation is the ratio of its MS to another
MS. The denominator MS is called the ‘‘error term.’’ The correct error
term for a source of interest can be found by comparing its EMS to the
EMS of the other sources. To determine the error term of a source of
variation, find another source that has all the same terms in its EMS as the
source of interest, except for the term directly related to the source of interest.

Applying this rule, we see from Table 3 that the error term for testing a
fertilizer effect is the mean square of the row of trees, MSR(FT). This is
because the expected mean square for R(FT) is the same as the expected
mean square for F, except for the term 16φF , which depends only on the
fertilizer treatment means. If a fertilizer effect does not exist or is
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minimal, then the term 16φF would be close to zero and the ratio of MSF

to MSR(FT) would be approximately one. Conversely, if a fertilizer effect is
significant, the variance component attributed to 16φF would be large and
the F-ratio would be greater than one. The complete ANOVA table for
our fertilizer and root-pruning example is given in Table 4.

In this example, R(FT) is the experimental error and E(RFT) is the
sampling error. In most textbooks and papers, the last source — E(RFT)
in this example — in the ANOVA table is denoted as ‘‘Error’’ without
identifying its composition. I recommend specifying the composition of
each source because this helps us to recognize the nature and origin of
the variation associated with the source and determine its degrees of
freedom, EMS equation, and error term.

 4 ANOVA table for the fertilizer and root-pruning treatment example

Source df EMS Error

Fertilizer, F 2 σ2
E (RFT) + 4σ2

R (FT) + 16φF MSR (FT)

Root treatment, T 1 σ2
E (RFT) + 4σ2

R (FT) + 24φT MSR (FT)

F *T 2 σ2
E (RFT) + 4σ2

R (FT) + 8φF *T MSR (FT)

Row, R(FT) 6 σ2
E (RFT) + 4σ2

R (FT) MSE (RFT)

Tree, E(RFT) 36 σ2
E (RFT) + 4σ2

R (FT) —

Total 47

5.4 SAS Program The SAS procedures PROC GLM and PROC ANOVA can be used to perform
an analysis of variance. The ANOVA procedure, PROC ANOVA, is suitable
for one-factor ANOVAs, balanced or not, and for any other models that
are balanced. The general linear models procedure, PROC GLM, is
appropriate for any balanced or unbalanced design. This procedure can
save residuals and perform contrasts, but is slower and requires more
memory than PROC ANOVA. We will use PROC GLM in all of our
examples.

The SAS PROC GLM program used to run an ANOVA is similar for
most designs. The following SAS statements are essential:

• CLASS defines the class variables or factors. These variables have only a
fixed number of values. Examples are fertilizer types, root-
pruning methods, or the row of trees;

• MODEL defines the model to be fitted. The MODEL statement has the
form:

MODEL response = sources;

where: response is the response variable(s) (e.g., tree heights) and
sources is the list of sources, excluding the last source in the
ANOVA table.

For the above example, if height (HT) is the response variable, then an
appropriate MODEL statement is:

MODEL HT = F T F*T R(F T);
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The sources F, T, and F *T can be specified with the shorthand crossed
variable symbol FT. Therefore, the last MODEL statement can be
shortened to:

MODEL HT = FT R(F T);

As shown in Table 4, the tree term, E(RFT), is the last source listed on
the ANOVA table (the last entry, Total, does not count). It is not included
in the MODEL statement and is used by SAS as the default error term for
all F-tests. This means that all the F-ratios are computed using MSE(RFT) as
the denominator. Since R(FT) is the correct error term for F, T, and F *T,
the ANOVA table generated by SAS is wrong for these three sources.

To perform the correct F-tests, we can use the TEST statement to
specify the correct error term for each test. The TEST statement has the
form:

TEST H=sources E=error;

More than one source can be listed in the option ‘‘H=’’ if all have the
same error term. For example, to test the main effects F and T, and the
interaction effect F *T, we could use the TEST statement:

TEST H=F T F*T E=R(F T);

We can also use the shorthand crossed variable symbol in the TEST
statement:

Test H=FT E=R(F T);

Besides testing for differences among treatment levels of a source of
variation, we can also test contrasts or make multiple comparisons.
Contrasts can be specified with the CONTRAST statement which has the
form:

CONTRAST ‘label’ source coefficients / E = error;

where: label labels the contrast (it is optional),
source lists the source on which contrast tests will be

performed,
coefficients specifies the contrast to be tested, and
error specifies the error term to be used in the contrast test.

For example, to perform a contrast on the first fertilizer versus the
average of the second and third fertilizers, we would use the SAS
statement:

CONTRAST ‘First vs Second & Third F’ F −2 1 1 / E=R(F T);



30

Sometimes SAS will declare that a contrast is ‘‘non-estimable.’’ In this case,
we have to compute the contrast F-test by hand. See Bergerud (1993) for
a demonstration of calculating contrasts by hand.

Multiple comparisons can be requested as an option in the MEANS
statement in PROC GLM. The MEANS statement has the form:

MEANS source / method option;

where: source is the source whose means will be computed,

method is the name of the multiple comparison procedure to
be used on all main effect means in the MEANS
statement. Some possible tests are:

DUNCAN for Duncan’s test,
LSD or T for pairwise t-tests or Least Significance

Difference test,
SCHEFFE for Scheffé’s test, and
TUKEY for Tukey’s test.

option are options to specify details for the multiple
comparison procedure. For example:

CLDIFF requests confidence intervals for all pairwise
differences between means, and

E=effect specifies the error term to use in the
multiple comparisons.

For example, suppose we want to compute the means of the factor F and
perform LSD tests with confidence intervals. We would issue the
statement:

MEANS F / LSD E=R(F T) CLDIFF;

For more information on these and other SAS statements in PROC GLM,
consult the SAS/STAT User’s Guide (1989).

The following is a SAS program to perform an ANOVA for the two-
way fixed factor design described in this chapter. In addition to the basic
ANOVA, a contrast comparing the first and third fertilizers, and LSD tests
on the factor F with confidence intervals are also requested.

PROC GLM DATA=EXAMPLE;
CLASS F T R;
MODEL HT = FT R(F T);
TEST H = FT E=R(F T);
CONTRAST ‘First vs Third in F’ F −1 0 1 / E = R(F T);
MEANS F / LSD E = R(F T) CLDIFF;

RUN;

By putting the CONTRAST statement before the MEANS statement, the
contrast results come out on the same page as the ANOVA table. The SAS
output, based on the hypothetical data set given in Appendix 2, is
displayed in Figure 11.
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Page 1 of the SAS output is generated by the CLASS statement. It is a
summary of variables listed in the CLASS statement. Page 2 of the output
is generated by the MODEL, TEST, and CONTRAST statements. The first
ANOVA table only has two sources: Model and Error. Model
corresponds to the sum of all the sources in the MODEL statement. Error
represents the sources not listed in the MODEL statement, which in this
case is the source of variation attributed to tree, E(RFT). The source
Model is then partitioned into its component sources as specified in the
MODEL statement. The table showing the Type I SS should be discarded
because this type of SS depends on the order of the sources listed in the
MODEL statement. When interpreting results, we should look at the Type
III SS ANOVA table. All of the F-values in the ANOVA table are
calculated by using the Error mean square in the first ANOVA table as
the denominator. Since only the source R(F*T) should be tested by
E(RFT), all the other F-tests are wrong. The next ANOVA table comes
from the TEST statement. As stated in the heading, R(F*T) is used as the
error term; hence the results are correct. Since the interaction effect F*T is
not significant at α = 0.05, we might conclude that the effect of fertilizer
treatments is consistent across the root-pruning treatments (at least, there
is no evidence to the contrary), and vice versa. Therefore, tests on the
separate main effects are meaningful. The tests on F and T suggest that
they are highly significant (p  = 0.001). The last ANOVA test on page 2
gives the contrast F-test. The contrast is also highly significant
(p  = 0.001), which suggests that trees treated with fertilizer 1 reach a
different height than those treated with fertilizer 3.

Finally, the last page of the SAS output gives the multiple comparisons
requested by the MEANS statement. See the NOTE that the experimentwise,
or overall type I error rate is not controlled for the LSD test. For more
information on interpreting SAS outputs, see examples given in the SAS/
STAT User’s Guide (1989, Chapter 24).

The SAS System 1

General Linear Models Procedure
Class Level Information

Class Levels Values

F 3 1 2 3

T 2 1 2

R 12 1 2 3 4 5 6 7 8 9 10 11 12

Number of observations in data set = 48

 11 SAS output for fertilizer and root-pruning example.
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The SAS System 2

General Linear Models Procedure

Dependent Variable: HT
Sum of Mean

Source DF Squares Square F Value Pr > F

Model 11 13933.94309 1266.72210 38.79 0.0001

Error 36 1175.65898 32.65719

Corrected Total 47 15109.60207

R-Square C.V. Root MSE HT Mean

0.922191 16.72028 5.714647 34.17795

Source DF Type I SS Mean Square F Value Pr > F

F 2 12601.15203 6300.57601 192.93 0.0001
T 1 1280.15974 1280.15974 39.20 0.0001
F*T 2 14.58631 7.29316 0.22 0.8010
R(F*T) 6 38.04501 6.34083 0.19 0.9764

Source DF Type III SS Mean Square F Value Pr > F

F 2 12601.15203 6300.57601 192.93 0.0001
T 1 1280.15974 1280.15974 39.20 0.0001
F*T 2 14.58631 7.29316 0.22 0.8010
R(F*T) 6 38.04501 6.34083 0.19 0.9764

Tests of Hypotheses using the Type III MS for R(F*T) as an error term

Source DF Type III SS Mean Square F Value Pr > F

F 2 12601.15203 6300.57601 993.65 0.0001
T 1 1280.15974 1280.15974 201.89 0.0001
F*T 2 14.58631 7.29316 1.15 0.3777

Tests of Hypotheses using the Type III MS for R(F*T) as an error term

Contrast DF Contrast SS Mean Square F Value Pr > F

First vs Third in F 1 12582.82905 12582.82905 1984.41 0.0001

 11 Continued
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The SAS System 3

General Linear Models Procedure

T tests (LSD) for variable: HT

NOTE: This test controls the type I comparisonwise error rate
not the experimentwise error rate.

Alpha= 0.05 Confidence= 0.95 df= 6 MSE= 6.340835
Critical Value of T= 2.44691

Least Significant Difference= 2.1784

Comparisons significant at the 0.05 level are indicated by ‘***‘.

Lower Difference Upper
F Confidence Between Confidence

Comparison Limit Means Limit

3 − 2 16.3405 18.5190 20.6974 ***
3 − 1 37.4808 39.6592 41.8377 ***

2 − 3 −20.6974 −18.5190 −16.3405 ***
2 − 1 18.9618 21.1402 23.3187 ***

1 − 3 −41.8377 −39.6592 −37.4808 ***
1 − 2 −23.3187 −21.1402 −18.9618 ***

 11 Continued

6 EXPERIMENTAL DESIGNS

In this chapter, we look at three types of experimental designs: completely
randomized designs, randomized block designs, and split-plot designs.
Several examples4 are presented for each design. Stick diagrams, ANOVA
tables, and sample SAS programs are provided for the examples.

All of the examples assume that:
• the responses of all experimental units and elements are independent of

one another (this can be ensured by proper randomization);
• the experimental errors can be modelled reasonably by a normal

distribution with a constant variance; and
• the ANOVA is balanced; that is, each treatment is applied to the same

number of experimental units and an equal number of elements is
measured.

4 All the examples used in this chapter are adapted from Bergerud (1991).
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The sample sizes used in the examples are too small for practical
purposes (the power of the various tests would be low), but are easier to
handle for demonstration purposes. This chapter does not include all the
theoretical details of the designs. For more in-depth discussions, consult
Keppel (1973), Anderson and McLean (1974a), Steel and Torrie (1980),
Sokal and Rohlf (1981), Mead (1988), Milton and Arnold (1990), and
Milliken and Johnson (1992).

6.1 Completely
Randomized Designs

In a completely randomized design, all experimental units are assumed
to be homogeneous and the treatments are assigned to the experimental
units completely at random. Generally, the treatments are assigned to an
equal number of experimental units, although this is not required
(Milliken and Johnson 1992, Section 4.2.1).

6.1.1 One-way completely randomized design This is the simplest kind
of ANOVA in which only one factor is involved. The main objective is to
compare the mean responses attributed to the different levels of the factor.

Example: Suppose we have six fertilizer treatments and each treatment is
applied to three trees, each in its own pot. The eighteen trees in the
experiment are selected at random from a well-defined population, and
each tree is assigned randomly to one of the six treatments. We would like
to test whether the six fertilizer treatments are equally effective in
promoting tree growth.

• Factor: Fertilizer, F with f = 6 levels (with an unfertilized control).
• F is fixed.
• Experimental unit for F is a pot containing one tree, R.
• There are r = 3 experimental units per level of F; that is, each level of

F is replicated three times.
• R is random, nested in F.
• A tree is an element (same as experimental unit).

Fertilizer
(factor)

RPotted trees
(e.u.)

F 1 32 4 5 6

1 4 7 10 13 162 5 8 11 14 173 6 9 12 15 18

 12 Design structure of a one-way completely randomized design.

 5 ANOVA table for a one-way completely randomized design

Source of variation df EMS Error

Fertilizer, F f − 1 = 5 σ2
R (F) + 3φF R(F)

Potted trees, R(F) (r − 1) f = 12 σ2
R (F) —

Total fr − 1 = 17
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Suppose that the six treatments are varying amounts of fertilizer: 0, 5,
10, 15, 20, and 25 (kg N/ha), where 0 represents the unfertilized control.
Two contrasts of interest are:
1. to test the overall effect of the fertilizer against the control, and
2. to test whether the fertilizer effect is linear with the application rate.

For the treatment levels: 0 5 10 15 20 25
the contrast coefficients are:

Contrast (1): −5 1 1 1 1 1
Contrast (2): −5 −3 −1 1 3 5

See Bergerud (1988b) for a discussion on how to choose the coefficients
for the linear contrast.

SAS Program:

PROC GLM;
CLASS F;
MODEL Y = F;

/*** Fertilizer Levels: 0 5 10 15 20 25 ***/

CONTRAST ‘LINEAR IN F’ F −5 −3 −1 1 3 5 ;
CONTRAST ‘FIRST VS LAST 5’ F −5 1 1 1 1 1 ;
MEANS F / SCHEFFE;

RUN;

Note:
• Scheffé’s tests are requested to perform multiple comparisons on the

means of F.
• The source R(F) is not included in the MODEL statement and therefore

is the default error term for all tests.
• CONTRAST statements assume a certain ordering to the treatment

levels. This order can be checked by looking at the first page produced
by PROC GLM . For example, the above SAS program would produce
the following first page, which gives the assumed order of the six levels
of fertilizer application:

SAS

General Linear Models Procedure
Class Level Information

Class Levels Values
F 6 0 5 10 15 20 25

Number of observations in data set = 18

• Be aware that SAS sorts character values alphabetically. For example, if
the fertilizer levels were HIGH, MEDIUM, and LOW, then SAS would
order the levels as HIGH, LOW, and MEDIUM, and the proper
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contrast coefficients for testing HIGH versus LOW are (1 −1 0). To
avoid confusion, a useful trick is to number your factors in order. For
example, using the variable names 1LO, 2MED, and 3HI would ensure
SAS sorting them in the ‘‘logical’’ order.

• In all the SAS programs in this chapter, Y in the MODEL statement is
the response variable. For this example, Y could be height increment or
diameter.

6.1.2 Subsampling In the previous example, a tree is both an
experimental unit and an element. In many experimental situations,
however, experimental units may contain a number of smaller units that
are actually measured. For instance, an experimental unit could be a
row of 10, 20, or 50 trees, and all or some of the trees may be selected
from each row for measurements. These trees are the elements,
sometimes referred to as subsamples. Differences among elements
within an experimental unit are observational rather than experimental
unit differences (Steel and Torrie 1980, Section 7.9). The mean square of
the variation attributed to the elements is generally referred to as
sampling error. It can be used to test for differences among experimental
units.

Example: Suppose each fertilizer treatment is applied to three rows of
four trees. How does this change the structure of the design, the ANOVA
table, and the SAS program?

• Factor: Fertilizer, F with f = 6 levels (with an unfertilized control).
• F is fixed.
• Experimental unit for F is a row of four trees, R.
• There are r = 3 experimental units per level of F, that is, each level of

F is replicated three times.
• R is random, nested in F.
• A tree, E, is an element.
• There are e = 4 trees per row.
• E is random, nested in F and R.

1Fertilizer
(factor)

Row of trees 
(e.u.)

Tree 
(element)

E

R

F

.  .  .

1 4 7 10 13 162 5 8 11 14 173 6 9 12 15 18

2 3 4 5 6

129...
85...

41... 7269 ...

 13 Design structure for a one-way completely randomized design with
subsamples.
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 6 ANOVA table for a one-way completely randomized design with
subsamples

Source of variation df EMS Error

Fertilizer, F f − 1 = 5 σ2
E (FR) + 4σ2

R (F) + 12φF R(F)
Row of trees, R(F) (r − 1)f = 12 σ2

E (FR) + 4σ2
R (F) E(FR)

Tree, E(FR) (e − 1)fr = 54 σ2
E (FR) —

Total fre − 1 = 71

SAS Program: There are several ways to calculate the ANOVA for this
design.

1. Analysis of individual data: Use the raw data in the analysis. Notice in
the following program that the error term used to test F is stated
explicitly in the TEST and CONTRAST statements to override the use of
the term — in this case, E(FR).

PROC GLM;
CLASS F R;
MODEL Y = F R(F);

/*** Fertilizer Levels: 0 5 10 15 20 25 ***/

CONTRAST ‘LINEAR IN F’ F −5 −3 −1 1 3 5 / E=R(F);
CONTRAST ‘FIRST VS LAST 5’F −5 1 1 1 1 1 / E=R(F);
TEST H = F E = R(F);
MEANS F / SCHEFFE E = R(F);

RUN;

2. Analysis of experimental unit means: The subsamples within each
experimental unit are averaged and the analysis is performed on the
means as if there was only one observation for each unit. In our
example, the tree responses are averaged for each row (using PROC
MEANS) and the row means are used in the ANOVA (i.e., 18 data
points instead of the 72 used in method 1).

PROC MEANS NWAY NOPRINT MEAN;
CLASS F R;
VAR Y;
OUTPUT OUT=YMEANS MEAN=YMEAN;

PROC GLM DATA=YMEANS;
CLASS F;
MODEL YMEAN = F;

/*** Fertilizer Levels: 0 5 10 15 20 25 ***/

CONTRAST ‘LINEAR IN F’ F −5 −3 −1 1 3 5 ;
CONTRAST ‘FIRST VS LAST 5’F −5 1 1 1 1 1 ;
MEANS F / SCHEFFE;

RUN;

If the design is balanced, then methods (1) and (2) would result in the
same F-test for the main effect. Method (2) is quite popular because it
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simplifies the design of an experiment — by using the experimental unit
means, the element level is removed from the design. Also, the means are
more likely (according to Central Limit Theorem) to be normally
distributed. The main disadvantage of analyzing the experimental unit
means is a loss of potentially interesting information about the variation
among the elements within the experimental units (e.g., information to
determine the optimum number of rows and trees for future experiments).

When the design is unbalanced, method (2) is undesirable as it ignores
the unbalanced nature of the experimental units. To account for this lack
of balance, Rawlings (1988, Section 16.4) recommends a weighted analysis
of the experimental unit means.

3. Weighted analysis of the experimental unit means: In this case,
sample sizes of the experimental units are used as weights in the
analysis. This results in best linear unbiased estimates — the most
desirable kind of estimates for the model parameters. The following
program shows how to do a weighted analysis using SAS. Row means
and sample sizes are computed with PROC MEANS and saved in a SAS
data set called YMEANS. Then, a weighted analysis of the means is
performed using PROC GLM in which the weights are specified with the
WEIGHT statement.

PROC MEANS NWAY NOPRINT MEAN;
CLASS F R;
VAR Y;
OUTPUT OUT=YMEANS MEAN=YMEAN N=NUM;

PROC GLM DATA=YMEANS;
CLASS F;
MODEL YMEAN = F;
WEIGHT NUM;

/*** Fertilizer Levels: 0 5 10 15 20 25 ***/

CONTRAST ‘LINEAR IN F’ F −5 −3 −1 1 3 5 ;
CONTRAST ‘FIRST VS LAST 5’ F −5 1 1 1 1 1 ;
MEANS F / SCHEFFE;

RUN;

For balanced designs, all three methods generate the same results. For
unbalanced designs, methods (1) and (3) give similar F-tests and sum of
squares. When a design involves subsampling, the following steps are
recommended:
• If possible, use the full data set in the analysis.
• If experimental unit means must be used (to simplify the model, for

instance), perform a weighted analysis on the means with the sample
sizes as weights.

In subsequent sections, only the SAS programs for method (1) are
provided.

6.1.3 Factorial completely randomized design A factorial experiment
consists of more than one treatment factor, and all the treatment factors 
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are crossed with one another. In addition, all the factors must have the
same experimental unit. An experiment is a ‘‘complete factorial’’ if all
combinations of levels are represented. A major advantage of the factorial
design is that it allows the interactions of factors and individual factors to
be examined. Tests of main factors are tests of one factor averaged over
the others. If there is no interaction between two factors (i.e., the effect of
one factor is consistent across all levels of the other factor), then the tests
on the main factors are logical. If interactions among factors exist, we
must interpret the results from the tests of main effects carefully. Factorial
designs also provide ‘‘hidden replications’’ because each main effect is
examined over a range of conditions (i.e., other factors).

Factorial experiments may incorporate completely randomized or
randomized block designs (see Section 6.2.2). In a completely randomized
factorial design, each experimental unit is randomly assigned one of the
treatment combinations.

Example: Suppose that the six treatments in the previous examples are
combinations of two different fertilizers each applied at a low, moderate,
and high rate. How does this change the structure of the design, the
ANOVA table, and the SAS program?

• Factors: Fertilizer, F with f = 2 levels,
Amount, A with a = 3 levels.

• F and A are fixed.
• F and A are crossed with each other.
• Experimental unit for F and A is a row of four trees, R.
• There are r = 3 experimental units for each F *A combination; that is,

each F *A combination is replicated three times.
• R is random, nested in F and A.
• A tree, E, is an element.
• There are e = 4 trees per row of tress.
• E is random, nested in F, A, and R.

The degrees of freedom for F, A, and F *A sum to 5. This is the same
as the one-way ANOVA case when F had six levels. The sums of squares
for the F source in Section 6.1.1 has now been partitioned into three
sources: F, A, and F *A.

129
85

41

1 2

1 2 3 1 32

129

69 72

Fertilizer
(factor)

Amount
(factor)

Row of trees 
(e.u.)

Tree 
(element)

E

R

A

F

....  .  .

1 4 7 10 13 162 5 8 11 14 173 6 9 12 15 18

85
41

129...
85...

41...

 14 Design structure for a factorial completely randomized design.
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 7 ANOVA table for a factorial completely randomized design

Source of variation df EMS Error

Fertilizer, F f − 1 = 1 σ2
E (FAR) + 4σ2

R (FA) + 36φF R(FA)
Amount, A a − 1 = 2 σ2

E (FAR) + 4σ2
R (FA) + 24φA R(FA)

F *A (f − 1)(a − 1) = 2 σ2
E (FAR) + 4σ2

R (FA) + 12φF *A R(FA)
Row of trees, R(FA) (r − 1) fa = 12 σ2

E (FAR) + 4σ2
R (FA) E(FAR)

Tree, E(FAR) (e − 1) far = 54 σ2
E (FAR) —

Total fare − 1 = 71

SAS Program: Analysis of individual data

PROC GLM;
CLASS F A R;
MODEL Y = FA R(F A);

/*** A Levels: 1L 2M 3H ***/

CONTRAST ‘A : LINEAR’ A 1 0 −1 / E=R(F A);
TEST H = FA E = R(F A);
MEANS FA / SCHEFFE CLDIFF E = R(F A);

RUN;

This SAS program requests a linear contrast to be performed on A. Means
for F, A, and F *A will be calculated. Scheffé’s test will be performed on
the main effects F and A only; the test results will be presented as
confidence intervals for all possible pairwise differences between means.
Tests for F, A, and F *A are requested with the proper error term.

6.2 Randomized
Block Designs

The completely randomized design requires that all experimental units be
homogeneous. In practice, the experimenter often does not have enough
homogeneous experimental units available to construct a completely
randomized design with adequate replication. Instead, smaller collections
of homogeneous experimental units, called blocks, are identified. The
complete set of treatment combinations appears in each block as in the
completely randomized design. This set-up is called a randomized block
design, and is really a group of completely randomized designs. Usually,
each block has only one experimental unit per treatment combination,
though replication within blocks is possible.

Many things can act as a block. For example, locations, ecosystems,
batches of seedlings, or units of time may act as blocks in an experiment.
In the last case, there may be only enough resources to run one set of
treatment combinations each year. One could use time as the block design
criteria and repeat the experiment over many years; the number of years
that the experiment is carried out would be equivalent to the number of
blocks.

One advantage of block design is that it removes variations attributed
to the block from the experimental error. In many cases, this makes the
test on the main effect more powerful than if a non-block design were
used. This design is most effective if the blocks are very different from
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one another, but the experimental units within a block are fairly uniform.
On the other hand, if the experimental units within blocks are more
heterogeneous than that among blocks, then a completely randomized
design without blocks would be more appropriate (Lentner et al. 1989).
Block design also helps to expand the inference space when treatment
combinations will be examined over a range of conditions (via block).

The block factor is usually considered random. Its levels are often
selected randomly from all possible blocks and the study’s conclusions can
be generalized beyond the blocks used in the study.

The block design criteria, such as location, moisture level, slope, or
aspect, should be independent of the treatment of interest. That is, the
effects of the treatment on the measured response should be consistent
across the blocks. Otherwise, testing of treatment effects is not possible.

Finally, within each block treatments should be applied randomly to
the experimental units. A separate randomization scheme should be used
in each block.

6.2.1 One-way randomized block design Only one factor is involved
and the levels of the factor are repeated from block to block.

Example: Suppose that the fertilizer trial will be conducted in three
different orchards. In each orchard, six rows of four trees each will be set
aside for the trial. Since the orchard locations could be widely separated,
there is great potential for tree response at each orchard to vary because
of weather, soils, or management practices. Therefore, a complete set of
treatments should occur at each orchard. Each treatment would be
randomly assigned to one row in each orchard. Orchard is now
functioning as block.

• Factor: Fertilizer, F with f = 6 levels (with an unfertilized control).
• F is fixed.
• Block, B is random.
• There are b = 3 blocks (i.e., orchards).
• B and F are crossed.
• Experimental unit for F is a row of four trees, R.
• There is r = 1 experimental unit per treatment level per block; that is,

no replication within blocks.
• R is random, nested in F and B.
• A tree, E, is an element.
• There are e = 4 trees per row of trees.
• E is random, nested in F and B.

According to the expected mean squares, B and B*F are tested by rows
of trees, R(BF). However, since there is only one row of trees per
treatment level in each block, R(BF) has zero degrees of freedom, making
the tests for B, B*F and R(BF) impossible. This inability to test for block
and block interactions can also be reasoned from another angle. The
following discussion is adapted from a similar one in Sokal and Rohlf
(1981: 350–352).
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5 8

9 12
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7 8 9 10 11 12

1 2 3 4 5 6
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69 72
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Row of trees 
(e.u.)

Tree
(element)

B

F

R

E ...
...

...
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 15 Design structure for a one-way randomized block design.

 8 ANOVA table for a one-way randomized block design

Source of variation df EMS Error

Block, B b − 1 = 2 σ2
E (BFR) + 4σ2

R (BF) + 24σ2
B —

Fertilizer, F f − 1 = 5 σ2
E (BFR) + 4σ2

R (BF) + 4σ2
B * F + 12φF B*F

B*F (b − 1)(f − 1) = 10 σ2
E (BFR) + 4σ2

R (BF) + 4σ2
B * F —

Row of trees,
R(BF) (r − 1)bf = 0 σ2

E (BFR) + 4σ2
R (BF) —

Tree, E(BFR) (e − 1)bfr = 54 σ2
E (BFR) —

Total bfre − 1 = 71

In our orchard example, each orchard is unique in many aspects, such
as location, environment, or management. These characteristics can
not be duplicated even for the same orchard selected at a different time.
Thus, there is a random error deviation, called ‘‘restriction error,’’ σ2

r

(Anderson and McLean 1974b), attached to each of the orchards
because of its unique set-up. Therefore, the block EMS should be
σ2

E(BFR) + 4σ2
R(BF) + 24σ2

B + σ2
r . Unless σr

2 is negligible, the block cannot
be tested even if there were more than one row of trees per level of F in
each block. The restriction error is usually not identified in the EMS. We
must be aware of its existence and the impact it has on ANOVA tests.

Testing the block is usually not of interest, as it is expected to be
different. However, researchers often attempt to test the block to see if a
block design was necessary in their studies. The effectiveness of the block
design can be assessed by an estimate of the relative efficiency of the
randomized block design compared to the completely randomized design.
The theoretical development of relative efficiency is beyond the scope of
this handbook but can be found in Kempthorne (1952) and Lentner and
Bishop (1986). Lentner et al. (1989) showed that the estimated relative
efficiency of the randomized block design compared to the completely
randomized design is proportional to the ratio:

H = MS(BLOCK)
MS(BLOCK*TREATMENT)
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In particular, H > 1 implies a randomized block design is more
effective than a completely randomized
design;

H = 1 implies no gain attributed to the block
design; and

H < 1 implies a completely randomized design is
more effective.

Both numerator and denominator are mean squares from the ANOVA
table.

The source R(BF) has zero degrees of freedom because the fertilizer
treatments are not replicated within blocks. This source of variation is
usually excluded in the ANOVA table. We include it to show the full
design of the experiment. It is not needed in the MODEL statement in the
following SAS program.

SAS Program: Analysis of individual data

PROC GLM;
CLASS B F;
MODEL Y = BF ;

/*** Fertilizer Levels: 0 5 10 15 20 25 ***/

CONTRAST ‘LINEAR IN F’ F −5 −3 −1 1 3 5 / E=B*F ;
CONTRAST ‘FIRST VS LAST 5’ F −5 1 1 1 1 1 / E=B*F ;
TEST H = F E = B*F ;
MEANS F / TUKEY E = B*F ;

RUN;

6.2.2 Factorial randomized block design This design is similar to that
in the last section except that each block has a factorial design similar to
that in Section 6.1.3.

Example: If the six treatments are again split up into two factors of two
different fertilizers and three different amounts, then a two-way factorial
randomized block design is obtained.

• Factors: Fertilizer, F with f = 2 levels,
Amount, A with a = 3 levels.

• F and A are fixed.
• Block, B is random with b = 3 levels.
• B, F, and A are crossed with one another.
• Experimental unit for F and A is a row of four trees, R.
• There is r = 1 experimental unit per F *A combination per block; that

is, no replication within block.
• R is random, nested in B, F, and A.
• A tree, E, is an element.
• There are e = 4 trees per row of trees.
• E is random, nested in B, F, A, and R.
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 16 Design structure for a two-way factorial randomized block design.

 9 ANOVA table for a two-way factorial randomized block design

Source of
variation df EMS Error

Block, B b − 1 = 2 σ2
E (BFAR) + 4σ2

R (BFA) + 24σ2
B —

Fertilizer, F f − 1 = 1 σ2
E (BFAR) + 4σ2

R (BFA) + 12σ2
B * F + 36φF B*F

Amount, A a − 1 = 2 σ2
E (BFAR) + 4σ2

R (BFA) + 8σ2
B * A + 24φA B*A

A*F (a − 1)(f − 1) = 2 σ2
E (BFAR) + 4σ2

R (BFA) + 4σ2
B * F * A + 12φA * F B*F*A

B *F (b − 1)(f − 1) = 2 σ2
E (BFAR) + 4σ2

R (BFA) + 12σ2
B * F —

B *A (b − 1)(a − 1) = 4 σ2
E (BFAR) + 4σ2

R (BFA) + 8σ2
B * —

B *F *A (b − 1)(f − 1)(a − 1) = 4 σ2
E (BFAR) + 4σ2

R (BFA) + 4σ2
B * F * A —

Row of trees,
R(BFA) (r − 1)bfa = 0 σ2

E (BFAR) + 4σ2
R (BFA) —

Tree, E(BFAR) (e − 1)bfar = 54 σ2
E (BFAR) —

Total bfare − 1 = 71

The denominator degrees of freedom for testing F, A, and A*F are
small (2, 4, and 4 respectively), and this results in tests that are not very
powerful (i.e., insensitive to significant difference). If there is reason to
believe that the B *F, B *A, and B*F *A interaction effects are negligible
(based on strong prior knowledge or conservative F-tests), then the
expected mean squares of B *F, B *A, B *F *A, and R(BFA) simply
estimate σ2

E(BFAR) + 4σ2
R(BFA) . Therefore, we could pool these mean squares

together according to:

MSR (BFA)* =
SSR (BFA) + SSB*F*A + SSB*F + SSB*A

pooled degrees of freedom

The pooled degrees of freedom for MSR(BFA)* is the sum of the degrees of
freedom of R(BFA), B*F*A, B*F, and B*A. The pooled mean squares for
R(BFA) can be used to test for F, A, and F*A. Since the new error term
has larger degrees of freedom (df  = 10), the pooled tests are more
powerful. The pooled ANOVA table is given in Table 10.

The danger of pooling is that an error can be made when deciding that
B*F, B*A, or B*F*A interaction effects are negligible when in fact they
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are not. Thus, the pooled mean square could be actually larger than
expected, making significant effects more difficult to detect. Montgomery
(1991, Section 8.3) suggested that terms to be pooled only if they have
fewer than six degrees of freedom and if the F-test for each term is not
significant at a large α value, say α = 0.25.

 10 ANOVA table with pooled mean squares for a two-way factorial
randomized block design

Source of variation df EMS Error

Block, B 2 σ2
E (BFAR) + 4σ2

R (BFA)* + 24σ2
B —

Fertilizer, F 1 σ2
E (BFAR) + 4σ2

R (BFA)* + 36φF R(BFA)*
Amount, A 2 σ2

E (BFAR) + 4σ2
R (BFA)* + 24φA R(BFA)*

A*F 2 σ2
E (BFAR) + 4σ2

R (BFA)* + 12φA * F R(BFA)*
Row of trees, R(BFA)* 10 σ2

E (BFAR) + 4σ2
R (BFA)* —

Tree, E(BFAR) 54 σ2
E (BFAR) —

Total 71

SAS Program: Analysis based on pooled ANOVA

PROC GLM;
CLASS B F A;
MODEL Y = B FA R(BFA);

/*** A Levels: 1L 2M 3H ***/

CONTRAST ‘A : LINEAR’ A 1 0 −1 / E=R(BFA) ;
TEST H = FA E=R(BFA) ;
MEANS FA / LSD E=R(BFA) ;

RUN;

Note: Any source of variation not listed in the MODEL statement is pooled
into the next level. Therefore, B *F, B *A, and B *F *A are pooled
into R(BFA), which is used to test F, A, and F *A.

6.3 Split-plot Designs Split-plot designs are common in forestry. Their distinguishing feature is
that levels of one factor are randomly assigned to experimental units
called main-plots; each main-plot is further divided into smaller units
called split-plots to which levels of another factor(s) are randomly
assigned. Such designs may incorporate completely randomized and
randomized block designs (see Sections 6.3.1 and 6.3.2).

Split-plot designs are often misinterpreted as factorials. Both designs
result in factors crossed with one another; however, split-plot designs
restrict the random assignment of treatments. To compare the two designs,
let’s consider a study in which two factors are of interest: factor A with four
levels and factor B with two levels; both factors are fixed. In a completely
randomized factorial design, a total of sixteen experimental units are needed
if we want to replicate the treatment combinations twice. A possible
arrangement is shown in Figure 17. Each square is an experimental unit for
factors A and B. The levels of each factor are assigned randomly to the
experimental units without restriction.
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A4B2 A1B2 A3B1 A2B2 A4B1 A2B1 A3B2 A1B1

A1B1 A2B2 A4B2 A1B2 A3B1 A3B2 A4B1 A2B1

 17 A completely randomized factorial arrangement.

In a completely randomized split-plot design, the same amount of
experimental material would be used differently. For example, we could
pair the 16 squares and randomly assign a level of factor A to each pair,
as shown in Figure 18. A pair of squares, called a main-plot, is the
experimental unit for A.

A4 A1 A3 A2 A4 A2 A3 A1

 18 Main-plots of a completely randomized split-plot design. Each pair of
squares is an experimental unit for factor A.

Then we could divide each main-plot into two split-plots (in this case,
two squares) and randomly assign the two levels of B to the split-plots in
each main-plot. A split-plot is the experimental unit for factor B. Notice
that the random assignment of the levels of B is restricted: both levels
must appear in each main-plot. A possible layout is displayed in Figure 19
in which pairs of squares are main-plots whereas squares within a pair are
split-plots.

A4 A1 A3 A2 A4 A2 A3 A1

B1

B2

B1

B2

B2

B1

B1

B2

B2

B1

B2

B1

B1

B2

B1

B2

 19 A completely randomized split-plot layout.

Split-plot designs may be used when some treatments associated with
the levels of one or more factors require larger amounts of experimental
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material in an experimental unit than do treatments for other factors
(Steel and Torrie 1980). For example, in a fertilizer and root-pruning
study, we could use the split-plot design and apply fertilizer treatments to
plots (main-plot) and root-pruning treatments to rows of trees within a
plot (split-plot). As each main-plot is fairly uniform and all levels of the
split-plot factor appear within it, variation among split-plots is expected
to be less than among main-plots. This design yields more precise
information on the split-plot factor while at the expense of losing
information on the main-plot factor. In summary, the following factors
are assigned to a split-plot:
• those that require smaller amounts of experimental material,
• those that are of major importance,
• those that are expected to exhibit smaller differences, or
• those that require greater precision for any reasons (Steel and Torrie

1980, Chapter 16).
Consult Snedecor and Cochran (1967, Section 12.12) or Steel and Torrie
(1980, Chapter 16) for more discussion of the split-plot design.

6.3.1 Completely randomized split-plot design

Example: Suppose that in the example of Section 6.1.2 we want to test the
effectiveness of extra boron. We will split each row into two pairs of trees:
one pair will receive extra boron, while the other pair will not.

• Factors: Fertilizer, F with f = 6 levels (main-plot factor),
Boron, N with n = 2 levels (split-plot factor).

• F and N are fixed factors, crossed with each other.
• Experimental unit for F is a row of four trees, R.
• There are r = 3 experimental units per level of F; that is, each level of

F is replicated 3 times.
• R is random, nested in F.
• Experimental unit for N is a pair of trees, P.
• There is p = 1 experimental unit per level of N.
• P is random, nested in F, R, and N.
• A tree, E, is an element.
• There are e = 2 trees per pair of trees.
• E is random, nested in F, R, N, and P.
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1 2 3 4 65

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Main-plot:
Fertilizer
(factor)

Row of trees 
(e.u.)

Split-plot:
Boron
(factor)

Pair of trees 
(e.u.)

Tree 
(element)

F

R

N

P

E .  .  .

.  .  .

.  .  . 1 2 1 2 1 21 2 1 2 1 2 1 2 1 2 1 2

1 2 3 4 5 6 7 8 9 10 11 12 31 32

61, 6223, 241, 2 3, 4 69, 70 71, 72

33 34 35 36

.. .. . .

 20 Design structure for a completely randomized split-plot design.

 11 ANOVA table for a completely randomized split-plot design

Source of
variation df EMS Error

Main-plot
Fertilizer, F f − 1 = 5 σ2

E (FRNP) + 2σ2
P (FRN) + 4σ2

R (F) + 12φF R(F)
Row of trees, R(F) (r − 1)f = 12 σ2

E (FRNP) + 2σ2
P (FRN) + 4σ2

R (F) —

Split-plot
Boron, N n − 1 = 1 σ2

E (FRNP) + 2σ2
P (FRN) + 2σ2

N * R (F) + 36φN N*R(F)
F *N (f − 1)(n − 1) = 5 σ2

E (FRNP) + 2σ2
P (FRN) + 2σ2

N*R (F) + 6φF * N N *R(F)
N *R(F) (n − 1)(r − 1)f = 12 σ2

E (FRNP) + 2σ2
P (FRN) + 2σ2

N * R (F) —
Pair of trees,

P(FRN) (p − 1)frn = 0 σ2
E (FRNP) + 2σ2

P (FRN) —
Tree, E(FRNP) (e − 1)frnp = 36 σ2

E (FRNP) —

Total frnpe − 1 = 71

Since the source P(FRN) has zero degrees of freedom, the tests for R(F),
NR(F), and P(FRN) are not possible. The source P(FRN) is excluded in the
MODEL statement in the following SAS program.

SAS Program: Analysis of individual data

PROC GLM;
CLASS F N R;
MODEL Y = FN R(F) N*R(F);
TEST H = F E = R(F);
TEST H = N F*N E = N*R(F);

/*** Fertilizer Levels: 0 5 10 15 20 25 ***/
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CONTRAST ‘LINEAR IN F’ F −5 −3 −1 1 3 5 / E=R(F);
CONTRAST ‘FIRST VS LAST 5’F −5 1 1 1 1 1 / E=R(F);
MEANS F / DUNCAN E = R(F);
MEANS N F*N / LSD CLDIFF E = N*R(F);

RUN;

Note that means are computed for F, N, and F *N. Duncan’s Multiple
Range test and the Least Significance Difference test are performed on the
main effects F and N, respectively.

6.3.2 Randomized block split-plot design

Example: Suppose that the one-way randomized block factorial design in
Section 6.2.2 is modified with boron added to pairs of trees within rows.
This creates another slightly different split-plot design. The discussion of
restriction error in Section 6.2 applies here.

• Factors: Fertilizer, F with f = 6 levels (main-plot factor),
Boron, N with n = 2 levels (split-plot factor).

• F and N are fixed.
• Block, B is random.
• There are b = 3 blocks (i.e., orchards).
• B, F, and N are crossed with one another.
• Experimental unit for F is a row of four trees, R.
• There is r = 1 experimental unit per level of F.
• R is random, nested in B and F.
• Experimental unit for N is a pair of trees, P.
• There is p = 1 experimental unit per level of N.
• P is random, nested in B, F, R, and N.
• A tree, E, is an element.
• There are e = 2 trees per pair of trees.
• E is random, nested in B, F, R, N, and P.

1 2 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 2 3 4 5 61 2 3 4 5 6 1 2 3 4 5 6

1 2 1 2 1 2 1 2 1 2 1 2

1 2 3 4 5 6 7 8 9 10 11 12 31 32 33 34 35 36

1,2 3,4 23 , 24 61, 62 69, 70 71, 72

Main-plot:
Block

Fertilizer
(factor)

Row of trees 
(e.u.)

Split-plot:
Boron
(factor)

Pair of trees
(e.u.)

Tree 
(element)

B

F

R

N

P

E

. . .

. . . 1 2 1 2 1 2

. . .. . .. . .

 21 Design structure for a randomized block split-plot design.
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  ANOVA table for a randomized block split-plot design

Source of variation df EMS Error

Main-plot
Block, B b − 1 = 2 σ2

E (BFRNP) + 2σ2
P (BFRN) + 4σ2

R (BF) + 24σ2
B —

Fertilizer, F f − 1 = 5 σ2
E (BFRNP) + 2σ2

P (BFRN) + 4σ2
R (BF) + 4σ2

B * F + 12φF B *F
B *F (b − 1)(f − 1) = 10 σ2

E (BFRNP) + 2σ2
P (BFRN) + 4σ2

R (BF) + 4σ2
B * F —

Row of trees, R(BF) (r − 1)bf = 0 σ2
E (BFRNP) + 2σ2

P (BFRN) + 4σ2
R (BF) —

Split-plot
Boron, N n − 1 = 1 σ2

E (BFRNP) + 2σ2
P (BFRN) + 2σ2

N * R (BF) + 12σ2
B * N + 36φN B *N

F *N (f − 1)(n − 1) = 5 σ2
E (BFRNP) + 2σ2

P (BFRN) + 2σ2
N * R (BF) + 2σ2

B * F * N + 6φF * N B *F *N
B *N (b − 1)(n − 1) = 2 σ2

E (BFRNP) + 2σ2
P (BFRN) + 2σ2

N * R (BF) + 12σ2
B * N —

B *F *N (b − 1)(f − 1)(n − 1) = 10 σ2
E (BFRNP) + 2σ2

P (BFRN) + 2σ2
N * R (BF) + 2σ2

B * F * N —
N *R(BF) (n − 1)(r − 1)bf = 0 σ2

E (BFRNP) + 2σ2
P (BFRN) + 2σ2

N * R (BF) —
Pair of trees, P(BFRN) (p − 1) frn = 0 σ2

E (BFRNP) + 2σ2
P (BFRN) —

Tree, E(BFRNP) (e − 1) frnp = 36 σ2
E (BFRNP) —

Total frnpe − 1 = 71

Sources with zero degrees of freedom are usually not listed in the ANOVA
table. Most textbooks and published manuscripts would use the following
simplified table. (Table 13).

  Simplified ANOVA table for a randomized block split-plot design

Source of
variation df EMS Error

Main-plot
Block, B b − 1 = 2 σ2

E (BFRNP) + 24σ2
B —

Fertilizer, F f − 1 = 5 σ2
E (BFRNP) + 4σ2

B * F + 12φF B *F
B *F (b − 1)(f − 1) = 10 σ2

E (BFRNP) + 4σ2
B * F —

Split-plot
Boron, N n − 1 = 1 σ2

E (BFRNP) + 12σ2
B * N + 36φN B *N

F *N (f − 1)(n − 1) = 5 σ2
E (BFRNP) + 2σ2

B * F * N + 6φF * N B *F *N
B *N (b − 1)(n − 1) = 2 σ2

E (BFRNP) + 12σ2
B * N —

B *F *N (b − 1)(f − 1)(n − 1) = 10 σ2
E (BFRNP) + 2σ2

B * F * N —
Tree, E(BFRNP) (e − 1) frnp = 36 σ2

E (BFRNP) —

Total frnpe − 1 = 71

SAS Program: Analysis of individual data

PROC GLM;
CLASS B F N;
MODEL Y = BFN;
TEST H = F E = B*F;
TEST H =F*N E = B*F*N;
TEST H = N E = B*N;

/*** Fertilizer Levels: 0 5 10 15 20 25 ***/
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CONTRAST ‘LINEAR IN F’ F −5 −3 −1 1 3 5 /E=B*F;
CONTRAST ‘FIRST VS LAST 5’F −5 1 1 1 1 1 /E=B*F;
MEANS F / SCHEFFE E = B*F;
MEANS F*N / SCHEFFE E = B*F*N;
MEANS N / SCHEFFE E = B*N;

RUN;

The sources B *N and B *F *N are often pooled into the source
E(BFRNP), and the pooled term is then used to test for N and F *N, as
in the example in Section 6.2.2. Be aware that pooling of sources is
efficient only if the variances σ2

B*N and σ2
B*F*N are negligible. As a general

rule, pool sources only if they have fewer than six degrees of freedom and
the F-test for each is not significant at a large α value, say α = 0.25
(Montgomery 1991, Section 8.3).

7 SUMMARY

A successful experiment begins with a sound experimental design. A well-
designed experiment should have adequate replication and be properly
randomized. Equally important, the design should have the capacity to
explore the study objectives. Where possible, a simple design should be
employed.

When choosing the method of analysis, we must keep in mind the
questions we would like answered. The method of analysis should be
compatible with the study objectives and the response variables. Analysis
of variance is a popular procedure, but it is only appropriate for
continuous data and to compare several population means. Routine use of
ANOVA without discretion could lead to misleading results.

ANOVA F-tests and contrasts are powerful tools that can test
preconceived hypotheses, whereas multiple comparisons can be used most
effectively to generate hypotheses. All results obtained from multiple
comparisons should be verified in well-designed studies. Moreover,
statistical procedures such as ANOVA can only establish statistical
significance. We must also look at the data and evaluate significant
difference from the biological point of view.

Finally, the widespread use of computers has made statistical analysis
quick and easy. But the automation has also brought misuse and
misinterpretation of statistical techniques. We must remember that the
results from statistical packages are only as reliable as the input data and
our understanding of the software and statistics. The key to successful
data analysis lies in good knowledge of the subject matter.
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APPENDIX 1 How to determine the expected mean squares

The expected mean squares, EMS, are required to determine the proper
error terms for the sources of variation in an ANOVA model. This
appendix describes the steps to find both the EMS and the error terms.
We will use the factorial completely randomized design example in
Section 6.1.3 to demonstrate each step in the process. Recall that in the
example, we have:

• Factors: Fertilizer, F with f = 2 levels,
Amount, A with a = 3 levels.

• F and A are fixed.
• F and A are crossed with each other.
• Experimental unit for F and A is a row of four trees, R.
• There are r = 3 experimental units for each F *A combination; that is,

each F *A combination is replicated three times.
• R is random, nested in F and A.
• A tree, E, is an element.
• There are e = 4 trees per row of trees.
• E is random, nested in F, A, and R.

In this appendix, the term variates refers to the factors, experimental
units, and elements in an experiment. The term sources refers to all the
sources of variation in the data; see Section 5.3 for a description on how
to compile the list of sources in an experiment.

Steps:
1. Create a table with the variates listed across the top and the sources

listed down the left side. Above each variate designate the number of
levels it has, as well as whether it is fixed (f ) or random (r ).

Variates

f f r r
2 3 3 4

Sources F A R E

F
A

F *A
R(FA)

E(FAR)
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2. Make another column titled ‘‘Variance component’’ for the sources. Use
φ if a source is fixed, σ2 otherwise. A source is considered fixed only if
all variates comprising the source are fixed.

Variates

f f r r
2 3 3 4 Variance

Sources F A R E component

F φF

A φA

F *A φF *A

R(FA) σ2
R (FA)

E(FAR) σ2
E (FAR)

The entries in the centre of the table will be filled in the next three steps.

3. Begin with the variate in the first column on the left and the top entry
in that column. If the source of variation that corresponds to that
entry contains the column variate, then leave the entry blank;
otherwise, enter the number of levels of the column variate. Repeat for
the next entry below until the end of the column is reached, then
continue with the next column variate to the right. For example, the
variate F appears in all the sources except source A; hence the number
2 (F has 2 levels) is placed in the second entry in the first column. The
factor R is not contained in the source F, A, or F *A; therefore, the
number 3 (R has 3 levels) is placed in the first three entries of the R
column, corresponding to the sources F, A, and F *A.

Variates

f f r r
2 3 3 4 Variance

Sources F A R E component

F 3 3 4 φF

A 2 3 4 φA

F *A 3 4 φF *A

R(FA) 4 σ2
R (FA)

E(FAR) σ2
E (FAR)
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4. Identify all the nested sources — that is, all sources with parentheses.
For each of these sources, fill the entries across the row as follows: put
down ‘‘1’’ if the variate that corresponds to the entry appears inside the
parentheses; otherwise, leave the entry blank. For example, R(FA) is a
nested source. The variates F and A are inside the parentheses so the
number 1 is placed in the first two entries across the R(FA) row,
corresponding to the variates F and A.

Variates

f f r r
2 3 3 4 Variance

Sources F A R E component

F 3 3 4 φF

A 2 3 4 φA

F *A 3 4 φF *A

R(FA) 1 1 4 σ2
R (FA)

E(FAR) 1 1 1 σ2
E (FAR)

5. Work columnwise again. If the variate is fixed, put ‘‘0’’ in each blank
entry down the column; put ‘‘1’’ if the variate is random.

Variates

f f r r
2 3 3 4 Variance

Sources F A R E component

F 0 3 3 4 φF

A 2 0 3 4 φA

F *A 0 0 3 4 φF *A

R(FA) 1 1 1 4 σ2
R (FA)

E(FAR) 1 1 1 1 σ2
E (FAR)

All the entries in the table should be filled at the end of step 5.

6. The expected mean squares of a source are presented as an equation
that shows the variance components of that source. The weight (or
coefficient) corresponding to each variance component is the product
of the entries in the last table. The structure of the source dictates
which columns are to be used in the computation of the coefficients.
Here are the steps for finding the EMS of a source:

 i. For a nested source, do not use columns for variates that are
outside the parentheses of the source; otherwise, do not use all the
columns that correspond to the variates that make up the source.

ii. Multiply the remaining entries across each row, including the
variance component column.

iii. Add the row products.
iv. Drop a variance component term if it does not contain all the

variates in the source of interest.
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For example, to find the EMS of the source F *A, we would ignore the
F and A columns, multiply the entries across each row, and add the
variance components. At the end of step (iii), we should get for the
source F *A:

EMS = (3 × 4)φF + (3 × 4)φA + (3 × 4)φF*A + (1 × 4)σ2
R(FA) + (1 × 1)σ2

E(FAR)

EMS = 12φF + 12φA + 12φF*A + 4σ2
R(FA) + σ2

E(FAR)

Finally, according to step (iv), we would drop the variance components
12φA and 12φF because they do not contain the F and the A variates.

The EMS of the sources in this factorial completely randomized design
example are:

F: σ2
E(FAR) + 4σ2

R(FA) + 36φF

A: σ2
E(FAR) + 4σ2

R(FA) + 24φA

F *A: σ2
E(FAR) + 4σ2

R(FA) + 12φF*A

R(FA): σ2
E(FAR) + 4σ2

R(FA)

E(FAR): σ2
E(FAR)

It is customary to list the variance components in the EMS in the order
shown because it makes the identification of the proper error terms in the
next step easier.

7. The correct error term for a source is another source that has the same
EMS, except for the variance component attributed to the source of
interest. Follow these easy steps:

i. Look at the EMS of the source of interest (say F) and identify the
variance component term attributed to this source (36φF).

ii. Write down the EMS with this variance component term removed:
σ2

E(FAR) + 4σ2
R(FA).

iii. Find the source which has the identical EMS to the one you have
just written down in step (ii). In this case, R(FA) is the error term
for F.

The following table shows the error terms used to test the sources in the
factorial completely randomized design example:

Source Error

F R(FA)
A R(FA)

F *A R(FA)
R(FA) E(FAR)

E(FAR) —

Similar EMS rules can be found in Schultz (1955), Sokal and Rohlf
(1981, Section 12.3), and Montgomery (1991, Chapter 8). This set of
rules for fixed models (models that involve only fixed factors) and
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random models (models that involve only random factors) is recognized
by all statisticians. For mixed models (models that involve both fixed and
random factors), there is some debate on how the fixed*random
interaction term should be handled. Two different approaches exist using
different EMS equations and tests. A full discussion of this controversy is
beyond the scope of this appendix. Interested readers can refer to Sit
(1992) and Schwarz (1993).

For complicated designs, exact F-tests may not exist for some of the
sources of variation. One possible solution is to pool the mean square of
effects that can be considered negligible (see Section 6.2.2 for an
example). Another approach is to perform pseudo F-tests using
Satterthwaite’s method (1946). More discussion on pseudo F-tests can be
found in Satterthwaite (1946), Gaylor and Hopper (1969), Bergerud
(1989a), and Milliken and Johnson (1992: 249–255).





APPENDIX 2 Hypothetical data for example in Section 5.1

Fertilizer Root Row of Tree Height
Treatment Treatment Trees Number (cm)

1 1 1 1 7.3
1 1 1 2 10.3
1 1 1 3 14.8
1 1 1 4 2.9
1 1 2 5 14.9
1 1 2 6 1.8
1 1 2 7 5.1
1 1 2 8 17.7
1 2 3 9 14.1
1 2 3 10 13.0
1 2 3 11 19.3
1 2 3 12 20.7
1 2 4 13 24.9
1 2 4 14 16.0
1 2 4 15 14.9
1 2 4 16 24.9
2 1 5 17 24.3
2 1 5 18 28.6
2 1 5 19 31.8
2 1 5 20 32.7
2 1 6 21 29.1
2 1 6 22 24.7
2 1 6 23 30.1
2 1 6 24 31.9
2 2 7 25 42.2
2 2 7 26 45.6
2 2 7 27 40.7
2 2 7 28 34.5
2 2 8 29 38.4
2 2 8 30 46.4
2 2 8 31 38.0
2 2 8 32 41.7
3 1 9 33 50.7
3 1 9 34 53.2
3 1 9 35 50.1
3 1 9 36 41.4
3 1 10 37 53.0
3 1 10 38 37.9
3 1 10 39 50.9
3 1 10 40 51.0
3 2 11 41 69.5
3 2 11 42 53.8
3 2 11 43 53.8
3 2 11 44 62.1
3 2 12 45 54.3
3 2 12 46 63.0
3 2 12 47 47.0
3 2 12 48 65.4
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