# UNDERSTANDING  STATISTCS : stalige 

ROBERT R. PAGANO | TENTH EDITION

## U N DERSTANDING STATISTICS <br> IN THE BEHAVIORAL SCIENCES ■ TENTH EDITION

# STATISTICS <br> IN THE BEHAVIORAL SCIENCES ■ TENTH EDITION 

## ROBERT R. PAGANO

This is an electronic version of the print textbook. Due to electronic rights restrictions, some third party content may be suppressed. Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. The publisher reserves the right to remove content from this title at any time if subsequent rights restrictions require it. For valuable information on pricing, previous editions, changes to current editions, and alternate formats, please visit www.cengage.com/highered to search by ISBN\#, author, title, or keyword for materials in your areas of interest.

## WADSWORTH

CENGAGE Learning

## Understanding Statistics in the Behavioral

 Sciences, Tenth EditionRobert R. Pagano
Publisher: Jon-David Hague
Psychology Editor: Tim Matray
Developmental Editor: Robert Jucha
Assistant Editor: Paige Leeds
Editorial Assistant: Lauren Moody
Media Editor: Mary Noel
Marketing Program Manager: Sean Foy
Content Project Manager: Charlene $M$.
Carpentier
Design Director: Rob Hugel
Art Director: Pamela Galbreath
Print Buyer: Rebecca Cross
Rights Acquisitions Specialist: Dean
Dauphinais
Production Service: Graphic World Inc.
Text Designer: Lisa Henry
Photo Researcher: PreMedia Global
Text Researcher: Sue Howard
Copy Editor: Graphic World Inc.
Illustrator: Graphic World Inc.
Cover Designer: Lisa Henry
Cover Image: School of Red Sea Bannerfish:
(C) Strmko/Dreamstime.com

Compositor: Graphic World Inc.

## © 2013, 2010 Wadsworth, Cengage Learning

ALL RIGHTS RESERVED. No part of this work covered by the copyright herein may be reproduced, transmitted, stored, or used in any form or by any means, graphic, electronic, or mechanical, including but not limited to photocopying, recording, scanning, digitizing, taping, Web distribution, information networks, or information storage and retrieval systems, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the publisher.

Unless otherwise noted, all art is © Cengage Learning

For product information and technology assistance, contact us at Cengage Learning Customer \& Sales Support, 1-800-354-9706.

For permission to use material from this text or product, submit all requests online at www.cengage.com/permissions. Further permissions questions can be e-mailed to permissionrequest@cengage.com.

Library of Congress Control Number: 2011934938
Student Edition:
ISBN-13: 978-1-111-83726-6
ISBN-10: 1-111-83726-0

Loose-leaf Edition:
ISBN-13: 978-1-111-83938-3
ISBN-10: 1-111-83938-7

## Wadsworth

20 Davis Drive
Belmont, CA 94002-3098
USA

Cengage Learning is a leading provider of customized learning solutions with office locations around the globe, including Singapore, the United Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at www.cengage.com/global.

Cengage Learning products are represented in Canada by Nelson Education, Ltd.

For your course and learning solutions, visit www.cengage.com.
Purchase any of our products at your local college store or at our preferred online store www.CengageBrain.com.

I dedicate this tenth edition to all truth-seekers. May this textbook aid you in forming an objective understanding of reality. May the data-based, objective approach taught here help inform your decisions and beliefs to help improve your life and the lives of the rest of us.

## ABOUT THE AUTHOR



ROBERT R. PAGANO received a Bachelor of Electrical Engineering degree from Rensselaer Polytechnic Institute in 1956 a nd a Ph.D . in B iological P sychology from Yale University in 1965. He was A ssistant Professor and A ssociate P rofessor in the Department of Psychology at the University of Washington, Seattle, Washington, from 1965 to 1989. He was Associate Chairman of the Department of Neuroscience at the University of Pittsburgh, Pittsburgh, Pennsylvania, from 1990 to June 2000. While at the Department of Neuroscience, in addition to $h$ is other duties, he ser ved as Director of Undergraduate Studies, was the departmental adviser for undergraduate majors, taught both u ndergraduate and graduate statistics courses, and ser ved as a s tatistical consultant for departmental faculty. Bob was also Director of the Statistical Cores for two NIH center grants in schizophrenia and Parkinson's disease. He retired from the University of Pittsburgh in June 2000. Bob's current interests are in the physiology of consciousness, the physiology and psychology of meditation and in Positive Psychology. He has taught courses in introductory statistics at the University of Washington and at the University of Pittsburgh for over thirty years. He has been a finalist for the outstanding teaching a ward at $t$ he University of Washington for his teaching of introductory statistics.

Bob is married to Carol A. Eikleberry and they have a 21 -year-old son, Robby. In addition, Bob has five grown daughters, Renee, Laura, Maria, Elizabeth, and Christina, one granddaughter, Mikaela, and a yellow lab. In his undergraduate years, Bob was an athlete, winning varsity letters in basketball, baseball and soccer. He loves tennis, but arthritis has temporarily caused a shift in retirement ambitions from winning the singles title at Wimbledon to watching the U.S. Open and getting in shape for doubles play sometime in the future. He also loves the outdoors, especially hiking, and his morning coffee. He especially values his daily meditation practice. His favorite cities to visit are Boulder, Estes Park, New York, Aspen, Santa Fe, and Santa Barbara.

## BRIEF CONTENTS

PART O NE OVERVIEW ..... 1
1 Statistics and Scientific Method ..... 3
PART T W O DESCRIPTIVE STATISTICS ..... 23
2 Basic Mathematical and Measurement Concepts ..... 25
3 Frequency Distributions ..... 47
4 Measures of Central Tendency and Variability ..... 79
5 The Normal Curve and Standard Scores 1026Correlation 1227Linear Regression159
PART THREE INFERENTIAL STATISTICS ..... 187
8 Random Sampling and Probability ..... 189
9 Binomial Distribution ..... 225
10 Introduction to Hypothesis Testing Using the Sign Test ..... 248
11 Power ..... 277
12 Sampling Distributions, Sampling Distribution of the Mean, the NormalDeviate (z) Test298
13Student's $t$ Test for Single Samples327
14 Student's $t$ Test for Correlated and Independent Groups ..... 356
15 Introduction to the Analysis of Variance ..... 401
16 Introduction to Two-Way Analysis of Variance ..... 445
17 Chi-Square and Other Nonparametric Tests ..... 482
18
Review of Inferential Statistics ..... 527

## PART ONE OVERVIEW 1

## Statistics and Scientific Method <br> 3

Introduction 4
Methods of Knowing ..... 4
Authority ..... 4
Rationalism ..... 4
Intuition ..... 5
Scientific Method ..... 6
Definitions ..... 6
Experiment: Mode of Presentation and Retention ..... 7
Scientific Research and Statistics ..... 9
Observational Studies ..... 9
True Experiments ..... 9
Random Sampling ..... 9
Descriptive and Inferential Statistics ..... 10
Using Computers in Statistics ..... 11
Statistics and the "Real World" ..... 11
What Is the Truth?

- Data, Data, Where Are the Data? ..... 12
- Authorities Are Nice, but... ..... 13
- Data, Data, What Are the Data?-1 ..... 14
- Data, Data, What Are the Data?-2 ..... 15
Summary ..... 17
Important New Terms ..... 17
Questions and Problems ..... 18
What Is the Truth? Questions ..... 20
Online Study Resources ..... 21
PARTTWO DESCRIPTIVE STATISTICS ..... 23
2
Basic Mathematical and Measurement Concepts ..... 25
Study Hints for the Student ..... 26
Mathematical Notation ..... 26
Summation 27
Order of Mathematical Operations ..... 29
Measurement Scales ..... 30
Nominal Scales ..... 31
Ordinal Scales ..... 32
Interval Scales ..... 32
Ratio Scales ..... 33
Measurement Scales in the Behavioral Sciences ..... 35
Continuous and Discrete Variables ..... 35
Real Limits of a Continuous Variable ..... 36
Significant Figures ..... 37
Rounding ..... 38
Summary ..... 38
Important New Terms ..... 39
Questions and Problems ..... 39
SPSS ..... 40
Notes ..... 44
Online Study Resources ..... 46
3 Frequency Distributions ..... 47
Introduction: Ungrouped Frequency Distributions ..... 48
Grouping Scores ..... 49
Constructing a Frequency Distribution of Grouped Scores ..... 51
Relative Frequency, Cumulative Frequency, and Cumulative Percentage Distributions ..... 54
Percentiles 5 ..... 5
Computation of Percentile Points ..... 56
Percentile Rank ..... 59
Computation of Percentile Rank ..... 59
Graphing Frequency Distributions ..... 61
The Bar Graph ..... 63
The Histogram ..... 63
The Frequency Polygon ..... 64
The Cumulative Percentage Curve ..... 64
Shapes of Frequency Curves ..... 65
Exploratory Data Analysis ..... 67
Stem and Leaf Diagrams ..... 67
What Is the Truth?
- Stretch the Scale, Change the Tale ..... 69
Summary ..... 70
Important New Terms ..... 70
Questions and Problems ..... 70
What Is the Truth? Questions ..... 73
SPSS ..... 73
Online Study Resources ..... 78
4Measures of Central Tendency and Variability79
Introduction 80
Measures of Central Tendency ..... 80
The Arithmetic Mean ..... 80
The Overall Mean ..... 83
The Median ..... 85
The Mode ..... 87
Measures of Central Tendency and Symmetry ..... 88
Measures of Variability ..... 89
The Range ..... 89
The Standard Deviation ..... 89
The Variance ..... 95
Summary ..... 95
Important New Terms ..... 96
Questions and Problems ..... 96
SPSS ..... 99
Notes ..... 100
Online Study Resources ..... 101
5
The Normal Curve and Standard Scores ..... 102
Introduction 1 ..... 03
The Normal Curve ..... 103
Area Contained Under the Normal Curve ..... 104
Standard Scores (z Scores) ..... 105
Characteristics of $z$ Scores ..... 108
Finding the Area, Given the Raw Score ..... 109
Finding the Raw Score, Given the Area ..... 114
Summary ..... 117
Important New Terms ..... 117
Questions and Problems ..... 117
SPSS ..... 119
Online Study Resources ..... 121
Correlation 1 ..... 22
Introduction 1 ..... 23
Relationships 1 ..... 23
Linear Relationships ..... 123
Positive and Negative Relationships ..... 126
Perfect and Imperfect Relationships ..... 127
Correlation 1 ..... 30
The Linear Correlation Coefficient Pearson $r$ ..... 131
Other Correlation Coefficients ..... 139
Effect of Range on Correlation ..... 143
Effect of Extreme Scores ..... 144
Correlation Does Not Imply Causation ..... 144
What Is the Truth?
- "Good Principal = Good Elementary School," or Does It? ..... 146
- Money Doesn't Buy Happiness, or Does It? ..... 147
Summary ..... 148
Important New Terms ..... 149
Questions and Problems ..... 149
What Is the Truth? Questions ..... 154
SPSS ..... 155
Online Study Resources ..... 158
7 Linear Regression ..... 159
Introduction 160
Prediction and Imperfect Relationships ..... 160
Constructing the Least-Squares Regression Line: Regression of $Y$ on $X$ ..... 162
Measuring Prediction Errors: The Standard Error of Estimate ..... 169
Considerations in Using Linear Regression for Prediction ..... 172
Relation Between Regression Constants and Pearson r ..... 172
Multiple Regression ..... 174
Summary ..... 178
Important New Terms ..... 178
Questions and Problems ..... 179
SPSS ..... 182
Online Study Resources ..... 186
PART THREE INFERENTIAL STATISTICS 187
8
Random Sampling and Probability ..... 189
Introduction 1 ..... 90
Random Sampling ..... 190
Techniques for Random Sampling ..... 191
Sampling With or Without Replacement ..... 193
Probability 1 ..... 93
Some Basic Points Concerning Probability Values ..... 195
Computing Probability ..... 195
The Addition Rule ..... 196
The Multiplication Rule ..... 201
Multiplication and Addition Rules ..... 211
Probability and Continuous Variables ..... 213
What Is the Truth?
- "Not Guilty, I'm a Victim of Coincidence": Gutsy Plea or Truth? ..... 216
- Sperm Count Decline-Male or Sampling Inadequacy? ..... 217
- A Sample of a Sample ..... 218
Summary ..... 220
Important New Terms ..... 221
Questions and Problems ..... 221
What Is the Truth? Questions ..... 223
Notes ..... 223
Online Study Resources ..... 224
Binomial Distribution ..... 225
Introduction 226
Definition and Illustration of the Binomial Distribution ..... 226
Generating the Binomial Distribution from the Binomial Expansion ..... 229
Using the Binomial Table ..... 230
Using the Normal Approximation ..... 239
Summary ..... 244
Important New Terms ..... 245
Questions and Problems ..... 245
Notes ..... 247
Online Study Resources ..... 247
Introduction to Hypothesis Testing Using the Sign Test 248
Introduction 249
Logic of Hypothesis Testing ..... 249
Experiment: Marijuana and the Treatment of AIDS Patients ..... 249
Repeated Measures Design ..... 251
Alternative Hypothesis $\left(H_{1}\right)$ ..... 252
Null Hypothesis $\left(H_{0}\right)$ ..... 252
Decision Rule ( $\alpha$ Level) ..... 252
Evaluating the Marijuana Experiment ..... 253
Type I and Type II Errors ..... 254
Alpha Level and the Decision Process ..... 255
Evaluating the Tail of the Distribution ..... 257
One- and Two-Tailed Probability Evaluations ..... 259
Size of Effect: Significant Versus Important ..... 265
What Is the Truth?
- Chance or Real Effect?-1 ..... 266
- Chance or Real Effect?-2 ..... 268
- "No Product Is Better Than Our Product" ..... 269
- Anecdotal Reports Versus Systematic Research ..... 270
Summary ..... 271
Important New Terms ..... 272
Questions and Problems ..... 272
What Is the Truth? Questions ..... 275
Notes ..... 275
Online Study Resources ..... 276
11
Power 277
Introduction 278
What Is Power? ..... 278
$P_{\text {null }}$ and $P_{\text {real }} 27$
$P_{\text {real }}$ : A Measure of the Real Effect ..... 279
Power Analysis of the AIDS Experiment ..... 280
Effect of $N$ and Size of Real Effect ..... 281
Power and Beta ( $\beta$ ) ..... 285
Power and Alpha ( $\alpha$ ) ..... 286
Alpha-Beta and Reality ..... 287
Interpreting Nonsignificant Results ..... 287
Calculation of Power ..... 288
What Is the Truth?
- Astrology and Science ..... 293
Summary ..... 295
Important New Terms ..... 295
Questions and Problems ..... 295
What Is the Truth? Questions ..... 296
Notes ..... 297
Online Study Resources ..... 297
Sampling Distributions, Sampling Distribution of the Mean, the Normal Deviate (z) Test 298
Introduction 299
Sampling Distributions ..... 299
Generating Sampling Distributions ..... 300
The Normal Deviate (z) Test ..... 303
Experiment: Evaluating a School Reading Program ..... 303
Sampling Distribution of the Mean ..... 303
The Reading Proficiency Experiment Revisited ..... 309
Alternative Solution Using $z_{\text {obt }}$ and $z_{\text {crit }}$ ..... 312
Conditions Under Which the $z$ Test Is Appropriate ..... 316
Power and the $z$ Test ..... 317
Summary ..... 324
Important New Terms ..... 324
Questions and Problems ..... 324
Online Study Resources ..... 326
Student's $\boldsymbol{t}$ Test for Single Samples ..... 327
Introduction 328
Comparison of the $z$ and $\boldsymbol{t}$ Tests ..... 328
Experiment: Increasing Early Speaking in Children ..... 329
The Sampling Distribution of $t$ ..... 329
Degrees of Freedom ..... 330
t and z Distributions Compared ..... 331
Early Speaking Experiment Revisited ..... 333
Calculating $t_{\text {obt }}$ from Original Scores ..... 334
Conditions Under Which the $t$ Test Is Appropriate ..... 338
Size of Effect Using Cohen's d ..... 339
Confidence Intervals for the Population Mean ..... 341
Construction of the 95\% Confidence Interval ..... 341
Experiment: Estimating the Mean IQ of Professors ..... 343
General Equations for Any Confidence Interval ..... 343
Testing the Significance of Pearson $r$ ..... 346
Summary ..... 349
Important New Terms ..... 349
Questions and Problems ..... 349
SPSS ..... 352
Notes ..... 355
Online Study Resources ..... 355
Student's $\boldsymbol{t}$ Test for Correlated and Independent Groups 356
Introduction 3 ..... 57
Student's $t$ Test for Correlated Groups ..... 358
Experiment: Brain Stimulation and Eating ..... 358
Comparison Between Single Sample and Correlated Groups $t$ Tests ..... 359
Brain Stimulation Experiment Revisited and Analyzed ..... 360
Size of Effect Using Cohen's d ..... 363
Experiment: Lateral Hypothalamus and Eating Behavior ..... 364
$t$ Test for Correlated Groups and Sign Test Compared ..... 365
Assumptions Underlying the $t$ Test for Correlated Groups ..... 366
z and $\boldsymbol{t}$ Tests for Independent Groups ..... 366
Independent Groups Design ..... 366
z Test for Independent Groups ..... 367
Experiment: Hormone X and Sexual Behavior ..... 367
The Sampling Distribution of the Difference Between Sample Means
$\left(\bar{X}_{1}-\bar{X}_{2}\right)$ ..... 368
Experiment: Hormone X Experiment Revisited ..... 369
Student's $\boldsymbol{t}$ Test for Independent Groups ..... 370
Comparing the Equations for $z_{\text {obt }}$ and $t_{\text {obt }}$ ..... 370
Analyzing the Hormone X Experiment ..... 372
Calculating $t_{\text {obt }}$ When $n_{1}=n_{2}$ ..... 373
Assumptions Underlying the $t$ Test ..... 375
Violation of the Assumptions of the $t$ Test ..... 376
Size of Effect Using Cohen's d ..... 376
Experiment: Thalamus and Pain Perception ..... 377
Power of the $t$ Test ..... 378
Correlated Groups and Independent Groups Designs Compared ..... 379
Alternative Analysis Using Confidence Intervals ..... 382
Constructing the 95\% Confidence Interval for $\mu_{1}-\mu_{2}$ ..... 382
Conclusion Based on the Obtained Confidence Interval ..... 384
Constructing the 99\% Confidence Interval for $\mu_{1}-\mu_{2}$ ..... 385
Summary ..... 385
Important New Terms ..... 386
Questions and Problems ..... 387
SPSS ..... 392
Notes ..... 398
Online Study Resources ..... 400
15
Introduction to the Analysis of Variance ..... 401
Introduction: The $F$ Distribution ..... 402
F Test and the Analysis of Variance (ANOVA) ..... 404
Overview of One-Way ANOVA ..... 405
Within-Groups Variance Estimate, $M S_{\text {within }}$ ..... 406
Between-Groups Variance Estimate, $M S_{\text {between }}$ ..... 408
The F Ratio ..... 409
Analyzing Data with the ANOVA Technique ..... 410
Experiment: Different Situations and Stress ..... 410
Logic Underlying the One-Way ANOVA ..... 414
Relationship Between ANOVA and the $t$ Test 4 ..... 18
Assumptions Underlying the Analysis of Variance ..... 418
Size of Effect Using $\hat{\omega}^{2}$ or $\eta^{2}$ ..... 419
Omega Squared, $\hat{\omega}^{2}$ ..... 419
Eta Squared, $\eta^{2}$ ..... 420
Power of the Analysis of Variance ..... 420
Power and $N$ ..... 421
Power and the Real Effect of the Independent Variable ..... 421
Power and Sample Variability ..... 421
Multiple Comparisons ..... 421
A Priori, or Planned, Comparisons ..... 422
A Posteriori, or Post Hoc, Comparisons ..... 423
The Tukey Honestly Significant Difference (HSD) Test ..... 424
The Scheffé Test ..... 425
Comparison Between Planned Comparisons, the Tukey HSD Test, and the Scheffé Test ..... 432
What Is the Truth?
- Much Ado About Almost Nothing ..... 433
Summary ..... 435
Important New Terms ..... 436
Questions and Problems ..... 436
What Is the Truth? Questions ..... 440
SPSS ..... 440
Online Study Resources ..... 444
Introduction to Two-Way Analysis of Variance ..... 445
Introduction to Two-Way ANOVA-Qualitative Presentation ..... 446
Quantitative Presentation of Two-Way ANOVA ..... 450
Within-Cells Variance Estimate, $M S_{\text {within-cells }}$ ..... 451
Row Variance Estimate, $M S_{\text {rows }}$ ..... 452
Column Variance Estimate, $M S_{\text {columns }}$ ..... 453
Interaction Variance Estimate, $M S_{\text {interaction }}$ ..... 455
Computing F Ratios ..... 456
Analyzing an Experiment with Two-Way ANOVA ..... 456
Experiment: Effect of Exercise on Sleep ..... 456
Interpreting the Results ..... 460
Multiple Comparisons ..... 471
Assumptions Underlying Two-Way ANOVA ..... 472
Summary ..... 472
Important New Terms ..... 473
Questions and Problems ..... 473
SPSS ..... 475
Online Study Resources ..... 481
17
Chi-Square and Other Nonparametric Tests ..... 482
Introduction: Distinction Between Parametric and Nonparametric Tests ..... 483
Chi-Square ( ${ }^{2}$ ) ..... 484
Single-Variable Experiments ..... 484
Experiment: Preference for Different Brands of Light Beer ..... 484
Test of Independence Between Two Variables ..... 488
Experiment: Political Affiliation and Attitude ..... 489
Assumptions Underlying $\chi^{2}$ ..... 497
The Wilcoxon Matched-Pairs Signed Ranks Test ..... 498
Experiment: Changing Attitudes Toward Wildlife Conservation ..... 498
Assumptions of the Wilcoxon Signed Ranks Test ..... 501
The Mann-Whitney U Test ..... 501
Experiment: The Effect of a High-Protein Diet on Intellectual Development ..... 501
Tied Ranks ..... 504
Assumptions Underlying the Mann-Whitney U Test ..... 507
The Kruskal-Wallis Test ..... 507
Experiment: Evaluating Two Weight Reduction Programs ..... 507
Assumptions Underlying the Kruskal-Wallis Test ..... 511
What Is the Truth?
- Statistics and Applied Social Research—Useful or "Abuseful"? ..... 512
Summary ..... 514
Important New Terms ..... 515
Questions and Problems ..... 515
What Is the Truth? Questions ..... 522
SPSS ..... 522
Notes ..... 525
Online Study Resources ..... 526
Review of Inferential Statistics ..... 527
Introduction 528
Terms and Concepts ..... 528
Process of Hypothesis Testing ..... 529
Single Sample Designs ..... 530
z Test for Single Samples ..... 530
$t$ Test for Single Samples ..... 531
$t$ Test for Testing the Significance of Pearson $r$ ..... 531
Correlated Groups Design: Two Groups ..... 532
$t$ Test for Correlated Groups ..... 532
Wilcoxon Matched-Pairs Signed Ranks Test ..... 533
Sign Test ..... 533
Independent Groups Design: Two Groups ..... 534
$t$ Test for Independent Groups ..... 534
Mann-Whitney U Test ..... 535
Multigroup Experiments ..... 535
One-Way Analysis of Variance, F Test ..... 536
Tukey's HSD Test ..... 538
Scheffé Test ..... 538
One-Way Analysis of Variance, Kruskall-Wallis Test ..... 539
Two-Way Analysis of Variance, F Test ..... 539
Analyzing Nominal Data ..... 541
Chi-Square Test ..... 542
Choosing the Appropriate Test ..... 542
Questions and Problems ..... 544
Online Study Resources ..... 550
APPENDIXES ..... 551
A. Review of Prerequisite Mathematics ..... 553
B. Equations ..... 563
C. Answers to End-of-Chapter Questions and Problems and SPSS Problems ..... 571
D. Tables ..... 590
E. Introduction to SPSS ..... 615
GLOSSARY ..... 626
INDEX ..... 635

I have been teaching a course in introductory statistics for more than 30 years, first within the Department of Psychology at the University of Washington, and most recently within the Department of Neuroscience at the University of Pittsburgh. Most of my students have been psychology majors pursuing the Bachelor of Arts degree, but many have also come from biology, business, education, neuroscience, nursing, the health sciences, and other fields. My introductory statistics course has been rated quite highly. While at the University of Washington, I was a finalist for the university's "Outstanding Teaching" award for teaching this course.

This textbook has been the mainstay of my teaching. Because most of my students have neither high aptitude nor strong interest in mathematics and are not well grounded in mathematical skills, I have used an informal, intuitive approach rather than a strictly mathematical one. My approach a ssumes on ly high-school a lgebra for ba ckground knowledge, and depends very little on equation derivation. It attempts to teach the introductory statistics material in a deep way, in a manner that facilitates conceptual understanding and critical thinking rather than mechanical, by-the-numbers problem solving.

My statistics course has been quite successful. Students are able to grasp the material, even the more complicated topics like "power," and at the same time they often report that they enjoy learning it. Student ratings of this course have been high. Their ratings of this textbook are even higher; among other things students say that the text is very clear. that they like the touches of humor, and that it helps them to have the material presented in such great detail. Some students have even commented that "this is the best textbook I have ever had." Admittedly, this kind of comment is not the most frequent one offered, but for an introductory statistics textbook, coming from psychology majors, I take it as high praise indeed.

I believe the factors that make my textbook successful are the following:

- It promotes understanding rather than mechanical problem solving.
- It is student-friendly and informally written, with touches of humor that connect with students and help lower anxiety.
- It is very clearly worded and written at the right level.
- It presents the material in great detail.
- It has good visuals.
- It uses a more e xtended treatment of sampling distributions and a pa rticularly effective se quencing of $t$ he i nferential $m$ aterial, b eginning $w$ ith $t$ he $s$ ign $t$ est instead of the conventional approach of beginning with the $z$ test.
- It has interesting illustrative examples, and many ideally solved and end-of-chapter problems for students to practice with.


## Rationale for Introducing Inferential Statistics with the Sign Test

Understanding the use of sampling distributions is critical to understanding inferential statistics. The first sampling distribution discussed by most texts is the sampling distribution of the mean, used in conjunction with the $z$ test. The problem with this approach is that the sampling distribution of the mean is hard for students to understand. It cannot be generated from simple probability considerations, and its definition is very abstract and difficult to make concrete. Moreover, it is hard to relate the sampling distribution of the mean to its use in the $z$ test. The situation is further complicated because at the same time as they are being asked to understand sampling distributions, students are being asked to understand a lot of other complicated concepts such as null hypothesis, alternative hypothesis, alpha level, Type I a nd Type II error, and so forth. As a result, many s tudents do $n$ ot de velop a $n$ u nderstanding of sa mpling distributions a nd why they are important in inferential statistics. I believe this lack of understanding persists throughout the rest of inferential statistics and undermines their understanding of this important material.

What appears to happen is that since students do n ot understand the use of sampling distributions, when they are asked to solve an inferential problem, they resort to mechanically going through the steps of (1) determining the appropr iate statistic for the problem, (2) solving its equation by rote, (3) looking up the probability value in an appendix table, and (4) concluding regarding the null and alternative hypotheses. Many students follow this procedure without any insight as to why they are doing it, except that they know doing so w ill lead to the correct answer. Thus students are often able to solve problems without understanding what they are doing, all because they fail to develop a conc eptual understanding of what a sa mpling distribution is a nd why it is important in inferential statistics.

To impart a basic understanding of sampling distributions, I believe it is much better to present an extended treatment of sampling distributions, beginning with the sign test rather than the $z$ test. The sign test is a simple inference test for which the binomial distribution is $t$ he appropr iate sa mpling distribution. $T$ he binomial distribution is very easy to understand and it can be derived from basic probability considerations. Moreover, its application to the inference process is clear and obvious. This combination greatly facilitates understanding inference and bolsters student confidence in their ability to successfully handle the inferential material. In my view, the appropriate pedagogical sequence is to present basic probability first, followed by the binomial distribution, which is then followed by the sign test. This is the sequence followed in this textbook (Chapters 8,9 , and 10 , respectively).

Since the binomial distribution is entirely dependent on simple probability considerations, students can easily understand its generation and application. Moreover, the binomial distribution can also be generated by an empirical process that is use dater in the text beginning with the sa mpling distribution of the mean in Chapter 12 and continuing for all of the remaining inference tests. Generating sampling distributions
via an empi rical approach helps make the concept of sa mpling distribution conc rete and facilitates student understanding and application of sampling distributions. Since the sampling distribution of the sign test has been generated both by basic probability considerations and empirically, it serves as an important bridge to understanding all the sampling distributions discussed later in the textbook.

Introducing inferential statistics with the sign test has other advantages. All of the important concepts involving hypothesis testing can be illustrated; for example, null hypothesis, alternative hypothesis, alpha level, Type I and Type II errors, size of effect, and power. All of these concepts are learned before the formal discussion of sampling distributions and the $z$ test in Chapter 12. Hence, they don't compete for the student's attention $w$ hen $t$ he $s$ tudent is $t$ rying to $u$ nderstand sa mpling distributions. The sign test also provides an illustration of the before-after (repeated measures) experimental design. I believe this is a superior way to begin inference testing, because the beforeafter design is familiar to most students, is more intuitive, and is easier to understand than the single-sample design used with the $z$ test.

After hypothesis testing is introduced using the sign test in Chapter 10, power is discussed using the sign test in Chapter 11. Many texts do not discuss power at all, or if they do, they give it abbreviated treatment. Power is a complicated topic. Using the sign test as the vehicle for a p ower a nalysis simplifies matters. Understanding power is ne cessary if one is to grasp the methodology of scientific investigation itself. When students gain insight into power, they can see why we bother discussing Type II errors. Furthermore, they see for the first time why we conclude by "retaining $H_{0}$ " as a reasonable explanation of the data rather than by "accepting $H_{0}$ as true" (a most important and often unappreciated distinction). In this same vein, students also understand the error involved when one concludes that two conditions are equal from data that are not statistically significant. Thus power is a topic that brings the whole hypothesis-testing methodology into sharp focus.

At this state of the exposition, a diligent student can grasp the idea that data analysis basically involves two steps: (1) calculating the appropriate statistic, and (2) evaluating the statistic based on its sampling distribution. The time is ripe for a formal discussion of sampling distributions and how they can be generated. This is done at the beginning of Chapter 12. Then the sampling distribution of the mean is introduced. Rather than depending on an abstract theoretical definition of the sampling distribution of the mean, the text d iscusses how this sa mpling distribution can be generated empi rically. This gives a much more concrete understanding of the sampling distribution of the mean and facilitates understanding its use with the $z$ test.

Due to previous experience with the sign test and its easily understood sampling distribution, and using the empirical approach for generating the sampling distribution of the mean, most conscientious students have a good grasp of what sampling distributions a re a nd why they a re essential for inferential statistics. Wi th this background, students comprehend that all of the concepts of hypothesis testing are the same as we go from inference test to inference test. What vary from experiment to experiment are the statistics used, and the accompanying sampling distribution. The stage is then set for moving through the remaining inference tests with understanding.

## Other Important Textbook Features

There are other important features that are worth noting. Among them are the following:

- Chapter 1 discusses approaches for determining truth and establishes statistics as part of the scientific method, which is u nusual for an introductory statistics textbook.
- Chapter 8 co vers probability. It do es not delve de eply into probability theory. I view this as a plus, because probability can be a very difficult topic and can cause students much unnecessary malaise unless treated at the right level. In my view the proper mathematical foundation for all of the inference tests contained in this textbook can be built simply by the use of basic probability definitions in conjunction with the addition and multiplication rules, as has been done in Chapter 8.
- In Chapter 14, the $t$ test for correlated groups is introduced directly after the $t$ test for single samples and is developed as a special case of the $t$ test for single samples, only this time using difference scores rather than raw scores. This makes the $t$ test for correlated groups quite easy to teach and easy for students to understand.
- In Chapter 14, understanding of power is deepened and the important principle of using the most powerful inference test is illustrated by a nalyzing the sa me data set with the $t$ test for correlated groups and the sign test.
- In Chapter 14, the correlated and independent groups designs are compared with regard to power and utility.
- There is a discussion of the factors influencing the power of the $t$ test in Chapter 14 and one-way ANOVA in Chapter 15.
- In Chapter 14, the confidence interval approach for evaluating the effect of the independent variable is presented along with the conventional hypothesis-testing approach.
- Chapter 18 is a summary chapter of all of the inferential statistics material. This chapter gives students the opportunity to choose among inference tests in solving problems. Students particularly like the decision tree presented here.
- What Is the Truth? sections: At the end of various chapters throughout the textbook, there are sections titled What Is the Truth? along with end-of chapter questions on these sections. These sections and questions are intended to illustrate real-world applications of statistics and to sharpen applied critical thinking.


## Tenth Edition Changes

Textbook The following changes have been made in the textbook.

- SPSS material has been greatly expanded. Because of increased use of statistical software in recent years and in response to re viewer advice, I ha ve greatly expended the SPSS material. In the tenth edition, there is SPSS coverage at the end of Chapters $2,3,4,5,6,7,13,14,15,16$, and 17 . For each chapter, this material is comprised of a detailed illustrative SPSS example and solution along with at least two new SPSS problems to practice on. In addition, a new Appendix E contains a general introduction to SPSS. Students can now learn SPSS and practice on chapter-relevant problems without recourse to additional outside sources. The SPSS material at the end of Chapters 4 and 6 that was contained in the ninth edition has been dropped. The old Appendix E, Symbols, has been moved to the inside cover of the textbook.
- ANOVA symbols throughout Chapters 15 and 16 have been changed. The symbols used in the previous editions of the textbook in the ANOVA chapters have been changed to more conventionally used symbols. The specific changes are a follows. In C hapter $15, s_{W}{ }^{2}, s_{B}{ }^{2}, S S_{T}, S S_{W}, S S_{B}, \mathrm{df}_{T}, \mathrm{df}_{W}$, and $\mathrm{ff}_{B}$ have been changed to $M S_{\text {within }}, M S_{\text {between }}, S S_{\text {total }}, S S_{\text {within }}, S S_{\text {between }}, \mathrm{df}_{\text {total }}, \mathrm{df}_{\text {within }}$, and $\mathrm{df}_{\text {between }}$, res pectively. In C hapter $16, s_{W}^{2}, s_{R}^{2}, s_{C}^{2}, s_{R C}{ }^{2}, S S_{T}, S S_{W}, S S_{R}, S S_{C}$,
$S S_{R C}, d f_{T}, d f_{W}, d f_{R}, d f_{C}$, a nd $d f_{R C}$ have been changed to $M S_{\text {within-cells }}, M S_{\text {rows }}$, $M S_{\text {columns }}, M S_{\text {interaction }}, S S_{\text {total }}, S S_{\text {within-cells }}, S S_{\text {rows }}, S S_{\text {columns }}, S S_{\text {interaction }}, \mathrm{df}_{\text {total }}$, $\mathrm{df}_{\text {within-cells }}, \mathrm{df}_{\text {rows }}, \mathrm{df}_{\text {columns }}$, and $\mathrm{df}_{\text {interaction }}$, respectively.

I made these changes because I b elieve students will have an ea sier time transitioning to a dvanced statistical textbooks and using statistical softwareincluding SPSS-and because of reviewer recommendations. I have some regrets with moving to the new symbols, because I b elieve the old symbols provide a better transition from the $t$ test to A NOVA, and because of the extra time and effort it may require of instructors who are used to the old symbols (my apologies to these instructors for the inconvenience).

- In Chapter 15, the Newman-Keuls test has been replaced with the Scheffé test. The Newman-Keuls test has been dropped because of recent criticism from statistical experts that the Newman-Keuls procedure of adjusting $r$ can result in an experimentwise or familywise Type I error rate that exceeds the specified level. I have replaced the Newman-Keuls test with the Scheffé test. The Scheffé test has the advantages that (1) it uses a modified ANOVA technique that is relatively easy to understand and compute; (2) it is very commonly used in the research literature; (3) it is the most flexible and conservative post hoc test available; and (4) it provides a good contrast to the Tukey HSD test.
- What Is the Truth? questions have been added at the end of the chapters that contain What Is the Truth? sections (Chapters 1, 3, 6, 8, 10, 11, 15, and 17). These questions have been added to pro vide closer integration of the What Is the Truth? sections with the rest of the textbook content and to promote applied critical thinking.
- In Chapter 7, the section titled Regression of $\boldsymbol{X}$ on $\boldsymbol{Y}$ has been dropped. This section has been dropped because students can compute the regression of $Y$ on $X$ or of $X$ on $Y$ by just designating the predicted variable as the $Y$ variable. Therefore there is little practical gain in devoting a separate section to the regression of $X$ on $Y$. Separate treatment of the regression of $X$ on $Y$ does contribute additional theoretical insight into the topic of re gression, but was judged n ot i mportant enough to justify precious introductory textbook space.
- The To the Student section has been amplified to include a discussion of anxiety reduction. This material has been added to he lp students who experience excessive anxiety when dealing with the statistics material. Five options for reducing anxiety have been presented: (1) seeking help at the university counseling center, (2) taking up the practice of meditation, (3) learning and practicing autogenic techniques, (4) increasing bodily relaxation via progressive muscle relaxation, and (5) practicing the techniques advocated by positive psychology.
- The index has been revised. I favor a detailed index. In previous editions, the index has only been partially revised, finally resulting in an index in the ninth edition that has become unwieldy and redundant. In the tenth edition the index has been co mpletely re vised. The result is a s treamlined index that I b elieve retains the detail necessary for a good index.
- Minor wording changes have been made throughout the textbook to increase clarity.


## Ancillaries

Aplia ${ }^{\mathrm{TM}}$ has replaced Enhanced WebAssign, which was used in the ninth edition. Aplia is an online interactive learning solution that improves comprehension and outcomes by increasing student effort and engagement. Founded by a professor to en hance his own
courses, A plia provides automatically graded a ssignments that were written to m ake the most of the Web medium and contain detailed, immediate explanations on e very question. Our easy-to-use system has been use d by more $t$ han $2,000,000$ students at over 1,800 institutions.

Aplia for Pagano's Understanding Statistics in the Behavioral Sciences also includes end-of-chapter questions directly from the text.

WebTutor ${ }^{\text {TM }}$ Jump-start your course with customizable, rich, text-specific content within your Course Management System. Whether you want to Web-enable your class or put an entire course online, WebTutor delivers. WebTutor offers a wide array of resources, including integrated eBook, quizzing, and more! Visit webtutor.cengage.com to learn more.

Instructor's Manual with Test Bank The instructor's manual includes the textbook rationale, general teaching advice, advice to the student, and, for each chapter, a det ailed chapter ou tline, learning objectives, a det ailed chapter s ummary, t eaching suggestions, discussion que stions, a nd test que stions a nd a nswers. Test que stions a re organized into multiple-choice, true/false, definitions, a nd short a nswer sections, a nd answers are also provided. Over 600 new test questions have been added to $t$ he tenth edition. The overall test bank has over 2,200 true/false, multiple-choice, and short-answer questions. The instructor's manual also includes answers to the end-of-chapter problems contained in the textbook for which no answers are given in the textbook.

Book Companion Website Available for use by all students, the book companion website offers chapter-specific learning tools including Know and Be Able to Do, practice quizzes, flash cards, glossaries, a link to Statistics and Research Methods Workshops, and more. Go to www.cengagebrain.com for access.

## Acknowledgments

I have received a $g$ reat deal of help in the de velopment and production of this edition. First, I w ould like to thank Timothy C. Mat ray, my Sponsoring Editor. He has been a continuing pillar of support throughout the development and production of this edition. I am especially grateful for his input in deciding on re vision items, finding appropriate experts to review the revised material, for the role he has played in facilitating the transition from Enhanced WebAssign to Aplia and the ideas he has contributed to advertising. Next, I w ould like to thank B ob Jucha, the Developmental Editor for this edition. I a m grateful for his conduct of surveys and evaluations, his role in coordinating with Production, his advice, and his hard work. I am indebted to Vernon Boes, the Senior Art Director and his team. I think they have produced an outstanding cover and interior design for the tenth edition. I b elieve he a nd his team have created a p eaceful and esthetic cover that continues our animal theme, as well as a very clean, attractive interior textbook design. I am particularly pleased to have had the opportunity to collaborate on this edition with my daughter, Maria E. Pagano, who is an Associate Professor in the Department of Psychiatry at Case Western University. It was a lot of fun, and she helped greatly in reviewing parts of the textbook, especially the SPSS material. I am also grateful to Dr. Lynn Johnson for reviewing the positive psychology material presented in the To the Student section.

The rem aining C engage $L$ earning/Wadsworth staff $t$ hat I w ould like to $t$ hank are Content Project Ma nager Charlene M. Ca rpentier, A ssistant Editor Paige Leeds, Editorial Assistant Lauren Moody, Media Editor Mary Noel, and Marketing Manager Sean Foy.

I wish to thank the following individuals who reviewed the ninth edition and made valuable suggestions for this revision.

Erin Buchanan, University of Mississippi<br>Ronald A. Craig. Edinboro University of Pennsylvania<br>David R. Dunaetz, Azusa Pacific University<br>Christine Ferri, Richard Stockton College of New Jersey<br>Carrie E. Hall, Miami University<br>Deborah J. Hendricks, West Virginia University<br>Mollie Herman, Towson University<br>Alisha Janowsky, University of Central Florida<br>Barry Kulhe, University of Scranton<br>Wanda C. McCarty, University of Cincinnati<br>Cora Lou Sherburne, Indiana University of Pennsylvania<br>Cheryl Terrance, University of North Dakota<br>Brigitte Vittrup, Texas Woman's University<br>Gary Welton, Grove City College

I am grateful to the Literary Executor of the Late Sir Ronald A. Fisher, F.R.S.; to Dr. Frank Yates, F.R.S.; and to the Longman Group Ltd., London, for permission to reprint Tables III, IV, and VII from their book Statistical Tables for Biological, Agricultural and Medical Research (sixth edition, 1974).

The material covered in this textbook, instructor's manual, and on the Web is appropriate for undergraduate students with a major in psychology or related behavioral science disciplines. I believe the approach I have followed helps considerably to impart this subject matter with understanding. I am grateful to receive any comments that will improve the quality of these materials.

Robert R. Pagano

## TO THE STUDENT

Statistics uses probability, logic, and mathematics as ways of determining whether or not observations made in the real world or laboratory are due to random happenstance or due to an orderly effect one variable has on another. Separating happenstance, or chance, from cause and effect is the task of science, and statistics is a tool to accomplish that end. Occasionally, data will be so clear that the use of statistical analysis isn't necessary. Occasionally, data will be so garbled that no statistical analysis can meaningfully be applied to answer any reasonable question. However, most often, when analyzing the data from an experiment or study, statistics is useful in determining whether it is legitimate to conclude that an orderly effect has occurred. When this is the case, statistical analysis can also provide an estimate of the size of the effect.

It is useful to try to think of statistics as a means of learning a new set of problemsolving skills. You will learn new ways to ask questions, new ways to answer them, and a more sophisticated way of interpreting the data you read about in texts, journals, and newspapers.

In writing this textbook and creating the Web material, I have tried to make the material as clear, interesting, and easy to understand as I can. I have used a relaxed style, i ntroduced hu mor, a voided e quation derivation when possible, a nd chosen examples and problems that I believe will be interesting to students in the behavioral sciences. I have listed the objectives for each chapter so that you can see what is in store for you and guide your studying accordingly. I have also introduced "mentoring tips" throughout the textbook to he lp highlight important a spects of the material. While I was teaching at the University of Washington and the University of Pittsburgh, my statistics course was evaluated by each class of students that I taught. I found the suggestions of students invaluable in improving my teaching. Many of these suggestions have been incorporated into this textbook. I take quite a lot of pride in having been a finalist for the University of Washington Outstanding Teaching Award for teaching this statistics course, and in the fact that students have praised this textbook so highly. I believe much of my success derives from student feedback and the quality of this textbook.

## Study Hints

- Memorize symbols. A lot of symbols are used in statistics. Don't make the material more difficult than necessary by failing to memorize what the symbols stand for. Treat them as though they were foreign vocabulary. Be able to go quickly from the symbol to what it stands for, and vice versa. The Flash Cards section in the accompanying Web material will help you accomplish this goal.
- Learn the definitions for new terms. Many new terms are introduced in this course. Part of learning statistics is learning the definitions of these new terms. If you don't know what the new terms mean, it will be impossible to do w ell in this course. Like the symbols, the new terms should be treated like foreign vocabulary. Be able to instantly associate each new term with its definition and vice versa. The Flash Cards section in the accompanying Web material will also help you accomplish this goal.
- Work as many problems as needed for you to understand the material and produce correct answers. In my experience there is a direct, positive relationship between working problems and doing well on this material. Be sure you try to understand the solutions. When using calculators and computers, there can be a tendency to press $t$ he keys and read the answer without really understanding the solution. I hope you won't fall into this trap. Also, work the problem from beginning to end, rather than just following someone else's solution and telling yourself that you could solve the problem if called upon to do so. Solving a problem from scratch is very different and often more difficult than "understanding" someone else's solution.
- Don't fall behind. The material in this course is cumulative. Do not let yourself fall behind. If you do, you will not understand the current material either.
- Study several times each week, rather than just cramming. A lot of research has shown that you will learn better and remember more material if you space your learning rather than just cramming for the test.
- Read the material in the textbook prior to the lecture/discussion covering it. You can learn a lot just by reading this textbook. Moreover, by reading the appropriate material just prior to when it is covered in class, you can determine the parts that you have difficulty with and ask appropriate questions when that material is covered by your instructor.
- Pay attention and think about the material being covered in class. This advice may seem obvious, but for whatever reason, it is frequently not followed by students. Often times I've had to stop my lecture or discussions to rem ind students about the importance of paying attention and thinking in class. I don't require students to attend my classes, but if they do, I assume they want to learn the material, and of course, attention and thinking are prerequisites for learning.
- Ask the questions you need to ask. Many of us feel our question is a "dumb" one, and we will be embarrassed because the question will reveal our ignorance to the instructor and the rest of the class. Almost always, the "dumb" question helps others sitting in the class because they have the same question. Even when this is not true, it is very often the case that if you don't ask the question, your learning is blocked and stops there, because the answer is ne cessary for you to continue learning the $m$ aterial. D on't let p ossible emba rassment hinder y our learning. If it doesn't work for you to ask in class, then ask the question via email, or make an appointment with the instructor and ask then.
- Compare your answers to mine. For most of the problems I have used a hand calculator or computer to find the solutions. Depending on how many decimal
places you carry your intermediate calculations, you may get slightly different answers than I do. In most cases I have used full calculator or computer accuracy for intermediate calculations (at least five decimal places). In general, you should carry all intermediate calculations to at l east two more de cimal places than the number of decimal places in the rounded final answer. For example, if you intend to round the final answer to two decimal places, than you should carry all intermediate calculations to at least four decimal places. If you follow this policy and your answer does not agree with ours, then you have probably made a calculation error.
- One final topic: Dealing with anxiety. A nyone who has taught an introductory statistics class for psychology majors is aware that many students have a great deal of anxiety about taking a statistics course. Actually, a small or even moderate level of anxiety can facilitate learning, but too much anxiety can be an impediment. Fortunately, we know a fair amount about anxiety and techniques that help reduce it. If you think the level of fear or anxiety that you experience associated with statistics is causing you a problem, I suggest you avail yourself of one or more of the following options.
- Visit the counseling center at your colle ge or university. Many students experience anxiety associated with courses the are taking, especially math courses. Counseling centers ha ve lots of e xperience helping these students o vercome their anxiety. The services provided are confidential and usually free. If I were a student having a problem with course-related anxiety, this is the first place I would go for help.
- Meditation. There has been a lot of research looking at the physiological and psychological effects of meditation. The research shows that meditation results in a more relax ed individual who generally e xperiences an increased sense of well-being. Being more relax ed can have the beneficial effect of lowering one's anxiety le vel in the day-to-day learning of statistics material. Meditation can have additional benefits, including developing mindfulness and equanimity. Equanimity is defined as calmness in the f ace of stress. De veloping the trait of equanimity can be especially useful in dealing with anxiety. I have included a short reference section belo w for those interested in pursuing this topic further.
- Autogenic tr aining and pr ogressive muscle $r$ elaxation. These are wellestablished techniques for promoting general relaxation. Autogenic training is a relaxation technique first de veloped by the German psychiatrist Johannes Schultz in the early 1930s. It in volves repeating a series of autohypnotic sentences like "my right arm is hea vy," or "my heartbeat is calm and regular," designed to calm one's autonomic nervous system. Progressive muscle relaxation is another well-established relaxation technique. It $w$ as developed by American physician Edmund Jacobson in the early 1920s. It is a technique developed to reduce anxiety by sequentially tensing and relaxing various muscle groups and focusing on the accompan ying sensations. I have included a short reference section belov for those interested in pursuing either of these techniques further
- Positive psychology. Positive psychology is an area within psychology that vas initiated about 15 years ago in the American Psychological Association presidential address of Martin Seligman. Its focus of interest is happiness or wellbeing. It studies normal and abo ve-normal functioning indi viduals. Rather than attempting to help clients lead more positive lives by tracing the etiology of negative emotional states such as depression or anxiety, as does traditional
clinical psychology, positive psychology attempts to promote greater happiness by incorporating techniques into one's life that research has revealed promote positive emotions. Some of the techniques recommended include learning and practicing optimism; learning to be grateful and to express gratitude; spending more time in areas involving personal strengths; sleeping well, getting proper nutrition, increasing exercise; savoring positive experiences, reframing (finding the good in the bad), skill training in detachment from ne gative thoughts, decreasing fear and anxiety by confronting or doing feared things or activities, doing good deeds and random acts of kindness, increasing connections with others, and increasing compassion and forgiveness. As with the other options, I have included below a short reference section for pursuing positive psychology further. I have also included a website for the Positive Psychology Center located at the University of Pennsylvania that I have found useful.


## References

## Meditation

S. Salzberg, Real Happiness: The Power of Meditation, Workman Publishing Company, New York, 2011.
W. Hart, The Art of Living: Vipassana Meditation as taught by S.N. Goenka, HarperCollins, New York, 1987.
B. Boyce (Ed), The Mindfulness Revolution, Shambala Publications Inc., Boston, 2011.
C. Beck, Everyday Zen, HarperCollins, New York, 1989

## Autogenic Training

F. Stetter and S. Kupper, Autogenic training: a meta-analysis of clinical outcome studies, Applied Psychophysiology and Biofeedback 27(1):45:98, 2002.
W. Luthe and J. Schultz, Autogenic Therapy, The British Autogenic Society, 2001.
K. Kermani. Autogenic Training: Effective Holistic Way to Better Health, Souvenir Press, London, 1996.

## Progressive Muscle Relaxation

E. Jacobson, E. Progressive Relaxation, University of Chicago Press, Chicago, 1938 (classic book).
M. Davis and E. R. Eshelman, The Relaxation and Stress Reduction Workshop, New Harbinger Publications, Inc., Oakland, 2008
F. McGuigan, Progressive Relaxation: Origins, Principles and Clinical Applications. In Principles and Practice of Stress Management, ${ }^{\text {nd }}$ ed., Edited by P. Lehrer and R. Woolfold, New York, Guilford Press, 1993.

Positive Psychology
L. Johnson, Enjoy Life: Healing with Happiness, Head Acre Press, Salt Lake City, 2008.
M. Seligman, Authentic Happiness: Using the New Positive Psychology to Realize Your Potential for Lasting Fulfillment, The Free Press, New York, 2004.
C. Peterson, A Primer in Positive Psychology, Oxford University Press, Oxford, 2006.

Center for Positive Psychology, www.ppc.sas.upenn.edu.
I wish you great success in understanding the material contained in this textbook.
Robert R. Pagano


## OVERVIEW

1 Statistics and Scientific Method

## Statistics and Scientific Method

## LEARNING OBJECTIVES

After completing this chapter, you should be able to:

- Describe the four methods of establishing truth.
- Contrast observational and experimental research.
- Contrast descriptive and inferential statistics.
- Define the following terms: population, sample, variable, independent variable, dependent variable, constant, data, statistic, and parameter.
- Identify the population, sample, independent and dependent variables, data, statistic, and parameter from the description of a research study.
- Specify the difference between a statistic and a parameter.
- Give two reasons why random sampling is important.
- Understand the illustrative example, do the practice problem, and understand the solution.

Have you ever wondered how we come to know truth? Most college students would agree that finding out what is $t$ rue about the world, ourselves, a nd ot hers constitutes a very important activity. A little reflection reveals that much of our time is s pent in precisely this way. If we are studying geography, we want to know what is true about the geography of a particular region. Is the region mountainous or flat, agricultural or industrial? If our interest is in studying human beings, we want to know what is true about humans. Do we truly possess a spiritual nature, or are we truly reducible solely to atoms and molecules, as the reductionists would have it? How do humans think? What happens in the body to produce a sensation or a movement? When I get angry, is it true that there is a unique underlying physiological pattern? What is the pattern? Is my true purpose in life to become a teacher? Is it true that animals think? We could go on indefinitely with examples because so much of our lives is spent seeking and acquiring truth.

## METHODS OF KNOWING



Historically, humankind has employed four methods to a cquire knowledge. They are authority, rationalism, intuition, and the scientific method.

## Authority

## MENTORINGTIP

Which of the four methods do you use most often?

When using the method of authority, we consider something true because of tradition or because some person of distinction says it is true. Thus, we may believe in the theory of evolution because our distinguished professors tell us it is true, or we may believe that God truly exists because our parents say so. Although this method of knowing is currently in disfavor and does sometimes lead to error, we use it a lot in living our daily lives. We frequently accept a large amount of information on the basis of authority, if for no other reason than we do not have the time or the expertise to check it out firsthand. For example, I believe, on the basis of physics authorities, that electrons exist, but I have never seen one; or perhaps closer to home, if the surgeon general tells me that smoking causes cancer, I s top smoking because I have faith in the surgeon general and do not have the time or means to investigate the matter personally.

## Rationalism

The method of rationalism uses reasoning alone to arrive at knowledge. It assumes that if the premises are sound and the reasoning is ca rried out correctly according to the rules of logic, then the conclusions will yield truth. We are very familiar with reason because we use it so much. As an example, consider the following syllogism:

All statistics professors are interesting people.
Mr . X is a statistics professor.
Therefore, Mr. X is an interesting person.
Assuming the first statement is true (who could doubt it?), then it follows that if the second statement is true, the conclusion must be true. Joking aside, hardly anyone would question the importance of the reasoning process in yielding truth. However, there are a great number of situations in which reason alone is inadequate in determining the truth.

To i llustrate, 1 et's s uppose y ou n otice $t$ hat $J$ ohn, a f riend of y ours, ha s b een depressed for a couple of months. As a psychology major, you know that psychological problems can produce depression. Therefore, it is rea sonable to believe John may have psychological problems that are producing his depression. On the other hand, you also know that an inadequate diet can result in depression, and it is reasonable to believe that this may be at the root of his trouble. In this situation, there are two reasonable explanations of the phenomenon. Hence, reason alone is i nadequate in distinguishing between them. We must resort to experience. Is John's diet in fact deficient? Will improved eating habits correct the situation? Or does John have serious psychological problems that, when worked through, will lift the depression? Reason alone, then, may be sufficient to yield truth in some situations, but it is clearly inadequate in others. As we shall see, the scientific method also uses reason to arrive at truth, but reasoning alone is only part of the process. Thus, the scientific method incorporates reason but is not synonymous with it.

## Intuition

Knowledge is a lso a cquired t hrough intuition. By intuition, we mean that sudden insight, the clarifying idea that springs into consciousness all at once as a whole. It is not arrived at by reason. On the contrary, the idea often seems to occur after conscious reasoning has failed. B everidge* gives numerous occurrences taken from prominent individuals. Here are a couple of examples:

Here is Met chnikoff's own a ccount of $t$ he or igin of $t$ he i dea of ph agocytosis: "O ne day when the whole family had gone to the circus to see some extraordinary performing apes, I remained alone with my microscope, observing the life in the mobile cells of a transparent starfish larva, when a new thought suddenly flashed across my brain. It struck me that similar cells might serve in the defense of the organism against intruders. Feeling that there was in this something of surpassing interest, I felt so excited that I began striding up and down the room and even went to the seashore to collect my thoughts."

Hadamard cites an experience of the mathematician Gauss, who wrote concerning a problem he had tried unsuccessfully to prove for years: "Finally two days ago I succeeded ... like a sudden flash of lightning the riddle happened to be solved. I cannot myself say what was the conducting thread which connected what I previously knew with what made my success possible."

It is interesting to note that the intuitive idea often occurs after conscious reasoning has failed and the individual has put the problem aside for a while. Thus, Beveridge ${ }^{\dagger}$ quotes two scientists as follows:

Freeing my mind of all thoughts of the problem I walked briskly down the street, when suddenly at a definite spot which I could locate today-as if from the clear sky above me-an idea popped into my head as emphatically as if a voice had shouted it.

I decided to abandon the work and all thoughts relative to it, and then, on the following day, when occupied in work of an entirely different type, an idea came to my mind as suddenly as a flash of lightning and it was the solution ... the utter simplicity made me wonder why I hadn't thought of it before.

Despite the fact that intuition has probably been used as a source of knowledge for as long as humans have existed, it is still a very mysterious process about which we have only the most rudimentary understanding.

[^0]
## Scientific Method

Although the scientific method uses both reasoning and intuition for establishing truth, its reliance on objective assessment is what differentiates this method from the others. At the heart of science lies the scientific experiment. The method of science is $r$ ather straightforward. By some means, usually by reasoning deductively from existing theory or inductively from existing facts or through intuition, the scientist arrives at a hypothesis about some feature of reality. He or she then designs an experiment to objectively test the hypothesis. The data from the experiment are then a nalyzed statistically, and the hypothesis is e ither supported or re jected. The feature of overriding i mportance in this methodology is that no matter what the scientist believes is true regarding the hypothesis under study, the experiment provides the basis for an objective evaluation of the hypothesis. The data from the experiment force a conclusion consonant with reality. Thus, scientific methodology has a built-in safeguard for ensuring that truth assertions of any sort about reality must conform to what is demons trated to be objectively true about the phenomena before the assertions are given the status of scientific truth.

An important aspect of this methodology is that the experimenter can hold incorrect hunches, and the data will expose them. The hunches can then be revised in light of the data and retested. This methodology, although sometimes painstakingly slow, has a selfcorrecting feature that, over the long run, has a high probability of yielding truth. Since in this textbook we emphasize statistical analysis rather than experimental design, we cannot spend a great deal of time discussing the design of experiments. Nevertheless, some experimental design will be covered because it is so intertwined with statistical analysis.

In discussing this a nd other material throughout the book, we shall be using certain technical terms. The terms and their definitions follow:

- Population A population is the complete set of individuals, objects, or scores that the investigator is interested in studying. In an actual experiment, the population is the larger group of individuals from which the subjects run in the experiment have been taken.
- Sample A sample is a subset of the population. In an experiment, for economical reasons, the investigator usually collects data on a smaller group of subjects than the entire population. This smaller group is called the sample.
- Variable $A$ variable is any property or characteristic of some event, object, or person that may have different values at different times depending on the conditions. Height, weight, reaction time, and drug dosage are examples of variables. A variable should be contrasted with a constant, which, of course, does not have different values at different times. An example is the mathematical constant $\pi$; it always has the same value ( 3.14 to two-decimal-place accuracy).
- Independent variable (IV) The independent variable in an experiment is the variable that is systematically manipulated by the investigator. In most experiments, the investigator is interested in determining the effect that one variable, say, variable $A$, has on one or more other variables. To do so, the investigator manipulates the levels of variable $A$ and measures the effect on the other variables. Variable $A$ is called the independent variable because its levels are controlled by the experimenter, independent of a ny change in the ot her variables. To illustrate, an investigator might be interested in the effect of alcohol on social behavior. To investigate this, he or she would probably vary the amount of alcohol
consumed by the subjects and measure its effect on their social behavior. In this example, the experimenter is manipulating the amount of alcohol and measuring its consequences on social behavior. Alcohol amount is the independent variable. In another experiment, the effect of sleep deprivation on agg ressive behavior is studied. Subjects are deprived of various amounts of sleep, and the consequences on aggressiveness are observed. Here, the amount of sleep deprivation is being manipulated. Hence, it is the independent variable.
- Dependent variable (DV) The dependent variable in an experiment is the variable that the investigator measures to determine the effect of the independent variable. For example, in the experiment studying the effects of alcohol on social behavior, the amount of alcohol is the independent variable. The social behavior of the subjects is measured to see whether it is affected by the amount of alcohol consumed. Thus, social behavior is the dependent variable. It is called dependent because it may depend on the amount of alcohol consumed. In the investigation of sleep deprivation and aggressive behavior, the amount of sleep deprivation is being manipulated and the subjects' aggressive behavior is being measured. The amount of sleep deprivation is the independent variable, and aggressive behavior is the dependent variable.
- Data The measurements that are made on the subjects of an experiment are called data. Usually data consist of the measurements of the dependent variable or of other subject characteristics, such as age, gender, number of subjects, and so on. The data as originally measured are often referred to as raw or original scores.
- Statistic A statistic is a number calculated on sample data that quantifies a characteristic of the sample. Thus, the average value of a sa mple set of scores would be called a statistic.
- Parameter A parameter is a number calculated on population data that quantifies a ch aracteristic of the population. For e xample, the a verage value of a population set of scores is called a parameter. It should be noted that a statistic and a parameter are very similar concepts. The only difference is that a statistic is calculated on a sample and a parameter is calculated on a population.


## experiment

## MENTORINGTIP

Very often parameters are unspecified. Is a parameter specified in this experiment?

## Mode of Presentation and Retention

Let's now consider an illustrative experiment and apply the previously discussed terms.

An e ducator conducts a n experiment to determine whether the m ode of presentation affects how well prose material is remembered. For this experiment, the educator uses several prose passages that are presented visually or a uditorily. Fifty students are selected from the undergraduates attending the university at which the educator works. The students are divided into two groups of 25 students per group. The first group receives a visual presentation of the prose passages, and the second group hears the passages through an auditory presentation. At the end of their respective presentations, the subjects are asked to write down as much of the material as they can remember. The average number of words remembered by each group is calculated, and the two group averages are compared to see whether the mode of presentation had an effect.

In this experiment, the independent variable is $t$ he mo de of presentation of the prose passages (i.e., auditory or visual). The dependent variable is the number of words remembered. The sample is the 50 students who participated in the experiment. The population is the larger group of individuals from which the sample was taken, namely, the undergraduates attending the university. The data are the number of words recalled by each student in the sample. The average number of words recalled by each group is a statistic because it quantifies a characteristic of the sample scores. Since there was no measurement made of any population characteristic, there was no parameter calculated
in this experiment. However, for illustrative purposes, suppose the entire population had been given a visual presentation of the passages. If we calculate the average number of words remembered by the population, the average number would be called a parameter because it quantifies a characteristic of the population scores.

Now, let's do a problem to practice identifying these terms.

## Practice Problem 1.1

For the experiment described below, specify the following: the independent variable, the dependent variable(s), the sample, the population, the data, the statistic(s), and the parameter(s).

A professor of gynecology at a pro minent medical school wants to det ermine whether an experimental birth control implant has side effects on body weight and depression. A group of 5000 adult women living in a nearby city volunteers for the experiment. The gynecologist selects 100 of these women to participate in the study. Fifty of the women are assigned to group 1 and the other fifty to group 2 such that the mean body weight and the mean depression scores of each group are equal at the beginning of the experiment. Treatment conditions are the same for both groups, except that the women in group 1 a re surgically implanted with the experimental birth control device, whereas the women in group 2 receive a placebo implant. Body weight and depressed mood state are measured at the beginning and end of the experiment. A standardized questionnaire designed to measure degree of depression is used for the mood state measurement. The higher the score on this questionnaire is, the more depressed the individual is. The mean body weight and the mean depression scores of each group at the end of the experiment are compared to determine whether the experimental birth control implant had an effect on these variables. To safeguard the women from u nwanted pregnancy, a nother method of birth control that does not interact with the implant is used for the duration of the experiment.

## SOLUTION

Independent variable: The experimental birth control implant versus the placebo.
Dependent variables: Body weight and depressed mood state.
Sample: 100 women who participated in the experiment.
Population: 5000 women who volunteered for the experiment.
Data: The individual body weight and depression scores of the 100 women at the beginning and end of the experiment.
Statistics: Mean body weight of group 1 at the beginning of the experiment, mean body weight of group 1 at the end of the experiment, mean depression score of group 1 at the beginning of the experiment, mean depression score of group 1 at the end of the experiment, plus the same four statistics for group 2.
Parameter: No parameters were given or computed in this experiment. If the gynecologist had measured the body weights of all 5000 volunteers at the beginning of the experiment, the mean of these 5000 weights would be a parameter.

Scientific research may be divided into two categories: observational studies and true experiments. Statistical techniques are important in both kinds of research.

## Observational Studies

In this type of research, no variables are actively manipulated by the investigator, and hence o bservational studies ca nnot det ermine causa lity. I ncluded within this category of research are (1) naturalistic observation, (2) parameter estimation, and (3) correlational studies. With naturalistic observation research, a major goal is to obtain an accurate description of the situation being studied. Much a nthropological and etiological research is of this type. Parameter estimation research is conducted on sa mples to es timate the level of one or more p opulation characteristics (e.g., the population average or percentage). Surveys, public opinion polls, and much market research fall into this category. In correlational research, the investigator focuses attention on two or more variables to determine whether they are related. For example, to determine whether obesity and high blood pressure are related in adults older than 30 years, an investigator might measure the fat level and blood pressure of individuals in a sample of adults older than 30 . The investigator would then analyze the results to see whether a relationship exists between these variables; that is, do individuals with low fat levels also have low blood pressure, do individuals with moderate fat levels have moderate blood pressure, and do individuals with high fat levels have high blood pressure?

## True Experiments

MENTORING TIP
Only true experiments can determine causality.

In this type of research, an attempt is $m$ ade to det ermine whether changes in one variable cause* changes in a nother variable. In a t rue experiment, an independent variable is m anipulated a nd its e ffect on so me dep endent v ariable is s tudied. If desired, there can be more than one independent variable and more than one dependent variable. In the simplest case, there is on ly one i ndependent and one dep endent variable. One example of this case is the experiment mentioned previously that investigated the effect of alcohol on so cial behavior. In this experiment, y ou will recall, a lcohol level was manipulated by the experimenter and its effect on so cial behavior was measured.

## RANDOM SAMPLING

In all of the research described previously, data are usually collected on a sa mple of subjects rather than on the entire population to which the results are intended to apply. Ideally, of course, the experiment would be performed on the whole population,

[^1]but usually it is far too costly, so a sa mple is taken. Note that not just any sample will do. The sample should be a random sample. Random sampling is discussed in Chapter 8. For now, it is sufficient to know that random sampling allows the laws of probability, also discussed in Chapter 8, to app ly to the data and at the same time helps a chieve a sa mple that is represen tative of $t$ he p opulation. $T$ hus, $t$ he res ults obtained from the sa mple should also apply to $t$ he population. O nce the data a re collected, they are statistically analyzed and the appropriate conclusions about the population are drawn.

## DESCRIPTIVE AND INFERENTIAL STATISTICS

Statistical analysis, of course, is the main theme of this textbook. It has been divided into two areas: (1) descriptive statistics and (2) inferential statistics. Both involve analyzing data. If an analysis is done for the purpose of describing or characterizing the data, then we are in the area of descriptive statistics. To illustrate, suppose your biology professor has just recorded the scores from an exam he has recently given you. He hands back the tests and now wants to describe the scores. He might decide to calculate the average of the distribution to describe its central tendency. Perhaps he will also determine its range to characterize its variability. He might also plot the scores on a g raph to show the shape of the distribution. Since all of these procedures are for the purpose of describing or characterizing the data already collected, they fall within the realm of descriptive statistics.

Inferential statistics, on the other hand, is n ot concerned with just describing the obtained data. R ather, it embraces techniques that allow one to use o btained sample data to make inferences or draw conclusions about populations. This is the more complicated part of statistical analysis. It involves probability and various inference tests, such as Student's t test and the analysis of variance.

To illustrate the difference between descriptive and inferential statistics, suppose we were interested in determining the average IQ of the entire freshman class at your university. It w ould be to o cos tly a nd time-consuming to mea sure the IQ of e very student in the population, so we would take a random sample of, say, 200 students and give each an IQ test. We would then have 200 sample IQ scores, which we want to use to determine the average IQ in the population. Although we can't determine the exact value of the population average, we can estimate it using the sample data in conjunction with an inference test called Student's $t$ test. The results would allow us to make a statement such as, "We are $95 \%$ confident that the interval of 115-120 contains the mean IQ of the population." Here, we are not just describing the obtained scores, as was the case with the biology exam. Rather, we are using the sample scores to infer to a population value. We are therefore in the domain of inferential statistics. Descriptive and inferential statistics can be defined as follows:
definitions $\square$ Descriptive statistics is concerned with techniques that are used to describe or characterize the obtained data.

Inferential statistics involves techniques that use the obtained sample data to infer to populations.

## USING COMPUTERS IN STATISTICS

MENTORINGTIP
It is easy to use this textbook with SPSS. Relevant chapters contain SPSS material specific to those chapters, and Appendix E presents a general introduction to SPSS.

The use of computers in statistics has increased greatly over the past decade. In fact, today a lmost a ll resea rch d ata in the behavioral sci ences a re a nalyzed by statistical computer programs rather than "by hand" with a ca lculator. This is g ood news for s tudents, who often like $t$ he ideas, conc epts, a nd res ults of statistics but hat e the drudgery of hand computation. The fact is that researchers hate computational drudgery too, and therefore almost always use a computer to analyze data sets of any appreciable size. Computers have the advantages of saving time and labor, minimizing the chances of computational error, allowing easy graphical display of the data, and providing better management of large data sets. However, as useful as computers are, there is often not enough time in a ba sic statistics course to i nclude them. Therefore, this textbook is written so that you can learn the statistical content with or without the use of computers.

Several computer programs are available to do statistical analysis. The most popular are the Statistical Package for the Social Sciences (SPSS), Statistical Analysis System (SAS), SYSTAT, MINITAB, and Excel. Versions of these programs are available for both mainframes and microcomputers. I believe it is worth taking the extra time to learn one or more of them.

Although, as mentioned previously, I have written this textbook for use with or without computers, this edition makes it easy for you to use SPSS with the textbook. Of course, you or your instructor will have to supply the SPSS software. Chapters 2, 3, 4, 5, 6, 7, 13, $14,15,16$, and 17 each contain chapter-specific SPSS material near the end. Appendix E, Introduction to SPSS, provides general instruction in SPSS. SPSS is pro bably the most popular statistical software program used in psychology. The software varies somewhat for different versions of SPSS; however, the changes are usually small. The SPSS material in this edition has been written using SPSS, an IBM company, Windows Version 19.

As you begin solving problems using computers, I believe you will begin to experience the fun and power that statistical software can bring to your study and use of statistics. In fact, once you have used software like SPSS to a nalyze data, you will probably wonder, "Why do I have to do any of these complicated calculations by hand?" Unfortunately, when you are using statistical software to calculate the value of a statistic, it does not help you understand that statistic. Understanding the statistic and its proper use is best achieved by doing hand calculations or step-by-step calculations using Excel. Of course, once you have learned everything you can from these calculations, using statistical software like SPSS to grind out correct values of the statistic seems eminently reasonable.

## STATISTICS AND THE "REAL WORLD"

As I men tioned pre viously, one $m$ ajor purpose of $s$ tatistics is to a id in the scientific evaluation of truth assertions. Although you may view this as rather esoteric and far removed from everyday life, I believe you will be convinced, by the time you have finished this textbook, that understanding statistics has very important practical aspects that can contribute to your satisfaction with and success in life. As you go through this textbook, I hop e you will become increasingly a ware of how f requently in ord inary life we are bombarded with "authorities" telling us, ba sed on "truth assertions," what we should do, how we should live, what we should buy, what we should value, and so
on. In areas of real importance to you, I hope you will begin to ask questions such as: "Are these truth assertions supported by data?" "How good are the data?" "Is chance a rea sonable explanation of the data?" If there a re nodata presented, or ifthe data presented are of the form "My experience is that ..." rather than from well-controlled experiments, I hope that you will begin to question how seriously you should take the authority's advice.

To help de velop this a spect of your statistical de cision making, I ha ve included, at the end of certain chapters, applications taken from everyday life. These are titled, "What Is the Truth?" To begin, let's consider the following material.

## WHAT IS THE TRUTH?

## Data, Data, Where Are the Data?



The accompanying advertisement was printed in an issue of Psychology Today. From a scientific point of view, what's missing?

Answer This ad is similar to a great many that appear these days. It promises a lot, but offers no experimental data to back up its claims. The ad puts forth a truth assertion: "Think And Be Thin." It further

## FREE Sleep Learning Book $\$ 3.95$ Value

HYPNOSIS
FREE Sleep Learning Book $\$ 3.95$ Value

## Think And Be Thin

 SUBLMIINALYOU MUST CONTROL THE MIND BEFORE YOU CAN CONIROL THE BODY Here's a tape program that really works . . and permanently! The Think And Be Thin Cossette Tope Program (No. H.1. \$10.95) is by Robert Mazur, one of America's leading hypnotists.
OVER 100 tapes and 600 books on every self-improvement subject available. specialized sleep-learning equipment and courses, foreign language courses and hundreds of other self-improvement tapes and programs to help you create a new image-a new you! Send for our 64 page catolog-booklet. "You Are What You Believe You Are.'
When purchasing the "Think And Be Thin" tape, you receive our 04 page catalog-book FREE.
FOR CATALOG ONLY. SEND $\$ 1.00$ DOLLAR WILL BE REFUNDED WITH FIRST ORDER.
Here's my $\$ 10.95$. Please rush me my "Think And Be Thin" tape, and include my FREE 64 page catalog-booklet
Make checks payable to Health Travelers,
5047 So. Division Ave., Grond Rapids, MI 49508
Name


## City/State/Zip

Complete if order is by credit card
Credit card* Exp Date

Signalure
GUARANTEE: You must be satisfied, or your purchase price will be refunded immediately

## Creating <br> a New

 You!claims "Here's a tape program that really works ... and permanently!" The program consists of listening to a tape with subliminal messages that is supposed to program your mind to produce thinness. The glaring lack is that there are no controlled experiments, no data offered to substantiate the claim. This is the kind of claim that cries out for empirical verification. Apparently, the authors of the ad do not believe the readers of Psychology Today are very sophisticated, statistically. I certainly hope the readers of this textbook would ask for the data before they spend 6 months of their time listening to a tape, the message of which they can't even hear!


## WHAT IS THE TRUTH?

## Authorities Are Nice, but ...



An advertisement promoting Anacin-3 appeared in an issue of Cosmopolitan.
The heading of the advertisement was " 3 Good Reasons to Try Anacin-3." The advertisement pictured a doctor, a nurse, and a pharmacist making the following three statements:

1. " Doctors are recommending acetaminophen, the aspirin-free pain reliever in Anacin-3, more than any other aspirin-free pain reliever."
2. "Hospitals use acetaminophen, the aspirin-free pain reliever in Anacin-3, more than any other aspirin-free pain reliever."
3. "Pharmacists recommend acetaminophen, the aspirin-free pain reliever in Anacin-3, more than any other aspirin-free pain reliever."

From a scientific point of view, is anything missing?

Answer This is somewhat better than the previous ad. At least relevant authorities are invoked in support of the product. However,
the ad is misleading and again fails to present the appropriate data. Much better than the " 3 Good Reasons to Try Anacin-3" given in the ad would be reason 4, data from wellconducted experiments showing that (a) acetaminophen is a better pain reliever than any other aspirin-free pain reliever and (b) Anacin-3 relieves pain better than any competitor. Any guesses about why these data haven't been presented? As a budding statistician, are you satisfied with the case made by this ad?


## WHAT IS THE TRUTH?



In the previous "What Is the Truth?" sections, no data were presented to justify the authors' claims, a cardinal error in science. A little less grievous, but nonetheless questionable, is when data are presented in a study or experiment but the conclusions drawn by the authors seem to stay far from the actual data. A study reported in a recent newspaper article illustrates this point. The article is shown below.

## CAVEMEN WERE PRETTY NICE GUYS

By VIRGINIA FENTON
The Associated Press
PARIS—Neanderthals might not have been as savage as we think. A 200,000-year-old jawbone discovered in France suggests the primitive hominids took care of each other, in this case feeding a toothless peer, an international team of experts said Friday.

A damaged jawbone, discovered last year in southern France, shows that its owner survived without teeth for up to several yearsimpossible without a helping hand from his or her peers, said Canadian paleontologist Serge Lebel.

Lebel directed an international team of experts who discovered the fossil in July 2000. Also on the team was the noted specialist of the Neanderthal period Erik Trinkaus of Washington University in St. Louis

## Data, Data, What Are the Data?-1

and colleagues from Germany, Portugal and France.
"This individual must have been quite weak and needed preparation of his or her food, and the social group probably took care of him or her," Lebel said at a news conference.
"We mustn't dehumanize these beings. They show an entirely human kind of behavior," said Lebel, who works at the University of Quebec.
"Others in the group may have gone as far as chewing the food for their sick peer, as well as cutting and cooking it," he said.
"The discovery may push back ideas of the beginning of social care by 150,000 years," Lebel said. "A similar infection that caused a hominid to lose his teeth had previously only been found in fossils dating back 50,000 years," he said.

The team's findings were published in the Sept. 25 issue of the U.S. periodical Proceedings of the National Academy of Sciences.

However, University of Pittsburgh anthropologist Jeffrey Schwartz was skeptical.
"You can eat a lot without your teeth. There is no reason to think the individual couldn't have been chewing soft food-snails, mollusks, even worms."

Reprinted with permission of The Associated Press.

Do you think the finding of a 200,000-year-old, damaged jawbone by the international team of experts is an adequate database for the conclusions put forth by Dr. Lebel? Or, like Dr. Schwartz, are you skeptical? You can probably guess into which camp I fall.


## WHAT IS THE TRUTH?

## Data, Data, What Are the Data?-2



As discussed in this chapter, using data as the basis for truth assertions is an important part of the scientific process. Sometimes, however, data are reported in a manner that is distorted, leading to false conclusions rather than truth. This point is illustrated in the following article that recently appeared in a local newspaper.

## PUNDITS TWIST FACTS INTO URBAN LEGEND By TIM RUTTEN

Urban legends are anecdotes so engaging, entertaining, anxiety-affirming or prejudice-confirming that people repeat them as true, even when they are not.

Their journalistic equivalent is the pithy "poll result" or "study finding" that so neatly encapsulates a social ill or point of partisan contention that no talk-show host or stump orator can resist it.

Ronald Reagan, for example, was so notoriously fond of dubious anecdotes that some of his close associates speculated that his years as an actor had rendered him utterly incapable of passing up a good line.

That provenance-be-damned attitude hardly ended with the Great Communicator's retirement.

CNN political analyst William Schneider, an authority on opinion polling, believes that highly charged political issues or campaigns are
particularly prone to spin off fictional study results, which then take on a life of their own.
"Social Security is a classic case," Schneider said. "There is a political legend that a 'recent' poll, which is never specified, showed that more young Americans believe Elvis is alive than expect to collect a Social Security check when they retire. Over the past few years, every conservative on Earth and every Republican politician in Washington, including President Bush, has referred to this finding. They all just say, 'Polls or studies show this,' but none ever has. Republicans go on citing this bogus finding because-whether it's true or not-it has great value as political currency."

Recently, it was possible to watch another such journalistic legend being born. The Wall Street Journal's Leisure \& Arts page published an article excerpted from a speech delivered a week before by Bruce

Cole, chairman of the National Endowment for the Humanities. In it, he decried the fact "that Americans do not know their history" and reflected on this collective amnesia's particular perils in the wake of Sept. 11, whose memory he fears might even now be fading.

All fair points. However, in their support, Cole cited "a nationwide survey recently commissioned by Columbia Law School," which, he said, "found that almost two-thirds of all Americans think Karl Marx's socialist dogma, 'From each according to his ability, to each according to his needs,' was or may have been written by the Founding Fathers and was included in the Constitution."

Clear; helpful; alarming. Plausible, even, given the popular taste for altruistic banality. Everything, in other words, that a good rhetorical point should be. The problem is that is not what the Columbia poll found.
(continued)


## WHAT IS THE TRUTH? (continued)

It is, however, what the May 29 press release announcing the poll's findings said. In fact, its first paragraph read: "Almost two-thirds of Americans think Karl Marx's maxim, 'From each according to his ability, to each according to his needs' was or could have been written by the framers and included in the Constitution."

Note the subtle shift from the release's "could have been written" to Cole's-or his speech writer's"may have been written."

The announcement's second paragraph quotes Columbia Law School professor Michael Dorf on the troubling implications of the Marx "finding" and points the reader to a column the professor has written for a legal Web site, Findlaw. com. In that column, Dorf wrote that "The survey found that 69 percent of respondents either thought that the United States Constitution contained Marx's maxim, or did not know whether or not it did."

That is further still from Cole's recitation of the finding.

What of the actual poll, which asked a national sample of 1,000 respondents five yes-or-no questions about the Constitution?

In response to the query about whether the Marxist maxim is contained in the document, 35 percent said yes; 31 percent said no; and 34 percent said "they did not know."

Was Dorf entitled to conflate the yes and don't-know respondents
into a single, alarming two-thirds? No, Schneider said. "That is a total misinterpretation of what people mean when they tell a pollster they don't know. When people say that, they mean 'I have no idea.' Choosing to interpret it as meaning 'I think it may be true or could be true' simply is misleading on the writer's part."

What it does do is add pungency to a finding Schneider described as "wholly unremarkable. It's not at all surprising that about a third of respondents thought that is in the Constitution. Most people, for example, think the right to privacy exists in the Constitution, when no such right is enumerated anywhere in it."

In fact, what is remarkableand far more relevant at the moment-about the Columbia poll is what it shows Americans do know about their Constitution: Fully 83 percent of the respondents recognized the first sentence of the 14th Amendment as part of the national charter, while 60 percent correctly understood that the president may not suspend the Bill of Rights in time of war.

More than two-thirds of those asked were aware that Supreme Court justices serve for life.

The only other question the respondents flubbed was whether the court's overturning of Roe vs. Wade would make abortion "illegal throughout the United States."

Fewer than a third of those polled correctly said it would not,
because state statutes guaranteeing choice would remain on the books.

These facts notwithstanding, it is a safe bet that radio and television talk-show hosts, editorial writers and all the rest of the usually suspect soon will be sighing, groaning, sneering and raging about Americans' inability to distinguish the thought of James Madison from that of Karl Marx. How long will it be before public education, the liberal media, humanism and single-parent families are blamed?

Commentary pages are the soft underbelly of American journalism. Their writers, however selfinterested, are held to a different, which is to say lower, standard of proof because of their presumed expertise.

In fact, they are responsible for regularly injecting false information of this sort into our public discourse. In the marketplace of ideas, as on the used car lot, caveat emptor still is the best policy.

Source: "Regarding Media: Surveying a Problem with Polls" by Tim Rutten, Los Angeles Times, June 14, 2002. Copyright © 2002 Los Angeles Times. Reprinted with permission.

Do you think William Schneider is too cynical, or do you agree with the article's conclusion? "In fact, they are responsible for regularly injecting false information of this sort into our public discourse. In the marketplace of ideas, as on the used car lot, caveat emptor still is the best policy."

## S U M M A R Y

In this chapter, I have discussed how truth is established. Traditionally, four met hods ha ve b een use d: au thority, reason, intuition, and science. At the heart of science is the scientific experiment. By reasoning or through intuition, the scientist forms a hypothesis about some feature of reality. He or she designs an experiment to objectively test $t$ he $h$ ypothesis. $T$ he $d$ ata $f$ rom $t$ he e xperiment a re then an alyzed statistically, and the hypothesis is either confirmed or rejected.

Most s cientific resea rch f alls i nto t wo cat egories: observational studies and true experiments. Natural observation, parameter estimation, and correlational studies are included within the observational category. Their major goal is to give an accurate description of the situation, estimate po pulation $p$ arameters, or d etermine w hether two or more ofthe variables are related. Since there is no systematic manipulation of any variable by the experimenter when doing an observational study, this type of
research cannot determine whether changes in one variable will cause changes in another variable. Causal relationships can be determined only from true experiments.

In true experiments, the investigator systematically manipulates the independent variable and observes its effect on one or more dep endent variables. Due to pr actical considerations, data are collected on only a sample of subjects rather than on the whole population. It is important that the sample be a r andom sa mple. The obtained data are then analyzed statistically.

The statistical a nalysis may be descriptive or inferential. If the analysis just describes or characterizes the obtained data, we a re in the do main of descriptive statistics. If the analysis uses the obtained data to infer to populations, we are in the domain of inferential statistics. Understanding statistical analysis has important practical consequences in life.

## IMPORTANT NEW TERMS

Constant (p. 6)
Correlational studies (p. 9)
Data (p. 7)
Dependent variable (p. 7)
Descriptive statistics (p. 10)
Independent variable (p. 6)
Inferential statistics (p. 10)
Method of authority (p. 4)

Method of intuition (p. 5)
Method of rationalism (p. 4)
Naturalistic observation research (p. 9)
Observational studies (p. 9)
Parameter (p. 7)
Parameter estimation research (p. 9)
Population (p. 6)

Sample (p. 6)
Scientific method (p. 6)
SPSS (p. 11)
Statistic (p. 7)
True experiment (p. 9)
Variable (p. 6)

Note to the student: You will notice that at t he end of specific pro blems in this a nd all ot her chapters e xcept Chapter 2, I have identified, in color, a specific area within psychology a nd re lated fields to which the problems apply. For example, Problem 6, part b, is a problem in the area of biological psychology. It has been labeled "biological" at the end of the problem ("psychology" is left off of each label for brevity). The specific areas identified are cognitive ps ychology, so cial ps ychology, de velopmental psychology, b iological ps ychology, c linical ps ychology, industrial/organizational ( I/O) ps ychology, hea lth ps ychology, education, and other. I hope this labeling will be useful to your instructor in selecting assigned homework problems and to y ou in seeing the broad application of this material as well as in helping you select additional problems you might enjoy solving beyond the assigned ones.

1. Define each of the following terms:

| Population | Dependent variable |
| :--- | :--- |
| Sample | Constant |
| Data | Statistic |
| Variable | Parameter |
| Independent variable |  |

2. What are four methods of acquiring knowledge? Write a short paragraph describing the essential characteristics of each.
3. How does the scientific method differ from each of the methods listed here?
a. Method of authority
b. Method of rationalism
c. Method of intuition
4. Write a short paragraph comparing naturalistic observation and true experiments.
5. Distinguish between descriptive and inferential statistics. Use examples to illustrate the points you make.
6. In each of the experiments described here, specify (1) the independent variable, (2) the dependent variable, (3) the sample, (4) the population, (5) the data, and (6) the statistic:
a. A health psychologist is interested in whether fear motivation is effective in reducing the incidence of smoking. Forty adult smokers are selected from individuals residing in the city in which the psychologist works. Twenty are asked to smoke a cigarette, after which they see a gruesome film about how smoking causes cancer. Vivid pictures of the diseased lungs and other internal organs of deceased smokers are shown in an effort to instill fear of smoking in these subjects. The ot her g roup re ceives the sa me treatment, except they see a neutral film that is unrelated
to smoking. For 2 mon ths after showing the film, the experimenter keeps re cords on $t$ he number of cigarettes smoked daily by the participants. A mean for each group is then computed, of the number of cigarettes smoked daily since se eing the film, and these means are compared to determine whether the fear-inducing film had an effect on smoking. health
b. A physiologist wants to know whether a particular region of the brain (the hypothalamus) is involved in the regulation of eating. An experiment is performed in which 30 rats are selected from the university vivarium and divided into two groups. One of the groups receives lesions in the hypothalamus, whereas the other group gets lesions produced in a neutral area. After recovery from the operations, all animals are given free access to food for 2 weeks, and a record is kept of the daily food intake of each animal. At the end of the 2-week period, the mean daily food intake $f$ or ea ch $g$ roup is det ermined. Finally, these means are compared to see whether the lesions in the hypothalamus have affected the amount eaten. biological
c. A clinical psychologist is in terested in e valuating three met hods of $t$ reating depress ion: me dication, cognitive restructuring, and exercise. A fourth treatment c ondition, a waiting-only treatment group, is included to provide a ba seline control group. Sixty depressed students a re re cruited $f$ rom $t$ he u ndergraduate student b ody at a la rge state u niversity, and fifteen are assigned to each treatment method. Treatments a re a dministered f or 6 mon ths, a fter which ea ch $s$ tudent is $g$ iven a ques tionnaire de signed to mea sure $t$ he de gree of depress ion. The questionnaire is scaled from 0 to 100 , with higher scores indicating a higher degree of depression. The mean depression values are then computed for the four treatments and compared to determine the relative effectiveness of each treatment. clinical, health
d. A social psychologist is interested in determining whether individuals who graduate from high school but get no further education earn more money than high school dropouts. A national survey is conducted in a la rge Midwestern city, sampling 100 individuals from each category a nd a sking each their annual salary. The results are tabulated, and mean salary values are calculated for each group. social
e. A cognitive psychologist is interested in how retention is affected by the spacing of practice sessions. A sa mple of 30 se venth g raders is se lected from a local junior high school a nd divided into three
groups of 10 students in each group. All students are a sked to memor ize a list of 15 words a nd are given three practice sessions, each 5 minutes long, in which to do so . Practice sess ions for g roup 1 subjects are spaced 10 minutes apart; for group 2, 20 m inutes apa rt ; a nd f or g roup $3,30 \mathrm{~m}$ inutes apart. All groups are given a retention test 1 hour after the last practice session. Results are recorded as the number of words cor rectly re called in the test period. Mean values a re co mputed for each group and compared. cognitive
f. A sport psychologist uses visualization in promoting enhanced performance in college athletes. She is interested in evaluating the relative effectiveness of visualization alone versus visualization plus appropriate s elf-talk. An e xperiment is c onducted with a college basketball team. Ten members of the team are selected. Five are assigned to a visualization alone g roup, a nd five are a ssigned to a v isualization plus self-talk group. Both techniques are designed to increase foul shooting accuracy. Each group practices its technique for 1 month. The foul shooting accuracy of each player is measured before a nd 1 mon th a fter beginning practice of the technique. Difference scores are computed for each player, and the means of the difference scores for each group are compared to determine the relative effectiveness of the two techniques. I/O, other
g. A typing teacher believes that a different arrangement of the typing keys will promote faster typing. Twenty se cretarial trainees, selected from a la rge business school, pa rticipate in an experiment de signed to test this belief. Ten of the trainees learn to type on the conventional keyboard. The other ten are trained using the new arrangement of keys. At the end of the training period, the typing speed in words per minute of each trainee is measured. The mean typing speeds are then calculated for both groups a nd co mpared to det ermine whether $t$ he new arrangement has had an effect. education
7. Indicate which of the following represent $\mathrm{a} v$ ariable and which a constant:
a. The number of letters in the alphabet
b. The number of hours in a day
c. The time at which you eat dinner
d. The number of students who major in psychology at your university each year
e. The number of centimeters in a meter
f. The amount of sleep you get each night
g. The amount you weigh
h. The volume of a liter
8. Indicate $w$ hich of $t$ he $f$ ollowing s ituations involve descriptive s tatistics a nd which i nvolve i nferential statistics:
a. An annual stockholders' report details the assets of the corporation.
b. A history instructor tells h is c lass the n umber of students who received an A on a recent exam.
c. The mean of a sample set of scores is calculated to characterize the sample.
d. The sa mple data from a p oll are used to es timate the opinion of the population.
e. A correlational study is cond ucted on a sa mple to determine whether educational level and income in the population are related.
f. A newspaper article reports the average salaries of federal employees from data collected on a 11 federal employees.
9. For ea ch of $t$ he following, $i$ dentify $t$ he sa mple a nd population scores:
a. A s ocial p sychologist in terested in d rinking behavior investigates the number of drinks served in bars in a particular city on a Friday during "happy hour." In the city, there are 213 bars. There are too many bars to monitor all of them, so she selects 20 and records the number of drinks served in them. The following are the data:

| 50 | 82 | 47 | 65 |
| :--- | :--- | :--- | :--- |
| 40 | 76 | 61 | 72 |
| 35 | 43 | 65 | 76 |
| 63 | 66 | 83 | 82 |
| 57 | 72 | 71 | 58 |
| social |  |  |  |

b. To make a profit from a restaurant that specializes in low-cost quarter-pound hamburgers, it is necessary that each hamburger ser ved weigh very close to 0.25 p ound. A ccordingly, t he m anager of t he restaurant is interested in the variability among the weights of the hamburgers served each day. On a particular day, there are 450 hamburgers served. It would take too much time to weigh all 450 , so the manager decides instead to weigh just 15 . The following weights in pounds were obtained:

| 0.25 | 0.27 | 0.25 |
| :--- | :--- | :--- |
| 0.26 | 0.35 | 0.27 |
| 0.22 | 0.32 | 0.38 |
| 0.29 | 0.22 | 0.28 |
| 0.27 | 0.40 | 0.31 |
| other |  |  |

c. A machine that cuts steel blanks (used for making bolts) to their proper length is suspected of being unreliable. The shop supervisor decides to check the output of t he m achine. Ont he d ay of c hecking, the machine is set to pro duce 2 -centimeter blanks. The a cceptable to lerance is $\pm 0.05 \mathrm{c}$ entimeter. It would take too much time to measure all 600 blanks produced in 1 day, so a representative group of 25 is selected. The following lengths in centimeters were obtained:

| 2.01 | 1.99 | 2.05 | 1.94 | 2.05 |
| :--- | :--- | :--- | :--- | ---: |
| 2.01 | 2.02 | 2.04 | 1.93 | 1.95 |
| 2.03 | 1.97 | 2.00 | 1.98 | 1.96 |
| 2.05 | 1.96 | 2.00 | 2.011 | .99 |
| 1.98 | 1.95 | 1.97 | 2.04 | 2.02 |
| I/O |  |  |  |  |

d. A physiological ps ychologist, working at T acoma University, i s in terested in the resting, di astolic heart rates of all the female students attending the university. She randomly samples 30 females from the student body and records the following diastolic heart rates while the students are lying on a cot. Scores are in beats $/ \mathrm{min}$.

| 62 | 85 | 92 | 85 | 88 | 71 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 73 | 82 | 84 | 89 | 93 | 75 |
| 81 | 72 | 97 | 78 | 90 | 87 |
| 78 | 74 | 61 | 66 | 83 | 68 |
| 67 | 83 | 75 | 70 | 86 | 72 |

biological

## What Is the Truth Questions

1. Data, Data, Where Are the Data?
a. Find two magazine advertisements that make truth claims about the product(s) being advertised. From
a sci entific p oint of v iew, is a nything m issing? Discuss.
b. If a nyone, e ven a n au thority, a sserts that " X " is true, e.g., "global warming is mainly due to human activity," what is ne cessary for the truth assertion to be adequately justified from a scientific point of view? In your opinion, based on your reading, TV viewing or ot her source, is the truth assertion that global warming is $m$ ainly due to $h$ uman activity adequately justified from a scientific point of view? Discuss.

## 2. Authorities Are Nice, but ...

You are attending a lecture at your university. The lecturer is a pro minent physician with an international reputation. Her field of expertise is Preventive Medicine. She a sserts that the main cause of heart attack and stroke is eating red meat. To justify her view, she makes se veral logical a rguments a nd c laims all her colleagues ag ree with her. If you accept her view on the ba sis of logic or her nat ional pro minence or b ecause her co lleagues ag ree with her, what method(s) of determining truth are you using? From a scientific point of $v$ iew, is $t$ his sufficient ba sis to conc lude the claim is true? If not, what is missing? Discuss.

## 3. Data, Data, What Are the Data?-1

You are reading a book written by a social psychologist on the benefits of developing conversation skills on re lationships. T here a re five ch apters, w ith e ach chapter describing a different conversation skill. Each chapter begins with a ca se study showing that when the individual learned the particular skill, his or her relationships improved. From a scientific point of view, are the case studies sufficient to justify the conclusion that developing the conversation skills presented in the book will improve relationships? Discuss.

ONLINE STUDY RESOURCES

## CENGAGE brain

Login to CengageBrain.com to access the resources your instructor has assigned. For this book, you can access the book's co mpanion website for chapter-specific learning tools including Know and Be Able to Do, practice quizzes, flash cards, and glossaries and a link to Statistics and Research Methods Workshops.

## aplia

If your professor has assigned Aplia homework:

1. Sign in to your account
2. Complete the cor responding ho mework exercises as required by your professor
3. When finished, click "G rade It N ow" to se e which areas you have mastered and which need more work, and for detailed explanations of every answer.

Visit www.cengagebrain.com to access your account and to purchase materials.

## DESCRIPTIVE STATISTICS

2 Basic Mathematical and Measurement Concepts
3 Frequency Distributions
4 Measures of Central Tendency and Variability
5 The Normal Curve and Standard Scores
6 Correlation
7 Linear Regression

## Basic Mathematical and Measurement Concepts

## LEARNING OBJECTIVES

After completing this chapter, you should be able to:

- Assign subscripts using the $X$ variable to a set of numbers.
- Do the operations called for by the summation sign for various values of $i$ and $N$.
- Specify the differences in mathematical operations between $(\Sigma X)^{2}$ and $\Sigma X^{2}$ and compute each.
- Define and recognize the four measurement scales, give an example of each, and state the mathematical operations that are permissible with each scale.
- Define continuous and discrete variables and give an example of each.
- Define the real limits of a continuous variable and determine the real limits of values obtained when measuring a continuous variable.
- Round numbers with decimal remainders.
- Understand the illustrative examples, do the practice problems, and understand the solutions.


## STUDY HINTS FOR THE STUDENT



Statistics is not an easy subject. It requires learning difficult concepts as well as doing mathematics. There is, however, some advice that I would like to pass on, which I believe will help you greatly in learning this material. This advice is based on many years of teaching the subject; I hope you will take it seriously.

Most students in the behavioral sciences have a great deal of anxiety about taking a course on mathematics or statistics. Without minimizing the difficulty of the subject, a good deal of this anxiety is unnecessary. To learn the material contained in this textbook, you do not have to be a whiz in calculus or differential equations. I have tried hard to present the material so that non-mathematically inclined students can understand it. I cannot, however, totally do away with mathematics. To be successful, you must be able to do elementary algebra and a few other mathematical operations. To help you review, I have included Appendix A, which covers prerequisite mathematics. You should study that material and be sure you can do the problems it contains. If you have difficulty with these problems, it will help to review the topic in a basic textbook on elementary algebra or use the website provided in Appendix A.

Another factor of which you should be aware is that a lot of symbols are used in statistics. For example, to designate the mean of a sample set of scores, we shall use the symbol $\bar{X}$ (read " $X$ bar"). Students often make the material more difficult than necessary by failing to thoroughly learn what the symbols stand for. You can save yourself much grief by taking the symbols seriously. Treat them as though they are foreign vocabulary. Memorize them and be able to deal with them conceptually. For example, if the text says $\bar{X}$, the concept "the mean of the sample" should immediately come to mind.

It is also important to realize that the material in statistics is cumulative. Do not let yourself fall behind. If you do, you will not understand the current material either. The situation can then snowball, and before you know it, you may seem hopelessly behind. Remember, do all you can to keep up with the material.

Finally, my experience indicates that a good deal of the understanding of statistics co mes from working lots of problems. Very often, one pro blem is w orth a thousand words. Frequently, although the text is clearly worded, the material won't come into focus until you have worked the problems associated with the topic. Therefore, do lots of problems, and afterward, reread the textual material to be sure you understand it.

In sum, I believe that if you can handle elementary algebra, work diligently on learning the symbols and studying the text, keep up with the material, and work lots of problems, you will do quite well. Believe it or n ot, as you begin to experience the elegance and fun that are inherent in statistics, you may even come to enjoy it.

## MATHEMATICAL NOTATION



In statistics, we usually deal with group data that result from measuring one or more variables. The data a re most often der ived from sa mples, occasionally from populations. For $m$ athematical pu rposes, $i t$ is use ful to 1 et symbols stand for the variables measured in the study. Throughout this text, we shall use the Roman capital letter $X$, and sometimes $Y$, to stand for the variable(s) measured. Thus, if we were measuring the age of subjects, we would let $X$ stand for the variable "age." When there are many values of

## MENTORINGTIP

Be sure to distinguish between the score value and the subject number. For example, $X_{1}$ is the score value of the first subject or the first score in the distribution; $X_{1}=8$.
table 2.1 Age of six subjects

| Subject <br> Number | Score <br> Symbol | Score Value, <br> Age (yr) |
| :---: | :---: | :---: |
| $\ldots \ldots \ldots$ |  |  |
| 1 | $X_{1}$ | 8 |
| 2 | $X_{2}$ | 10 |
| 3 | $X_{3}$ | 7 |
| 4 | $X_{4}$ | 6 |
| 5 | $X_{5}$ | 10 |
| 6 | $X_{6}$ | 12 |

the variable, it is important to distinguish among them. We do this by subscripting the symbol $X$. This process is illustrated in Table 2.1.

In this example, we are letting the variable "age" be represented by the symbol $X$. We shall also let $N$ represent the number of scores inthe distribution. In this example, $N=6$. Each of the six scores represents a specific value of $X$. We distinguish among the six scores by assigning a subscript to $X$ that corresponds to the number of the subject that had the specific value. Thus, the score symbol $X_{1}$ corresponds to the score value $8, X_{2}$ to the score value $10, X_{3}$ to the value $7, X_{4}$ to $6, X_{5}$ to 10 , and $X_{6}$ to 12 . In general, we can refer to a single score in the $X$ distribution as $X_{i}$, where $i$ can take on any value from 1 to $N$, depending on which score we wish to designate. To summarize,

- $X$ or $Y$ stands for the variable measured.
- $N$ stands for the total number of subjects or scores.
- $X_{i}$ is the $i$ th score, where $i$ can vary from 1 to $N$.

One of the most frequent operations performed in statistics is to sum all or part of the scores in the distribution. Since it is awkward to write out "sum of all the scores" each time this operation is required, particularly in equations, a symbolic abbreviation is used instead. The capital Greek letter sigma $(\Sigma)$ indicates the operation of summation. The algebraic phrase employed for summation is

$$
\sum_{i=1}^{N} X_{i}
$$

This is read as "sum of the $X$ variable from $i=1$ to $N$." The notations above and below the summation sign designate which scores to i nclude in the summation. The term below the summation sign tells us the first score in the summation, and the term above the summation sign designates the last score. This phrase, then, indicates that we a re to a dd the $X$ scores, b eginning with the first score a nd end ing with the $N$ th score. Thus,

$$
\sum_{i=1}^{N} X_{i}=X_{1}+X_{2}+X_{3}+\cdots+X_{N} \quad \text { summation equation }
$$

Applied to the age data of the previous table,

$$
\begin{aligned}
\sum_{i=1}^{N} X_{i} & =X_{1}+X_{2}+X_{3}+X_{4}+X_{5}+X_{6} \\
& =8+10+7+6+10+12=53
\end{aligned}
$$

When the summation is over all the scores (from 1 to $N$ ), the summation phrase itself is often abbreviated by omitting the notations above and below the summation sign and by omitting the subscript $i$. Thus,

$$
\sum_{i=1}^{N} X_{i} \text { is often written as } \sum X
$$

In the previous example,

$$
\sum X=53
$$

This says that the sum of all the $X$ scores is 53 .
Note that it is not necessary for the summation to be from 1 to $\quad N$. For example, we might desire to sum only the second, third, fourth, and fifth scores. Remember, the notation below the summation sign tells us where to begin the summation, and the term above the sign tells us where to stop. Thus, to indicate the operation of summing the second, third, fourth, and fifth scores, we would use the symbol $\sum_{i=2}^{5} X_{i}$. For the preceding age data,

$$
\sum_{i=2}^{5} X_{i}=X_{2}+X_{3}+X_{4}+X_{5}=10+7+6+10=33
$$

Let's do some practice problems in summation.

## Practice Problem 2.1

a. For the following scores, find $\sum_{i=1}^{N} X_{i}$ :

$$
\begin{array}{ll}
X: 6,8,13,15 & \sum X=6+8+13+15=42 \\
X: 4,-10,-2,20,25,8 & \sum X=4-10-2+20+25+8=45 \\
X: 1.2,3.5,0.8,4.5,6.1 & \sum X=1.2+3.5+0.8+4.5+6.1=16.1
\end{array}
$$

b. For the following scores, find $\sum_{i=1}^{3} X_{i}$ :

$$
\begin{aligned}
X_{1} & =10, X_{2}=12, X_{3}=13, X_{4}=18 \\
\sum_{i=1}^{3} X_{i} & =10+12+13=35
\end{aligned}
$$

c. For the following scores, find $\sum_{i=2}^{4} X_{i}+3$ :

$$
\begin{aligned}
X_{1} & =20, X_{2}=24, X_{3}=25, X_{4}=28, X_{5}=30, X_{6}=31 \\
\sum_{i=2}^{4} X_{i}+3 & =(24+25+28)+3=80
\end{aligned}
$$

d. For the following scores, find $\sum_{i=2}^{4}\left(X_{i}+3\right)$ :

$$
\begin{aligned}
X_{1} & =20, X_{2}=24, X_{3}=25, X_{4}=28, X_{5}=30, X_{6}=31 \\
\sum_{i=2}^{4}\left(X_{i}+3\right) & =(24+3)+(25+3)+(28+3)=86
\end{aligned}
$$

There are $t$ wo more $s$ ummations that we shall frequently encou nter later in the textbook. They are $\Sigma X^{2}$ and $(\Sigma X)^{2}$. Although they look alike, they are different and generally will yield different answers. The symbol $\sum X^{2}$ (sum of the squared $X$ scores) indicates that we are first to square the $X$ scores and then sum them. Thus,

$$
\Sigma X^{2}=X_{1}^{2}+X_{2}^{2}+X_{3}^{2}+\cdots+X_{N}^{2}
$$

Given the scores $X_{1}=3, X_{2}=5, X_{3}=8$, and $X_{4}=9$,

$$
\Sigma X^{2}=3^{2}+5^{2}+8^{2}+9^{2}=179
$$

The symbol ( $\left.\sum X\right)^{2}$ (sum of the $X$ scores, quantity squared) indicates that we are first to sum the $X$ scores and then square the resulting sum. Thus,

$$
(\Sigma X)^{2}=\left(X_{1}+X_{2}+X_{3}+\cdots+X_{N}\right)^{2}
$$

For the previous scores, namely, $X_{1}=3, X_{2}=5 X_{3}=8$, and $X_{4}=9$,

$$
\left(\sum X\right)^{2}=(3+5+8+9)^{2}=(25)^{2}=625
$$

MENTORINGTIP
Caution: be sure you know the difference between $\Sigma X^{2}$ and $\left(\sum X\right)^{2}$ and can compute each.

Note that $\sum X^{2} \neq\left(\sum X\right)^{2}[179 \neq 625]$. Confusing $\sum X^{2}$ and $\left(\sum X\right)^{2}$ is a co mmon error made by students, particularly when calculating the standard deviation. We shall return to this point when we take up the standard deviation in Chapter 4.*

## Order of Mathematical Operations

As you no doubt have noticed in understanding the difference between $\Sigma X^{2}$ and $(\Sigma X)^{2}$, the order in which you perform mathematical operations can make a g reat difference in the res ult. Of course, y ou should follow the order i ndicated by the symbols in the mathematical phrase or e quation. This is so mething that is taught in elementary algebra. However, since many students either did not learn this when taking elementary algebra or have forgotten it in the ensuing years, I have decided to include a quick review here.

[^2]
## MENTORING TIP

If your algebra is somewhat rusty, see Appendix A, Review of Prerequisite Mathematics, p. 553.

Mathematical operations should be done in the following order:

1. Always do what is in parentheses first. For example, ( $\left.\sum X\right)^{2}$ indicates that you are to sum the $X$ scores first and then square the result. Another example showing the priority given to parentheses is the following: $2(5+8)=2(13)=26$
2. If the mathematical operation is summation ( $\Sigma$ ), perform the summation last, unless parentheses indicate otherwise. F or example, $\Sigma X^{2}$ indicates that you should square each $X$ value first, and then sum the squared v alues. $(\Sigma X)^{2}$ indicates that you should sum the $X$ scores first and then square the result. This is because of the order imposed by the parentheses.
3. If multiplication and addition or subtraction are specified, the multiplication should be performed first, unless parentheses indicate otherwise. For example,

4

$$
\begin{aligned}
& \times 5+2=20+2=22 \\
& \times(4+3) \times 2=6 \times 7 \times 2=84 \\
& 6 \times(14-12) \times 3=6 \times 2 \times 3=36
\end{aligned}
$$

4. If division and addition or subtraction are specified, the division should be performed first, unless parentheses indicate otherwise. For example,

$$
\begin{aligned}
& \div 4+2=3+2=5 \\
& \div(4+2)=12 \div 6=2 \\
& \div 4-2=3-2=1 \\
& \div(4-2)=12 \div 2=6
\end{aligned}
$$

5. The order in which numbers are added does not change the result. F example,

$$
\begin{aligned}
& 6+4+11=4+6+11=11+6+4=21 \\
& 6+(-3)+2=-3+6+2=2+6+(-3)=5
\end{aligned}
$$

6. The order in which numbers are multiplied does not change the result. F or example,

$$
3 \times 5 \times 8=8 \times 5 \times 3=5 \times 8 \times 3=120
$$

## MEASUREMENT SCALES

Since statistics deals with data and data are the result of measurement, we need to spend some time discussing measuring scales. This subject is particularly important because the type of measuring scale employed in collecting the data helps determine which statistical inference test is used to analyze the data. Theoretically, a mea suring scale can have one or more of the following mathematical attributes: magnitude, an equal interval between adjacent units, and an absolute zero point. Four types of scales are commonly encountered in the behavioral sciences: nominal, ordinal, interval, and ratio. They differ in the number of mathematical attributes that they possess.

## Nominal Scales

## MENTORINGTIP

When using a nominal scale, you cannot do operations of addition, subtraction, multiplication, division, or ratios.

A nominal scale is $t$ he lowest level of mea surement a nd is mos $t$ often use $d w i t h$ variables that a re qualitative in nat ure rather than quantitative. Examples of qualitative variables are brands of jogging shoes, kinds of fruit, types of music, days of the month, nationality, religious preference, and eye color. When a nominal scale is used, the variable is divided into its several categories. These categories comprise the "units" of the scale, and objects are "measured" by determining the category to which they belong.

A nominal scale is one that has categories for the units.

Thus, measurement with a nominal scale really amounts to classifying the objects and giving them the name (hence, nominal scale) of the category to which they belong.

To illustrate, if you are a jogger, you are probably interested in the different brands of jogging shoes available for use, such as Brooks, Nike, Adidas, Saucony, and New Balance, to name a few. Jogging shoes are important because, in jogging, each shoe hits the ground about 800 times a mile. In a 5-mile run, that's 4000 times. If you weigh 125 pounds, you have a total impact of 300 tons on each foot during a 5 -mile jog. That's quite a pounding. No wonder joggers are extremely careful about selecting shoes.

The variable "brand of jogging shoes" is a qu alitative variable. It is mea sured on a nominal scale. The different brands mentioned here represen t some of the possible categories (units) of this scale. If we had a group of jogging shoes and wished to measure them using this scale, we would take each one a nd determine to which brand it belonged. It is important to note that because the units of a nominal scale are categories, there is no magnitude relationship between the units of a nominal scale. Thus, there is no quantitative relationship between the categories of Nike and Brooks. The Nike is no more or less a brand of jogging shoe than is the Brooks. They are just different brands. The point becomes even clearer if we were to call the categories jogging shoes 1 and jogging shoes 2 instead of Nike and Brooks. Here, the numbers 1 and 2 are really just names and bear no magnitude relationship to each other.

A fundamental property of nominal scales is that of equivalence. By this we mean that all members of a given class are the same from the standpoint of the classification variable. Thus, all pairs of Nike jogging shoes are considered the same from the standpoint of "brand of jogging shoes"-this despite the fact that there may be different types of Nike jogging shoes present.

An operation often performed in conjunction with nominal measurement is that of counting the instances within each class. For example, if we had a bunch of jogging shoes and we determined the brand of each shoe, we would be doing nominal measurement. In addition, we might want to count the number of shoes in each category. Thus, we might find that there are 20 Nike, 19 Saucony, and 6 New Balance shoes in the bunch. These frequencies allow us to co mpare the number of shoes within each category. This quantitative comparison of numbers within each category should not be confused with the statement made earlier that there is no magnitude relationship between the units of a nominal scale. We can compare quantitatively the numbers of Nike with the numbers of Saucony shoes, but Nike is no more or less a brand of jogging shoe than is Saucony. Thus, a nominal scale does not possess any of the mathematical attributes of magnitude, equal interval, or absolute zero point. It merely allows operation done with nominal scales is to count the number of objects that occur within each category on the scale.

## Ordinal Scales

MENTORINGTIP
When using an ordinal scale, you cannot do operations of addition, subtraction, multiplication, division, or ratios.

An ordinal scale represents the next higher level of measurement. It possesses a relatively low level of the property of magnitude. With an ordinal scale, we rank-order the objects being measured according to whether they possess more, less, or the same amount of the variable being measured. Thus, an ordinal scale allows determination of whether $A>B, A=B$, or $A<B$.

An ordinal scale is one in which the numbers on the scale represent rank orderings, rather than raw score magnitudes.

## MENTORING TIP

When using an interval scale, you can do operations of addition and subtraction. You cannot do multiplication, division, or ratios.

An example of an ordinal scale is the rank ordering of the top five contestants in a speech contest according to speaking ability. A mong these speakers, the individual ranked 1 w as judged a better speaker than the individual ranked 2 , who in turn was judged better than the individual ranked 3. The individual ranked 3 was judged a better speaker than the individual ranked 4 , who in turn was judged better than the individual ranked 5. It is important to note that although this scale allows better than, equal to, or less than comparisons, it says nothing about the magnitude of the difference between adjacent units on the scale. In the present example, the difference in speaking ability between the individuals ranked 1 a nd 2 m ight be large, a nd the difference between individuals ranked 2 a nd 3 m ight be small. Thus, an ordinal scale does not have the property of equal intervals between adjacent units. Furthermore, since all we have is relative rankings, the scale doesn't tell the absolute level of the variable. Thus, all five of the top-ranked speakers could have a very high level of speaking ability or a low level. This information can't be obtained from an ordinal scale.

Other examples of ordinal scaling are the ranking of runners in the Boston Marathon according to their finishing order, the rank ordering of college football teams according to mer it by the A ssociated Press, the rank order ing of teachers according to teaching ability, and the rank ordering of students according to motivation level.

## Interval Scales

The interval scale represents a higher level of measurement than the ordinal scale. It possesses the properties of magnitude a nd equal interval between a djacent units but doesn't have an absolute zero point.

$$
\begin{aligned}
& \text { definition } \quad \begin{array}{l}
\text { An interval scale is o ne in which the units represent raw score magnitudes, } \\
\text { there are equal intervals between adjacent units on the scale, and there is no } \\
\text { absolute zero point. }
\end{array}
\end{aligned}
$$

Thus, the interval scale possesses the prop erties of the ord inal scale a nd ha e equal intervals between adjacent units. The phrase "equal intervals between adjacent units" means that there are equal amounts of the variable being measured between adjacent units on the scale.

The Celsius scale of temperature measurement is a g ood example of the interval scale. It has the property of equal intervals between adjacent units but does not have an absolute zero point. The property of equal intervals is shown by the fact that a g iven change of heat will cause the same change in temperature reading on the scale no matter where on the scale the change occurs. Thus, the additional amount of heat that will cause a temperature reading to change from $2^{\circ}$ to $3^{\circ}$ Celsius will also cause a reading to change from $51^{\circ}$ to $52^{\circ}$ or from $105^{\circ}$ to $106^{\circ}$ Celsius. This illustrates the fact that equal amounts of heat are indicated between adjacent units throughout the scale.

Since with an interval scale there are equal amounts of the variable between adjacent units on the scale, equal differences between the numbers on the scale represent equal differences in the magnitude of the variable. Thus, we can say the difference in heat is the same between $78^{\circ}$ and $75^{\circ}$ Celsius as between $24^{\circ}$ and $21^{\circ}$ Celsius. It also follows logically that greater differences between the numbers on the scale represent greater differences in the magnitude of the $v$ ariable being mea sured, a nd s maller differences between the numbers on $t$ he scale represent $s$ maller differences in the magnitude of the variable being measured. Thus, the difference in heat between $80^{\circ}$ and $65^{\circ}$ Celsius is greater than between $18^{\circ}$ and $15^{\circ}$ Celsius, and the difference in heat between $93^{\circ}$ and $91^{\circ}$ Celsius is less than between $48^{\circ}$ and $40^{\circ}$ Celsius. In light of the preceding discussion, we can see that in addition to being able to determine whether $A=B, A>B$, or $A<B$, an interval scale allows us to determine whether $A-B=$ $C-D, A-B>C-D$, or $A-B<C-D$.

## Ratio Scales

## MENTORINGTIP

When using a ratio scale, you can perform all mathematical operations.

The next, and highest, level of measurement is called a ratio scale. It has all the properties of an interval scale and, in addition, has an absolute zero point.

## definition

$A$ ratio scale is one in which the units represent raw score magnitudes, there are equal intervals between adjacent units on the scale, and there is an absolute zero point.

Without an absolute zero point, it is not legitimate to compute ratios with the scale readings. Since the ratio scale has an absolute zero point, ratios are permissible (hence the name ratio scale).

A good example to illustrate the difference between interval and ratio scales is to compare the Celsius scale of temperature with the Kelvin scale. Zero on $t$ he Kelvin scale is a n absolute zero; it signifies the co mplete absence of heat. Z ero de grees on the Celsius scale does not signify the complete absence of heat. Rather, it signifies the temperature at which water freezes. It is an arbitrary zero point that actually occurs at a reading of 273.15 kelvins (K).

The Celsius scale is an interval scale, and the Kelvin scale is a ratio scale. The difference in heat between adjacent units measured on the Celsius scale is the same throughout the Celsius scale. The same is true for the Kelvin scale. A heat c hange that causes the Celsius reading to change from $6^{\circ}$ to $7^{\circ}$ Celsius will also cause a change from $99^{\circ}$ to $100^{\circ}$ Celsius. Similarly, a heat change that causes the Kelvin scale to c hange from 10 K to 11 K will also cause t he Kelvin scale to c hange from 60 K to 61 K . However, we cannot compute ratios with the Celsius scale. A reading of $20^{\circ}$ Celsius is not twice as hot as $10^{\circ}$ Celsius. This can be seen by converting the Celsius readings to the actual heat they represent. In terms of actual heat, $20^{\circ}$ Celsius is really $293.15 \mathrm{~K}(273.15+20)$, and $10^{\circ}$ Celsius is really $283.15 \mathrm{~K}(273.15+10)$. It is obvious that 293.15 K is not twice 283.15 K . Since the Kelvin scale has an absolute zero, a reading of 20 K on it is twice as hot as 10 K . Thus, ratios are permissible with the Kelvin scale.

Other examples of variables measured with ratio scales include reaction time, length, weight, age, and frequency of any event, such as the number of Nike shoes contained in the bunch of jogging shoes discussed previously. With a ratio scale, you can construct ratios and perform all the other mathematical operations usually associated with numbers (e.g., addition, subtraction, multiplication, and division). The four scales of measurement and their characteristics are summarized in Figure 2.1.


## Nominal

Units of scale are categories. Objects are measured by determining the cat egory to which they belong. There is no m agnitude relationship between the categories.

## Ordinal

Possesses the property of magnitude. Can rank-order the objects according to whether they possess more, less, or the same amount of $t$ he $v$ ariable $b$ eing me asured. $T$ hus, ca $n d$ etermine $w$ hether $A>B, A=B$, or $A<B$.

## Interval and Ratio

Interval: Possesses the properties of magnitude and equal intervals between adjacent units. Can do same determinations as with an ord inal scale, plus can determine whether $A-B=C-D$, $A-B>C-D$, or $A-B<C-D$.
Ratio: P ossesses the p roperties of $m$ agnitude, e qual interval between adjacent units, and an absolute zero point. Can do all the mathematical operations usually a ssociated with numbers, including ratios.
figure 2.1 Scales of measurement and their characteristics.

In the behavioral sciences, many of the scales used are often treated as though they are of interval scaling without clearly establishing that the scale really does possess equal intervals between adjacent units. Measurement of IQ, emotional variables such as anxiety a nd depression, personality variables (e.g., self-sufficiency, introversion, extroversion, and dominance), end- of-course proficiency or a chievement variables, attitudinal variables, and so forth fall into this category. With all of these variables, it is clear that the scales are not ratio. For example, with IQ , if an individual actually scored a zero on the Wechsler Adult Intelligence Scale (WAIS), we would not say that he had zero intelligence. Presumably, some questions could be found that he could answer, which would indicate an IQ greater than zero. Thus, the WAIS does not have an absolute zero point, and ratios are not appropriate. Hence, it is not correct to say that a person with an IQ of 140 is twice as smart as someone with an IQ of 70.

On the other hand, it seems that we can do more than just specify a rank ordering of individuals. An individual with an IQ of 100 is closer in intelligence to someone with an IQ of 110 than to someone with an IQ of 60 . This appears to be interval scaling, but it is difficult to establish that the scale actually possesses equal intervals between adjacent units. Many researchers treat those variables as though they were measured on interval scales, particularly when the measuring instrument is well standardized, as is the WAIS. It is more con troversial to $t$ reat p oorly standardized sca les mea suring ps ychological variables as interval scales. This issue arises particularly in inferential statistics, where the level of scaling can influence the selection of the test to be used for data a nalysis. There are two schools of thought. The first claims that certain tests, such as Student's $t$ test and the analysis of variance, should be limited in use to data that are interval or ratio in scaling. The second disagrees, claiming that these tests can also be used with nominal and ordinal data. The issue, however, is too complex to be treated here.*

## CONTINUOUS AND DISCRETE VARIABLES

In Chapter 1, we defined a variable as a property or characteristic of something that can take on more $t$ han one value. We also distinguished between independent and dependent variables. In addition, variables may be continuous or discrete:

## definitions <br> A continuous variable is one that theoretically can have an infinite number of values between adjacent units on the scale. <br> - A discrete variable is one in which there are no possible values between adjacent units on the scale.

[^3]Weight, height, and time are examples of continuous variables. With each of these variables, there are potentially an infinite number of values between adjacent units. If we are measuring time and the smallest unit on the clock that we are using is 1 second, between 1 and 2 se conds there are an infinite number of possible values: 1.1 seconds, 1.01 seconds, 1.001 seconds, and so forth. The same argument could be made for weight and height.

This is not the case with a discrete variable. "Number of children in a family" is an example of a discrete variable. Here the smallest unit is one child, and there are no possible values between one or two children, two or three children, and so on. The characteristic of a discrete variable is that the variable changes in fixed amounts, with no intermediate values possible. Other examples include "number of students in your class," "number of professors at your university," and "number of dates you had last month."

## Real Limits of a Continuous Variable

Since a con tinuous variable may have an infinite number of values between adjacent units on the scale, all measurements made on a con tinuous variable are approximate. Let's use weight to illustrate this point. Suppose you began dieting yesterday. Assume it is spring, heading into summer, and bathing suit weather is just around the corner. Anyway, you weighed yourself yesterday morning, and your weight was shown by the solid needle in Figure 2.2. Assume that the scale shown in the figure has accuracy only to the nearest pound. The weight you record is 180 pounds. This morning, when you weighed yourself after a day of starvation, the pointer was shown by the dashed needle. What weight do you report this time? We know as a humanist that you would like to record 179 pounds, but as a budding scientist, it is truth at all costs. Therefore, you again record 180 pounds. When would you be justified in reporting 179 pounds? When the needle is below the halfway point between 179 and 180 pounds. Similarly, you would still record 180 pounds if the needle was above 180 but below the halfway point between 180 and 181 pounds. Thus, a ny time the weight 180 pounds is re corded, we don't ne cessarily

figure 2.2 Real limits of a continuous variable.
mean exactly 180 pounds, but rather that the weight was $180 \pm 0.5$ pounds. We don't know the exact value of the weight, but we are sure it is in the range 179.5 to 180.5 . This range specifies the real limits of the weight 180 pounds. The value 179.5 is called the lower real limit, and 180.5 is the upper real limit.

The real limits of a continuous variable are those values that are above and below the recorded value by one-half of the smallest measuring unit of the scale.

To illustrate, if the variable is w eight, t he s mallest u nit is 1 p ound, a nd we record 180 p ounds, the real limits a re ab ove a nd below 180 p ounds by $\frac{1}{2}$ po und. Thus, the real limits are 179.5 and 180.5 pounds.* If the smallest unit were 0.1 pound rather than 1 p ound and we recorded 180.0 pounds, then the real limits would be $180 \pm \frac{1}{2}(0.1)$, or 179.95 and 180.05 .

## Significant Figures

In statistics, we analyze data, and data analysis involves performing mathematical calculations. Very often, we wind up with a decimal remainder (e.g., after doing a division). When this happens, we need to decide to how many decimal places we should carry the remainder.

In the physical sciences, we usually follow the practice of carrying the same number of significant figures as are in the raw data. For example, if we measured the weights of five subjects to three significant figures ( $173,156,162,165$, and 175 pounds) and we were calculating the average of these weights, our answer should also contain only three significant figures. Thus,

$$
\bar{X}=\frac{\sum X}{N}=\frac{173+156+162+165+175}{5}=\frac{831}{5}=166.2=166
$$

The answer of 166.2 would be rounded to three significant figures, giving a final answer of 166 pounds. For various reasons, this procedure has not been followed in the behavioral sciences. Instead, a tradition has evolved in which most final values are reported to two or three decimal places, regardless of the number of significant figures in the raw data. Since this is a text for use in the behavioral sciences, we have chosen to follow this tradition. Thus, in this text, we shall report most of our final answers to two de cimal places. O ccasionally there will be exceptions. For example, cor relation and regression coefficients have three decimal places, and probability values are often given to four places, as is consistent with tradition. It is standard practice to carry all intermediate calculations to two or more decimal places further than will be reported in the final answer. Thus, when the final answer is required to have two decimal places, you should carry intermediate calculations to at least four decimal places and round the final answer to two places.
*Actually, the real limits are $179.500000 \ldots$ and $180.499999 \ldots$, but it is not necessary to be that accurate here.

## MENTORINGTIP

Caution: students often have trouble when the remainder is equal to $\frac{1}{2}$. Be sure you can do problems of this type (see rule 5 and the last two rows of Table 2.2).

## Rounding

Given that we shall be reporting our final answers to two and sometimes three or four decimal places, we need to de cide how we determine what value the last digit should have. Happily, the rules to be followed are rather simple and straightforward:

1. Divide the number you wish to round into tw o parts: the potential answer and the remainder. The potential answer is the original number e xtending through the desired number of decimal places. The remainder is the rest of the number.
2. Place a decimal point in front of the first digit of the remainder, creating a decimal remainder.
3. If the decimal remainder is greater than $\frac{1}{2}$, add 1 to the last digit of the answer.
4. If the decimal remainder is less than $\frac{1}{2}$, lea ve the last digit of the answer unchanged.
5. If the decimal remainder is equal to $\frac{1}{2}$, add 1 to the last digit of the answer if it is an odd digit, but if it is even, leave it unchanged.

Let's try a few examples. Round the numbers in the left-hand column of Table 2.2 to two decimal places.

To accomplish the rounding, the number is d ivided into two parts: the potential answer and the rem ainder. Since we a re rou nding to $t$ wo decimal places, the potential a nswer end s at the second de cimal place. The rest of the number constitutes the remainder. For the first number, $34.01350,34.01$ constitutes the potential answer and .350 the remainder. Since .350 is below $\frac{1}{2}$, the last digit of the potential answer remains unchanged and the final a nswer is 34.01 . For the second number, 34.01761 , the decimal remainder (.761) is above $\frac{1}{2}$. Therefore, we must add 1 to the last digit, making the correct answer 34.02 . For the next two numbers, the decimal remainder equals $\frac{1}{2}$. The number 45.04500 becomes 45.04 because the last digit in the potential answer is even. The number 45.05500 becomes 45.06 because the last digit is odd.
table 2.2 Rounding

| Number | Answer; <br> Remainder | Decimal Remainder | Final Answer | Reason |
| :---: | :---: | :---: | :---: | :---: |
| 34.01350 | 34.01;350 | . 350 | 34.01 | Decimal remainder is below $\frac{1}{2}$. |
| 34.01761 | 34.01;761 | . 761 | 34.02 | Decimal remainder is above $\frac{1}{2}$. |
| 45.04500 | 45.04;500 | . 500 | 45.04 | Decimal remainder equals $\frac{1}{2}$, and last digit is even. |
| 45.05500 | 45.05;500 | . 500 | 45.06 | Decimal remainder equals $\frac{1}{2}$, and last digit is odd. |

## SUMMARY

In this chapter, I ha ve discussed ba sic mathematical a nd measurement concepts. The topics covered were notation, summation, mea suring sca les, d iscrete a nd con tinuous variables, a nd rou nding. In addition, Ip ointed out that to do well in statistics, you do not need to be a mathematical
whiz. If you have a sound knowledge of elementary algebra, do lots of problems, pay special attention to $t$ he symbols, and keep up, you should achieve a thorough understanding of the material.

## IMPORTANT NEW TERMS

Continuous variable (p. 35)
Discrete variable (p. 35)
Interval scale (p. 32)

Nominal scale (p. 31)
Ordinal scale (p. 32)
Ratio scale (p. 33)

Real limits of a continuous
variable (p. 36)
Summation (p. 27)

## QUESTIONSANDPROBLEMS

1. Define and give an example of each of the terms in the Important New Terms section.
2. Identify which of the following represent continuous variables and which are discrete variables:
a. Time of day
b. Number of females in your class
c. Number of bar presses by a rat in a Skinner box
d. Age of subjects in an experiment
e. Number of words remembered
f. Weight of food eaten
g. Percentage of students in your class who are females
h. Speed of runners in a race
3. Identify the scaling of each of the following variables:
a. Number of bicycles ridden by students in the freshman class
b. Types of bicycles ridden by students in the freshman class
c. The I Q of y our $t$ eachers ( assume e qual interval scaling)
d. Proficiency in mathematics, graded in the categories of poor, fair, and good
e. Anxiety over public speaking, scored on a scale of $0-100$ (Assume the difference in anxiety between adjacent units throughout the scale is not the same.)
f. The weight of a group of dieters
g. The time it takes to react to the sound of a tone
h. Proficiency in mathematics, scored on a scale of $0-100$ (The scale is well standardized and can be thought of as having equal intervals between adjacent units.)
i. Ratings of pro fessors by s tudents on a 50 -point scale (There is an insufficient ba sis for a ssuming equal intervals between adjacent units.)
4. A student is measuring assertiveness with an interval scale. Is it correct to say that a score of 30 on the scale represents half as much assertiveness as a score of 60 ? Explain.
5. For each of the following sets of scores, find $\sum_{i=1}^{N} X_{i}$ : a. $2,4,5,7$
b. $2.1,3.2,3.6,5.0,7.2$
c. $11,14,18,22,25,28,30$
d. $110,112,115,120,133$
6. Round the following numbers to two decimal places:
a. $\quad 14.53670$
b. 25.26231
c. $\quad 37.83500$
d. 46.50499
e. 52.46500
f. 25.48501
7. Determine the real limits of the following values:
a. 10 pounds (assume the smallest unit of measurement is 1 pound)
b. 2.5 seconds (assume the smallest unit of measurement is 0.1 second)
c. 100 g rams (assume the smallest unit of mea surement is 10 grams)
d. 2.01 centimeters (assume the smallest unit of measurement is 0.01 centimeter)
e. 5.232 se conds (assume the s mallest u nit of measurement is 1 millisecond)
8. Find the values of the expressions listed here:
a. Find $\sum_{i=1}^{4} X_{i}$ for the scores $X_{1}=3, X_{2}=5, X_{3}=7$, $X_{4}=10$.
b. Find $\sum_{i=1}^{6} X_{i}$ for the scores $X_{1}=2, X_{2}=3, X_{3}=4$, $X_{4}=6, X_{5}=9, X_{6}=11, X_{7}=14$ 。
c. Find $\sum_{i=2}^{N} X_{i}$ for the scores $X_{1}=10, X_{2}=12, X_{3}=13$, $X_{4}=15, X_{5}=18$.
d. Find $\sum_{i=3}^{N-1} X_{i}$ for the scores $X_{1}=22, X_{2}=24, X_{3}=28$, $X_{4}=35, X_{5}=38, X_{6}=40$.
9. In a $n$ e xperiment mea suring $t$ he rea ction $t$ imes of eight $s$ ubjects, $t$ he following scores i n milliseconds were obtained:

| Subject | Reaction Time |
| :--- | :---: |
| $\ldots \ldots \ldots$ |  |
| 125 | 0 |
| 23 | 78 |
| 34 | 51 |
| 42 | 75 |


| 52 | 25 |
| :--- | :--- |
| 64 | 30 |
| 73 | 25 |
| 83 | 34 |

a. If $X$ represents the variable of reaction time, assign each of the scores its appropriate $X_{i}$ symbol.
b. Compute $\Sigma X$ for these data.
10. Represent ea ch oft he following w ith s ummation notation. Assume the total number of scores is 10 .
a. $X_{1}+X_{2}+X_{3}+X_{4}+\ldots+X_{10}$
b. $\quad X_{1}+X_{2}+X_{3}$
c. $X_{2}+X_{3}+X_{4}$
d. $X_{2}{ }^{2}+X_{3}{ }^{2}+X_{4}{ }^{2}+X_{5}{ }^{2}$
11. Round the following numbers to one decimal place:
a. $\quad 1.423$
b. $\quad 23.250$
c. $\quad 100.750$
d. 41.652
e. $\quad 35.348$
12. For each of the sets of scores $g$ iven in Problems 5b and 5 c , show that $\sum X^{2} \neq\left(\sum X\right)^{2}$.
13. Given the scores $X_{1}=3, X_{2}=4, X_{3}=7$, and $X_{4}=$ 12 , find the values of the following expressions. (This question pertains to Note 2.1.)
a. $\sum_{i=1}^{N}\left(X_{i}+2\right)$
b. $\sum_{i=1}^{N}\left(X_{i}-3\right)$
c. $\quad \sum_{i=1}^{N}\left(2 X_{i}\right)$
d. $\sum_{i=1}^{N}\left(X_{i} / 4\right)$
14. Round each of the following numbers to one decimal place and two decimal places.
a. 4.1482
b. 4.1501
c. 4.1650
d. 4.1950

## SPSS ILLUSTRATIVE EXAMPLE 2.1

Before beginning the SPSS instruction contained in the various chapters, I suggest you read Appendix E, Introduction to SPSS. It describes the general operation of SPSS and its procedures for data entry. Reading Appendix E will help you understand the material that follows.

In this illustrative example, I will present a detailed description of how to use SPSS to compute the sum of a set of scores. Included are screen shots of the computer display you will see if you are actually performing the steps of data entry and data a nalysis using the SPSS software instead of just reading about them. The screen shots will vary somewhat depending on the version of SPSS that you are using. In the remaining chapters, due to space limitations, I am not able to include screen shots and hence will use a different formatting. It is true that we don't need SPSS to compute the sum of a small set of scores like in the example below. However, this simple example is a good place to begin learning how SPSS works.

## example

Use SPSS to find the sum of the following set of scores. As part of the solution, name the set of scores Height.
$12,16,14,19,25,13,18$.

## SOLUTION

## STEP 1: Enter the Data.

Assume that you are in the Data Editor, Data View with a blank table displayed and the cursor located in the first cell of the first column. To enter the scores,

1. Type 12 and then press Enter.
2. Type 16 and then press Enter.
3. Type 14 and then press Enter.
4. Type 19 and then press Enter.
5. Type 25 and then press Enter.
6. Type 13 and then press Enter.
7. Type 18 and then press Enter.
12.00 is entered into the first cell of the first column; after entry, the cursor moves down one cell, and at the heading of the column SPSS changes the column name from var to VAR00001.
16.00 is entered into the cell and the cursor moves down one cell. 14.00 is entered into the cell and the cursor moves down one cell. 19.00 is entered into the cell and the cursor moves down one cell. 25.00 is entered into the cell and the cursor moves down one cell. 13.00 is entered into the cell and the cursor moves down one cell. 18.00 is entered into the cell and the cursor moves down one cell.

The Data Editor, Data View with the entered scores is shown below.

| File Edit | View Data I | Transform | Analyze | Direct Market | eting | Graphs | Utilitie | $s$ Add-ons | Wind | dow | Help |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathbb{5}$ |  |  |  |  |  |  |  |  | $3$ |
| 8: VAR0000 |  |  |  |  |  |  |  |  |  |  |  |
|  | VAR00001 | var | var | var | var |  | var | var | var |  | var |
| 1 | 12.00 |  |  |  |  |  |  |  |  |  |  |
| 2 | 16.00 |  |  |  |  |  |  |  |  |  |  |
| 3 | 14.00 |  |  |  |  |  |  |  |  |  |  |
| 4 | 19.00 |  |  |  |  |  |  |  |  |  |  |
| 5 | 25.00 |  |  |  |  |  |  |  |  |  |  |
| 6 | 13.00 |  |  |  |  |  |  |  |  |  |  |
| 7 | 18.00 |  |  |  |  |  |  |  |  |  |  |
| 8 |  |  |  |  |  |  |  |  |  |  |  |

STEP 2: Name the Variables. In using SPSS, you don't have to give the variables names. When you enter the data, SPSS automatically gives the scores en tered into ea ch column a de fault na me (VAR00001, VAR00002, etc.). Since we entered the scores in the first column, SPSS automatically gave these scores the default name VAR00001. However, rather than use the name VAR00001, this example asks us to give the set of scores the name Height. Let's see how to do this.

1. Click the Variable View tab in the lower left corner of the Data Editor.
2. Click VAR00001: type Height in the highlighted cell and then press Enter.

This displays the Variable View on screen with the first cell in the Name column containing VAR00001.

Height is entered as the variable name, replacing VAR00001.

STEP 3: Analyze the Data. The next step is to a nalyze the data. This example asks that we use SPSS to co mpute the sum of the Height scores. Although you can a nalyze the data from the Dat a E ditor-Variable V iew, I recommend as a general rule that you switch to the Data Editor-Data View for analyzing data. This allows you to better conceptually link the data to the analysis results. If you are in the Data Editor-Variable View and want to switch to the Data Editor-Data View, click the Variable View tab on the lower left corner of the Data Editor-Variable View. In this and the remaining SPSS material in the remaining chapters, I w ill assume that you are in the Data Editor-Data View prior to doing the analysis. Assuming you are ready to do the analysis, let's do it!!

1. Click Analyze on the menu bar at the top of the screen; then select Descriptive Statistics; then, click Descriptives....
2. Click the arrow in the middle of the dialog box.
3. Click Options ... in the right hand corner of the dialog box.

This tells SPSS that you want to compute some descriptive statistics, and SPSS responds by displaying the Descriptives dialog box, which is shown below. The large box on the left displays the variable names of all the scores that are included in the Data Editor. In this example, Height is the only variable; it is displayed in the large box on the left, highlighted.


This moves Height from the large box on the left into the Variable(s) box on the right. If the data had multiple variables, they would be listed in this box and you would select the variable(s) that you wanted analyzed before clicking the arrow. SPSS would then move all selected variables to the Variable(s) box on the right. SPSS analyses are carried out only on the variables located in the designated box. In this example, the designated box is the Variable(s) box.

This produces the Descriptives: Options dialog box, which is shown below. This dialog box allows you to select among the various descriptive statistics that SPSS can compute. A couple of other options are included that need not concern us here. The checked entries are the default descriptive statistics that SPSS computes.
4. Click all statistics with checks to remove the default check entries.
5. Click Sum.
6. Click Continue.
7. Click OK.


The checked entries tell SPSS which statistics to compute. If a box is already checked, clicking it removes the check. If the box is unchecked, clicking it puts a check in the box. We removed all default checks because for this example we want to compute only the sum of the scores, and none of the default statistics do this.

This produces a check in the Sum box and tells SPSS to compute the sum of the Height scores when given the OK to do so. SPSS is now ready to compute the sum of the Height scores when it gets the OK command, which is located on the Descriptives dialog box.

This returns you to the Descriptives dialog box so you can give the OK command.

After getting the OK command, SPSS then analyzes the data and displays the results in the Descriptive Statistics table displayed on the following page.

## Analysis Results

Descriptive Statistics

|  | N | Sum |
| :--- | ---: | :--- |
| Height | 7 | 117.00 |
| Valid N (listwise) | 7 |  |

The results for this problem show that the sum of the Height scores is 117.00. The table also shows that $\boldsymbol{N}=\mathbf{7}$. When $N$ is small, using SPSS to obtain this result may not seem worth the work. However, suppose that you also want to compute the mean, standard deviation, and variance of the scores. To make the case even more compelling, suppose instead of having only one variable, you had five variables you wanted to analyze. In addition to checking the Sum box, all you need do is check the boxes for these statistics as well, move all of the variable names into the designated box, and voila, the sum, mean, standard deviation, and variance of all five variables would be computed and displayed. I hope you are beginning to see what a wonderful help SPSS can be in doing data analysis.

## SPSS ADDITIONAL PROBLEMS

1. Use SPSS to find the sum for each of the set of scores shown below. In solving this problem, do not give the scores a new name.
a. $12,15,18,14,13,18,17,23,22,14,10$.
b. $1.3,0.9,2.2,2.4,3.2,5.6,7.8,3.3,2.6$.
c. $214,113,115,314,215,423,500,125,224,873$.
2. For the following set of scores, use SPSS to find $\sum_{i=1}^{N} X_{i}$. As part of the solution, name the variable $X$. a. $2.44,3.57,6.43,3.21,8.45,6.37,8.25,3.98$. b. $23,65,43,87,89,64,59,67,53,34,21,18,28$. The validity of this equation can be seen from the following simple algebraic proof:

$$
\begin{aligned}
\sum_{i=1}^{N}\left(X_{i}+a\right)= & \left(X_{1}+a\right)+\left(X_{2}+a\right)+\left(X_{3}+a\right) \\
& +\cdots+\left(X_{N}+a\right) \\
= & \left(X_{1}+X_{2}+X_{3}+\cdots+X_{N}\right) \\
& +(a+a+a+\cdots+a) \\
= & \sum_{i=1}^{N} X_{i}+N a
\end{aligned}
$$

To illustrate the use of this equation, suppose we wish to find the sum of the following scores with a constant of 3 added to each score:

## $X: 4,6,8,9$

$$
\sum_{i=1}^{N}\left(X_{i}+3\right)=\sum_{i=1}^{N} X_{i}+N a=27+4(3)=39
$$

Rule 2 The sum of the values of a variable minus a constant is equal to the sum of the values of the variable minus N times the constant. In equation form,

$$
\sum_{i=1}^{N}\left(X_{i}-a\right)=\sum_{i=1}^{N} X_{i}-N a
$$

The algebraic proof of this equation is as follows:

$$
\begin{aligned}
\sum_{i=1}^{N}\left(X_{i}-a\right)= & \left(X_{1}-a\right)+\left(X_{2}-a\right)+\left(X_{3}-a\right) \\
& +\cdots+\left(X_{N}-a\right) \\
= & \left(X_{1}+X_{2}+X_{3}+\cdots+X_{N}\right) \\
& +(-a-a-a-a-\cdots-a) \\
= & \sum_{i=1}^{N} X_{i}-N a
\end{aligned}
$$

To illustrate the use of this equation, suppose we wish to find the sum of the following scores with a constant of 2 subtracted from each score:
$X: 3,5,6,10$

$$
\sum_{i=1}^{N}\left(X_{i}-2\right)=\sum_{i=1}^{N} X_{i}-N a=24-4(2)=16
$$

Rule 3 The sum of a constant multiplied by the value of a variable is equal to the constant multiplied by the sum of the values of the variable. In equation form,

$$
\sum_{i=1}^{N} a X_{i}=a \sum_{i=1}^{N} X_{i}
$$

The validity of this equation is shown here:

$$
\sum_{i=1}^{N} a X_{i}=a X_{1}+a X_{2}+a X_{3}+\cdots+a X_{N}
$$

$$
\begin{aligned}
& =a\left(X_{1}+X_{2}+X_{3}+\cdots+X_{N}\right) \\
& =a \sum_{i=1}^{N} X_{i}
\end{aligned}
$$

To illustrate the use of this equation, suppose we wish to determine the sum of 4 times each of the following scores:
$X: 2,5,7,8,12$

$$
\sum_{i=1}^{N} 4 X_{i}=4 \sum_{i=1}^{N} X_{i}=4(34)=136
$$

Rule 4 The sum of a constant divided into the values of a variable is equal to the constant divided into the sum of the values of the variable. In equation form,

$$
\sum_{i=1}^{N} \frac{X_{i}}{a}=\frac{\sum_{i=1}^{N} X_{i}}{a}
$$

The validity of this equation is shown here:

$$
\begin{aligned}
\sum_{i=1}^{N} \frac{X_{i}}{a} & =\frac{X_{1}}{a}+\frac{X_{2}}{a}+\frac{X_{3}}{a}+\cdots+\frac{X_{N}}{a} \\
& =\frac{X_{1}+X_{2}+X_{3}+\cdots+X_{N}}{a} \\
& =\frac{\sum_{i=1}^{N} X_{i}}{a}
\end{aligned}
$$

Again, let's do an example to illustrate the use of this equation. Suppose we want to find the sum of 4 divided into the following scores:
$X: 3,4,7,10,11$

$$
\sum_{i=1}^{N} \frac{X_{i}}{4}=\frac{\sum_{i=1}^{N} X_{i}}{4}=\frac{35}{4}=8.75
$$

## ONLINE STUDY RESOURCES

## CENGAGE braiín

Login to CengageBrain.com to access the resources your instructor has assigned. For this book, you can access the book's co mpanion website for chapter-specific learning tools including Know and Be Able to Do, practice quizzes, flash cards, and glossaries and a link to Statistics and Research Methods Workshops.

If your professor has assigned Aplia homework:

1. Sign in to your account
2. Complete the cor responding ho mework exercises as required by your professor
3. When finished, click "G rade It N ow" to se e which areas you have mastered and which need more work, and for detailed explanations of every answer.

Visit www.cengagebrain.com to access your account and to purchase materials.

## Frequency Distributions

## CHAPTER OUTLINE

Introduction: Ungrouped
Frequency Distributions
Grouping Scores
Constructing a Frequency Distribution of Grouped Scores
Relative Frequency, Cumulative Frequency, and Cumulative Percentage Distributions
Percentiles
Computation of Percentile Points
Percentile Rank
Computation of Percentile Rank
Graphing Frequency
Distributions
The Bar Graph
The Histogram
The Frequency Polygon
The Cumulative Percentage Curve
Shapes of Frequency Curves
Exploratory Data Analysis
Stem and Leaf Diagrams
What Is The Truth?

- Stretch the Scale, Change the Tale Summary
Important New Terms
Questions and Problems
What is the Truth? Question SPSS
Online Study Resources


## LEARNING OBJECTIVES

After completing this chapter, you should be able to:

- Define a frequency distribution and explain why it is a useful type of descriptive statistic.
- Contrast ungrouped and grouped frequency distributions.
- Construct a frequency distribution of grouped scores.
- Define and construct relative frequency, cumulative frequency, and cumulative percentage distributions.
- Define and compute percentile point and percentile rank.
- Describe bar graph, histogram, frequency polygon, and cumulative percentage curve, and recognize instances of each.
- Define symmetrical curve, skewed curve, and positive and negative skew, and recognize instances of each.
- Construct stem and leaf diagrams, and state their advantage over histograms.
- Understand the illustrative examples, do the practice problems, and understand the solutions.


## INTRODUCTION: UNGROUPED FREQUENCY DISTRIBUTIONS

Let's suppose you have just been handed back your first exam in statistics. You received an 86 . Naturally, you are interested in how well you did relative to the other students. You have lots of questions: How many other students received an 86 ? Were there many scores higher than yours? How many scores were lower? The raw scores from the exam are presented haphazardly in Table 3.1. Although all the scores a re shown, it is difficult to make much sense out of them the way they are arranged in the table. A more e fficient arrangement, a nd one $t$ hat conveys more mea ning, is to list the scores with their frequency of occurrence. This listing is called a frequency distribution.

A frequency distribution pr esents the score va lues a nd their frequency of occurrence. When presented in a table, the score values are listed in rank order, with the lowest score value usually at the bottom of the table.

The scores in Table 3.1 have been a rranged into a f requency distribution that is shown in Table 3.2. The data now are more meaningful. First, it is easy to see that there are 2 scores of 86 . Furthermore, by summing the appropriate frequencies $(f)$, we can determine the number of scores h igher a nd lower than 86 . It turns out that there are 15 scores higher and 53 scores lower than your score. It is also quite easy to determine the range of the scores $w$ hen they a re displayed as a $f$ requency distribution. For the statistics test, the scores ranged from 46 to 99 . From this illustration, it can be seen that the major purpose of a frequency distribution is to present the scores in such a way to facilitate ease of understanding and interpretation.
table 3.1 Scores from statistics exam $(N=70)$

| 95 | 57 | 76 | 93 | 86 | 80 | 89 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 76 | 76 | 63 | 74 | 94 | 96 | 77 |
| 65 | 79 | 60 | 56 | 72 | 82 | 70 |
| 67 | 79 | 71 | 77 | 52 | 76 | 68 |
| 72 | 88 | 84 | 70 | 83 | 93 | 76 |
| 82 | 96 | 87 | 69 | 89 | 77 | 81 |
| 87 | 65 | 77 | 72 | 56 | 78 | 78 |
| 58 | 54 | 82 | 82 | 66 | 73 | 79 |
| 86 | 81 | 63 | 46 | 62 | 99 | 93 |
| 82 | 92 | 75 | 76 | 90 | 74 | 67 |

table 3.2 Scores from Table 3.1 organized into a frequency distribution

| Score | $f$ | Score | $f$ | Score | $f$ | Score | $f$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 99 | 1 | 85 | 0 | 71 | 1 | 57 | 1 |
| 98 | 0 | 84 | 1 | 70 | 2 | 56 | 2 |
| 97 | 0 | 83 | 1 | 69 | 1 | 55 | 0 |
| 96 | 2 | 82 | 5 | 68 | 1 | 54 | 1 |
| 95 | 1 | 81 | 2 | 67 | 2 | 53 | 0 |
| 94 | 1 | 80 | 1 | 66 | 1 | 52 | 1 |
| 93 | 3 | 79 | 3 | 65 | 2 | 51 | 0 |
| 92 | 1 | 78 | 2 | 64 | 0 | 50 | 0 |
| 91 | 0 | 77 | 4 | 63 | 2 | 49 | 0 |
| 90 | 1 | 76 | 6 | 62 | 1 | 48 | 0 |
| 89 | 2 | 75 | 1 | 61 | 0 | 47 | 0 |
| 88 | 1 | 74 | 2 | 60 | 1 | 46 | 1 |
| 87 | 2 | 73 | 1 | 59 | 0 |  |  |
| 86 | 2 | 72 | 3 | 58 | 1 |  |  |

When there are many scores and the scores range widely, as they do on the statistics exam we have been considering, listing individual scores results in many values with a frequency of zero and a display from which it is difficult to v isualize the shape of the distribution and its central tendency. Under these conditions, the individual scores are usually grouped into class intervals and presented as a frequency distribution of grouped scores. Table 3.3 shows the statistics exam scores grouped into two frequency distributions, one with each interval being 2 units wide and the other having intervals 19 units wide.

When you are grouping data, one of the important issues is how wide each interval should be. Whenever data are grouped, some information is lost. The wider the interval, the more information lost. For example, consider the distribution shown in Table 3.3 with intervals 19 units wide. Although an interval this large does result in a smooth display (there are no zero frequencies), a lot of information has been lost. For instance, how are the 38 scores distributed in the interval from 76 to 94 ? Do they fall at 94 ? Or at 76 ? Or are they evenly distributed throughout the interval? The point is that we do not know how they are distributed in the interval. We have lost that information by the grouping. Note that the larger the interval, the greater the ambiguity.

It should be obvious that the narrower the interval, the more faithfully the original data are preserved. The extreme case is where the interval is reduced to 1 unit wide and we are back to the individual scores. Unfortunately, when the interval is made too narrow, we encounter the same problems as with individual scores-namely, values with zero frequency and an unclear display of the shape of the distribution and its central tendency. The frequency distribution with intervals 2 units wide, shown in Table 3.3, is an example in which the intervals are too narrow.
table 3.3 Scores from Table 3.1 grouped into class intervals of different widths

| Class Interval (width $=2$ ) | $f$ | Class Interval (width $=19$ ) | $f$ |
| :---: | :---: | :---: | :---: |
| 98-99 | 1 | 95-113 | 4 |
| 96-97 | 2 | 76-94 | 38 |
| 94-95 | 2 | 57-75 | 23 |
| 92-93 | 4 | 38-56 | 5 |
| 90-91 | 1 |  | $N=70$ |
| 88-89 | 3 |  |  |
| 86-87 | 4 |  |  |
| 84-85 | 1 |  |  |
| 82-83 | 6 |  |  |
| 80-81 | 3 |  |  |
| 78-79 | 5 |  |  |
| 76-77 | 10 |  |  |
| 74-75 | 3 |  |  |
| 72-73 | 4 |  |  |
| 70-71 | 3 |  |  |
| 68-69 | 2 |  |  |
| 66-67 | 3 |  |  |
| 64-65 | 2 |  |  |
| 62-63 | 3 |  |  |
| 60-61 | 1 |  |  |
| 58-59 | 1 |  |  |
| 56-57 | 3 |  |  |
| 54-55 | 1 |  |  |
| 52-53 | 1 |  |  |
| 50-51 | 0 |  |  |
| 48-49 | 0 |  |  |
| 46-47 | 1 |  |  |
|  |  |  |  |

## MENTORING TIP

Using 10 to 20 intervals works well for most distributions.

From the preceding discussion, we can see that in grouping scores there is a tradeoff between losing information and presenting a meaningful visual display. To have the best of both worlds, we must choose an interval width neither too wide nor too narrow. In practice, we usually determine interval width by dividing the distribution into 10 to 20 intervals. Over the years, this range of intervals has been shown to work well with most distributions. Within this range, the specific number of intervals used depends on the number and range of the raw scores. Note that the more intervals used, the narrower each interval becomes.

MENTORINGTIP
After completing Step 3, the resulting number of intervals often slightly exceeds the number of intervals specified in Step 2, because the lowest interval and the highest interval usually extend beyond the lowest and highest scores.

## Constructing a Frequency Distribution of Grouped Scores

The steps for constructing a frequency distribution of grouped scores are as follows:

1. Find the range of the scores.
2. Determine the width of each class interval (i).
3. List the limits of each class interv al, placing the interv al containing the lowest score value at the bottom.
4. Tally the raw scores into the appropriate class intervals.
5. Add the tallies for each interval to obtain the interval frequency.

Let's apply these steps to the data of Table 3.1.

1. Finding the range.

$$
\text { Range }=\text { Highest score minus lowest score }=99-46=53
$$

2. Determining interval width (i). Let's assume we wish to group the data into approximately 10 class intervals.

$$
i=\frac{\text { Range }}{\text { Number of class intervals }}=\frac{53}{10}=5.3 \quad(\text { round to } 5)
$$

When $i$ has a decimal remainder, we'll follow the rule of rounding $i$ to the same number of decimal places as in the raw scores. Thus, $i$ rounds to 5 .
3. Listing the intervals. We begin with the lowest interval. The first step is to determine the lower limit of this interval. There are two requirements:
a. The lower limit of this interv al must be such that the interv al contains the lowest score.
b. It is customary to make the lower limit of this interval evenly divisible by $i$.

Given these tw o requirements, the lo wer limit is assigned the $v$ alue of the lowest score in the distribution if it is evenly divisible by $i$. If not, then the lower limit is assigned the next lower value that is evenly divisible by $i$. In the present example, the lower limit of the lowest interval begins with 45 because the lowest score (46) is not evenly divisible by 5 .

Once the lower limit of the lowest interval has been found, we can list all of the intervals. Since each interval is 5 units wide, the lowest interval ranges from 45 to 49 . Although it may seem as though this interv al is only 4 units wide, it really is 5 . If in doubt, count the units $(45,46,47,48,49)$. In listing the other intervals, we must be sure that the intervals are continuous and mutually exclusive. By mutually e xclusive, we mean that the interv als must be such that no score can be le gitimately included in more than one interv al. Following these rules, we wind up with the interv als shown in Table 3.4. Note that, consistent with our discussion of real limits in Chapter 2, the class interv als shown in the first column represent apparent limits. The real limits are sho wn in the second column. The usual practice is to list just the apparent limits of each interval and omit the real limits. We have followed this practice in the remaining examples.
4. Tallying the scores. Next, the raw scores are tallied into the appropriate class intervals. Tallying is a procedure whereby one systematically goes through the distribution and for each ra w score enters a tally mark ne xt to the interv al that contains the score. Thus, for 95 (the first score in Table 3.1), a tally mark is placed in the interval 95-99. This procedure has been followed for all the scores, and the results are shown in Table 3.4.
table 3.4 Construction of frequency distribution for grouped scores

| Class Interval | Real Limits | Tally | $f$ |
| :---: | :---: | :---: | :---: |
| 95-99 | 94.5-99.5 | (score of 95) $\rightarrow$ //// | 4 |
| 90-94 | 89.5-94.5 | M11 | 6 |
| 85-89 | 84.5-89.5 | INI II | 7 |
| 80-84 | 79.5-84.5 | SWINI | 10 |
| 75-79 | 74.5-79.5 | SWI IXI IXNI | 16 |
| 70-74 | 69.5-74.5 | IXI IIII | 9 |
| 65-69 | 64.5-69.5 | IXI II | 7 |
| 60-64 | 59.5-64.5 | I/II | 4 |
| 55-59 | 54.5-59.5 | I/I/ | 4 |
| 50-54 | 49.5-54.5 | // | 2 |
| 45-49 | 44.5-49.5 | 1 | 1 |
|  |  |  | $N=70$ |

5. Summing into frequencies. Finally, the tally marks are con verted into frequencies by adding the tallies within each interval. These frequencies are also shown in Table 3.4.

## Practice Problem 3.1

Let's try a practice problem. Given the following 90 scores, construct a frequency distribution of grouped scores having approximately 12 intervals.

| 112 | 68 | 55 | 33 | 72 | 80 | 35 | 55 | 62 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 102 | 65 | 104 | 51 | 100 | 74 | 45 | 60 | 58 |
| 92 | 44 | 122 | 73 | 65 | 78 | 49 | 61 | 65 |
| 83 | 76 | 95 | 55 | 50 | 82 | 51 | 138 | 73 |
| 83 | 72 | 89 | 37 | 63 | 95 | 109 | 93 | 65 |
| 75 | 24 | 60 | 43 | 130 | 107 | 72 | 86 | 71 |
| 128 | 90 | 48 | 22 | 67 | 76 | 57 | 86 | 114 |
| 33 | 54 | 64 | 82 | 47 | 81 | 28 | 79 | 85 |
| 42 | 62 | 86 | 94 | 52 | 106 | 30 | 117 | 98 |
| 58 | 32 | 68 | 77 | 28 | 69 | 46 | 53 | 38 |

## SOLUTION

1. Find the range. Range $=$ Highest score - Lowest score $=138-22=116$.
2. Determine the interval width (i):

$$
i=\frac{\text { Range }}{\text { Number of intervals }}=\frac{116}{12}=9.7 \quad \text { i rounds to } 10
$$

MENTORINGTIP
Note that if tallying is done correctly, the sum of the tallies $\left(\sum f\right)$ should equal $N$.
3. List the limits of each class interval. Because the lowest score in the distribution (22) is not evenly divisible by $i$, the lower limit of the lowest interval is 20. Why 20 ? Because it is the next lowest scale value evenly divisible by 10 . The limits of each class interval have been listed in Table 3.5.
4. Tally the raw scores into the appropriate class intervals. This has been done in Table 3.5.
5. Add the tallies for each interval to obtain the interval frequency. This has been done in Table 3.5.
table 3.5 Frequency distribution of grouped scores for Practice Problem 3.1

| Class Interval | Tally | $f$ | Class Interval | Tally | $f$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 130-139 | // | 2 | 70-79 | IXI IXI III | 13 |
| 120-129 | // | 2 | 60-69 | IXI IXI IXI | 15 |
| 110-119 | III | 3 | 50-59 | IXN IXN II | 12 |
| 100-109 | IXII | 6 | 40-49 | IXI III | 8 |
| 90-99 | IXIII | 7 | 30-39 | NXIII | 7 |
| 80-89 | SXINII | 11 | 20-29 | IIII | 4 |

## Practice Problem 3.2

Given the 130 scores shown here, construct a frequency distribution of grouped scores having approximately 15 intervals.

| 1.4 | 2.9 | 3.1 | 3.2 | 2.8 | 3.2 | 3.8 | 1.9 | 2.5 | 4.7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1.8 | 3.5 | 2.7 | 2.9 | 3.4 | 1.9 | 3.2 | 2.4 | 1.5 | 1.6 |
| 2.5 | 3.5 | 1.8 | 2.2 | 4.2 | 2.4 | 4.0 | 1.3 | 3.9 | 2.7 |
| 2.5 | 3.1 | 3.1 | 4.6 | 3.4 | 2.6 | 4.4 | 1.7 | 4.0 | 3.3 |
| 1.9 | 0.6 | 1.7 | 5.0 | 4.0 | 1.0 | 1.5 | 2.8 | 3.7 | 4.2 |
| 2.8 | 1.3 | 3.6 | 2.2 | 3.5 | 3.5 | 3.1 | 3.2 | 3.5 | 2.7 |
| 3.8 | 2.9 | 3.4 | 0.9 | 0.8 | 1.8 | 2.6 | 3.7 | 1.6 | 4.8 |
| 3.5 | 1.9 | 2.2 | 2.8 | 3.8 | 3.7 | 1.8 | 1.1 | 2.5 | 1.4 |
| 3.7 | 3.5 | 4.0 | 1.9 | 3.3 | 2.2 | 4.6 | 2.5 | 2.1 | 3.4 |
| 1.7 | 4.6 | 3.1 | 2.1 | 4.2 | 4.2 | 1.2 | 4.7 | 4.3 | 3.7 |
| 1.6 | 2.8 | 2.8 | 2.8 | 3.5 | 3.7 | 2.9 | 3.5 | 1.0 | 4.1 |
| 3.0 | 3.1 | 2.7 | 2.2 | 3.1 | 1.4 | 3.0 | 4.4 | 3.3 | 2.9 |
| 3.2 | 0.8 | 3.2 | 3.2 | 2.9 | 2.6 | 2.2 | 3.6 | 4.4 | 2.2 |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | (continued) |  |

## SOLUTION

1. Find the range. Range $=$ Highest score - Lowest score $=5.0-0.6=4.4$.
2. Determine the interval width (i):

$$
i=\frac{\text { Range }}{\text { Number of intervals }}=\frac{4.4}{15}=0.29 \quad i \text { rounds to } 0.3
$$

3. List the limits of each class interval. Since the lowest score in the distribution (0.6) is evenly divisible by $i$, it becomes the lower limit of the lowest interval. The limits of each class interval are listed in Table 3.6.
4. Tally the raw scores into the appropriate class intervals. This has been done in Table 3.6.
5. Add the tallies for each interval to obtain the interval frequency. This has been done in Table 3.6. Note that since the smallest unit of measurement in the raw scores is 0.1 , the real limits for any score are $\pm 0.05$ away from the score. Thus, the real limits for the interval 4.8-5.0 are 4.75-5.05.
table 3.6 Frequency distribution of grouped scores for Practice Problem 3.2

| Class |  |  | Class |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Interval | Tally | $f$ | Interval | Tally | $f$ |
| 4.8-5.0 | // | 2 | $2.4-2.6$ | NXIXI | 10 |
| 4.5-4.7 | IXI | 5 | 2.1-2.3 | IXIIIII | 9 |
| 4.2-4.4 | IXN III | 8 | 1.8-2.0 | IXI IIII | 9 |
| 3.9-4.1 | IWII | 6 | 1.5-1.7 | IXI III | 8 |
| 3.6-3.8 | IWI INII | 11 | 1.2-1.4 | IXII | 6 |
| 3.3-3.5 | IXI IXI IXNI | 16 | 0.9-1.1 | IIII | 4 |
| 3.0-3.2 | Ixl | 16 | 0.6-0.8 | III | 3 |
| 2.7-2.9 |  | 17 |  |  | $N=130$ |

## Relative Frequency, Cumulative Frequency, and Cumulative Percentage Distributions

It is often des irable to e xpress the $d$ ata $f$ rom a $f$ requency distribution as a re lative frequency, a cumulative frequency, or a cumulative percentage distribution.

## definitions

- A relative frequency distribution indicates the proportion of the total number of scores that occurs in each interval.
- A cumulative frequency distribution indicates the number of scores that fall below the upper real limit of each interval.
- A cumulative percentage distribution indicates the percentage of scores that fall below the upper real limit of each interval.
table 3.7 Relative frequency, cumulative frequency, and cumulative percentage distributions for the grouped scores in Table 3.4

| Class Interval | $f$ | Relative $f$ | Cumulative $f$ | Cumulative \% |
| :---: | :---: | :---: | :---: | :---: |
| 95-99 | 4 | 0.06 | 70 | 100 |
| 90-94 | 6 | 0.09 | 66 | 94.29 |
| 85-89 | 7 | 0.10 | 60 | 85.71 |
| 80-84 | 10 | 0.14 | 53 | 75.71 |
| 75-79 | 16 | 0.23 | 43 | 61.43 |
| 70-74 | 9 | 0.13 | 27 | 38.57 |
| 65-69 | 7 | 0.10 | 18 | 25.71 |
| 60-64 | 4 | 0.06 | 11 | 15.71 |
| 55-59 | 4 | 0.06 | 7 | 10.00 |
| 50-54 | 2 | 0.03 | 3 | 4.29 |
| 45-49 | 1 | $\underline{0.01}$ | 1 | 1.43 |
|  | 70 | 1.00 |  |  |

Table 3.7 shows the frequency distribution of statistics exam scores expressed as relative frequency, cumulative frequency, and cumulative percentage distributions. To convert a frequency distribution into a relative frequency distribution, the frequency for each interval is divided by the total number of scores. Thus,

$$
\text { Relative } f=\frac{f}{N}
$$

For example, the relative frequency for the interval 45-49 is found by dividing its frequency (1) by the total number of scores (70). Thus, the relative frequency for this interval $=\frac{1}{70}=0.01$. The relative frequency is useful because it tells us the proportion of scores contained in the interval.

The c umulative frequency for each interval is found by adding the frequency of that interval to the frequencies of all the class intervals below it. Thus, the cumulative frequency for the interval $60-64=4+4+2+1=11$.

The cumulative percentage for each interval is found by converting cumulative frequencies to cumulative percentages. The equation for doing this is:

$$
\operatorname{cum} \%=\frac{\operatorname{cum} f}{N} \times 100
$$

For the interval 60-64,

$$
\operatorname{cum} \%=\frac{\operatorname{cum} f}{N} \times 100=\frac{11}{70} \times 100=15.71 \%
$$

Cumulative frequency and cumulative percentage distributions are especially useful for finding percentiles and percentile ranks.

Percentiles are measures of relative standing. They are used extensively in education to compare the performance of an individual to that of a reference group. Thus, the

A percentile or percentile point is the value on the measurement scale below

## MENTORINGTIP

Caution: many students find this section and the one following on Percentile Rank more difficult than the other sections. Be prepared to expand more effort on these sections if needed.

60th percentile point is the value on the measurement scale below which $60 \%$ of the scores in the distribution fall.
which a specified percentage of the scores in the distribution fall.

## Computation of Percentile Points

Let's assume we are interested in computing the 50th percentile point for the statistics exam scores. The scores have been presented in Table 3.8 as cumulative frequency and cumulative percentage distributions. We shall use the symbol $P_{50}$ to stand for the 50th percentile point. What do we mean by the 50th percentile point? From the definition of percentile point, $P_{50}$ is the scale value below which $50 \%$ of the scores fall. Since there are 70 scores in the distribution, $P_{50}$ must be the value below which 35 scores fall ( $50 \%$ of $70=35$ ). L ooking at $t$ he cumulative f requency column and moving up from the bottom, we see that $P_{50}$ falls in the interval 75-79. At this stage, however, we do not know what scale value to assign $P_{50}$. All we know is that it falls somewhere between the real limits of the interval $75-79$, which are 74.5 to 79.5 . To find where in the interval $P_{50}$ falls, we make the assumption that all the scores in the interval are equally distributed throughout the interval.

Since 27 of the scores fall below a value of 74.5 , we need to move into the interval until we acquire 8 more scores (Figure 3.1). Because there are 16 scores in the interval and the interval is 5 scale units wide, each score in the interval takes u $u^{5}$ of a unit. To acquire 8 more scores, we need to move into the interva $1 \frac{5}{16} \times 8=2.5$ units. Adding 2.5 to the lower limit of 74.5 , we arrive at $P_{50}$. Thus,

$$
P_{50}=74.5+2.5=77.0
$$

table 3.8 Computation of percentile points for the scores of Table 3.1

| Class <br> Interval | $f$ | Cum $f$ | Cum \% | Percentile Computation |
| :---: | :---: | :---: | :---: | :---: |
| 95-99 | 4 | 70 | 100 | Percentile point $=X_{L}+\left(i / f_{i}\right)\left(\operatorname{cum} f_{P}-\operatorname{cum} f_{L}\right)$ |
| 90-94 | 6 | 66 | 94.29 |  |
| 85-89 | 7 | 60 | 85.71 |  |
| 80-84 | 10 | 53 | 75.71 |  |
| 75-79 | 16 | 43 | 61.43 | $P_{50}=74.5+\left(\frac{5}{16}\right)(35-27)=77.00$ |
| 70-74 | 9 | 27 | 38.57 |  |
| 65-69 | 7 | 18 | 25.71 | $P_{20}=64.5+\left(\frac{5}{7}\right)(14-11)=66.64$ |
| 60-64 | 4 | 11 | 15.71 |  |
| 55-59 | 4 | 7 | 10.00 |  |
| 50-54 | 2 | 3 | 4.29 |  |
| 45-49 | 1 | 1 | 1.43 |  |


figure 3.1 Determining the scale value of $P_{50}$ for the statistics exam scores.
From Statistical Reasoning in Psychology and Education by E.W. Minium. Copyright © 1978 John Wiley \& Sons, Inc. Adapted by permission.

To find any percentile point, follow these steps:

1. Determine the frequency of scores below the percentile point. We will symbolize this frequency as "cum $f_{p}$."

$$
\begin{aligned}
& \operatorname{cum} f_{P}=(\% \text { of scores below the percentile point }) \times N \\
& \operatorname{cum} f_{P} \text { for } P_{50}=50 \% \times N=(0.50) \times 70=35
\end{aligned}
$$

2. Determine the lower real limit of the interval containing the per centile point. We will call the real lo wer limit $X_{L}$. Knowing the number of scores belo w the percentile point, we can locate the interv al containing the percentile point by comparing cum $f_{P}$ with the cumulati ve frequency for each interv al. Once the interval containing the percentile point is located, we can immediately ascertain its lower real limit, $X_{L}$. For this example, the interval containing $P_{50}$ is 75-79 and its real lower limit, $X_{L}=74.5$.
3. Determine the number of additional scor es we must acquire in the interval to reach the percentile point.

$$
\text { Number of additional scores }=\operatorname{cum} f_{P}-\operatorname{cum} f_{L}
$$

wher $e \quad$ cum $f_{L}=$ frequenc y of scores belo w the lo wer real limit of the interval containing the percentile point.
For the preceding example,

$$
\begin{aligned}
\text { Number of additional scores } & =\operatorname{cum} f_{P}-\operatorname{cum} f_{L} \\
& =35-27 \\
& =8
\end{aligned}
$$

4. Determine the number of additional units into the interval we must go to acquir the additional number of scores.
Additional units $=($ Number of units per score $) \times$ Number of additional scores

$$
\begin{aligned}
& =\left(i / f_{i}\right) \times \text { Number of additional scores } \\
& =\left(\frac{5}{16}\right) \times 8 \\
& =2.5
\end{aligned}
$$

Note that
$f_{i}$ is the number of scores in the interval and
iff ${ }_{i}$ gives us the number of units per score for the interval
5. Determine the percentile point. This is accomplished by adding the additional units to the lower real limit of the interval containing the percentile point.

Percentile point $=X_{L}+$ Additional units

$$
P_{50}=74.5+2.5=77.00
$$

These steps can be put into equation form. Thus,

$$
\text { Percentile point }=X_{L}+\left(i / f_{i}\right)\left(\operatorname{cum} f_{P}-\operatorname{cum} f_{L}\right)^{*}
$$

equation for computing percentile point
where
$X_{L}=$ value of the lower real limit of the interval containing the percentile point
$\operatorname{cum} f_{p}=$ frequency of scores below the percentile point
cum $f_{L}=$ frequency of scores below the lower real limit of the interval containing the percentile point
$f_{i}=$ frequency of the interval containing the percentile point
$i=$ width of the interval
Using this equation to calculate $P_{50}$, we obtain

$$
\begin{aligned}
\text { Percentile point } & =X_{L}+\left(i / f_{i}\right)\left(\operatorname{cum} f_{P}-\operatorname{cum} f_{L}\right) \\
P_{50} & =74.5+\left(\frac{5}{16}\right)(35-27) \\
& =74.5+2.5=77.00
\end{aligned}
$$

## Practice Problem 3.3

Let's try another problem. This time we'll calculate $P_{20}$, the value below which $20 \%$ of the scores fall.

In terms of cu mulative f requency, $P_{20}$ is t he value below which 14 scores fall $(20 \%$ of $70=14)$. From Table $3.8($ p. 56$)$, we see that $P_{20}$ lies in the interval $65-69$. Since 11 scores fall below a value of 64.5 , we need 3 more scores. Given there are 7 scores in the interval and the interval is 5 units wide, we must move $\frac{5}{7} \times 3=2.14$ units into the interval. Thus,

$$
P_{20}=64.5+2.14=66.64
$$

$P_{20}$ could also have been found directly by using the equation for percentile point. Thus,

$$
\begin{aligned}
& \text { Percentile point }=X_{L}+\left(i / f_{i}\right)\left(\operatorname{cum} f_{P}-\operatorname{cum} f_{L}\right) \\
& \qquad \begin{aligned}
P_{20} & =64.5+\left(\frac{5}{7}\right)(14-11) \\
& =64.5+2.14=66.64
\end{aligned}
\end{aligned}
$$

## Practice Problem 3.4

Let's try one more pro blem. This time let's compute $P_{75} . P_{75}$ is the scale value below which $75 \%$ of the scores fall.

In terms of cumulative frequency, $P_{75}$ is the scale value below which 52.5 scores fall ( $\operatorname{cum} f_{P}=75 \%$ of $70=52.5$ ). From Table 3.8 (p. 56), we see that $P_{75}$ falls in the interval $80-84$. Since 43 scores fall below this interval's lower limit of 79.5 , we need to add to 79.5 the number of scale units appropriate for $52.5-43=9.5$ more scores. Since there are 10 scores in this interval and the interval is 5 units wide, we need to move into the interval $\frac{5}{10} \times 9.5=4.75$ units. Thus,

$$
P_{75}=79.5+4.75=84.25
$$

$P_{75}$ also could have been found directly by using the equation for percentile point. Thus,

$$
\begin{aligned}
\text { Percentile point } & =X_{L}+\left(i / f_{i}\right)\left(\operatorname{cum} f_{P}-\operatorname{cum} f_{L}\right) \\
P_{75} & =79.5+\left(\frac{5}{10}\right)(52.5-43) \\
& =79.5+4.75 \\
& =84.25
\end{aligned}
$$

## PERCENTILE RANK

Sometimes we want to know the percentile rank of a raw score. For example, since your score on the statistics exam was 86 , it would be useful to y ou to k now the percentile rank of 86 .

## definition

The percentile rank of a score is the percentage of scores with values lower than the score in question.

## Computation of Percentile Rank

This situation is just the reverse of calculating a percentile point. Now, we are given the score and must calculate the percentage of scores below it. Again, we must assume that the scores within any interval are evenly distributed throughout the interval. From the class interval column of Table 3.9, we see that the score of 86 falls in the interval 85-89. There are 53 scores below 84.5 , the lower limit of this interval. Since there are 7 scores in the interval and the interval is 5 sca le units wide, there are $\frac{7}{5}$ scores per scale unit. Between a score of 86 and 84.5 , there are $\left(\frac{7}{5}\right)(86-84.5)=2.1$ additional scores. There are, therefore, a total of $53+2.1=55.1$ scores below 86 . Since there are 70 scores in the distribution, the percentile rank of $86=\left(\frac{55.1}{70}\right) \times 100=78.71$.

These operations are summarized in the following equation:
$\underset{p e}{\text { Percentile rank }}=\frac{\operatorname{cum} f_{L}+\left(f_{i} / i\right)\left(X-X_{L}\right)}{N} \times 100$
equation for computing rcentile rank
where $\mathrm{cu} \quad \mathrm{m} f_{L}=$ frequency of scores b elow the lower real limit of the interval containing the score $X$
$X=$ score whose percentile rank is being determined
$X_{L}=$ scale value of the lower real limit of the interval containing the score $X$
$i=$ interval width
$f_{i}=$ frequency of the interval containing the score $X$
$N=$ total number of raw scores
Using this equation to find the percentile rank of 86, we obtain

$$
\begin{aligned}
\text { Percentile rank } & =\frac{\operatorname{cum} f_{L}+\left(f_{i} / i\right)\left(X-X_{L}\right)}{N} \times 100 \\
& =\frac{53+\left(\frac{7}{5}\right)(86-84.5)}{70} \times 100 \\
& =\frac{53+2.1}{70} \times 100 \\
& =\frac{55.1}{70} \times 100 \\
& =78.71
\end{aligned}
$$

## Practice Problem 3.5

Let's do another problem for practice. Find the percentile rank of 59.
The score of 59 falls in the interval 55-59. There are 3 scores b elow 54.5. Since there are 4 scores within the interval, there are $\left(\frac{4}{5}\right)(59-54.5)=3.6$ scores within the interval below 59. In all, there are $3+3.6=6.6$ scores below 59 . Thus, the percentile rank of $59=\left(\frac{6.6}{70}\right) \times 100=9.43$.

The solution is presented in equation form in Table 3.9.
table 3.9 Computation of percentile rank for the scores of Table 3.1

| Class <br> Interval | $f$ | $\operatorname{Cum} f$ | Cum \% | Percentile Rank Computation |
| :---: | :---: | :---: | :---: | :---: |
| 95-99 | 4 | 70 | 100 | $\text { Percentile rank }=\frac{\operatorname{cum} f_{L}+\left(f_{i} / i\right)\left(X-X_{L}\right)}{N} \times 100$ |
| 90-94 | 6 | 66 | 94.29 |  |
| 85-89 | 7 | 60 | 85.71 | Percentile rank of $86=\frac{53+\left(\frac{7}{5}\right)(86-84.5)}{70} \times 100$ |
| 80-84 | 10 | 53 | 75.71 | $=78.71$ |
| 75-79 | 16 | 43 | 61.43 |  |
| 70-74 | 9 | 27 | 38.57 |  |
| 65-69 | 7 | 18 | 25.71 |  |
| 60-64 | 4 | 11 | 15.71 |  |
| 55-59 | 4 | 7 | 10.00 | Percentile rank of $59=\frac{3+\left(\frac{1}{5}\right)(59-54.5)}{70} \times 100$ |
| 50-54 | 2 | 3 | 4.29 | $=9.43$ |
| 45-49 | 1 | 1 | 1.43 |  |

## Practice Problem 3.6

Let's do one more practice problem. Using the frequency distribution of grouped scores shown in Table 3.5 (p. 53), determine the percentile rank of a score of 117.

The score of 117 falls in the interval $110-119$. The lower limit of this interval is 109.5 . There are $6+7+11+13+15+12+8+7+4=83$ scores below 109.5. Since there are 3 scores within the interval and the interval is 10 units wide, there are $\left(\frac{3}{10}\right)(117-109.5)=2.25$ scores within the interval that a re below a score of 117. In all, there are $83+2.25=85.25$ scores below a score of 117 . Thus, the percentile rank of $117=\left(\frac{85.25}{90}\right) \times 100=94.72$.

This problem could also have been solved by using the equation for percentile rank. Thus,

$$
\begin{aligned}
\text { Percentile rank } & =\frac{\operatorname{cum} f_{L}+\left(f_{i} / i\right)\left(X-X_{L}\right)}{N} \times 100 \\
& =\frac{83+\left(\frac{3}{10}\right)(117-109.5)}{90} \times 100 \\
& =94.72
\end{aligned}
$$

## GRAPHING FREQUENCY DISTRIBUTIONS

Frequency distributions are often displayed as graphs rather than tables. Since a graph is based completely on the tabled scores, the graph does not contain any new information. However, a graph presents the data pictorially, which often makes it easier to see important features of the data. I ha ve a ssumed, in writing this section, that you a re already familiar with constructing graphs. Even so, it is worthwhile to review a few of the important points.

1. A graph has tw o axes: vertical and horizontal. The vertical axis is called the ordinate, or $Y$ axis, and the horizontal axis is the abscissa, or $X$ axis.
2. Very often the independent variable is plotted on the $X$ axis and the dependent variable on the $Y$ axis. In graphing a frequency distribution, the score values are usually plotted on the $X$ axis and the frequency of the score values is plotted on the $Y$ axis.
3. Suitable units for plotting scores should be chosen along the axes.
4. To avoid distorting the data, it is customary to set the intersection of the two axes at zero and then choose scales for the ax es such that the height of the graphed data is about three-fourths of the width. Figure 3.2 sho ws how violation of this rule can bias the impression con veyed by the graph. The figure shows two graphs plotted from the same data, namely, enrollment at a large university during the years 1998-2010. P art (a) follo ws the rule we ha ve just elaborated. In part (b), the scale on the ordinate does not begin at zero and is greatly expanded from that of part (a). The impressions conveyed by the two graphs are very different. Part (a) gives the correct impression of a very stable enrollment, whereas part (b) greatly distorts the data, making them seem as though there were lar ge enrollment fluctuations.

figure 3.2 Enrollment at a large university from 1998 to 2010.
5. Ordinarily, the intersection of the tw o axes is at zero for both scales. When it is not, this is indicated by breaking the rele vant axis near the intersection. F or example, in Figure 3.4, the horizontal axis is broken to indicate that a part of the scale has been left off.
6. Each axis should be labeled, and the title of the graph should be both short and explicit.
Four main types of graphs are used to graph frequency distributions: the bar graph, the histogram, the frequency polygon, and the cumulative percentage curve.

## The Bar Graph

Frequency distributions of nominal or ordinal data are customarily plotted using a bar graph. This type of graph is s hown in Figure 3.3. A bar is d rawn for each category, where the height of the bar represents the frequency or number of members of that category. Since there is no numerical relationship between the categories in nominal data, the various groups can be arranged along the horizontal axis in any order. In Figure 3.3, they are a rranged from left to $r$ ight according to the magnitude of frequency in each category. Note that the bars for each category in a bar graph do not touch each other. This further emphasizes the lack of a quantitative relationship between the categories.

## The Histogram

The histogram is used to represent frequency distributions composed of interval or ratio data. It resembles the bar graph, but with the histogram, a bar is d rawn for each class interval. The class intervals are plotted on the horizontal axis such that each class bar begins and terminates at the real limits of the interval. The height of the bar corresponds to the f requency of the c lass interval. Since the intervals a re continuous, the vertical bars must touch each other rather than be spaced apart as is done with the bar graph. Figure 3.4 shows the statistics exam scores (Table 3.4, p. 52) displayed as a histogram. Note that it is customary to plot the midpoint of each class interval on the abscissa. The grouped scores have been presented again in the figure for your convenience.

figure 3.3 Bar graph: Students enrolled in various undergraduate majors in a college of arts and sciences.

figure 3.4 Histogram: Statistics exam scores of Table 3.4.

## The Frequency Polygon

The frequency polygon is a lso used to represent interval or ratio data. The horizontal axis is identical to that of the histogram. However, for this type of graph, instead of using bars, a point is plotted over the midpoint of each interval at a height corresponding to the frequency of the interval. The points are then joined with straight lines. Finally, the line joining the points is extended to meet the horizontal axis at the midpoint of the two class intervals falling immediately beyond the end class intervals containing scores. This closing of the line with the horizontal axis forms a polygon, from which the name of this graph is taken.

Figure 3.5 displays the scores listed in Table 3.4 as a frequency polygon. The major difference between a $h$ istogram and af requency polygon is $t$ he following: $T$ he $h$ istogram displays the scores as though they were equally distributed over the interval, whereas the frequency polygon displays the scores as though they were all concentrated at the midpoint of the interval. Some investigators prefer to use $t$ he frequency polygon when they are comparing the shapes of two or more distributions. The frequency polygon also has the effect of displaying the scores as though they were continuously distributed, which in many instances is actually the case.

## The Cumulative Percentage Curve

Cumulative frequency and cumulative percentage distributions may also be presented in graphical form. We shall illustrate only the latter because the graphs are basically the same and cumulative percentage distributions are more often encountered. You will recall that the cumulative percentage for ac lass interval indicates the percentage of scores that fall below the upper real limit of the interval. Thus, the vertical axis for the cumulative percentage curve is plotted in cumulative percentage units. On the horizontal axis, instead of plotting points at the midpoint of each class interval, we plot them

figure 3.5 Frequency polygon: Statistics exam scores of Table 3.4.
at the upper real limit of the interval. Figure 3.6 shows the scores of Table 3.7 (p. 55) displayed as a c umulative percentage curve. It should be obvious that the cumulative frequency curve would have the same shape, the only difference being that the vertical axis would be plotted in cumulative frequency rather than in cumulative percentage units. B oth percentiles and percentile ranks can be read directly off the cumulative percentage curve. The cumulative percentage curve is also called an ogive, implying an $S$ shape.

## Shapes of Frequency Curves

Frequency distributions can take many different shapes. Some of the more commonly encountered shapes are shown in Figure 3.7. Curves are generally classified as symmetrical or skewed.

## definitions <br> A curve is symmetrical if when folded in half the two sides coincide. If a curve is not symmetrical, it is skewed.

The curves shown in Figure 3.7(a), (b), and (c) are symmetrical. The curves shown in parts (d), (e), and (f) are skewed. If a curve is skewed, it may be positively or negatively skewed.

When a curve is positively skewed, most of the scores occur at the lower values of the horizontal axis a nd the cur ve tails off toward the higher end. When a curve is negatively skewed, most of the scores occur at the higher values of the horizontal axis and the curve tails off toward the lower end.

figure 3.6 Cumulative percentage curve: Statistics exam scores of Table 3.7.

figure 3.7 Shapes of frequency curves.

The curve in part (e) is positively skewed, and the curve in part (f) is negatively skewed.
Frequency curves are often referred to according to their shape. Thus, the curves shown in parts (a), (b), (c), and (d) are, respectively, called bell-shaped, rectangular or uniform, $U$-shaped, and $J$-shaped curves.

## EXPLORATORY DATA ANALYSIS

Exploratory data analysis is a recently developed procedure. It employs easy-to-construct diagrams that are quite useful in summarizing and describing sample data. One of the most popular of these is the stem and leaf diagram.

## Stem and Leaf Diagrams

Stem and leaf diagrams were first de veloped in 1977 by John Tukey, working at Princeton University. They are a simple alternative to the histogram and are most useful for summarizing and describing data when the data set includes less than 100 scores. Unlike what happens with a histogram, however, a s tem and leaf diagram does not lose any of the original data. A stem and leaf diagram for the statistics exam scores of Table 3.1 is shown in Figure 3.8.

In constructing a stem and leaf diagram, each score is represen ted by a stem and a leaf. The stem is placed to the left of the vertical line and the leaf to the right. For example, the stems and leafs for the first and last original scores are:


In a stem and leaf diagram, stems are placed in order vertically down the page, and the leafs are placed in order horizontally across the page. The leaf for each score is usually the last digit, and the stem is the remaining digits. Occasionally, the leaf is the last two digits, depending on the range of the scores.

Note that in stem and leaf diagrams, stem values can be repeated. In Figure 3.8, the stem values are repeated twice. This has the effect of stretching the stem-that is, creating more intervals and spreading the scores out. A stem and leaf diagram for the statistics scores with stem values listed only once is shown here.

| 4 | 6 |
| :--- | :--- |
| 5 | 246678 |
| 6 | 02335567789 |
| 7 | 0012223445666666777788999 |
| 8 | 01122222346677899 |
| 9 | 0233345669 |

Listing stem values only once results in fewer, wider intervals, with each interval generally containing more scores. This makes the display appear more crowded. Whether stem values should be listed once, twice, or even more than twice depends on the range of the scores.

| Original Scores |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 95 | 57 | 76 | 93 | 86 | 80 | 89 |
| 76 | 76 | 63 | 74 | 94 | 96 | 77 |
| 65 | 79 | 60 | 56 | 72 | 82 | 70 |
| 67 | 79 | 71 | 77 | 52 | 76 | 68 |
| 72 | 88 | 84 | 70 | 83 | 93 | 76 |
| 82 | 96 | 87 | 69 | 89 | 77 | 81 |
| 87 | 65 | 77 | 72 | 56 | 78 | 78 |
| 58 | 54 | 82 | 82 | 66 | 73 | 79 |
| 86 | 81 | 63 | 46 | 62 | 99 | 93 |
| 82 | 92 | 75 | 76 | 90 | 74 | 67 |
| Stem and Leaf Diagram |  |  |  |  |  |  |
| 4 | 6 |  |  |  |  |  |
| 5 | $24$ |  |  |  |  |  |
| 5 | $6678$ |  |  |  |  |  |
| 6 | $0233$ |  |  |  |  |  |
| 6 | $5567789$ |  |  |  |  |  |
| 7 | $001222344$ |  |  |  |  |  |
| 7 | $5666666777788999$ |  |  |  |  |  |
| 8 | $0112222234$ |  |  |  |  |  |
| 8 | 6677899 |  |  |  |  |  |
| 9 | 023334 |  |  |  |  |  |
| 9 | 5669 |  |  |  |  |  |

figure 3.8 Stem and leaf diagram: Statistics exam scores of Table 3.1.

You should observe that rotating the stem and leaf diagram of Figure 3.8 counterclockwise $90^{\circ}$, such that the stems are at the bottom, results in a diagram very similar to the histogram shown in Figure 3.4. With the histogram, however, we have lost the original scores; with the stem and leaf diagram, the original scores are preserved.

## WHAT IS THE TRUTH?

An article appeared in the business section of a newspaper, discussing the rate increases of Puget Power \& Light Company. The company was in poor financial condition and had proposed still another rate increase in 1984 to try to help it get out of trouble. The issue was particularly sensitive because rate increases had plagued the region recently to pay for huge losses in nuclear power plant construction. The graph at right appeared in the article along with the caption "Puget Power rates have climbed steadily during the past 14 years." Do you notice anything peculiar about the graph?

Answer Take a close look at the $X$ axis. From 1970 to 1980, the scale is calibrated in 2-year intervals.
After 1980, the same distance on the $X$ axis represents 1 year rather than 2 years. Given the data, stretching this part of the scale gives the false impression that costs have risen "steadily." When plotted properly, as is done in the bottom graph, you can see that rates have not risen steadily, but instead have greatly accelerated over the last 3 years (including the proposed rate increase). Labeling the

## Stretch the Scale, Ghange the Tale

rise as "steady" rather than a greatly accelerating increase obviously is in the company's interest. It is unclear whether the company furnished the
graph or whether the newspaper constructed its own. In any case, when the axes of graphs are not uniform, reader beware!



## S UMMARY

In this chapter, I have discussed frequency distributions and how to present them in tables and graphs. In descriptive s tatistics, we a re i nterested in characterizing a set of scores in the most meaningful manner. When faced with a large number of scores, it is easier to understand, interpret, and discuss the scores when they are presented as a frequency distribution. A frequency distribution is a listing of the score values in rank order a long with their frequency of occurrence. If there are many scores existing o ver a w ide $r$ ange, the scores a re us ually $g$ rouped together in equal intervals to allow a more meaningful interpretation. The scores can be presented as an ordinary frequency distribution, a relative frequency distribution, a cumulative frequency distribution, or a cumulative percentage distribution. I d iscussed each of these a nd how
to construct them. I a lso presented the concepts of percentile point a nd percentile rank a nd discussed how to compute each.

When $f$ requency $d$ istributions a re $g$ raphed, $f$ requency is plotted on the vertical axis and the score value on the hor izontal axis. Four main types of $g$ raphs a re used: the bar graph, the histogram, the frequency polygon, a nd the cumulative percentage curve. I d iscussed the use of each type and how to construct them.

Frequency curves can also take on various shapes. I illustrated some of the co mmon shapes encou ntered (e.g., b ell-shaped, U-s haped, a nd J -shaped) a nd d iscussed the difference between symmetrical and skewed curves. Finally, I d iscussed the use of a $n$ exploratory data analysis technique: stem and leaf diagrams.

## IMPORTANT NEWTERMS

Bar graph (p. 63)
Bell-shaped curve (p. 67)
Cumulative frequency
distribution (p. 54)
Cumulative percentage curve (p. 64)
Cumulative percentage
distribution (p. 54)
Exploratory data analysis (p. 67)
Frequency distribution (p. 48)

Frequency distribution of grouped scores (p. 49)
Frequency polygon (p. 63)
Histogram (p. 63)
J-shaped curve (p. 67)
Negatively skewed curve (p. 65)
Percentile point (p. 56)
Percentile rank (p. 59)
Positively skewed curve (p. 65)

Relative frequency distribution (p. 54)
Skewed curve (p. 65)
Stem and leaf diagrams (p. 67)
Symmetrical curve (p. 65)
U-shaped curve (p. 67)
$X$ axis (abscissa) (p. 61)
$Y$ axis (ordinate) (p. 61)

## ■ QUESTIONSAND PROBLEMS

1. D efine each of the terms in the Important New Terms section.
2. How do bar graphs, histograms, and frequency polygons differ in construction? What type of scaling is appropriate for each?
3. The $f$ ollowing $t$ able $g$ ives $t$ he 2002 me dian a nnual salaries of various categories of scientists in the United S tates holding Ph Ds. Cons truct a ba r g raph for these data with "Annual Salary" on the $Y$ axis and "Category of Sci entist" on $t$ he $X$ axis. A rrange the categories so that the salaries decrease from left to right.

|  | Annual <br> Category of Scientist <br> Sary |
| :--- | ---: |
| Biological and Health Sciences | 70,100 |
| Chemistry | 79,100 |
| Computer and Math Sciences | 75,000 |
| Psychology | 66,700 |
| Sociology and Anthropology | 63,100 |

4. A g raduate s tudent ha s co llected d ata i nvolving 66 scores. B ased on $t$ hese data, he ha s cons tructed two
frequency distributions of grouped scores. These are shown here. Do you see a nything w rong with these distributions? Explain.
a.

|  |  |
| :---: | ---: |
| Class Interval | $f$ |
| $\cdots \ldots \ldots \ldots$ | $\boldsymbol{f}$ |
| $48-63$ | 17 |
| $29-47$ |  |
| $10-28$ | 28 |
|  | 21 |

b.

| Class Interval | $f$ | Class Interval | $f$ |
| :---: | :---: | :---: | :---: |
| 62-63 | 2 | 34-35 | 2 |
| 60-61 | 4 | 32-33 | 0 |
| 58-59 | 3 | 30-31 | 5 |
| 56-57 | 1 | 28-29 | 3 |
| 54-55 | 0 | 26-27 | 0 |
| 52-53 | 4 | 24-25 | 4 |
| 50-51 | 5 | 22-23 | 5 |
| 48-49 | 2 | 20-21 | 2 |
| 46-47 | 0 | 18-19 | 0 |
| 44-45 | 5 | 16-17 | 3 |
| 42-43 | 4 | 14-15 | 1 |
| 40-41 | 3 | 12-13 | 0 |
| 38-39 | 0 | 10-11 | 2 |
| 36-37 | 6 |  |  |

5. The following scores were obtained by a college sophomore class on an English exam:

| 6 | 0 | 94 | 75 | 82 | 72 | 57 | 92 | 75 | 85 | 77 |
| :--- | :--- | :--- | ---: | :--- | :--- | ---: | :--- | :--- | :--- | :--- |
| 72 | 85 | 64 | 78 | 75 | 62 | 49 | 70 | 94 | 72 | 84 |
| 55 | 90 | 88 | 81 | 64 | 91 | 79 | 66 | 68 | 67 | 74 |
| 45 | 76 | 73 | 6 | 8 | 85 | 73 | 8 | 3 | 85 | 71 |
| 87 | 57 |  |  |  |  |  |  |  |  |  |
| 8 | 2 | 78 | 68 | 70 | 71 | 78 | 69 | 98 | 65 | 61 |
| 8 | 4 | 69 | 77 | 81 | 87 | 79 | 64 | 72 | 55 | 76 |
| 9 | 3 | 56 | 67 | 71 | 83 | 72 | 82 | 78 | 62 | 82 |
| 6 | 3 | 73 | 89 | 78 | 81 | 93 | 72 | 76 | 73 | 90 |

a. Construct a f requency d istribution oft he u grouped scores $(i=1)$.
b. Construct a $f$ requency $d$ istribution of $g$ rouped scores having approximately 15 intervals. List both the apparent and real limits of each interval.
c. Construct a histogram of the frequency distribution constructed in part $\mathbf{b}$.
d. Is the distribution skewed or symmetrical? If it is skewed, is it skewed positively or negatively?
e. Construct a s tem and leaf diagram with the last digit being a leaf and the first digit a stem. Repeat stem values twice.
f. Which diagram do you like better, the histogram of part $\mathbf{c}$ or the stem and leaf diagram of part $\mathbf{e}$ ? Explain. education
6. Express the grouped frequency distribution of part b of P roblem 5 a s a re lative f requency, ac umulative frequency, a nd a cu mulative percentage $d$ istribution. education
7. Using the cumulative frequency arrived at in Problem 6, determine

> a. $P_{75}$
> b. $P_{40}$ education
8. Again, using the cumulative distribution and grouped scores arrived at in Problem 6, determine
a. The percentile rank of a score of 81
b. The percentile rank of a score of 66
c. The percentile rank of a score of 87 education
9. Construct a histogram of the distribution of grouped English exam scores determined in Problem 5, part b. education
10. The following scores show the amount of weight lost (in pounds) by each client of a weight control clinic during the last year:

| 101 | 3 | 22 | 26 | 16 | 23 | 35 | 53 | 17 | 32 |
| :--- | ---: | ---: | :--- | :--- | :--- | :--- | ---: | :--- | :--- |
| 413 | 5 | 24 | 23 | 27 | 16 | 20 | 60 | 48 | 43 |
| 523 | 1 | 17 | 20 | 33 | 18 | 23 | 8 | 24 | 15 |
| 264 | 6 | 30 | 19 | 22 | 13 | 22 | 14 | 21 | 39 |
| 284 | 3 | 37 | 15 | 20 | 11 | 25 | 9 | 15 | 21 |
| 2125 |  | 34 | 10 | 23 | 29 | 28 | 18 | 17 | 24 |
| 162 | 6 | 7 | 12 | 28 | 20 | 36 | 16 | 14 |  |
| 18 | 16 | 57 | 31 | 34284 | 2 | 19 | 26 |  |  |

a. Construct a $f$ requency $d$ istribution of $g$ rouped scores with approximately 10 intervals.
b. Construct a $h$ istogram of the frequency distribution constructed in part a.
c. Is the distribution skewed or symmetrical? If it is skewed, is it skewed positively or negatively?
d. Construct a s tem and leaf diagram with the last digit being a leaf and the first digit a stem. Repeat stem values twice.
e. Which diagram do you like better, the histogram of part $\mathbf{b}$ or the stem and leaf diagram of part $\mathbf{d}$ ? Explain. clinical, health
11. Convert $t$ he $g$ rouped $f$ requency $d$ istribution of weight losses determined in Problem 10 to a relative
frequency and a cu mulative frequency distribution. clinical, health
12. Using the cumulative frequency distribution arrived at in Problem 11, determine
a. $P_{50}$
b. $P_{25}$ clinical, health
13. Again using the cumulative frequency distribution of Problem 11, determine
a. The percentile rank of a score of 41
b. The percentile r ank of a score o f 28 clinical, health
14. Construct a $f$ requency $p$ olygon us ing $t$ he $g$ rouped frequency distribution determined in Problem 10. Is the curve symmetrical? If not, is it positively or negatively skewed? clinical, health
15. A small eastern college uses the grading system of $0-4.0$, with 4.0 being the highest possible grade. The scores shown here are the grade point averages of the students currently en rolled as psychology majors at the college.

| 2.71 | .9 | 1.0 | 3.3 | 1.3 | 1.82 | .6 | 3.7 |
| :--- | ---: | :--- | :--- | ---: | :--- | ---: | ---: |
| 3.12 | .2 | 3.0 | 3.4 | 3.1 | 2.2 | 1.9 | 3.1 |
| 3.43 | .0 | 3.5 | 3.02 | .4 | 3.03 | .4 | 2.4 |
| 2.43 | .2 | 3.3 | 2.7 | 3.5 | 3.2 | 3.1 | 3.3 |
| 2.11 | .5 | 2.7 | 2.4 | 3.4 | 3.3 | 3.0 | 3.8 |
| 1.42 | .6 | 2.9 | 2.1 | 2.6 | 1.5 | 2.8 | 2.3 |
| 3.3 | 3.1 | 1.6 | 2.82 | .3 | 2.83 | .2 | 2.8 |
| 2.83 | .8 | 1.4 | 1.9 | 3.3 | 2.9 | 2.0 | 3.2 |

a. Construct a $f$ requency $d$ istribution of $g$ rouped scores with approximately 10 intervals.
b. Construct a h istogram of the frequency distribution constructed in part a.
c. Is the distribution skewed or symmetrical? If skewed, is it skewed positively or negatively?
d. Construct as tem and leaf diagram with the last digit being a leaf and the first digit a stem. Repeat stem values five times.
e. Which diagram do you like better, the histogram of part $\mathbf{b}$ or the stem and leaf diagram of part $\mathbf{d}$ ? Explain. education
16. For the grouped scores in Problem 15, determine a. $P_{80}$
b. $P_{20}$ education
17. Sarah's grade point average is 3.1. Based on the frequency distribution of grouped scores constructed in Problem 15, part a, what is the percentile rank of Sarah's grade point average? education
18. The p olicy of the sc hool in Problem 15 is $t$ hat to graduate with a major in psychology, a student must have a grade point average of 2.5 or higher.
a. Based on the ungrouped scores shown in Problem 15 , what percentage of current psychology majors needs to raise its grades?
b. Based on $t$ he f requency distribution of $g$ rouped scores, what percentage needs to raise its grades?
c. Explain $t$ he $d$ ifference $b$ etween $t$ he a nswers to parts $\mathbf{a}$ and $\mathbf{b}$. education
19. Construct a $f$ requency $p$ olygon us ing $t$ he $d$ istribution of g rouped scores cons tructed in P roblem 15. Is the curve symmetrical or positively or ne gatively skewed?
20. The ps ychology depa rtment of a la rge university maintains its own vivarium of rats for research purposes. A recent sampling of 50 rats from the vivarium revealed the following rat weights (grams):

| 320 | 28 | 2 | 341 | 324 | 340 | 302 | 336 | 265 | 313 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 310 | 3 | 35 | 353 | 318 | 296 | 309 | 308 | 317 | 10 |
| 277 | 288 |  |  |  |  |  |  |  |  |
| 314 | 2 | 98 | 315 | 360 | 275 | 315 | 297 | 330 | 296 |
| 250 | 27 | 4 | 318 | 287 | 284 | 267 | 292 | 348 | 302 |
| 270 | 293 | 63 | 269 | 292 | 298 | 343 | 284 | 352 | 345 |

a. Construct a $f$ requency $d$ istribution of $g$ rouped scores with approximately 11 intervals.
b. Construct a $h$ istogram of the frequency distribution constructed in part a.
c. Is the distribution symmetrical or skewed?
d. Construct a s tem and leaf diagram with the last digit being a leaf and the first two digits a s tem. Do not repeat stem values.
e. Which diagram do you like better, the histogram or the stem and leaf diagram? Why? biological
21. Convert $t$ he $g$ rouped $f$ requency $d$ istribution of $r$ at weights determined in Problem 20 to a re lative frequency, cu mulative f requency, a nd cu mulative percentage distribution. biological
22. Using the cumulative frequency distribution arrived at in Problem 21, determine
a. $P_{50}$
b. $P_{75}$ biological
23. Again us ing $t$ he c umulative f requency d istribution arrived at in Problem 21, determine
a. The percentile rank of a score of 275
b. The percentile rank of a score of 318 biological
24. A professor is do ing resea rch on i ndividual differences in the ab ility of students to b ecome hypnotized. As part of the experiment, she administers a portion of the Stanford Hypnotic Susceptibility Scale to 85 students who volunteered for the experiment. The results are scored from 0 to 12 , with 12 indicating the highest degree of hypnotic susceptibility and 0 the lowest. The scores are shown here.

| 9 | 7 | 11 | 4978 |  | 8 | 10 | 6 |
| ---: | :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| 6 | 4 | 3 | 5546 |  | 2 | 6 | 8 |
| 10 | 8 | 6 | 7371 |  | 6 | 5 | 3 |
| 2 | 7 | 6 | 2694 |  | 7 | 9 | 6 |
| 5 | 9 | 5 | 0563 |  | 6 | 7 | 9 |
| 7 | 542 | 9 | 8 | 11 | 7 | 12 | 3 |
| 8 | 654 | 10 | 7 | 4 | 10 | 8 | 7 |
| 6 | 2 | 7 | 5348 |  |  | 6 | 4 |
| 4 | 658 | 7 |  |  |  |  |  |

a. Construct a frequency distribution of the scores.
b. Construct a $h$ istogram of the frequency distribution constructed in part a.
c. Is the distribution symmetrical or skewed?
d. Determine the percentile rank of a score of 5 and a score of 10. Hint: Use the frequency distribution constructed in part a to determine percentile rank. clinical, cognitive, health

## What Is the Truth? Questions

1. Stretch the Scale, Change the Tale.
a. What is the purpose of graphing data? Be sure to include the concept of accuracy in your answer.
b. In rea ding a ricles that presen $t \mathrm{~g}$ raphs, $w$ hy is it important to check the $X$ and $Y$ values at the origin of each graph?
c. Why is itimportant $f$ or the sca les of the $X$ and $Y$ axis to be uniform throughout each scale? Is it ever appropriate to use scales that are not uniform? Explain.

## SPSS ILLUSTRATIVE EXAMPLE $\mathbf{3 . 1}$

The g eneral operation of SPSS a nd its pro cedures for data en try a re desc ribed in Appendix E, Introduction to SP SS. Chapter 3 of the textbook discusses frequency distributions. S PSS ca n beag reat he lp in cons tructing a nd g raphing f requency distributions.

## example

For this example, let's use the statistics exam scores given in Table 3.1, p. 48 of the textbook. For convenience the scores are repeated below.

| 95 | 57 | 76 | 93 | 86 | 80 | 89 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 76 | 76 | 63 | 74 | 94 | 96 | 77 |
| 65 | 79 | 60 | 56 | 72 | 82 | 70 |
| 67 | 79 | 71 | 77 | 52 | 76 | 68 |
| 72 | 88 | 84 | 70 | 83 | 93 | 76 |
| 82 | 96 | 87 | 69 | 89 | 77 | 81 |
| 87 | 65 | 77 | 72 | 56 | 78 | 78 |
| 58 | 54 | 82 | 82 | 66 | 73 | 79 |
| 86 | 81 | 63 | 46 | 62 | 99 | 93 |
| 82 | 92 | 75 | 76 | 90 | 74 | 67 |

a. Use SPSS to construct an ungrouped frequency distribution of the scores.
b. Use SPSS to construct a histogram of the scores. Is the distribution symmetrical?

## SOLUTION

STEP 1: Enter the Data. Enter the statistics exam scores in t he first column (VAR00001) of t he Dat a E ditor, beginning with the first score in the first cell of the first column. The heading of this column changes from var to VAR00001 after you enter the first score. Data entry can be a bit tedious, especially when $N$ is large. Be sure to check the accuracy of your entries. No sense analyzing erroneous data.

STEP 2: Name the Variables. This step is optional. If we chose to skip this step, SPSS will use the default variable name that heads the column in which the scores are entered. Since we are just beginning with SPSS instruction, let's skip this step. We will give variables new names in subsequent chapters. Since we are not giving the scores a new name and the scores are entered in the first column of the Data Editor, SPSS will use the default heading of the first column (VAR00001) as the name of the scores.

STEP 3: Analyze the Data.
Part a. Construct an Ungrouped Frequency Distribution of the Scores. If you are currently not displaying the Data Editor-Data View, I suggest you do so before going on. To switch to the Data Editor-Data View from the Data Editor-Variable View, click the Variable View tab on the lower left corner of the Data Editor-Variable View. Let's now go on with the analysis.

1. Click Analyze on the tool bar at the top of the screen; then select Descriptive Statistics; then click Erequencies....
2. Click the arrow in the middle of the dialog box.

This produces the Frequencies dialog box with VAR00001 located in the large box on the left; VAR00001 is highlighted. Be sure the box for Display Frequency Tables has a check in it. One of the functions of the Frequencies dialog box is to produce ungrouped frequency distributions.

Since VAR00001 is already highlighted, clicking the arrow moves VAR00001 from the large box on the left into the Variable(s) box on the right.

SPSS then analyzes the data and displays the two tables in the output window that are shown below. One is titled Statistics and tells us that $\boldsymbol{N}=\mathbf{7 0}$. The other is titled VAR00001. It displays ungrouped Frequency, Percent, and Cumulative Percent distributions for the VAR00001 data.

## Analysis Results



VAR00001

|  | Frequency | Percent | Valid Percent | Cumulative Percent |
| :---: | :---: | :---: | :---: | :---: |
| Valid 46.00 | 1 | 1.4 | 1.4 | 1.4 |
| 52.00 | 1 | 1.4 | 1.4 | 2.9 |
| 54.00 | 1 | 1.4 | 1.4 | 4.3 |
| 56.00 | 2 | 2.9 | 2.9 | 7.1 |
| 57.00 | 1 | 1.4 | 1.4 | 8.6 |
| 58.00 | 1 | 1.4 | 1.4 | 10.0 |
| 60.00 | 1 | 1.4 | 1.4 | 11.4 |
| 62.00 | 1 | 1.4 | 1.4 | 12.9 |
| 63.00 | 2 | 2.9 | 2.9 | 15.7 |
| 65.00 | 2 | 2.9 | 2.9 | 18.6 |
| 66.00 | 1 | 1.4 | 1.4 | 20.0 |
| 67.00 | 2 | 2.9 | 2.9 | 22.9 |
| 68.00 | 1 | 1.4 | 1.4 | 24.3 |
| 69.00 | 1 | 1.4 | 1.4 | 25.7 |
| 70.00 | 2 | 2.9 | 2.9 | 28.6 |
| 71.00 | 1 | 1.4 | 1.4 | 30.0 |
| 72.00 | 3 | 4.3 | 4.3 | 34.3 |
| 73.00 | 1 | 1.4 | 1.4 | 35.7 |
| 74.00 | 2 | 2.9 | 2.9 | 38.6 |
| 75.00 | 1 | 1.4 | 1.4 | 40.0 |
| 76.00 | 6 | 8.6 | 8.6 | 48.6 |
| 77.00 | 4 | 5.7 | 5.7 | 54.3 |
| 78.00 | 2 | 2.9 | 2.9 | 57.1 |
| 79.00 | 3 | 4.3 | 4.3 | 61.4 |
| 80.00 | 1 | 1.4 | 1.4 | 62.9 |
| 81.00 | 2 | 2.9 | 2.9 | 65.7 |
| 82.00 | 5 | 7.1 | 7.1 | 72.9 |
| 83.00 | 1 | 1.4 | 1.4 | 74.3 |
| 84.00 | 1 | 1.4 | 1.4 | 75.7 |
| 86.00 | 2 | 2.9 | 2.9 | 78.6 |
| 87.00 | 2 | 2.9 | 2.9 | 81.4 |
| 88.00 | 1 | 1.4 | 1.4 | 82.9 |
| 89.00 | 2 | 2.9 | 2.9 | 85.7 |
| 90.00 | 1 | 1.4 | 1.4 | 87.1 |
| 92.00 | 1 | 1.4 | 1.4 | 88.6 |
| 93.00 | 3 | 4.3 | 4.3 | 92.9 |
| 94.00 | 1 | 1.4 | 1.4 | 94.3 |
| 95.00 | 1 | 1.4 | 1.4 | 95.7 |
| 96.00 | 2 | 2.9 | 2.9 | 98.6 |
| 99.00 | 1 | 1.4 | 1.4 | 100.0 |
| Total | 70 | 100.0 | 100.0 |  |

It is worth comparing the ungrouped frequency distribution, shown in the second column, with the one shown in Table 3.2, p. 49 of the textbook. They are essentially the same except SPSS does not display any $\mathbf{0}$ frequency scores, and the scale is inverted.

Part b. Construct a Histogram of the Scores. To construct a histogram of the VAR00001 scores,

1. Click Analyze on the tool bar at the top of the screen; then Select Descriptive Statistics; then Click Frequencies....
2. Click Display Frequency Tables.

This produces the Frequencies dialog box which is also used to construct histograms. VAR00001 is in the large box on the right, because you moved it there in part a. If for some reason it is not there, please do so before moving on.

This removes the check in the Display Frequency Tables box to prevent unwanted frequency tables from being displayed as output. If there is no check in this box, skip this step. Don't worry about the warning message if it comes up. Just click OK on it.

This produces the Frequencies: Charts dialog box that is used to construct histograms and a few other graphs.

This produces a blue dot in the Histograms: box, telling SPSS to construct a histogram when it gets the OK.

This returns you to the Frequencies dialog box.

SPSS constructs a table and a histogram, and displays them. The histogram is shown below. We will ignore the table.

Analysis Results

Histogram


Comparing the SPSS histogram with the one presented in Figure 3.4, p. 52 of the textbook, you can see they are different. This is because SPSS grouped the scores into 12 intervals, whereas the textbook used 11.

As a fun extra exercise, let's do the following. SPSS allows the option of superimposing a normal curve on the histogram. Let's ask SPSS to do this. We will assume that the entries you made to construct the histogram haven't changed. To superimpose the normal curve on the histogram, go through the steps you have just completed to construct a histogram. Stop when you have displayed the Frequencies: Charts dialog box. The Histograms: box should already have a blue dot in it. Then,

## INSTRUCTIONS

1. Click Show normal curve on histogram located under Histograms: on the Frequencies: Charts dialog box.
2. Click Continue.
3. Click OK.

## EXPLANATION

This produces a check in the Show normal curve box. When you give the OK to plot the histogram, this tells SPSS to superimpose a normal curve on the histogram. Seeing both on the same plot can help you tell how closely the data approximates the normal distribution.

This returns you to the Frequencies dialog box.

SPSS constructs and displays the histogram with a superimposed normal curve that is shown below. Pretty neat, eh?

## Analysis Results



## SPSS ADDITIONAL PROBLEMS

1. For this problem, use the weight loss scores of Chapter 3, End-of-Chapter Problem 10, p. 71 of the textbook. Do not give the scores a new name. For convenience the scores are repeated here.

| 101 | 3 | 22 | 26 | 16 | 23 | 35 | 53 | 17 | 32 |
| :--- | ---: | ---: | :--- | :--- | :--- | :--- | ---: | :--- | :--- |
| 413 | 5 | 24 | 23 | 27 | 16 | 20 | 60 | 48 | 43 |
| 523 | 1 | 17 | 20 | 33 | 18 | 23 | 8 | 27 | 15 |
| 26 | 46 | 30 | 1922 |  | 1322 |  | 14 | 21 | 39 |
| 284 | 3 | 37 | 15 | 20 | 11 | 25 | 9 | 15 | 21 |
| 2125 |  | 34 | 10 | 23 | 29 | 28 | 18 | 17 | 24 |
| 162 | 6 | 7 | 12 | 28 | 20 | 36 | 16 | 14 |  |
| 18 | 16 | 57 | 313428 |  |  | 42 | 19 | 26 |  |

a. Use SPSS to construct an ungrouped frequency distribution of the scores.
b. Use SPSS to construct a histogram of the scores. Is the distribution symmetrical? If not, is it positively or negatively skewed?
2. For this problem, use the grade point averages given in the textbook, Chapter 3, end-of-chapter Problem 15, p. 72. Give the scores the new name, GPA. For convenience the scores are repeated here.

| 2.71 | .9 | 1.0 | 3.3 | 1.3 | 1.8 | 2.6 | 3.7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3.12 | .2 | 3.0 | 3.4 | 3.1 | 2.2 | 1.9 | 3.1 |
| 3.43 | .0 | 3.5 | 3.0 | 2.4 | 3.0 | 3.4 | 2.4 |
| 2.43 | .2 | 3.3 | 2.7 | 3.5 | 3.2 | 3.1 | 3.3 |
| 2.11 | .5 | 2.7 | 2.1 | 2.6 | 3.3 | 3.8 |  |
| 1.42 | .6 | 1.9 | 2.8 | 2.3 | 2.5 | 2.8 | 2.3 |
| 3.33 | .1 | 1.9 | 1.4 | 3.3 | 2.9 | 3.2 | 2.8 |
| 2.83 | .8 |  |  | 2.0 | 3.2 |  |  |

Use SPSS to cons truct a histogram of the scores, with a n ormal curve superimposed on t he histogram. Is t he distribution symmetrical? If not, is it positively or negatively skewed? Is the distribution normally distributed?

## ONLINE STUDY RESOURCES

## CENGAGE braiom

Login to CengageBrain.com to access the resources your instructor has assigned. For this book, you can access the book's companion website for chapter-specific learning tools including Know and Be Able to Do, practice quizzes, flash cards, and glossaries and a link to Statistics and Research Methods Workshops
aplia
If your professor has assigned Aplia homework:

1. Sign in to your account
2. Co mplete the cor responding ho mework exercises as required by your professor
3. W hen finished, click "G rade It N ow" to se e which areas you have mastered and which need more work, and for detailed explanations of every answer.

Visit www.cengagebrain.com to access your account and to purchase materials.

## Measures of Central Tendency and Variability

## LEARNING OBJECTIVES

After completing this chapter, you should be able to:

- Contrast central tendency and variability.
- Define arithmetic mean, deviation score, median, mode, overall mean, range, standard deviation, sum of squares, and variance.
- Specify how the arithmetic mean, median, and mode differ conceptually; specify the properties of the mean, median, and mode.
- Compute the following: arithmetic mean, overall mean, median, mode, range, deviation scores, sum of squares, standard deviation, and variance.
- Specify how the mean, median, and mode are affected by skew in unimodal distributions.
- Explain how the standard deviation of a sample, as calculated in the textbook, differs from the standard deviation of a population, and why they differ.
- Understand the illustrative examples, do the practice problems, and understand the solutions.


In Chapter 3, we discussed how to or ganize a nd present data in meaningful ways. The frequency distribution and its many derivatives are useful in this regard, but by themselves, they do not allow quantitative statements that characterize the distribution as a whole to be made, nor do they allow quantitative comparisons to be made between two or more distributions. It is often desirable to describe the characteristics of distributions quantitatively. For example, suppose a psychologist has conducted an experiment to det ermine whether men a nd women differ in mathematical aptitude. She has two sets of scores, one from the men and one from the women in the experiment. How can she compare the distributions? To do so, she needs to quantify them. This is mos $t$ often done $b$ y co mputing the a verage score $f$ or each $g$ roup and then comparing the averages. The measure computed is a measure of the central tendency of each distribution.

A second characteristic of distributions that is very useful to quantify is the variability of the distribution. Variability specifies the extent to which scores are different from each other, are dispersed, or a re spread out. It is i mportant for two reasons. First, determining the variability of the data is required by many of the statistical inference tests that we shall be discussing later in this book. In addition, the variability of a distribution can be useful in its own right. For example, suppose you were hired to des ign a nd evaluate a e ducational program for disadvantaged youngsters. When evaluating the program, you would be interested not only in the average value of the end-of-program scores but also in how variable the scores were. The variability of the scores is i mportant because you need to $k$ now whether the effect of the program is $u$ niform or $v$ aries over the youngsters. If it varies, as it almost assuredly will, how large is the variability? Is the program doing a good job with some students and a poor job with others? If so, the program may need to be redesigned to do ab etter job with those youngsters who have not been adequately benefiting from it.

Central tendency and variability are the two characteristics of distributions that are most often quantified. In this chapter, we shall discuss the most important measures of these two characteristics.

## MEASURES OF CENTRAL TENDENCY

The three most often used measures of central tendency are the arithmetic mean, the median, and the mode.

## The Arithmetic Mean

You are probably already familiar with the arithmetic mean. It is the value you ordinarily calculate when you average something. For example, if you wanted to know the average number of hours you studied per day for the past 5 d ays, you would add the hours you studied each day a nd divide by 5 . In so do ing, y ou would be calculating the arithmetic mean.
or
The arithmetic mean is defined as the sum of the scores divided by the number of scores. In equation form,

$$
\bar{X}=\frac{\sum X_{i}}{N}=\frac{X_{1}+X_{2}+X_{3}+\cdots+X_{N}}{N} \quad \text { mean of sample }
$$

$$
\mu=\frac{\sum X_{i}}{N}=\frac{X_{1}+X_{2}+X_{3}+\cdots+X_{N}}{N} \quad \begin{aligned}
& \text { mean of population } \\
& \text { set of scores }
\end{aligned}
$$

wher
$e$

$$
X_{1} \ldots X_{N}=\text { raw scores }
$$

$\bar{X}($ read "X bar") $=$ mean of a sample set of scores
$\mu($ read "mew") $=$ mean of a population set of scores
$\Sigma($ read "sigma") $=$ summation sign
$N=$ number of scores

Note that we use two symbols for the mean: $\bar{X}$ if the scores are sample scores and $\mu$ (the Greek letter mu ) if the scores a re population scores. The computations, however, are the same regardless of whether the scores are sample or population scores. We shall use $\mu$ without any subscript to indicate that this is the mean of a population of raw scores. Later on in the text, we shall calculate population means of other kinds of scores for which we shall add the appropriate subscript.

Let's try a few problems for practice.

## Practice Problem 4.1

Calculate the mean for each of the following sample sets of scores:
a. $X: \quad 3,5,6,8,14$

$$
\begin{aligned}
\bar{X}=\frac{\sum X_{i}}{N} & =\frac{3+5+6+8+14}{5} \\
& =\frac{36}{5}=7.20
\end{aligned}
$$

b. $X: \quad 20,22,28,30,37,38$

$$
\begin{aligned}
\bar{X}=\frac{\sum X_{i}}{N} & =\frac{20+22+28+30+37+38}{6} \\
& =\frac{175}{6}=29.17
\end{aligned}
$$

c. $X: \quad 2.2,2.4,3.1,3.1$

$$
\begin{aligned}
\bar{X}=\frac{\sum X_{i}}{N} & =\frac{2.2+2.4+3.1+3.1}{4} \\
& =\frac{10.8}{4}=2.70
\end{aligned}
$$

table 4.1 Demonstration that $\Sigma\left(X_{i}-\bar{X}\right)=0$

| Subject Number | $X_{i}$ | $X_{i}-\bar{X}$ | Calculation of $\bar{X}$ |
| :---: | :---: | :---: | :---: |
| 1 |  | $2-4$ |  |
| 2 |  | $4-2$ | $\bar{\chi} \quad \begin{array}{ll} \\ \text { - }\end{array} X_{i} 30$ |
| 3 |  | $6-0$ | $X=\frac{\chi_{i}}{N}=\frac{3}{5}$ |
| 4 |  | $8+2$ | $=6.00$ |
| 5 | 10 | +4 |  |
|  | $\sum X_{i}=30$ | $\Sigma\left(X_{i}-\bar{X}\right)=0$ |  |

Properties of the mean The mean has many important properties or characteristics. First,

The mean is sensitive to the exact value of all the scores in the distribution.
To calculate the mean you have to add all the scores, so a change in any of the scores will cause a change in the mean. This is not true of the median or the mode.

A second property is the following:
The sum of the deviations about the mean equals zero. Written algebraically, this property becomes $\Sigma\left(X_{i}-\bar{X}\right)=0$.
This property says that if the mean is subtracted from each score, the sum of the differences will equal zero. The algebraic proof is presented in Note 4.1 at the end of this chapter. A demonstration of its validity is shown in Table 4.1. This property results from the fact that the mean is the balance point of the distribution. The mean can be thought of as the fulcrum of a se esaw, to use a me chanical analogy. The analogy is shown in Figure 4.1, using the scores of Table 4.1. When the scores are distributed along the seesaw according to their values, the mean of the distribution occupies the position where the scores are in balance.

A third property of the mean also derives from the fact that the mean is the balance point of the distribution:

## MENTORING TIP

An extreme score is one that is far from the mean.

The mean is very sensitive to extreme scores.
A glance at Figure 4.1 should convince you that, if we added an extreme score (one far from the mean), it would greatly disrupt the balance. The mean would have to shift a considerable distance to reestablish balance. The mean is more sensitive to extreme scores than is the median or the mode. We shall discuss this more fully when we take up the median.

figure 4.1 The mean as the balance point in the distribution.
table 4.2 Demonstration that $\Sigma\left(X_{i}-\bar{X}\right)^{2}$ is a minimum

| (1) | (2) | (3) | (4) | (5) | (6) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $X_{i}$ | $\left(X_{i}-3.00\right)^{2}$ | $\left(X_{i}-4.00\right)^{2}$ | $\left(X_{i}-5.00\right)^{2}$ | $\left(X_{i}-6.00\right)^{2}$ | $\left(X_{i}-7.00\right)^{2}$ |
| 2 |  | 1 |  | 49 | 26 |
| 4 |  | 1 |  | 01 | 4 |
| 6 |  | 9 |  | 41 | 0 |
| 8 | $\underline{25}$ | 16 | 9 | 4 | 1 |
| $\bar{X}=5.00$ | 36 | 24 | 20 | 24 | 36 |

A fourth property of the mean has to do with the variability of the scores about the mean. This property states the following:
The sum of the squared deviations of all the scores about their mean is a minimum. Stated algebraically, $\Sigma\left(X_{i}-\bar{X}\right)^{2}$ is a minimum.

MENTORINGTIP
At this point, just concentrate on understanding this property; don't worry about its application.

This is an important characteristic used in many areas of statistics, particularly in regression. Elaborated a little more fully, this property states that although the sum of the squared deviations about the mean does not usually equal zero, this sum is smaller than if the squared deviations were taken about any other value. The validity of this property is demons trated in Table 4.2. The scores of the distribution are given in the first column. Their mean equals 5.00. The fourth column shows the squared deviations of the $X_{i}$ scores ab out their mean $\left(X_{i}-5.00\right)^{2}$. The sum of these squared deviations is 20. The other columns show the squared deviations of the $X_{i}$ scores about values other than the mean. In the second column, the value is $3.00\left(X_{i}-3.00\right)^{2}$; in the third column, 4.00; in the fifth column, 6.00; and in the sixth column, 7.00 . Note that the sum of the squared de viations about each of these values is la rger than the sum of the squared deviations about the mean of the distribution. Not only is the sum larger, but the farther the value gets from the mean, the larger the sum becomes. This implies that although we've compared only four other values, it holds true for all other values. Thus, although the sum of the squared de viations about the mean does not usually equal zero, it is smaller than if the squared deviations are taken about any other value.

The last property has to do with the use of the mean for statistical inference. This property states the following:
Under most circumstances, of the measures used for central tendency, the mean is least subject to sampling variation.
If we were repeatedly to take samples from a population on a random basis, the mean would vary from sa mple to sa mple. The sa me is $t$ rue for the me dian and the mode. However, the mean varies less than these other measures of central tendency. This is very important in inferential statistics and is a $m$ ajor reason why the mean is use $d$ in inferential statistics whenever possible.

## The Overall Mean

Occasionally, the situation a rises in which we $k$ now the mea $n$ of se veral $g$ roups of scores and we want to ca lculate the mean of all the scores co mbined. Of course, we could start from the beginning ag ain a nd just sum all the raw scores a nd divide by the total number of scores. However, there is a s hortcut available if we already know the mean of the groups and the number of scores in each group. The equation for this method derives from the basic definition of the mean. Suppose we have several groups
of scores that we wish to combine to calculate the overall mean. We'll let $k$ equal the number of groups. Then,

$$
\begin{aligned}
\bar{X}_{\text {overall }} & =\frac{\text { Sum of all scores }}{N} \\
& =\frac{\sum X_{i}(\text { first group })+\sum X_{i}(\text { second group })+\cdots+\Sigma X_{i}(\text { last group })}{n_{1}+n_{2}+\cdots+n_{k}}
\end{aligned}
$$

where $N=$ total number of scores
$n_{1}=$ number of scores in the first group
$n_{2}=$ number of scores in the second group
$n_{k}=$ number of scores in the last group
Since $\bar{X}_{1}=\sum X_{i}$ (first group) $/ n_{1}$, multiplying by $n_{1}$, we have $\sum X_{i}$ (first group) $=n_{1} \bar{X}_{1}$. Similarly, $\sum X_{i}\left(\right.$ second g roup) $=n_{2} \bar{X}_{2}$, and $\sum X_{i}$ (last group) $=n_{k} \bar{X}_{k}$, where $\bar{X}_{k}$ is the mean of the last gr oup. S ubstituting th ese $v$ alues in the numerator of the p receding equation, we arrive at

$$
\bar{X}_{\text {overall }}=\frac{n_{1} \bar{X}_{1}+n_{2} \bar{X}_{2}+\ldots+n_{k} \bar{X}_{k}}{n_{1}+n_{2}+\ldots+n_{k}} \quad \text { overall mean of several groups }
$$

In words, this equation states that the overall mean is equal to the sum of the mean of each group times the number of scores in the group, divided by the sum of the number of scores in each group.

To illustrate how this equation is used, suppose a sociology professor gave a final exam to two classes. The mean of one of the classes was 90 , and the number of scores was 20 . The mean of the other class was 70 , and 40 students took the exam. Calculate the mean of the two classes combined.

The solution is as follows: Given that $\bar{X}_{1}=90$ and $n_{1}=20$ and that $\bar{X}_{2}=70$ and $n_{2}=40$,

$$
\bar{X}_{\text {overall }}=\frac{n_{1} \bar{X}_{1}+n_{2} \bar{X}_{2}}{n_{2}+n_{2}}=\frac{20(90)+40(70)}{20+40}=76.67
$$

The overall mean is much closer to the average of the class with 40 scores than the

MENTORINGTIP
The overall mean is often called the weighted mean.
class with 20 scores. In this context, we can see that each of the means is being weighted by its number of scores. We are counting the mean of 70 forty times and the mean of 90 only twenty times. Thus, the overall mean really is a weighted mean, where the weights are the number of scores used in determining each mean. Let's do one more pro blem for practice.

## Practice Problem 4.2

A researcher conducted an experiment involving three groups of subjects. The mean of the first g roup was 75 , a nd there were 50 subjects in the g roup. The mean of the second group was 80 , and there were 40 subjects. The third group had a mean of 70 and 25 subjects. Calculate the overall mean of the three groups combined.

## SOLUTION

The solution is as follows: Given that $\bar{X}_{1}=75, n_{1}=50 ; \bar{X}_{2}=80, n_{2}=40$; and $\bar{X}_{3}=70, n_{3}=25$,

$$
\begin{aligned}
& \bar{X}_{\text {overall }}=\frac{n_{1} \bar{X}_{1}+n_{2} \bar{X}_{2}+n_{3} \bar{X}_{3}}{n_{1}+n_{2}+n_{3}}=\frac{50(75)+40(80)+25(70)}{50+40+25} \\
& 11 \quad=\frac{8700}{5}=75.65
\end{aligned}
$$

## The Median

The second most frequently encountered measure of central tendency is the median.

The median (symbol Mdn) is defined as the scale value below which $50 \%$ of the scores fall. It is therefore the same thing as $P_{50}$.

In Chapter 3, we discussed how to calculate $P_{50}$; therefore, you already know how to calculate the median for grouped scores. For practice, however, Practice Problem 4.3 contains another problem and its solution. You should try this problem and be sure you can solve it before going on.

## Practice Problem 4.3

Calculate the median of the grouped scores listed in Table 4.3.
table 4.3 Calculating the median from grouped scores

| Class |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $f$ | Cumf | Cum \% | Calculation of Median |
| 3.6-4.0 | 4 | 52 | 100.00 |  |
| 3.1-3.5 | 6 | 48 | 92.31 |  |
| 2.6-3.0 | 8 | 42 | 80.77 |  |
| 2.1-2.5 | 10 | 34 | 65.38 | $\mathrm{Mdn}=P_{50}$ |
| 1.6-2.0 | 9 | 24 | 46.15 | $=X_{L}+\left(i / f_{i}\right)\left(\operatorname{cum} f_{P}-\operatorname{cum} f_{L}\right)$ |
| 1.1-1.5 | 7 | 15 | 28.85 | $=2.05+(0.5 / 10)(26-24)$ |
| 0.6-1.0 | 5 | 8 | 15.38 | $=2.05+0.10=2.15$ |
| 0.1-0.5 | 3 | 3 | 5.77 |  |

(continued)

## MENTORINGTIP

To help you remember that the median is the centermost score, think of the median of a road (the center line) that divides the road in half.

## SOLUTION

The median is the value below which $50 \%$ of the scores fall. Since $N=52$, the median is the value below which 26 of the scores fall ( $50 \%$ of $52=26$ ). From Table 4.3, we see that the median lies in the interval 2.1-2.5. Since 24 scores fall below a value of 2.05 , we need two more scores to $m$ ake up the 26 . Given that there are 10 scores in the interval and the interval is 0.5 unit wide, we must move $0.5 / 10 \times 2=0.10$ unit into the interval. Thus,

$$
\text { Median }=2.05+0.10=2.15
$$

The median could also have been found by using the equation for percentile point. This solution is shown in Table 4.3.

When dea ling with raw (ungrouped) scores, $i t$ is qu ite easy to find the me dian. First, arrange the scores in rank order.

The median is the centermost score if the number of scores is odd. If the number is even, the median is taken as the average of the two centermost scores.

To illustrate, suppose we have the scores $5,2,3,7$, and 8 and want to determine their median. First, we rank-order the scores: $2,3,5,7,8$. Since the number of scores is odd, the median is the centermost score. In this example, the median is 5 . It may seem that 5 is not really $P_{50}$ for the set of scores. However, consider the score of 5 to be evenly distributed over the interval $4.5-5.5$. Now it becomes obvious that half of the scores fall below 5.0. Thus, 5.0 is $P_{50}$.

Let's try a nother example, this time with a n e ven number of scores. Given the scores $2,8,6,4,12$, and 10 , determine their median. First, we rank-order the scores: 2 , $4,6,8,10,12$. Since the number of scores is even, the median is the average of the two centermost scores. The median for this example is $(6+8) / 2=7$. For additional practice, Practice Problem 4.4 presents a few problems dealing with raw scores.

## Practice Problem 4.4

Calculate the median for the following sets of scores
a. $8,10,4,3,1,15$
b. $100,102,108,104,112$
c. $2.5,1.8,1.2,2.4,2.0$
d. $10,11,14,14,16,14,12$

Rank order: $1,3,4,8,10,15$
Rank order: 100, 102, 104, 108, 112
Rank order: $1.2,1.8,2.0,2.4,2.5$
Rank order: $10,11,12,14,14,14,16$

$$
\begin{aligned}
& \operatorname{Mdn}=(4+8) / 2=6 \\
& \operatorname{Mdn}=104 \\
& \operatorname{Mdn}=2.0 \\
& \operatorname{Mdn}=14
\end{aligned}
$$

In the last set of scores in Practice Problem 4.4, the me dian occurs at 14, where there are three scores. Technically, we should consider the three scores equally spread out over the interval 13.5-14.5. Then we would find the median by using the equation shown in Table 4.3 (p. 85), with $i=1(\operatorname{Mdn}=13.67)$. However, when raw scores are being used, this refinement is often not made. Rather, the median is taken at 14 . We shall follow this procedure. Thus, if the median occurs at a value where there are tied scores, we shall use the tied score as the median.
table 4.4 Effect of extreme scores
on the mean and median

| Scores | Mean | Median |
| :--- | :---: | :---: |
| $\ldots \ldots \ldots \ldots \ldots \ldots$ | $\ldots \ldots \ldots$ | $\ldots$ |
| $3,4,6,7,10$ | 6 | 6 |
| $3,4,6,7,100$ | 24 | 6 |
| $3,4,6,7,1000$ | 204 | 6 |

Properties of the median There are two properties of the median worth noting. First,

The median is less sensitive than the mean to extreme scores.
To illustrate this property, consider the scores shown in the first column of Table 4.4. The three distributions shown are the same except for the last score. In the second distribution, the score of 100 is very different in value from the other scores. In the third distribution, the score of 1000 is even more extreme. Note what happens to the mean in the second and third distributions. Since the mean is sensitive to extreme scores, it changes considerably with the extreme scores. How about the median? Does it change too? As we see from the third column, the answer is no! The median stays the same. Since the median is not responsive to each individual score but rather divides the distribution in half, it is not as sensitive to extreme scores as is the mean. For this reason, when the distribution is strongly skewed, it is probably better to represent the central tendency with the median rather than the mean. Certainly, in the third distribution of Table 4.4, the median of 6 does a better job representing most of the scores than does the mean of 204.

The second property of the median involves its sampling stability. It states that,
Under usual circumstances, the median is more subject to sampling variability than the mean but less subject to sampling variability than the mode.

Because the median is usually less stable than the mean from sample to sample, it is not as useful in inferential statistics.

## The Mode

The third and last measure of central tendency that we shall discuss is the mode.

The mode is defined as the most frequent score in the distribution.*

Clearly, this is the easiest of the three measures to determine. The mode is found by inspection of the scores; there isn't any calculation necessary. For instance, to find the mode of the data in Table 3.2 (p. 49), all we need to do is search the frequency column. The mode for these data is 76 . With grouped scores, the mode is designated as the midpoint of the interval with the highest frequency. The mode of the grouped scores in Table 3.4 (p. 52) is 77.
*When all the scores in the distribution have the same frequency, it is customary to say that the distribution has no mode.

Usually, distributions are unimodal; that is, they have only one mode. However, it is possible for a distribution to have many modes. When a distribution has two modes, as is the case with the scores $1,2,3,3,3,3,4,5,7,7,7,7,8,9$, the distribution is called bimodal. Histograms of a unimodal and bimodal distribution are shown in Figure 4.2. Although the mode is the easiest measure of central tendency to determine, it is not used very much in the behavioral sciences because it is not very stable from sample to sample and often there is more than one mode for a given set of scores.

## Measures of Central Tendency and Symmetry

If the distribution is unimodal and symmetrical, the mean, median, and mode will all be equal. An example of this is the bell-shaped curve mentioned in Chapter 3 and shown in Figure 4.3. When the distribution is skewed, the mean and median will not be equal. Since the mean is mostaffected by extreme scores, it will have avalue closer to the extreme scores than will the median. Thus, with a negatively skewed distribution, the mean will be lower than the median. With a positively skewed curve, the mean will be larger than the median. Figure 4.3 shows these relationships.

figure 4.2 Unimodal and bimodal histograms.

figure 4.3 Symmetry and measures of central tendency.
From Statistical Reasoning in Psychology and Education by E.W. Minium. Copyright © 1978 John Wiley \& Sons, Inc. Adapted by permission of John Wiley \& Sons, Inc.

Previously in this chapter, we pointed out that variability specifies how far apart the scores are spread. Whereas measures of central tendency are a quantification of the average value of the distribution, measures of variability quantify the extent of dispersion. Three measures of variability are commonly used in the behavioral sciences: the range, the standard deviation, and the variance.

## The Range

We have already used the range when we were constructing frequency distributions of grouped scores.

## definition

The range is defined as the difference between the highest and lowest scores in the distribution. In equation form,

$$
\text { Range }=\text { Highest score }- \text { Lowest score }
$$

The range is ea sy to ca lculate but gives us on ly a re latively crude measure of dispersion, because the range really measures the spread of only the extreme scores and not the spread of a ny of the scores in between. Although the range is ea sy to calculate, we've included some problems for y ou to pr actice on. B etter to be sure than sorry.

## Practice Problem 4.5

Calculate the range for the following distributions:
a. $2,3,5,8,10$
Range $=10-2=8$
b. $18,12,28,15,20$
Range $=28-12=16$
c. $115,107,105,109,101$
Range $=115-101=14$
d. $1.2,1.3,1.5,1.8,2.3$
Range $=2.3-1.2=1.1$

## The Standard Deviation

Before discussing the standard deviation, it is ne cessary to introduce the concept of a deviation score.

Deviation scores So far, we've been dealing mainly with raw scores. You will recall that a raw score is the score as originally measured. For example, if we are interested in IQ and we measure an IQ of 126 , then 126 is a raw score.

## definition $\quad$ A deviation score tells how far away the raw score is from the mean of its distribution.

In equation form, a deviation score is defined as

$$
\begin{array}{ll}
X-\bar{X} & \text { deviation score for sample data } \\
X-\mu & \text { deviation score for population data }
\end{array}
$$

As a n illustration, cons ider the sa mple scores in Table 4.5. The raw scores a re shown in the first column, a nd their transformed de viation scores a re in the se cond column. The deviation score tells how far the raw score lies above or below the mean. Thus, the raw score of $2(X=2)$ lies 4 u nits below the mean $(X-\bar{X}=-4)$. The raw scores and their deviation scores are also shown pictorially in Figure 4.4.

Let's suppose that you are a budding mathematician (use your imagination if necessary). You have been assigned the task of deriving a measure of dispersion that gives the average deviation of the scores about the mean. After some reflection, you say, "That's easy. Just calculate the deviation from the mean of each score a nd average the de viation scores." Your logic is impeccable. There is only one stumbling block. Consider the scores in Table 4.6. For the sake of this example, we will assume this is a population set of scores. The first column contains the population raw scores and the second column the deviation scores. We want to calculate the average deviation of the raw scores about their mean. According to your method, we would first compute the deviation scores (second column) and average them by dividing the sum of the deviation scores $[\Sigma(X-\mu)]$ by $N$. The stumbling block is that $\Sigma(X-\mu)=0$. Remember, this is a general property of the mean. The sum of the deviations about the mean always equals zero. Thus, if we follow your suggestion, the average of the deviations would always equal zero, no matter how dispersed the scores were $[\Sigma(X-\mu) / N=0 / N=0]$.

You are momentarily stunned by this unexpected low blow. However, you don't give up. You look at the deviation scores and you see that the negative scores are canceling the positive ones. Suddenly, you have a flash of insight. Why not square each deviation score? Then all the scores would be positive, and their sum would no longer be zero. Eureka! You have solved the problem. Now you can divide the sum of the squared scores by $N$ to get the average value [ $\left.\Sigma(X-\mu)^{2} / N\right]$, and the average won't equal zero. You should note that the numerator of this formula $\left[\Sigma(X-\mu)^{2}\right]$ is called the sum of squares or, more accurately, sum of squared deviations, and is symbolized as $S S_{\text {pop }}$. The only trouble at this point is that you have now calculated the average squared deviation, not the average deviation. What you need to do is "unsquare" the answer. This is done by taking the square root of $S S_{\text {pop }} / N$.
table 4.5 Calculating deviation scores

| $\boldsymbol{X}$ | $\boldsymbol{X}-\bar{X}$ | Calculation of $\bar{X}$ |
| :---: | :---: | :---: |
| $\cdots$ | $\ldots$ | $\ldots$ |
| 2 | $2-6=-4$ | $\bar{X}=\frac{\sum X}{N}=\frac{30}{5}$ |
| 4 | $4-6=-2$ |  |
| 6 | $6-6=0$ | $=6.00$ |
| 8 | $8-6=+2$ |  |
| 10 | $10-6=+4$ |  |
|  |  |  |


figure 4.4 Raw scores and their corresponding deviation scores.

Your reputation as a mathematician is vindicated! You have come up with the equation for standard de viation use d by many statisticians. The symbol for the standard deviation of population scores is $\sigma$ (the lowercase Greek letter sigma), and for samples it is $s$. Your derived equation for population scores is as follows:

$$
\begin{aligned}
& \sigma=\sqrt{\frac{S S_{\mathrm{pop}}}{N}}=\sqrt{\frac{\sum(X-\mu)^{2}}{N}} \quad \begin{array}{l}
\text { standard devition of a population set of } \\
\text { raw scores-deviation method }
\end{array} \\
& \text { where } \quad S S_{\mathrm{pop}}=\Sigma(\mathrm{X}-\mu)^{2}
\end{aligned} \quad \text { sum of squares-population data }
$$

Calculation of the standard deviation of a population set of scores using the deviation method is shown in Table 4.6.

Technically, the equation is the same for calculating the standard deviation of sample scores. However, when we calculate the standard deviation of sa mple data, we usually want to use our calculation to estimate the population standard deviation. It can be shown

MENTORING TIP
Caution: be sure you understand why we compute $s$ with $N-1$ in the denominator.
algebraically that the equation with $N$ in the denominator gives an estimate that on the average is too small. Dividing by $N-1$, instead of $N$, gives a more accurate estimate of $\sigma$. Since estimation of the population standard deviation is an important use of the sample standard deviation and since it saves confusion later on in this textbook (when we cover Student's $t$ test and the $F$ test), we have chosen to adopt the equation with $N-1$ in the denominator for calculating the standard deviation of sample scores. Thus,

$$
s=\text { Estimated } \sigma=\sqrt{\frac{S S}{N-1}}=\sqrt{\frac{\sum(X-\bar{X})^{2}}{N-1}}
$$

standard deviation of a
sample set of raw scoresdeviation method
where $S$

$$
S=\Sigma(X-\bar{X})^{2}
$$

sum of squares-sample data
table 4.6 Calculation of the standard deviation of a population set of scores by the deviation method

| X | $X-\mu$ | $(X-\mu)^{2}$ | Calculation of $\mu$ and $\sigma$ |
| :---: | :---: | :---: | :---: |
| 3 | -2 | 4 | $\begin{aligned} & \mu=\frac{\sum X}{N}=\frac{25}{5}=5.00 \\ & \sigma=\sqrt{\frac{S S_{\text {pop }}}{N}}=\sqrt{\frac{\sum(X-\mu)^{2}}{N}}=\sqrt{\frac{10}{5}}=1.41 \end{aligned}$ |
| 4 | -1 | 1 |  |
| 5 | 0 | 0 |  |
| 6 | +1 | 1 |  |
| 7 | +2 | 4 |  |
|  | $=0$ | $\Sigma(X-\mu)^{2}=10$ |  |

table 4.7 Calculation of the standard deviation of sample scores by the deviation method

| $X$ | $X-\bar{X}$ | $(X-\bar{X})^{2}$ | Calculation of $\bar{X}$ and $s$ |
| :---: | :---: | :---: | :---: |
| 2 | -4 | 16 | $\bar{X}=\begin{array}{ll}\sum X & 30\end{array}$ |
| 4 | -2 | 4 | $N-5$ |
| 6 | 0 | 0 |  |
| 8 | +2 | 4 | $=\sqrt{\frac{S S}{N-1}}=\sqrt{\frac{\sum(X-X)^{2}}{N-1}}=\sqrt{\frac{40}{5-1}}$ |
| 10 | +4 | 16 |  |
|  | $=0$ | $S S=40$ | $=\sqrt{10}=3.16$ |

In most practical situations, the data a re from sa mples $r$ ather than populations. Calculation of the standard de viation of a sa mple using the pre ceding e quation for samples is s hown in Table 4.7. Although this equation gives the best conceptual understanding of the standard deviation and it does yield the correct answer, it is quite cumbersome to use in practice. This is especially true if the mean is not a whole number. Table 4.8 shows an illustration using the previous equation with a mean that has a decimal remainder. Note that each deviation score has a decimal remainder that must be squared to get $(X-\bar{X})^{2}$. A great deal of rounding is necessary, which may contribute to i naccuracy. In addition, we are dealing with adding five-digit numbers, which increases the possibility of er ror. You can see how cumbersome using this equation becomes when the mean is not an integer, and in most practical problems, the mean is not an integer!

Calculating the standard deviation of a sample by the raw scores method It can be shown algebraically that

$$
S S=\Sigma X^{2}-\frac{\left(\sum X\right)^{2}}{N} \quad \text { sum of squares }
$$

table 4.8 Calculation of the standard deviation with use of deviation scores when the mean is not a whole number

| X | $X-\bar{X}$ | $(X-\bar{X})^{2}$ | Calculation of $\bar{X}$ and $s$ |
| :---: | :---: | :---: | :---: |
| 10 | -6.875 | 47.2656 | $\bar{X}=\frac{\sum X}{N}=\underline{135}=16.875$ |
| 12 | -4.875 | 23.7656 | $\bar{X}=\frac{\sum}{N}=\frac{135}{8}=16.8$ |
| 13 | -3.875 | 15.0156 | $\sqrt{S S} \quad \sqrt{\sum(X-\bar{X})^{2}}$ |
| 15 | -1.875 | 3.5156 | $s=\sqrt{\frac{S N}{N-1}}=\sqrt{\frac{\Sigma(X-X)}{N-1}}$ |
| 18 | 1.125 | 1.2656 |  |
| 20 | 3.125 | 9.7656 | 192.8748 |
| 22 | 5.125 | 26.2656 | $=\sqrt{7}$ |
| 25 | 8.125 | 66.0156 | $=\sqrt{27.5535}$ |
| $\sum X=135$ | $\Sigma(X-\bar{X})=0.000$ | $\mathrm{SS}=192.8748$ |  |
| $N=8$ |  |  | $=5.25$ |

The derivation is presented in Note 4.2. Using this equation to find $S S$ allows us to use the raw scores without the necessity of calculating deviation scores. This, in turn, avoids the decimal remainder difficulties described previously. We shall call this method of computing $S S$, "the raw score method" to distinguish it from the "deviation method." Since the raw score met hod is generally easier to use a nd avoids potential errors, it is the method of choice in computing $S S$ and will be used throughout the remainder of this text. When using the raw score method, you must be sure not to confuse $\sum X^{2}$ and $(\Sigma X)^{2}$. $\Sigma X^{2}$ is read "sum $X$ square," or "sum of the squared $X$ scores," and $(\Sigma X)^{2}$ is read "sum $X$ quantity squared," or "sum of the $X$ scores, squared." To find $\Sigma X^{2}$, we square each score and then sum the squares. To find $(\Sigma X)^{2}$, we sum the scores and then square the sum. The result is different for the two procedures. In addition, $S S$ must be positive. If your calculation turns out negative, you have probably confused $\Sigma X^{2}$ and $(\Sigma X)^{2}$.

Table 4.9 shows the calculation of the standard deviation, using the raw score method, of the data presented in Table 4.8. When using this method, we first calculate $S S$ from the raw score equation and then substitute the obtained value in the equation for the standard deviation.

Properties of the standard deviation The standard deviation has many important characteristics. First, the standard deviation gives us a measure of dispersion relative to the mean. This differs from the range, which gives us an absolute measure of the spread between the two most extreme scores. Second, the standard deviation is sensitive to each score in the distribution. If a score is moved closer to the mean, then the standard de viation will become s maller. Con versely, if a score s hifts a way from the mean, then the standard deviation will increase. Third, like the mean, the standard deviation is stable with regard to sampling fluctuations. If samples were taken repeatedly from populations of the type usually encountered in the behavioral sciences, the standard deviation of the samples would vary much less from sample to sample than the range. This property is one of the main reasons why the standard deviation is used so much more often than the range for reporting variability. Finally, both the mean and the standard deviation can be manipulated algebraically. This allows mathematics to be done with them for use in inferential statistics.

Now let's do Practice Problems 4.6 and 4.7.
table 4.9 Calculation of the standard deviation by the raw score method

| X | $X^{2}$ | Calculation of $S S$ | Calculation of $s$ |
| :---: | :---: | :---: | :---: |
| 10 | 100 | $S S=\Sigma X^{2}-\frac{(\Sigma X)^{2}}{N}$ | SS |
| 12 | 144 | $S S=\Sigma X^{2}-\frac{(\Sigma X)}{N}$ | $s=\sqrt{N-1}$ |
| 13 | 169 |  |  |
| 15 | 225 | $=2471-\frac{(135)^{2}}{8}$ | $=\sqrt{\frac{192.875}{7}}$ |
| 18 | 324 | -8 |  |
| 20 | 400 | $=2471-2278.125$ | $=\sqrt{27.5536}$ |
| 22 | 484 |  |  |
| 25 | 625 | $=192.875$ | $=5.25$ |
| $\Sigma X=\overline{135}$ | $\Sigma X^{2}=\overline{2471}$ |  |  |
| $N=8$ |  |  |  |

## Practice Problem 4.6

Calculate the standard deviation of the sample scores contained in the first column of the following table:

| X | $X^{2}$ | Calculation of $S S$ | Calculation of $s$ |
| :---: | :---: | :---: | :---: |
| 25 | 625 | $(\Sigma X)^{2}$ | $\sqrt{S S}$ |
| 28 | 784 | $S S=\Sigma X^{2}-\frac{(\Sigma X)}{N}$ | $s=\sqrt{N-1}$ |
| 35 | 1,225 | $(387)^{2}$ | $\sqrt{568.1}$ |
| 37 | 1,369 | $=15,545-\frac{10}{10}$ | $=\sqrt{\frac{9}{9}}$ |
| 38 | 1,444 |  |  |
| 40 | 1,600 | $=15,545-14,976.9$ | $=\sqrt{63.1222}$ |
| 42 | 1,764 |  |  |
| 45 | 2,025 | $=568.1$ | $=7.94$ |
| 47 | 2,209 |  |  |
| $\underline{50}$ | 2,500 |  |  |
| $\sum X=387$ | 15,545 |  |  |
| $N=10$ |  |  |  |

## Practice Problem 4.7

Calculate the standard deviation of the sample scores contained in the first column of the following table:

| $\boldsymbol{X}$ | $X^{2}$ | Calculation of $S S$ | Calculation of $s$ |
| :---: | :---: | :---: | :---: |
| 1.2 | 1.44 | $(\Sigma X)^{2}$ | SS |
| 1.4 | 1.96 | $S S=\Sigma X^{2}-\frac{(2 X)}{N}$ | $s=\sqrt{N-1}$ |
| 1.5 | 2.25 | $(25.9)^{2}$ | 4.8292 |
| 1.7 | 2.89 | $=60.73-\frac{12}{12}$ | $=\sqrt{\frac{4.829}{11}}$ |
| 1.9 | 3.61 |  |  |
| 2.0 | 4.00 | $=60.73-55.9008$ | $=\sqrt{0.4390}$ |
| 2.2 | 4.84 |  |  |
| 2.4 | 5.76 | $=4.8292$ | $=0.66$ |
| 2.5 | 6.25 |  |  |
| 2.8 | 7.84 |  |  |


| X | $X^{2}$ | Calculation of $S S$ | Calculation of $s$ |
| :---: | :---: | :---: | :---: |
| 3.0 | 9.00 |  |  |
| 3.3 | 10.89 |  |  |
| $\Sigma X=25.9$ | $\Sigma X^{2}=60.73$ |  |  |
| $N=12$ |  |  |  |

## The Variance

The variance of a set of scores is just the square of the standard deviation. For sample scores, the variance equals

$$
s^{2}=\text { Estimated } \sigma^{2}=\frac{S S}{N-1} \quad \text { variance of a sample }
$$

For population scores, the variance equals

$$
\sigma^{2}=\frac{S S_{\mathrm{pop}}}{N} \quad \text { variance of a sample }
$$

The variance is not used much in descriptive statistics because it gives us squared units of measurement. However, it is used quite frequently in inferential statistics.

## SUMMARY

In this chapter, I have discussed the central tendency and variability of distributions. The most common measures of central tendency are the arithmetic mean, the median, and the mode. The arithmetic mean gives the average of the scores a nd is co mputed by summing the scores a nd dividing by $N$. The median divides the distribution in half and, hence, is the scale value that is at the 50th percentile point of the distribution. The mode is $t$ he most frequent score int he d istribution. T he mea $n \mathrm{p}$ ossesses s pecial properties that make it by far the most commonly used measure of c entral $t$ endency. H owever, if t he d istribution is qu ite skewed, the median should be use d instead of the mean because it is less affected by extreme scores. In addition to presen ting these mea sures, I s howed how to ca lculate ea ch a nd e laborated t heir mos t i mportant
properties. I also showed how to obtain the overall mean when the average of several means is desired. Finally, we discussed the relationship between the mean, median, and mode of a distribution and its symmetry.

The mos $t$ co mmon mea sures of $v$ ariability a re $t$ he range, the standard deviation, and the variance. The range is a crude measure that tells the dispersion between the two most extreme scores. The standard de viation is $t$ he most frequently encountered measure of variability. It gives the average dispersion about the mean of the distribution. The variance is just the square of the standard deviation. As with the mea sures of central tendency, our discussion of variability included how to calculate each measure. Finally, since the standard deviation is the most important measure of variability, I also presented its properties.

## IMPORTANT NEW TERMS

Arithmetic mean (p. 80)
Central tendency (p. 80)
Deviation score (p. 89)
Dispersion (p. 89)

Median (p. 85)
Mode (p. 87)
Overall mean (p. 83)
Range (p. 89)

Standard deviation (p. 89)
Sum of squares (p. 91, 92)
Variability (p. 80)
Variance (p. 95)

## QUESTIONS AND PROBLEMS

1. Define or i dentify the terms in the I mportant New Terms section.
2. State four properties of the mean and illustrate each with an example.
3. Under $w$ hat cond ition $m$ ight $y$ ou pre fer to use $t$ he median rather than the mean as the best measure of central tendency? Explain why.
4. Why is the mode not used very much as a measure of central tendency?
5. The overall mean ( $\bar{X}_{\text {overall }}$ ) is a weighted mean. Is this statement correct? Explain.
6. Discuss the relationship between the mean and median for distributions that are symmetrical and skewed.
7. Why is the range not as useful a mea sure of dispersion as the standard deviation?
8. The standard deviation is a relative measure of average dispersion. Is this statement correct? Explain.
9. Why do we use $N-1$ in the denominator for computing $s$ but use $N$ in the denominator for determining $\sigma$ ?
10. What is $t$ he raw score e quation for $S S$ ? When is it useful?
11. Give three properties of the standard deviation.
12. How are the variance and standard deviation related?
B. If $s=0$, what must be true about the scores in the distribution? Verify your answer, using an example.
13. Can the value of the $r$ ange, $s$ tandard de viation, or variance of a set of scores be negative? Explain.
14. Give the symbol for each of the following:
a. Mean of a sample
b. Mean of a population
c. Standard deviation of a sample
d. Standard deviation of a population
e. A raw score
f. Variance of a sample
g. Variance of a population
15. Calculate the mean, me dian, and mode for the following scores:
a. $5,2,8,2,3,2,4,0,6$
b. $30,20,17,12,30,30,14,29$
c. $1.5,4.5,3.2,1.8,5.0,2.2$
16. Calculate the mea $n$ of the following set of sa mple scores: $1,3,4,6,6$.
a. Add a cons tant of 2 to ea ch score. Calculate the mean for the new values. Generalize to answer the question, "What is the effect on the mean of adding a constant to each score?"
b. Subtract a cons tant of 2 f rom each score. Calculate the mean for the new values. Generalize to a nswer the ques tion, "What is $t$ he effect on the mean of subtracting a constant from each score?"
c. Multiply each score by a constant of 2 . Calculate $t$ he mea $n f$ or $t$ he ne $w v$ alues. Generalize to a nswer $t$ he ques tion, " What is $t$ he effect on t he mea n of m ultiplying ea ch score b ya constant?"
d. Divide each score by a constant of 2 . Calculate the mean for the new values. Generalize to answer the question, "What is the effect on the mean of dividing each score by a constant?"
17. The following scores resulted from a biology exam:

| Scores | $\boldsymbol{f}$ | Scores | $\boldsymbol{f}$ |
| :--- | :---: | :---: | :---: |
| $\cdots \ldots \ldots$ | $\ldots$ | $\ldots \ldots \ldots$ | $\ldots$ |
| $95-99$ | 3 | $65-69$ | 7 |
| $90-94$ | 3 | $60-64$ | 6 |
| $85-89$ | 5 | $55-59$ | 5 |
| $80-84$ | 6 | $50-54$ | 3 |
| $75-79$ | 6 | $45-49$ | 2 |
| $70-74$ | 8 |  |  |

a. What is the median for this exam?
b. What is the mode? education
19. Using the scores shown in Table 3.5 (p. 53),
a. Determine the median.
b. Determine the mode.
20. Using the scores shown in Table 3.6 (p. 54),
a. Determine the median.
b. Determine the mode.
21. For t he f ollowing d istributions, s tate w hether y ou would use $t$ he mean or $t$ he median to represen $t$ the central tendency of the distribution. Explain why.
a. $2,3,8,5,7,8$
b. $10,12,15,13,19,22$
c. $1.2,0.8,1.1,0.6,25$
22. Given the following values of c entral tendency for each $d$ istribution, det ermine w hether $t$ he $d$ istribution is symmetrical, positively skewed, or negatively skewed:
a. Mean $=14$, median $=12$, mode $=10$
b. Mean $=14$, median $=16$, mode $=18$
c. Mean $=14$, median $=14$, mode $=14$
23. A s tudent $k$ ept track of $t$ he $n$ umber of hou rs $s$ he studied each day for a 2 -week period. The following daily scores were recorded (scores are in hours): 2.5 , $3.2,3.8,1.3,1.4,0,0,2.6,5.2,4.8,0,4.6,2.8,3.3$. Calculate
a. The mean number of hours studied per day
b. The median number of hours studied per day
c. The mo dal $n$ umber of hou rs $s$ tudied $p$ er $d$ ay education
24. Two sa lesmen working for the sa me co mpany a re having an argument. Each claims that the average number of items he sold, averaged over the last month, w as the highest in the co mpany. Ca $n$ they both be right? Explain. I/O, other
25. An or nithologist studying the glaucous-winged gull on $P$ uget $S$ ound cou nts $t$ he $n$ umber of agg ressive interactions per minute a mong a $g$ roup of sea $g$ ulls during 9 conse cutive minutes. The following scores resulted: $24,9,12,15,10,13,22,20,14$. Calculate
a. The mean number of aggressive interactions per minute
b. The median number of aggressive interactions per minute
c. The mo dal n umber of agg ressive i nteractions per minute biological
26. A reading specialist tests the reading speed of children in four ninth-grade English classes. There are 42 students in class A, 35 in class B, 33 in class C, and 39 in class D . The mean reading speed in words per minute for the classes were as follows: class A, 220; c lass B , 185; c lass C, 212; a nd c lass D, 172. What is the mean reading speed for all classes combined? education
27. For the following sample sets of scores, calculate the range, the standard deviation, and the variance:
a. $6,2,8,5,4,4,7$
b. $24,32,27,45,48$
c. $2.1,2.5,6.6,0.2,7.8,9.3$
28. In a pa rticular statistics cou re, three e xams were given. Each student's grade was based on a weighted average of his or her exam scores. The first test had a weight of 1 , the second test had a weight of 2 , and the third test had a weight of 2 . The exam scores for one student a re listed here. What was the student's overall average?

| Exam | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- |
| Score | 83 | 97 | 92 |

education
29. The timekeeper for a particular mile race uses a stopwatch to determine the finishing times of the racers. He then calculates that the mean time for the first three finishers was 4.25 minutes. After checking his stopwatch, he notices to his horror that the stopwatch begins timing at 15 seconds rather than at 0 , resulting in scores each of which is 15 seconds too long. What is the correct mean time for the first three finishers? I/O, other
30. The manufacturer of brand $\mathrm{A} j$ ogging shoes wants to det ermine how long the shoes la st before resoling is ne cessary. She randomly sa mples from user s in Chicago, New York, and Seattle. In Chicago, the sample size was 28 , and the mean duration before resoling was 7.2 months. In New York, the sample size was 35 , and the mean duration before resoling was 6.3 months. In Seattle, the sample size was 22, and the mean duration before resoling was 8.5 months. What is the overall mean duration before resoling is necessary for brand A jogging shoes? $\mathrm{I} / \mathrm{O}$, other
31. Calculate the standard deviation of the following set of sample scores: $1,3,4,6,6$.
a. Add a cons tant of 2 to ea ch score. Calculate the standard deviation for the new values. Generalize to answer the question, "What is the effect on the standard deviation of adding a constant to each score?"
b. Subtract a cons tant of 2 from each score. Calculate $t$ he $s$ tandard de viation $f$ or $t$ he ne $w v$ alues. Generalize to a nswer the question, "What is $t$ he effect on $t$ he standard de viation of subtracting a constant from each score?"
c. Multiply each score by a constant of 2. Calculate the standard deviation for the new values. Generalize to answer the question, "What is the effect on the standard de viation of multiplying each score by a constant?"
d. Divide each score by a constant of 2 . Calculate the standard deviation for the new values. Generalize to a nswer the question, "What is the effect
on the standard deviation of dividing each score by a constant?"
32. An industrial psychologist observed eight drill press operators for 3 working days. She recorded the number of times each operator pressed the "faster" button instead of the "stop" button to determine whether the design of the con trol pa nel was con tributing to $t$ he high rate of accidents in the plant. Given the scores $4,7,0,2,7,3,6,7$, compute the following:
a. Mean
b. Median
c. Mode
d. Range
e. Standard deviation
f. Variance I/O
33. Without actually calculating the variability, study the following sample distributions:
Distribution a: 21, 24, 28, 22, 20
Distribution b: 21, 32, 38, 15, 11
Distribution c: 22, 22, 22, 22, 22
a. Rank-order them according to your best guess of their relative variability.
b. Calculate the standard deviation of each to verify your rank ordering.
34. Compute the standard deviation for the following sample scores. Why is $s$ so high in part $\mathbf{b}$, relative to part $\mathbf{a}$ ?
a. $6,8,7,3,6,4$
b. $6,8,7,3,6,35$
35. A social psychologist interested in the dating habits of co llege u ndergraduates sa mples 10 students a nd determines the number of dates they have had in the last month. Given the scores $1,8,12,3,8,14,4,5,8$, 16 , compute the following:
a. Mean
b. Median
c. Mode
d. Range
e. Standard deviation
f. Variance social
36. A cognitive psychologist measures the reaction times of 6 subjects to emotionally laden words. The following scores i n milliseconds a re re corded: 250,310 , 360, 470, 425, 270. Compute the following:
a. Mean
b. Median
c. Mode
d. Range
e. Standard deviation
f. Variance cognitive
37. A biological psychologist records the number of cells in a particular brain region of cats that respond to a tactile stimulus. Nine cat s a re use d. The following cell counts/animal a re re corded: $15,28,33,19,24$, $17,21,34,12$. Compute the following:
a. Mean
b. Median
c. Mode
d. Range
e. Standard deviation
f. Variance biological
38. What happens to the mean of a set of scores if a A constant $a$ is added to each score in the set?
b A constant $a$ is subtracted from each score in the set?
c. Each score is multiplied by a constant $a$ ?
d. Each score is divided by a constant $a$ ?

Illustrate each of these with a numerical example.
39. What happens to $t$ he standard de viation of a set of scores if
a A constant $a$ is added to each score in the set?
b A constant $a$ is subtracted from each score in the set?
c. Each score is multiplied by a constant $a$ ?
d. Each score is divided by a constant $a$ ?

Illustrate each of these with a numerical example.
40. Suppose that, as is done in some lotteries, we sample balls from a big vessel. The vessel contains a large number of balls, ea ch lab eled with a s ingle number, $0-9$. There a re an equal number of balls for ea ch $n$ umber, a nd $t$ he ba lls a re con tinually being mixed. For this example, let's collect 10 samples of three balls each. Each sample is formed by selecting balls one at a time and replacing each ball back in the vessel before se lecting the ne xt ball. The selection process used ensures that every ball in the vessel has an equal chance of being chosen on each selection. Assume the following samples are collected.
1, 3, 4
2, 2, 6
3, 8, 8
1, 6, 7
5, 6, 9
3, 4, 7
1, 2, 6
2, 3, 7
$6,8,9$
4, 7, 9
a. Calculate the mean of each sample.
b. Calculate the median of each sample.

Based on the properties of the mean and median discussed previously in the chapter, do you expect more variability in the means or me dians? Verify this by calculating the standard deviation of the means and medians. other

## SPSS ILLUSTRATIVE EXAMPLE 4.1

The general operation of SPSS and data entry are described in Appendix E, Introduction to SPSS. SPSS is very useful for computing statistics used to quantify central tendency and variability. The illustrative example will show you how to compute some of them.

## example

Use SPSS to compute the mean, standard deviation, variance, and range for the following set of mathematics exam scores. Label the scores Mathexam.

Mathexam: 78, 65, 47, 38, 86, 57, 88, 66, 43, 95, 73, 82, 61

## SOLUTION

STEP 1: Enter the Data. Enter the statistics exam scores in the first column (VAR00001) of the Data Editor, Data View, beginning with the first score in the first cell of the first column.

STEP 2: Name the Variables. For this example, we will name the scores, Mathexam.

## Click the Variable View tab in the lower left corner of the Data Editor.

Click VAR00001; then type Mathexam in the highlighted cell and press Enter.

This displays the Variable View on screen with first cell of the Name column containing VAR00001.

Mathexam is entered as the variable name, replacing VAR00001.

STEP 3: Analyze the Data. We will compute the mean, standard deviation, variance, and range for the Mathexam scores. Before doing so, click on the Data View tab of the Data Editor to display the Data Editor-Data View screen. Displaying this screen helps to relate the data to the results shown in the output table.

Click Analyze on the menu bar at the top of the screen; then select Descriptive Statistics; then click Descriptives....

Click the arrow in the middle of the dialog box.

Click Options... at the top right of the dialog box.

Click Minimum and Maximum; then Click Variance; then Click Range.

This produces the Descriptives dialog box which SPSS uses to do descriptive statistics. Mathexam is displayed, highlighted in the large box on the left.

This moves Mathexam from the large box on the left into the Variable(s): box on the right.

This produces the Descriptions: Options dialog box which allows you to select the descriptive statistics that you wish to compute. The checked boxes indicate the default statistics that SPSS computes.

This removes the default checked entries for Minimum and Maximum, and produces a check in the Variance and Range boxes. Since the Mean and Std. deviation boxes were already checked, the boxes for Mean, Std. deviation, Variance, and Range should now be the only boxes checked. SPSS will compute these statistics when given the OK command from the Descriptions dialog box.

## Click Continue.

## Click OK.

This returns you to the Descriptions dialog box where you can give the OK command.

SPSS then analyzes the data and displays the results shown below.

Analysis Results
Descriptive Statistics

|  | N | Range | Mean | Std. Deviation | Variance |
| :--- | ---: | ---: | ---: | ---: | :---: |
| Mathexam | 13 | 57.00 | 67.6154 | 18.07640 | 326.756 |
| Valid N (listwise) | 13 |  |  |  |  |

Sure beats computing these statistics by hand!!

## SPSS ADDITIONAL PROBLEMS

1. Use SPSS to compute the mean, standard deviation, variance, and range for the following sets of scores. Name the scores, Scores.
a. $8,2,6,12,4,7,4,10,13,15,11,12,5$
b. $7.2,2.3,5.4,2.3,3.4,9.2,7.6,4.7,2.8,6.5$
c. $23,65,47,38,86,57,32,66,43,85,29,40,42$
d. $212,334,250,436,425,531,600,487,529,234$, 515
e. Does SPSS use $N$ or $N-1$ in the denominator when co mputing $t$ he $s$ tandard de viation? H ow
could you det ermine the cor rect a nswer without looking it up or asking someone?
2. Use S PSS to demons trate that the mean of a set of scores can vary without changing the standard deviation.
3. Use SPSS to demons trate that the standard deviation of a set of scores can vary without changing the mean.

## NOTES

4.1 To show that $\sum\left(\mathrm{X}_{i}-\overline{\boldsymbol{X}}\right)=0$,

$$
\begin{aligned}
\sum\left(X_{i}-\bar{X}\right) & =\sum X_{i}-\sum \bar{X} \\
& =\sum X_{i}-N \bar{X} \\
& =\sum X_{i}-N\left(\frac{\sum X_{i}}{N}\right) \\
& =\sum X_{i}-\sum X_{i} \\
& =0
\end{aligned}
$$

4.2 To show that $S S=\sum X^{2}-\left[\left(\sum X\right)^{2} / N\right]$,

$$
\begin{aligned}
S S & =\Sigma(X-\bar{X})^{2} \\
& =\Sigma\left(X^{2}-2 X \bar{X}+\bar{X}^{2}\right) \\
& =\Sigma X^{2}-\Sigma 2 X \bar{X}+\Sigma \bar{X}^{2} \\
& =\Sigma X^{2}-2 \bar{X} \Sigma X+N \bar{X}^{2}
\end{aligned}
$$

$$
=\Sigma X^{2}-2\left(\frac{\sum X}{N}\right) \Sigma X+\frac{N\left(\sum X\right)^{2}}{N^{2}}
$$

$$
=\sum X^{2}-\frac{2\left(\sum X\right)^{2}}{N}+\frac{\left(\sum X\right)^{2}}{N}
$$

$$
=\Sigma X^{2}-\frac{\left(\sum X\right)^{2}}{N}
$$

## ONLINE STUDY RESOURCES

## CENGAGE brain

Login to CengageBrain.com to access the resources your instructor has assigned. For this book, you can access the book's companion website for chapter-specific learning tools including Know and Be Able to Do, practice quizzes, flash cards, and glossaries and a link to Statistics and Research Methods Workshops

## aplia"

If your professor has assigned Aplia homework:

1. Sign in to your account
2. Co mplete the cor responding ho mework e xercises a s required by your professor
3. When finished, click "Grade It Now" to see which areas you have mastered and which need more work, and for detailed explanations of every answer.

Visit www.cengagebrain.com to access your account and to purchase materials.

CHAPTER OUTLINE<br>Introduction<br>The Normal Curve<br>Area Contained Under the Normal Curve<br>Standard Scores (z Scores)<br>Characteristics of $z$ Scores<br>Finding the Area, Given the Raw Score<br>Finding the Raw Score, Given the Area<br>Summary<br>Important New Terms<br>Questions and Problems SPSS<br>Online Study Resources

## (C) Strmko / Dreamstime.com <br> The Normal Curve and Standard Scores

## LEARNING OBJECTIVES

After completing this chapter, you should be able to:

- Describe the typical characteristics of a normal curve.
- Define a $z$ score.
- Compute the $z$ score for a raw score, given the raw score, the mean, and standard deviation of the distribution.
- Compute the $z$ score for a raw score, given the raw score and the distribution of raw scores.
- Explain the three main features of $z$ distributions.
- Use $z$ scores with a normal curve to find: (a) the percentage of scores falling below any raw score in the distribution, (b) the percentage of scores falling above any raw score in the distribution, and (c) the percentage of scores falling between any two raw scores in the distribution.
- Understand the illustrative examples, do the practice problems, and understand the solutions.

The normal curve is a v ery i mportant distribution in the behavioral sciences. There are three principal reasons why. First, many of the variables mea sured in behavioral science resea rch have distributions that quite closely approximate the normal curve. Height, weight, intelligence, and achievement are a few examples. Second, many of the inference tests used in analyzing experiments have sampling distributions that become normally distributed with increasing sa mple size. The sign test a nd Ma nn-Whitney $U$ test are two such tests, which we shall cover later in the text. Finally, many inference tests require sampling distributions that are normally distributed (we shall discuss sampling distributions in Chapter 12). The $z$ test, Student's $t$ test, and the $F$ test are examples of inference tests that depend on this point. Thus, much of the importance of the normal curve occurs in conjunction with inferential statistics.

## THE NORMAL CURVE



## MENTORINGTIP

Note that the normal curve is a theoretical curve and is only approximated by real data.

The normal curve is a theoretical distribution of population scores. It is a bell-shaped curve that is described by the following equation:

$$
Y=\frac{N}{\sqrt{2 \pi} \sigma} e^{-(X-\mu)^{2} / 2 \sigma^{2}} \text { equation of the normal curve }
$$

$$
\text { where } Y \quad \begin{aligned}
& =\text { frequency of a given value of } X^{*} \\
X & =\text { any score in the distribution } \\
\mu & =\text { mean of the distribution } \\
\sigma & =\text { standard deviation of the distribution } \\
N & =\text { total frequency of the distribution } \\
\pi & =\text { a constant of } 3.1416 \\
e & =\text { a constant of } 2.7183
\end{aligned}
$$

Most of us will never need to k now the exact equation for the normal curve. It has been given here primarily to make the point that the normal curve is a theoretical curve that is mathematically generated. An example of the normal curve is shown in Figure 5.1.

Note that the curve has two inflection points, one on each side of the mean. Inflection points are located where the curvature changes direction. In Figure 5.1, the inflection points are located where the curve changes from being convex downward to being convex upward. If the bell-shaped curve is a normal curve, the inflection points are at 1 standard deviation from the mean $(\mu+1 \sigma$ and $\mu-1 \sigma)$. Note also that as the curve approaches the horizontal axis, it is slowly changing its $Y$ value. Theoretically, the curve never quite reaches the axis. It approaches the horizontal axis and gets closer and closer to it, but it never quite touches it. The curve is said to be asymptotic to the horizontal axis.

[^4]
figure 5.1 Normal curve.

## Area Contained Under the Normal Curve

In distributions that are normally shaped, there is a s pecial relationship between the mean and the standard deviation with regard to the area contained under the curve. When a set of scores is $n$ ormally distributed, $34.13 \%$ of the area under the curve is contained between the mean ( $\mu$ ) and a score t hat is e qual to $\mu+1 \sigma ; 13.59 \%$ of the area is contained between a score equal to $\mu+1 \sigma$ and a score of $\mu+2 \sigma ; 2.15 \%$ of the area is contained between scores of $\mu+2 \sigma$ and $\mu+3 \sigma$; and $0.13 \%$ of the area exists beyond $\mu+3 \sigma$. This accounts for $50 \%$ of the area. Since the curve is symmetrical, the same percentages hold for scores below the mean. These relationships are shown in Figure 5.2. Since frequency is plotted on the vertical axis, these percentages represent the percentage of scores contained within the area.

To illustrate, suppose we have a population of 10,000 IQ scores. The distribution is normally shaped, with $\mu=100$ and $\sigma=16$. Since the scores are normally distributed, $34.13 \%$ of the scores are contained between scores of 100 and $116(\mu+1 \sigma=100+$ $16=116), 13.59 \%$ between 116 and $132(\mu+2 \sigma=100+32=132), 2.15 \%$ between 132 and 148 , and $0.13 \%$ above 148 . Similarly, $34.13 \%$ of the scores fall between 84 and $100,13.59 \%$ between 68 and $84,2.15 \%$ between 52 and 68 , and $0.13 \%$ below 52 . These relationships are also shown in Figure 5.2.

figure 5.2 Areas under the normal curve for selected scores.

To calculate the number of scores in each area, all we need to do is multiply the relevant percentage by the total number of scores. Thus, there are $34.13 \% \times 10,000=$ 3413 scores between 100 and $116,13.59 \% \times 10,000=1359$ scores between 116 and 132, and 215 scores between 132 and $148 ; 13$ scores are greater than 148 . For the other half of the distribution, there are 3413 scores between 84 and 100,1359 scores between 68 and 84 , and 215 scores between 52 and 68 ; there are 13 scores below 52 . Note that these frequencies would be true only if the distribution is exactly normally distributed. In actual practice, the frequencies would vary slightly depending on how close the distribution is to this theoretical model.

## STANDARD SCORES (z SCORES)

Suppose someone told you your IQ is 132 . Would you be happy or sad? In the absence of additional information, it is difficult to say. An IQ of 132 is meaningless unless you have a reference group to compare against. Without such a group, you can't tell whether the score is high, average, or low. For the sake of this illustration, let's assume your score is one of the 10,000 scores of the distribution just described. Now we can begin to give your IQ score of 132 some meaning. For example, we can determine the percentage of scores in the distribution that are lower than 132. You will recognize this as determining the percentile rank of the score of 132. (As you no doubt recall, the percentile rank of a score is defined as the percentage of scores that are below the score in question.) Referring to Figure 5.2, we can see that 132 is 2 s tandard deviations above the mean. In a n ormal curve, there are $34.13+13.59=47.72 \%$ of the scores between the mean and a score $t$ hat is 2 s tandard deviations above the mean. To find the percentile rank of 132 , we need to add to this percentage the $50.00 \%$ that lie below the mean. Thus, $97.72 \%(47.72+50.00)$ of the scores fall below your IQ score of 132. You should be quite happy to be so intelligent. The solution is shown in Figure 5.3.

To solve this problem, we had to determine how many standard deviations the raw score of 132 was above or below the mean. In so doing, we transformed the raw score into a standard score, also called a $z$ score.

figure 5.3 Percentile rank of an IQ of 132.

## definition $\square A z$ score is a transformed score that designates how many standard deviation units the corresponding raw score is above or below the mean.

In equation form,

$$
\begin{array}{ll}
z=\frac{X-\mu}{\sigma} & z \text { score for population data } \\
z=\frac{X-\bar{X}}{s} & z \text { score for sample data }
\end{array}
$$

For the previous example,

$$
z=\frac{X-\mu}{\sigma}=\frac{132-100}{16}=2.00
$$

The process by which the raw score is altered is called a score transformation. We shall see later that the $z$ transformation results in a distribution having a mean of 0 and a standard deviation of 1 . The reason $z$ scores are called standard scores is that they are expressed relative to a distribution mean of 0 and a standard deviation of 1 .

In conjunction with a normal curve, $z$ scores allow us to determine the number or percentage of scores that fall above or below any score in the distribution. In addition, $z$ scores allow comparison between scores in different distributions, even when the units of the distributions are different. To illustrate this point, let's consider a nother population set of scores that are normally distributed. Suppose that the weights of all the rats housed in a university vivarium are normally distributed, with $\mu=300$ and $\sigma=20$ grams. What is the percentile rank of a rat weighing 340 grams?

The solution is shown in Figure 5.4. First, we need to convert the raw score of 340 grams to its corresponding $z$ score:

$$
z=\frac{X-\mu}{\sigma}=\frac{340-300}{20}=2.00
$$


figure 5.4 Percentile rank of a rat weighing 340 grams.

Since the scores are normally distributed, $34.13+13.59=47.72 \%$ of the scores are between the score and the mean. Adding the remaining $50.00 \%$ that lie below the mean, we arrive at a percentile rank of $47.72+50.00=97.72 \%$ for the weight of 340 grams. Thus, the IQ score of 132 and the rat's weight of 340 grams have something in common. They both occupy the same relative position in their respective distributions. The rat is as heavy as you are smart.

This example, although somewhat facetious, illustrates an important use of $z$ scores -namely, to co mpare scores $t$ hat a re n ot ot herwise directly co mparable. Ordinarily, we would not be able to compare intelligence and weight. They are measured on different scales and have different units. But by converting the scores to their $z$-transformed scores, we eliminate the original units and replace them with a universal unit, the standard deviation. Thus, your score of 132 IQ units becomes a score of 2 standard deviation units above the mean, and the rat's weight of 340 grams also becomes a score of 2 standard deviation units above the mean. In this way, it is possible to co mpare "anything with a nything" as long as the mea suring scales allow computation of the mean and standard deviation. The ability to compare scores that are measured on different scales is of fundamental importance to the topic of correlation. We shall discuss this in more detail when we take up that topic in Chapter 6.

So far, the examples we've been considering have dealt with populations. It might be useful to practice computing $z$ scores us ing sample data. Let's do $t$ his in the next practice problem.

## Practice Problem 5.1

For the set of sample raw scores $X=1,4,5,7,8$ determine the $z$ score for each raw score.

STEP 1: Determine the mean of the raw scores.

$$
\bar{X}=\frac{\sum X_{i}}{N}=\frac{25}{5}=5.00
$$

STEP 2: Determine the standard deviation of the scores.

$$
\left.\begin{array}{rl}
s & =\sqrt{\frac{S S}{N-1}} \quad S S
\end{array}\right)=\sum X^{2}-\frac{\left(\sum X\right)^{2}}{N}
$$

## STEP 3: Compute the $z$ score for each raw score.

| $\boldsymbol{X} \ldots \ldots$ |  |
| :--- | ---: |
| 1 | $z=\frac{X-\bar{X}}{s}=\frac{1-5}{2.7386}=-1.46$ |
| 4 | $z=\frac{X-\bar{X}}{s}=\frac{4-5}{2.7386}=-0.37$ |
| 5 | $z=\frac{X-\bar{X}}{s}=\frac{5-5}{2.7386}=0.00$ |
| 7 | $z=\frac{X-\bar{X}}{s}=\frac{7-5}{2.7386}=0.73$ |
| 8 | $z=\frac{8-5}{2.7386}=1.10$ |

## Characteristics of $\mathbf{z}$ Scores

There are three characteristics of $z$ scores worth noting. First, the $z$ scores have the same shape as the set of faw scores. Transforming the raw scores into their cor responding $z$ scores does not change the shape of the distribution. Nor do the scores change their relative positions. All that is changed are the score values. Figure 5.5 illustrates this point by showing the IQ scores and their corresponding $z$ scores. You should note that although we have used $z$ scores in conjunction with the normal distribution, all $z$ distributions are not normally shaped. If we use the $z$ equation given previously, $z$ scores can be calculated for distributions of any shape. The resulting $z$ scores will take on the shape of the raw scores.

Second, the mean of the $z$ scores always equals zero $\left(\mu_{z}=0\right)$. This follows from the observation that the scores located at the mean of the raw scores will also be at the mean of the $z$ scores (see Figure 5.5). The $z$ value for raw scores at the mean equals zero. For example, the $z$ transformation for a score at the mean of the IQ distribution is given by $z=(X-\mu) / \sigma=(100-100) / 16=0$. Thus, the mean of the $z$ distribution equals zero.

figure 5.5 Raw IQ scores and corresponding z scores.

The last characteristic of importance is that the standard deviation of $z$ scores always equals $1\left(\sigma_{z}=1\right)$. This follows because a raw score that is 1 standard deviation above the mean has a $z$ score of +1 :

$$
z=\frac{(\mu+1 \sigma)-\mu}{\sigma}=1
$$

## Finding the Area, Given the Raw Score

In the previous examples with IQ and weight, the $z$ score was carefully chosen so that the solution could be found from Figure 5.2. However, suppose instead of an IQ of 132, we desire to find the percentile rank of an IQ of 142 . Assume the same population parameters. The solution is shown in Figure 5.6. First, draw a curve showing the population and locate the relevant area by entering the score 142 on the horizontal axis. Then shade in the area desired. Next, calculate $z$ :

$$
z=\frac{X-\mu}{\sigma}=\frac{142-100}{16}=\frac{42}{16}=2.62
$$

Since ne ither Figure 5.2 n or Figure 5.5 shows a p ercentage cor responding to a $z$ score of 2.62 , we cannot use these figures to solve the problem. Fortunately, the areas under the normal curve for various $z$ scores have been computed, and the resulting values are shown in Table A of Appendix D.

The first column of the table (column A) contains the z score. Column B lists the proportion of the total a rea between a $g$ iven z score and the mean. Column $C$ lis ts the proportion of the total area that exists beyond the $z$ score.

We can use Table A to find the percentile rank of 142 . First, we locate the $z$ score of 2.62 in column A. N ext, we determine from column B the proportion of the total area between the $z$ score and the mean. For a $z$ score of 2.62 , this area equals 0.4956 . To this value we must add 0.5000 to take into account the scores lying below the mean (the picture helps remind us to do this). Thus, the proportion of scores that lie below an IQ of 142 is $0.4956+0.5000=0.9956$. To convert this proportion to a percentage, we must multiply by 100 . Thus, the percentile rank of 142 is 99.56 . Table A can be used to find the area for any $z$ score, provided the scores are normally distributed. When using Table A, it is usually sufficient to round $z$ values to two-decimal-place accuracy. Let's do a few more illustrative problems for practice.

figure 5.6 Percentile rank of an IQ of 142 in a normal distribution with $\mu=100$ and $\sigma=16$.

MENTORINGTIP
Always draw the picture first.

## Practice Problem 5.2

The scores on a nationwide mathematics aptitude exam are normally distributed, with $\mu=80$ and $\sigma=12$. What is the percentile rank of a score of 84 ?

## SOLUTION

In solving problems involving areas under the normal curve, it is wise, at the outset, to draw a picture of the curve and locate the relevant areas on it. The accompanying figure shows such a picture. The shaded area contains all the scores lower than 84 . To find the percentile rank of 84 , we must first convert 84 to its corresponding $z$ score:

$$
z=\frac{X-\mu}{\sigma}=\frac{84-80}{12}=\frac{4}{12}=0.33
$$

To find the area between the mean and a $z$ score of 0.33 , we enter Table A, locate the $z$ value in column A, and read off the corresponding entry in column B. This value is 0.1293 . Thus, the proportion of the total area between the mean and a $z$ score of 0.33 is 0.1293 . From the accompanying figure, we can see that the remaining scores below the mean occupy 0.5000 proportion of the total area. If we add these two areas together, we shall have the proportion of scores lower than 84 . Thus, the proportion of scores lower than 84 is $0.1293+0.5000=0.6293$. The percentile rank of 84 is then $0.6293 \times 100=62.93$.


## Practice Problem 5.3

What percentage of aptitude scores are below a score of $66 ?$

## SOLUTION

Again, the first step is to draw the appropriate diagram. This is shown in the accompanying figure. From this diagram, we can see that the relevant area (shaded) lies beyond the score of 66 . To find the percentage of scores contained in this area, we must first convert 66 to its corresponding $z$ score. Thus,

$$
z=\frac{X-\mu}{\sigma}=\frac{66-80}{12}=\frac{-14}{12}=-1.17
$$

From Table A, column C, we find that the area beyond a $z$ score of 1.17 is 0.1210 . Thus, the percentage of scores below 66 is $0.1210 \times 100=12.10 \%$. Table A do es not show any negative $z$ scores. However, this does not cause a problem because the normal curve is symmetrical and negative $z$ scores have the same proportion of area as positive $z$ scores of the same magnitude. Thus, the proportion of total area lying beyond a $z$ score of +1.17 is the same as the proportion lying beyond a $z$ score of -1.17 .


## Practice Problem 5.4

Using the same population as in Practice Problem 5.3, what percentage of scores fall between 64 and 90 ?

## SOLUTION

The relevant diagram is shown at the end of the practice problem. This time, the shaded areas are on either side of the mean. To solve this problem, we must find the area between 64 and 80 and add it to the area between 80 and 90 . As before, to determine area, we must calculate the appropriate $z$ score. This time, however, we must compute two $z$ scores. For the area to the left of the mean,

$$
z=\frac{64-80}{12}=\frac{-16}{12}=-1.33
$$

For the area to the right of the mean,

$$
z=\frac{90-80}{12}=\frac{10}{12}=0.83
$$

Since the areas we want to determine are between the mean and the $z$ score, we shall use column B of Table A. The area corresponding to a $z$ score of -1.33 is 0.4082 , and the area corresponding to a $z$ score of 0.83 is 0.2967 . The total area equals the sum of these two areas. Thus, the proportion of scores falling between 64 and 90 is $0.4082+0.2967=0.7049$. The percentage of scores between 64 and 90 is $0.7049 \times 100=70.49 \%$. Note that in this problem we cannot just subtract 64 from 90 and divide by 12 . The areas in Table A are designated with the mean as a reference point. Therefore, to solve this problem, we must relate the scores of 64 and 90 to the mean of the distribution. You should also note that you cannot just subtract one $z$ value from the other because the curve is not rectangular; rather, it has differing amounts of area under various points of the curve.


## Practice Problem 5.5

Another type of problem arises when we want to determine the area between two scores and both scores are either above or below the mean. Let's try a problem of this sort. Find the percentage of aptitude scores falling between the scores of 95 and 110 .

## SOLUTION

The accompanying figure shows the distribution and the relevant area. As in Practice Problem 5.4, we can't just subtract 95 from 110 and divide by 12 to find the appropriate $z$ score. Rather, we must use the mean as our reference point. In this problem, we must find (1) the area between 110 and the mean and (2) the area between 95 and the mean. By subtracting these two areas, we shall arrive at the area between 95 and 110. As before, we must calculate two $z$ scores:

$$
\begin{array}{ll}
z=\frac{110-80}{12}=\frac{30}{12}=2.50 & z \text { transformation of } 110 \\
z=\frac{95-80}{12}=\frac{15}{12}=1.25 & z \text { transformation of } 95
\end{array}
$$

From column B of Table A,

$$
\text { Area }(z=2.50)=0.4938
$$

and

$$
\text { Area }(z=1.25)=0.3944
$$

Thus, t he prop ortion of scores f alling b etween 95 a nd 110 is 0.4938 $-0.3944=0.0994$. The percentage of scores is $0.0994 \times 100=9.94 \%$.

Percentage between 95 and 110: $(0.4938-0.3944) \times 100=9.94 \%$


## Finding the Raw Score, Given the Area

Sometimes we know the area and want to determine the corresponding score. The following problem is of this kind. Find the raw score that divides the distribution of aptitude scores such that $70 \%$ of the scores are below it.

This problem is just the reverse of the previous one. Here, we are given the area and need to determine the score. Figure 5.7 shows the appropriate diagram. Although we don't know what the raw score value is, we can determine its corresponding $z$ score from Table A. Once we know the $z$ score, we can solve for the raw score us ing the $z$ equation. If $70 \%$ of the scores lie below the raw score, then $30 \%$ must lie above it. We can find the $z$ score by searching in Table A, column C, until we locate the area closest to $0.3000(30 \%)$ and then noting that the $z$ score corresponding to this area is 0.52 . To find the raw score, all we need to do is substitute the relevant values in the $z$ equation and solve for $X$. Thus,

$$
z=\frac{X-\mu}{\sigma}
$$

Substituting and solving for $X$,

$$
\begin{aligned}
0.52 & =\frac{X-80}{12} \\
X & =80+12(0.52)=86.24
\end{aligned}
$$


figure 5.7 Determining the score below which $70 \%$ of the distribution falls in a normal distribution with $\mu=80$ and $\sigma=12$.

## Practice Problem 5.6

Let's try another problem of this type. What is the score that divides the distribution such that $99 \%$ of the area is below it?

## SOLUTION

The diagram is shown below. If $99 \%$ of the area is below the score, $1 \%$ must be above it. To solve this problem, we locate the area in column C of Table A that is closest to $0.0100(1 \%)$ and note that $z=2.33$. We convert the $z$ score to its corresponding raw score by substituting the relevant values in the $z$ equation and solving for $X$. Thus,

$$
\begin{aligned}
z & =\frac{X-\mu}{\sigma} \\
2.33 & =\frac{X-80}{12} \\
X & =80+12(2.33)=107.96
\end{aligned}
$$



## Practice Problem 5.7

Let's do one more pro blem. What are the scores that bound the middle $95 \%$ of the distribution?

## SOLUTION

The diagram is shown below. There is an area of $2.5 \%$ above and below the middle $95 \%$. To determine the scores that bound the middle $95 \%$ of the distribution, we must first find the $z$ values and then convert these values to raw scores. The $z$ scores are found in Table A by locating the area in column C closest to 0.0250 $(2.5 \%)$ and reading the associated $z$ score in column A. In this case, $z= \pm 1.96$. The raw scores are found by substituting the relevant values in the $z$ equation and solving for $X$. Thus,

$$
z=\frac{X-\mu}{\sigma}
$$

$$
\begin{aligned}
-1.96 & =\frac{X-80}{12} & +1.96 & =\frac{X-80}{12} \\
X & =80+12(-1.96) & X & =80+12 \\
& =56.48 & & =103.52
\end{aligned}
$$



## - U MMARY

In this chapter, I have discussed the normal curve and standard scores. I p ointed out that the normal curve is abellshaped $c$ urve a nd $g$ ave $t$ he e quation desc ribing it. N ext, I discussed the area contained under the normal curve and its relation to $z$ scores. A $z$ score is at ransformation of a raw score. It designates how many standard deviation units the corresponding raw score is ab ove or below the mean. A $z$ distribution has the following characteristics: (1) the
$z$ scores ha ve $t$ he sa me $s$ hape as $t$ he set ofr aw scores, (2) the mean of $z$ scores always equals 0 , and (3) the standard deviation of $z$ scores always equals 1 . Finally, I showed how to use $z$ scores in conjunction with a normal distribution to find (1) the percentage or $f$ requency of scores corresponding to any raw score in the distribution and (2) the raw score corresponding to any frequency or percentage of scores in the distribution.

## IMPORTANT NEWTERMS

## QUESTIONS AND PROBLEMS

1. Define
a Asymptotic
b. The normal curve
c. $z$ scores
d. Standard scores
2. What is a score transformation? Provide an example.
3. What are the values of the mean and standard deviation of the $z$ distribution?
4. Must the shape of a $z$ distribution be normal? Explain.
5. Are a ll b ell-shaped distributions $n$ ormal $d$ istributions? Explain.
6. If a set of scores is normally distributed, what information does the area under the curve give us?
7. What proportion of scores in a normal distribution will have values lower than $z=0$ ? What proportion will have values greater than $z=0$ ?
8. Given the set of sample raw scores $10,12,16,18,19,21$, a. Convert each raw score to its $z$-transformed value.
b. Compute the mean and standard deviation of the $z$ scores.
9. Assume the raw scores in Problem 8 a re population scores and perform the calculations called for in parts $\mathbf{a}$ and $\mathbf{b}$.
10. A p opulation of raw scores is n ormally distributed with $\mu=60$ and $\sigma=14$. Determine the $z$ scores for the following raw scores taken from that population:
a. 76
b. 48
c. 86
d. 60
e. 74
f. 46
11. For the following $z$ scores, det ermine the percentage of scores that lie beyond $z$ :
a. 0
b. 1
c. 1.54
d. -2.05
e. 3.21
f. -0.45
12. For the following $z$ scores, determine the percentage of scores that lie between the mean and the $z$ score:
a. 1
b. -1
c. 2.34
d. -3.01
e. 0
f. 0.68
g. -0.73
13. For each of the following, determine the $z$ score that divides the distribution such that the given percentage of scores lies above the $z$ score (round to two decimal places):
a. $50 \%$
b $2.50 \%$
c. $5 \%$
d. $30 \%$
e. $80 \%$
f. $90 \%$
14. Given that a population of scores is normally distributed with $\mu=110$ and $\sigma=8$, determine the following:
a. The percentile rank of a score of 120
b. The percentage of scores that are below a score of 99
c. The percentage of scores that are between a score of 101 and 122
d. The percentage of scores that are between a score of 114 and 124
e. The score in the population ab ove which $5 \%$ of the scores lie
15. At the end of a pa rticular quarter, Ca rol to ok four final e xams. The mea $n$ a nd standard de viation $f$ or each exam a long with Ca rol's $g$ rade on ea ch exam are listed here. Assume that the grades on each exam are normally distributed.

| Exam | Mean | Standard <br> Deviation | Carol's Grade |
| :---: | :---: | :---: | :---: |
| French | 75.4 | 6.3 | 78.2 |
| History | 85.6 | 4.1 | 83.4 |
| Psychology | 88.2 | 3.5 | 89.2 |
| Statistics | 70.4 | 8.6 | 82.5 |

a. On which exam did Carol do best, relative to the other students taking the exam?
b. What $w$ as her p ercentile r ank on t his e xam? education
16. A hospital in a la rge city records the weight of every infant born at the hospital. The distribution of weights is normally shaped, with a mea $\mathrm{n} \mu=2.9$ kilograms and a s tandard de viation $\sigma=0.45$. D etermine t he following:
a. The percentage of infants who weighed less than 2.1 kilograms
b. The percentile rank of a weight of 4.2 kilograms
c. The percentage of infants who weighed between 1.8 and 4.0 kilograms
d. The percentage of infants who weighed between 3.4 and 4.1 kilograms
e. The weight that divides the distribution such that $1 \%$ of the weights are above it
f. Beyond what weights do the most extreme $5 \%$ of the scores lie?
g. If 15,000 infants have been born at the hospital, how many weighed less than 3.5 kilograms? health, I/O
17. A statistician studied the re cords of mon thly rainfall for a pa rticular geographic locale. She found that the average monthly rainfall was normally distributed with a mean $\mu=8.2$ centimeters and as tandard de viation $\sigma=2.4$. What is the percentile rank of the following scores?
a. 12.4
b. 14.3
c. 5.8
d. 4.1
e. $8.2 \mathrm{I} / \mathrm{O}$, other
18. Using t he sa me p opulation pa rameters a s i n Problem 17, find what percentage of scores are above the following scores:
a. 10.5
b. 13.8
c. 7.6
d. 3.5
e. $8.2 \mathrm{I} / \mathrm{O}$, other
19. Using $t$ he sa me p opulation pa rameters a si n Problem 17, find what percentage of scores are between the following scores:
a. 6.8 and 10.2
b. 5.4 and 8.0
c. 8.8 and $10.5 \mathrm{I} / \mathrm{O}$, other
20. A jogging enthusiast keeps track of how many miles he jogs each week. The following scores are sampled from his year 2007 records:

| Week | Distance* | Week | Distance |
| :---: | :---: | :---: | :---: |
| $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$ | $\ldots \ldots \ldots$ | $\ldots$ | $\ldots$ |
| 5 | 32 | 30 | 36 |
| 8 | 35 | 32 | 38 |
| 10 | 30 | 38 | 35 |
| 14 | 38 | 43 | 31 |
| 15 | 37 | 48 | 33 |
| 19 | 36 | 49 | 34 |
| 24 | 38 | 52 | 37 |

*Scores are miles run.
a Determine the $z$ scores for the distances shown in the table. Note that the distances are sample scores.
b. Plot a frequency polygon for the raw scores.
c. On the same graph, plot a f requency polygon for the $z$ scores.
d. Is the $z$ distribution normally shaped? If not, explain why.
e. Compute the mean and standard deviation of the $z$ distribution. I/O, other
21. A stock market analyst has kept records for the past several years of the daily selling price of a particular blue-chip stock. The resulting distribution of scores is normally shaped with a mean $\mu=\$ 84.10$ a nd a standard deviation $\sigma=\$ 7.62$.
a. Determine $t$ he percentage of se lling pr ices $t$ hat were below a price of $\$ 95.00$.
b. What percentage of selling prices were between $\$ 76.00$ and $\$ 88.00$ ?
c. What percentage of selling prices were above $\$ 70.00$ ?
d. What se lling pr ice d ivides the distribution such that $2.5 \%$ of the scores are above it? I/O
22. Anthony is deciding whether to go to graduate school in business or law. He has taken nationally administered aptitude tests for both fields. Anthony's scores along with the national norms are shown here. Based solely on A nthony's relative standing on these tests, which field should he enter? Assume that the scores on both tests are normally distributed.

|  | National Norms |  |  |
| :---: | :---: | :---: | :---: |
|  |  |  | Anthony's |
| Field | $\boldsymbol{\mu}$ | $\sigma$ | Scores |
| Business | 68 | 4.2 | 80.4 |
| Law | 85 | 3.6 | 89.8 |

23. On which of her t wo exams did Rebecca do better? How ab out Mau rice? A ssume $t$ he scores on ea ch exam are normally distributed.

|  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
| Rebecca's |  |  |  |  |$\quad$| Maurice's |
| :---: |

education
24. A psychologist interested in the in telligence of children develops a standardized test for selecting "gifted" children. The test scores are normally distributed, with $\mu=75$ and $\sigma=8$. Assume a gifted child is defined as one who scores in the upper $1 \%$ of the distribution. What is the minimum score ne eded to be selected as gifted? cognitive, developmental

## SPSS ILLUSTRATIVE EXAMPLE 5.1

The general operation of SPSS and data entry are described in Appendix E, Introduction to SPSS. SPSS can be quite useful for transforming sample raw scores into $z$ scores. Let's see how to do this.
example
Let's use SPSS to solve Practice Problem 5.1 on p. 107 of the textbook. For convenience, the practice problem is repeated here.

For the set of raw scores $X=1,4,5,7,8$, determine the $z$ score for each raw score.
In solving the problem, name the variable $X$.

## SOLUTION

STEP 1: Enter the Data. Enter the statistics exam scores in the first column (VAR00001) of the SPSS Data Editor, beginning with the first score in the first cell of the first column.

STEP 2: Name the Variables. For this example, we will name the scores $X$.

Click the Variable View tab in the lower left corner of the Data Editor.

Click VAR00001; then type $\mathbf{X}$ in the highlighted cell and press Enter.

This displays the Variable View on screen with first cell of the Name column containing VAR00001.
$\mathbf{X}$ is entered as the variable name, replacing VAR00001.

STEP 3: Analyze the Data. Next, we will use SPSS to compute the $z$ score for each raw score. I suggest you switch to the Data Editor, Data View if you haven't done so already; now, on with the analysis.

Click Analyze on the menu bar at the top of the screen; then select Descriptive Statistics; then click Descriptives....

Click the arrow in the middle of the dialog box.

Click Save standardized values as variables.

Click OK.

This produces the Descriptives dialog box, which SPSS uses to do descriptive statistics. $\mathbf{X}$ is displayed, highlighted in the large box on the left.

This moves $\mathbf{X}$ from the large box on the left into the Variable(s): box on the right, ready for analysis.

This produces a check in the Save standardized values as variables box.

SPSS then analyzes the data, computes and displays the default or selected statistics as discussed in Chapter 4. It also computes the $z$ values of the raw scores and displays the $z$ scores as a new variable ZX in the Data Editor, Data View as shown below. Note: to view the Data Editor from the Output screen, click on Window on the menu bar at the top; then click on the file that contains your data set. Once in the Data Editor, you may have to switch from the Variable View to the Data View.

## Analysis Results



If you compare the SPSS-generated $z$ scores with those in Practice Problem 5.1, you can see that the SPSS z scores when rounded to two decimal places are the same as the $z$ scores
shown in the textbook. A note of caution: SPSS computes $z$ scores for sample, not population raw scores. If you want to get $z$ scores for population raw scores, multiply each sample z score by $\sqrt{\frac{N}{N-1}}$.

## SPSS ADDITIONAL PROBLEMS

1. Use SPSS to co mpute $z$ scores for the following data set. In solving the problem, name the scores $Y$. $10,13,15,16,18,20,21,24$
2. Use SPSS to compute $z$ scores for the distance scores given in Chapter 5, Problem 20, p. 118 in the textbook.

Compare your answer with that given in Appendix C for this problem. Name the scores Distance.
3. Use SPSS to demons trate that the mean of a $z$ distribution of scores e quals 0 a nd the standard de viation equals 1 .

## ONLINE STUDY RESOURCES

## CENGAGE braiin

Login to CengageBrain.com to access the resources your instructor has assigned. For this book, you can access the book's companion website for chapter-specific learning tools including Know and Be Able to Do, practice quizzes, flash cards, and glossaries and a link to Statistics and Research Methods Workshops.

## aplia

If your professor has assigned Aplia homework:

1. Sign in to your account
2. Complete the cor responding ho mework e xercises as required by your professor
3. W hen finished, c lick "G rade It Now" to se e which areas you have mastered and which need more work, and for detailed explanations of every answer.

Visit www.cengagebrain.com to access your account and to purchase materials.

## Correlation

## CHAPTER OUTLINE

Introduction
Relationships
Linear Relationships
Positive and Negative Relationships
Perfect and Imperfect Relationships
Correlation
The Linear Correlation Coefficient Pearson $r$
Other Correlation Coefficients
Effect of Range on Correlation
Effect of Extreme Scores
Correlation Does Not Imply Causation

## What Is the Truth?

- "Good Principal = Good Elementary School," or Does It?
- Money Doesn't Buy Happiness, or Does It?
Summary
Important New Terms
Questions and Problems
What Is the Truth? Questions
SPSS
Online Study Resources


## LEARNING OBJECTIVES

After completing this chapter, you should be able to:

- Define, recognize graphs of, and distinguish between the following: linear and curvilinear relationships, positive and negative relationships, direct and inverse relationships, and perfect and imperfect relationships.
- Specify the equation of a straight line and understand the concepts of slope and intercept.
- Define scatter plot, correlation coefficient, and Pearson $r$.
- Compute the value of Pearson $r$, and state the assumptions underlying Pearson $r$.
- Define the coefficient of determination $\left(r^{2}\right)$; specify and explain an important use of $r^{2}$.
- List three correlation coefficients other than Pearson $r$ and specify the factors that determine which correlation coefficient to use; specify the effects on correlation of range and of an extreme score.
- Compute the value of Spearman rho $\left(r_{s}\right)$ and specify the scaling of the variables appropriate for its use.
- Explain why correlation does not imply causation.
- Understand the illustrative examples, do the practice problems, and understand the solutions.

In the previous chapters, we were mainly concerned with single distributions and how to best characterize them. In addition to describing individual distributions, it is often desirable to determine whether the scores of one distribution are related to the scores of a nother distribution. For example, the person in charge of hiring employees for a large corporation might be very interested in knowing whether there was a relationship between the college grades that were earned by their employees and their success in the company. If a strong relationship between these two variables did exist, college grades could be used to pre dict success in the company and hence would be very useful in screening prospective employees.

Aside from the practical utility of using a relationship for prediction, why would anyone be interested in determining whether two variables are related? One important reason is that if the variables are related, it is possible that one of them is the cause of the other. As we shall see later in this chapter, the fact that two variables are related is not sufficient basis for proving causality. Nevertheless, because cor relational studies are among the easiest to carry out, showing that a correlation exists between the variables is often the first step toward proving that they are causally related. Conversely, if a correlation does not exist between the two variables, a causal relationship can be ruled out.

Another very important use of cor relation is to a ssess the "test-retest reliability" of $t$ esting i nstruments. Test-retest re liability mea ns cons istency in scores o ver re peated administrations of the test. For example, assuming an individual's IQ is stable from month to month, we would expect a good test of IQ to show a strong relationship between the scores of two administrations of the test 1 month apart to the same people. Correlational techniques allow us to mea sure the relationship between the scores derived on the two administrations and, hence, to measure the test-retest reliability of the instrument.

Correlation and regression are very much related. They both involve the relationship between two or more $v$ ariables. Cor relation is primarily concerned with finding out whether a re lationship exists a nd $w$ ith det ermining its $m$ agnitude a nd direction, whereas regression is primarily concerned with using the relationship for prediction. In this chapter, we discuss correlation, and in Chapter 7, we will take up the topic of linear regression.

Correlation is a topic that deals primarily with the magnitude and direction of relationships. Before delving into these special aspects of relationships, we will discuss so me general features of relationships. With these in hand, we can better understand the material specific to correlation.

## Linear Relationships

To begin our discussion of relationships, let's illustrate a linear relationship between two variables. Table 6.1 shows one month's salary for five salespeople and the dollar value of the merchandise each sold that month.
table 6.1 Salary and merchandise sold

| Salesperson | $X$ Variable <br> Merchandise Sold (\$) | $Y$ Variable <br> Salary (\$) |
| :---: | :---: | :---: |
| 1 | 0 | 500 |
| 2 | 1000 | 900 |
| 3 | 2000 | 1300 |
| 4 | 3000 | 1700 |
| 5 | 4000 | 2100 |

definition $\quad A$ scatter plot is a graph of paired $X$ and $Y$ values.

The scatter plot for the salesperson data is shown in Figure 6.1. Referring to this figure, we see that all of the points fall on a straight line. When a straight line describes the relationship between two variables, the relationship is called linear.

A linear relationship between two variables is o ne in which the relationship can be most accurately represented by a straight line.

figure 6.1 Scatter plot of the relationship between salary and merchandise sold.

Note that not all re lationships a re linear. S ome re lationships a re curvilinear. In these cases, when a scatter plot of the $X$ and $Y$ variables is drawn, a curved line fits the points better than a straight line.

Deriving the equation of the straight line The relationship between "salary" and "merchandise sold" shown in Figure 6.1 can be described with an equation. Of course, this equation is the equation of the line joining all of the points. The general form of the equation is given by

$$
Y=b X+a \quad \text { equation of a straight line }
$$

where $a \quad=Y$ intercept (value of $Y$ when $X=0$ )
$b=$ slope of the line
Finding the $Y$ intercept a The $Y$ intercept is the value of $Y$ where the line intersects the $Y$ axis. Thus, it is the $Y$ value when $X=0$. In this problem, we can see from Figure 6.1 that

$$
a=Y \text { intercept }=500
$$

Finding the slope $\boldsymbol{b}$ The slope of a line is a measure of its rate of change. It tells us how much the $Y$ score changes for each unit change in the $X$ score. In equation form,

$$
b=\text { slope }=\frac{\Delta Y}{\Delta X}=\frac{Y_{2}-Y_{1}}{X_{2}-X_{1}} \quad \text { slope of a straight line }
$$

Since we are dealing with a straight line, its slope is constant. This means it doesn't matter what values we pick for $X_{2}$ and $X_{1}$; the cor responding $Y_{2}$ and $Y_{1}$ scores wi ll yield the same value of slope. To calculate the slope, let's vary $X$ from 2000 to 3000 . If $X_{1}=2000$, then $Y_{1}=1300$. If $X_{2}=3000$, then $Y_{2}=1700$. Substituting these values into the slope equation,

$$
b=\text { slope }=\frac{\Delta Y}{\Delta X}=\frac{Y_{2}-Y_{1}}{X_{2}-X_{1}}=\frac{1700-1300}{3000-2000}=\frac{400}{1000}=0.40
$$

Thus, the slope is 0.40 . This means that the $Y$ value increases 0.40 units for every 1-unit increase in $X$. The slope and $Y$ intercept determinations are also shown in Figure 6.2. Note that the same slope would occur if we had chosen other values for $X_{1}$ and $X_{2}$. For example, if $X_{1}=1000$ and $X_{2}=4000$, then $Y_{1}=900$ and $Y_{2}=$ 2100. Solving for the slope,

$$
b=\text { slope }=\frac{\Delta Y}{\Delta X}=\frac{Y_{2}-Y_{1}}{X_{2}-X_{1}}=\frac{2100-900}{4000-1000}=\frac{1200}{3000}=0.40
$$

Again, the slope is 0.40 .
The full equation for the linear relationship that exists between salary and merchandise sold can now be written:

$$
Y=b X+a
$$

Substituting for $a$ and $b$,

$$
Y=0.40 X+500
$$


figure 6.2 Graph of salary and amount of merchandise sold.

The equation $Y=0.40 X+500$ describes the relationship between the $Y$ variable (salary) and the $X$ variable (merchandise sold). It tells us that $Y$ increases by 1 unit for every 0.40 increase in $X$. Moreover, as long as the relationship holds, this equation lets us compute an appropriate value for $Y$, given any value of $X$. That makes the equation very useful for prediction.

Predicting $\boldsymbol{Y}$, given $\boldsymbol{X}$ When used for prediction, the equation becomes

$$
Y^{\prime}=0.40 X+500
$$

where $\quad Y^{\prime}=$ the predicted value of the $Y$ variable
With this equation, we can predict any $Y$ value just by knowing the corresponding $X$ value. For example, if $X=1500$ as in our previous problem, then

$$
\begin{aligned}
Y^{\prime} & =0.40 X+500 \\
& =0.40(1500)+500 \\
& =600+500 \\
& =1100
\end{aligned}
$$

Thus, if a sa lesperson se lls $\$ 1500$ w orth of merchandise, h is or her sa lary would equal $\$ 1100$.

Of course, prediction could also have been done graphically, as shown in Figure 6.1. By vertically projecting the $X$ value of $\$ 1500$ until it intersects with the straight line, we can read the predicted $Y$ value from the $Y$ axis. The predicted value is $\$ 1100$, which is the same value we arrived at using the equation.

## Positive and Negative Relationships

In addition to being linear or curvilinear, the relationship between two variables may be positive or negative.

A positive relationship indicates that there is a direct relationship between the variables. A negative relationship indicates that there is a inverse relationship between $X$ and $Y$.

The slope of the line tells us whether the relationship is positive or negative. When the relationship is positive, the slope is positive. The previous example had a p ositive slope; that is, higher values of $X$ were associated with higher values of $Y$, a nd lower values of $X$ were associated with lower values of $Y$. When the slope is positive, the line runs upward from left to right, indicating that as $X$ increases, $Y$ increases. Thus, a direct relationship exists between the two variables.

When the relationship is negative, there is an inverse relationship between the variables, making the slope ne gative. A n example of a ne gative re lationship is s hown in Figure 6.3. Note that with a negative slope, the curve runs downward from left to right. Low values of $X$ are associated with high values of $Y$, and high values of $X$ are associated with low values of $Y$. Another way of saying this is that as $X$ increases, $Y$ decreases.

## Perfect and Imperfect Relationships

In the relationships we have graphed so far, all of the points have fallen on the straight line. When this is the case, the relationship is a perfect one (see "definition" on p. 128). Unfortunately, in the behavioral sciences, perfect relationships are rare. It is much more common to find imperfect relationships.

As an example, Table 6.2 shows the IQ scores and grade point averages of a sample of 12 college students. Suppose we wanted to determine the relationship between these

figure 6.3 Example of a negative relationship.
table 6.2 IQ and grade point average of 12 college students

| Student No. | IQ | Grade Point Average |
| :---: | :---: | :---: |
| 1 | 110 | $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$ |
| 2 | 112 | 1.0 |
| 3 | 118 | 1.6 |
| 4 | 119 | 1.2 |
| 5 | 122 | 2.1 |
| 6 | 125 | 2.6 |
| 7 | 127 | 1.8 |
| 8 | 130 | 2.6 |
| 9 | 132 | 2.0 |
| 10 | 134 | 3.2 |
| 11 | 136 | 2.6 |
| 12 | 138 | 3.0 |

hypothetical data. The scatter plot is shown in Figure 6.4. From the scatter plot, it is obvious that the relationship between IQ and college grades is imperfect. The imperfect relationship is positive because lower values of IQ are associated with lower values of grade point average, and higher values of IQ are associated with higher values of grade point average. In addition, the relationship appears linear.

## definitions $\quad$ A perfect relationship is one in which a positive or negative relationship exists and all of the points fall on the line. An imperfect relationship is one in which a relationship exists, but all of the points do not fall on the line.

To describe this relationship with a straight line, the best we can do is to draw the line that best fits the data. A nother way of saying this is $t$ hat, when the re lationship is imperfect, we cannot draw a single straight line through all of the points. We can, however, construct a straight line that most accurately fits the data. This line has been drawn in Figure 6.4. This best-fitting line is often used for prediction; when so used, it is called a regression line.*

A USA Today article reported that there is an inverse relationship between the amount of television watched by primary school students a nd their reading skills. Suppose the sixth-grade data for the article appeared as shown in Figure 6.5. This is an example of a negative, imperfect, linear relationship. The relationship is negative because higher values of television watching are associated with lower values of reading skill, and lower values of television watching are associated with higher values of reading skill. The linear relationship is imperfect because not all of the points fall on a single straight line. The regression line for these data is also shown in Figure 6.5.

Having completed our background discussion of relationships, we can now move on to the topic of correlation.

[^5]
figure 6.4 Scatter plot of IQ and grade point average.

figure 6.5 Scatter plot of reading skill and amount of television watched by sixth graders.


Correlation is a topi c that focuses on the direction and degree of the relationship. The direction of the re lationship re fers to whether the re lationship is p ositive or negative. The degree of relationship refers to the magnitude or strength of the relationship. The degree of relationship can vary from nonexistent to perfect. When the re lationship is $p$ erfect, cor relation is at $i$ ts highest and we can exactly pre dict from one variable to the other. In this situation, as $X$ changes, so does $Y$. Moreover, the sa me value of $X$ always leads to the same value of $Y$. Alternatively, the sa me value of $Y$ always leads to the sa me value of $X$. The points all fall on as traight line, a ssuming $t$ he re lationship is 1 inear. W hen $t$ he re lationship is $n$ onexistent, correlation is at $i$ ts lowest and knowing the value of one of the variables do esn't help at all in predicting the other. Imperfect relationships have intermediate levels of cor relation, a nd pre diction is appro ximate. Here, the sa me value of $X$ do esn't always lead to the same value of $Y$. Nevertheless, on the average, $Y$ changes systematically with $X$, and we can do a better job of predicting $Y$ with knowledge of $X$ than without it.

Although it suffices for some purposes to talk rather loosely about "high" or "low" correlations, it is much more often desirable to know the exact magnitude and direction of the correlation. A correlation coefficient gives us this information.

A correlation coefficient expresses quantitatively the magnitude and direction of the relationship.

A correlation coefficient can vary from +1 to -1 . The sign of the coefficient tells us whether the relationship is positive or negative. The numerical part of the correlation coefficient describes the magnitude of the correlation. The higher the number, the greater is the correlation. Since 1 is the highest number possible, it represents a perfect correlation. A cor relation co efficient of +1 mea ns the cor relation is $p$ erfect a nd the relationship is positive. A correlation coefficient of -1 means the correlation is perfect and the re lationship is ne gative. When the relationship is n onexistent, the cor relation coefficient e quals 0 . I mperfect re lationships ha ve cor relation co efficients varying in magnitude between 0 and 1 . They will be plus or minus depending on the direction of the relationship.

Figure 6.6 shows scatter plots of se veral different linear relationships and the correlation coefficients for each. The Pearson $r$ correlation coefficient has been used because the relationships are linear. We shall discuss Pearson $r$ in the next section. Each scatter plot is made up of paired $X$ and $Y$ values. Note that the closer the points are to $t$ he re gression line, the $h$ igher the magnitude of the cor relation co efficient and the more a ccurate the pre diction. Also, when the cor relation is $z$ ero, there is no relationship between $X$ and $Y$. This means that $Y$ does not increase or decrease systematically with increases or decreases in $X$. Thus, with zero cor relation, the regression line for predicting $Y$ is hor izontal and k nowledge of $X$ does not aid in predicting $Y$.

figure 6.6 Scatter plots of several linear relationships.

## The Linear Correlation Coefficient Pearson r

You will recall from our discussion in Chapter 5 that a basic problem in measuring the relationship between two variables is that very often the variables are measured on different scales and in different units. For example, if we are interested in measuring the correlation between IQ and grade point average for the data presented in Table 6.2, we are faced with the problem that IQ and grade point average have very different scaling. As was mentioned in Chapter 5, this problem is resolved by converting each score to its $z$-transformed value, in effect putting both variables on the same scale, $\mathrm{a} z$ scale.

To appreciate how useful $z$ scores are for determining correlation, consider the following example. Suppose your neighborhood supermarket is having a sale on oranges. The or anges are bagged, and each bag has the total price marked on it. You want to know whether there is a relationship between the weight of the oranges in each bag and their cost. Being a nat ural-born researcher, you randomly sample six bags and weigh each one. The cost and weight in pounds of the six bags are shown in Table 6.3. A scatter plot of the data is graphed in Figure 6.7. Are these two variables related? Yes; in fact, all the points fall on a straight line. There is a perfect positive correlation between the cost and weight of the oranges. Thus, the correlation coefficient must equal +1 .

Next, let's see what happens when we convert these raw scores to $z$ scores. The raw scores for weight $(X)$ and $\operatorname{cost}(Y)$ have been expressed as standard scores in the fourth and fifth columns of Table 6.3. Something quite interesting has happened. The paired raw scores for each bag of oranges have the same $z$ value. For example, the paired raw scores for bag A a re 2.25 and 0.75 . However, their respective $z$ scores a re both -1.34 . The raw
table 6.3 Cost and weight in pounds of six bags of oranges

|  | Weight (lb) | Cost (\$) |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Bag | X | $Y$ | $z_{X}$ | $z_{Y}$ |
| A | 2.25 | 0.75 | -1.34 | -1.34 |
| B | 3.00 | 1.00 | -0.80 | -0.80 |
| C | 3.75 | 1.25 | -0.27 | -0.27 |
| D | 4.50 | 1.50 | 0.27 | 0.27 |
| E | 5.25 | 1.75 | 0.80 | 0.80 |
| F | 6.00 | 2.00 | 1.34 | 1.34 |

score of 2.25 is a s many standard de viation units below the mean of the $X$ distribution as the raw score of 0.75 is below the mean of the $Y$ distribution. The same is true for the other paired scores. All of the paired raw scores occupy the same relative position within their own distributions. That is, they have the same $z$ values. When using raw scores, this relationship is obscured because of differences in scaling between the two variables. If the paired scores occupy the same relative position within their own distributions, then the correlation must be perfect $(r=1)$, because knowing one of the paired values will allow us to exactly predict the other value. If prediction is perfect, the relationship must be perfect.

This brings us to the definition of Pearson $r$.

Pearson $r$ is a measure of the extent to which paired scores occupy the same or opposite positions within their own distributions.

Note that this definition also includes the paired scores occupying opposite positions. If the paired $z$ scores have the same magnitude but opposite signs, the correlation would again be perfect and $r$ would equal -1 .

This example highlights a v ery important point. Since cor relation is conc erned with the re lationship between two variables and the variables are often mea sured in different units and scaling, the magnitude and direction of the cor relation coefficient

figure 6.7 Cost of oranges versus their weight in pounds.
must be independent of the differences in units and scaling that exist between the two variables. Pearson $r$ achieves this by using $z$ scores. Thus, we can correlate such diverse variables as time of day and position of the sun, percent body fat and caloric intake, test anxiety and examination grades, and so forth.

Since this is such an important point, we would like to illustrate it again by taking the previous example one more s tep. In the example involving the relationship between the cost of oranges and their weight, suppose you weighed the oranges in kilograms rather than in pounds. Should this change the degree of relationship between the cost and weight of the oranges? In light of what we have just presented, the answer is surely no. Correlation must be independent of the units used in measuring the two variables. If the cor relation is 1 b etween the cost of the or anges and their weight in pounds, the cor relation should also be 1 between the cost of the oranges and their weight in kilograms. We've converted the weight of each bag of oranges from pounds to k ilograms. The data are presented in Table 6.4, and the raw scores are plotted in Figure 6.8. Again, all the scores fall on a straight line, so the correlation equals 1.00 . Notice the values of the paired $z$ scores in the fourth and fifth columns of Table 6.4. Once more, they have the same values, and these values are the same as when the oranges were weighed in pounds. Thus, using $z$ scores allows a measurement of the relationship between the two variables that is independent of differences in scaling and of the units used in measuring the variables.

Calculating Pearson $\boldsymbol{r}$ The equation for calculating Pearson $r$ using $z$ scores is

$$
r=\frac{\sum z_{X} z_{Y}}{N-1} \quad \text { conceptual equation }
$$

where $\quad \sum z_{X} z_{Y}=$ the sum of the product of each $z$ score pair
To use this equation, you must first convert each raw score into its $z$-transformed value. This can take a considerable amount of time and possibly create rounding errors. With some algebra, this equation can be transformed into a ca lculation equation that uses the raw scores:

$$
\frac{\sum X Y-\frac{\left(\sum X\right)\left(\sum Y\right)}{N}}{\left.X^{2}-\frac{\left(\sum X\right)^{2}}{N}\right]\left[\sum Y^{2}-\frac{\left(\sum Y\right)^{2}}{N}\right]}
$$

computational equation for Pearson r
where $\quad \Sigma X Y=$ the sum of the product of each $X$ and $Y$ pair $(\Sigma X Y$ is also called the sum of the cross products)
$N=$ the number of paired scores
table 6.4 Cost and weight in kilograms of six bags of oranges

|  | Weight (kg) | Cost (\$) |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Bag | $X$ | $Y$ | $z_{X}$ | $z_{Y}$ |
| A | 1.02 | 0.75 | -1.34 | -1.34 |
| B | 1.36 | 1.00 | -0.80 | -0.80 |
| C | 1.70 | 1.25 | -0.27 | -0.27 |
| D | 2.04 | 1.50 | 0.27 | 0.27 |
| E | 2.38 | 1.75 | 0.80 | 0.80 |
| F | 2.72 | 2.00 | 1.34 | 1.34 |


figure 6.8 Cost of oranges versus their weight in kilograms.

Table 6.5 contains some hypothetical data collected from five subjects. Let's use these data to calculate Pearson $r$ :

$$
r=\frac{\sum X Y-\frac{\left(\sum X\right)\left(\sum Y\right)}{N}}{\sqrt{\left[\sum X^{2}-\frac{\left(\sum X\right)^{2}}{N}\right]\left[\sum Y^{2}-\frac{\left(\sum Y\right)^{2}}{N}\right]}}
$$

table 6.5 Hypothetical data for computing Pearson $r$

| Subject | $\boldsymbol{X}$ | $\boldsymbol{Y}$ | $\boldsymbol{X}^{2}$ | $\boldsymbol{Y}^{2}$ | $\boldsymbol{X} \boldsymbol{Y}$ |  |
| :---: | ---: | :---: | ---: | :---: | ---: | ---: |
| $\ldots \ldots \ldots \ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ |
| A | 1 | 2 | 1 | 4 | 2 |  |
| B | 3 | 5 | 9 | 25 | 15 |  |
| C | 4 | 3 | 16 | 9 | 12 |  |
| D | 6 | 7 | 36 | 49 | 42 |  |
| E | 7 | $\boxed{7}$ | $\underline{49}$ | $\underline{25}$ | $\underline{35}$ |  |
| Total | 21 | 22 | 111 | 112 | 106 |  |

$$
\begin{aligned}
r & =\frac{\Sigma X Y-\frac{(\Sigma X)(\Sigma Y)}{N}}{\sqrt{\left[\Sigma X^{2}-\frac{(\Sigma X)^{2}}{N}\right]\left[\Sigma Y^{2}-\frac{(\Sigma Y)^{2}}{N}\right]}} \\
& =\frac{106-\frac{21(22)}{5}}{\sqrt{\left[111-\frac{(21)^{2}}{5}\right]\left[112-\frac{(22)^{2}}{5}\right]}} \\
& =\frac{13.6}{18.616}=0.731=0.73
\end{aligned}
$$

$\Sigma X Y$ is called the sum of the cross products. It is found by multiplying the $X$ and $Y$ scores for each subject and then summing the resulting products. Calculation of $\sum X Y$ and the other terms is illustrated in Table 6.5. Substituting these values in the previous equation, we obtain

$$
r=\frac{106-\frac{21(22)}{5}}{\sqrt{\left[111-\frac{(21)^{2}}{5}\right]\left[112-\frac{(22)^{2}}{5}\right]}}=\frac{13.6}{\sqrt{22.8(15.2)}}=\frac{13.6}{18.616}=0.731=0.73
$$

## Practice Problem 6.1

Let's try another problem. This time we shall use data given in Table 6.2. For your convenience, these data are reproduced in the first three columns of the accompanying table. In this example, we have an imperfect linear relationship, and we are interested in computing the magnitude and direction of the relationship using Pearson $r$. The solution is also shown in the following table.

## SOLUTION



## Practice Problem 6.2

Let's try one more problem. Have you ever wondered whether it is true that opposites attract? We've all been with couples in which the two individuals seem so different from each other. But is this the usual experience? Does similarity or dissimilarity foster attraction?

A social psychologist investigating this problem asked 15 college students to fill out a questionnaire concerning their attitudes toward a variety of topics. Some time later, they were shown the "attitudes" of a stranger to the same items and were asked to rate the stranger as to probable liking for the stranger and probable enjoyment of working with him. The "attitudes" of the stranger were really made up by the experimenter and varied over subjects regarding the proportion of attitudes held by the stranger that were similar to those held by the rater. Thus, for each subject, data were collected concerning $h$ is at titudes a nd the at traction of a s tranger ba sed on the stranger's attitudes to the same items. If similarities attract, then there should be a direct relationship between the attraction of the stranger and the proportion of his similar attitudes. The data are presented in the table at the end of this practice problem. The higher the attraction, the higher is the score. The maximum possible attraction score is 14 . Compute the Pearson $r$ correlation coefficient* to de termine whether there is a direct relationship between similarity of attitudes and attraction.

## SOLUTION

The solution is shown in the following table.

| Student No. | Proportion of Similar Attitudes X | Attraction | $X^{2}$ | $Y^{\mathbf{2}}$ | $X Y$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.30 | 8.9 | 0.090 | 79.21 | 2.670 |
| 2 | 0.44 | 9.3 | 0.194 | 86.49 | 4.092 |
| 3 | 0.67 | 9.6 | 0.449 | 92.16 | 6.432 |
| 4 | 0.00 | 6.2 | 0.000 | 38.44 | 0.000 |
| 5 | 0.50 | 8.8 | 0.250 | 77.44 | 4.400 |
| 6 | 0.15 | 8.1 | 0.022 | 65.61 | 1.215 |
| 7 | 0.58 | 9.5 | 0.336 | 90.25 | 5.510 |
| 8 | 0.32 | 7.1 | 0.102 | 50.41 | 2.272 |
| 9 | 0.72 | 11.0 | 0.518 | 121.00 | 7.920 |
| 10 | 1.00 | 11.7 | 1.000 | 136.89 | 11.700 |
| 11 | 0.87 | 11.5 | 0.757 | 132.25 | 10.005 |
| 12 | 0.09 | 7.3 | 0.008 | 53.29 | 0.657 |
| 13 | 0.82 | 10.0 | 0.672 | 100.00 | 8.200 |
| 14 | 0.64 | 10.0 | 0.410 | 100.00 | 6.400 |
| 15 | $\underline{0.24}$ | 7.5 | $\underline{0.058}$ | 56.25 | 1.800 |
| Total | 7.34 | 136.5 | 4.866 | 1279.69 | 73.273 |

[^6]\[

$$
\begin{aligned}
r & =\frac{\sum X Y-\frac{\left(\sum X\right)\left(\sum Y\right)}{N}}{\sqrt{\left[\sum X^{2}-\frac{\left(\sum X\right)^{2}}{N}\right]\left[\Sigma Y^{2}-\frac{(\Sigma Y)^{2}}{N}\right]}} \\
& =\frac{73.273-\frac{7.34(136.5)}{15}}{\sqrt{\left[4.866-\frac{(7.34)^{2}}{15}\right]\left[1279.69-\frac{(136.5)^{2}}{15}\right]}} \\
& =\frac{6.479}{\sqrt{1.274(37.54)}}=\frac{6.479}{6.916}=0.936=0.94
\end{aligned}
$$
\]

Therefore, based on $t$ hese students, there is a $v$ ery strong relationship between similarity and attractiveness.

## MENTORINGTIP

Caution: students often find this section difficult. Be prepared to spend additional time on it to achieve understanding.

A second interpretation for Pearson $\boldsymbol{r}$ Pearson $r$ can also be interpreted in terms of the variability of $Y$ accounted for by $X$. This approach leads to important additional information about $r$ and the relationship between $X$ and $Y$. Consider Figure 6.9, in which an imperfect relationship is shown between $X$ and $Y$. In this example, the $X$ variable represents spelling competence and the $Y$ variable is writing ability of six students in the third grade. Suppose we are interested in predicting the writing score for Maria, the student whose spelling score is 88 . If there were no relationship between writing and spelling, we would pre dict a score of 50 , which is $t$ he overall mean of all the writing scores. In the absence of a re lationship between $X$ and $Y$, the overall mean is the best predictor. When there is no relationship between $X$ and $Y$, using the mean minimizes prediction errors because the sum of the squared deviations from it is a minimum. You will recognize this as

figure 6.9 Relationship between spelling and writing.
the fourth property of the mean, discussed in Chapter 4. Maria's actual writing score is 90 , so our estimate of 50 is in error by 40 points. Thus,

$$
\text { Maria's actual writing score }- \text { Group average }=Y_{i}-\bar{Y}=90-50=40
$$

However, in this example, the relationship between $X$ and $Y$ is n ot zero. Although it is not perfect, a re lationship greater than zero exists between $X$ and $Y$. Therefore, the overall mean of the writing scores is not the best predictor. Rather, as discussed previously in the chapter, we can use the regression line for these data as the basis of our prediction. The regression line for the writing and spelling scores is shown in Figure 6.9. Using this line, we would predict a writing score of 75 for Maria. Now the error is only 15 points. Thus,

$$
\binom{\text { Maria's actual }}{\text { score }}-\binom{\text { Maria's predicted }}{\text { score using } X}=Y_{i}-Y^{\prime}=90-75=15
$$

It can be observed in Figure 6.9 that the distance between Maria's score a nd the mean of the $Y$ scores is divisible into two segments. Thus,

$$
\begin{array}{ccc}
Y_{i}-\bar{Y} & =\quad\left(Y_{i}-Y^{\prime}\right)+\left(Y^{\prime}-\bar{Y}\right) \\
\text { Deviation of } Y_{i}= & \text { Er ror in } & + \text { Dev iation } \\
& \text { prediction } & \text { of } Y_{i} \\
& \text { using the } & \text { accounted } \\
& \text { relationship } & \text { for by the } \\
& \text { between } X & \text { relationship } \\
& \text { and } Y & \text { between } X \\
& & \text { and } Y
\end{array}
$$

The se gment $Y_{i}-Y^{\prime}$ represents t he er ror in pre diction. T he rem aining se gment $Y^{\prime}-\bar{Y}$ represents that part of the deviation of $Y_{i}$ that is accounted for by the relationship between $X$ and $Y$. You should note that "accounted for by the relationship between $X$ and $Y$ " is often abbreviated as "accounted for by $X$."

Suppose we n ow det ermine the pre dicted $Y$ score ( $Y^{\prime}$ ) for each $X$ score us ing the regression line. We could then construct $Y_{i}-\bar{Y}$ for each score. If we squared each $Y_{i}-\bar{Y}$ and summed over all the scores, we would obtain

$$
\begin{array}{ccccc}
\Sigma\left(Y_{i}-\bar{Y}\right)^{2} & = & \sum\left(Y_{i}-Y^{\prime}\right)^{2} & + & \sum\left(Y^{\prime}-\bar{Y}\right)^{2} \\
\text { Total } & =V & \text { ariability of } & + & \text { Variability } \\
\text { riability } & & \text { prediction } & \text { of } Y \\
f Y & & \text { errors } & & \text { accounted } \\
& & & \text { for by } X
\end{array}
$$

Note that $\sum\left(Y_{i}-\bar{Y}\right)^{2}$ is the sum of squares of the $Y$ scores. It represents the total variability of the $Y$ scores. Thus, this equation states that the total variability of the $Y$ scores can be divided into two parts: the variability of the prediction errors and the variability of $Y$ accounted for by $X$.

We k now that, as the re lationship g ets stronger, the pre diction g ets more a ccurate. In the previous equation, as the relationship gets stronger, the prediction errors get smaller, also causing the variability of prediction errors $\Sigma\left(Y_{i}-Y^{\prime}\right)^{2}$ to decrease. Since the total variability $\sum\left(Y_{i}-\bar{Y}\right)^{2}$ hasn't changed, the variability of $Y$ accounted for by $X$, namely, $\Sigma\left(Y^{\prime}-\bar{Y}\right)^{2}$, must increase. Thus, the proportion of the total variability of the $Y$ scores that is accounted for by $X$, namely, $\Sigma\left(Y^{\prime}-\bar{Y}\right)^{2} / \Sigma\left(Y_{i}-\bar{Y}\right)^{2}$, is a measure of the
strength of relationship. It turns out that if we take the square root of this ratio and substitute for $Y^{\prime}$ the appropriate values, we obtain the computational formula for Pearson $r$. We previously defined Pearson $r$ as a measure of the extent to which paired scores occupy the same or opposite positions within their own distributions. From what we have just said, it is also the case that Pearson $r$ equals the square root of the proportion of the variability of $Y$ accounted for by $X$. In equation form,

$$
\begin{aligned}
& r=\sqrt{\frac{\Sigma\left(Y^{\prime}-\bar{Y}\right)^{2}}{\sum\left(Y_{i}-\bar{Y}\right)^{2}}}=\sqrt{\frac{\text { Variability of } Y \text { that is accounted for by } X}{\text { Total variability of } Y}} \\
& r=\sqrt{\text { Proportion of the total variability of } Y \text { that is accounted for by } X}
\end{aligned}
$$

It follows from this equation that the higher $r$ is, the greater the proportion of the variability of $Y$ that is accounted for by $X$.

Relationship of $\boldsymbol{r}^{\mathbf{2}}$ and explained variability If we square the previous equation, we obtain
$r^{2}=$ Proportion of the total variability of $Y$ that is accounted for by $X$
Thus, $r^{2}$ is called the coefficient of determination. As shown in the equation, $r^{2}$ equals the proportion of the total variability of $Y$ that is accounted for or explained by $X$. In the problem dealing with grade point average and IQ, the correlation was 0.86 . If we square $r$, we obtain

$$
r^{2}=(0.86)^{2}=0.74
$$

This means that $74 \%$ of the variability in $Y$ can be accounted for by IQ. If it turns out that IQ is a causal factor in determining grade point average, then $r^{2}$ tells us that IQ accounts for $74 \%$ of the variability in g rade point average. What ab out the remaining $26 \%$ ? Other factors that can account for the remaining $26 \%$ must be influencing grade point average. The important point here is that one can be misled by using $r$ into thinking that $X$ may be a major cause of $Y$ when really it is $r^{2}$ that tells us how much of the change in $Y$ can be accounted for by $X$.* The error isn't so serious when you have a cor relation co efficient as high as 0.86 . However, in the behavioral sci ences, s uch high correlations are rare. Correlation coefficients of $r=0.50$ or 0.60 are considered fairly high, and yet correlations of this magnitude account for only $25 \%$ to $36 \%$ of the variability in $Y\left(r^{2}=0.25\right.$ to 0.36$)$. Table 6.6 shows the relationship between $r$ and the explained variability expressed as a percentage.

## Other Correlation Coefficients

So far, we have discussed correlation and described in some detail the linear correlation coefficient Pearson $r$. We have chosen Pearson $r$ because it is the most frequently encountered correlation coefficient in behavioral science research. However, you should be aware that there are many different correlation coefficients one might employ, each of which is appropriate under different conditions. In deciding which correlation coefficient to calculate, the shape of the relationship and the measuring scale of the data are the two most important considerations.

[^7]
## MENTORINGTIP

Like $r^{2}, \eta^{2}$ is a measure of the size of effect.
table 6.6 Relationship between $r$ and explained variability

| Explained Variability, <br> $r^{2}(\%)$ |  |
| :--- | :---: |
| $\boldsymbol{r} \ldots \ldots$ |  |
| 0.10 | 1 |
| 0.20 | 4 |
| 0.30 | 9 |
| 0.40 | 16 |
| 0.50 | 25 |
| 0.60 | 36 |
| 0.70 | 49 |
| 0.80 | 64 |
| 0.90 | 81 |
| 1.00 | 100 |

Shape of the relationship The choice of which cor relation co efficient to calculate depends on whether the relationship is 1 inear or c urvilinear. If the data are curvilinear, using a linear correlation coefficient such as Pearson $r$ can seriously underestimate the degree of relationship that exists between $X$ and $Y$. Accordingly, a nother correlation coefficient $\eta$ (eta) is use d for curvilinear relationships. An example is the relationship between motor skills and age. There is an inverted U-shaped relationship between motor skills and age. In early life, motor skills are low. They increase during the middle years, and then de crease in later life. However, since $\eta$ is not f requently encountered in behavioral science research, we have not presented a det ailed discussion of it.* This does, however, empha size the i mportance of doing a scat ter plot to determine whether the relationship is linear before just routinely going ahead and calculating a linear correlation coefficient. It is also worth noting here that, like $r^{2}$, if one of the variables is causal, $\eta^{2}$ is a mea sure of the size of effect. We discuss this aspect of $\eta^{2}$ in Chapter 15.

Measuring scale The choice of correlation coefficient also depends on the type of measuring scale underlying the data. We've already discussed the linear correlation coefficient Pearson $r$. It assumes the data are measured on a n interval or r atio scale. Some examples of other linear cor relation co efficients a re the Spearman rank order correlation coefficient rho ( $r_{s}$ ), the biserial correlation coefficient $\left(r_{b}\right)$, and the phi ( $\phi$ ) coefficient. In actuality, each of these coefficients is the equation for Pearson $r$ simplified to apply to the lower-order scaling. Rho is used when one or both of the variables are of ordinal scaling, $r_{b}$ is used when one of the variables is at least interval and the other is dichotomous, and phi is use $d$ when each of the variables is dichotomous. Although it is beyond the scope of this textbook to present each of these correlation coefficients in detail, the Spearman rank order correlation coefficient rho occurs frequently enough to warrant discussion here.
*A discussion of $\eta$ as well as the other coefficients presented in this section is contained in N. Downie and R. Heath, Basic Statistical Methods, 4th ed., Harper \& Row, New York, 1974, pp. 102-114.

The Spearman rank order correlation coefficient rho $\left(r_{s}\right)$ As mentioned, the Spearman rank order correlation coefficient rho is used when one or both of the variables are only of ordinal scaling. Spearman rho is really the linear correlation coefficient Pearson $r$ applied to data that meet the requirements of ordinal scaling. The easiest equation for calculating rho when there are no ties or just a few ties relative to the number of paired scores is

$$
\begin{aligned}
r_{s} & =1-\frac{6 \sum D_{i}^{2}}{N^{3}-N} \quad \text { computational equation for rho } \\
\text { where } D \quad i & =\text { difference between the } i \text { th pair of ranks }=R\left(X_{i}\right)-R\left(Y_{i}\right) \\
R\left(X_{i}\right) & =\text { rank of the } i \text { th } X \text { score } \\
R\left(Y_{i}\right) & =\text { rank of the } i \text { th } Y \text { score } \\
N & =\text { number of pairs of ranks }
\end{aligned}
$$

It can be shown that, with ordinal data having no ties, Pearson $r$ reduces algebraically to the previous equation.

To illustrate the use of rho, let's consider an example. Assume that a large corporation is interested in rating a current class of 12 management trainees on their leadership ability. Two psychologists are hired to do the job. As a result of their tests and interviews, the psychologists each independently rank-order the students according to leadership ability. The rankings are from 1 to 12 , with 1 representing the highest level of leadership. The data are given in Table 6.7. What is the correlation between the rankings of the two psychologists?

Since the data are of ordinal scaling, we should compute rho. The solution is shown in Table 6.7. Note that subjects 5 and 6 were tied in the rankings of psychologist A. When ties occur, the rule is to $g$ ive each subject the average of the tied ranks. For example, subjects 5 and 6 were tied for ranks 2 and 3 . Therefore, they each received a ranking of $2.5[(2+3) / 2=2.5]$. In giving the two subjects a rank of 2.5 , we have effectively used up ranks 2 and 3 . The next rank is $4 . D_{i}$ is the difference between the paired rankings for
table 6.7 Calculation of $r_{s}$ for leadership example

the $i$ th subject. Thus, $D_{i}=1$ for subject 1 . It doesn't matter whether you subtract $R\left(X_{i}\right)$ from $R\left(Y_{i}\right)$ or $R\left(Y_{i}\right)$ from $R\left(X_{i}\right)$ to get $D_{i}$ because we square each $D_{i}$ value. The squared $D_{i}$ values are then summed $\left(\Sigma D_{i}^{2}=56.5\right)$. This value is then entered in the equation along with $N(N=12)$ and $r_{s}$ is computed. For this problem,

$$
r_{s}=1-\frac{6 \sum D_{i}^{2}}{N^{3}-N}=1-\frac{6(56.5)}{12^{3}-12}=1-\frac{339}{1716}=0.80
$$

## Practice Problem 6.3

To i llustrate c omputation of $r_{s}$, let's a ssume that the raters' at titude and at traction scores given in Practice Problem 6.2 were only of ordinal scaling. Given this assumption, determine the value of the linear correlation coefficient rho for these data and compare the value with the value of Pearson $r$ determined in Practice Problem 6.2.

## SOLUTION

The data and solution are shown in the following table.


Note that $r_{s}=0.93$ and $r=0.94$. The values are not identical but quite close. In general, when Pearson $r$ is calculated using the interval or ratio properties of data, its values will be close but not exactly the same as when calculated on only the ordinal properties of those data.

## Effect of Range on Correlation

If a correlation exists between $X$ and $Y$, restricting the range of either of the variables will have the effect of lowering the correlation. This can be seen in Figure 6.10, where we have drawn a scat ter plot of freshman grade point average a nd College Entrance Examination B oard (CEEB) scores. The figure has been subdivided into low, medium, a nd high CEEB scores. Taking the figure as a whole (i.e., considering the full range of the CEEB scores), there is a high correlation between the two variables. However, if we were to consider the three sections separately, the correlation for each section would be much lower. Within each section, the points show much le ss systematic change in $Y$ with changes in $X$. This, of course, indicates a lower correlation between $X$ and $Y$. The effect of range restriction on cor relation is often encountered in education or industry. For instance, suppose that on the basis of $t$ he $h$ igh cor relation between $f$ reshman $g$ rades a nd CEEB scores a $s$ s hown in Figure 6.10, a college decided to admit only high school graduates who have scored in the high range of the CEEB scores. If the subsequent freshman grades of these students were cor related with their CEEB scores, we would expect a m uch lower correlation because of the range restriction of the CEEB scores for these freshmen. In a similar vein, if one is doing a correlational study and obtains a low correlation coefficient, one should check to be sure that range restriction is not responsible for the low value.


College Entrance Examination Board (CEEB) scores
figure 6.10 Freshman grades and CEEB scores.

## Effect of Extreme Scores

Consider the effect of an extreme score on $t$ he magnitude of the cor relation coefficient. Figure 6.11(a) shows a set of scores where all the scores cluster reasonably close together. The value of Pearson $r$ for this set of scores is 0.11 . Figure 6.11(b) shows the same set of scores with an extreme score added. The value of Pearson $r$ for this set of scores is 0.94 . The magnitude of Pearson $r$ has changed from 0.11 to 0.94. This is a demonstration of the point that an extreme score can drastically alter the magnitude of the correlation coefficient and, hence, change the interpretation of the data. Therefore, it is a good idea to check the scatter plot of the data for extreme scores before computing the correlation coefficient. If an extreme score exists, caution must be exercised in interpreting the relationship. If the sample is a la rge random sample, an extreme value usually will not greatly alter the size of the correlation. However, if the sample is a small one, as in this example, an extreme score can have a large effect.

## Correlation Does Not Imply Causation

## MENTORINGTIP

Remember: it takes a true experiment to determine causality.

When two variables ( $X$ and $Y$ ) are correlated, it is tempting to conclude that one of them is the cause of the other. However, to do so w ithout further experimentation would be a serious error, because whenever two variables are correlated, there are four possible explanations of the correlation: (1) the correlation between $X$ and $Y$ is s purious, (2) $X$ is the cause of $Y$, (3) $Y$ is the cause of $X$, or (4) a third variable is the cause of the correlation between $X$ and $Y$. The first possibility asserts that it was just due to accidents of sampling unusual people or unusual behavior that the sample showed a correlation; that is, if the experiment were repeated or more sa mples were taken, the correlation would disappear. If the cor relation is rea lly spurious, it is obviously wrong to conc lude that there is a causal relationship between $X$ and $Y$.

figure 6.11 Effect of an extreme score on the size of the correlation coefficient.

It is also erroneous to assume causality between $X$ and $Y$ if the fourth alternative is correct. Quite often, when $X$ and $Y$ are correlated, they are not causally related to each other but rather a third variable is responsible for the correlation. For example, do you know that there is a close relationship between the salaries of university professors and the price of a fifth of scotch whiskey? Which is the cause a nd which the effect? Do the salaries of university professors dominate the scotch whiskey market such that when the professors get a raise and thereby can afford to buy more scotch, the price of scotch is raised accordingly? Or perhaps the university professors are paid from the profits of scotch whiskey sales, so when the professors need a raise, the price of a fifth of scotch whiskey goes up? Actually, neither of these explanations is correct. Rather, a third factor is responsible for this correlation. What is that factor? Inflation! Recently, a newspaper article reported a positive correlation between obesity and female crime. Does this mean that if a w oman gains 20 p ounds, she will become a c riminal? Or does it mean that if she is a criminal, she is doomed to being obese? Neither of these explanations seems sat isfactory. Fr ankly, we a re not sure how to i nterpret this correlation. One possibility is that it is a spurious correlation. If not, it could be due to a third factor, namely, socioeconomic status. Both obesity and crime are related to lower socioeconomic status.

The point is that a correlation between two variables is not sufficient to establish causality between them. There are other possible explanations. To establish that one variable is the cause of another, we must conduct an experiment in which we systematically vary only the suspected causal variable a nd mea sure its effect on $t$ he ot her variable.

## WHAT IS THE TRUTH?

## "Good Principal = Good Elementary School," or Does It?



A major newspaper of a large city carried as a front page headline, printed in large bold letters,
"Equation for success: Good principal = good elementary school."
The article that followed described a study in which elementary school principals were rated by their teachers on a series of questions indicating whether the principals were strong, average, or weak leaders. Students in these schools were evaluated in reading and mathematics on the annual California Achievement Tests. As far as we can tell from the newspaper article, the ratings and test scores were obtained from ongoing principal assignments, with no attempt in the study to randomly assign principals to schools. The results showed that (1) in 11 elementary schools that had strong principals, students were making big academic strides; (2) in 11 schools where principals were weak leaders, students were showing less improvement than average or even falling behind; and (3) in 39 schools where principals were rated as average, the students' test scores were showing just average improvement.

The newspaper reporter interpreted these data as indicated by the headline, "Equation for success: Good principal = good elementary
school." In the article, an elementary school principal was quoted, "I've always said 'Show me a good school, and l'll show you a good principal,' but now we have powerful, incontrovertible data that corroborates that." The article further quoted the president of the principals' association as saying: "It's exciting information that carries an enormous responsibility. It shows we can make a real difference in our students' lives." In your view, do the data warrant these conclusions?

Answer A lthough, personally, I believe that school principals are important to educational quality, the study seems to be strictly a correlational one: paired measurements on two variables, without random
assignment to groups. From what we said previously, it is impossible to determine causality from such a study. The individuals quoted herein have taken a study that shows there is a correlation between "strong" leadership by elementary school principals and educational gain and concluded that the principals caused the educational gain. The conclusion is too strong. The correlation could be spurious or due to a third variable.

It is truly amazing how often this error is made in real life. Stay on the lookout, and I believe you will be surprised how frequently you encounter individuals concluding causation when the data are only correlational. Of course, now that you are so well informed on this point, you will never make this mistake yourself!


## WHAT IS THE TRUTH?

## Money Doesn't Buy Happiness, or Does It?



A recent article in the New York Times dealing with the topic "Does Money Buy Happiness?" shows a very interesting variant of the basic scatter plot that we discussed in this chapter. I thought you might like to see it. The variant is shown below. It graphs average life satisfaction as a function of Gross Domestic Product (GDP)/capita for a wide variety of countries. Pairing is by country, rather than by student as was the case for the IQ and grade point average data shown in Figure 6.4 on p. 129. Now that you are so good at interpreting scatter plots, l'm sure that you can tell from viewing the new scatter plot that there appears to be a positive, linear relationship between life
satisfaction and GDP/capita. That is to say, as you go from countries with low GDP/capita to high GDP/ capita, life satisfaction increases and the increase to a first approximation seems linear. In general, the positive correlation appears to be true within countries as well as across countries.

In addition to showing you this interesting scatter plot, I thought you might also be interested in the topic itself. Here is an excerpt from the article.

## MONEY DOESN'T BUY HAPPINESS. WELL, ON SECOND THOUGHT...

In the aftermath of World War II, the Japanese economy went through one of the greatest booms the world has ever known. From 1950 to 1970, the economy's output per person
grew more than sevenfold. Japan, in just a few decades, remade itself from a war-torn country into one of the richest nations on earth.

Yet, strangely, Japanese citizens didn't seem to become any more satisfied with their lives. According to one poll, the percentage of people who gave the most positive possible answer about their life satisfaction actually fell from the late 1950's to the early '70s. They were richer, but apparently no happier.

This contrast became the most famous example of a theory known as the Easterlin paradox. In 1974, Richard Easterlin, then an economist at the University of Pennsylvania, published a study in which he argued that economic growth didn't necessarily lead to more satisfaction.
(continued)

Key:

- Each dot represents one country

The line around the dot shows how satisfaction relates to income within that county:



## WHAT IS THE TRUTH? (continued)

People in poor countries, not surprisingly, did become happier once they could afford basic necessities. But beyond that, further gains simply seemed to reset the bar. To put it in modern terms, owning an iPod doesn't make you happier, because you then want an iPod Touch. Relative income-how much you make compared with others around you-mattered far more than absolute income, Mr. Easterlin wrote.

The paradox quickly became a social science classic, cited in academic journals and the popular media. It tapped into a near-spiritual human instinct to believe that money can't buy happiness. As a 2006 headline in The Financial Times said, "The Hippies Were Right All Along About Happiness."

But now the Easterlin paradox is under attack.

Last week, at the Brookings Institution in Washington, two young economists-from the University of Pennsy/vania, as it happenspresented a rebuttal of the paradox. Their paper has quickly captured the
attention of top economists around the world. It has also led to a spirited response from Mr. Easterlin.

In the paper, Betsey Stevenson and Justin Wolfers argue that money indeed tends to bring happiness, even if it doesn't guarantee it. They point out that in the 34 years since Mr. Easterlin published his paper, an explosion of public opinion surveys has allowed for a better look at the question. "The central message," Ms. Stevenson said, "is that income does matter."

To see what they mean, take a look at the map that accompanies this column [scatter plot shown previously]. It's based on Gallup polls done around the world, and it clearly shows that life satisfaction is highest in the richest countries. The residents of these countries seem to understand that they have it pretty good, whether or not they own an iPod Touch.

If anything, Ms. Stevenson and Mr. Wolfers say, absolute income seems to matter more than relative income. In the United States, about 90 percent of people in households making at least \$250,000 a year called themselves "very happy" in a
recent Gallup Poll.
So, what do you think? Does income beyond basics really affect happiness? Do you like the scatter plot?

In the last 30 years, the scientific study of happiness has become an active research field. If you are interested in pursuing this area further, the following references might be helpful:

Daniel Gillbert, Stumbling on Happiness, Knopf, 2006.

Stefan Klein, The Science of Happiness, Marlowe, 2006.

Ed Diener \& Robert Biswas-Diener, Happiness, Unlocking the Mysteries of Psychological Wealth, Blackwell, 2008.

Matthieu Ricard, Happiness: A Guide to Developing Life's Most Important Skill, Little, Brown \& Company, 2003.
Source: "Money Doesn't Buy Happiness. Well, on Second Thought ...," by David Leonhardt. The New York Times, April 16, 2008. Copyright © 2008 New York Times. All rights reserved. Used by permission and protected by the Copyright Laws of the United States. The printing, copying, redistribution, or retransmission of the Material without express written permission is prohibited.

## S UMMARY

In this chapter, I ha ve discussed the topic of cor relation. Cor relation is a mea sure of the relationship that exists $b$ etween $t$ wo $v$ ariables. $T$ he $m$ agnitude a nd direction of $t$ he re lationship a re $g$ iven $b y$ a cor relation c oefficient. T he cor relation co efficient ca $n v$ ary from +1 to -1 . The sign of $t$ he co efficient $t$ ells us whether the r elationship is p ositive or n egative. T he numerical part describes the magnitude of the correlation. W hen the re lationship is $p$ erfect, the magnitude is 1 . If the relationship is nonexistent, the magnitude is 0 . Mag nitudes between 0 a nd 1 i ndicate imperfect relationships.

There a re $m$ any cor relation co efficients $t$ hat ca $n$ be computed, depending on the scaling of the data and
the shape of the relationship. In this chapter, I emphasized Pearson $r$ and Spearman rho. Pearson $r$ is defined as a mea sure of the extent to which paired scores occupy the same or opposite positions within their own distributions. U sing st andard s cores a llows m easurement of the relationship that is independent of the differences in sca ling a nd of $t$ he $u$ nits use $d$ in mea suring the variables. Pearson $r$ is also equal to the square root of the proportion of the total variability in $Y$ that is accounted for by $X$. In addition to these concepts, I presented a computational equation for $r$ and practiced calculating $r$.

Spearman rho is use d for 1 inear re lationships when one or $b$ oth of the variables a re on ly of ord inal sca ling.

The computational equation for rho was presented and several practice problems worked out. Next, I d iscussed the effect of an extreme score on $t$ he size of the cor relation. After that, I d iscussed the effect of $r$ ange on cor relation and pointed out that truncated range will result in a lower correlation coefficient.

As the last topic of correlation, I discussed correlation and causation. I pointed out that if a correlation exists between two variables in an experiment, we cannot conclude they a re causa lly re lated on $t$ he basis of $t$ he cor relation
alone because there are other possible explanations. The correlation may be s purious, or a t hird variable may be responsible for the correlation between the first two variables. To es tablish causat ion, one of t he v ariables must be independently manipulated and its effect on the other variable measured. All other variables should be held constant or varied unsystematically. Even if the two variables are causally related, it is important to keep in mind that $r^{2}$, rather than $r$, indicates the size of the effect of one variable on the other.

## IMPORTANT NEW TERMS

Biserial coefficient (p. 140)
Coefficient of determination (p. 139)

Correlation (p. 130)
Correlation coefficient (p. 130)
Curvilinear relationship (p. 125)
Direct relationship (p. 127)

Imperfect relationship (p. 128)
Inverse relationship (p. 127)
Linear relationship (p. 124)
Negative relationship (p. 127)
Pearson $r$ (p. 131)
Perfect relationship (p. 128)
Phi coefficient (p. 140)

Positive relationship (p. 127)
Scatter plot (p. 124)
Slope (p. 125)
Spearman rho (p. 141)
Variability accounted for by $X$ (p. 138)
$Y$ intercept (p. 125)

## QUESTIONS AND PROBLEMS

1. Define or identify each of the terms in the Important New Terms section.
2. Discuss the different kinds of re lationships that a re possible between two variables.
3. For ea ch scat ter p lot int he a ccompanying figure (parts a-f, on p.150), det ermine whether the relationship is
a. Linear or c urvilinear. If linear, further determine whether it is positive or negative.
b. Perfect or imperfect
4. Professor Taylor does an experiment a nd es tablishes that a correlation exists between variables $A$ and $B$. On the basis of this cor relation, she asserts that $A$ is the cause of $B$. Is this assertion correct? Explain.
5. Give two meanings of Pearson $r$.
6. Why are $z$ scores use $d$ as the basis for det ermining Pearson $r$ ?
7. What is $t$ he range of values that a cor relation co efficient may take?
8. A study has shown that the correlation between fatigue and irritability is 0.53 . On the basis of this correlation, the author concludes that fatigue is an important factor in producing i rritability. Is this c onclusion justified? Explain.
9. What f actors i nfluence t he c hoice of f hether to use a particular correlation coefficient? Give some examples.
D. The Pearson $r$ and Spearman rho cor relation coefficients are related. Is this statement correct? Explain.
10. When $t$ wo $v$ ariables a re cor related, $t$ here a re four possible e xplanations of $t$ he cor relation. W hat a re they?
11. What e ffect $m$ ight a $n$ e xtreme score ha ve on $t$ he magnitude of re lationship $b$ etween $t$ wo $v$ ariables? Discuss.
12. What effect does decreasing the range of the paired scores have on the correlation coefficient?
13. Given the following sets of paired sample scores:

| A |  | B |  | C |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\bar{X}$ | $\boldsymbol{Y}$ | $\bar{X}$ | $\boldsymbol{Y}$ | $\bar{X}$ | $\boldsymbol{Y}$ |
| 1 | 1 | 4 | 2 | 1 | 5 |
| 4 | 2 | 5 | 4 | 4 | 4 |
| 7 | 3 | 8 | 5 | 7 | 3 |
| 10 | 4 | 9 | 1 | 10 | 2 |
| 13 | 5 | 10 | 4 | 13 | 1 |


a. Use the equation

$$
r=\sum z_{X} z_{Y} /(N-1)
$$

to compute the value of Pearson $r$ for each set. Note that in set B, where the correlation is lowest, some of the $z_{X} z_{Y}$ values a re p ositive a nd so me a re ne gative. These tend to ca ncel each other, causing $r$ to have a low magnitude. However, in both sets A a nd C, all the products have the same sign, causing $r$ to be large in magnitude. When the paired scores occupy the same or opposite positions within their own distributions, the $z_{X} z_{Y}$ products have the same sign, resulting in high magnitudes for $r$.
b. Compute $r$ for set B , using the raw score equation. Which do y ou prefer: using the raw score or $t$ he $z$ score equation?
c. Add the constant 5 to $t$ he $X$ scores in set A a nd compute $r$ ag ain, us ing the r aw score e quation. Has the value changed?
d. Multiply the $X$ scores in set A by 5 and compute $r$ again. Has the value changed?
e. Generalize the results obtained in parts $\mathbf{c}$ and $\mathbf{d}$ to subtracting and dividing the scores by a constant. What does this tell you about $r$ ?
15. In a large introductory sociology course, a professor gives two exams. The professor wants to det ermine
whether $t$ he scores $s$ tudents re ceive on $t$ he se cond exam a re cor related $w$ ith $t$ heir scores on $t$ he first exam. To make the calculations easier, a sa mple of eight students is selected. Their scores are shown in the accompanying table.

| Student | Exam 1 | Exam 2 |
| :---: | :---: | :---: |
| $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$ |  |  |
| 1 | 60 | 60 |
| 2 | 75 | 100 |
|  |  |  |
| 3 | 70 | 0 |
| 4 | 72 | 8 |
| 5 | 54 | 3 |
| 6 | 83 | 7 |
| 7 | 80 | 5 |
| 8 | 65 | 0 |

a. Construct a scat ter plot of the data, using exam 1 score a s the $X$ variable. D oes the re lationship look linear?
b. Assuming a linear relationship exists between scores on $t$ he $t$ wo exams, compute the value for Pearson $r$.
c. How well do es $t$ he re lationship a ccount for $t$ he scores on exam 2? education
16. A g raduate s tudent i n de velopmental ps ychology believes there maybe a re lationship between birth weight a nd s ubsequent I Q. S he r andomly sa mples seven psychology majors at her u niversity and gives them an IQ test. Next she obtains the weight at birth of $t$ he se ven $m$ ajors $f$ rom $t$ he appropr iate hos pitals (after o btaining $p$ ermission $f$ rom $t$ he $s$ tudents, of course). The data are shown in the following table.

| Birth Weight <br> $(\mathbf{l b s})$ |  |  |
| :---: | :---: | :---: |
| Student | IQ |  |
| $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$ |  |  |
| 1 | 5.8 | 122 |
| 2 | 6.5 | 120 |
| 3 | 8.0 | 129 |
| 4 | 5.9 | 112 |
| 5 | 8.5 | 127 |
| 6 | 7.2 | 116 |
| 7 | 9.0 | 130 |

a. Construct a scatter plot of the data, plotting birth weight on the $X$ axis and IQ on the $Y$ axis. Does the relationship appear to be linear?
b. Assume the relationship is linear and compute the value of Pearson $r$. developmental
17. A researcher conducts a study to investigate the relationship between cigarette smoking and illness. The number of cigarettes s moked daily a nd the number of days absent from work in the last year due to illness is determined for 12 individuals employed at the company where the researcher works. The scores are given in the following table.

| Subject | Cigarettes Smoked | Days <br> Absent |
| :---: | :---: | :---: |
| 1 | 0 | 1 |
| 2 | 0 | 3 |
| 3 | 0 | 8 |
| 4 | 10 | 10 |
| 5 | 13 | 4 |
| 6 | 20 | 14 |
| 7 | 27 | 5 |
| 8 | 35 | 6 |
| 9 | 35 | 12 |
| 10 | 44 | 16 |
| 11 | 53 | 10 |
| 12 | 60 | 16 |

a. Construct a scat ter plot for these data. Does the relationship look linear?
b. Calculate the value of Pearson $r$.
c. Eliminate the d ata from subjects $1,2,3,10,11$, and 12 . This de creases $t$ he $r$ ange of $b$ oth $v$ ariables. Re calculate $r$ for the rem aining s ubjects. What effect does decreasing the range have on $r$ ?
d. If you use the full set of scores, what percentage of the variability in the number of days absent is accounted for by the number of cigarettes smoked daily? Of what use is this value?
clinical, health
18. An e ducator has cons tructed at est for me chanical aptitude. H e w ants to det ermine ho w re liable $t$ he test is o ver two administrations spaced by 1 mon th. A study is conducted in which 10 students are given two administrations of the test, with the second administration being 1 mon th after the first. The data are given in the following table.

| Student | Administration 1 |  | istration 2 |
| :---: | :---: | :---: | :---: |
|  | 10 | 1 | 10 |
|  | 22 | 1 | 15 |
|  | 30 | 2 | 17 |
|  | 45 | 2 | 25 |
|  | 57 | 2 | 32 |
|  | 65 | 3 | 37 |
|  | 73 | 4 | 40 |
|  | 80 | 4 | 38 |
|  | 92 | 3 | 30 |
| 10 | 47 |  | 49 |

a. Construct a scatter plot of the paired scores.
b. Determine the value of $r$.
c. Would it be fair to say that this is a reliable test? Explain using $r^{2}$. education
19. A group of researchers has devised a stress questionnaire consisting of 15 life events. They are interested in determining whether there is c rosscultural ag reement on $t$ he re lative a mount o $f$ adjustment e ach e vent en tails. The ques tionnaire is given to 300 A mericans and 300 Italians. Each individual is i nstructed to use $t$ he e vent of "marriage" as the standard and to judge each of the other life events in relation to the adjustment required in marriage. Marriage is a rbitrarily given a $v$ alue of 50 points. If an event is judged to require greater adjustment $t$ han $m$ arriage, $t$ he e vent $s$ hould re ceive more than 50 points. How many more points depends on how much more adjustment is required. After each subject within each culture has assigned points to the 15 life events, the points for each event are averaged. The results are shown in the following table.

| Life Event | Americans | Italians |
| :---: | :---: | :---: |
| Death of spouse | 100 | 80 |
| Divorce | 73 | 95 |
| Marital separation | 65 | 85 |
| Jail term | 63 | 52 |
| Personal injury | 53 | 72 |
| Marriage | 50 | 50 |
| Fired from work | 47 | 40 |
| Retirement | 45 | 30 |
| Pregnancy | 40 | 28 |
| Sex difficulties | 39 | 42 |
| Business readjustment | 39 | 36 |
| Trouble with in-laws | 29 | 41 |
| Trouble with boss | 23 | 35 |
| Vacation | 13 | 16 |
| Christmas | 12 | 10 |

a. Assume the data are at least of interval scaling and compute $t$ he cor relation $b$ etween $t$ he A merican and Italian ratings.
b. Assume the data are only of ordinal scaling and compute $t$ he cor relation $b$ etween $r$ atings of $t$ he two cultures. clinical, health
20. Given the following set of paired scores $f$ rom five subjects,

| Subject No. | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | ---: |
| $\ldots \ldots \ldots$ | $\ldots$ | $\ldots$ | $\ldots$ |  | $\ldots$ | $\ldots$ | $\ldots$ |
| $Y$ | 5 | 6 | 9 | 9 | 11 |  |  |
| $X$ | 6 | 8 | 4 | 8 |  |  |  |

a. Construct a scatter plot of the data.
b. Compute the value of Pearson $r$.
c. Add $t$ he f ollowing pa ired scores f rom a s ixth subject to the data: $Y=26, X=25$.
d. Construct another scatter plot, this time for the six paired scores.
e. Compute the value of Pearson $r$ for the six paired scores.
f. Is there much of a d ifference between y our a n swers for parts $\mathbf{b}$ and $\mathbf{e}$ ? Explain the difference.
21. The director of an obesity clinic in a la rge northwestern city believes that drinking soft drinks
contributes to o besity inchildren. To det ermine whether a re lationship exists $b$ etween $t$ hese $t$ wo variables, she cond ucts the following pi lot study. Eight 12 -year-old volunteers are randomly selected from children attending a local junior high school. Parents of the children a re a sked to mon itor the number of soft drinks consumed by their child over a 1 -week period. The children are weighed at the end of the week a nd their weights con verted into body mass index (BMI) values. The BMI is a common index used to mea sure obesity and takes into a ccount b oth he ight a nd w eight. A n i ndividual is cons idered obese if he or she has a B MI value $\geq 30$. The following data are collected.

| Number of <br> Soft Drinks <br> Consumed |  |  |
| :---: | :---: | :---: |
| Child | BMI |  |
| $\cdots \ldots \ldots$ |  |  |
| 1 |  | 320 |
| 2 | 14 | 118 |
| 3 |  | 32 |
| 4 | 21 | 724 |
| 5 |  | 35 |
| 6 | 25 | 519 |
| 7 |  | 38 |
| 8 |  | 930 |

a. Graph a scatter plot of the data. Does the relationship appear linear?
b. Assume $t$ he re lationship is 1 inear a nd co mpute Pearson $r$. health
22. A so cial p sychologist c onducts a st udy to d etermine $t$ he re lationship b etween re ligion a nd se lfesteem. Ten eighth graders a re randomly se lected for the study. Each individual undergoes two tests, one measuring self-esteem and the other religious involvement. For the self-esteem test, the lower the score is, the higher self-esteem is; for the test measuring religious involvement, the higher the score is, $t$ he $h$ igher re ligious i nvolvement is. T he se lfesteem test has a range from 1 to 10 and the religious involvement test ranges from 0 to 50 . For the purposes of this question, assume both tests are well standardized and of interval scaling. The following data are collected.

| Subject | Religious Involvement | Self-Esteem |
| :---: | :---: | :---: |
| 1 | 5 | 8 |
| 2 | 25 | 3 |
| 3 | 45 | 2 |
| 4 | 20 | 7 |
| 5 | 30 | 5 |
| 6 | 40 | 5 |
| 7 | 1 | 4 |
| 8 | 15 | 4 |
| 9 | 10 | 7 |
| 10 | 35 | 3 |

a. If a relationship exists such that the more religiously involved one is, t he h igher a ctual se lf-esteem is, would you expect $r$ computed on the provided values to be negative or positive? Explain.
b. Compute $r$. Were y ou cor rect in y our a nswer to part a? social, developmental
23. A psychologist has constructed a paper \& pencil test purported to measure depression. To see how the test compares with the ratings of experts, 12 "emotionally d isturbed" i ndividuals a re $g$ iven $t$ he pap er \& pencil test. The i ndividuals a re a lso i ndependently rank-ordered $b y t$ wo ps ychiatrists a ccording to $t$ he degree of depression each psychiatrist finds a sa result of det ailed interviews. The scores a re $g$ iven here. Higher scores represent greater depression.

|  |  <br> Pencil Test | Psychiatrist <br> Individual | Psychiatrist <br> B |
| :---: | :---: | :---: | :---: |
| $\ldots \ldots \ldots$ |  |  |  |
|  | 148 | 12 |  |
|  | 237 | 11 | 12 |
|  | 330 |  | 4 |
|  | 445 |  | 7 |
|  | 531 | 10 | 11 |
|  | 624 |  | 8 |
|  | 728 |  | 3 |
|  | 818 |  | 1 |
| 10 | 935 |  | 9 |
| 11 | 15 | 2 | 2 |
| 12 | 42 | 6 | 10 |
|  | 22 | 5 | 3 |

a. What is $t$ he cor relation between the rankings of the two psychiatrists?
b. What is the correlation between the scores on the paper \& pencil test and the rankings of each psychiatrist? clinical, health
24. For this problem, let's suppose that you are a psychologist employed in the human resources department of a large corporation. The corporation president has just finished talking with you about the importance of hiring productive personnel in the manufacturing section of the corporation and has asked you to help improve the corporation's ability to do so. There are 300 employees in this section, with each employee making the sa me item. Until now, the cor poration has been depending solely on i nterviews for selecting these emp loyees. You sea rch the literature a nd discover two well-standardized paper \& p encil performance tests that you think might be related to the performance requirements of this section. To determine whether e ither $m$ ight be use d as a sc reening device, you select 10 representative employees from
the manufacturing section, making sure that a wide range of performance is represen ted in the sa mple, and administer the two tests to ea ch employee. The data a re shown in the $t$ able. $T$ he $h$ igher $t$ he score, the better the performance. The work performance scores a re $t$ he a ctual $n$ umber of items co mpleted by each employee per week, averaged over the past 6 months.
a. Construct a scatter plot of work performance and test 1 , us ing test 1 a st he $X$ variable. Do es $t$ he relationship look linear?
b. Assuming it is 1 inear, co mpute $t$ he $v$ alue o $f$ Pearson $r$.
c. Construct a scatter plot of work performance and test 2 , using test 2 as the $X$ variable. Is the relationship linear?
d. Assuming it is linear, compute the value of Pearson $r$.
e. If $y$ ou cou ld use on ly one oft he $t$ wo $t$ ests $f$ or screening prospective employees, would you use either test? If yes, which one? Explain. I/O

| Employee |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| Work performance | 50 | 74 | 62 | 90 | 98 | 52 | 68 | 80 | 88 | 76 |
| Test 1 | 10 | 19 | 20 | 20 | 21 | 14 | 10 | 24 | 16 | 14 |
| Test 2 | 25 | 35 | 40 | 49 | 50 | 29 | 32 | 44 | 46 | 35 |

## What Is the Truth? Questions

1. 'Good Principal = Good Elementary School,’ or Does It?
a. Give a nother explanation for the re lationship, besides " good p rincipals p roduce g ood e lementary schools."
b. Give one example that you have encountered where someone of authority has used correlational data to
impute causation. Discuss the possible er rors that are i nvolved, us ing the s pecific variables of your example.
2. Money Doesn't Buy Happiness, or Does It?
a. Do you like the scatter plot? Is it convincing? Did you read a ny of the re ferences on happi ness? So what do you think: does money buy happiness?

## SPSS ILLUSTRATIVE EXAMPLE 6.1

The general operation of SPSS and data entry are described in Appendix E, Introduction to SPSS. SPSS ca n be very he lpful when dealing with cor relation by g raphing scatter plots and computing correlation coefficients.

## example

For this example, let's use the IQ and grade point average (GPA) data shown in Table 6.2, p. 128, of the textbook. For your convenience the data are shown again below.
a. Use SPSS to construct a scatter plot of the data. In so doing, name the two variables $G P A$ and $I Q$. Make $I Q$ the $X$ axis variable.
b. Assuming a linear relationship exists between $I Q$ and $G P A$, use SPSS to compute the value of Pearson $r$.

| Student No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IQ | 110 | 112 | 118 | 119 | 122 | 125 | 127 | 130 | 132 | 134 | 136 |
| GPA | 1.0 | 1.6 | 1.2 | 2.1 | 2.6 | 1.8 | 2.6 | 2.0 | 3.2 | 2.6 | 3.0 |

## SOLUTION

## STEP 1: Enter the Data.

1 Enter the $I Q$ scores in the first column (VAR00001) of the SPSS Data Editor, beginning with the first score in the first cell of the first column of the Data Editor.
2. En ter the GPA scores in the second column (VAR00002) of the SPSS Data Editor, beginning with the first score in the first cell of the second column of the Data Editor.

STEP 2: Name the Variables. In this example, we will give the default variables VAR00001 and VAR00002 the new names of IQ and GPA, respectively. Here's how it is done.

1. Click the Variable View tab in the lower left corner of the Data Editor.
2. Click VAR00001; then type IQ in the highlighted cell and press Enter.
3. Replace VAR00002 with GPA and then press Enter.

This displays the Variable View on screen, with VAR00001 and VAR00002 displayed in the first and second cells of the Name column.

IQ is entered as the variable name, replacing VAR00001. The cursor then moves to the next cell, highlighting VAR00002.

GPA is entered as the variable name, replacing VAR00002.

STEP 3: Analyze the Data.

Part a. Construct a Scatter Plot of the Data. I suggest you switch to the Data Editor-Data View if you haven't already done so. Now, let's proceed with the analysis.

1. Click Graphs on the menu bar at the top of the screen; then select Legacy Dialogs; then click Scatter/Dot....
2. Click Define.
3. Click the arrow for the $\underline{X}$ axis:.
4. Click GPA in the large box on the left; then click the arrow for the $\underline{Y}$ axis:.
5. Click OK.

This produces the Scatter/Dot dialog box, which is used to produce scatter plots. The default is the Simple Scatter plot, which is what we want. Therefore, we don't have to click it.

This produces the Simple Scatterplot dialog box with IQ and GPA in the large box on the left. IQ is highlighted.

This moves IQ from the large box on the left into the $\underline{\mathbf{X}}$ axis: box on the right. We have done this because we want to plot IQ on the $X$ axis.

This moves GPA from the large box on the left into the $\underline{Y}$ axis: box on the right. We have done this because we want to plot GPA on the $Y$ axis.

SPSS then constructs and displays in the output window a scatter plot of the two variables, with IQ plotted on the $X$ axis and GPA plotted on the Y axis. The scatter plot is shown below.

## Analysis Results



If you compare this scatter plot with that shown in Figure 6.4, p. 129 of the textbook, they appear identical, except for the axes labeling and the regression line.

Part b. Compute the Value of Pearson $\boldsymbol{r}$ for IQ and GPA. Ordinarily, the first step would be to enter the data. However, that has already been done in STEP 1. Therefore, we will go directly to computing Pearson $r$.

1. Click Analyze on the tool bar at the top of the screen; then select Correlate; then click Bivariate...
2. Click the arrow between the two large boxes.
3. Click GPA in the large box on the left; then click the arrow between the two large boxes.
4. Click OK.

This produces the Bivariate Correlations dialog box, with IQ and GPA displayed in the large box on the left. IQ is highlighted.

This moves IQ into the Variables: box on the right.

This moves GPA into the Variables: box on the right. Notice that the Pearson box already has a check in it, telling SPSS to compute Pearson $r$ when it gets the OK.

SPSS computes Pearson $r$ for IQ and GPA and displays the results in the Output window in the Correlations table. The Correlations table is shown below.

## Analysis Results

## Correlations

|  |  | IQ | GPA |
| :---: | :--- | :---: | :---: |
| IQ | Pearson Correlation | 1 | $.856^{* *}$ |
|  | Sig. (2-tailed) |  | .000 |
|  | N | 12 | 12 |
| GPA | Pearson Correlation | $.856^{* *}$ | 1 |
|  | Sig. (2-tailed) | .000 |  |
|  | N | 12 | 12 |

** Correlation is significant at the 0.01 level (2-tailed).

Note, SPSS uses the term Pearson Correlation for Pearson r. The value of the Pearson Correlation between IQ and GPA given in the SPSS Correlations table is $\mathbf{8 5 6}$. This is the same value arrived at for these data in the textbook in Practice Problem 6.1, p. 135. The Correlations table also gives additional information that we do not need at this time, so we'll ignore it for now.

## SPSS ADDITIONAL PROBLEMS

1. For this problem, we will use the data given in Chapter 6, Problem 19, p. 152.
a. Use S PSS to cons truct a scat ter plot of the d ata. Name $t$ he $v$ ariables American an d Italian. U se American as the $X$ axis variable and Italian as the $Y$ axis variable.
b. Describe the relationship.
c. Use SPSS to calculate the value of Pearson $r$.
2. A psychology professor is interested in whether there is a re lationship between reaction time and age. The following data are collected on thirty individuals randomly sa mpled from the city in which the professor works. Random sampling is conducted in a manner to ensure that a w ide age range is represen ted in the sample.

| Subject No. | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RT (msec) | 300 | 538 | 832 | 747 | 610 | 318 | 822 | 693 | 461 | 460 |
| Age $(\mathbf{y r s})$ | 24.6 | 28.5 | 45.2 | 31.1 | 22.0 | 14.4 | 57.9 | 55.0 | 37.3 | 14.0 |


| Subject No. | $\mathbf{1 1}$ | $\mathbf{1 2}$ | $\mathbf{1 3}$ | $\mathbf{1 4}$ | $\mathbf{1 5}$ | $\mathbf{1 6}$ | $\mathbf{1 7}$ | $\mathbf{1 8}$ | $\mathbf{1 9}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RT (msec) | 418 | 706 | 830 | 584 | 515 | 222 | 740 | 582 | 398 |
| Age $(\mathbf{y r s})$ | 24.7 | 41.5 | 51.3 | 45.8 | 19.0 | 10.0 | 57.4 | 32.2 | 19.7 |


| Subject No. | $\mathbf{2 1}$ | $\mathbf{2 2}$ | $\mathbf{2 3}$ | $\mathbf{2 4}$ | $\mathbf{2 5}$ | $\mathbf{2 6}$ | $\mathbf{2 7}$ | $\mathbf{2 8}$ | $\mathbf{2 9}$ | $\mathbf{3 0}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RT (msec) | 605 | 890 | 717 | 610 | 803 | 702 | 241 | 360 | 890 | 424 |
| Age (yrs) | 52.1 | 55.4 | 46.0 | 38.6 | 39.7 | 34.4 | 15.0 | 29.2 | 59.5 | 32.0 |

a. Use S PSS to cons truct a scat ter plot of the data. Name the variables $R T$ and Age. Assign $R T$ as the $Y$ axis variable and Age as the $X$ axis variable.
b. Describe the relationship.
c. Use SPSS to compute Pearson $r$.
d. How much of the variability of $R T$ is accounted for by Age?

## ONLINE STUDY RESOURCES

## CENGAGE braiiom

Login to CengageBrain.com to access the resources your instructor has assigned. For this book, you can access the book's co mpanion website for c hapter-specific learning tools, including Know and Be Able to Do, practice quizzes, flash cards, a nd glossaries, a nd a link to $S$ tatistics and Research Methods Workshops.

If your professor has assigned Aplia homework:

1. Sign in to your account
2. Complete the cor responding ho mework e xercises a s required by your professor
3. When finished, c lick "G rade It N ow" to se e which areas you have mastered and which need more work, and for detailed explanations of every answer.

Visit www.cengagebrain.com to access your account and to purchase materials.

## Linear Regression

## LEARNING OBJECTIVES

After completing this chapter, you should be able to:

- Define regression, regression line, and regression constant.
- Specify the relationship between strength of relationship and prediction accuracy.
- Construct the least-squares regression line for predicting $Y$ given $X$, specify what the least-squares regression line minimizes, and specify the convention for assigning $X$ and $Y$ to the data variables.
- Explain what is meant by standard error of estimate, state the relationship between errors in prediction and the magnitude of $s_{Y \mid X}$, and define homoscedasticity and explain its use.
- Specify the condition(s) that must be met to use linear regression.
- Specify the relationship between regression constants and Pearson $r$.
- Explain the use of multiple variables and their relationship to prediction accuracy.
- Compute $R^{2}$ for two variables; specify what $R^{2}$ stands for and what it measures.
- Understand the illustrative examples, do the practice problems, and understand the solutions.

Regression and correlation are closely related. At the most basic level, they both involve the relationship between two variables, and they both utilize the same set of basic data: paired scores taken from the same or matched subjects. As we saw in Chapter 6, correlation is concerned with the magnitude and direction of the relationship. Regression focuses on using the relationship for prediction. Prediction is quite easy when the relationship is perfect. If the relationship is perfect, all the points fall on a straight line and all we need do is derive the equation of the straight line and use it for prediction. As you might guess, when the relationship is perfect, so is prediction. All predicted values are exactly equal to the observed values and prediction error equals zero. The situation is more complicated when the relationship is imperfect.

## definitions

Regression is a topic that considers using the relationship between two or more variables for prediction.

- A regression line is a best fitting line used for prediction.


## PREDICTION AND IMPERFECT RELATIONSHIPS

Let's return to the data involving grade point average and IQ that were presented in Chapter 6. For convenience, the data have been reproduced in Table 7.1. Figure 7.1 shows a scatter plot of the data. The relationship is imperfect, positive, and linear. The problem we face for prediction is how to determine the single straight line that best describes the data. The solution most often used is to cons truct the line that minimizes errors of prediction according to a least-squares criterion. Appropriately, this line is called the least-squares regression line.
table 7.1 IQ and grade point average of 12 college students

| Student No. | IQ | Grade Point Average |
| :---: | :---: | :---: |
| 1 | 110 | 1.0 |
| 2 | 112 | 1.6 |
| 3 | 118 | 1.2 |
| 4 | 119 | 2.1 |
| 5 | 122 | 2.6 |
| 6 | 125 | 1.8 |
| 7 | 127 | 2.6 |
| 8 | 130 | 2.0 |
| 9 | 132 | 3.2 |
| 10 | 134 | 2.6 |
| 11 | 136 | 3.0 |
| 12 | 138 | 3.6 |


figure 7.1 Scatter plot of IQ and grade point average.

The least-squares regression line for the data in Table 7.1 is shown in Figure 7.2(a). The vertical distance between each point and the line represents the error in prediction. If we let $Y^{\prime}=$ the predicted $Y$ value and $Y=$ the actual value, then $Y-Y^{\prime}$ equals the error for each point. It might seem that the total error in prediction should be the simple algebraic sum of $Y-Y^{\prime}$ summed over all of the points. If this were true, since we are interested in minimizing the error, we would construct the line that minimizes $\Sigma\left(Y-Y^{\prime}\right)$. However, the total error in prediction does not equal $\Sigma\left(Y-Y^{\prime}\right)$ because some of the $Y^{\prime}$ values will be greater than $Y$ and some will be less. Thus, there will be both positive and negative error scores, a nd $t$ he s imple a lgebraic s ums of $t$ hese w ould ca ncel ea ch ot her. We encountered a s imilar situation when considering mea sures of the a verage dispersion. In deriving the equation for the standard deviation, we squared $X-\bar{X}$ to overcome the fact that there were positive and negative deviation scores that canceled each other. The same solution works here, too. Instead of just summing $Y-Y^{\prime}$, we first compute $\left(Y-Y^{\prime}\right)^{2}$ for each score. This removes the negative values and eliminates the cancellation problem. Now, if we minimize $\Sigma\left(Y-Y^{\prime}\right)^{2}$, we minimize the total error of prediction.

The least-squares regression line is the prediction line that minimizes the total error of prediction, according to the least-squares criterion of $\Sigma\left(Y-Y^{\prime}\right)^{2}$.

For any linear relationship, there is only one line that will minimize $\Sigma\left(Y-Y^{\prime}\right)^{2}$. Thus, there is only one least-squares regression line for each linear relationship.

We said before that there are many "possible" prediction lines we could construct when the re lationship is i mperfect. W hy should we use $t$ he 1 east-squares regression line? We use the least-squares regression line because it gives the greatest

figure 7.2 Two regression lines and prediction error.
overall accuracy in pre diction. To illustrate this point, a nother pre diction line has been drawn in Figure 7.2(b). This line has been picked arbitrarily and is just one of an infinite number that could have been drawn. How does it compare in prediction accuracy with the least-squares re gression line? We can see that it a ctually do es better for some of the points (e.g., points $A$ and $B$ ). However, it also misses badly on others (e.g., points $C$ and $D$ ). If we consider all of the points, it is clear that the line of Figure 7.2(a) fits the points better than the line of Figure 7.2(b). The total error in prediction, represented by $\Sigma\left(Y-Y^{\prime}\right)^{2}$, is less for the least-squares regression line than for the line in Figure 7.2(b). In fact, the total error in prediction is less for the least-squares regression line than for any other possible pre diction line. Thus, the least-squares regression line is used because it gives greater overall accuracy in prediction than any other possible regression line.

## CONSTRUCTING THE LEAST-SQUARES REGRESSION LINE: REGRESSION OF Y ON X

The equation for the least-squares regression line for predicting $Y$ given $X$ is
$Y^{\prime}=b_{Y} X+a_{Y} \quad$ linear regression equation for predicting $Y$ given $X$
where $Y \quad$ ' = predicted or estimated value of $Y$
$b_{Y}=$ slope of the line for minimizing errors in predicting $Y$
$a_{Y}=Y$ axis intercept for minimizing errors in predicting $Y$
This is, of course, the general equation for a straight line that we have been using all along. In this context, however, $a_{Y}$ and $b_{Y}$ are called regression constants. This line
is called the regression line of $Y$ on $X$, or simply the regression of $Y$ on $X$, because we are predicting $Y$ given $X$.

The $b_{Y}$ regression constant is equal to

$$
b_{Y}=\frac{\sum X Y-\frac{(\Sigma X)\left(\sum Y\right)}{N}}{S S_{X}}
$$

where

$$
\begin{aligned}
S S_{X} & =\text { sum of squares of } X \text { scores }=\sum X^{2}-\frac{\left(\sum X\right)^{2}}{N} \\
N & =\text { number of paired scores }
\end{aligned}
$$

$\sum X Y=$ sum of the product of each $X$ and $Y$ pair (also called the sum of the cross products)

The equation for computing $b_{Y}$ from the raw scores is

$$
b_{Y}=\frac{\sum X Y-\frac{\left(\sum X\right)\left(\sum Y\right)}{N}}{\sum X^{2}-\frac{\left(\sum X\right)^{2}}{N}}
$$

computational equation for determining the $\boldsymbol{b}$ regression constant for predicting $Y$ given $X$

The $a_{Y}$ regression constant is given by

$$
a_{Y}=\bar{Y}-b_{Y} \bar{X} \quad \begin{aligned}
& \text { computational equation for determining the a regression } \\
& \text { constant for predicting } Y \text { given } X
\end{aligned}
$$

Since we need the $b_{Y}$ constant to determine the $a_{Y}$ constant, the procedure is to first find $b_{Y}$ and then $a_{Y}$. Once both are found, they are substituted into the regression equation. Let's construct the least-squares regression line for the IQ a nd grade point data presented previously. For convenience, the data have been presented again in Table 7.2.

$$
\begin{aligned}
b_{Y} & =\frac{\sum X Y-\frac{\left(\sum X\right)\left(\sum Y\right)}{N}}{\sum X^{2}-\frac{\left(\sum X\right)^{2}}{N}} \\
& =\frac{3488.7-\frac{1503(27.3)}{12}}{189,187-\frac{(1503)^{2}}{12}} \\
& =\frac{69.375}{936.25}=0.0741=0.074 \\
a_{Y} & =\bar{Y}-b_{Y} \bar{X} \\
& =2.275-0.0741(125.25) \\
& =-7.006
\end{aligned}
$$

and

$$
Y^{\prime}=0.074 X-7.006
$$

The full solution is also shown in Table 7.2. The regression line has been plotted in Figure 7.3. You can now use $t$ he equation for $Y^{\prime}$ to pre dict the grade point

## MENTORING TIP

Remember: $N$ is the number of paired scores, not the total number of scores. In this example, $N=12$.

## MENTORINGTIP

When plotting the regression line, a good procedure is to select the lowest and highest $X$ values in the sample data, and compute $Y^{\prime}$ for these $X$ values. Then locate these $X, Y$ coordinates on the graph and draw the straight line between them.
table 7.2 IQ and grade point average of 12 college students: predicting $Y$ from $X$


figure 7.3 Regression line for grade point average and IQ.
average, knowing only the student's IQ score. For example, suppose a student's IQ score is 124 ; using this regression line, what is the student's predicted grade point average?

$$
\begin{aligned}
Y^{\prime} & =0.074 X-7.006 \\
& =0.074(124)-7.006 \\
& =2.17
\end{aligned}
$$

Please note that it is customary to label the variable to which we are predicting as the $Y$ variable, and the variable we are predicting from as the $X$ variable. Accordingly, Grade Point Average was given the label $Y$ and $I Q$ was given the label $X$. If we were interested in predicting IQ from Grade Point Average, we would have labeled $I Q$ as the $Y$ variable and Grade Point Average as the $X$ variable. Following this convention, whichever variable is labeled $Y$ becomes the predicted variable, and the equations previously derived for $Y^{\prime}, a_{Y \text {, }}$ and $b_{Y}$ are the appropriate equations to use.

Let's try a couple of practice problems.

## Practice Problem 7.1

A developmental psychologist is interested in determining whether it is possible to use the heights of young boys to predict their eventual height at maturity. To answer this question, she collects the data shown in the following table. Since we are interested in predicting Height at Age 20 from Height at Age 3, we have labeled Height at Age 20 as the $Y$ variable and Height at Age 3 as the $X$ variable.
a. Draw a scatter plot of the data.
b. If the data are linearly related, derive the least-squares regression line.
c. Based on these data, what height would you predict for a 20 -year-old if at 3 years his height were 42 inches?

| Individual No. | Height at Age 3 (in.) X | Height at Age 20 (in.) |  |  | $\boldsymbol{X}^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\boldsymbol{Y}$ | $X Y$ |  |
|  | 10 | 3 | 59 | 1,770 | 900 |
|  | 20 | 3 | 63 | 1,890 | 900 |
|  | 32 | 3 | 62 | 1,984 | 1,024 |
|  | 43 | 3 | 67 | 2,211 | 1,089 |
|  | 54 | 3 | 65 | 2,210 | 1,156 |
|  | 65 | 3 | 61 | 2,135 | 1,225 |
|  | 76 | 3 | 69 | 2,484 | 1,296 |
|  | 88 | 3 | 66 | 2,508 | 1,444 |
|  | 90 | 4 | 68 | 2,720 | 1,600 |
| 10 | 41 |  | 65 | 2,665 | 1,681 |
| 11 | 41 |  | 73 | 2,993 | 1,681 |
| 12 | 43 |  | 68 | 2,924 | 1,849 |
|  |  |  |  |  | tinued) |



## SOLUTION

a. The scatter plot is shown in the following figure. It is clear that an imperfect relationship that is linear and positive exists between the heights at ages 3 and 20.
b. Derive the least-squares regression line.

$$
\begin{aligned}
Y^{\prime} & =b_{Y} X+a_{Y} \\
b_{Y} & =\frac{\sum X Y-\frac{\left(\sum X\right)\left(\sum Y\right)}{N}}{\sum X^{2}-\frac{\left(\sum X\right)^{2}}{N}}=\frac{41,956-\frac{618(1077)}{16}}{24,408-\frac{(618)^{2}}{16}} \\
& =0.6636=0.664 \\
a_{Y} & =\bar{Y}-b_{Y} \bar{X}=67.3125-0.6636(38.625) \\
& =41.679
\end{aligned}
$$

Therefore,

$$
Y^{\prime}=b_{Y} X+a_{Y}=0.664 X+41.679
$$

This solution is also shown in the previous table. The least-squares regression line is shown on the scatter plot below.

c. Predicted height for the 3-year-old of 42 inches:

$$
\begin{aligned}
Y^{\prime} & =0.664 X+41.679 \\
& =0.664(42)+41.679 \\
& =69.55 \text { inches }
\end{aligned}
$$

## Practice Problem 7.2

A neuroscientist suspects that low levels of the brain neurotransmitter serotonin may be causally related to aggressive behavior. As a first step in investigating this hunch, she decides to do a cor relative study involving nine rhesus monkeys. The monkeys are observed daily for 6 months, and the number of aggressive acts is recorded. Serotonin levels in the striatum (a brain region associated with aggressive behavior) are also measured once per day for each animal. The resulting data are shown in the following table. The number of aggressive acts for each animal is the average for the 6 months, given on a per-day basis. Serotonin levels are also average values over the 6-month period.
a. Draw a scatter plot of the data.
b. If the data are linearly related, derive the least-squares regression line for predicting the number of aggressive acts from serotonin level.
c. On the basis of these data, what is the number of aggressive acts per day you would predict if a rhesus monkey had a serotonin level of 0.46 microgm/gm?

| Subject No. | Serotonin Level (microgm/gm) X | Number of Aggressive Acts/day Y | $X Y$ | $X^{2}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 0.32 | 6.0 | 1.920 | 0.1024 |
| 2 | 0.35 | 3.8 | 1.330 | 0.1225 |
| 3 | 0.38 | 3.0 | 1.140 | 0.1444 |
| 4 | 0.41 | 5.1 | 2.091 | 0.1681 |
| 5 | 0.43 | 3.0 | 1.290 | 0.1849 |
| 6 | 0.51 | 3.8 | 1.938 | 0.2601 |
| 7 | 0.53 | 2.4 | 1.272 | 0.2809 |
| 8 | 0.60 | 3.5 | 2.100 | 0.3600 |
| 9 | 0.63 | 2.2 | 1.386 | 0.3969 |
| Total | 4.16 | 32.8 | 14.467 | 2.0202 |
|  | $\begin{aligned} & \sum X Y-\frac{\left(\sum X\right)\left(\sum Y\right)}{N} \\ & \sum X^{2}-\frac{\left(\sum X\right)^{2}}{N} \\ & \bar{Y}-b_{Y} \bar{X}=3.6444- \\ & b_{Y} X+a_{Y}=-7.127 X \end{aligned}$ | $\begin{aligned} & =\frac{14.467-\frac{(4.16)(32.8)}{9}}{2.0202-\frac{(4.16)^{2}}{9}} \\ & (-7.1274)(0.4622)=6.93 \\ & +6.939 \end{aligned}$ | $-7.127$ |  |

## SOLUTION

a. The scatter plot follows. It is clear that an imperfect, linear, negative relationship exists between the two variables.

b. Derive the least-squares regression line. The solution is shown at the bottom of the previous table and the regression line has been plotted on the scatter plot above.
c. Predicted number of aggressive acts:

$$
\begin{aligned}
Y^{\prime} & =-7.127 X+6.939 \\
& =-7.127(0.46)+6.939 \\
& =3.7 \text { aggressive acts per day }
\end{aligned}
$$

## MEASURING PREDICTION ERRORS: THE STANDARD ERROR OF ESTIMATE

The regression line represents our best estimate of the $Y$ scores, given their corresponding $X$ values. However, unless the relationship between $X$ and $Y$ is perfect, most of the actual $Y$ values will not fall on the regression line. Thus, when the relationship is imperfect, there will necessarily be prediction errors. It is useful to know the magnitude of the errors. For example, it sounds nice to say that, on the basis of the relationship between IQ and grade point average given previously, we predict that John's grade point average will be 3.2 when he is a senior. However, since the relationship is imperfect, it is unlikely that our prediction is exactly correct. Well, if it is not exactly correct, then how far off is it? If it is likely to be very far off, we can't put much reliance on the prediction. However, if the error is likely to be small, the prediction can be taken seriously and decisions made accordingly.

Quantifying prediction errors involves computing the standard error of estimate. The standard error of estimate is much like the standard deviation. You will recall that the standard deviation gave us a measure of the average deviation about the mean. The standard error of estimate gives us a measure of the average deviation of the prediction errors about the regression line. In this context, the regression line can be considered an estimate of the mean of the $Y$ values for each of the $X$ values. It is like a "floating" mean of the $Y$ values, which changes with the $X$ values. With the standard deviation, the sum of the deviations, $\Sigma(X-\bar{X})$, equaled 0 . We had to square the deviations to obtain a meaningful average. The situation is $t$ he same with the standard er ror of estimate. Since the sum of the prediction errors, $\Sigma\left(Y-Y^{\prime}\right)$, equals 0 , we must square them also. The average is then obtained by summing the squared values, dividing by $N-2$, and taking the square root of the quotient (very much like with the standard deviation). The equation for the standard error of estimate for predicting $Y$ given $X$ is

$$
s_{Y X X}=\sqrt{\frac{\sum\left(Y-Y^{\prime}\right)^{2}}{N-2}} \quad \text { standard error of estimate when predicting } Y \text { given } X
$$

Note that we have divided by $N-2 \mathrm{r}$ ather than $N-1$, as was done with the sample standard deviation.* The calculations involved in using this equation are quite laborious. The computational equation, which is given here, is much easier to use. In

[^8]determining the $b_{Y}$ regression coefficient, we have already calculated the values for $S S_{X}$ and $S S_{Y}$.
$$
s_{Y \mid X}=\sqrt{\frac{S S_{Y}-\frac{\left[\sum X Y-\left(\sum X\right)\left(\sum Y\right) / N\right]^{2}}{S S_{X}}}{N-2}}
$$

## computational equation: standard error of estimate when predicting $Y$ given $X$

To illustrate the use of these equations, let's calculate the standard error of estimate for the grade point and IQ data shown in Tables 7.1 and 7.2. As before, we shall let grade point average be the $Y$ variable and IQ the $X$ variable, and we shall calculate the standard error of estimate for predicting grade point average, given IQ. As computed in the tables, $S S_{X}=936.25, S S_{Y}=7.022, \Sigma X Y-(\Sigma X)(\Sigma Y) / N=69.375$, and $N=12$. Substituting these values in the equation for the standard error of estimate for predicting $Y$ given $X$, we obtain

$$
\begin{aligned}
s_{Y \mid X} & =\sqrt{\frac{S S_{Y}-\frac{\left[\sum X Y-\left(\sum X\right)\left(\sum Y\right) / N\right]^{2}}{S S_{X}}}{N-2}} \\
& =\sqrt{\frac{7.022-\frac{(69.375)^{2}}{936.25}}{12-2}} \\
& =\sqrt{0.188}=0.43
\end{aligned}
$$

Thus, the standard er ror of es timate $=0.43$. This mea sure ha s been co mputed over all the $Y$ scores. For it to be meaningful, we must assume that the variability of $Y$ remains constant as we go from one $X$ score to the next. This assumption is called the assumption of homoscedasticity. Figure 7.4(a) shows an illustration where the homoscedasticity assumption is met. Figure $7.4(\mathrm{~b})$ shows an illustration where the assumption is violated. The homoscedasticity assumption implies that if we divided the $X$ scores into columns, the variability of $Y$ would not change from column to column. We can see how this is true for Figure 7.4(a) but not for 7.4(b).

What meaning does the standard error of estimate have? Certainly, it is a quantification of the er rors of pre diction. The la rger its value, the less con fidence we have in the prediction. Conversely, the smaller its value, the more likely the prediction will be accurate.

figure 7.4 Scatter plots showing the variability of $Y$ as a function of $X$. From E.W. Minium, Statistical Reasoning in Psychology and Education. Copyright © 1978 by John Wiley \& Sons, Inc. Adapted with permission of John Wiley \& Sons, Inc.

We can still be more quantitative. We can assume the points are normally distributed about the regression line (Figure 7.5). If the assumption is valid and we were to cons truct two lines parallel to the regression line at distances of $\pm 1 s_{Y X}, \pm 2 s_{Y X}$, and $\pm 3 s_{Y \mid X}$, we would find that approximately $68 \%$ of the scores fall between the lines at $\pm 1 s_{Y \mid X}$, approximately $95 \%$ lie between $\pm 2 s_{Y \mid X}$, and approximately $99 \%$ lie between $\pm 3 s_{Y \mid X}$. To illustrate this point, in Figure 7.6 we have drawn two dashed lines parallel to the regression line for the grade point and IQ data at a distance of $\pm 1 s_{Y \mid X}$. We have also entered the scores in the figure. According to what we said previously, approximately $68 \%$ of the scores should lie between these lines. There are 12 points, so we would expect $0.68(12)=8$ of the scores to be contained within the lines. In fact, there are 8 . The agreement isn't always this good, particularly when there are only 12 scores in the sample. As $N$ increases, the agreement usually increases as well.

figure 7.5 Normal distribution of $Y$ scores about the regression line.

figure 7.6 Regression line for grade point average and IQ data with parallel lines $1 s_{Y \mid X}$ above and below the regression line.

## CONSIDERATIONS IN USING LINEAR REGRESSION FOR PREDICTION

The procedures we have described are appropriate for predicting scores based on presumption of a linear relationship existing between the $X$ and $Y$ variables. If the relationship is nonlinear, the prediction will not be very accurate. It follows, then, that the first assumption for successful use of this technique is that the relationship between $X$ and $Y$ must be linear. Second, we are not ordinarily interested in using the regression line to predict scores of the individuals who were in the group used for calculating the regression line. After all, why predict their scores when we already know them? Generally, a regression line is determined for use with subjects where one of the variables is unknown. For instance, in the IQ and grade point average problem, a university admissions officer might want to use the regression line to predict the grade point averages of prospective students, knowing their IQ scores. It doesn't make any sense to predict the grade point averages of the 12 students whose data were used in the problem. He already knows their grade point averages. If we are going to use $d$ ata collected on one $g$ roup to predict scores of another group, it is important that the basic computation group be representative of the prediction group. Often this requirement is handled by randomly sampling from the prediction population and using the sample for deriving the regression equation. Random sampling is discussed in Chapter 8. Finally, the linear regression equation is properly used just for the range of the variable on which it is $b$ ased. For example, when we were predicting grade point average from IQ, we should have limited our predictions to IQ scores ranging from 110 to 138 . Since we do not have any data beyond this range, we do not know whether the relationship continues to be linear for more extreme values of IQ .

To illustrate this point, consider Figure 7.7, where we have extended the regression line to include IQ values up to 165. At the university from which these data were sampled, the highest possible grade point average is 4.0. If we used the extended regression line to predict the grade point average for an IQ of 165 , we would predict a grade point average of 5.2 , a value that is obviously wrong. Prediction for IQs greater than 165 would be even worse. Looking at Figure 7.7, we can see that if the relationship does extend beyond an IQ of 138, it can't extend beyond an IQ of about 149 (the IQ value where the regression line meets a grade point average of 4.0). Of course, there is no reason to believe the relationship exists beyond the base data point of $\mathrm{IQ}=138$, and hence predictions using this relationship should not be made for IQ values greater than 138 .

## RELATION BETWEEN REGRESSION CONSTANTS AND PEARSON $r$

Although we haven't presented this aspect of Pearson $r$ before, it can be shown that Pearson $r$ is the slope of the least-squares regression line when the scores a re plotted as $z$ scores. As an example, let's use $t$ he data given in Table 6.3 on $t$ he weight and cost of six bags of oranges. For convenience, the data have been reproduced in Table 7.3. Figure 7.8(a) shows the scatter plot of the raw scores and the least-squares regression line for these raw scores. This is a perfect, linear relationship, so $r=1.00$. Figure 7.8(b) shows the scatter plot of the paired $z$ scores and the least-squares regression line for these $z$ scores. The slope of the regression line for the raw scores is $b$, and

figure 7.7 Limiting prediction to range of base data.
table 7.3 Cost and weight in pounds of six bags of oranges

|  | Weight (lb) | Cost (\$) |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Bag | $X$ | $\boldsymbol{Y}$ | $z_{X}$ | $z_{Y}$ |
| A | 2.25 | 0.75 | -1.34 | -1.34 |
| B | 3.00 | 1.00 | -0.80 | -0.80 |
| C | 3.75 | 1.25 | -0.27 | -0.27 |
| D | 4.50 | 1.50 | 0.27 | 0.27 |
| E | 5.25 | 1.75 | 0.80 | 0.80 |
| F | 6.00 | 2.00 | 1.34 | 1.34 |

the slope of the regression line for the $z$ scores is $r$. Note that the slope of this latter regression line is 1.00 , as it should be, because $r=1.00$.

Since Pearson $r$ is a slope, it is related to $b_{Y}$. It can be shown algebraically that

$$
b_{Y}=r \frac{s_{Y}}{s_{X}}
$$

MENTORING TIP
Note that if the standard deviations of the $X$ and $Y$ scores are the same, then $b_{Y}=r$.

This equation is useful if we have already calculated $r, s_{Y}$ and $s_{X}$ and want to determine the least-squares regression line. For example, in the problem involving IQ and grade point average, $r=0.8556, s_{Y}=0.7990$, and $s_{X}=9.2257$. Suppose we want to find $b_{Y}$ and $a_{Y,}$ having already calculated $r, s_{Y}$, and $s_{X}$. The simplest way is to use the equation

$$
b_{Y}=r \frac{s_{Y}}{s_{X}}=0.8556\left(\frac{0.7990}{9.2257}\right)=0.074
$$


figure 7.8 Relationship between $b$ and $r$.

Note that this is the same value arrived at previously in the chapter, on p. 163. Having found $b_{Y}$, we would calculate $a_{Y}$ in the usual way.

## MULTIPLE REGRESSION

Thus far, we have discussed regression and correlation using examples that have involved only two variables. When we were discussing the relationship between grade point average and IQ, we determined that $r=0.856$ and that the equation of the regression line for predicting grade point average from IQ was

$$
Y^{\prime}=0.74 X-7.006
$$

$$
\text { where } Y \quad \begin{aligned}
& =\text { predicted value of grade point average } \\
X & =\text { IQ score }
\end{aligned}
$$

This equation gave us a reasonably accurate prediction. Although we didn't compute it, total prediction error squared $\left[\Sigma\left(Y-Y^{\prime}\right)^{2}\right]$ was 1.88 , and the amount of variability accounted for was $73.2 \%$. Of course, there are other variables besides IQ that might affect grade point average. The amount of time that students spend studying, motivation to achieve high grades, and interest in the courses taken are a few that come to mind. Even though we have reasonably good prediction accuracy using IQ alone, we might be able to do better if we also had data relating grade point average to one or more of these other variables.

Multiple regression is an extension of simple regression to situations that involve two or more pre dictor v ariables. To i llustrate, 1 et's a ssume we ha d d ata from the 12 college students that include a second predictor variable called "study time," as well as the original grade point average and IQ scores. The data for these three variables are shown in columns 2, 3, and 4 of Table 7.4. Now we can derive a re gression equation for predicting grade point average using the two predictor variables, IQ and study time. The general form of the multiple regression equation for two predictor variables is

$$
Y^{\prime}=b_{1} X_{1}+b_{2} X_{2}+a
$$

where $Y \quad$ ' = predicted value of $Y$
$b_{1}=$ coefficient of the first predictor variable
$X_{1}=$ first predictor variable
$b_{2}=$ coefficient of the second predictor variable
$X_{2}=$ second predictor variable
$a=$ prediction constant
This equation is very similar to the one we used in simple regression except that we have added a nother predictor variable and its coefficient. As before, the coefficient and constant values are determined according to the least-squares criterion that $\Sigma\left(Y-Y^{\prime}\right)^{2}$ is a minimum. However, this time the mathematics are rather formidable and the actual calculations are almost always done on a co mputer, using statistical software. For the data of our example, the multiple regression equation that minimizes errors in $Y$ is given by

$$
Y^{\prime}=0.049 X_{1}+0.118 X_{2}-5.249
$$

where $Y \quad$ ' = predicted value of grade point average

$$
\begin{aligned}
b_{1} & =0.049 \\
X_{1} & =\text { IQ score } \\
b_{2} & =0.118 \\
X_{2} & =\text { study time score } \\
a & =5.249
\end{aligned}
$$

To determine whether pre diction accuracy is i ncreased by us ing the multiple regression equation, we have listed in column 5 of Table 7.4 the pre dicted g rade
table 7.4 A comparison of prediction accuracy using one or two predictor variables

| Student No. | $\begin{gathered} \text { IQ } \\ \left(X_{1}\right) \end{gathered}$ | Study Time (hr/wk) ( $\mathrm{X}_{2}$ ) | Grade <br> Point Average GPA (Y) | Predicted GPA <br> Using IQ <br> ( $Y^{\prime}$ ) | Predicted GPA Using IQ + Study Time ( $Y^{\prime}$ ) | Error <br> Using <br> Only IQ | $\begin{gathered} \text { Error } \\ \text { Using } \\ \text { IQ } \\ + \text { Study } \\ \text { Time } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 110 | 8 | 1.0 | 1.14 | 1.13 | -0.14 | -0.13 |
| 2 | 112 | 10 | 1.6 | 1.29 | 1.46 | 0.31 | 0.13 |
| 3 | 118 | 6 | 1.2 | 1.74 | 1.29 | -0.54 | -0.09 |
| 4 | 119 | 13 | 2.1 | 1.81 | 2.16 | 0.29 | -0.06 |
| 5 | 122 | 14 | 2.6 | 2.03 | 2.43 | 0.57 | 0.17 |
| 6 | 125 | 6 | 1.8 | 2.26 | 1.63 | -0.46 | 0.17 |
| 7 | 127 | 13 | 2.6 | 2.40 | 2.56 | 0.20 | 0.04 |
| 8 | 130 | 12 | 2.0 | 2.63 | 2.59 | -0.63 | -0.59 |
| 9 | 132 | 13 | 3.2 | 2.77 | 2.81 | 0.42 | 0.39 |
| 10 | 134 | 11 | 2.6 | 2.92 | 2.67 | -0.32 | -0.07 |
| 11 | 136 | 12 | 3.0 | 3.07 | 2.88 | -0.07 | 0.12 |
| 12 | 138 | 18 | 3.6 | 3.21 | 3.69 | 0.38 | 0.09 |
| Total error squared $=\Sigma\left(Y-Y^{\prime}\right)^{2}=1.88$ |  |  |  |  |  |  | $=0.63$ |

point average scores using only IQ for prediction, in column 6 the predicted grade point average scores using both IQ and study time as predictor variables, and prediction errors from using each in columns 7 and 8 , respectively. We have also plotted in Figure 7.9(a) the actual $Y$ value and the two predicted $Y^{\prime}$ values for each student. Students have been ordered from left to right on the $X$ axis according to the increased prediction accuracy that results for each by using the multiple regression equation. In Figure 7.9(b), we have plotted the percent improvement in prediction accuracy for each student that results from using IQ + study time rather than just IQ. It is clear from Table 7.4 and Figure 7.9 that using the multiple regression equation has greatly improved overall prediction accuracy. For example, prediction accuracy was increased for all students except student number 11, and for student number 3, accuracy was increased by almost $40 \%$. We have also shown $\Sigma\left(Y-Y^{\prime}\right)^{2}$ for each regression 1 ine at t he b ottom of T able 7.4. A dding t he se cond pre dictor v ariable reduced the total prediction error squared from 1.88 to 0.63 , an improvement of more than $66 \%$.

Since, int he presen $t$ e xample, pre diction a ccuracy $w$ as increased by us ing two predictors rather than one, it follows that the proportion of the variability of $Y$ accounted for has also increased. In trying to det ermine this proportion, you might be tempted, through extension of the concept of $r^{2}$ from our pre vious discussion of correlation, to co mpute $r^{2}$ between grade point average and each pre dictor and then simply a dd t he res ulting v alues. T able 7.5 s hows a P earson $r$ cor relation m atrix involving $g$ rade point a verage, IQ, a nd study time. If we followed this pro cedure, the prop ortion of v ariability a ccounted for would be g reater than $1.00\left[(0.856)^{2}+\right.$ $\left.(0.829)^{2}=1.42\right]$, which is c learly i mpossible. O ne ca nnot a ccount for more $t$ han $100 \%$ of $t$ he $v$ ariability. $T$ he er ror o ccurs $b$ ecause $t$ here is o verlap in v ariability accounted for between IQ and study time. Students with higher IQs also tend to study more. Therefore, part of the variability in grade point average that is explained by IQ is also explained by study time. To correct for this, we must take the correlation between IQ and study time into account.

The correct equation for computing the proportion of variance accounted for when there are two predictor variables is

$$
R^{2}=\frac{r_{Y X_{1}}{ }^{2}+r_{Y X_{2}}{ }^{2}-2 r_{Y X_{1}} r_{Y X_{2}} r_{X_{1} X_{2}}}{1-r_{X_{1} X_{2}}{ }^{2}}
$$

where $R \quad{ }^{2}=$ the multiple coefficient of determination
$r_{Y X_{1}}=$ the correlation between $Y$ and predictor variable $X_{1}$
$r_{Y X_{2}}=$ the correlation between $Y$ and predictor variable $X_{2}$
$r_{X_{1} X_{2}}=$ the correlation between predictor variables $X_{1}$ and $X_{2}$
$R^{2}$ is also often called the squared multiple correlation. Based on the data of the present study, $r_{Y X_{1}}=$ the cor relation between g rade point a verage a nd IQ $=0.856$,
table 7.5 Pearson correlation matrix between IQ, study time, and grade point average

|  | $\begin{gathered} \text { IQ } \\ \left(X_{1}\right) \end{gathered}$ | Study Time ( $X_{2}$ ) | Grade Point Average <br> (Y) |
| :---: | :---: | :---: | :---: |
| IQ ( $X_{1}$ ) | 1.000 |  |  |
| Study time ( $X_{2}$ ) | 0.560 | 1.000 |  |
| Grade point average ( $Y$ ) | 0.856 | 0.829 | 1.000 |


figure 7.9 Comparison of prediction accuracy using one or two predictor variables.
$r_{Y X_{2}}=$ the correlation between $Y$ and study time $=0.829$, and $r_{X_{1} X_{2}}=$ the correlation between IQ and study time $=0.560$. For these data,

$$
\begin{aligned}
R^{2} & =\frac{(0.856)^{2}+(0.829)^{2}-2(0.856)(0.829)(0.560)}{1-(0.560)^{2}} \\
& =0.910
\end{aligned}
$$

Thus, the proportion of variance accounted for has increased from 0.73 to 0.91 by using IQ and study time.

Of course, just adding another predictor variable per se will not necessarily increase prediction accuracy or the amount of variance accounted for. Whether prediction accuracy and the amount of variance accounted for are increased depends on the strength of the relationship between the variable being predicted and the additional predictor variable and also on the strength of the relationship between the predictor variables themselves. For example, notice what happens to $R^{2}$ when $r_{X_{1} X_{2}}=0$. This topic is taken up in more detail in advanced textbooks.*

## S U M M AR Y

In this chapter, I have discussed how to use the relationship between two variables for prediction. When the line that best fits the points is used for prediction, it is called a regression line. The regression line most used for linear imperfect relationships fits the points according to a least-squares criterion. Next, I presented the equations for determining the least-squares regression line when predicting $Y$ given $X$ and the convention that the pre dicted variable is symbolized by $Y$ and the variable from which we predict by $X$. I then used these equations to construct regression lines for various sets of data and showed how to use these lines for prediction. Next, I discussed how to
quantify the errors in prediction by computing the standard er ror of estimate. I presen ted the conditions under which the use of the linear regression line was appropriate: The re lationship must be linear, the regression line must have been derived from data representative of the group to which prediction is desired, and prediction must be limited to the range of the base data. Next, I discussed the re lationship between $b$ and $r$. Finally, I i ntroduced the topic of multiple regression and multiple correlation, discussed the multiple coefficient of determination, and showed how using two pre dictor variables can increase the accuracy of prediction.

## IMPORTANT NEW TERMS

Homoscedasticity (p. 170)
Least-squares regression line (p. 161)
Multiple coefficient of determination (p. 176)

Multiple regression (p. 174)
Regression (p. 160)
Regression constant (p. 162)
Regression line (p. 160)

Regression of $Y$ on $X$ (p. 162)
Standard error of estimate (p. 169)
*For a more advanced treatment of multiple regression, see D. C. Howell, Statistical Methods for Psychology, 7th ed., Wadsworth Cengage Learning, Belmont, CA, 2010, pp. 515-577.

QUESTIONS AND PROBLEMS

1. Define or identify each of the terms in the Important New Terms section.
2. List some situations in which it would be useful to have accurate prediction.
3. The least-squares regression line minimizes $\Sigma\left(Y-Y^{\prime}\right)^{2}$ rather th an $\Sigma\left(Y-Y^{\prime}\right)$. Is this statement correct? Explain.
4. The 1 east-squares re gression 1 ine is $t$ he pre diction line that results in the most direct "hits." Is this statement correct? Explain.
5. State the convention that is used to assign $X$ and $Y$ to the predicted to and predicted from variables.
6. How are $r$ and $b_{Y}$ related? Explain.
7. Of what value is it to know the standard error of estimate for a set of paired $X$ and $Y$ scores?
8. What is $R^{2}$ called? Is it true that conceptually $R^{2}$ is analogous to $r^{2}$, except that $R^{2}$ applies to situations in which there are two or more predictor variables? Explain. Will using a second predictor variable always increase the precision of prediction? Explain.
9. Given the set of paired $X$ and $Y$ scores,

| $X$ | 7 | 10 | 9 | 13 | 7 | 11 | 13 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $Y$ | 1 | 2 | 4 | 3 | 3 | 4 | 5 |

a. Construct a scatter plot of the paired scores. Does the relationship appear linear?
b. D etermine $t$ he 1 east-squares re gression 1 ine f or predicting $Y$ given $X$.
c. Draw the regression line on the scatter plot.
d. Using t he re lationship b etween $X$ an d $Y$, what value would you predict for $Y$ if $X=12$ ? (Round to two decimal places.)
10. A clinical psychologist is in terested in the relationship between testosterone level in married males and the quality of $t$ heir $m$ arital re lationship. A s tudy is conducted in which the testosterone levels of e ight married men a re mea sured. The eight men a lso fill out a standardized questionnaire assessing quality of marital relationship. The questionnaire scale is $0-25$, with h igher numbers indicating better re lationships. Testosterone scores are in nanomoles/liter of serum. The data are shown below.

| Subject Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Relationship <br> Score | 24 | 15 | 15 | 10 | 19 | 11 | 20 | 19 |
| Testosterone <br> Level | 12 | 13 | 19 | 25 | 9 | 16 | 15 | 21 |

a. On a pi ece of $g$ raph paper, cons truct a scat ter plot of the data. Use testosterone level as the $X$ variable.
b. Describe the relationship shown on the graph.
c. Compute the value of Pearson $r$.
d. Determine $t$ he $l$ east-squares re gression 1 ine $f$ or predicting r elationship s core fr om t estosterone level. Should $b_{Y}$ be positive or negative? Why?
e. Draw the least-squares regression line of part $\mathbf{d}$ on the scatter plot of part $\mathbf{a}$.
f. Based on the data of the eight men, what relationship score would you predict for a male who has a testosterone level of 23 nanomoles/liter of serum? clinical, health, biological
11. A popular attraction at a carnival recently arrived in town is t he booth where Mr . Cla irvoyant (a br ight statistics st udent of some what que stionable mor al character) c laims $t$ hat he ca $n g$ uess $t$ he $w$ eight of females to within 1 kilogram by merely studying the lines in their hands and fingers. He offers a standing bet that if he guesses incorrectly the woman can pick out any stuffed animal in the booth. However, if he guesses correctly, as a reward for his special powers, she must pay him $\$ 2$. Unknown to $t$ he women who make bets, Mr. Clairvoyant is ab le to s urreptitiously measure the length of their left index fingers while "studying" their hands. Also unknown to the bettors, but known to Mr. Clairvoyant, is the following re lationship between the weight of females and the length of their left index fingers:

| Length of Left Index <br> Finger (cm) | 5.6 | 6.2 | 6.0 | 5.4 |
| :--- | :---: | :---: | :---: | :---: |
| Weight $(\mathrm{kg})$ | 79.0 | 83.5 | 82.0 | 77.5 |

a. If you were a pros pective bettor, having all this information before you, would you make the bet with Mr. Clairvoyant? Explain.
b. Using the data in the a ccompanying table, what is the least-squares regression line for predicting a woman's weight, given the length of her i ndex finger?
c. Using $t$ he 1 east-squares re gression 1 ine det ermined in part $\mathbf{b}$, if a w oman's index finger is 5.7 centimeters, what would be her predicted weight? (Round to two decimal places.) cognitive
12. A statistics professor conducts a study to investigate the relationship between the performance of his students on exams and their anxiety. Ten students from
his class are selected for the experiment. Just before taking the final exam, the 10 students are given an anxiety questionnaire. Here are final exam and anxiety scores for the 10 students:

| Student No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Anxiety | 28 | 41 | 35 | 39 | 31 | 42 | 50 | 46 | 45 | 37 |
| Final Exam | 82 | 58 | 63 | 89 | 92 | 64 | 55 | 70 | 51 | 72 |

a. On a piece of graph paper, construct a scatter plot of the paired scores. Use anxiety as the $X$ variable.
b. Describe the relationship shown in the graph.
c. Assuming the relationship is 1 inear, compute the value of Pearson $r$.
d. Determine $t$ he 1 east-squares re gression 1 ine f or predicting the final exam score, given the anxiety level. Should $b_{Y}$ be positive or negative? Why?
e. Draw the least-squares regression line of part d on the scatter plot of part a.
f. Based on the data of the 10 students, if a student has an anxiety score of 38 , what value would you predict for her final exam score? (Round to $t$ wo decimal places.)
g. Calculate the standard er ror of estimate for predicting finale xam scores $f$ rom a nxiety scores. clinical, health, education
13. The sales manager of a large sporting goods store has recently started a national advertising campaign. He has kept a re cord of the monthly costs of the advertising and the monthly profits. These are shown here. The entries are in thousands of dollars.

| Month | Jan. | Feb. | Mar. | Apr. | May | Jun. | Jul. |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Monthly <br> Advertising | 10.0 | 14.0 | 11.4 | 15.6 | 16.8 | 11.2 | 13.2 |
| Cost | 125 | 200 | 160 | 150 | 210 | 110 | 125 |
| Monthly <br> Profit |  |  |  |  |  |  |  |

a. Assuming al inear re lationship e xists, der ive the 1 east-squares re gression 1 ine $f$ or pre dicting monthly profits from monthly advertising costs.
b. In August, the manager plans to spend $\$ 17,000$ on advertising. B ased on $t$ he data, how much profit should he expect that month? (Round to the nearest $\$ 1000$.)
c. Given the relationship shown by the paired scores, can you think of a reason why the manager doesn't spend a lot more money on advertising? I/O
14. A newspaper article reported that "there is a s trong correlation between continuity a nd success when it
comes to N BA coaches." The article was based on the following data:

| Coach, Team | Tenure as Coach with Same Team (yr) | $\begin{aligned} & \text { 1996-1997 } \\ & \text { Record } \\ & \text { (\% games } \\ & \text { won) } \end{aligned}$ |
| :---: | :---: | :---: |
| Jerry Sloan, Utah | 9 | 79 |
| Phil Jackson, Chicago | 8 | 84 |
| Rudy Tomjanovich, Houston | 6 | 70 |
| George Karl, Seattle | 6 | 70 |
| Lenny Wilkens, Atlanta | 4 | 68 |
| Mike Fratello, Cleveland | 4 | 51 |
| Larry Brown, Indiana | 4 | 48 |

a. Is the a rticle cor rect in c laiming that there is a strong correlation between continuity and success when it comes to NBA coaches?
b. Derive the least-squares re gression line for predicting success (\% games won) from tenure.
c. Based on your answer to part b, what "\% g ames won" would you pre dict for an NBA coach who had 7 y ears' "tenure" with the sa me team? I/O, other

1. During inflationary times, Mr. Chevez has become budget conscious. Since his house is heat ed electrically, he ha s kept a re cord for the past year of his monthly e lectric bills a nd of t he a verage mon thly outdoor temperature. The data are shown in the following table. Temperature is in degrees Celsius, and the electric bills are in dollars.
a. Assuming there is a 1 inear re lationship between the average monthly temperature and the monthly electric bill, determine the least-squares re gression line for pre dicting the monthly electric bill from the average monthly temperature.
b. On the basis of the almanac forecast for this year, Mr. Chevez expects a colder winter. If February is 8 degrees colder this year, how much should Mr. Chevez allow in his budget for February's electric bill? In calculating your answer, assume that the costs of electricity will rise $10 \%$ from last year's costs because of inflation.
c. Calculate the standard er ror of estimate for predicting $t$ he mon thly e lectric $b$ ill $f$ rom a verage monthly temperature.

| Month | Average Temp. | Elec. Bill (\$) |
| :---: | :---: | :---: |
| Jan. | 10 | 120 |
| Feb. | 18 | 90 |
| Mar. | 35 | 118 |
| Apr. | 39 | 60 |
| May | 50 | 81 |
| Jun. | 65 | 64 |
| Jul. | 75 | 26 |
| Aug. | 84 | 38 |
| Sep. | 52 | 50 |
| Oct. | 40 | 80 |
| Nov. | 25 | 100 |
| Dec. | 21 | 124 |

other
16. In Chapter 6, Problem 16 (p. 151), data were presented on the relationship between birth weight and the subsequent I Q of se ven r andomly se lected ps ychology majors from a particular university. The data are again presented below.

| Birth Weight <br> $(\mathbf{l b s})$ |  |  |
| :---: | :---: | :---: |
| Student | IQ $\ldots \ldots \ldots$ |  |
| 1 | 5.8 | 122 |
| 2 | 6.5 | 120 |
| 3 | 8.0 | 129 |
| 4 | 5.9 | 112 |
| 5 | 8.5 | 127 |
| 6 | 7.2 | 116 |
| 7 | 9.0 | 130 |

a. Assuming there is a linear relationship, use these data a nd det ermine the least-squares re gression line for predicting IQ, given birth weight.
b. Using this regression line, what IQ would you predict for a birth weight of 7.5 ?
developmental
17. In Chapter 6, P roblem 21 (p. 152), data were given on t he re lationship b etween t he n umber of so ft drinks consumed in a week by eight 12 -year-olds and their body mass index (BMI). The 12 -year-olds were randomly selected from a junior high school in a la rge n orthwestern ci ty. T he d ata a re ag ain presented here.

| Number of Soft Drinks |  |  |
| :---: | :---: | :---: |
| 1 |  | 320 |
| 2 |  | 118 |
| 3 | 14 | 32 |
| 4 |  | 724 |
| 5 | 21 | 35 |
| 6 |  | 519 |
| 7 | 25 | 38 |
| 8 |  | 930 |

a. Assuming $t$ he $d$ ata show a 1 inear re lationship, derive the least-squares regression line for predicting B MI, $g$ iven $t$ he $n$ umber of so $f t d$ rinks consumed.
b. Using this regression line, what BMI would you predict f or a 12 -year-old from t his sc hool w ho consumes a w eekly a verage of 17 so ft d rinks? health
18. In Chapter 6, Problem 22 (p. 153), data were presented from a study conducted to determine the relationship between re ligious i nvolvement a nd se lf-esteem. The data are again presented below.

| Subject | Religious Involvement | Self-Esteem |  |
| :---: | :---: | :---: | :---: |
|  | 1 |  | 8 |
|  | 25 | 2 | 3 |
|  | 35 | 4 | 2 |
|  | 40 | 2 | 7 |
|  | 50 | 3 | 5 |
|  | 60 | 4 | 5 |
|  | 7 |  | 4 |
|  | 85 | 1 | 4 |
|  | 90 | 1 | 7 |
| 10 | 35 |  | 3 |

a. Assuming a 1 inear re lationship, der ive the leastsquares regression line for predicting self-esteem from religious involvement.
b. Using t his re gression 1 ine, w hat v alue of se lfesteem w ould $y$ ou pre dict for a $n$ e ighth $g$ rader whose value of religious involvement is 43 ? social, developmental
19. In Chapter 6, Problem 24 (p. 154), data were shown on the relationship between the work performance of 10 w orkers randomly chosen from the $m$ anufacturing section of a la rge cor poration a nd two possible screening tests. The data are again shown below.

In $t$ hat pro blem y ou w ere a sked to re commend which of the two tests should be used as a sc reening
device for prospective employees for that section of the company. On the basis of the data presented, you recommended using test 2 . Now the question is: Would it be better to use both test 1 and test 2 , rather than test 2 alone? Explain your answer, using $R^{2}$ and $r^{2}$. Use a computer and statistical software to solve this problem if you have access to them. I/O

|  | Employee |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| Work performance | 50 | 74 | 62 | 90 | 98 | 52 | 68 | 80 | 88 | 76 |
| Test 1 | 10 | 19 | 20 | 20 | 21 | 14 | 10 | 24 | 16 | 14 |
| Test 2 | 25 | 35 | 40 | 49 | 50 | 29 | 32 | 44 | 46 | 35 |

## SPSS ILLUSTRATIVE EXAMPLE $\mathbf{7 . 1}$

The general operation of SPSS and data entry are described in Appendix E, Introduction to SPSS. Chapter 7 of the textbook discusses the topic of linear regression. Statistical software can be a great help in doing the graphs and computations contained in this section.

## example

Let's use SPSS to do Chapter 7, problem 12, p. 179, parts a, b, d, and g of the textbook. For convenience, the problem is repeated below.

A statistics professor conducts a study to investigate the relationship between the performance of his students on exams and their anxiety. Ten students from his class are selected for the experiment. Just before taking the final exam, the 10 students are given an anxiety questionnaire. Here are final exam and anxiety scores for the 10 students.

| Student Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Anxiety | 28 | 41 | 35 | 39 | 31 | 42 | 50 | 46 | 45 | 37 |
| Final Exam | 82 | 58 | 63 | 89 | 92 | 64 | 55 | 70 | 51 | 72 |

## Use SPSS to do the following:

a. Construct a scatter plot of the paired scores. Let's assume that we want to predict Final Exam scores from Anxiety scores. Therefore, we will use Anxiety as the $X$ variable.
b. Describe the relationship shown in the graph.
d. Determine the least-squares regression line for predicting the Final Exam score, given Anxiety level. Should $b_{Y}$ be positive or negative? Why?
g. Calculate the standard error of estimate for predicting Final Exam scores from Anxiety scores.

## SOLUTION

## STEP 1: Enter the Data.

1. Enter the Anxiety scores in the first column (VAR00001) of the SPSS Data Editor, beginning with the first score in the top cell of the first column.
2. Enter the Final Exam scores in the second column (VAR00002) of the SPSS Data Editor, beginning with the first score in the top cell of the second column.

STEP 2: Name the Variables. In this example, we will give the default variables VAR00001 and VAR00002 the new names of Anxiety and FinalExam, respectively. Here's how it is done.

1. Click the Variable View tab in the lower left corner of the Data Editor.
2. Click VAR00001; then type Anxiety in the highlighted cell and then press Enter.
3. Replace VAR00002 with FinalExam and then press Enter.

This displays the Variable View on screen with VAR00001 and VAR00002 displayed in the first and second cells of the Name column.

Anxiety is entered as the variable name, replacing VAR00001. The cursor then moves to the next cell, highlighting VAR00002.

FinalExam is entered as the variable name, replacing VAR00002.

## STEP 3: Analyze the Data.

Part a. Construct a Scatter Plot of the Data. I suggest you switch to the Data Editor-Data View if you haven't already done so. Now, let's proceed with the analysis.

1. Click on Graphs on the menu bar at the top of the screen; then select Legacy Dialogs; then click Scatter/Dot....
2. Click Define.
3. Click the arrow for the $\underline{X}$ axis.
4. Click FinalExam in the large box on the left; then click the arrow for the $\underline{\mathbf{Y}}$ axis.
5. Click on OK.

This produces the Scatter/Dot dialog box, which is used to control scatters plots. The default is the Simple Scatter graph, which is what we want. Therefore, we don't have to click it.

This produces the Simple Scatterplot dialog box with Anxiety and FinalExam displayed in the large box on the left. Anxiety is highlighted.

This moves Anxiety from the large box on the left into the $\underline{X}$ axis box on the right. We have done this because we want to plot Anxiety on the $X$ axis.

This moves FinalExam from the large box on the left into the $\underline{Y}$ axis box on the right. We have done this because we want to plot FinalExam on the $Y$ axis.

SPSS then constructs a scatter plot of the two variables, with FinalExam plotted on the $X$ axis and Anxiety plotted on the $Y$ axis. The scatter plot is shown below.

## Analysis Results



Part b. The relationship is linear, imperfect, and negative.

Part d. Derive the Least-Squares Regression Line for Predicting "FinalExam," given "Anxiety."

1. Click Analyze from the menu bar at the top of the screen; then select Regression from the drop-down menu; then click on Linear....
2. Click the arrow for the Independent(s): box.
3. Click FinalExam in the large box on the left; then click the arrow for the Dependent: box.
4. Click OK.

This produces the Linear Regression dialog box with Anxiety and FinalExam displayed in the large box on the left. Anxiety is highlighted.

This moves Anxiety into the Independent(s): box. This tells SPSS that Anxiety is the independent variable, i.e., the variable from which we are predicting.

This moves FinalExam into the Dependent: box. This tells SPSS that FinalExam is the dependent variable, i.e., the variable to which we are predicting.

SPSS does its computations and outputs the results in four tables. For the purposes of this problem, we are interested in only two of the tables, the Model Summary table and the Coefficients table. These tables are shown below.

## Analysis Results

| Model Summary |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
| Model R R Square Adjusted R <br> Square Std. Error of <br> the Estimate <br> 1 $.691^{\mathrm{a}}$ .477 .412 10.86532 |  |  |  |  |
| a. Predictors: (Constant), Anxiety |  |  |  |  |

Coefficients ${ }^{\text {a }}$

| Model |  | Unstandardized Coefficients |  | Standardized <br> Coefficients <br> Beta | t | Sig. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | B | Std. Error |  |  |  |
| 1 | (Constant) | 125.883 | 21.111 |  | 5.963 | . 000 |
|  | Anxiety | -1.429 | . 529 | -. 691 | -2.702 | . 027 |

a. Dependent Variable: FinalExam

The Coefficients table gives the $a_{Y}$ and $b_{Y}$ values for the regression equation. $a_{y}$ (the constant) $=125.883$ and $b_{y}$ (the Anxiety Coefficient) $=-1.429$. Substituting these values into the general equation for predicting $Y$ given $X$, we arrive at

$$
Y^{\prime}=-1.429 X+125.883
$$

where $\quad Y^{\prime}=$ predicted FinalExam score
$X=$ Anxiety
This agrees with the equation given for these data in the textbook. $b_{Y}$ should be negative because the relationship is negative.

Part g. Calculate the Standard Error of Estimate for Predicting "Final Exam" Scores from "Anxiety" Scores. This information is given in the last column of the Model Summary table shown above. From this table,

$$
\text { Std Error of the Estimate }=10.86532 \text { or } 10.87 \text { (2 decimal places) }
$$

This also agrees with the answer given in the textbook. Yea for SPSS!!

## SPSS ADDITIONAL PROBLEMS

1. For t his e xample, l et's use t he IQ a nd GPA (Grade Point Average) data shown in Table 7.2, p. 164, of the
textbook. For your convenience the data is shown again here.

| Student No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| GPA | 1.0 | 1.6 | 1.2 | 2.1 | 2.6 | 1.8 | 2.6 | 2.0 | 3.2 | 2.6 | 3.0 |
| IQ | 110 | 112 | 118 | 119 | 122 | 125 | 127 | 130 | 132 | 134 | 136 |

a. Use SPSS to construct a scatter plot of the data. In so doing, name the two variables, $I Q$ and GPA. Plot $I Q$ on the $X$ axis and GPA on the $Y$ axis. Compare your answer with Figure 7.1, p. 161.
b. Assuming a linear relationship exists between $I Q$ and GPA, use SPSS to der ive the least squares regression line for predicting GPA given IQ. Co mpare your answer with that shown in Table 7.2.
2. A psychology professor is i nterested in the re lationship between grade point average (GPA) in graduate school a nd Graduate Record Exam (GRE) scores. A random sample of 20 graduate students is used for the study. The GPA a nd GR E score $f$ or each student is shown in the table that follows.

| Student No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| GPA | 3.70 | 3.18 | 2.90 | 2.93 | 3.02 | 2.65 | 3.70 | 3.77 | 3.41 | 2.38 |
| GRE | 637 | 562 | 520 | 624 | 500 | 500 | 700 | 680 | 655 | 525 |
|  |  |  |  |  |  |  |  |  |  |  |
| Student No. | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| GPA | 3.54 | 3.12 | 3.21 | 3.35 | 2.60 | 3.25 | 3.48 | 2.74 | 2.90 | 3.28 |
| GRE | 593 | 656 | 592 | 689 | 550 | 536 | 629 | 541 | 588 | 619 |

a. Use SPSS to cons truct a scat ter plot of the paired scores. If y ou choose to use ne w variable na mes, name the variables GPA and GRE. Make the $Y$ axis variable GPA and the $X$ axis variable $G R E$.
b. Describe the relationship shown in the graph.
c. Use SPSS to construct the least-squares regression line for predicting GPA from GRE scores.
d. Compute the standard error of estimate for predicting GPA from GRE scores.

## ONLINE STUDY RESOURCES

## CENGAGE braiin

Login to CengageBrain.com to access the resources your instructor has assigned. For this book, you can access the book's co mpanion website for chapter-specific learning tools including Know and Be Able to Do, practice quizzes, flash cards, a nd glossaries, a nd a link to $S$ tatistics and Research Methods Workshops.

If your professor has assigned Aplia homework:

1. Sign in to your account.
2. Complete $t$ he cor responding ho mework e xercises a s required by your professor.
3. W hen finished, c lick "G rade It N ow" to se e which areas you have mastered and which need more work, and for detailed explanations of every answer.

Visit www.cengagebrain.com to access your account and to purchase materials.

## A <br> 路 <br> THREE

## INFERENTIAL STATISTICS

8 Random Sampling and Probability
9 Binomial Distribution
10 Introduction to Hypothesis Testing Using the Sign Test
11 Power
12 Sampling Distributions, Sampling Distribution of the Mean, the Normal Deviate (z) Test
13 Student's $t$ Test for Single Samples
14 Student's $t$ Test for Correlated and Independent Groups

15 Introduction to the Analysis of Variance
16 Introduction to Two-Way Analysis of Variance
17 Chi-Square and Other Nonparametric Tests
18 Review of Inferential Statistics

CHAPTER OUTLINE
Introduction
Random Sampling
Techniques for Random Sampling
Sampling With or Without Replacement
Probability
Some Basic Points Concerning Probability Values
Computing Probability
The Addition Rule
The Multiplication Rule
Multiplication and Addition Rules
Probability and Continuous Variables
What Is the Truth?

- "Not Guilty, I'm a Victim of Coincidence": Gutsy Plea or Truth?
- Sperm Count Decline-Male
or Sampling Inadequacy?
- A Sample of a Sample

Summary
Important New Terms
Questions and Problems
What Is the Truth? Questions Notes
Online Study Resources

## Random Sampling and Probability

## LEARNING OBJECTIVES

After completing this chapter, you should be able to:

- Define a random sample; specify why the sample used in a study should be a random sample, and explain two methods of obtaining a random sample.
- Define sampling with replacement, sampling without replacement, a priori and a posteriori probability.
- List three basic points concerning probability values.
- Define the addition and multiplication rules, and solve problems involving their use.
- Define independent, mutually exclusive, and mutually exhaustive events.
- Define probability in conjunction with a continuous variable and solve problems when the variable is continuous and normally distributed.
- Understand the illustrative examples, do the practice problems, and understand the solutions.

We have now completed our discussion of descriptive statistics and are ready to begin considering the fascinating area of inferential statistics. With descriptive statistics, we were concerned primarily with presenting a nd describing sets of scores in the most meaningful and efficient way. With inferential statistics, we go beyond mere description of the scores. A ba sic aim of inferential statistics is to use $t$ he sample scores to $m$ ake a statement about a characteristic of the population. There are two kinds of statements made. One has to do with hypothesis testing and the other with parameter estimation.

In hypothesis testing, the experimenter is collecting data in an experiment on a sample set of subjects in an attempt to validate some hypothesis involving a population. For example, suppose an educational psychologist believes a ne w method of teaching mathematics to the third graders in her sc hool district (population) is superior to the usual way of teaching the subject. In her experiment, she employs two samples of third graders, one of which is taught by the new teaching method and the other by the old one. Each group is tested on the same final exam. In doing this experiment, the psychologist is not satisfied with just reporting that the mean of the group that received the new method was higher than the mean of the other group. She wants to make a statement such as, "The improvement in final exam scores was due to the new teaching method and not chance factors. Furthermore, the improvement does not apply just to the particular sample tested. Rather, the improvement would be found in the whole population of third graders if they were taught by the new method." The techniques used in inferential statistics make these statements possible.

In parameter estimation experiments, the experimenter is interested in determining the magnitude of a population characteristic. For example, an economist might be interested in determining the average monthly amount of money spent last year on food by single college students. Using sample data, with the techniques of inferential statistics, he can estimate the mean amount spent by the population. He would conclude with a statement such as, "The probability is 0.95 that the interval of $\$ 300-\$ 400$ contains the population mean."

The topics of random sampling and probability a re central to $t$ he met hodology of inferential statistics. In the next section, we shall consider random sampling. In the remainder of the chapter, we shall be concerned with presenting the basic principles of probability.

## RANDOM SAMPLING



To generalize validly from the sample to the population, both in hypothesis testing and in parameter estimation experiments, the sample cannot be just any subset of the population. Rather, it is crucial that the sample is a random sample.

$$
\begin{aligned}
& \text { definition } \quad \begin{array}{l}
\text { A random sample is d efined as a s ample selected from the population by a } \\
\text { process that ensures that (1) each possible sample of a given size has an equal } \\
\text { chance of being selected and (2) all the members of the population have an } \\
\text { equal chance of being selected into the sample.* }
\end{array}
\end{aligned}
$$

[^9]To illustrate, consider the situation in which we have a p opulation comprising the scores $2,3,4,5$, and 6 and we want to randomly draw a sample of size 2 from the population. Note that normally the population would have a great many more scores in it. We've restricted the population to five scores for ease in understanding the points we wish to make. Let's assume we shall be sampling from the population one score at at ime and then placing it back into the population before drawing again. This is called sampling with replacement and is discussed later in this chapter. The following comprise all the samples of size 2 we could get from the population by using this method of sampling:

| 2,2 | 3,2 | 4,2 | 5,2 | 6,2 |
| :--- | :--- | :--- | :--- | :--- |
| 2,3 | 3,3 | 4,3 | 5,3 | 6,3 |
| 2,4 | 3,4 | 4,4 | 5,4 | 6,4 |
| 2,5 | 3,5 | 4,5 | 5,5 | 6,5 |
| 2,6 | 3,6 | 4,6 | 5,6 | 6,6 |

There are 25 sa mples of size 2 we might get when sampling one score at at ime with replacement. To a chieve r andom sa mpling, the pro cess must be such that (1) all of the 25 possible samples have an equally likely chance of being selected and (2) all of the population scores $(2,3,4,5$, and 6 ) have an equal chance of being selected into the sample.

The sample should be a random sample for two reasons. First, to generalize from a sample to a population, it is necessary to apply the laws of probability to the sample. If the sample has not been generated by a process ensuring that each possible sample of that size has an equal chance of being selected, then we can't apply the laws of probability to the sample. The importance of this aspect of randomness and of probability to statistical inference will become appa rent when we have co vered the chapters on hypothesis testing and sampling distributions (see Chapters 10 and 12, respectively).

The second reason for random sampling is that, to generalize from a sample to a population, it is ne cessary that the sa mple be representative of the population. One way to achieve representativeness is to c hoose the sample by a pro cess that ensures that all the members of the population have an equal chance of being selected into the sample. Thus, requiring the sample to be random allows the laws of probability to be used on the sample and at the same time results in a sample that should be representative of the population.

It is tempting to $t$ hink that we can achieve representativeness by using met hods other than $r$ andom sa mpling. Very often, however, the se lected pro cedure res ults in a b iased ( unrepresentative) sa mple. A ne xample of $t$ his $w$ as $t$ he $f$ amous Literary Digest presidential poll of 1936, which predicted a la ndslide victory for Landon (57\% to $43 \%$ ). In fact, Roosevelt won, gaining $62 \%$ of the ballots. The Literary Digest prediction was grossly in error. Why? Later analysis showed that the error occurred because the sample was not representative of the voting population. It was a biased sample. The individuals selected were chosen from sources like the telephone book, club lists, and lists of registered automobile owners. These lists systematically excluded the poor, who were unlikely to have telephones or automobiles. It turned out that the poor voted overwhelmingly for Roosevelt. Even if other methods of sampling do on occasion result in a representative sample, the methods would not be useful for inference because we could not apply the laws of probability necessary to go from the sample to the population.

## Techniques for Random Sampling

It is beyond the scope of this textbook to delve deeply into the ways of generating random samples. This topic can be complex, particularly when dealing with surveys. We shall, however, present a few of the more co mmonly used techniques in conjunction
with some simple situations so that you can get a feel for what is involved. Suppose we have a population of 100 people and wish to randomly sample 20 for an experiment. One way to do this would be to number the individuals in the population from 1 to 100, then take 100 slips of paper and write one of the numbers on each slip, and put the slips into a hat, shake them around a lot, and pick out one. We would repeat the shaking and pick out another. Then we would continue this process until 20 slips have been picked. The numbers contained on the slips of paper would identify the individuals to be used in the sample. With this method of random sampling, it is crucial that the population be thoroughly mixed to ensure randomness.

A common way to produce random samples is to use a $t$ able of random numbers, such as Table J in Appendix D. These tables are most often constructed by a computer using a program that guarantees that all the digits ( $0-9$ ) have an equal chance of occurring each time a digit is printed.

The table may be used as successive single digits, as successive two-digit numbers, as successive three-digit numbers, and so forth. For example, in Table J, p. 612, if we begin at row 1 and move horizontally across the page, the random order of single digits would be $3,2,9,4,2, \ldots$ If we wish to use two-digit numbers, the random order would be $32,94,29,54,16, \ldots$.

Since the digits in the table are random, they may be used vertically in both directions and horizontally in both directions. The direction to be used should be specified before entering the table. To use the table properly, it should be entered randomly. One way would be to make cards with row and column numbers and place the cards in a box, mix them up, and then pick a row number and a column number. The intersection of the row and column would be the location of the first random number. The remaining numbers would be located by moving from the first number in the direction specified prior to entering the table. To illustrate, suppose we wanted to form a random sample of 3 subjects from a population of 10 subjects.* For this example, we have decided to move horizontally to the right in the table. To choose the sample, we would first assign each individual in the population a number from 0 to 9 . Next, the table would be entered randomly to locate the first number. Let's a ssume the entry turns out to be the first number of row 7 , p. 612 , which is 3 . This number designates the first subject in the sample. Thus, the first subject in the sample would be the subject bearing the number 3 . We have already decided to move to the right in the table, so the next two numbers are 5 and 6 . Thus, the individuals bearing the numbers 5 and 6 would complete the sample.

Next, let's do a problem in which there are more individuals in the population. For purposes of illustration, we shall assume that a random sample of 15 subjects is desired from a population of 100 . To vary things a bit, we have decided to move vertically down in the table for this problem, rather than horizontally to the right. As before, we need to assign a number to each member of the population. This time, the numbers assigned are from 00 to 99 instead of from 0 to 9 . Again the table is entered randomly. This time, let's assume the entry occurs at the intersection of the first two-digit number of column 3 with row 12. The two-digit number located at this intersection is 70 . Thus, the first subject in the sample is the individual bearing the number 70 . The next subject would be located by moving vertically down from 70. Thus, the second subject in the sample would be the individual bearing the number 33. This process would be continued until 15 subjects have been selected. The complete set of subject numbers would be 70, 33,

[^10]$82,22,96,35,14,12,13,59,97,37,54,42$, and 89 . In arriving at this set of numbers, the number 82 appeared twice in the table. Since the same individual cannot be in the sample more than once, the repeated number was not included.

## Sampling With or Without Replacement

So far, we have defined a random sample, discussed the importance of random sampling, a nd presented some techniques for pro ducing random sa mples. To complete our discussion, we need to distinguish between sampling with replacement and sampling without replacement. To illustrate the difference between these two met hods of sampling, let's assume we wish to form a sample of two scores from a population composed of the scores $4,5,8$, and 10 . One way would be to randomly draw one score from the population, record its value, and then place it back in the population before drawing the second score. Thus, the first score would be eligible for selection again on the second draw. This method of sampling is called sampling with replacement. A second method would be to randomly draw one score from the population and not replace it before drawing the second one. Thus, the same member of the population could appear in the sample only once. This method of sampling is called sampling without replacement.

Sampling with replacement is defined as a method of sampling in which each member of the population selected for the sample is returned to the population before the next member is selected.

- Sampling without replacement is defined as a method of sampling in which the members of the sample are not returned to the population before subsequent members are selected.

When subjects a re being se lected to pa rticipate in a $n$ experiment, sa mpling without replacement must be used because the same individual can't be in the sample more than once. You will probably recognize this as the method we used in the preceding section. Sampling with replacement forms the mathematical basis for many of the inference tests discussed later in the textbook. Although the two methods do not yield identical results, when sample size is small relative to population size, the differences are negligible and "with-replacement" techniques are much easier to use in providing the mathematical basis for inference. Let's now move on to the topic of probability.

## PROBABILITY



Probability may be approached in two ways: (1) from an a priori, or classical, viewpoint and (2) from an a posteriori, or empi rical, viewpoint. A priori means that which can be deduced from reason alone, without experience. From the a priori, or classical, viewpoint, probability is defined as

$$
p(A)=\frac{\text { Number of events classifiable as } A}{\text { Total number of possible events }} \text { a priori probability }
$$

MENTORING TIP
Because of tradition, probability values in this chapter have been rounded to 4-decimal-place accuracy. Unless you are told otherwise, your answers to end-of-chapter problems for this chapter should also be rounded to 4 decimal places.

The symbol $p(A)$ is read "the probability of occurrence of event $A$." Thus, the equation states that the probability of occurrence of event $A$ is equal to the number of events classifiable as $A$ divided by the number of possible events. To illustrate how this equation is used, let's look at an example involving dice. Figure 8.1 shows a pair of dice. Each die (the singular of dice is die) has six sides, with a different number of spots painted on each side. The spots vary from one to six. These innocent-looking cubes are used for gambling in a g ame called craps. They have been the basis of many tears and much happiness depending on the "luck" of the gambler.

Returning to a priori probability, suppose we are going to roll a die once. What is the probability it will come to rest with a 2 (the side with two spots on it) facing upward? Since there are six possible numbers that might occur and only one of these is 2 , the probability of a 2 , in one roll of one die, is

$$
p(A)=p(2)=\frac{\text { Number of events classifiable as } 2}{\text { Total number of possible events }}=\frac{1}{6}=0.1667^{*}
$$

Let's try one more problem using the a priori approach. What is the probability of getting a number greater than 4 in one roll of one die? This time there are two events classifiable as $A$ (rolling 5 or 6). Thus,

$$
p(A)=p(5 \text { or } 6)=\frac{\text { Number of events classifiable as } 5 \text { or } 6}{\text { Total number of possible events }}=\frac{2}{6}=0.3333
$$

Note that the previous two problems were solved by reason alone, without recourse to any data collection. This approach is to be contrasted with the a posteriori, or empirical, approach to probability. A posteriori means "after the fact," and in the context of probability, it means after some data have been collected. From the a posteriori, or empirical, viewpoint, probability is defined as

$$
p(A)=\frac{\text { Number of times } A \text { has occurred }}{\text { Total number of occurrences }} \text { a posteriori probability }
$$

To determine the probability of a 2 in one roll of one die by using the empirical approach, we would have to take the actual die, roll it many times, and count the number of times a 2 ha s occurred. The more times we roll the die, the better. Let's assume for this

figure 8.1 A pair of dice.
*In this and all other problems involving dice, we shall assume that the dice will not come to rest on any of their edges.
problem that we roll the die 100,000 times and that a 2 occurs 16,000 times. The probability of a 2 occurring in one roll of the die is found by

$$
p(2)=\frac{\text { Number of times } 2 \text { has occurred }}{\text { Total number of occurrences }}=\frac{16,000}{100,000}=0.1600
$$

Note that, with this approach, it is necessary to have the actual die and to collect some data before determining the probability. The interesting thing is that if the die is evenly balanced (all numbers are equally likely), then when we roll the die many, many times, the a posteriori probability approaches the a priori probability. If we roll an infinite number of times, the two probabilities will equal each other. Note also that, if the die is loaded (weighted so that one side comes up more often than the others), then the $a$ posteriori probability will differ from the a priori determination. For example, if the die is heavily weighted for a 6 to come up, a 2 might never appear. We can see now that the a priori equation assumes that each possible outcome has an equal chance of occurrence. For most of the problems in this chapter and the next, we shall use the a priori approach to probability.

## Some Basic Points Concerning Probability Values

Since probability is fundamentally a prop ortion, it ranges in value from 0.00 to 1.00 . If the probability of an event occurring equals 1.00 , then the event is certain to occur. If the probability equals 0.00 , then the event is certain not to occur. For example, an ordinary die does not have a side with 7 dots on it. Therefore, the probability of rolling a 7 with a single die equals 0.00 . Rolling a 7 is certain not to occur. On the other hand, the probability that a number from 1 to 6 will occur equals 1.00 . It is certain that one of the numbers $1,2,3,4,5$, or 6 will occur.

The probability of occurrence of an event is expressed as a fraction or a de cimal number. For example, the probability of randomly picking the ace of spades in one draw from a deck of ordinary playing cards is $\frac{1}{52}$, or 0.0192 .* The answer may be left as a fraction $\left(\frac{1}{52}\right)$, but usually is converted to its decimal equivalent (0.0192).

Sometimes probability is e xpressed as "chances in 100. . For example, so meone might say the probability that event $A$ will occur is 5 chances in 100 . What he really means is $p(A)=0.05$. Occasionally, probability is a lso expressed as the odds for or against an event occurring. For example, a betting person might say that the odds are 3 to 1 favoring Fred to win the race. In probability terms, $p$ (Fred's winning) $=\frac{3}{4}=0.75$. If the odds were 3 to 1 against Fred's winning, then $p($ Fred's winning $)=\frac{1}{4}=0.25$.

## Computing Probability

Determining the probability of events can be complex. In fact, whole courses are devoted to this topic, and they are quite difficult. Fortunately, for our purposes, there are only two major probability rules we need to learn: the addition rule and the multiplication rule. These rules provide the foundation necessary for understanding the statistical inference tests that follow in this textbook.

[^11]
## The Addition Rule

The addition rule is concerned with determining the probability of occurrence of any one of se veral possible e vents. To begin our discussion, let's a ssume there a re on ly two possible events, $A$ and $B$. When there are two events, the addition rule states the following.

## definition $\square$ The probability of occurrence of $\boldsymbol{A}$ or $\boldsymbol{B}$ is equal to the probability of occurrence of A plus the probability of occurrence of $B$ minus the probability of occurrence of both $A$ and $B$.

In equation form, the addition rule states:

$$
\begin{array}{ll}
p(A \text { or } B)=p(A)+p(B)-p(A \text { and } B) & \begin{array}{l}
\text { addition rule for two } \\
\text { events-general equation }
\end{array}
\end{array}
$$

Let's illustrate how this rule is used. Suppose we want to determine the probability of picking an ace or a club in one draw from a deck of ordinary playing cards. The problem has been solved in two ways in Figure 8.2. Refer to the figure as you read this paragraph. The first way is by enumerating all the events classifiable as an ace or a club and using the basic equation for probability. There are 16 ways to get an ace or a club, so the probability of getting an ace or a club $=\frac{16}{52}=0.3077$. The second method uses the addition rule. The probability of getting an ace $=\frac{4}{52}$, and the probability of getting a club $=\frac{13}{52}$. The probability of getting both an ace and a club $=\frac{1}{52}$. By the addition rule, the probability of getting an ace or a club $=\frac{4}{52}+\frac{13}{52}-\frac{1}{52}=\frac{16}{52}=0.3077$. Why do we need to subtract the probability of getting both an ace and a club? Because we have already counted the ace of clubs twice. Without subtracting it, we would be misled into thinking there are 17 favorable events rather than just 16.

In this cou rse, we shall be us ing the a ddition rule a lmost en tirely in situations where the events are mutually exclusive.

Two events are mutually exclusive if both cannot occur together. Another way of saying this is that two events are mutually exclusive if the occurrence of one precludes the occurrence of the other.

The events of rolling a 1 and of rolling a 2 in one roll of a die are mutually exclusive. If the roll ends with a 1 , it cannot also be a 2 . The events of picking an ace and a king in one draw from a deck of ordinary playing cards are mutually exclusive. If the card is an ace, it precludes the card also being a king. This can be contrasted with the events of picking an ace and a club in one draw from the deck. These events are not mutually exclusive because there is a card that is both an ace and a club (the ace of clubs).

When the events are mutually exclusive, the probability of both events occurring together is zero. Thus, $p(A$ and $B)=0$ when $A$ and $B$ are mutually exclusive. Under these conditions, the addition rule simplifies to:

$$
p(A \text { or } B)=p(A)+p(B)
$$

Let's practice solving some problems involving situations in which $A$ and $B$ are mutually exclusive.
(a) By enumeration using the basic definition of probability

$$
\begin{aligned}
p(A) & =\frac{\text { Number of events favorable to } A}{\text { Total number of possible events }} \\
& =\frac{16}{52}=0.3077
\end{aligned}
$$

where $A=$ drawing an ace or a club
(b) By the addition rule

$$
\begin{aligned}
p(A \text { or } B) & =p(A)+p(B)-p(A \text { and } B) \\
& =\frac{4}{52}+\frac{13}{52}-\frac{1}{52} \\
& =\frac{16}{52}=0.3077
\end{aligned}
$$

$$
\text { where } \quad \begin{aligned}
& A=\text { drawing an ace } \\
& B=\text { drawing a club }
\end{aligned}
$$



Events favorable to $A$


Events favorable to $A$


Events favorable to $B$


Events favorable to $A$ and $B$

figure 8.2 Determining the probability of randomly picking an ace or a club in one draw from a deck of ordinary playing cards.

## Practice Problem 8.1

What is the probability of randomly picking a 10 or a 4 in one draw from a deck of ordinary playing cards?

## SOLUTION

The solution is shown in the following figure. Since we want either a 10 or a 4 and these two events are mutually exclusive, the addition rule with mutually exclusive events is appropriate. Thus, $p(10$ or 4$)=p(10)+p(4)$.

There a re four 10 s , four 4 s , a nd 52 cards, so $p(10)=\frac{4}{52}$ and $p(4)=\frac{4}{52}$. Thus, $p(10$ or 4$)=\frac{4}{52}+\frac{4}{52}=\frac{8}{52}=0.1538$.

$$
\begin{aligned}
p(A \text { or } B) & =p(A)+p(B) \\
p(\text { a } 10 \text { or a } 4) & =p(10)+p(4) \\
& =\frac{4}{52}+\frac{4}{52} \\
& =\frac{8}{52}=0.1538
\end{aligned}
$$

where

$$
A=\text { drawing a } 10
$$



Events favorable to $B$

$$
B=\text { drawing a } 4
$$



## Practice Problem 8.2

In rolling a fair die once, what is the probability of rolling a 1 or an even number?

## SOLUTION

The solution is shown in the accompanying figure. Since the events are mutually exclusive a nd the problem asks for either a 1 or an even number, the addition rule with mutually exclusive events applies. Thus, $p(1$ or an even number $)=p(1)+p($ an even number $)$. There is one w ay to roll a 1 ; there are three ways to roll an even number $(2,4,6)$, a nd there a re six possible outcomes. Thus, $p(1)=\frac{1}{6}, p($ an even number $)=\frac{3}{6}$, and $p(1$ or an even number) $=\frac{1}{6}+\frac{3}{6}=\frac{4}{6}=0.6667$

$$
p(A \text { or } B)=p(A)+p(B)
$$

$p(1$ or an even number $)=p(1)+p($ an even number $)$

$$
\begin{aligned}
& =\frac{1}{6}+\frac{3}{6}=\frac{4}{6} \\
& =0.6667
\end{aligned}
$$

where $A \quad=$ rolling a 1
$B=$ rolling an even number
Events favorable to $A$


Events favorable to $B$


## Practice Problem 8.3

Suppose you are going to randomly sample 1 individual from a population of 130 people. In the population, there are 40 children younger than 12,60 teenagers, and 30 adults. What is the probability the individual you select will be a teenager or an adult?

## SOLUTION

The solution is shown in the accompanying figure. Since the events are mutually exclusive and we want a teenager or an adult, the addition rule with mutually exclusive events is appropriate. Thus, $p($ teenager or adult $)=p($ teenager $)+p($ adult $)$. Since there are 60 teenagers, 30 a dults, and 130 people in the population, $p$ (teenager) $=\frac{60}{130}$ and $p($ adult $)=\frac{30}{130}$. Thus, $p($ teenager or adult $)=\frac{60}{130}+\frac{30}{130}=\frac{90}{130}=0.6923$.


The addition rule may also be used when there are more than two events. This is accomplished by a s imple extension of the equation used for two events. Thus, when there are more than two events and the events are mutually exclusive, the probability of occurrence of any one of the events is equal to the sum of the probability of each event. In equation form,

$$
p(A \text { or } B \text { or } C \ldots \text { or } Z)=p(A)+p(B)+p(C)+\ldots+p(Z)
$$

addition rule with more than two mutually exclusive events
where $Z \quad=$ the last event
Very often we shall encou nter situations in which the events a re not on ly mutually exclusive but also exhaustive. We have already defined mutually exclusive but not exhaustive.

A set of events is exhaustive if the set includes all of the possible events.

For example, in rolling a die once, the set of events of getting a $1,2,3,4,5$, or 6 is exhaustive because the set i ncludes all of the p ossible e vents. W hen a set of e vents is both exhaustive and mutually exclusive, a very useful relationship exists. Under these conditions, the sum of the individual probabilities of each event in the set must equal 1. Thus,

$$
p(A)+p(B)+p(C)+\ldots+p(Z)=1.00
$$

when events are exhaustive and mutually exclusive
where $\quad A, B, C \ldots Z=$ the events
To illustrate this relationship, let's consider the set of events of getting a $1,2,3,4,5$, or 6 in rolling a fair die once. Since the events are exhaustive and mutually exclusive, the sum of their probabilities must equal 1 . We can see this is true because $p(1)=\frac{1}{6}, p(2)=\frac{1}{6}$, $p(3)=\frac{1}{6}, p(4)=\frac{1}{6}, p(5)=\frac{1}{6}$, and $p(6)=\frac{1}{6}$. Thus,

$$
\begin{array}{r}
p(1)+p(2)+p(3)+p(4)+p(5)+p(6)=1.00 \\
\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}=1.00
\end{array}
$$

When there are only two events and the events are mutually exclusive, it is customary to assign the symbol $P$ to the probability of occurrence of one of the events and $Q$ to the probability of occurrence of the other event. For example, if I were flipping a penny and only allowed it to come up heads or tails, this would be a situation in which there are only two possible events with each flip (a head or a tail), and the events are mutually exclusive (if it is a head, it can't be a tail, and vice versa). It is customary to let $P$ equal the probability of occurrence of one of the events, say, a head, and $Q$ equal the probability of occurrence of the other event, a tail.

When flipping coins, it is useful to distinguish between fair coins and biased coins.

A fair coin or unbiased coin is one where if flipped once, the probability of a head $=$ the probability of a tail $=\frac{1}{2}$. If the coin is biased, the probability of a head $\neq$ the probability of a tail $\neq \frac{1}{2}$.

Thus, if we are flipping a co in, if we let $P$ equal the probability of a hea d and $Q$ equal the probability of a tail, and the coin is a fair coin, then $P=\frac{1}{2}$ or 0.50 and $Q=\frac{1}{2}$ or 0.50 . Since the events of getting a head or a tail in a single flip of a coin are exhaustive and mutually exclusive, their probabilities must equal 1 . Thus,

$$
P+Q=1.00 \quad \text { when two events are exhaustive and mutually exclusive }
$$

We shall be using the symbols $P$ and $Q$ extensively in Chapter 9 in conjunction with the binomial distribution.

## The Multiplication Rule

Whereas the addition rule gives the pro bability of occurrence of a ny one of se veral events, the multiplication rule is concerned with the joint or successive occurrence of several events. Note that the multiplication rule often deals with what happens on more than one roll or draw, whereas the addition rule covers just one roll or one draw. If we are interested in the joint or successive occurrence of two events $A$ and $B$, then the multiplication rule states the following:

The probability of occurrence of both $\boldsymbol{A}$ and $\boldsymbol{B}$ is equal to the probability of occurrence of $A$ times the probability of occurrence of $B$, given $A$ has occurred.

In equation form, the multiplication rule is

$$
p(A \text { and } B)=p(A) p(B \mid A) \quad \begin{aligned}
& \text { multiplication rule with two } \\
& \text { events-general equation }
\end{aligned}
$$

Note that the symbol $p(B \mid A)$ is read "probability of occurrence of $B$ given $A$ has occurred." It does not mean $B$ divided by $A$. Note also that the multiplication rule is concerned with the occurrence of both $A$ and $B$, whereas the addition rule applies to the occurrence of either $A$ or $B$.

In discussing the multiplication rule, it is useful to distinguish among three conditions: when the e vents a re mutually exclusive, when the events a re independent, and when the events are dependent.

Multiplication rule: mutually exclusive events We have already discussed the joint occurrence of $A$ and $B$ when $A$ and $B$ are mutually exclusive. You will recall that if $A$ and $B$ are mutually exclusive, then

$$
p(A \text { and } B)=0 \quad \text { multiplication rule with mutually exclusive events }
$$

because when events are mutually exclusive, the occurrence of one precludes the occurrence of the other. The probability of their joint occurrence is zero.

Multiplication rule: independent events To understand how the multiplication rule applies in this situation, we must first define independent.

Two events are independent if the occurrence of one has no effect on the probability of occurrence of the other.

Sampling with replacement illustrates this condition well. For example, suppose we are going to draw two cards, one at a time, with replacement, from a deck of ordinary playing cards. We can let $A$ be the card drawn first and $B$ be the card drawn second. Since $A$ is replaced before drawing $B$, the occurrence of $A$ on the first draw has no effect on the probability of occurrence of $B$. For instance, if $A$ were an ace, because it is replaced in the deck before picking the second card, the occurrence of an ace on the first draw has no effect on the probability of occurrence of the card picked on the second draw. If $A$ and $B$ are independent, then the probability of $B$ occurring is unaffected by $A$. Therefore, $p(B \mid A)=p(B)$. Under this condition, the multiplication rule becomes

$$
p(A \text { and } B)=p(A) p(B \mid A)=p(A) p(B) \quad \begin{array}{ll}
\text { multiplication rule with } \\
\text { independent events }
\end{array}
$$

Let's see how to use this equation. Suppose we are going to randomly draw two cards, one at a t ime, with replacement, from a de ck of ord inary playing cards. What is $t$ he probability both cards will be aces?

The solution is shown in Figure 8.3. Since the problem requires an ace on the first draw and an ace on the second draw, the multiplication rule is appropriate. We can let $A$ be an ace on the first draw and $B$ be an ace on the second draw. Since sampling is with replacement, $A$ and $B$ are independent. Thus, $p$ (an ace on first draw and an ace on second draw) $=p$ (an ace on first draw) $p$ (an ace on second draw). There are four aces possible on the first draw, four aces possible on the second draw (sampling is with replacement), and 52 cards in the deck, so $p$ (an ace on first draw) $=\frac{4}{52}$ and $p($ an ace on se cond draw $)=\frac{4}{52}$. Thus, $p($ an ace on first draw and an ace on se cond draw) $=\frac{4}{52}\left(\frac{4}{52}\right)=\frac{16}{2704}=0.0059$. Let's do a few more problems for practice.

$$
p(A \text { or } B)=p(A) p(B)
$$

$\left[\begin{array}{c}p(\text { an ace on 1st draw and } \\ \text { an ace on 2nd draw) }\end{array}\right]=p($ an ace on 1st draw $) p$ (an ace on 2nd draw $)$

$$
\begin{aligned}
& =\left(\frac{4}{52}\right)\left(\frac{4}{52}\right) \\
& =\frac{16}{2704}=0.0059
\end{aligned}
$$

where $A \quad=$ an ace on 1st draw
$B=$ an ace on 2nd draw
Events favorable to $A$


Events favorable to $B$

figure 8.3 Determining the probability of randomly sampling two aces in two draws from a deck of ordinary playing cards. Sampling is one at a time with replacement: multiplication rule with independent events.

## Practice Problem 8.4

Suppose we roll a pair of fair dice once. What is the probability of obtaining a 2 on die 1 and a 4 on die 2 ?

## SOLUTION

The solution is shown in the following figure. Since there is independence between the dice and the problem asks for a 2 and a 4, the multiplication rule with independent events applies. Thus, $p(\mathrm{a} 2$ on die 1 and a 4 on die 2$)=p(\mathrm{a} 2$ on die 1$)$ $p(\mathrm{a} 4$ on die 2$)$. There is one way to get a 2 on de 1 , one way to get a 4 on de 2 , and six possible outcomes with each die. Therefore, $p(2$ on die 1$)=\frac{1}{6}, p(4$ on die 2$)=\frac{1}{6}$, and $p(2$ on die 1 and 4 on die 2$)=\frac{1}{6}\left(\frac{1}{6}\right)=\frac{1}{36}=0.0278$.

$$
p(2 \text { on die } 1 \text { and } 4 \text { on die } 2)=p(2 \text { on die } 1) p(4 \text { on die } 2)
$$

$$
=\left(\frac{1}{6}\right)\left(\frac{1}{6}\right)=\frac{1}{36}=0.0278
$$

Events favorable to $A$ Die 1

Events favorable to $B$
Die 2


$$
\text { where } A=\mathrm{a} 2 \text { on die } 1
$$

$B=\mathrm{a} 4$ on die 2

## Practice Problem 8.5

If two pennies are flipped once, what is the probability both pennies will turn up heads? Assume that the pennies are fair coins and that a head or tail is the only possible outcome with each coin.

## SOLUTION

The solution is $s$ hown in the accompanying figure. Since the outcome with the first coin has no effect on $t$ he outcome of the se cond coin, there is independence between events. The problem requires a hea $d$ with the first coin and a head with the second coin, so the multiplication rule with independent events is appropriate. Thus, $p$ (a head with the first penny and a head with the second penny $)=p($ a head with first penny $) p($ a head with second penny $)$. Since
(continued)
there is on ly one way to get a head with each coin and two possibilities with each coin (a head or a tail), $p($ a head with first penny $)=\frac{1}{2}$, and $p($ a head with second penny) $=\frac{1}{2}$. Thus, $p$ (head with first penny and head with second penny) $=\frac{1}{2}\left(\frac{1}{2}\right)=\frac{1}{4}=0.2500$.

$$
p(A \text { and } B)=p(A) p(B)
$$

$\left[\begin{array}{r}p(\text { a head with 1st penny and } \\ \text { a head with 2nd penny) }\end{array}\right]=p$ (a head with 1st penny $) p($ a head with 2nd penny $)$

$$
=\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)=0.2500
$$

where $A=\mathrm{a}$ head with 1 st penny
$B=\mathrm{a}$ head with 2nd penny
Events favorable to $A$ First penny

Events favorable to $B$

Second penny


## Practice Problem 8.6

Suppose you are randomly sampling from a bag of fruit. The bag contains four apples, six oranges, and five peaches. If you sample two fruits, one at a time, with replacement, what is the probability you will get an orange and an apple in that order?

## SOLUTION

The solution is shown in the accompanying figure. Since there is independence between draws (sampling is w ith rep lacement) a nd we want an or ange and an apple, the multiplication rule with independent events applies. Thus, $p$ (an orange on first draw and an apple on second draw) $=p$ (an orange on first draw) $p($ an apple on second draw). Since there are 6 oranges and 15 pieces of fruit in the bag, $p($ an orange on first draw $)=\frac{6}{15}$. Because the fruit selected on the first draw is replaced before the second draw, it has no effect on the fruit picked on the second draw. There are 4 app les and 15 pieces of fruit, so $p$ (an apple on
second draw $)=\frac{4}{15}$. Therefore, $p$ (an orange on first draw and an apple on second draw) $=\frac{6}{15}\left(\frac{4}{15}\right)=0.1067$.

$$
p(A \text { and } B)=p(A) p(B)
$$

$\left[\begin{array}{c}p(\text { an orange on 1st draw } \\ \text { and apple on 2nd draw })\end{array}\right]=p($ an orange on 1st draw $) p($ an apple on 2nd draw $)$

$$
\begin{aligned}
& =\left(\frac{6}{15}\right)\left(\frac{4}{15}\right) \\
& =\frac{24}{225}=0.1067
\end{aligned}
$$

where $A=$ an orange on 1st draw $B=$ an apple on 2nd draw


Events favorable to $A$ Oranges


## Practice Problem 8.7

Suppose you are randomly sampling 2 individuals from a population of 110 men and women. There are 50 men and 60 women in the population. Sampling is one at a time, with replacement. What is the probability the sample will contain all women?

## SOLUTION

The solution is shown in the accompanying figure. Since the problem requires a woman on the first draw and a woman on the second draw and there is independence between these two events (sampling is with replacement), the multiplication
rule with independent events is appropriate. Thus, $p$ (a woman on first draw and a woman on second draw) $=p($ a woman on first draw $) p(\mathrm{a}$ woman on second draw $)$. There are 60 women a nd 110 people in the population, so $p$ (a w oman on first draw $)=\frac{60}{110}$, and $p($ a woman on second draw $)=\frac{60}{110}$. Therefore, $p($ a woman on first draw and a woman on second draw) $=\frac{60}{110}\left(\frac{60}{110}\right)=\frac{3600}{12,100}=0.2975$.
$\left[\begin{array}{c}p(\mathrm{a} \text { woman on 1st draw and } \\ \mathrm{a} \text { woman on 2nd draw) }\end{array}\right]=p(\mathrm{a}$ woman on 1st draw) $p(\mathrm{a}$ woman on 2nd draw)

$$
\begin{aligned}
& =\left(\frac{60}{110}\right)\left(\frac{60}{110}\right) \\
& =\frac{3600}{12,100}=0.2975
\end{aligned}
$$

where $A=$ a woman on 1st draw

$$
B=\text { a woman on 2nd draw }
$$

The multiplication rule with independent events also applies to situations in which there are more than two events. In such cases, the probability of the joint occurrence of the events is equal to the product of the individual probabilities of each event. In equation form,

$$
p(A \text { and } B \text { and } C \text { and } \ldots Z)=p(A) p(B) p(C) \ldots p(Z)
$$

multiplication rule with more than two independent events

To illustrate the use of this equation, let's suppose that instead of sampling 2 individuals from the population in Practice Problem 8.7, you are going to sample 4 persons. Otherwise the problem is the same. The population is composed of 50 men and 60 women. As before, sampling is one at a time, with replacement. What is the probability you will pick 3 women and 1 man in that order? The solution is shown in Figure 8.4. Since the problem requires a woman on the first and second and third draws and a man on the fourth draw and sampling is with replacement, the multiplication rule with more than two independent events is appropriate. This rule is just like the multiplication rule with two independent events, except there are more terms to multiply. Thus, $p$ (a woman on first draw and a woman on second draw and a woman on third draw and a man on fourth draw $)=p($ a woman on first draw) $p$ (a woman on second draw) $p$ (a woman on t hird draw) $p$ (a m an on fourth draw). There are 60 women, 50 men, a nd 110 people in the population. Since sampling is with replacement, $p($ a woman on first draw $)=\frac{60}{110}, p(\mathrm{a}$ woman on second draw $)=\frac{60}{110}$, $p(\mathrm{a}$ woman on third draw $)=\frac{60}{110}$, and $p($ a man on fourth draw $)=\frac{50}{110}$. Thus, $p(\mathrm{a}$ woman on

$$
p(A \text { and } B \text { and } C \text { and } D)=p(A) p(B) p(C) p(D)
$$

$\left[\begin{array}{c}p(\text { a woman on 1st draw and a woman } \\ \text { on 2nd draw and a woman on } \\ 3 \mathrm{rd} \text { draw and a man on 4th draw })\end{array}\right]=\left(\frac{60}{110}\right)\left(\frac{60}{110}\right)\left(\frac{60}{110}\right)\left(\frac{50}{110}\right)$

$$
=\frac{1080}{14,641}
$$

$$
=0.0738
$$

where $A=$ a woman on 1st draw $B=$ a woman on 2nd draw $C=$ a woman on 3 nd draw $D=$ a man on 4th draw

figure 8.4 Determining the probability of randomly sampling 3 women and 1 man, in that order, in four draws from a population of 50 men and 60 women. Sampling is one at a time with replacement: multiplication rule with several independent events.
first draw and a woman on second draw and a woman on third draw and a man on fourth draw $)=\frac{60}{110}\left(\frac{60}{110}\right)\left(\frac{60}{110}\right)\left(\frac{50}{110}\right)=1080 / 14,641=0.0738$.

Multiplication rule: dependent events When $A$ and $B$ are dependent, the probability of occurrence of $B$ is affected by the occurrence of $A$. In this case, we cannot simplify the equation for the probability of $A$ and $B$. We must use it in its original form. Thus, if $A$ and $B$ are dependent,

$$
p(A \text { and } B)=p(A) p(B \mid A) \quad \text { multiplication rule with dependent events }
$$

Sampling without replacement provides a good illustration for dependent events. Suppose you are going to draw two cards, one at a time, without replacement, from a deck of ordinary playing cards. What is the probability both cards will be aces?

The solution is shown in Figure 8.5. We can let $A$ be an ace on the first draw and $B$ be an ace on the second draw. Since sampling is without replacement (whatever card is picked the first time is kept out of the deck), the occurrence of $A$ does affect the probability of $B . A$ and $B$ are dependent. Since the problem asks for an ace on the first draw and an ace on the second draw, and these events are dependent, the multiplication rule with dependent events is appropriate. Thus, $p$ (an ace on first draw and an ace on second draw) $=p$ (an ace on first draw) $p$ (an ace on second draw, given an ace was obtained on first draw). For the first draw, there are 4 aces and 52 cards. Therefore, $p($ an ace on first draw $)=\frac{4}{52}$. Since sampling is without replacement, $p(\mathrm{an}$ ace on second draw given an ace on first draw) $=\frac{3}{51}$. Thus, $p$ (an ace on first draw and an ace on second draw) $=\frac{4}{52}\left(\frac{3}{51}\right)=\frac{12}{2652}=0.0045$.

$$
p(A \text { and } B)=p(A) p(B \mid A)
$$

$$
\left[\begin{array}{c}
p(\text { an ace on 1st draw and } \\
\text { an ace on 2nd draw })
\end{array}\right]=\left[\begin{array}{c}
p(\text { an ace on 1st draw }) p(\text { an ace on } 2 \mathrm{nd} \\
\text { draw given an ace on 1st draw })
\end{array}\right]
$$


where $A=$ drawing an ace on 1st draw $B=$ drawing an ace on 2nd draw
figure 8.5 Determining the probability of randomly picking two aces in two draws from a deck of ordinary playing cards. Sampling is one at a time without replacement: multiplication rule with dependent events.

## Practice Problem 8.8

Suppose you are randomly sa mpling two fruits, one at at ime, from the bag of fruit in Practice Problem 8.6. As before, the bag contains four apples, six oranges, and five peaches. However, this time you are sampling without replacement. What is the probability you will get an orange and an apple in that order?

## SOLUTION

The solution is shown in the accompanying figure. Since the problem requires an orange and an apple and sampling is without replacement, the multiplication rule with dependent events applies. Thus, $p$ (an orange on first draw and an apple on second draw $)=p($ an orange on first draw) $) p($ an apple on second draw given an orange was obtained on first draw). On the first draw, there are 6 oranges and 15 fruits. Therefore, $p$ (an or ange on first draw) $=\frac{6}{15}$. Since sa mpling is $\mathbf{w}$ ithout replacement, $p($ an apple on second draw given an orange on first draw $)=\frac{4}{14}$. Therefore, $p($ an orange on first draw and an apple on second draw $)=\frac{6}{15}\left(\frac{4}{14}\right)=\frac{24}{210}=0.1143$.

$$
p(A \text { and } B)=p(A) p(B \mid A)
$$

$\left[\begin{array}{c}p(\text { an orange on 1st draw and } \\ \text { an apple on 2nd draw) }\end{array}\right]=\left[\begin{array}{c}p(\text { an orange on 1st draw }) p(\text { an apple on } \\ 2 \text { nd draw given an orange on 1st draw })\end{array}\right]$

$$
\begin{aligned}
& =\left(\frac{6}{15}\right)\left(\frac{4}{14}\right) \\
& =\frac{24}{210}=0.1143
\end{aligned}
$$

where $A=$ an orange on 1st draw
$B=$ an apple on 2nd draw


## Practice Problem 8.9

In a particular college class, there are 15 music majors, 24 history majors, and 46 psychology majors. If you randomly sample 2 students from the class, what is the probability they will both be history majors? Sampling is one at a t ime, without replacement.

## SOLUTION

The solution is shown in the accompanying figure. Since the problem requires a history major on the first draw and a history major on the second draw and sampling is without replacement, the multiplication rule with dependent events is appropriate. Thus, $p$ (a history major on first draw and a history major on second draw) $=p($ a history major on first draw $) p($ a history major on second draw given a history major was obtained on first draw). On the first draw, there were 24 history majors a nd 85 people in the population. Therefore, $p($ a history major on first draw) $=\frac{24}{85}$. Since sampling is without replacement, $p$ (a history major on second draw given a history major on first draw) $=\frac{23}{84}$. Therefore, $p$ (a history major on first draw and a history major on second draw) $=\frac{24}{85}\left(\frac{23}{84}\right)=\frac{552}{7140}=0.0773$.
(continued)

$$
p(A \text { and } B)=p(A) p(B \mid A)
$$

$\left[\begin{array}{c}p(\text { a history major on 1st draw and } \\ \text { a history major on 2nd draw })\end{array}\right]=\left[\begin{array}{c}p(\text { a history major on 1st draw }) p(\text { a history } \\ \text { major on second draw given a history } \\ \text { major on first draw })\end{array}\right]$

$$
\begin{aligned}
& =\left(\frac{24}{85}\right)\left(\frac{23}{84}\right) \\
& =\frac{552}{7140}=0.0773
\end{aligned}
$$

History majors

Like the multiplication rule with independent events, the multiplication rule with dependent events also applies to situations in which there are more than two events. In such cases, the equation becomes

$$
p(A \text { and } B \text { and } C \text { and } \ldots Z)=p(A) p(B \mid A) p(C \mid A B) \ldots p(Z \mid A B C \ldots)
$$

multiplication rule with more than two dependent events
where $p$
$(A)=$ probability of $A$
$p(B \mid A)=$ probability of $B$ given $A$ has occurred
$p(C \mid A B)=$ probability of $C$ given $A$ and $B$ have occurred $p(Z \mid A B C \ldots)=$ probability of $Z$ given $A, B, C$, and all other events have occurred

To illustrate how to use $t$ his equation, let's do a pro blem that involves more than two dep endent events. Suppose you a re going to sa mple 4 s tudents from the college class given in Practice Problem 8.9. In that class, there were 15 music majors, 24 history majors, and 46 psychology majors. If sampling is one at a t ime, without replacement, what is the probability you will obtain 4 history majors?

The solution is shown in Figure 8.6. Since the problem requires a history major on the first and second and third and fourth draws and sampling is without replacement, the multiplication rule with more $t$ han $t$ wo dep endent events is appropr iate. This rule is very much like the multiplication rule with two dependent events, except more multiplying is required. Thus, for this problem, $p$ (a history major on first draw and a history major on second draw and a history major on third draw and a history major on fourth draw) $=p$ (a history major on first draw) $p$ (a history major on second draw $g$ iven a h istory m ajor on first draw) $p$ ( a h istory m ajor on t hird d raw g iven a

figure 8.6 Determining the probability of randomly sampling 4 history majors on four draws from a population of 15 music majors, 24 history majors, and 46 psychology majors. Sampling is one at a time without replacement: multiplication rule ith several dependent events.
history major on first and second draws) $p$ (a history major on fourth draw given a history major on first, second, and third draws). On the first draw, there are 24 history majors and 85 individuals in the population. Thus, $p$ (a history major on first draw) $=\frac{24}{85}$. Since sampling is without replacement, $p$ (a history major on second draw given a history major on first draw $)=\frac{23}{84}, p($ a history major on third draw given a history major on first and second draws $)=\frac{22}{83}$, and $p($ a history major on fourth draw given a history major on first, second, and third draws) $=\frac{21}{82}$. Therefore, $p$ (a history major on first draw and a history major on second draw and a history major on third draw and a history major on fourth draw $)=\frac{24}{85}\left(\frac{23}{84}\right)\left(\frac{22}{83}\right)\left(\frac{21}{82}\right)=255,024 / 48,594,840=0.0052$.

## Multiplication and Addition Rules

Some situations require that we use both the multiplication and addition rules for their solutions. For example, suppose that I am going to roll two fair dice once. What is the probability the sum of the numbers showing on the dice will equal 11? The solution is shown in Figure 8.7. There are two possible outcomes that yield a sum of 11 (die $1=5$ and die $2=6$, which we shall call outcome $A$; and die $1=6$ and die $2=5$, which we shall call outcome $B$ ). Since the dice are independent, we can use the multiplication rule with independent events to find the probability of each outcome. By using this rule, $p(A)=\frac{1}{6}\left(\frac{1}{6}\right)=\frac{1}{36}$, and $p(B)=\frac{1}{6}\left(\frac{1}{6}\right)=\frac{1}{36}$. Since either of the outcomes yields a sum of $11, p($ sum of 11$)=p(A$ or $B)$. These outcomes are mutually exclusive, so we can use the addition rule with mutually exclusive events to find $p(A$ or $B)$. Thus, $p$ (sum of 11) $=p(A$ or $B)=p(A)+p(B)=\frac{1}{36}+\frac{1}{36}=\frac{2}{36}=0.0556$.

Let's try one more problem that involves both the multiplication and addition rules.

$$
\begin{aligned}
p(A) & =p(5 \text { on die } 1 \text { and } 6 \text { on die } 2) \\
& =p(5 \text { on die } 1) p(6 \text { on die } 2) \\
& =\left(\frac{1}{6}\right)\left(\frac{1}{6}\right)=\frac{1}{36} \\
p(B) & =p(6 \text { on die } 1 \text { and } 5 \text { on die } 2) \\
& =p(6 \text { on die } 1) p(5 \text { on die } 2) \\
& =\left(\frac{1}{6}\right)\left(\frac{1}{6}\right)=\frac{1}{36} \\
p(\text { sum of } 11) & =p(A \text { or } B)=p(A)+p(B) \\
& =\frac{1}{36}+\frac{1}{36}=\frac{2}{36}=0.0556
\end{aligned}
$$

Possible outcomes yielding a sum of 11

figure 8.7 Determining the probability of rolling a sum of 11 in one roll of two fair dice: multiplication and addition rules.

## Practice Problem 8.10

Suppose you have arrived in Las Vegas and you are going to try your "luck" on a one-armed bandit (slot machine). In case you are not familiar with slot machines, basically a slot machine has three wheels that rotate independently. Each wheel contains pictures of different objects. Let's assume the one you are playing has seven different fruits on wheel 1: a lemon, a plum, an apple, an orange, a pear, some cherries, a nd a ba nana. Wheels 2 a nd 3 ha ve the same fruits as wheel 1. When the lever is pulled down, the three wheels rotate independently and then come to rest. On the slot machine, there is a window in front of each wheel. The pictures of the fruits pass under the window during rot ation. W hen the wheel stops, one of the fruits from each wheel will be in view. We shall assume that each fruit on a wheel has an equal probability of appearing under the window at the end of rotation. You insert your silver dollar and pull down the lever. What is the probability that two lemons and a pear will appear? Order is not important; all you care about is getting two lemons and a pear, in any order.

## SOLUTION

The solution is shown in the accompanying figure. There a re three possible orders of two lemons and a pear: lemon, lemon, pear; lemon, pear, lemon; and pear, lemon, lemon. Since the wheels rot ate independently, we can use $t$ he multiplication rule with i ndependent e vents to det ermine the pro bability of each order. Since each fruit is equally likely, $p$ (lemon and lemon and pear) $=$ $p$ (lemon) $p$ (lemon) $p$ (pear) $=\frac{1}{7}\left(\frac{1}{7}\right)\left(\frac{1}{7}\right)=\frac{1}{343}$. The same probability also applies to the other two orders. Since the three orders give two lemons and a pear, $p$ (two lemons and a pear) $=p$ (order 1,2 , or 3 ). By using the addition rule with independent events, $p($ order 1,2 , or 3$)=\frac{3}{343}=0.0087$. Thus, the probability of getting two lemons and a pear, without regard to order, equals 0.0087.


## Probability and Continuous Variables

So far in our discussion of probability, we have considered variables that have been discrete, such as sa mpling from a de ck of cards or ro lling a pa ir of dice. However, many of the dependent variables that are evaluated in experiments are continuous, not discrete. When a variable is continuous,

$$
p(A)=\frac{\text { Area under the curve corresponding to } A}{\text { Total area under the curve }}
$$

Often (although not always) these variables are normally distributed, so we shall concentrate our discussion on normally distributed continuous variables.

To illustrate the use of probability with continuous variables that are normally distributed, suppose we have measured the weights of all the sophomore women at your college. Let's assume this is a population set of scores that is normally distributed, with a mean of 120 pounds and a standard deviation of 8 pounds. If we randomly sampled one score from the population, what is the probability it would be equal to or greater than a score of 134 ?

The population is drawn in Figure 8.8. The mean of 120 and the score of 134 are located on the $X$ axis. The shaded area represents all the scores that are equal to or greater than 134. Since sampling is random, each score has an equal chance of being selected. Thus, the probability of obtaining a score e qual to or g reater than 134 can be found by determining the proportion of the total scores that are contained in the shaded area. The scores a re normally distributed, so we can find this proportion by converting the raw score to $i$ ts $z$-transformed value and then looking up the area in Table A in Appendix D. Thus,

$$
z=\frac{X-\mu}{\sigma}=\frac{134-120}{8}=\frac{14}{8}=1.75
$$

From Table A, column C,

$$
p(X \geq 134)=0.0401
$$

We are sure you will recognize that this type of problem is quite similar to those presented in Chapter 5 when dealing with standard scores. The main difference is that, in this chapter, the problem has been cast in terms of probability rather than asking for the proportion or percentage of scores as was done in Chapter 5. Since you are already familiar with this kind of problem, we don't think it necessary to give a lot of practice problems. However, let's try a couple just to be sure.

figure 8.8 Probability of obtaining $X \geq 134$ if randomly sampling one score from a normal population, with $\mu=120$ and $\sigma=8$.

## MENTORINGTIP

Remember: draw the picture first, as you did in Chapter 5.

## Practice Problem 8.11

Consider the same population of sophomore women just discussed in the text. If one score is randomly sampled from the population, what is the probability it will be equal to or less than 110 ?

## SOLUTION

The solution is presented in the accompanying figure. The shaded area represents all the scores that are equal to or less than 110. Since sampling is random, each score has an equal chance of being selected. To find $p(X \leq 110)$, first we must transform the raw score of 110 to its $z$ score. Then we can find the proportion of the total scores that are contained in the shaded area by using Table A. Thus,


## Practice Problem 8.12

Considering the same population again, what is the probability of randomly sampling a score that is as far or farther from the mean than a score of 138 ?

## SOLUTION

The solution is shown in the accompanying figure. The score of 138 is 18 units above the mean. Since the problem asks for scores as far or farther from the mean, we must also consider scores that are 18 units or more below the mean. The shaded areas contain all of the scores that are 18 units or more away from the mean. Since sampling is random, each score has an equal chance of being selected. To find $p(X \leq 102$ or $X \geq 138)$, first we must transform the raw scores of 102 and 138 to their $z$ scores. Then we can find the proportion of the total scores that are
(continued)
contained in the shaded areas by using Table A. $p(X \leq 102$ or $X \geq 138)$ e quals this proportion. Thus,

$$
\begin{array}{rlrl}
z & =\frac{X-\mu}{\sigma}=\frac{102-120}{8}=-\frac{18}{8} \quad z & =\frac{X-\mu}{\sigma}=\frac{138-120}{8}=\frac{18}{8} \\
& =-2.25 & & =2.25
\end{array}
$$

From Table A, column C,

$$
p(X \leq 102 \text { or } X \geq 138)=0.0122+0.0122=0.0244
$$



## "Not Guilty, I'm a Victim of Coincidence": Gutsy Plea or Truth?

## WHAT IS THE TRUTH?



Despite a tradition of qualitatively rather than quantitatively based decision making, the legal
field is increasingly using statistics as a basis for decisions. The following case from Sweden is an example.

In a Swedish trial, the defendant was contesting a charge of overtime parking. An officer had marked the position of the valves of the front and rear tires of the accused driver's car, according to a clock representation (e.g., front valve to one o'clock and rear valve to six o'clock), in both cases to the nearest hour (see diagram). After the allowed time had elapsed, the car was still there, with
the two valves pointing to one and six o'clock as before. The accused was given a parking ticket.

In court, however, he pleaded innocent, claiming that he had left the parking spot in time, but returned to it later, and the valves had just happened to come to rest in the same position as before. The judge, not having taken a basic course in statistics, called in a statistician to evaluate the defendant's claim of coincidence. Is the defendant's claim reasonable? Assume you are the statistician. What would you tell the judge? In formulating your answer, assume independence between the wheels, as did the statistician who advised the judge.

Answer As a statistician, your job is to determine how reasonable the plea of coincidence really is. If we assume the defendant's story is true about leaving and coming back to the parking spot, what is the probability of the two valves returning to their one and six o'clock positions? Since there are 12 possible positions for each valve, assuming independence between the wheels, using the multiplication rule,

$$
\begin{aligned}
p(\text { one and six }) & =\left(\frac{1}{12}\right)\left(\frac{1}{12}\right)=\frac{1}{144} \\
& =0.0069
\end{aligned}
$$

Thus, if coincidence (or chance alone) is at work, the probability of the valves returning to their original positions is about 7 times in 1000.

What do you think the judge did when given this information? Believe it or not, the judge acquitted the defendant, saying that if all four wheels had been checked and found to point in the same directions as before $\left(p=\frac{1}{12} \times \frac{1}{12} \times \frac{1}{12} \times \frac{1}{12}=\frac{1}{20,736}=\right.$ $0.00005)$, then the coincidence claim would have been rejected as too improbable and the defendant convicted. Thus, the judge considered the coincidence explanation as too probable to reject, even though the results would be obtained only 1 out of 144 times if coincidence was
at work. Actually, because the wheels do not rotate independently, the formulas used most likely understate somewhat the probability of a chance
return to the original position. (How did you do? Can we call on you in the future as a statistical expert to help mete out justice?)


## WHAT IS THE TRUTH?

## Sperm Gount Decline-Male or Sampling Inadequacy?

䋻The headline of an article that appeared in 1995 in a leading metropolitan newspaper read, "20-year study shows sperm count decline among fertile men." Excerpts from the article are reproduced here.

A new study has found a marked decline in sperm counts among fertile men over the past 20 years ...

The paper, published today in The New England Journal of Medicine, was based on data collected over a 20-year period at a Paris
sperm bank. Some experts in the United States took strong exception to the findings ...

The new study, by Dr. Pierre Jouannet of the Center for the Study of the Conservation of Human Eggs and Sperm in Paris, examined semen collected by a sperm bank in Paris beginning in 1973. They report that sperm counts fell by an average of 2.1 percent a year, going from 89 million sperm per milliliter in 1973 to an average of 60 million per milliliter in 1992. At the same time they found the percentages of sperm that moved normally and were properly formed declined by 0.5 to 0.6 of 1 percent a year.

The paper is accompanied by an invited editorial by an expert on male infertility, Dr. Richard Sherins, director of the division of andrology at the Genetics and IVF Institute in Fairfax, Va., who said the current studies and several preceding it suffered from methodological flaws that made their data uninterpretable.

Sherins said that the studies did not look at sperm from randomly selected men and that sperm counts and sperm quality vary so much from week to week that it is hazardous to rely on single samples to measure sperm quality, as these studies did.
(continued)

WHAT IS THE TRUTH? (continued)

What do you think? Why might it be important to use samples from
randomly selected men rather than from men who deposit their sperm at a sperm bank? Why might large week-to-week variability in sperm
counts and sperm quality complicate interpretation of the data?


## WHAT IS THE TRUTH?



The following article on polling appeared in a recent issue of The New York Times on the Web. I found the article very interesting and hope it is to you as well. The article is presented in its entirety.

## HOW THE ‘TYPICAL’ RESPONDENT IS FOUND

By MICHAEL KAGAY
"What kind of people do you call for your polls? You must not be polling anyone around here in Texas."

Pollsters receive a lot of calls like this, usually from people who are
genuinely puzzled to find that their own views on some controversial issue, or even the views of most people in their particular locality, are not in the majority nationwideaccording to the polls.

But most pollsters take enormous care to ensure a representative sample of respondents to their polls. Good question writing may still be an art, and skillful interviewing may be a craft, but proper sampling is what puts the science into polling.

Random Digit Dialing, or RDD, is the standard sampling procedure in use throughout the polling profession today. The objective is to give every residential telephone number in the

United States an equal chance of being called for an interview. Almost every polling organization uses some form of RDD.

The New York Times/CBS News Poll, for example, relies on the GENESYS system, developed and maintained by Marketing Systems Group of Philadelphia. That system consists of a database of over 42,000 residential telephone exchanges throughout the United States, updated every few months to include newly created area codes and exchanges.

That system also contains computer software to draw a random sample of those exchanges for each
new poll, and to randomly make up the last four digits of each individual telephone number to be called.

That random choice from the universe of all possible telephone numbers is what guarantees the representativeness of the sample of households called for a poll.

In the case of the poll the caller was inquiring about, Texans constitute about seven percent of all Americans, but they formed six percent of the respondents in that particular poll. Pretty close to the mark, but a little bit short.

## Pursuing Respondents Vigorously

Some types of people are harder to reach and to interview than others. How can bias in the results be reduced or avoided?

The first remedy is vigorous pursuit of the household and then of the designated individual respondent within the household.

Most polls make multiple calls to the household over the course of the poll, which often includes daytime calling, nighttime calling, weekdays and weekends. Interviewers leave messages on answering machines about why they are calling, make appointments when the designated individual is not at home, and offer to call back at a time more convenient to the respondent.

For respondents who refuse to be interviewed, many polls also employ a special squad of interviewers who make an additional callback to try to convert the refusal into a completed interview. That task takes special skills-the ability to convince the respondent of the
importance of the interview and the right personality -an ability to tolerate possible rejection.

## Weighting or Balancing After the Interview

Still, just about every poll contains a few too many women, retired people, college graduates, and whites-compared to what the Census Bureau calculates the U.S. population contains at any given time.

This occurs because people vary in how frequently they are at home, how willing they are to talk to strangers on the phone, and how confident they feel in sharing their views about political and social issues.

Therefore, most polls mildly weight their respondents-slightly upping the proportion of men, younger people, those with less education, and racial minorities-to bring the proportions into proper balance. Some pollsters refer to this procedure as balancing.

At the same time the Times/CBS News Poll also takes the opportunity to make a slight adjustment for the
size of household and the number of telephone lines into the residence. This equalizes the probability of selection for individuals in situations where some households have multiple telephone lines and when some households have more adult residents than others.

All these minor adjustments serve to make a good sample even better, and more representative.

## A Sample That Looks Like America

So what do the respondents in a typical New York Times/CBS News Poll look like? After all the random dialing, the callbacks, the refusal conversion, and the weighting, here is what a typical poll consists of:

- In terms of geography, respondents are 22 percent living in the northeast, 33 percent in the south, 24 percent in the mid-west, and 21 percent in the west.
- In terms of gender, they are 47 percent men and 53 percent women.
- In terms of race, they are 80 percent white, 11 percent black, 1 percent Asian, and 6 percent other.

(continued)

WHAT IS THE TRUTH? (continued)

- In education, they are 24 percent college graduates, another 27 percent with some college or trade schooling, 37 percent who did not go beyond high school, and 12 percent who did not graduate from high school.
- In politics the mood shifts from time to time, but recently 27 percent consider themselves Republicans, while 36 percent think of themselves as Democrats, and
another 30 percent call themselves Independents.
- In political philosophy, 20 percent typically call themselves liberals, while 42 percent call themselves moderates, and 32 percent call themselves conservatives.
And that's a sample that pretty much reflects America.

Or, at least, English-speaking
America, for most national polls today are conducted only in English. That is one limitation of polls that must be kept in mind, as the Spanish-speaking
population in the U.S. grows. And that may explain why the Times/CBS News Poll was a little bit short on Texans in that poll the caller inquired about; Texas is a state with a large Spanishspeaking population.

Polls also have other limitations and problems, and future Poll Watch columns will touch on these, too.

Source: Copyright © 1999 by the New York Times Co. Reprinted by permission.

## S U M M ARY

In $t$ his $c$ hapter, $I$ ha ve $d$ iscussed $t$ he topi cs of $r$ andom sampling a nd probabi lity. A r andom sa mple is defined as a sample that has been selected from a population by a pro cess that ens ures that (1) ea ch p ossible sa mple of a given size has an equal chance of being selected and (2) all members of the population have an equal chance of being selected into the sample. After defining and discussing the importance of random sampling, I described various methods for obtaining a r andom sa mple. In the last se ction on $r$ andom sa mpling, I d iscussed sa mpling with and without replacement.

In presenting probability, I pointed out that probability may be approa ched from t wo v iewpoints: a priori and $a$ posteriori. According to the a priori view, $p(A)$ is defined as

$$
p(A)=\frac{\text { Number of events classifiable as } A}{\text { Total number of possible events }}
$$

From an a posteriori standpoint, $p(A)$ is defined as

$$
p(A)=\frac{\text { Number of times } A \text { has occurred }}{\text { Total number of occurrences }}
$$

Since pro bability is f undamentally a prop ortion, it ranges from 0.00 to 1.00 . Next, I presented two probability rules ne cessary f or u nderstanding i nferential statistics: the addition rule a nd the multiplication rule. A ssuming there a re two e vents ( $A$ and $B$ ), the addition $r$ ule $g$ ives the probability of $A$ or $B$, whereas the multiplication rule gives the probability of $A$ and $B$. The addition rule states the following:

$$
p(A \text { or } B)=p(A)+p(B)-p(A \text { and } B)
$$

If the events are mutually exclusive,

$$
p(A \text { or } B)=p(A)+p(B)
$$

If the events are mutually exclusive and exhaustive,

$$
p(A)+p(B)=1.00
$$

The multiplication rule states the following:

$$
p(A \text { and } B)=p(A) p(B \mid A)
$$

If the events are mutually exclusive,

$$
p(A \text { and } B)=0
$$

If the events are independent,

$$
p(A \text { and } B)=p(A) p(B)
$$

If the events are dependent, we must use the general equation

$$
p(A \text { and } B)=p(A) p(B \mid A)
$$

In a ddition, $I d$ iscussed (1) $t$ he $g$ eneralization of these e quations to $s$ ituations in which there were more than $t$ wo e vents a nd (2) situations $t$ hat re quired $b$ oth the a ddition a nd multiplication $r$ ules for their so lution. Finally, I discussed the probability of $A$ with continuous variables and described how to find $p(A)$ when the variable was both normally distributed and continuous. The equation for determining the probability of $A$ when the variable is continuous is

$$
p(A)=\frac{\text { Area under the curve corresponding to } A}{\text { Total area under the curve }}
$$

## IMPORTANT NEW TERMS

Addition rule (p. 196)
A posteriori probability (p. 194)
A priori probability (p. 193)
Biased coin (p. 200)
Exhaustive set of events (p. 200)
Fair coin (p. 200)

Independence of two events (p. 201)
Multiplication rule (p. 201)
Mutually exclusive events (p. 196)
Probability (p. 193)
Probability of occurrence of $A$ or $B$ (p. 196)

Probability of occurrence of both $A$ and $B$ (p. 201)
Random sample (p. 190)
Sampling with replacement (p. 193)
Sampling without replacement (p. 193)

## ■ QUESTIONSANDPROBLEMS

1. Define or identify each term in the Important New Terms section.
2. What two purposes does random sampling serve?
3. Assume you want to form a random sample of 20 subjects from a population of 400 individuals. Sampling will be without replacement, and you plan to use T able J in Appendix D to a ccomplish the randomization. Explain how you would use the table to select the sample.
4. A developmental psychologist is interested in assessing the "emotional i ntelligence" of college s tudents. The e xperimental des ign ca lls $f$ or a dministering a questionnaire that measures emotional intelligence to a sample of 100 undergraduate student volunteers who are enrolled in an introductory psychology course currently being taught at her u niversity. A ssume this is the only sample being used for this study and discuss the adequacy of the sample.
5. What is the difference between a priori and a posteriori probability?
6. The addition rule gives the probability of occurrence of any one of several events, whereas the multiplication rule gives the probability of the joint or successive o ccurrence of se veral e vents. I sthis s tatement correct? Explain, using examples to illustrate your explanation.
7. When so lving pro blems involving the multiplication rule, is it use ful to d istinguish a mong three cond $i$ tions? What are these conditions? Why is it useful to distinguish among them?
8. What is the definition of probability when the variable is continuous?
9. Which of the following are examples of independent events?
a. Obtaining a 3 and a 4 in one roll of two fair dice
b. Obtaining a $n$ a ce $a n d a k$ ing in $t$ hat order $b y$ drawing twice without replacement from a de ck of cards
c. Obtaining a $n$ a ce a nd $a k$ ing in $t$ hat order $b y$ drawing twice with replacement from a de ck of cards
d. A cloudy sky followed by rain
e. A full moon and eating a hamburger
10. Which of $t$ he following a re e xamples of $m$ utually exclusive events?
a. Obtaining a 4 and a 7 in one draw from a deck of ordinary playing cards
b. Obtaining a 3 and a 4 in one roll of two fair dice
c. Being male and becoming pregnant
d. Obtaining a 1 and an even number in one roll of a fair die
e. Getting married and remaining a bachelor
11. Which of the following a re examples of exhaustive events?
a. Flipping a co in a nd o btaining a hea d or at ail (edge not allowed)
b. Rolling a die and obtaining a 2
c. Taking an exam and either passing or failing
d. Going out on a date and having a good time
12. At the beginning of the baseball season in a particular year, the odds that the New York Yankees will win the American League pennant are 3 to 2.
a. What are the odds that the Yankees will lose the pennant?
b. What is the probability that the Yankees will win the pennant? Express your answer as a decimal.
c. What is the probability that the Yankees will lose the pennant? Express your answer as a de cimal. other
13. If you draw a single card once from a deck of ordinary p laying ca rds, $w$ hat is $t$ he pro bability $t$ hat it will be
a. The ace of diamonds?
b A 10 ?
c. A queen or a heart?
d. A 3 or a black card? other
14. If you roll two fair dice once, what is the probability that you will obtain
a. A 2 on die 1 and a 5 on die 2 ?
b. A 2 and a 5 without regard to which die has the 2 or 5?
c. At least one 2 or one 5?
d. A sum of 7 ? other
15. If $y$ ou a re $r$ andomly sa mpling one at a $t$ ime $w$ ith replacement $f$ rom a bag $t$ hat con tains e ight b lue marbles, seven red marbles, and five green marbles, what is the probability of obtaining
a. A blue marble in one draw from the bag?
b. Three blue marbles in three draws from the bag?
c. A red, a green, and a blue marble in that order in three draws from the bag?
d. At least two red marbles in three draws from the bag? other
16. Answer t he sa me ques tions a s i n P roblem 15 , except sa mpling is one at a $t$ ime without replacement. other
17. You are playing the one-armed bandit (slot machine) described in Practice Problem 8.10, p. 212. There are three wheels, and on each wheel there is a picture of a lemon, a plum, an apple, an orange, a pear, cherries, a nd a ba nana ( seven d ifferent pi ctures). Y ou insert your silver dollar and pull down the lever. What is the probability that
a. Three oranges will appear?
b. Two or anges a nd a ba nana will appear, without regard to order?
c. At least two oranges will appear? other
18. You want to call a friend on the telephone. You remember the first three digits of her phone n umber, but you have forgotten the la st four digits. What is $t$ he probability that you will get the correct number merely by guessing once? other
19. You a re planning to $w$ in big at $t$ he race track. In a particular race, there are seven horses entered. If the horses are all equally matched, what is the probability of your cor rectly picking the winner and runner-up? other
20. A gumball dispenser has 38 orange gumballs, 30 purple ones, and 18 yellow ones. The dispenser operates such that one quarter delivers 1 gumball.
a. Using $t$ hree quarters, $w$ hat is $t$ he pro bability of obtaining 3 gumballs in the order orange, purple, orange?
b. Using one quarter, what is the probability of obtaining 1 gumball that is either purple or yellow?
c. Using three quarters, what is the probability that of the 3 gumballs obtained, exactly 1 will be purple and 1 will be yellow? other
21. If two cards are randomly drawn from a deck of ordinary playing cards, one at a time, with replacement,
what is the probability of obtaining at least one ace? other
22. A state lottery is paying $\$ 1$ million to the holder of the ticket with the correct eight-digit number. Tickets cost $\$ 1$ apiece. If you buy one ticket, what is the probability you will win? Assume there is only one ticket for each possible eight-digit number and the winning number is chosen by a random process (round to eight decimal places). other
23. Given a p opulation co mprising 30 bat $\mathrm{s}, 15$ gloves, and 60 balls, if sampling is random and one at a time without replacement,
a. What is the probability of obtaining a glove if one object is sampled from the population?
b. What is $t$ he probability of obtaining a bat a nd a ball in that order if two objects are sampled from the population?
c. What is the probability of obtaining a bat, a glove, and a bat in that order if three objects are sampled from the population? other
24. A distribution of scores is normally distributed with a mean $\mu=85$ and a standard deviation $\sigma=4.6$. If one score is randomly sampled from the distribution, what is the probability that it will be
a. Greater than 96 ?
b. Between 90 and 97 ?
c. Less than 88 ? other
25. Assume the IQ scores of the students at your university are normally distributed, with $\mu=115$ and $\sigma=8$. If you randomly sample one score from this distribution, what is the probability it will be
a. Higher than 130 ?
b. Between 110 and 125 ?
c. Lower than 100 ? cognitive
26. A $s$ tandardized $t$ est mea suring $m$ athematics pro ficiency in s ixth g raders is a dministered nat ionally. The res ults s how a n ormal d istribution of scores, with $\mu=50$ and $\sigma=5.8$. If one score is r andomly sampled from this population, what is the probability it will be
a. Higher than 62 ?
b. Between 40 and 65 ?
c. Lower than 45 ? education
27. Assume we a re still dea ling $w$ ith $t$ he $p$ opulation of P roblem 24 . I f, i nstead of r andomly sa mpling from the population, the single score was sampled, using a nonrandom process, would that affect any of the answers to Problem 24 part $\mathbf{a}, \mathbf{b}$, or $\mathbf{c}$ ? Explain. other
28. An ethologist is interested in how long it takes a certain species of water shrew to catch its prey. On 20 occasions each day, he lets a dragonfly loose inside the cage of a shrew and times how long it takes until the shrew catches the dragonfly. After months of research, the ethologist concludes that the mean prey-catching time w as 30 se conds, the standard deviation was 5.5 seconds, and the scores were normally distributed. Based on the shrew's past record, what is the probability
a. It will catch a dragonfly in less than 18 seconds?
b. It will cat ch a d ragonfly in between 22 a nd 45 seconds?
c. It will take longer than 40 seconds to catch a dragonfly? biological
29. An instructor at the U.S. Navy's underwater demolition school believes he has developed a new technique for staying under water longer. The school commandant $g$ ives him permission to $t$ ry his technique with a student who ha s been randomly se lected from the current class. As part of their qualifying exam, all students are tested to se e how long they can stay under water without an air tank. Past records show that the scores are normally distributed with a mean $\mu=130$ seconds and a s tandard deviation $\sigma=14$ seconds. If the new technique has no additional effect, what is the probability $t$ hat $t$ he $r$ andomly se lected student $w$ ill stay under water for
a. More than 150 seconds?
b. Between 115 and 135 seconds?
c. Less than 90 seconds? education
30. If you a re $r$ andomly sa mpling $t$ wo scores one at a time with replacement from a population comprising the scores $2,3,4,5$, and 6 , what is the probability that a. The mean of the sample $(\bar{X})$ will equal 6.0 ?
b. $\bar{X} \geq 5.5$ ?
c. $\bar{X} \leq 2.0$ ?

Hint: All of the possible samples of size 2 are listed on p. 191. other

## What Is the Truth? Questions

1. 'Not Guilty, I'm a Victim of Coincidence': Gutsy Plea or Truth?
a. What do you think of using statistics to mete out justice? Is it appropriate? Discuss.
b. Assuming the actual probability was in fact 0.0069 , do you think the judge was right in acquitting the defendant? Discuss.
c. Give one e xample of a re cent use of statistics in the legal field.
2. Sperm Count Decline: Male or Sampling Inadequacy?
a. Why might it be important to use sa mples from randomly selected men rather than from men who deposit their sperm at a sperm bank?
b. Why might large week-to-week variability in sperm counts and sperm quality complicate interpretation of the data?

## 3. A Sample of a Sample

a. Given that many of the polls taken on TV or Facebook or the Internet are admittedly not scientific, do they have any value? What are the limitations of such polls?
b. Give an example of an unscientific poll that you believe was valuable. Discuss.
c. In exit $p$ olls $t$ aken $i n$ conjunction $w$ ith nat ional elections, do y ou b elieve $t$ he res ults s hould be shown on television in areas where voting is still taking place? Discuss.

## NOTES

8.1 I realize that if the process ensures that each possible sa mple of a $g$ iven size ha s a $n$ e qual chance of being selected, then it also ensures that all the members of the population have an equal chance
of being se lected into $t$ he sa mple. I i ncluded $t$ he latter statement in the definition because I believed it is sufficiently i mportant to deser ve this special emphasis.

## ONLINE STUDY RESOURCES

## CENGAGE braiin

Login to CengageBrain.com to access the resources your instructor has assigned. For this book, you can access the book's co mpanion website for c hapter-specific learning tools including Know and Be Able to Do, practice quizzes, flash cards and glossaries, and a link to Statistics and Research Methods Workshops.

If your professor has assigned Aplia homework:

1. Sign in to your account.
2. Complete the cor responding ho mework e xercises a s required by your professor.
3. When finished, c lick "G rade It N ow" to se e which areas you have mastered and which need more work, and for detailed explanations of every answer.

Visit www.cengagebrain.com to access your account and to purchase materials.


CHAPTER OUTLINE Introduction
Definition and Illustration of the Binomial Distribution
Generating the Binomial Distribution from the Binomial Expansion
Using the Binomial Table
Using the Normal
Approximation
Summary
Important New Terms
Questions and Problems
Notes
Online Study Resources

## Binomial Distribution

## LEARNING OBJECTIVES

After completing this chapter, you should be able to:

- Specify the five conditions that should be met to result in a binomial distribution.
- Describe the relationship between binomial distribution and binomial expansion, and explain how the binomial table relates to the binomial expansion.
- Specify what each term in the expanded binomial expansion stands for in terms of $P$ and $Q$ events.
- Specify for what $P$ and $Q$ values the binomial distribution is symmetrical, for what values it is skewed, and what happens to the shape of the binomial distribution as $N$ increases.
- Solve binomial problems for $N \leq 20$, using the binomial table.
- Solve binomial problems for $N>20$, using the normal approximation.
- Understand the illustrative examples, do the practice problems, and understand the solutions.

In Chapter 10, we'll discuss the topic of hypothesis testing. This topic is a very important one. It forms the basis for most of the material taken up in the remainder of the textbook. For reasons explained in Chapter 10, we've chosen to introduce the concepts of hypothesis testing by using a simple inference test called the sign test. However, to understand and use the sign test, we must first discuss a probability distribution called the binomial distribution.

## DEFINITION AND ILLUSTRATION OF THE BINOMIAL DISTRIBUTION

The binomial distribution may be defined as follows:
definition

## MENTORINGTIP

Again, probability values have been given to four-decimal-place accuracy. Answers to end-ofchapter problems should also be given to four decimal places, unless you are told otherwise.

Let's use coin flipping as an illustration for generating the binomial distribution. Suppose we flip a f air, or u nbiased, penny once. Suppose further that we restrict the possible outcomes at the end of the flip to either a head or a tail. You will recall from Chapter 8 that a fair coin means the probability of a head with the coin equals the probability of a tail. Since there are only two possible outcomes in one flip,

$$
\begin{aligned}
p(\text { head })=p(H) & =\frac{\text { Number of outcomes classifiable as heads }}{\text { Total number of outcomes }} \\
& =\frac{1}{2}=0.5000 \\
p(\text { tail })=p(T) & =\frac{\text { Number of outcomes classifiable as tails }}{\text { Total number of outcomes }} \\
& =\frac{1}{2}=0.5000
\end{aligned}
$$

Now suppose we flip two pennies that are unbiased. The flip of each penny is considered a trial. Thus, with two pennies, there are two trials $(N=2)$. The possible outcomes of flipping two pennies are given in Table 9.1. There are four possible outcomes: one in which there are 2 heads (row 1), two in which there are 1 head and 1 tail (rows 2 and 3), and one in which there are 2 tails (row 4).
table 9.1 All possible outcomes of flipping two coins once

| Row No. | Penny 1 | Penny 2 | No. of Outcomes |  |
| :---: | :---: | :---: | :---: | :---: |
| $\cdots$ | $H$ | $\ldots$ | $\ldots$ | $\ldots$ |
| 1 | $H$ | $H$ | $\ldots$ | 1 |
| 2 | $H$ | $T$ | $\ldots$ | $\ldots$ |
| 3 | $T$ | $H$ | 2 |  |
| 4 | $T$ | $T$ |  |  |
|  |  | Total outcomes | 4 |  |

Next, let's determine the probability of getting each of these outcomes due to chance. If chance alone is operating, then each of the outcomes is equally likely. Thus,

$$
\begin{aligned}
p(2 \text { heads }) & =p(H H)=\frac{\text { Number of outcomes classifiable as } 2 \text { heads }}{\text { Total number of outcomes }} \\
& =\frac{1}{4}=0.2500 \\
p(1 \text { head }) & =p(H T \text { or } T H)=\frac{\text { Number of outcomes classifiable as } 1 \text { head }}{\text { Total number of outcomes }} \\
& =\frac{2}{4}=0.5000 \\
p(0 \text { head }) & =p(T T)=\frac{\text { Number of outcomes classifiable as } 0 \text { heads }}{\text { Total number of outcomes }} \\
& =\frac{1}{4}=0.2500
\end{aligned}
$$

You should note that we could have also found these probabilities from the multiplication and addition rules. For example, $p(1$ head) could have been found from a combination of the addition and multiplication rules as follows:

$$
p(1 \text { head })=p(H T \text { or } T H)
$$

Using the multiplication rule, we obtain

$$
\begin{aligned}
p(H T) & =p(\text { head on coin } 1 \text { and tail on coin } 2) \\
& =p(\text { head on coin } 1) p(\text { tail on coin } 2) \\
& =\frac{1}{2}\left(\frac{1}{2}\right)=\frac{1}{4} \\
p(T H) & =p(\text { tail on coin } 1 \text { and head on coin } 2) \\
& =p(\text { tail on coin } 1) p(\text { head on coin } 2) \\
& =\frac{1}{2}\left(\frac{1}{2}\right)=\frac{1}{4}
\end{aligned}
$$

Using the addition rule, we obtain

$$
\begin{aligned}
p(1 \text { head }) & =p(H T \text { or } T H) \\
& =p(H T)+p(T H) \\
& =\frac{1}{4}+\frac{1}{4}=\frac{2}{4}=0.5000
\end{aligned}
$$

Next, suppose we increase $N$ from 2 to 3 . The possible outcomes of flipping three unbiased pennies once are shown in Table 9.2. This time there are eight possible outcomes: one way to get 3 heads (row 1), three ways to get 2 heads and 1 tail (rows 2, 3, and 4 ), three ways to get 1 head and 2 tails (rows 5,6 , and 7 ), and one way to get 0 heads (row 8). Since each outcome is equally likely,

$$
\begin{aligned}
p(3 \text { heads }) & =\frac{1}{8}=0.1250 \\
p(2 \text { heads }) & =\frac{3}{8}=0.3750 \\
p(1 \text { head }) & =\frac{3}{8}=0.3750 \\
p(0 \text { heads }) & =\frac{1}{8}=0.1250
\end{aligned}
$$

table 9.2 All possible outcomes of flipping three pennies once

| Row <br> No. | Penny 1 | $\begin{gathered} \text { Penny } \\ 2 \end{gathered}$ | $\begin{gathered} \text { Penny } \\ 3 \end{gathered}$ | No. of Outcomes |
| :---: | :---: | :---: | :---: | :---: |
| 1 | H | H | H | 1 |
| 2 | H | H | $T$ |  |
| 3 | H | $T$ | H | 3 |
| 4 | $T$ | H | H |  |
| 5 | $T$ | $T$ | H |  |
| 6 | $T$ | H | $T$ | 3 |
| 7 | H | $T$ | $T$ |  |
| 8 | $T$ | $T$ | $T$ | 1 |
| Total outcomes 8 |  |  |  |  |

The distributions res ulting from flipping one, two, or three fair pennies are shown in Table 9.3. These are binomial distributions because they a re probability distributions that have been generated by a s ituation in which there is a ser ies of
table 9.3 Binomial distribution for coin flipping when the number of coins equals 1 , 2 , or 3

| Possible <br> Outcomes |  |  |
| :--- | :---: | :---: |
| $\boldsymbol{N}$ | Probability |  |
| 1 | $1 H$ | 0.5000 |
|  | $0 H$ | 0.5000 |
| 2 | $2 H$ | 0.2500 |
|  | $1 H$ | 0.5000 |
|  | $0 H$ | 0.2500 |
| 3 | $3 H$ | 0.1250 |
|  | $2 H$ | 0.3750 |
|  | $1 H$ | 0.3750 |
|  | $0 H$ | 0.1250 |

trials $(N=1,2$, or 3 ), where on ea ch trial there a re only t wo possible outcomes (head or t ail), on ea ch trial the possible outcomes are mutually exclusive (if it's a head, it cannot be a tail), there is independence between trials (there is independence between the outcomes of each coin), and the probability of a head or tail on any trial stays the sa me from trial to $t$ rial. Note that each distribution gives $t$ wo pieces of information: (1) all possible outcomes of the $N$ trials and (2) the probability of getting each of the outcomes.

## GENERATING THE BINOMIAL DISTRIBUTION FROM THE BINOMIAL EXPANSION

We could continue this enumeration process for larger values of $N$, but it becomes too laborious. It would indeed be a dismal prospect if we had to use enumeration for every value of $N$. Think about what happens when $N$ gets to 15 . With 15 pennies, there are $(2)^{15}=32,768$ different ways that the 15 coins could fall. Fortunately, there is a mathematical expression that allows us to generate in a simple way everything we've been considering. The expression is called the binomial expansion. The binomial expansion is given by

$$
(P+Q)^{N} \quad \text { binomial expansion }
$$

where $P \quad=$ probability of one of the two possible outcomes of a trial
$Q=$ probability of the other possible outcome
$N=$ number of trials
To generate the possible outcomes and associated probabilities we arrived at in the previous coin-flipping experiments, all we need to do is expand the expression $(P+Q)^{N}$ for the number of coins in the experiment and evaluate each term in the expansion. For example, if there are two coins, $N=2$ and


The terms $P^{2}, 2 P^{1} Q^{1}$, and $Q^{2}$ represent all the possible outcomes of flipping two coins once.

The letters of each term ( $\boldsymbol{P}$ or $\mathbf{P Q}$ or $\boldsymbol{Q})$ tell us the kinds of events that comprise the outcome, the exponent of each letter tells us how many of that kind of event there are in the outcome, and the coefficient of each term tells us how many ways there are of obtaining the outcome.

Thus,

1. $P^{2}$ indicates that one possible outcome is composed of tw o $P$ events. The lone $P$ tells us this outcome is composed entirely of $P$ events. The exponent 2 indicates there are two of this kind of event. If we associate $P$ with heads, then $P^{2}$ tells us one possible outcome is two heads.
2. $2 P^{1} Q^{1}$ indicates that another possible outcome is one $P$ and one $Q$ event, or one head and one tail. The coefficient 2 tells us there are tw o ways to obtain one $P$ and one $Q$ event.
3. $Q^{2}$ represents an outcome of two $Q$ events, or two tails (zero heads).

## MENTORINGTIP

Caution: if $P \neq 0.50$, the binomial distribution is not symmetrical. This is important for some applications in Chapter 11.

The probability of getting each of these possible outcomes is found by evaluating their respective terms using the numerical values of $P$ and $Q$. If the coins are fair, then $P=Q=0.50$. Thus,

$$
\begin{aligned}
p(2 \text { heads }) & =P^{2}=(0.50)^{2}=0.2500 \\
p(1 \text { head }) & =2 P^{1} Q^{1}=2(0.50)(0.50)=0.5000 \\
p(0 \text { heads }) & =Q^{2}=(0.50)^{2}=0.2500
\end{aligned}
$$

These results are the same as those obtained by enumeration. Note that in using the binomial expansion to find the probability of each possible outcome, we do n ot add the terms but use them separately. At this point, it probably seems much easier to use enumeration than the binomial expansion. However, the situation reverses itself quickly as $N$ gets larger.

Let's do one more example, this time with $N=3$. As before, we need to expand $(P+Q)^{N}$ and evaluate each term in the expansion using $P=Q=0.50$.* Thus,

$$
(P+Q)^{N}=(P+Q)^{3}=P^{3}+3 P^{2} Q+3 P Q^{2}+Q^{3}
$$

The terms $P^{3}, 3 P^{2} Q, 3 P Q^{2}$, and $Q^{3}$ represent all of the possible outcomes of flipping three pennies once. $P^{3}$ tells us there a re three $P$ events, or 3 hea ds. The term $3 P^{2} Q$ indicates that this outcome has two $P$ events and one $Q$ event, or 2 heads and 1 tail. The term $3 P Q^{2}$ represents one $P$ event and two $Q$ events, or 1 head and 2 tails. Finally, the term $Q^{3}$ designates three $Q$ events and zero $P$ events, or 3 tails and 0 heads. We can find the probability of each of these outcomes by evaluation of their respective terms. Since each coin is a fair coin, $P=Q=0.50$. Thus,

$$
\begin{aligned}
p(3 \text { heads }) & =P^{3}=(0.50)^{3}=0.1250 \\
p(2 \text { heads }) & =3 P^{2} Q=3(0.50)^{2}(0.05)=0.3750 \\
p(1 \text { head }) & =3 P Q^{2}=3(0.50)(0.50)^{2}=0.3750 \\
p(0 \text { heads }) & =Q^{3}=(0.50)^{3}=0.1250
\end{aligned}
$$

These are the same results we derived previously by enumeration.
The binomial d istribution $m$ ay be g enerated for a ny $N, P$, and $Q$ by using the binomial expansion. We have graphed the binomial distributions for $N=3,8$, and 15 in Figure 9.1. $P=Q=0.50$ for each of these distributions.

Note that (1) with $P=0.50$, the binomial distribution is symmetrical; (2) it has two tails (i.e., it tails off as we go from the center toward either end); (3) it involves a discrete variable (e.g., we can't have $2 \frac{1}{2}$ heads); and (4) as $N$ increases, the binomial distribution gets closer to the shape of a normal curve.

## USING THE BINOMIAL TABLE



Although in principle any problem involving binomial data can be answered by directly substituting into the binomial expansion, mathematicians have saved us the work. They have solved the binomial expansion for many values of $N$ and reported the results in tables. One such table is Table B in Appendix D. This table gives the binomial distribution for values of $N$ up to 20. Glancing at Table B (p. 595), you observe that $N$ (the number of trials) is given in the first column and the possible outcomes are given in the second column, which is headed by "No. of $P$ or $Q$ Events." The rest of the columns contain probability entries for various values of $P$ or $Q$. The values of $P$ or $Q$ are given
*See Note 9.1 for the general equation to expand $(P+Q)^{N}$.

figure 9.1 Binomial distribution for $N=3, N=8$, and $N=15 ; P=0.50$.
at the top of each column. Thus, the second column contains probability values for $P$ or $Q=0.10$ and the last column has the values for $P$ or $Q=0.50$. In practice, any problem involving binomial data can be solved by looking up the appropriate probability in this table. This, of course, applies only for $N \leq 20$ and the $P$ or $Q$ values given in the table.

The rea der should note that Table B ca $n$ be used to so lve problems in terms of $P$ or $Q$. Thus, with the exception of the first column, the column headings are given in terms of $P$ or $Q$. To emphasize which we are using ( $P$ or $Q$ ) in a given problem, if we are entering the table under $P$ and the number of $P$ events, we shall refer to the second column as "number of $P$ events" and the remaining column headings as " $P$ " probability values. If we are entering Table B under $Q$ and the number of events, we shall refer to

## example

the second column heading as "number of $Q$ events" and the rest of the column headings as " $Q$ " probability values. Let's now see how to use $t$ his table to solve problems involving binomial situations.

If I flip three $u$ nbiased coins once, what is $t$ he p robability of $g$ etting 2 he ads and 1 t ail? Assume each coin can be only a head or tail.

## SOLUTION

In this problem, $N$ is the number of coins, which equals 3 . We can let $P$ equal the probability of a head in one flip of any coin. The coins are unbiased, so $P=0.50$. Since we want to determine the probability of getting 2 heads, the number of $P$ events equals 2 . Having determined the foregoing, all we need do is enter Table B under $N=3$. Next, we locate the 2 in the number of $P$ events column. The answer is found where the row containing the 2 intersects the column headed by $P=0.50$. This is shown in Table 9.4. Thus,

## table 9.4 Table B entry

$$
p(2 \text { heads and } 1 \text { tail })=0.3750
$$

|  | No. of $\boldsymbol{P}$ | $\boldsymbol{P}$ |
| :--- | :---: | :---: |
| $\boldsymbol{N}$ | Events | $\boldsymbol{0 . 5 0}$ |
| $\cdots$ | $\ldots$ | $\ldots$ |
| 3 | 2 | $\ldots$ |

Note that this is $t$ he same answer we arrived at $b$ efore. In fact, if you look at $t$ he remaining entries in that column $(P=0.50)$ for $N=2$ and 3 , you will see that they are the same as we arrived at earlier using the binomial expansion-and they ought to be because the table entries are taken from the binomial expansion. Let's try some practice problems using this table.

## Practice Problem 9.1

If six unbiased coins are flipped once, what is the probability of getting
a. Exactly 6 heads?
b. 4,5 , or 6 heads?

## SOLUTION

a. Given there are six coins, $N=6$. Again, we can let $P$ be the probability of a head in one flip of any coin. The coins are unbiased, so $P=0.50$. Since we want to know the probability of getting exactly 6 heads, the number of $P$ events $=6$. Entering Table B under $N=6$, number of $P$ events $=6$, and $P=0.50$, we find

Table B entry

| $p($ exactly 6 head $)=0.0156$ |  | No. of $P$ | $P$ |
| :---: | :---: | :---: | :---: |
|  | $N$ | Events | 0.50 |
|  | 6 | 6 | 0.0156 |

b. Aga in, $N=6$ and $P=0.50$. We can find the probability of 4,5 , and 6 heads by entering Table B under number of $P$ events $=4,5$, and 6 , respectively. Thus,

Table B entry

$$
\begin{aligned}
& p(4 \text { heads })=0.2344 \\
& p(5 \text { heads })=0.0938 \\
& p(6 \text { heads })=0.0156
\end{aligned}
$$

|  | No. of $\boldsymbol{P}$ <br> Events | $\boldsymbol{P}$ <br> $\boldsymbol{N}$ |
| :--- | :---: | :---: |
| $\cdots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$ | $\mathbf{0 . 5 0}$ |  |
| 6 | 4 | $\ldots$ |

From the addition rule with mutually exclusive events,

$$
\begin{aligned}
p(4,5, \text { or } 6 \text { heads }) & =p(4)+p(5)+p(6) \\
& =0.2344+0.0938+0.0156 \\
& =0.3438
\end{aligned}
$$

## Practice Problem 9.2

If 10 unbiased coins are flipped once, what is the probability of getting a result as extreme or more extreme than 9 heads?

## SOLUTION

There are 10 coins, so $N=10$. As before, we shall let $P=$ the probability of getting a head in one flip of any coin. The coins are unbiased, so $P=Q=0.50$. The phrase "as extreme or more e xtreme than" means "as far from the center of the distribution or farther from the center of the distribution than." Thus, "as extreme or more e xtreme than 9 hea ds" means results that a re as far from the center of the distribution or farther from the center of the distribution than 9 heads. Thus, the number of $P$ events $=0,1,9$, or 10 . In Table B u nder $N=10$, n umber of events $=0,1,9$, or 10 , and $P=0.50$, we find

$$
\begin{aligned}
p\left(\begin{array}{c}
\text { as extreme or } \\
\text { nore extreme } \\
\text { than 9 heads }
\end{array}\right)= & p(0,1,9, \text { or } 10) \\
= & p(0)+p(1)+p(9)+p(10) \\
= & 0.0010+0.0098+0.0098 \\
& +0.0010 \\
= & 0.0216
\end{aligned}
$$

Table B entry

|  | No. of $\boldsymbol{P}$ <br> Events | $\boldsymbol{P}$ |
| :--- | :---: | :---: |
| $\boldsymbol{N}$ | $\mathbf{0 . 5 0}$ |  |
| $\cdots \cdots$ | 0 | $\ldots$ |
| 10 | 1 | 0.0010 |
|  | 9 | 0.0098 |
|  | 10 | 0.0098 |
|  |  |  |
|  |  |  |
|  |  |  |

The binomial expansion is very general. It is not limited to values where $P=0.50$. Accordingly, Table B a lso lists probabilities for values of $P$ other than 0.50 . Let's try some problems where $P$ is not equal to 0.50 .

## Practice Problem 9.3

Assume you have eight biased coins. You will recall from Chapter 8 that a biased coin is one where $P \neq Q$. Each coin is weighted such that the probability of a head with it is 0.30 . If the eight biased coins are flipped once, then
a. What is the probability of getting 7 heads?
b. What is the probability of getting 7 or 8 heads?
c. The probability found in part a comes from evaluating which of the term(s) in the following binomial expansion?
$P^{8}+8 P^{7} Q^{1}+28 P^{6} Q^{2}+56 P^{5} Q^{3}+70 P^{4} Q^{4}+56 P^{3} Q^{5}+28 P^{2} Q^{6}+8 P^{1} Q^{7}+Q^{8}$
d. With your calculator, evaluate the term(s) selected in part $\mathbf{c}$ using $P=0.30$. Compare your answer with the answer in part a. Explain.

## SOLUTION

a. Given there are eight coins, $N=8$. Let $P=$ the probability of getting a head in one flip of any coin. Since the coins are biased such that the probability of a head on any coin is $0.30, P=0.30$. Since we want to determine the probability of getting exactly 7 heads, the number of $P$ events $=7$. In Table B under $N=8$, number of $P$ events $=7$, and $P=0.30$, we find the following:

## Table B entry

$$
p(\text { exactly } 7 \text { heads })=0.0012
$$

|  | No. of $P$ | $P$ |
| :---: | :---: | :---: |
| $N$ | Events | 0.30 |
| 8 | 7 | 0.0012 |

b. Aga in, $N=8$ and $P=0.30$. We can find the probability of 7 and 8 heads in Table B under number of $P$ events $=7$ and 8 , respectively. Thus,

## Table B entry

$$
\begin{aligned}
& p(7 \text { heads })=0.0012 \\
& p(8 \text { heads })=0.0001
\end{aligned}
$$

|  | No. of $\boldsymbol{P}$ | $\boldsymbol{P}$ |
| :--- | :---: | :---: |
| $\boldsymbol{N}$ | Events | $\mathbf{0 . 3 0}$ |
| $\ldots$ | $\ldots$ | $\ldots$ |
| 8 | 7 | $\ldots$ |
|  | 8 | $\ldots$ |
|  | 8 | 0.0012 |

From the addition rule with mutually exclusive events,

$$
\begin{aligned}
p(7 \text { or } 8 \text { heads }) & =p(7)+p(8) \\
& =0.0012+0.0001 \\
& =0.0013
\end{aligned}
$$

c. $8 P^{7} Q^{1}$
d. $8 P^{7} Q^{1}=8(0.30)^{7}(0.7)=0.0012$. As expected, the answers are the same. The table entry was computed using $8 P^{7} Q^{1}$ with $P=0.30$ and $Q=0.70$.

Thus, using Table B when $P$ is less than 0.50 is very similar to using it when $P=0.50$. We just look in the table under the new $P$ value rather than under $P=0.50$.

Table B ca n a lso be use d when $P>0.50$. To illustrate, cons ider the following example.

## example

## $P>0.50$

If five biased coins are flipped once, what is the probability of getting (a) 5 heads and (b) 4 or 5 heads? Each coin is weighted such that the probability of a head on any coin is 0.75 .

## SOLUTION

a. 5 heads. There are five coins, so $N=5$. Again, let $P=$ the probability of getting a he ad in one flip of any coin. Since the bias is such that the probability of a head on any coin is $0.75, P=0.75$. Since we want to determine the probability of getting 5 heads, the number of $P$ events equals 5. Following our usual procedure, we would enter Table B under $N=5$, number of $P$ events $=5$, and $P=0.75$. However, Table B does not have a column headed by 0.75 . All of the column headings are equal to or less than 0.50 . Nevertheless, we can use Table B to solve this problem.

When $P>0.50$, all we need do is solve the problem in terms of $Q$ and the number of $Q$ events, rather than $P$ and the number of $P$ events. Since the probability values given in Table B are for either $P$ or $Q$, once the problem is put in terms of $Q$, we can refer to Table B using $Q$ rather than $P$. Translating the problem into $Q$ terms involves two steps: determining $Q$ and determining the number of $Q$ events. Let's follow these steps using the present example:

1. Determining $Q$.

$$
Q=1-P=1-0.75=0.25
$$

2. Determining the number of $Q$ events.

$$
\text { Number of } Q \text { events }=N-\text { Number of } P \text { events }=5-5=0
$$

Thus, to solve this example, we refer to Table B under $N=5$, number of $Q$ events $=0$, and $Q=0.25$. The Table B entry is shown in Table 9.5. Thus,

| $N$ | No. of $Q$ Events | $\begin{gathered} Q \\ 0.25 \end{gathered}$ |
| :---: | :---: | :---: |
| 5 | 0 | 0.2373 |

b. 4 or 5 heads. Again, $N=5$ and $Q=0.25$. This time, the number of $Q$ events $=0$ or 1 . The Table B entry is shown in Table 9.6. Thus,

| $\begin{aligned} p(4 \text { or } 5 \text { heads }) & =p(0 \text { or } 1 \text { tail }) \\ & =0.2373+0.3955 \\ & =0.6328\end{aligned}$ | ta$N$ | Table B entry |  |
| :---: | :---: | :---: | :---: |
|  |  | $\text { No. of } Q$ | $Q$ |
|  |  | Events | 0.25 |
|  | 5 | 0 | 0.2373 |
|  |  | 1 | 0.3955 |

We are now ready to try a practice problem.

## Practice Problem 9.4

If 12 biased coins are flipped once, what is the probability of getting
a. Exactly 10 heads?
b. 10 or more heads?

The coins are biased such that the probability of a head with any coin equals 0.65 .

## SOLUTION

a. Given there are 12 coins, $N=12$. Let $P=$ the probability of a head in one flip of any coin. Since the probability of a head with any coin equals 0.65 , $P=0.65$. Since $P>0.50$, we shall enter Table B with $Q$ rather than $P$. If there are $10 P$ events, there must be $2 Q$ events $(N=12)$. If $P=0.65$, then $Q=0.35$. Using $Q$ in Table B, we obtain

Table B entry

$$
p(10 \text { heads })=0.1088
$$

|  | No. of $Q$ | ${ }_{0}$ |
| :---: | :---: | :---: |
| $N$ | Events | 0.35 |
| 12 | 2 | 0.1088 |

b. Aga in, $N=12$ and $P=0.65$. This time, the number of $P$ events equals 10,11 , or 12. Since $P>0.50$, we must use $Q$ in Table B rather than $P$. With $N=12$, the number of $Q$ events equals 0,1 , or 2 and $Q=0.35$. Using $Q$ in Table B, we obtain


So far, we have dealt exclusively with coin flipping. However, the binomial distribution is not limited to just coin flipping. It applies to all situations involving a ser ies of trials where on each trial there are only two possible outcomes, the possible outcomes on each trial a re mutually exclusive, there is i ndependence between the outcomes of each trial, and the probability of each possible outcome on any trial stays the same from trial to trial. There are many situations that fit these requirements. To illustrate, let's do a couple of practice problems.

## Practice Problem 9.5

A student is taking a multiple-choice exam with 15 questions. Each question has five choices. If the student $g$ uesses on ea ch question, what is $t$ he probability of passing the test? The lowest passing score is $60 \%$ of the questions answered cor rectly. A ssume $t$ hat $t$ he choices for ea ch ques tion a re e qually likely.

## SOLUTION

This problem fits the binomial requirements. There is a ser ies of trials (questions). On each trial, there are only two possible outcomes. The student is either right or wrong. The possible outcomes are mutually exclusive. If she is right on a question, she can't be wrong. There is independence between the outcomes of each trial. If she is right on question 1, it has no effect on the outcome of question 2. Finally, if we assume the student guesses on each trial, then the probability of being right and the probability of being wrong on any trial stay the same from trial to trial. Thus, the binomial distribution and Table B apply.

We ca $n$ cons ider each ques tion a $t$ rial (no pu $n$ intended). Given there a re 15 questions, $N=15$. We can let $P=$ the probability that she will guess correctly on any question. Since there are five choices that are equally likely on each question, $P=0.20$. A passing grade equals $60 \%$ correct answers or more. Therefore, the student will pass if she gets 9 or more answers correct ( $60 \%$ of 15 is 9 ). Thus, the number of $P$ events equals $9,10,11,12,13,14$, and 15 . Looking in Table B under $N=15$, number of $P$ events $=9,10,11,12,13,14$, and 15, and $P=0.20$, we obtain

| $p(9,10,11,12,13,14$, | Table B entry |  |  |
| :---: | :---: | :---: | :---: |
|  |  | No. of $P$ | $P$ |
|  | $N$ | Events | 0.20 |
| $\begin{aligned} \text { or } 15 \text { correct guesses) } & =0.0007+0.0001 \\ & =0.0008 \end{aligned}$ | 15 | 9 | 0.0007 |
|  |  | 10 | 0.0001 |
|  |  | 11 | 0.0000 |
|  |  | 12 | 0.0000 |
|  |  | 13 | 0.0000 |
|  |  | 14 | 0.0000 |
|  |  | 15 | 0.0000 |

## Practice Problem 9.6

Your friend claims to be a coffee connoisseur. He always drinks Starbucks and claims no other coffee even comes close to tasting so g ood. You suspect he is being a little grandiose. In fact, you wonder whether he can even taste the difference between Starbucks and the local roaster's coffee. Your friend agrees to the following experiment. While blindfolded, he is $g$ iven six opportunities to taste from two cups of coffee and tell you which of the two cups contains Starbucks. The cups are identical and contain the same type of coffee except that one contains coffee made from beans supplied and roasted by Starbucks and the other by the local roaster. After each tasting of the two cups, you remove any telltale signs and randomize which of the two cups he is given first for the next trial. Believe it or not, your friend correctly identifies Starbucks on all six trials! What do you conclude? Can you think of a way to increase your confidence in the conclusion?

## SOLUTION

The logic of our analysis is as follows. We will assume that your friend really can't tell the difference between the two coffees. He must then be guessing on each trial. We will compute the probability of getting six out of six correct, assuming guessing on each trial. If this probability is very low, we will reject guessing as a reasonable explanation and conclude that your friend can really taste the difference.

This experiment fits the re quirements for the binomial distribution. E ach comparison of the two coffees can be considered a trial (again, no pun intended). On each trial, there are only two possible outcomes. Your friend is e ither right or wrong. The outcomes are mutually exclusive. There is independence between trials. If your friend is correct on trial 1, it has no effect on the outcome of trial 2. Finally, if we assume your friend guesses on any trial, then the probability of being correct and the probability of being wrong stay the same from trial to trial.

Given each comparison of coffees is a trial, $N=6$. We can let $P=$ the probability your friend will guess correctly on any trial. There are only two coffees, so $P=0.50$. Your friend was correct on all six trials. Therefore, the number of $P$ events $=6$. Thus,

> Table B entry
$p(6$ correct guesses $)=0.0156$

|  | No. of $P$ | $P$ |
| :---: | :---: | :---: |
| $N$ | Events | 0.50 |
| 6 | 6 | 0.0156 |

Assuming y our $f$ riend is $g$ uessing, the probability of $h$ is getting six out of six cor rect is 0.0156 . Since this is a f airly low value, y ou would probably reject guessing as a reasonable explanation and conclude that your friend can really taste the difference. To increase your con fidence in rejecting guessing, you could include more brands of coffee on each trial, or you could increase the number of trials. For example, even with only two coffees, the probability of guessing correctly on 12 out of 12 trials is 0.0002 .

A limitation of using the binomial table is that when $N$ gets large, the table gets huge. Imagine how big the table would be if it went up to $N=200$, rather than to $N=20$ as it does in this textbook. Not only that, but imagine solving the problem of determining the probability of getting 150 or more heads if we were flipping a fair coin 200 times. Not only would the table have to be very large, but we would wind up having to add 51 four-digit probability values to get our answer! Even statistics professors are not that sadistic. Not to worry!

Remember, I pointed out earlier that as $N$ increases, the binomial distribution becomes more normally shaped. When the binomial distribution approximates the normal distribution closely enough, we can solve binomial problems using $z$ scores and the normal curve, as we did in Chapter 8, rather than having to look up many discrete values in a table. I call this approach the normal approximation approach.

How close the binomial distribution is to the normal distribution depends on $N, P$, and $Q$. As $N$ increases, the binomial distribution gets more normally shaped. As $P$ and $Q$ deviate from 0.50 , the binomial distribution gets less normally shaped. A c riterion that is commonly used, and one that we shall adopt, is that if $N P \geq 10$ and $N Q \geq 10$, then the binomial distribution is c lose en ough to t he normal distribution to use t he normal approximation approach without unduly sacrificing accuracy. Table 9.7 shows the minimum value of $N$ for several values of $P$ and $Q$ necessary to meet this criterion. Notice that as $P$ and $Q$ get further from $0.50, N$ must get larger to meet the criterion.
table 9.7 Minimum value of $N$ for several values of $P$ and $Q$

| $\boldsymbol{P}$ | $\boldsymbol{Q}$ | $\ldots$ |
| :--- | :---: | :---: |
| $\cdots \ldots \ldots$ | $\boldsymbol{N}$ |  |
| 0.50 | 0.50 | $\ldots$ |
| 0.30 | 0.70 |  |
| 0.10 | 0.90 |  |

The n ormal d istribution t hat t he b inomial appro ximates ha $\mathrm{s} t$ he f ollowing para meers.

1. The mean of the distribution equals $N P$. Thus,

$$
\begin{array}{ll}
\mu=N P & \begin{array}{l}
\text { Mean of the normal distribution approximated } \\
\text { by the binomial distribution }
\end{array}
\end{array}
$$

2. The standard deviation of the distribution equals $\sqrt{N P Q}$. Thus,

$$
\sigma=\sqrt{N P Q} \quad \begin{aligned}
& \text { Standard deviation of the normal distribution } \\
& \text { approximated by the binomial distribution }
\end{aligned}
$$

To use the normal approximation approach, we first compute the $z$ score of the frequency given in the problem. Next we determine the appropriate probability by en tering column B or Co f Table A , using the computed $z$ score. Table A, as you probably remember, gives us a reas under the normal curve. Let's try an example to see how this works. For the first example, let's do one of the sort we are used to.

## example

If I flip 20 unbiased coins once, what is the probability of getting 18 or more heads?

## SOLUTION

To solve this example, let's follow these steps.

1. Determine if the criterion is met for normal approximation approach.

Since the coins are unbiased, $P=Q=0.50, N=20$.

$$
\begin{aligned}
& N P=20(0.50)=10 \\
& N Q=20(0.50)=10
\end{aligned}
$$

Since $N P=10$ and $N Q=10$, the criterion that both $N P \geq 10$ and $N Q \geq 10$ is met. Therefore we can assume the binomial distribution is close enough to a normal distribution to solve the example using the normal approximation, rather than the binomial table. Note that both the $N P$ and the $N Q$ criterion must be met to use the normal approximation approach.
2. Determine the parameters of the approximated normal curve

$$
\begin{aligned}
\mu & =N P=20(0.50)=10 \\
\sigma & =\sqrt{N P Q}=\sqrt{20(0.50)(0.50)}=\sqrt{5.00}=2.24
\end{aligned}
$$

3. Draw the picture and locate the important information on it.

Next, let's d raw the picture of the distribution a nd locate the i mportant information on it as we did in Chapter 8. This is shown in Figure 9.2. The figure shows the normal distribution with $\mu=10, X=18$. The shaded area corresponds to the probability of getting 18 or more heads. We can determine this probability by computing the $z$ value of 18 and looking up the probability in Table A.
4. Determining the probability of 18 or more heads

The $z$ value of 18 is given by

$$
z=\frac{X-\mu}{\sigma}=\frac{18-10}{2.24}=3.58
$$

Entering Table A, Column C, using the $z$ score of 3.58 , we obtain

$$
p(18 \text { or more heads })=p(\mathrm{X} \geq 18)=0.0002
$$

Thus, if I flip 20 unbiased coins once, the probability of getting 18 or more heads is 0.0002 .

figure 9.2 Determining the probability of 18 or more heads using the normal approximation approach

You might be wondering how close this value is to that which we would have obtained using the binomial table. Let's check it out. Looking in Table B, under $N=20, P=0.50$, and number of $P$ events $=18,19$, and 20, we obtain

$$
p(18,19, \text { or } 20 \text { heads })=0.0002+0.0000+0.0000+0.0002
$$

Not too shabby! The normal approximation yielded exactly the same value (four decimalplace a ccuracy) as the value given by the actual bi nomial distribution. Of course, the values given by the normal approximation are not always this accurate, but the accuracy is usually close enough for most statistical purposes. This is especially true if $N$ is large and $P$ is close to 0.50 .*

Next, let's do an example in which $P \neq Q$.

## example

Over the past 10 years, the football program at a large university graduated $70 \%$ of its varsity athletes. If the same probability applies to this year's group of 65 varsity football players,
a. What is the probability that 50 or more players of the group will graduate?
b. What is the probability that 48 or fewer players of the group will graduate?

## SOLUTION

a. Probability that 50 or more players will graduate. For the solution, let's follow these steps:

1. Determine if the criterion is met for normal approximation approach.

Let $P=$ the probability any player in the group will graduate $=0.70$.
Let $Q=$ the probability any player in the group will not graduate $=0.30$.

$$
\begin{aligned}
& N P=65(0.70)=45.5 \\
& N Q=65(0.30)=19.5
\end{aligned}
$$

Since $N P=45.5$ and $N Q=19.5$, the criterion that both $N P \geq 10$ and $N Q \geq 10$ is met. Therefore, we can use the normal approximation approach.
2. Determine the parameters of the approximated normal curve

$$
\begin{aligned}
& \mu=N P=65(0.70)=45.5 \\
& \sigma=\sqrt{N P Q}=\sqrt{65(0.70)(0.30)}=\sqrt{13.65}=3.69
\end{aligned}
$$

3. Draw the picture and locate the important information on it.

This is shown in Figure 9.3. The figure shows the normal distribution with $\mu=45.5$, $X=50$. The shaded area corresponds to the probability that 50 or more players of the group will graduate. We can determine this probability by computing the $z$ value of 50 and looking up the probability in Table A, Column C.
4. Determining the probability that 50 or more players will graduate

The $z$ value of 50 is given by

$$
z=\frac{X-\mu}{\sigma}=\frac{50-45.5}{3.69}=1.22
$$

[^12]
figure 9.3 Determining the probability that 50 or more players will graduate, using the normal approximation approach.

Entering Table A, Column C, using the $z$ score of 1.22 , we obtain

$$
p(50 \text { or more graduates })=p(X \geq 50)=0.1112
$$

Thus, the probability that 50 or more players of the group will graduate is 0.1112 .
b. Probability that 48 or fewer players will graduate.

Since we have already completed steps 1 and 2 in part a, we will begin with step 3 .
3. Draw the picture and locate the important information on it.

This is shown in Figure 9.4. The figure shows the normal distribution with $\mu=45.5$, $X=48$. The shaded area corresponds to the probability that 48 or f ewer players will graduate.

## 4. Determining the probability that 48 or fewer players will graduate

The probability that 48 or fewer players will graduate is found by computing the $z$ value of 48 , consulting Table A, Column B, for the probability of between 48 and 45.5 graduates, and then adding 0.5000 for the probability of graduates below 45.5 . The $z$ value of 48 is given by

$$
z=\frac{X-\mu}{\sigma}=\frac{48-45.5}{3.69}=0.68
$$

Entering Table A, Column B, using the $z$ score of 0.68 , we obtain $p($ graduates between 48 and 45.5$)=0.2517$

figure 9.4 Determining the probability that 48 or fewer players will graduate, using the normal approximation approach.

Next, we need to a dd 0.5000 to i nclude the g raduates below 45.5 , m aking the total probability $=0.2517+0.5000=0.7517$. Thus, the probability of 48 or fewer football players graduating is 0.7517 .

Next, let's do a practice problem.

## Practice Problem 9.7

A local u nion has 10,000 members, of which $20 \%$ a re Hispanic. The u nion selects 150 representatives to $v$ ote in the coming national e lection for union president. Sixteen of the 150 selected representatives are Hispanics. Although you have been told that the selection was random and that there was no ethnic bias involved in the selection, you are not sure since the number of Hispanics seems low.
a. If the selection were really random, what is the probability that there would be 16 or fewer Hispanics selected as representatives? In answering, assume that $P$ and $Q$ do not change from selection to selection.
b. Given the answer obtained in part $\mathbf{a}$, what is your tentative conclusion about random selection and possible ethnic bias?

## SOLUTION

a. Probability of getting 16 or fewer Hispanic representatives. Let's follow these steps to solve this problem.
STEP 1. Determine if criterion is met to use the normal approximation. Let $P=$ pro bability of g etting a H ispanic on a ny se lection. Therefore, $P=0.20$.
Let $Q=$ pro bability of n ot g etting a H ispanic on a ny se lection. Therefore, $Q=0.80$.

$$
\begin{aligned}
& N P=150(0.20)=30 \\
& N Q=150(0.80)=120
\end{aligned}
$$

Since $N P=30$ and $N Q=120$, the criterion that both $N P \geq 10$ and $N Q \geq 10$ is met. It's reasonable to use the normal approximation to solve the problem.

STEP 2. Determine the parameters of the approximated normal curve.

$$
\begin{aligned}
& \mu=N P=150(0.20)=30 \\
& \sigma=\sqrt{N P Q}=\sqrt{150(0.20)(0.80)}=\sqrt{24.00}=4.90
\end{aligned}
$$

STEP 3. Draw the picture and locate the important information on it.
The picture is drawn in Figure 9.5. It shows the normal distribution with $\mu=30$ and $X=16$. The shaded area corresponds to the probability of getting 16 or fewer Hispanics as representatives.
(continued)

figure 9.5 Determining the probability of getting 16 or fewer Hispanics as representatives

STEP 4. Determining the probability of $\mathbf{1 6}$ or fewer Hispanics.
We can determine this probability by computing the $z$ value of 16 and looking up the probability in Table A, Column C. The $z$ value of 16 is given by

$$
z=\frac{X-\mu}{\sigma}=\frac{16-30}{4.90}=-2.86
$$

Entering Table A, Column C, using the $z$ score of 2.86 , we obtain

$$
p(16 \text { or fewer Hispanics })=p(X \leq 16)=0.0021
$$

Thus, if sampling is random, the probability of getting 16 or fewer Hispanic representatives is 0.0021 .
b. Tentative conclusion, given the probability obtained in Part a:

While random selection might have actually been the case, the probability obtained in part a is quite low and doesn't inspire much confidence in this possibility. A more reasonable explanation is that something systematic was going on in the selection process that resulted in fewer Hispanic representatives than would be expected via random selection. Of course, there may be reasons other than ethnic bias that could explain the data.

## S UMMARY

In this chapter, I have discussed the binomial distribution. The binomial distribution is a probability distribution that results when the following conditions are met: (1) there is a series of $N$ trials; (2) on each trial, there are only two possible outcomes; (3) the outcomes are mutually exclusive; (4) there is independence between trials; and (5) the probability of each possible outcome on any trial stays the same from trial to trial. When these conditions are met, the binomial distribution tells us each possible outcome
of the $N$ trials and the probability of getting each of these outcomes.

I i llustrated t he b inomial d istribution t hrough coin-flipping e xperiments a nd $t$ hen s howed ho $w t$ he binomial distribution cou ld be generated through the binomial expansion. The bi nomial expansion is given by $(P+Q)^{N}$, where $P=$ the probability of occurrence of one of the events and $Q=$ the probability of occurrence of the other event. Next, I showed how to use the
binomial table (Table B in Appendix D) to solve problems where $N \leq 20$. Finally, I showed how to use t he normal approximation to solve problems where $N>20$.

The binomial distribution is ap propriate whenever the five conditions listed at the beginning of this summary are met.

## IMPORTANT NEWTERMS

Binomial distribution (p. 226)
Binomial expansion (p. 229)

Binomial table (p. 230)
Normal approximation (p. 239)

Number of $P$ events (p. 229)
Number of $Q$ events (p. 229)

## QUESTIONSAND PROBLEMS

1. Briefly define or e xplain ea ch oft he $t$ erms in $t$ he Important New Terms section.
2. What are the five conditions necessary for the binomial distribution to be appropriate?
3. In a binomial situation, if $P=0.10, Q=$ $\qquad$
4. Using Table B, if $N=6$ and $P=0.40$,
a. The pro bability of g etting e xactly five events $=$ $\qquad$
b. This pro bability co mes from evaluating which of the terms in the following equation?

$$
\begin{aligned}
P^{6}+6 P^{5} Q & +15 P^{4} Q^{2}+20 P^{3} Q^{3} \\
& +15 P^{2} Q^{4}+6 P Q^{5}+Q^{6}
\end{aligned}
$$

c. Evaluate the term(s) of your answer in part $\mathbf{b}$ using $P=0.40$ and compare your answer with part $\mathbf{a}$.
5. Using Table B, if $N=12$ and $P=0.50$,
a. What is t he pro bability of getting e xactly $10 P$ events?
b. What is the probability of getting 11 or $12 P$ events?
c. What is t he pro bability of g etting at 1 east $10 P$ events?
d. What is the probability of getting a result as extreme as or more extreme than $10 P$ events?
6. Using Table B, if $N=14$ and $P=0.70$,
a. What is t he pro bability of getting e xactly $13 P$ events?
b. What is t he pro bability of g etting at 1 east $13 P$ events?
c. What is the probability of getting a result as extreme as or more extreme than $13 P$ events?
7. Using Table B, if $N=20$ and $P=0.20$,
a. What is t he pro bability of g etting e xactly t wo $P$ events?
b. What is t he probability of getting two or f ewer $P$ events?
c. What is $t$ he probability of getting a res ult as extreme as or more extreme than two $P$ events?
8. An individual flips nine fair coins. If she allows only a head or a tail with each coin,
a. What is the probability they all will fall heads?
b. What is $t$ he pro bability $t$ here $w$ ill $b$ e se ven or more heads?
c. What is $t$ he probability there will be a res ult as extreme as or more extreme than seven heads?
9. Someone flips 15 biased coins once. The coins a re weighted such that the probability of a head with any coin is 0.85 .
a. What is the probability of getting exactly 14 heads?
b. What is the probability of getting at least 14 heads?
c. What is the probability of getting exactly 3 tails?
10. Thirty biased coins are flipped once. The coins are weighted so $t$ hat the probability of a hea $d$ with a ny coin is 0.40 . What is the probability of getting at least 16 heads?
11. A key shop advertises that the keys made there have a $P=0.90$ of w orking e ffectively. If y ou b ought 10 keys from the shop, what is the probability that all of the keys would work effectively?
12. A student is taking a true/false exam with 15 questions. If he guesses on each question, what is the probability he will get at least 13 questions correct? education
13. A $s$ tudent is $t$ aking a $m$ ultiple-choice e xam $w$ ith 16 que stions. E ach que stion $h$ as five a lternatives. If the student guesses on 12 of the questions, what is the probability she will guess at least 8 cor rect? Assume all of the alternatives are equally likely for each question on which the student guesses. education
14. You a re interested in det ermining whether a particular child can discriminate the color green from blue. T herefore, y ou s how $t$ he child five wooden
blocks. The blocks are identical except that two are green and three are blue. You randomly arrange the blocks in a ro w a nd ask him to pi ck out a $g$ reen block. After a block is pi cked, y ou replace it a nd randomize the order of the blocks once more. Then you again ask him to pick out a g reen block. This procedure is rep eated until the child has made 14 selections. I f he rea lly ca n't d iscriminate $g$ reen from blue, what is $t$ he pro bability he $w$ ill pick a green block at least 11 times? cognitive
15. Let's assume you are an avid horse racing fan. You are at the track and there are eight races. On this day, the horses and their riders are so evenly matched that chance alone determines the finishing order for each race. There are 10 horses in every race. If, on ea ch race, y ou b et on one hor se to s how (to finish first, second, or third),
a. What is the probability that you will win your bet in all eight races?
b. What is $t$ he pro bability $t$ hat $y$ ou will win in at least six of the races? other
16. A manufacturer of valves admits that its quality control has gone radically "downhill" such that currently the probability of producing a defective valve is 0.50 . If it manufactures 1 m illion valves in a mon th a you randomly sample from these valves 10,000 samples, each composed of 15 valves,
a. In how many sa mples would y ou expect to find exactly 13 good valves?
b. In how many samples would you expect to find at least 13 good valves? I/O
17. Assume $t$ hat $15 \%$ of $t$ he p opulation is 1 eft-handed and the remainder is right-handed (there are no ambidextrous individuals). If you stop the next five people you meet, what is the probability that
a. All will be left-handed?
b. All will be right-handed?
c. Exactly two will be left-handed?
d. At least one will be left-handed?

For the purposes of this problem, assume independence in the se lection of the five individuals. other
18. In your voting district, $25 \%$ of the voters are against a particular bill and the rest favor it. If you randomly
poll four voters from your district, what is the probability that
a. None will favor the bill?
b. All will favor the bill?
c. At least one will be against the bill? I/O
19. At y our u niversity, $30 \%$ of t he u ndergraduates a re from out of state. If you randomly select eight of the undergraduates, what is the probability that
a. All are from within the state?
b. All are from out of state?
c. Exactly two are from within the state?
d. At least five are from within the state? education
20. Twenty s tudents living in a co llege dor mitory participated in a t aste contest between the two leading colas.
a. If there really is no preference, what is the probability that all 20 w ould pre fer B rand X to Brand Y?
b. If there really is no preference, what is the probability that at 1 east 17 would pre fer $B$ rand $X$ to Brand Y?
c. H ow m any of the 20 s tudents $w$ ould ha ve to prefer Brand X before you would be willing to conclude that there really is a preference for Brand X? other
21. I $n$ y our to $w n$, $t$ he $n$ umber of i ndividuals $v$ oting in the next election is 800 . Of those voting, 600 are Republicans. If you randomly sample 60 individuals, one at a time, from the voting population, what is $t$ he pro bability there will be 42 or more Republicans in the sample? Assume the probability of getting a Republican on each sampling stays the same. social
22. A la rge $b$ owl con tains 1 m illion $m$ arbles. Ha lf of the marbles have a plus $(+)$ painted on them and the other half have a minus ( - ).
a. If you randomly sample 10 marbles, one at a time with replacement from the bowl, what is the probability you will select 9 marbles with pluses and 1 with a minus?
b. If you take 1000 random samples of 10 marbles, one at a t ime with rep lacement, how many of the samples would you expect to be all pluses? other

## NOTES

9.1 The equation for expanding $(P+Q)^{N}$ is

$$
\begin{aligned}
(P+Q)^{N}= & P^{N}+\frac{N}{1} P^{N-1} Q+\frac{N(N-1)}{1(2)} P^{N-2} Q^{2} \\
& +\frac{N(N-1)(N-2)}{1(2)(3)} P^{N-3} Q^{3} \\
& +\ldots+Q^{N}
\end{aligned}
$$

## ONLINE STUDY RESOURCES

## CENGAGE brain

Login to CengageBrain.com to access the resources your instructor has assigned. For this book, you can access the book's co mpanion website for chapter-specific learning tools including Know and Be Able to Do, practice quizzes, flash cards, and glossaries, and a link to Statistics and Research Methods Workshops.

## (1) <br> aplia"

If your professor has assigned Aplia homework:

1. Sign in to your account.
2. Complete the cor responding ho mework exercises as required by your professor.
3. When finished, click "G rade It N ow" to se e which areas you have mastered and which need more work, and for detailed explanations of every answer.

Visit www.cengagebrain.com to access your account and to purchase materials.

## CHAPTER OUTLINE <br> Introduction

Logic of Hypothesis Testing
Experiment: Marijuana and the Treatment of AIDS Patients
Repeated Measures Design
Alternative Hypothesis $\left(H_{1}\right)$
Null Hypothesis $\left(H_{0}\right)$
Decision Rule ( $\alpha$ Level)
Evaluating the Marijuana Experiment
Type I and Type II Errors
Alpha Level and the Decision Process
Evaluating the Tail of the Distribution
One- and Two-Tailed Probability Evaluations
Size of Effect: Significant Versus Important

## What Is the Truth?

- Chance or Real Effect?-1
- Chance or Real Effect?-2
- "No Product Is Better Than Our Product"
- Anecdotal Reports Versus Systematic Research
Summary
Important New Terms
Questions and Problems
What is the Truth? Questions
Notes
Online Study Resources


## Introduction to Hypothesis Testing Using the Sign Test

## LEARNING OBJECTIVES

After completing this chapter, you should be able to:

- Specify the essential features of the repeated measures design.
- Define the alternative $\left(H_{1}\right)$ and null hypotheses $\left(H_{0}\right)$, and explain the relationship between them. Include a discussion of directional and nondirectional $H_{1} \mathrm{~s}$ and the $H_{0}$ s that go with them.
- Define alpha level, explain the purpose of the alpha level, and specify the decision rule for determining when to reject or retain the null hypothesis.
- Explain the difference between significant and important.
- Explain the process of evaluating the null hypothesis, beginning with $H_{1}$ and $H_{0}$, and ending with the possibility of making a Type I or Type II error.
- Explain why we evaluate $H_{0}$ first and then $H_{1}$ indirectly, rather than directly evaluate $H_{1}$; explain why we evaluate the tail result and not the exact result itself.
- Explain when it is appropriate to do one- and two-tailed evaluations.
- Define Type I and Type II errors and explain why it is important to discuss these possible errors; specify the relationship between Type I and Type II errors, and between the alpha level and Type I and Type II errors.
- Formulate $H_{1}$ and $H_{0}$ for the sign test and solve problems using the sign test.
- Understand the illustrative example, do the practice problems, and understand the solutions.


We $p$ ointed ou $t$ pre viously $t$ hat $i$ nferential $s$ tatistics ha $s t$ wo $m$ ain pu rposes: (1) hypothesis testing and (2) parameter estimation. By far, most of the applications of inferential statistics are in the area of hypothesis testing. As discussed in Chapter 1, scientific methodology depends on $t$ his application of inferential statistics. Without objective verification, science would cease to exist, and objective verification is often impossible without inferential statistics. You will recall that at the heart of scientific methodology is a n experiment. Usually, the experiment has been designed to test a hypothesis, and the resulting data must be analyzed. Occasionally, the results are so clear-cut that statistical inference is $n$ ot ne cessary. However, such experiments are rare. Because of the variability that is inherent from subject to subject in the variable being measured, it is often difficult to det ect the effect of the independent variable without the help of inferential statistics. In this chapter, we shall begin the fascinating journey into how experimental design, in conjunction with mathematical a nalysis, can be used to verify truth assertions or hypotheses, as we have been calling them. We urge you to apply yourself to this chapter with special rigor. The material it contains applies to all of the inference tests we shall take up (which constitutes most of the remaining text).

## LOGIC OF HYPOTHESIS TESTING

## experiment

## Marijuana and the Treatment of AIDS Patients

We begin with an experiment. Let's assume that you are a social scientist working in a metropolitan hospital that serves a very large population of AIDS patients. You are very concerned about the pain and suffering that afflict these patients. In particular, although you are not yet convinced, you think there may be an ethically proper place for using marijuana in the treatment of these patients, particularly in the more advanced stages of the illness. Of course, before seriously considering the other issues involved in advocating the use of marijuana for this purpose, you must be convinced that it does have important positive effects. Thus far, although there have been many anecdotal reports from AIDS patients that using marijuana decreases their nausea, increases their appetite, and increases their desire to socialize, there have not been any scientific experiments to shore up these reports.

As a sc ientist, you realize that although personal reports a re suggestive, they a re not conclusive. Experiments must be done before one can properly assess cause and effect-in this case, the effects claimed for marijuana. This is very important to you, so you decide to embark on a research program directed to this end. The first experiment you plan is to investigate the effect of marijuana on appetite in AIDS patients. Of course, if marijuana actually decreases appetite rather than increases it, you want to be able to detect this as well because it has important practical consequences. Therefore, this will be a basic fact-finding experiment in which you attempt to determine whether marijuana has any effect at all, either to increase or to decrease ap petite. The first experiment will be a modest one. You plan to randomly sample 10 individuals from the population of AIDS patients who are being treated at y our hospital. You realize that the generalization will be limited to this population, but for many reasons, you a re willing to accept this limitation for this initial experiment. A fter getting permission from the appropriate authorities, you conduct the following experiment.

A random sa mple of 10 A IDS patients who ag ree to participate in the experiment is selected from a rather large population of AIDS patients being treated on an outpatient
basis at $y$ our hospital. None of the pat ients in this population a re being treated with marijuana. Each patient is admitted to the hospital for a week to participate in the experiment. The first 2 days are used to allow each patient to get used to the hospital. On the third day, half of the patients receive a pill containing a sy nthetic form of marijuana's active ingredient, THC, prior to eating each meal, and on the sixth day, they receive a placebo pill before each meal. The other half of the patients are treated the same as in the experimental condition, except that they receive the pills in the reverse order, that is, the placebo pills on the third day and the THC pills on the sixth day. The dependent variable is the amount of food eaten by each patient on day 3 and day 6 .

In this experiment, each subject is tested under two conditions: an experimental condition and a control condition. We have labeled the condition in which the subject receives the THC pills as the experimental condition and the condition in which the subject receives the placebo pills as the control condition. Thus, there are two scores for each subject: the amount of food eaten (calories) in the experimental condition and the a mount of food eaten in the control condition. If marijuana really does affect appetite, we would expect different scores for the two conditions. For example, if marijuana increases appetite, then more food should be eaten in the experimental condition. If the control score for each subject is subtracted from the experimental score, we would expect a predominance of positive difference scores. The results of the experiment are given in Table 10.1.

These $d$ ata cou ld be a nalyzed with se veral different statistical inference tests such as the sign test, Wilcoxon matched-pairs signed ranks test, and Student's $t$ test for correlated groups. The choice of which test to use in an actual experiment is an important one. It depends on the sensitivity of the test and on whether the data of the experiment meet the assumptions of the test. We shall discuss each of these points in subsequent chapters. In this chapter, we shall analyze the data of your experiment with the sign test. We have chosen the sign test because (1) it is easy to understand and (2) all of the major concepts concerning hypothesis testing can be illustrated clearly and simply.

The $s$ ign $t$ est $i$ gnores $t$ he $m$ agnitude of $t$ he $d$ ifference scores a nd cons iders only their direction or sign. This omits a lot of information, which makes the test
table 10.1 Results of the marijuana experiment

| Patient No. | Experimental Condition THC Pill Food Eaten (calories) | Control Condition Placebo Pill Food Eaten (calories) | Difference Score (calories) |
| :---: | :---: | :---: | :---: |
| 1 | 1325 | 1012 | +313 |
| 2 | 1350 | 1275 | + 75 |
| 3 | 1248 | 950 | +298 |
| 4 | 1087 | 840 | +247 |
| 5 | 1047 | 942 | +105 |
| 6 | 943 | 860 | + 83 |
| 7 | 1118 | 1154 | - 36 |
| 8 | 908 | 763 | +145 |
| 9 | 1084 | 920 | +164 |
| 10 | 1088 | 876 | +212 |

rather insensitive (but much easier to understand). If we consider only the signs of the difference scores, then your experiment produced 9 out of 10 pluses. The amount of food eaten in the experimental condition was greater after taking the THC pill in all but one of the patients. Are we therefore justified in concluding that marijuana produces an increase in appetite? Not necessarily.

Suppose that marijuana has absolutely no effect on app etite. Is n't it still possible to have obtained 9 out of 10 pluses in your experiment? Yes, it is. If marijuana has no effect on appetite, then each subject would have received two conditions that were i dentical e xcept for chance factors. Perhaps when subject 1 w as $\mathrm{r} u \mathrm{u}$ in the THC cond ition, he ha d s lept b etter $t$ he $n$ ight b efore a nd $h$ is app etite $w$ as $h$ igher than when run in the control condition before any pills were taken. If so, we would expect him to eat more food in the THC cond ition even if THC has no effect on appetite. Perhaps subject 2 ha d a co ld when $r$ un in the placebo cond ition, which blunted her app etite relative to when run in the experimental condition. Again we would expect more food to be eaten in the experimental condition even if THC has no effect.

We could go on giving examples for the other subjects. The point is that these explanations of the greater a mount eaten in the THC condition are chance factors. They are different factors, independent of one a nother, and they could just as easily have occurred on either of the two test days. It seems unlikely to get 9 out of 10 pluses simply as a result of chance factors. The crucial question really is, "How unlikely is it?" Suppose we k now that if chance a lone is res ponsible, we shall get 9 ou t of 10 pluses only 1 time in 1 billion. This is such a rare occurrence, we would no doubt reject chance and, with it, the explanation that marijuana has no effect on app etite. We would then conclude by accepting the hypothesis that marijuana affects appetite because it is $t$ he on ly ot her p ossible explanation. Since $t$ he sa mple was a r andom one, we can assume it was representative of the AIDS patients being treated at your hospital, and we therefore would generalize the results to that population.

Suppose, however, that the probability of getting 9 out of 10 pluses due to chance alone is really 1 in 3 , not 1 in 1 billion. Can we reject chance as a cause of the data? The decision is not as clear-cut this time. What we need is a rule for determining when the obtained probability is small enough to reject chance as an underlying cause. We shall see that this involves setting a critical probability level (called the alpha level) against which to compare the results.

Let's formalize some of the concepts we've been presenting.

## Repeated Measures Design

The experimental design that we have been using is called the repeated measures, replicated measures, or correlated groups design. The essential features are that there are paired scores in the conditions, and the differences between the paired scores are analyzed. In the marijuana experiment, we used the same subjects in each condition. Thus, the subjects served as their own controls. Their scores were paired, and the differences between these pairs were a nalyzed. Instead of the same subjects, we could have used identical twins or subjects who were matched in some other way. In animal experimentation, littermates have often been used for pairing. The most basic form of this design employs just two conditions: an experimental and a control condition. The two conditions are kept as identical as possible except for values of the independent variable, which, of course, are intentionally made different. In our example, marijuana is the independent variable.

## Alternative Hypothesis $\left(H_{1}\right)$

In any experiment, there are two hypotheses that compete for explaining the results: the alternative hypothesis and the null hypothesis. The alternative hypothesis is the one that claims the difference in results between conditions is due to the independent variable. In this case, it is the hypothesis that claims "marijuana affects appetite." The alternative hypothesis can be directional or nondirectional. The hypothesis "m arijuana a ffects app etite" is $n$ ondirectional because it do es not specify the direction of the effect. If the hypothesis specifies the direction of the effect, it is a directional hypothesis. "Marijuana increases appetite" is an example of a directional alternative hypothesis.

## Null Hypothesis $\left(\boldsymbol{H}_{0}\right)$

The null hypothesis is set up to be the logical counterpart of the alternative hypothesis such that if the null hypothesis is false, the alternative hypothesis must be true. Therefore, these two hypotheses must be mutually exclusive and exhaustive. If the alternative hypothesis is nondirectional, it specifies that the independent variable has an effect on the dependent variable. For this nondirectional alternative hypothesis, the null hypothesis asserts that the independent variable has no effect on the dependent variable. In the present example, since the alternative hypothesis is nondirectional, the null hypothesis specifies that "marijuana does not affect appetite." We pointed out previously that the alternative hypothesis specifies "marijuana affects appetite." You can see that these two hypotheses are mutually exclusive and exhaustive. If the null hypothesis is false, then the alternative hypothesis must be true. As you will see, we always first evaluate the null hypothesis and try to show that it is false. If we can show it to be false, then the alternative hypothesis must be true.*

If the alternative hypothesis is directional, the null hypothesis asserts that the independent variable does not have an effect in the direction specified by the alternative hypothesis; it either has no effect or an effect in the direction opposite to $H_{1}{ }^{\dagger}$ For example, for the alternative hypothesis "marijuana increases appetite," the null hypothesis asserts that "marijuana either has no effect on appetite, or it increases appetite." Again, note that the two hypotheses are mutually exclusive and exhaustive. If the null hypothesis is false, then the alternative hypothesis must be true.

## Decision Rule ( $\alpha$ Level)

We always evaluate the results of an experiment by assessing the null hypothesis. The reason we directly assess the null hypothesis instead of the alternative hypothesis is that we can calculate the probability of chance events, but there is no way to calculate the probability of the alternative hypothesis. We evaluate the null hypothesis by assuming it is true and testing the reasonableness of this assumption by calculating the probability of getting the results if chance alone is operating. If the obtained probability turns out to be equal to or less than a critical probability level called the alpha ( $\alpha$ ) level, we reject the null hypothesis. Rejecting the null hypothesis allows us, then, to accept indirectly the alternative hypothesis because, if the experiment is done properly, it is the only other possible explanation. When we reject $H_{0}$, we say

[^13]$\dagger$ See Note 10.2.

## MENTORINGTIP

Caution: if the obtained probability $>\alpha$, it is incorrect to conclude by "accepting $H_{0}$." The correct conclusion is "retain $H_{0}$ " or "fail to reject $H_{0}$." You will learn why in Chapter 11.
the results are significant or reliable. If the obtained probability is greater than the alpha level, we conclude by failing to reject $H_{0}$. Since the experiment does not allow rejection of $H_{0}$, we retain $H_{0}$, as a reasonable explanation of the data. Throughout the text, we shall use the expressions "failure to reject $H_{0}$ " and "retain $H_{0}$ " interchangeably. When we retain $H_{0}$, we say the results are not significant or reliable. Of course, when the res ults a re not significant, we ca not a ccept the a lternative hypothesis. Thus, the decision rule states:

> If the obtained probability $\leq \alpha$, reject $H_{0}$. If the obtained probability $>\alpha$, fail to reject $H_{0}$, retain $H_{0}$.

The alpha level is set at the beginning of the experiment. Commonly used alpha levels are $\alpha=0.05$ and $\alpha=0.01$. Later in this chapter, we shall discuss the rationale underlying the use of these levels.

For now let's a ssume $\alpha=0.05$ for the marijuana data. Thus, to e valuate the results of the marijuana experiment, we need to (1) determine the probability of getting 9 out of 10 pluses if chance alone is responsible and (2) compare this probability with alpha.

## Evaluating the Marijuana Experiment

The data of this experiment fit $t$ he re quirements for $t$ he $b$ inomial distribution. The experiment consists of a series of trials (the exposure of each patient to the experimental and control conditions is a trial). On each trial, there are only two possible outcomes: a plus a nd a minus. Note that this model does not allow ties. If any ties occur, they must be discarded and the $N$ reduced accordingly. The outcomes are mutually exclusive (a plus and a minus cannot occur simultaneously), there is independence between trials (the score of patient 1 in no way influences the score of patient 2 , etc.), and the probability of a plus and the probability of a minus stay the same from trial to trial. Since the binomial distribution is appropriate, we can use Table B in Appendix D (Table 10.2) to determine the probability of getting 9 pluses out of 10 trials when chance alone is responsible. We solve this problem in the same way we did with the coin-flipping problems in Chapter 9.

Given there are 10 patients, $N=10$. We can let $P=$ the probability of getting a plus with a ny patient.* If chance a lone is op erating, the probability of a p lus is equal to the probability of a minus. There are only two equally likely alternatives, so $P=0.50$. Since we want to determine the probability of 9 pluses, the number of $P$ events $=9$. In Table B under $N=10$, number of $P$ events $=9$, and $P=0.50$, we obtain

| $p(9$ pluses $)=0.0098$ | table 10.2 Table B entry |  |  |
| :---: | :---: | :---: | :---: |
|  |  | No. of $P$ | $P$ |
|  | $N$ | Events | 0.50 |
|  | 10 | 9 | 0.0098 |

[^14]Alpha has been set at 005 . The analysis shows that only 98 times in 10,000 would we get 9 pluses if chance alone is the cause. Since 0.0098 is lower than alpha, we reject the null hypothesis.* It does not seem to be a reasonable explanation of the data. Therefore, we conclude by accepting the alternative hypothesis that marijuana affects appetite. It appears to increase it. Since the sample was randomly selected, we assume the sample is representative of the population. Therefore, it is legitimate to a ssume that this conclusion a pplies to the population of AIDS patients being treated at your hospital.

It is worth noting that very often in practice the results of an experiment are generalized to $g$ roups that were not part of the population from which the sample was taken. For instance, on $t$ he basis of this experiment, we might be tempted to claim that marijuana would increase the appetites of A IDS patients being treated at other hospitals. Strictly speaking, the results of an experiment apply only to the population from which the sample was randomly selected. Therefore, generalization to other groups should be made with caution. This caution is necessary because the other groups may differ from the subjects in the original population in some way that would cause a d ifferent res ult. Of course, as the experiment is rep licated in different hos pitals $w$ ith different pat ients, $t$ he legitimate $g$ eneralization $b$ ecomes much broader.

## TYPE I AND TYPE II ERRORS

When making decisions regarding the null hypothesis, it is possible to make errors of two kinds. These are called Type I and Type II errors.

## definitions

A Type I error is defined as a decision to reject the null hypothesis when the null hypothesis is true. A Type II error is defined as a decision to retain the null hypothesis when the null hypothesis is false.

To illustrate these concepts, let's return to the marijuana example. Recall the logic of the decision process. First, we assume $H_{0}$ is true and evaluate the probability of getting the obtained score differences between conditions if chance alone is responsible. If the obtained probability $\leq \alpha$, we reject $H_{0}$. If the obtained probability $>\alpha$, we retain $H_{0}$. In the marijuana experiment, the obtained probability $[p(9$ pluses $)]=0.0098$. Since this was lower than alpha, we rejected $H_{0}$ and concluded that marijuana was responsible for the results. Can we be certain that we made the correct decision? How do we know that chance wasn't really responsible? Perhaps the null hypothesis is really true. Isn't it possible that this was one of those 98 times in 10,000 we would get 9 pluses and 1 minus if chance alone was operating? The answer is that we never know for sure that chance wasn't responsible. It is possible that the 9 pluses and 1 minus were really due to chance.

[^15]table 10.3 Possible conclusions and the state of reality

| Decision | State of Reality |  |
| :---: | :---: | :---: |
|  | $H_{0}$ is true | $H_{0}$ is false |
| Retain $\mathrm{H}_{0}$ | ${ }^{1}$ Correct decision | ${ }^{2}$ Type II error |
| Reject $\boldsymbol{H}_{0}$ | ${ }^{3}$ Type I error | ${ }^{4}$ Correct decision |

If so, then we made an error by rejecting $H_{0}$. This is a Type I error-a rejection of the null hypothesis when it is true.

A Type II error occurs when we retain $H_{0}$ and it is false. Suppose that in the marijuana experiment $p(9$ pluses $)=0.2300$ instead of 0.0098 . In this case, $0.2300>\alpha$, so we would retain $H_{0}$. If $H_{0}$ is false, we have made a Type II error, that is, retaining $H_{0}$ when it is false.

To help clarify the re lationship between the decision process a nd possible er ror, we've summarized the possibilities in Table 10.3. The column heading is State of Reality. This means the correct state of affairs regarding the null hypothesis. There are only two possibilities. Either $H_{0}$ is true or it is false. The row heading is the decision made when analyzing the data. Again, there are only two possibilities. Either we reject $H_{0}$ or we retain $H_{0}$. If we retain $H_{0}$ and $H_{0}$ is true, we've made a correct decision (see the first cell in the table). If we reject $H_{0}$ and $H_{0}$ is true, we've made a Type I error. This is shown in cell 3. If we retain $H_{0}$ and it is false, we've made a Type II error (cell 2). Finally, if we reject $H_{0}$ and $H_{0}$ is false, we've made a correct decision (cell 4). Note that when we reject $H_{0}$, the only possible error is a Type I error. If we retain $H_{0}$, the only error we may make is a Type II error.

You may wonder why we've gone to the trouble of analyzing all the logical possibilities. We've done so b ecause it is very important to k now the possible er rors we may be making when we draw conclusions from an experiment. From the preceding analysis, we know there are only two such possibilities, a Type I er ror or a Type II error. Knowing these are possible, we can design experiments before conducting them to he lp m inimize the probability of m aking a T ype I or a T ype II error. By minimizing the probability of making these errors, we maximize the probability of concluding correctly, regardless of whether the null hypothesis is true or false. We shall see in the next section that alpha limits the probability of making a Type I er ror. Therefore, by controlling the alpha level we can minimize the probability of making a Type I error. Beta (read "bayta") is defined as the probability of making a Type II error. We shall discuss ways to minimize beta in the next chapter.

## ALPHA LEVEL AND THE DECISION PROCESS

It should be clear that whenever we are using sample data to evaluate a hypothesis, we are never certain of our conclusion. When we reject $H_{0}$, we don't know for sure that it is false. We take the risk that we may be making a Type I error. Of course, the less reasonable it is that chance is the cause of the results, the more confident we are that we haven't
made an error by rejecting the null hypothesis. For example, when the probability of getting the results is 1 in 1 million ( $p=0.000001$ ) under the assumption of chance, we are more confident that the null hypothesis is false than when the probability is 1 in 10 ( $p=0.10$ ).

The alpha level that the scientist sets a the be ginning of the experiment is the le vel to wh ich he or she wishes to li mit the probability of making a Type I error.

Thus, when a scientist sets $\alpha=0.05$, he is in effect saying that when he collects the data he will reject the null hypothesis if, under the assumption that chance alone is responsible, the obtained probability is equal to or 1 ess than 5 t imes in 100 . In so doing, he is sa ying that he is $w$ illing to 1 imit the probability of rejecting the null hypothesis when it is true to 5 times in 100 . Thus, he limits the probability of making a Type I error to 0.05 .

There is no magical formula that tells us what the alpha level should be to arrive at truth in each experiment. To determine a reasonable alpha level for an experiment, we must consider the consequences of making an error. In science, the effects of rejecting the null hypothesis when it is true (Type I error) are costly. When a scientist publishes an experiment in which he rejects the null hypothesis, other scientists either attempt to rep licate the results or a ccept the conclusion as valid and design experiments ba sed on $t$ he scientist ha ving $m$ ade a correct decision. Since $m$ any work-hours a nd do llars g o i nto $t$ hese follow-up e xperiments, sci entists w ould like to $m$ inimize the possibility that they are pursuing a false path. Thus, they set rather conser vative alpha levels: $\alpha=0.05$ and $\alpha=0.01$ are commonly used. You might ask, "Why not set e ven more s tringent criteria, such as $\alpha=0.001$ ?" Unfortunately, when alpha is made more stringent, the probability of making a Type II error increases.

We can see this by considering an example. This example is best understood in conjunction with Table 10.4. Suppose we do an experiment and set $\alpha=0.05$ (top row of Table 10.4). We e valuate chance a nd get a o obtained pro bability of 0.02 . We reject $H_{0}$. If $H_{0}$ is true, we have made a Type I error (cell 1). Suppose, however, that a lpha had been set at $\alpha=0.01$ instead of 0.05 (bottom row of Table 10.4). In this ca se, we would ret ain $H_{0}$ a nd no longer would be making a T ype I er ror (cell 3). Thus, the more stringent the alpha level, the lower the probability of making a Type I error.

On the other hand, what happens if $H_{0}$ is really false (last column of the table)? With $\alpha=0.05$ and the obtained probability $=0.02$, we would reject $H_{0}$ and thereby
table 10.4 Effect on beta of making alpha more stringent

| Alpha Level | Obtained <br> Probability | Decision | State of Reality |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | $H_{0}$ is true | $H_{0}$ is false |
| 0.05 | 0.02 | Reject $\boldsymbol{H}_{0}$ | ${ }^{1}$ Type I error | ${ }^{2}$ Correct decision |
| 0.01 | 0.02 | Retain $\mathrm{H}_{0}$ | ${ }^{3}$ Correct decision | ${ }^{4}$ Type II error |

make a correct decision (cell 2). However, if we changed alpha to $\alpha=0.01$, we would retain $H_{0}$ and we would make a Type II error (cell 4). Thus, making alpha more stringent decreases the probability of making a T ype I er ror but increases the probability of making a Type II error. Because of this interaction between alpha and beta, the alpha level chosen for an experiment depends on the intended use of the experimental results. As mentioned previously, if the results are to communicate a new fact to the scientific community, the consequences of a Type I error are great, and therefore stringent alpha levels are used ( 0.05 and 0.01 ). If, however, the experiment is exploratory in nature and the results are to guide the researcher in deciding whether to do a full-fledged experiment, it would be foolish to use such stringent levels. In such cases, alpha levels as high as 0.10 or 0.20 are often used.

Let's consider one more example. Imagine you are the president of a drug company. One of your leading biochemists rushes into your office and tells you that she has discovered a drug that increases memory. You are of course elated, but you still ask to see the experimental results. Let's assume it will require a $\$ 30$ million outlay to install the apparatus to manufacture the drug. This is quite an expense, but if the drug really does increase memory, the potential benefits and profits are well worth it. In this case, you would want to be very sure that the results are not due to chance. The consequences of a Type I error are great. You stand to lose $\$ 30$ million. You will probably want to use a extremely stringent alpha level before deciding to reject $H_{0}$ and risk the $\$ 30$ million.

We hasten to reassure you that truth is not dependent on the alpha level used in an experiment. Either marijuana affects appetite or it doesn't. Either the drug increases memory or it doesn't. Setting a stringent alpha level merely diminishes the possibility that we shall conclude for the alternative hypothesis when the null hypothesis is really true.

Since we never know for sure what the real truth is as a result of a single experiment, replication is a necessary and essential part of the scientific process. Before an "alleged fact" is accepted into the body of scientific knowledge, it must be demonstrated independently in several laboratories. The probability of making a Type I error decreases greatly with independent replication.

## EVALUATING THE TAIL OF THE DISTRIBUTION

In the previous discussion, the obtained probability was found by using just the specific outcome of the experiment (i.e., 9 pluses and 1 minus). However, we did that to keep things simple for clarity when presenting the other major concepts. In fact, it is incorrect to use just the specific outcome when evaluating the results of an experiment. Instead, we must determine the probability of getting the obtained outcome or any outcome even more extreme. It is this probability that we compare with alpha to assess the reasonableness of the null hypothesis. In other words, we evaluate the tail of the distribution, beginning with the obtained result, rather than just the obtained result itself. If the alternative hypothesis is nondirectional, we evaluate the obtained result or a ny even more e xtreme in both directions (both tails). If the alternative hypothesis is directional, we evaluate only the tail of the distribution that is in the direction specified by $H_{1}$.

To illustrate, let's ag ain evaluate the data in the present experiment, this time evaluating the tails $r$ ather th an just the s pecific ou tcome. Figure 10.1 shows $t$ he

figure 10.1 Binomial distribution for $N=10$ and $P=0.50$.
binomial distribution for $N=10$ and $P=0.50$. The distribution has two tails, one containing few pluses and one con taining many pluses. The alternative hypothesis is nondirectional, so to ca lculate the obtained probability, we must determine the probability of getting the obtained result or a result even more extreme in both directions. Since the obtained result was 9 pluses, we must include outcomes as extreme as or more extreme than 9 pluses. From Figure 10.1, we can see that the outcome of 10 pluses is more extreme in one direction and the outcomes of 1 plus and 0 pluses are as extreme or more extreme in the other direction. Thus, the obtained probability is as follows:

$$
\begin{aligned}
p(0,1,9, \text { or } 10 \text { pluses }) & =p(0)+p(1)+p(9)+p(10) \\
& =0.0010+0.0098+0.0098+0.0010 \\
& =0.0216
\end{aligned}
$$

It is this probability $(0.0216$, not 0.0098$)$ that we compare with alpha to reject or retain the null hypothesis. This probability is called a two-tailed probability value because the outcomes we evaluate occur under both tails of the distribution. Thus, alternative hypotheses that are nondirectional are evaluated with two-tailed probability values. If the alternative hypothesis is $n$ ondirectional, the a lpha level must also be two-tailed. If $\alpha=0.05_{2 \text { tail }}$, this means that the two-tailed obtained probability value must be equal to or less than 0.05 to reject $H_{0}$. In this example, 0.0216 is less than 0.05 , so we reject $H_{0}$ and conclude as we did before that marijuana affects appetite.

If the alternative hypothesis is directional, we evaluate the tail of the distribution that is in the direction predicted by $H_{1}$. To illustrate this point, suppose the alternative hypothesis was that "marijuana increases appetite" and the obtained result was 9 pluses and 1 minus. Since $H_{1}$ specifies that marijuana increases appetite, we evaluate the tail with the higher number of pluses. Remember that a plus means more food eaten in the marijuana cond ition. Thus, if marijuana increases appetite, we expect mostly pluses.

The outcome of 10 pluses is the only possible result in this direction more extreme than 9 pluses. The obtained probability is

$$
\begin{aligned}
p(9 \text { or } 10 \text { pluses }) & =0.0098+0.0010 \\
& =0.0108
\end{aligned}
$$

This probability is called a one-tailed probability because all of the outcomes we are evaluating are under one $t$ ail of the distribution. Thus, alternative hypotheses that are directional are evaluated with one-tailed probabilities. If the alternative hypothesis is directional, the alpha level must be one-tailed. Thus, directional alternative hypotheses are evaluated against one-tailed alpha levels. In this example, if $\alpha=0.05_{1 \text { tail }}$, we would reject $H_{0}$ because 0.0108 is less than 0.05 .

The reason we evaluate the tail has to do with the alpha level set at the beginning of the experiment. In the example we have been using, suppose the hypothesis is that "marijuana increases appetite." This is a directional hypothesis, so a one-tailed evaluation is appropriate. Assume $N=10$ a nd $\alpha=0.05_{1 \text { tail }}$. By setting $\alpha=0.05$ at the beginning of the experiment, the researcher desires to limit the probability of a Type I error to 5 in 100 . Suppose the results of the experiment turn out to be 8 pluses and 2 minuses. Is this a result that allows rejection of $H_{0}$ consistent with the alpha level? Your first impulse is no doubt to answer "yes" because $p(8$ pluses $)=0.0439$. However, if we reject $H_{0}$ with 8 pluses, we must also reject it if the results are 9 or 10 pluses. Why? B ecause these ou tcomes a re e ven more f avorable to $H_{1}$ th an 8 pluses and 2 m inuses. C ertainly, if m arijuana rea lly do es i ncrease app etite, o btaining 10 pluses and 0 minuses is better evidence than 8 pluses and 2 minuses, and similarly for 9 pluses and 1 minus. Thus, if we reject with 8 pluses, we must also reject with 9 and 10 pluses. But what is the probability of getting 8,9 , or 10 pluses if chance alone is operating?

$$
\begin{aligned}
p(8,9, \text { or } 10 \text { pluses }) & =p(8)+p(9)+p(10) \\
& =0.0439+0.0098+0.0010 \\
& =0.0547
\end{aligned}
$$

The probability is greater than alpha. Therefore, we can't allow 8 pluses to be a result for which we could reject $H_{0}$; the probability of falsely rejecting $H_{0}$ would be greater than the alpha level. Note that this is true even though the probability of 8 pluses itself is less than alpha. Therefore, we don't evaluate the exact outcome, but rather we evaluate the tail so as to limit the probability of a Type I error to the alpha level set at the beginning of the experiment. The reason we use a two-tailed evaluation with a nondirectional alternative hypothesis is that results at both ends of the distribution are legitimate candidates for rejecting the null hypothesis.

## ONE- AND TWO-TAILED PROBABILITY EVALUATIONS

When setting the alpha level, we must decide whether the probability evaluation should be one- or two-tailed. When making this decision, use the following rule:

The evaluation should always be two-tailed unless the experimenter will retain $H_{0}$ when results are extreme in the direction opposite to the predicted direction.

## MENTORING TIP

Caution: when answering any of the end-of-chapter problems, use the direction specified by the $H_{1}$ or alpha level given in the problem to determine if the evaluation is to be one-tailed or two-tailed.

In following this rule, there are two situations commonly encountered that warrant directional hypotheses. First, when it makes no practical difference if the res ults turn out to be in the opposite direction, it is legitimate to use a d irectional hypothesis and a one-tailed evaluation. For example, if a manufacturer of automobile tires is testing a new type of tire that is supposed to last longer, a one-tailed evaluation is legitimate because it doesn't make any practical difference if the experimental results turn out in the opposite direction. The conclusion will be to retain $H_{0}$, and the manufacturer will continue to use the old tires. Another situation in which it seems permissible to use a one-tailed evaluation is when there are good theoretical reasons, as well as strong supporting data, to justify the predicted direction. In this case, if the experimental results turn out to be in the opposite direction, the experimenter again will conclude by retaining $H_{0}$ (at least until the experiment is replicated) because the results fly in the face of previous data and theory.

In situations in which the experimenter will reject $H_{0}$ if the results of the experiment are extreme in the direction opposite to the prediction direction, a two-tailed evaluation should be used. To understand why, let's assume the researcher goes ahead and uses a directional prediction, setting $\alpha=0.05_{1 \text { tail }}$, and the results turn out to be extreme in the opposite direction. If he is unwilling to conclude by retaining $H_{0}$, what he w ill probably do is s hift, after seeing the data, to us ing a $n$ ondirectional hypothesis employing $\alpha=0.05_{2 \text { tail }}\left(0.025\right.$ under each tail) to be able to reject $H_{0}$. In the long run, following this procedure will result in a Type I error probability of 0.075 ( 0.05 under the tail in the predicted direction and 0.025 under the other tail). Thus, switching alternative hypotheses after seeing the data produces an inflated Type I error probability. It is of course even worse if, a fter se eing that the data are in the direction opposite to $t$ hat pre dicted, the experimenter switches to $\alpha=0.05_{1 \text { tail }}$ in the direction of the outcome so as to reject $H_{0}$. In this case, the probability of a Type I error, in the long run, would be 0.10 ( 0.05 under each tail). For example, an experimenter following this procedure for 100 experiments, assuming all involved true null hypotheses, would be expected to falsely reject the null hypothesis 10 times. Since each of these rejections would be a Type I error, following this procedure leads to the probability of a Type I error of $0.10(10 / 100=0.10)$. Therefore, to maintain the Type I error probability at the desired level, it is important to decide at the beginning of the experiment whether $H_{1}$ should be directional or nondirectional and to set the alpha level accordingly. If a directional $H_{1}$ is used, the predicted direction must be adhered to, even if the results of the experiment turn out to be extreme in the opposite direction. Consequently, $H_{0}$ must be retained in such cases.

For solving the problems and examples contained in this textbook, we shall indicate whether a one - or t wo-tailed evaluation is appropr iate; we would like you to practice both. Be careful when solving these problems. When a scientist conducts an experiment, he or she is often following a hunch that predicts a directional effect. The problems in this textbook are often stated in terms of the scientist's directional hunch. Nonetheless, unless the scientist will conclude by retaining $H_{0}$ if the results turn out to be extreme in the opposite direction, he or she should use a nondirectional $H_{1}$ and a two-tailed evaluation, even though his or her h unch is d irectional. Each textbook problem will tell you whether you should use a nondirectional or directional $H_{1}$ when it asks for the alternative hypothesis. If you are asked for a nondirectional $H_{1}$, you should assume that the appropriate criterion for a d irectional alternative hypothesis has not been met, regardless of whether the scientist's hunch in the problem is directional. If you are asked for a directional $H_{1}$, assume that the appropriate criterion has been met and it is proper to use a directional $H_{1}$.

We are now ready to do a complete problem in exactly the same way any scientist would if he or she were using the sign test to evaluate the data.

## Practice Problem 10.1

Assume we have conducted an experiment to test the hypothesis that marijuana affects the appetites of AIDS patients. The procedure and population are the same as we described previously, except this time we have sampled 12 AIDS patients. The results are shown here (the scores are in calories):

| Condition | Patient |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| THC | 1051 | 1066 | 963 | 1179 | 1144 | 912 | 1093 | 1113 | 985 | 1271 | 978 | 951 |
| Placebo | 872 | 943 | 912 | 1213 | 1034 | 854 | 1125 | 1042 | 922 | 1136 | 886 | 902 |

a. What is the nondirectional alternative hypothesis?
b. What is the null hypothesis?
c. Using $\alpha=0.05_{2 \text { tail, }}$, what do you conclude?
d. What error might you be making by your conclusion in part $\mathbf{c}$ ?
e. To what population does your conclusion apply?

The solution follows.

## SOLUTION

a. Nondirectional a lternative h ypothesis: Ma rijuana a fects app etites of A IDS patients who are being treated at your hospital.
b. Null hypothesis: Marijuana has no effect on app etites of AIDS patients who are being treated at your hospital.
c. Conclusion, using $\alpha=0.05_{2 \text { tail }}$ :

STEP 1: Calculate the number of pluses and minuses. The first step is to calculate the number of pluses and minuses in the sa mple. We have subtracted the "placebo" scores from the corresponding "THC" scores. The reverse could also have been done. There are 10 pluses and 2 minuses.
STEP 2: Evaluate the number of pluses and minuses. Once we have calculated the obtained number of pluses and minuses, we must determine the probability of getting this outcome or any even more extreme in both directions because this is a two-tailed evaluation. The $b$ inomial $d$ istribution is appropr iate $f$ or $t$ his det ermination. $N=$ the number of difference scores (pluses and minuses) $=12$. We can let $P=$ the probability of a plus with any subject. If marijuana has no effect on app etite, chance a lone a ccounts for whether any subject scores a plus or a minus. Therefore, $P=0.50$. The obtained result was 10 pluses and 2 minuses, so the number of $P$ events $=10$. The pro bability of $g$ etting a $n$ ou tcome a se xtreme a s or more
(continued)
extreme than 10 pluses (two-tailed) equals the probability of 0,1 , $2,10,11$, or 12 pluses. Since the distribution is symmetrical, $p(0$, $1,2,10,11$, or 12 pluses) equals $p(10,11$, or 12 pluses) $\times 2$. Thus, from Table B:

$$
\begin{aligned}
& p(0,1,2,10,11 \text { or } 12 \text { pluses }) \\
& =p(10,11 \text {, or } 12 \text { pluses }) \times 2 \\
& =[p(10)+p(11)+p(12)] \times 2 \\
& =(0.0161+0.0029+0.0002) \times 2 \\
& =0.0384
\end{aligned}
$$

|  | No. of $P$ | P |
| :---: | :---: | :---: |
| $N$ | Events | 0.50 |
| 12 | 10 | 0.0161 |
|  | 11 | 0.0029 |
|  | 12 | 0.0002 |

The same value would have been obtained if we had added the six probabilities together rather than finding the one-tailed probability and multiplying by 2 . Since $0.0384<0.05$, we reject the null hypothesis. It is not a reasonable explanation of the results. Therefore, we conclude that marijuana affects appetite. It appears to increase it.
d. Possible error: By rejecting the null hypothesis, you might be making a Type I error. In reality, the null hypothesis may be true and you have rejected it.
e. Population: These results apply to the population of AIDS patients from which the sample was taken.

## Practice Problem 10.2

You have good reason to believe a particular TV program is causing increased violence in teenagers. To test this hypothesis, you conduct an experiment in which 15 individuals are randomly sampled from the teenagers attending your neighborhood high school. Each subject is run in an experimental and a control condition. In the experimental condition, the teenagers watch the TV program for 3 mon ths, during which you record the number of violent acts committed. The control condition also lasts for 3 months, but the teenagers are not allowed to watch the program during this period. At the end of each 3-month period, you total the number of violent acts committed. The results are given here:

| Condition | Subject |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| Viewing the program | 25 | 35 | 10 | 8 | 24 | 40 | 44 | 18 | 16 | 25 | 32 | 27 | 33 | 28 | 26 |
| Not viewing the program | 18 | 22 | 7 | 11 | 13 | 35 | 28 | 12 | 20 | 18 | 38 | 24 | 27 | 21 | 22 |

a. What is the directional alternative hypothesis?
b. What is the null hypothesis?
c. Using $\alpha=0.01_{1 \text { tail }}$, what do you conclude?
d. What error might you be making by your conclusion in part $\mathbf{c}$ ?
e. To what population does your conclusion apply?

The solution follows.

## SOLUTION

a. Directional alternative hypothesis: Watching the TV program causes increased violence in teenagers.
b. Null hypothesis: Watching the TV program does not cause increased violence in teenagers.
c. Conclusion, using $\alpha=0.01_{1 \text { tail }}$ :

STEP 1: Calculate the number of pluses and minuses. The first step is to calculate the number of pluses and minuses in the sample from the data. We have subtracted the scores in the "not viewing" condition from the scores in the "viewing" condition. The obtained result is 12 pluses and 3 minuses.
STEP 2: Evaluate the number of pluses and minuses. Ne xt, we mu st determine $t$ he pro bability of $g$ etting $t$ his ou tcome or a ny e ven more extreme in the direction of the alternative hypothesis. This is a one -tailed e valuation because the a lternative hypothesis is directional. The binomial di stribution is a ppropriate. $N=$ the number of difference scores $=15$. Let $P=$ the pro bability of a plus with a ny subject. We can evaluate the null hypothesis by assuming chance alone accounts for whether a ny subject scores a plus or m inus. Therefore, $P=0.50$. The obtained res ult was 12 pluses and 3 m inuses, so t he number of $P$ events $=12$. The probability of 12 pluses or more equals the probability of 12,13 , 14 , or 15 pluses. This can be found from Table B. Thus,

| $p(12,13,14$ or 15 pluses) | Table B entry |  |  |
| :---: | :---: | :---: | :---: |
|  | $N$ | No. of $P$ <br> Events | $P$ |
|  | $N$ |  |  |
| $=p(12)+p(13)+p(14)+p(15)$ | 15 | 12 | 0.0139 |
| $=0.0139+0.0032+0.0005+0.0000$ |  | 13 | 0.0032 |
| $=0.0176$ |  | 14 | 0.0005 |
|  |  | 15 | 0.0000 |

S ince $0.0176>0.01$, we fail to reject the null hypothesis. Therefore, we retain $H_{0}$ a nd ca nnot conclude that the T V pro gram causes increased violence in teenagers.
d. Possible error: By retaining the null hypothesis, you might be making a Type II error. The TV program may actually cause increased violence in teenagers.
e. Population: These results apply to the population of teenagers attending your neighborhood school.

## Practice Problem 10.3

A corporation psychologist believes that exercise affects self-image. To investigate this possibility, 14 employees of the corporation are randomly selected to participate in a jogging program. Before beginning the program, they are given a ques tionnaire $t$ hat mea sures se lf-image. $T$ hen $t$ hey begin $t$ he $j$ ogging program. The program consists of jogging at a mo derately taxing rate for 20 m inutes a d ay, 4 d ays a w eek. E ach emp loyee's se lf-image is measured again after 2 mon ths on the program. The results are shown here (the higher the score, the higher the self-image); a score of 20 is the highest score possible.

| Subject | Before Jogging | After Jogging |  | Subject | Before Jogging | After Jogging |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 14 | 20 |  |  | 86 | 113 |
| 2 | 13 | 16 |  |  | 90 | 116 |
| 3 |  | 85 | 1 | 10 | 14 | 18 |
| 4 | 14 | 12 |  | 11 |  | 64 |
| 5 | 12 | 15 |  | 12 | 15 | 17 |
| 6 |  | 73 | 1 | 13 | 12 | 18 |
| 7 | 10 | 12 |  | 14 |  | 95 |

a. What is the alternative hypothesis? Use a nondirectional hypothesis.
b. What is the null hypothesis?
c. Using $\alpha=0.05_{2 \text { tail, }}$, what do you conclude?
d. What error might you be making by your conclusion in part $\mathbf{c}$ ?
e. To what population does your conclusion apply?

The solution follows.

## SOLUTION

a. Nondirectional alternative hypothesis: Jogging affects self-image.
b. Null hypothesis: Jogging has no effect on self-image.
c. Conclusion, using $\alpha=0.05_{2 \text { tail }}$ :

STEP 1: Calculate the number of pluses and minuses. We have subtracted the "Before Jogging" from the "After Jogging" scores. There are 12 pluses and 2 minuses.
STEP 2: Evaluate the number of pluses and minuses. Because $H_{1}$ is nondirectional, we must determine the probability of getting a result as extreme as or more e xtreme than 12 pluses (two-tailed), assuming chance alone accounts for the differences. The binomial distribution
is appropriate. $N=14, P=0.50$, and number of $P$ events $=0,1,2$, 12,13 , or 14 . Thus, from Table B:

$$
\begin{aligned}
p(0,1,2,12,13, \text { or } 14 \text { pluses })= & p(0)+p(1)+p(2)+p(12) \\
& +p(13)+p(14) \\
= & 0.0001+0.0009+0.0056+0.0056 \\
& +0.0009+0.0001 \\
= & 0.0132
\end{aligned}
$$

Table B entry

|  | No. of $\boldsymbol{P}$ <br> Events | $\boldsymbol{P}$ |
| :--- | :---: | :---: |
| $\boldsymbol{N}$ | 0 | $\mathbf{0 . 5 0}$ |
| $\cdots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$ |  |  |
| 14 | 1 | 0.0001 |
|  | 2 | 0.0009 |
|  | 12 | 0.0056 |
|  | 13 | 0.0056 |
|  | 14 | 0.0009 |
|  |  | 0.0001 |

The same value would have been obtained if we had found the one-tailed probability and multiplied by 2 . Since $0.0132<0.05$, we reject the null hypothesis. It appears that jogging improves self-image.
d. Possible error: By rejecting the null hypothesis, you might be making a Type I error. The null hypothesis may be true, and it was rejected.
e. Population: These results apply to a ll the employees of the cor poration who were employed at the time of the experiment.

## SIZE OF EFFECT: SIGNIFICANT VERSUS IMPORTANT

The procedure we have been following in assessing the results of an experiment is first to evaluate directly the null hypothesis and then to conclude indirectly with regard to the alternative hypothesis. If we are able to reject the null hypothesis, we say the results are significant. What we really mean by "significant" is "statistically significant." That is, the results are probably not due to chance, the independent variable has had a real effect, and if we repeat the experiment, we would again get results that would allow us to reject the null hypothesis. It might have been better to use the term reliable to convey this meaning rather than significant. However, the usage of significant is well established, so we will have to live with it. The point is that we must not confuse statistically significant with practically or theoretically "important." A statistically significant effect says little about whether the effect is an important one. For example, suppose the real effect of marijuana is to increase appetite by only 10 calories. Using careful experimental design and a large enough sample, it is possible that we would be able to detect even this small an effect.

## MENTORINGTIP

The importance of an effect generally depends on the size of the effect.

If so, we would conclude that the result is significant (reliable), but then we still need to ask, "How important is this real effect?" For most purposes, except possibly theoretical ones, the importance of an effect increases directly with the size of the effect. For further discussion of this point, see "What Is the Truth? Much Ado About Almost Nothing," in Chapter 15.

## WHAT IS THE TRUTH?

## Chance or Real Effect?-1



An article appeared in Time magazine concerning the "Pepsi Challenge Taste Test." A Pepsi ad, shown on the facing page, appeared in the article. Taste Test participants were Coke drinkers from Michigan who were
asked to drink from a glass of Pepsi and another glass of Coke and say which they preferred. To avoid obvious bias, the glasses were not labeled "Coke" or "Pepsi." Instead, to facilitate a "blind" administration of the drinks, the Coke glass was marked with a "Q" and the Pepsi glass with an "M." The results as stated in the ad are,
"More than half the Coca-Cola drinkers tested in Michigan preferred Pepsi." Aside from a possible real preference for Pepsi in the population of Michigan Coke drinkers, can you think of any other possible explanation of these sample results?


Answer The most obvious alternative explanation of these results is that they are due to chance alone; that in the population, the preference for Pepsi and Coke is equal ( $P=0.50$ ). You, of course, recognize this as the null hypothesis explanation. This explanation could and, in our opinion, should have been ruled out (within the limits of Type I error) by analyzing the sample data with the appropriate inference test. If the results really are significant, it doesn't take much space in an ad to say so. This ad is like many that state sample
results favoring their product without evaluating chance as a reasonable explanation.

As an aside, Coke did not cry "chance alone," but instead claimed the study was invalid because people like the letter " $M$ " better than " $Q$." Coke conducted a study to test its contention by putting Coke in both the "M" and "Q" glasses. Sure enough, more people preferred the drink in the "M" glass, even though it was Coke in both glasses. Pepsi responded by doing another Pepsi Challenge round, only this time revising the letters to
"S" and "L," with Pepsi always in the "L" glass. The sample results again favored Pepsi. Predictably, Coke executives again cried foul, claiming an "L" preference. A noted motivational authority was then consulted and he reported that he knew of no studies showing a bias in favor of the letter "L." As a budding statistician, how might you design an experiment to determine whether there is a preference for Pepsi or Coke in the population and at the same time eliminate glass-preference as a possible explanation?

## Take the <br> PepsiChallenge. Let your taste decide.

Pepsi-Cola's blind taste test.
Maybe you've seen "The Pepsi Challenge" on TV. It's a simple, straightforward taste test where Coca-Cola drinkers taste Coca-Cola and Pepsi
without knowing which is which.
Then we ask them which one they prefer.


More than half the Coca-Cola drinkers tested in Michigan preferred Pepsi. Hundreds of Coca-Cola drinkers from Michigan were tested and we found that more than half the people tested prefered the taste of Pepsi.

Let your taste decide.
We're not asking you to take our word for it. Or anyone else's. Just try it yourself. Take The Pepsi Challenge
and let your taste decide.


## WHAT IS THE TRUTH?



The research reported in the previous "What Is the Truth?" section did not report any significance levels. Sometimes experiments are reported that do contain significance levels but that nonetheless raise suspicions of Type I error. Consider the following newspaper article on research done at a leading U.S. university.

## STUDY: MILDLY DEPRESSED WOMEN LIVE LONGER

If you want to live a long, happy life, think again.

Researchers at Duke University followed more than 4,000 older people for a decade and found that women who lived longest were mildly depressed. The study is in the May-June issue of American Journal of Geriatric Psychiatry.
"We don't quite understand the finding," said Dr. Dan Blazer, a professor of psychiatry and behavioral science at Duke and co-author of the study. This jump in longevity was seen only in women. Women with mild depression, determined by a diagnostic questionnaire, were 40 percent less likely to die during the study period compared with

## Chance or Real Effect?-2

women with no depression or those with more serious forms of depression. For men, mild depression was found to have no effect on mortality.

Blazer suspects mild forms of depression could protect against death by slowing people down, giving them more time to pay attention to their minds and bodies.

Author Unknown. Article from The Coloradoan, May 4, 2002, p. A3.

Although the newspaper article didn't state any significance levels, let's assume that in the American Journal of Geriatric Psychiatry article, it was stated that using $\alpha=0.05$, the women with mild depression were significantly more likely to die during the study period compared
with women with no depression or those with more serious forms of depression. Yes, this result reached significance at the 0.05 level, but it still seems questionable. First, this seems like a surprising, unplanned result that the authors admit they don't understand. Second, neither women with no depression nor women with more serious depression showed it. Finally, mildly depressed men didn't show the result either. What do you think, chance or real effect? The point being made is that just because a result is statistically significant, it does not automatically mean that the result is a real effect. It could have been a Type I error. Of course, replication would help resolve the issue.


## WHAT IS THE TRUTH?

Often we see advertisements that present no data and make the assertion, "No product is better in doing $X$ than our product." An ad regarding Excedrin, which was published in a national magazine, is an example of this kind of advertisement. The ad showed a large picture of a bottle of Excedrin tablets along with the statements,
"Nothing you can buy is stronger."
"Nothing you can buy works harder."
"Nothing gives you bigger relief."
The question is, "How do we interpret these claims?" Do we rush out and buy Excedrin because it is stronger, works harder, and gives bigger relief than any other headache remedy available? If there are experimental data that form the basis of this ad's claims, we wonder what the results really are. What is your guess?

Answer Of course, we really don't know in every case, and therefore we don't intend our remarks to be directed at any specific ad. We have just chosen the Excedrin ad as an illustration of many such ads. However, we can't help but be suspicious that in most, if not all, cases where sample data exist, the actual data show that there is no significant difference in doing $X$ between the

## "No Product Is Better Than Our Product"

advertiser's product and the other products tested.

For the sake of discussion, let's call the advertiser's product "A." If the data had shown that "A" was better than the competing products, it seems reasonable that the advertiser would directly claim superiority for its product, rather than implying this indirectly through the weaker statement that no other product is better.

Why, then, would the advertiser make this weaker statement? Probably because the actual data do not show product " $A$ " to be superior at all. Most likely, the sample data show product " $A$ " to be either equal to or inferior to the others and the inference test shows no significant difference between the products. Given such data, rather than saying
that the research shows our product to be inferior or, at best, equal to the other products at doing $X$ (which clearly would not sell a whole bunch of product " $A$ "), the results are stated in this more positive, albeit, in our opinion, misleading way. Saying "No other product is better than ours in doing X" will obviously sell more products than "All products tested were equal in doing X." And after all, if you read the weaker statement closely, it does not really say that product "A" is superior to the others.

Thus, in the absence of reported data to the contrary, we believe the most accurate interpretation of the claim "No other competitor's product is superior to ours at doing $X$ " is that the products are equal at doing $X$.


## WHAT IS THE TRUTH?

## Anecdotal Reports Versus Systematic Research



The following article appeared in an issue of The New York Times on the Web. It is representative of a fairly common occurrence: individual testimony about a phenomenon conflicts with systematic research concerning the phenomenon. In this case, we are looking at the effects of the hormone secretin on autism. After reading the article, if you were asked if secretin has a beneficial effect on autism, how would you answer? Would you be satisfied with anecdotal reports? Would negative results from systematic research satisfy you? How could the issue be resolved?

## A DRUG USED FOR AUTISM IS UNDER FIRE IN NEW STUDY

By SANDRA BLAKESLEE
A hormone trumpeted in the news media and on the Internet as a potential cure for autism worked no better than saltwater in its first controlled clinical trial, scientists are reporting.

The study, described in the issue of The New England Journal of Medicine that is being published on Thursday, is one of a dozen efforts sponsored by the National Institutes of Health to test the hormone, secretin, which gained wide attention after a 3-year-old New Hampshire boy showed rapid improvement after taking the drug in 1996.
"Secretin is in widespread use across the country," said Dr. Marie Bristol-Power, special assistant for autism programs at the Institute of Child Health and Human Development at the N.I.H. "Parents need to
know if it is promising and should be pursued or if they are being taken advantage of."

The study was not definitive, Dr. Bristol-Power said, and researchers will know more by the middle of next year, when other studies are completed.

Defenders of secretin were quick to denounce the new study, saying it did not give the drug a fair test.
"No one has ever claimed that secretin is a miracle cure for autism," said Victoria Beck, the mother of the boy who improved after taking it.

Ms. Beck, who has written a book on secretin, called the hormone "a clue that deserves careful investigation and not dismissal from autism gurus, who have a vested interest in the way things have been done in the past."

Autism is a serious brain disorder that begins in infancy and prevents children from developing normally. Symptoms, which can be mild to severe, include an inability to communicate, a refusal to make eye contact, repetitive behavior like head banging or hand flapping, and
a preoccupation with unusual activities or interests.

Half a million Americans have the disorder, which is typically treated with educational and behavioral therapy; while intensive therapy has proved effective in some patients, two-thirds of adults with autism cannot live independently.

Secretin is a hormone made in the intestine that stimulates the release of digestive fluids. Ms. Beck's son, Parker, was given an injection to explore the cause of his chronic diarrhea. Soon afterward, his behavior improved; he could hold still and interact better with adults.

When his story was reported on television, in newspapers and on the Internet last year, parents began clamoring to get the drug.

Dr. Bristol-Power said that the supply of secretin was soon exhausted and that a black market developed involving sham secretin, price gouging and other forms of profiteering; Ms. Beck said that these stories were exaggerated and that no one today had any problem obtaining secretin at a fair price, which is about $\$ 200$ an injection.


Anecdotes about secretin are thriving on the Internet. Some parents report dramatic effects, others see no effect and some report that their child's symptoms have worsened. Both sides in the secretin controversy estimate that 2,000 to 3,000 children have taken or are taking the drug.

The controlled study of secretin was led by Dr. James Bodfish of the Western Carolina Center and the University of North Carolina, and by Dr. Adrian Sandler of the Center for Child Development at Thoms Rehabilitation Hospital in Asheville, N.C.

In all, 56 autistic children 3 to 14 years of age took part in the study. Half received a single injection of synthetic human secretin, and the rest were injected with
saltwater. Researchers administered a battery of behavioral tests at intervals of one day, one week and four weeks after the treatment. Statistically, the two groups showed no differences, Dr. Sandler said.

A third of the children in both the placebo and treatment groups improved on some of the same measures. The only explanation, Dr. Sandler said, is a "significant placebo effect."
"Parents are extremely invested in the possibility of new treatments and have high expectancies," he said. "They are looking for subtle improvements. Kids with autism show variability in their day-to-day behavior and it would be easy to attribute normal variations to the secretin."

Ms. Beck disputes this interpretation, contending that by concentrating on standard behavioral tests the researchers have failed to look [at] a wide range of physiological responses seen in children given secretin, and that those should be studied.
"It really bothers me that parents are portrayed as this desperate group of people with vacant minds," she said. "They claim we can't tell the difference between an improvement and a mirage. But when a child stops vomiting, sleeps through the night and makes eye contact, we know something is happening."

Source: Copyright © 1999 by the New York Times Co. Reprinted by permission.

## S U M MARY

In this chapter, I have discussed the topic of hypothesis testing, using the sign test as our vehicle. The sign test is used in conjunction with the repeated mea sures design. The essen tial features of the rep eated mea sures des ign are that there are paired scores between conditions, and difference scores are analyzed.

In any hypothesis-testing experiment, there are always two $h$ ypotheses $t$ hat co mpete to e xplain $t$ he res ults: $t$ he alternative hypothesis a nd the null hypothesis. The a lternative $h$ ypothesis $s$ pecifies th at the in dependent $v$ ariable is res ponsible for the differences in score $v$ alues between the cond itions. The a lternative hypothesis $m$ ay be directional or nondirectional. It is legitimate to use a directional hypothesis when there is a good theoretical basis and good supporting evidence in the literature. If the experiment is a ba sic f act-finding e xperiment, ord inarily a $n$ ondirectional hypothesis should be used. A directional alternative hypothesis is evaluated with a one-tailed probability value and a $n$ ondirectional $h$ ypothesis $w$ ith a $t$ wo-tailed pro bability value.

The null hypothesis is the logical counterpart to the alternative hypothesis such that if the null hypothesis is false, the alternative hypothesis must be true. If the alternative hypothesis is nondirectional, the null hypothesis
specifies that the independent variable has no effect on the dep endent $v$ ariable. If the a lternative $h$ ypothesis is directional, the null hypothesis states that the in dependent variable has no effect in the direction specified.

In evaluating the data from an experiment, we never directly e valuate $t$ he a lternative $h$ ypothesis. We a lways first evaluate the null hypothesis. The null hypothesis is evaluated by a ssuming $c$ hance a lone is res ponsible $f$ or the $d$ ifferences in scores $b$ etween cond itions. In do ing this evaluation, we calculate the probability of getting the obtained result or a result even more extreme if chance alone is responsible. If this obtained probability is equal to or lower than the alpha level, we consider the null hypothesis explanation unreasonable and reject the null hypothesis. We conclude by accepting the alternative hypothesis because it is $t$ he on ly ot her explanation. If the obtained probability is $g$ reater than the alpha level, we ret ain the null hypothesis. It is still considered a reasonable explanation of the data. Of course, if the null hypothesis is $n$ ot rejected, the a lternative hypothesis ca nnot be a ccepted. The conclusion applies legitimately only to the population from which the sample was randomly drawn. We must be careful to distinguish "statistically significant" from practically or theoretically "important."

The a lpha level is us ually set at 0.05 or 0.01 to minimize the probability of making a Type I er ror. A Type I error occurs when the null hypothesis is rejected and it is actually true. The alpha level limits the probability of making a Type I error. It is also possible to make a Type II error. This occurs when we retain the null hypothesis and it is false. Beta is defined as the probability of making a Type II error. When alpha is made more stringent, beta increases. By minimizing alpha and beta, it is possible to have a high probability of correctly concluding from an experiment regardless of whether $H_{0}$ or $H_{1}$ is true. A significant result really says that it is a reliable result but gives little information about the size of the effect. The larger the effect, the more likely it is to be an important effect.

In analyzing the data of an experiment with the sign test, we ignore the magnitude of difference scores a nd just consider their direction. There are only two possible scores for each subject: a plus or a m inus. We sum the pluses a nd minuses for all subjects, a nd the obtained result is $t$ he tot al $n$ umber of $p$ luses a nd $m$ inuses. To test t he n ull h ypothesis, we ca lculate t he pro bability of $g$ etting the tot al number of pluses or a $n$ umber of pluses even more extreme if chance alone is responsible. The binomial distribution, with $P$ (the p robability of a plus) $=0.50$ and $N=$ the number of difference scores, is appropriate for making this determination. An illustrative problem and several practice problems were given to show how to evaluate the null hypothesis using the binomial distribution.

## IMPORTANT NEW TERMS

Alpha ( $\alpha$ ) level (p. 252, 255)
Alternative hypothesis $\left(H_{1}\right)($ p. 252 $)$
Beta ( $\beta$ ) (p. 255)
Correct decision (p. 255)
Correlated groups design (p. 251)
Directional hypothesis (p. 252)
Fail to reject null hypothesis
(p. 253)

Importance of an effect (p. 265)
Nondirectional hypothesis (p. 252)
Null hypothesis $\left(H_{0}\right)$ (p. 252)
One-tailed probability (p. 259)
Reject null hypothesis (p. 254)
Repeated measures design (p. 251)
Replicated measures design (p. 251)
Retain null hypothesis (p. 252)

Sign test (p. 250)
Significant (p. 253, 265)
Size of effect (p. 265)
State of reality (p. 255)
Two-tailed probability (p. 258)
Type I error (p. 254)
Type II error (p. 254)

## ■ QUESTIONS AND PROBLEMS

Caution: Remember, when answering any of the end-of-chapter problems, in this and the remaining chapters, use t he direction specified by the $H_{1}$ or $\alpha$-level given in the problem to determine if the evaluation is to be 1-tailed or 2-tailed.

1. Briefly define or explain each of the terms in the Important New Terms section.
2. Briefly desc ribe the pro cess i nvolved in h ypothesis testing. Be sure to i nclude the alternative hypothesis, the null hypothesis, the decision rule, the possible type of error, and the population to which the results can be generalized.
3. Explain in y our o wn words why it is i mportant to know the possible errors we might make when rejecting or failing to reject the null hypothesis.
4. Does t he n ull h ypothesis f or a n ondirectional $H_{1}$ differ from the null hypothesis for a directional $H_{1}$ ? Explain.
5. Under what conditions is it legitimate to use a directional $H_{1}$ ? Why is it not legitimate to use a directional $H_{1}$ just because the experimenter has a "hunch" about the direction?
6. If the obtained probability in an experiment equals 0.0200 , does this mean that the probability that $H_{0}$ is true equals 0.0200 ? Explain.
7. Discuss $t$ he d ifference b etween " significant" and "important." Include "effect size" in your discussion.
8. What c onsiderations $\mathrm{g} o$ in to d etermining the be st alpha level to use? Discuss.
9. A pr imatologist believes that rhes us mon keys possess curiosity. $S$ he rea sons $t$ hat, $i f t$ his is $t$ rue, $t$ hen $t$ hey should prefer novel stimulation to repetitive stimulation. An experiment is conducted in which 12 rhesus monkeys are randomly selected from the university colony and $t$ aught to press $t$ wo ba rs. Pressing bar 1 a lways produces the sa me sou nd, whereas ba r 2 pro duces a
novel sou nd each time it is presse d. A fter learning to press the bars, the monkeys are tested for 15 minutes, during which they have free access to both bars. The number of presses on each bar during the 15 minutes is recorded. The resulting data are as follows:

| Subject | Bar 1 |  |  | Bar 2 |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$ |  |  |  |  |  |
|  | 1 | 0 | 2 | 40 |  |
|  | 2 | 8 | 1 | 25 |  |
|  | 3 | 4 |  | 2 | 38 |
|  | 4 | 4 |  | 1 | 27 |
|  | 5 |  |  | 31 |  |
|  | 6 | 6 |  | 2 | 21 |
|  | 7 | 5 | 1 | 32 |  |
|  | 8 | 9 | 2 | 38 |  |
|  | 9 | 5 | 1 | 25 |  |
|  | 9 |  | 18 |  |  |
| 10 | 25 |  | 32 |  |  |
| 11 | 31 |  | 28 |  |  |
| 12 |  |  |  |  |  |

a. What is $t$ he alternative hypothesis? In this case, assume a nond irectional hypothesis is appropr i ate because there is insufficient empirical basis to warrant a directional hypothesis.
b. What is the null hypothesis?
c. Using $\alpha=0.05_{2 \text { tail, what is your conclusion? }}$,
d. What error might you be making by your conclusion in part $\mathbf{c}$ ?
e. To what population does your conclusion apply? cognitive, biological
10. A school principal is interested in a ne w met hod for teaching eighth-grade social st udies, wh ich he believes will increase the amount of material learned. To t est thi s m ethod, the p rincipal conducts $t$ he following experiment. The e ighth-grade students int he sc hool $d$ istrict a re $g$ rouped into pairs based on matching their IQs and past grades. Twenty matched pairs are randomly selected for the experiment. One member of each pair is randomly assigned to a $g$ roup that receives the new method, and the other member of each pair to a g roup that receives the standard instruction. At the end of the course, all students take a common final exam. The following are the results:

| Pair No. | New <br> Method | Standard <br> Instruction |
| :---: | :---: | :---: |
| $\ldots \ldots \ldots$ |  |  |

a. What is the alternative hypothesis? Use a directional hypothesis.
b. What is the null hypothesis?
c. Using $\alpha=0.05_{1 \text { tail, }}$, what is your conclusion?
d. What error might you be making by your conclusion in part $\mathbf{c}$ ?
e. To what population do es your conclusion apply? education
11. A physiologist believes that the hormone angiotensin II is important in regulating thirst. To investigate this belief, she randomly samples 16 rats from the vivarium of the drug company where she works and places them in individual cages with free access to food and water. After they have grown acclimated to their new "homes," the experimenter measures the a mount of water each rat drinks in a 20 -minute period. Then she injects each animal intravenously with a k nown concentration ( 100 m icrograms p er k ilogram) of angiotensin II. The rats are then put back into their home cages, and the amount each drinks for another

20 -minute period is measured. The results are shown in the following table. Scores are in milliliters drunk per 20 minutes.
\(\left.$$
\begin{array}{ccc}\hline \text { Subject } & \begin{array}{c}\text { Before } \\
\text { Injection }\end{array} & \begin{array}{c}\text { After } \\
\text { Injection }\end{array}
$$ <br>

\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots\end{array}\right]\)| 1 | 1.2 | 11.3 |
| :---: | :---: | :---: |
| 2 | 0.8 | 10.7 |
| 3 | 0.5 | 11.5 |
| 4 | 1.3 | 9.6 |
| 5 | 0.6 | 3.3 |
| 6 | 3.5 | 10.5 |
| 7 | 0.7 | 11.4 |
| 8 | 0.4 | 12.0 |
| 9 | 1.1 | 12.8 |
| 10 | 0.3 | 11.4 |
| 11 | 0.6 | 9.8 |
| 12 | 0.3 | 10.6 |
| 13 | 0.5 | 3.2 |
| 14 | 4.1 | 12.1 |
| 15 | 0.4 | 11.2 |
| 16 | 1.0 |  |

a. What is the nondirectional alternative hypothesis?
b. What is the null hypothesis?
c. Using $\alpha=0.05_{2 \text { tail }}$, what is y our c onclusion? Assume t he i njection i tself ha d n o e ffect on drinking behavior.
d. What error might you be making by your conclusion in part $\mathbf{c}$ ?
e. To what population does your conclusion ap ply? biological
12. A leading toothpaste manufacturer advertises that, in a recent medical study, $70 \%$ of the people tested had brighter teeth after using its toothpaste (called Very Bright) as co mpared to us ing the leading co mpetitor's brand (called Brand X). The advertisement continues, "Therefore, use Very Bright and get brighter teeth." In point of fact, the data u pon which these statements were based were collected from a random sample of 10 employees from the manufacturer's Pasadena plant. In the experiment, each employee used both toothpastes. Half of the employees used Brand X for 3 weeks, followed by Very Bright for the same time period. The ot her half use d Very B right first, followed by Brand X. A brightness test was given at
the end of each 3-week period. Thus, there were two scores for each employee, one f rom the br ightness test following the use of Brand X and one following the use of Very Bright. The following table shows the scores (the higher, the brighter):

| Subject | Very Bright | Brand X |
| :---: | :---: | :---: |
|  | 1 | 54 |
|  | 2 | 43 |
|  | 3 | 42 |
|  | 4 | 23 |
|  | 5 | 31 |
|  | 6 | 41 |
|  | 7 | 13 |
|  | 8 | 34 |
|  | 9 | 65 |
| 10 | 6 | 4 |

a. What is $t$ he alternative hypothesis? Use a d irectional hypothesis.
b. What is the null hypothesis?
c. Using $\alpha=0.05_{1 \text { tail, }}$, what do you conclude?
d. What error might you be making by your conclusion in part $\mathbf{c}$ ?
e. To what population does your conclusion apply?
f. Does the advertising seem misleading? I/O
13. A researcher is in terested in determining whether acupuncture affects pain tolerance. An experiment is performed in which 15 students are randomly chosen from a large pool of university undergraduate volunteers. Each subject serves in two conditions. In both conditions, ea ch s ubject re ceives as hort-duration electric shock to the pulp of a to oth. The shock intensity is set to pro duce a mo derate level of pain to the unanesthetized subject. After the shock is terminated, each subject rates the perceived level of pain on a scale of $0-10$, with 10 being the highest level. In the experimental condition, each subject receives the appropriate acupuncture treatment prior to receiving the shock. The control condition is made as similar to the experimental condition as possible, except a placebo treatment is $g$ iven instead of acupuncture. The two conditions are run on separate days at the same time of day. The pain ratings in the accompanying table are obtained.
a. What is $t$ he a lternative $h$ ypothesis? A ssume a nondirectional hypothesis is appropriate.
b. What is the null hypothesis?
c. Using $\alpha=0.05_{2 \text { tail }}$, what is your conclusion?
d. What error might you be making by your conclusion in part $\mathbf{c}$ ?
e. To what population does your conclusion apply?

| Subject | Acupuncture | Placebo |
| :---: | :---: | :---: |
|  | 1 | 46 |
|  | 2 | 25 |
|  | 3 | 15 |
|  | 4 | 53 |
|  | 5 | 36 |
|  | 6 | 24 |
|  | 7 | 37 |
|  | 8 | 26 |
|  | 9 | 18 |
| 10 | 4 | 3 |
| 11 | 3 | 7 |
| 12 | 4 | 8 |
| 13 | 5 | 3 |
| 14 | 2 | 5 |
| 15 | 1 | 4 |

cognitive, health

## What Is the Truth? Questions

1. Chance or Real Effect? - 1

The main question to be answered is, 'In the population, is $t$ here a pre ference for Co ke or $f$ or Pepsi?"

As a budd ing s tatistician, des ign a $n$ e xperiment that will answer this question and at the same time eliminate glass-preference as a possible explanation. Use the repeated mea sures design, a nd an $N$ of 20 with each subject tasting both Coke and Pepsi once in separate tastings. For this question, make up the sample $d$ ata $s$ uch $t$ hat $t$ he res ults a re s ignificant favoring Pepsi. Evaluate the data using the sign test with $\alpha=0.05_{2 \text { tail }}$. To make the analysis interesting, use sample scores such that the obtained probability exceeds alpha by the smallest amount possible with an $N$ of 20 .
2. Chance or Real Effect? - 2

When we reject the null hypothesis, it is possible we made a Type I error. How can we reduce the probability of making a Type I error by manipulating the alpha level? Explain.
3. "No Product Is Better Than Our Product"

If you read an advertisement that states, "No other competitor's product is superior to ours" and the advertisement do es $n$ ot show co mparative $d$ ata, $w$ hat is mos $t$ likely the true state of affairs regarding the competitor's and the advertiser's products? Discuss.
4. Anecdotal Reports Versus Systematic Research

After reading this What is the Truth? section, if you were a sked if se cretin has a b eneficial effect on autism, how would you answer? Would you be satisfied with a necdotal rep orts? Would negative results from systematic research satisfy you? How can the issue be resolved?

## NOTES

10.1 If the null hypothesis is false, then chance does not account for the results. Strictly speaking, this means that something systematic differs between the two groups. Ideally, the only systematic difference is due to the independent variable. Thus, we say that if the null hypothesis is false, the alternative hypothesis must be true. Practically speaking, however, the reader should be aware that it is hard to do $t$ he perfect experiment. Consequently, in a ddition to $t$ he a lternative h ypothesis, t here are often a dditional possible explanations of the systematic d ifference. T herefore, w hen we sa y "we acce pt $H_{1}$," y ou s hould be a ware that there may be additional explanations of the systematic difference.
10.2 If the alternative hypothesis is directional, the null hypothesis a sserts $t$ hat $t$ he i ndependent $v$ ariable does not ha ve an effect in the direction specified by $t$ he a lternative $h$ ypothesis. $T$ his is $t$ rue in $t$ he overwhelming $n$ umber of e xperiments con ducted. Occasionally, an experiment is conducted in which the a lternative $h$ ypothesis s pecifies $n$ ot on ly $t$ he direction but also the magnitude of the effect. For example, in connection with the marijuana experiment, an a lternative hypothesis of this type might be "Marijuana increases appetite so as to increase average d aily eat ing by more t han 200 ca lories." The null hypothesis for this alternative hypothesis is "Marijuana increases appetite so as to increase daily eating by 200 or fewer calories."

## ■ ONLINE STUDY RESOURCES

## CENGAGE braiin

Login to CengageBrain.com to access the resources your instructor has a ssigned. For this book, y ou can a ccess the book's companion website for chapter-specific learning to ols including K now and Be Able to Do o, practice quizzes, flash cards, and glossaries, and a link to Statistics and Research Methods Workshops.

If your professor has assigned Aplia homework:

1. Sign in to your account.
2. Complete the cor responding ho mework exercises as required by your professor.
3. When finished, click "G rade It N ow" to se e which areas you have mastered and which need more work, and for detailed explanations of every answer.

Visit www.cengagebrain.com to access your account and to purchase materials.

## Power

## CHAPTER OUTLINE

Introduction
What Is Power?
$P_{\text {null }}$ and $P_{\text {real }}$
$P_{\text {real }}$ : A Measure of the Real Effect
Power Analysis of the AIDS
Experiment
Effect of $N$ and Size of Real Effect
Power and Beta ( $\beta$ )
Power and Alpha ( $\alpha$ )
Alpha-Beta and Reality
Interpreting Nonsignificant Results
Calculation of Power

## What Is the Truth?

- Astrology and Science

Summary
Important New Terms
Questions and Problems
What Is the Truth? Questions Notes
Online Study Resources

## LEARNING OBJECTIVES

After completing this chapter, you should be able to:

- Define power, in terms of both $H_{1}$ and $H_{0}$.
- Define $P_{\text {null }}$ and $P_{\text {real }}$, and specify what $P_{\text {real }}$ measures.
- Specify the effect that $N$, size of real effect, and alpha level have on power.
- Explain the relationship between power and beta.
- Explain why we never "accept" $H_{0}$, but instead "fail to reject," or "retain" it.
- Calculate power using the sign test.
- Understand the illustrative examples, do the practice problems, and understand the solutions.

MENTORINGTIP
Caution: many students find this is a difficult chapter. You may need to give it some extra time.

We have seen in Chapter 10 that there are two errors we might make when testing hypotheses. We have called them Type I and Type II errors. We have further pointed out that the alpha level limits the probability of making a Type I er ror. By setting alpha to 0.05 or 0.01 , experimenters can limit the probability that they will falsely reject the null hypothesis to $t$ hese low levels. But what ab out Type II er rors? We defined beta $(\beta)$ as the probability of making a Type II error. We shall see later in this chapter that $\beta=1$ - power. By maximizing power, we minimize beta, which means we minimize the probability of making a Type II error. Thus, power is a very important topic.

Conceptually, the power of an experiment is a mea sure of the sensitivity of the experiment to detect a real effect of the independent variable. By "a real effect of the independent variable," we mean an effect that produces a change in the dependent variable. If the independent variable does not produce a change in the dependent variable, it has no effect and we say that the independent variable does not have a real effect.

In a nalyzing the data from an experiment, we "detect" a rea 1 effect of the independent variable by rejecting the null hypothesis. Thus, power is de fined in terms of rejecting $H_{0}$.

## definition $\quad$ Mathematically, the power of an experiment is defined as the probability that the results of an experiment will a llow rejection of the null hyp othesis if the independent variable has a real effect.

Another way of stating the definition is that the power of an experiment is the probability that the results of an experiment will allow rejection of the null hypothesis if the null hypothesis is false.

Since power is a pro bability, its value can vary from 0.00 to 1.00 . The higher the power, the more sens itive the experiment is to det ect a real effect of the independent variable. Experiments with power as high as 0.80 or higher are very desirable but rarely seen in the behavioral sciences. Values of 0.40 to 0.60 are much more common. It is especially useful to determine the power of an experiment when (1) initially designing the experiment and (2) interpreting the results of experiments that fail to detect any real effects of the independent variable (i.e., experiments that retain $H_{0}$ ).

## $\boldsymbol{P}_{\text {null }}$ AND $\boldsymbol{P}_{\text {real }}$



When computing the power of an experiment using the sign test, it is useful to distinguish between $P_{\text {null }}$ and $P_{\text {real }}$.

## definitions <br> $\boldsymbol{P}_{\text {null }}$ is the probability of getting a plus with any subject in the sample of the experiment when the independent variable has no effect. <br> - $\boldsymbol{P}_{\text {real }}$ is the probability of getting a plus with any subject in the sample of the experiment when the independent variable has a real effect.

$P_{\text {null }}$ always equals 0.50 . For experiments where $H_{1}$ is nond irectional, $P_{\text {real }}$ equals any one of the other possible values of $P$ (i.e., any value of $P$ that does not equal 0.50 ).

## $P_{\text {real }}:$ A Measure of the Real Effect

The actual value of $P_{\text {real }}$ will depend on the size and direction of the real effect. To illustrate, let's use t he marijuana experiment of Chapter 10. (Refer to F igure 11.1 for the rest of this discussion.) Let us f or the moment a ssume that the marijuana experiment was conducted on the entire population of 10,000 AIDS patients being treated at your hospital, not just on the sample of 10 . If the effect of marijuana is to increase appetite and the size of the real effect is large enough to overcome all the

figure 11.1 Relationship among null hypothesis, size of marijuana effect, and $P$ values for a nondirectional $H_{1}$.

As we defined it earlier, $\boldsymbol{P}_{\text {real }}$ is the probability of a plus with any subject in the sample of the experiment if the independent variable has a real effect. However, it is also the proportion of pluses in the population if the experiment were done on the entire population and the independent variable has a real effect.

MENTORINGTIP
The further $P_{\text {real }}$ is from 0.50 , the greater is the size of the effect.
variables that might be acting to de crease appetite, we would get pluses from all 10,000 pat ients. Accordingly, there would be 10,000 pluses a nd 0 m inuses in the population. Thus, for this size and direction of marijuana effect, $P_{\text {real }}=1.00$. This is because there are all pluses in the population and the scores of the 10 subjects in the actual experiment would have to be a random sample from this population of scores. We can now elaborate further on the definition of $P_{\text {real }}$.

Of course, the value $P_{\text {real }}$ is the same whether defined in terms of the population proportion of pluses or the probability of a plus with any subject in the sample. Let us ret urn now to our discussion of $P_{\text {real }}$ and the size of the effect of the independent variable.

If marijuana increases appetite less strongly than to produce all pluses-say, to produce 9 pluses for every 1 minus-in the population, there would be 9000 pluses and 1000 minuses and $P_{\text {real }}=0.90$.* If the increasing effect of marijuana were of even smaller size-say, 7 p luses for every 3 m inuses-the population would have 7000 p luses a nd 3000 mi nuses. In this c ase, $P_{\text {real }}=0.70$. Finally, if marijuana had no effect on appetite, then there would be 5000 pluses and 5000 minuses, and $P_{\text {null }}=0.50$. Of course, this is the chance-alone prediction.

On the other hand, if marijuana decreases appetite, we would expect fewer pluses than minuses. Here, $P_{\text {real }}<0.50$. To illustrate, if the decreasing effect on app etite is la rge en ough, there would be all minuses ( 10,000 minuses a nd 0 p luses) in the population and $P_{\text {real }}=0.00$. A decreasing effect of smaller size, such that there were 1000 pluses and 9000 minuses, would yield $P_{\text {real }}=0.10$. A still weaker decreasing effect on appetite-say, 3 pluses for every 7 minuses-would yield $P_{\text {real }}=0.30$. As the decreasing effect on appetite weakens still further, we finally return to the null hypothesis specification of $P_{\text {null }}=0.50$ (marijuana has no effect).

From the previous discussion, we can see that $P_{\text {real }}$ is a mea sure of the size and direction of the independent variable's real effect. The further $P_{\text {real }}$ is from 0.50 , the greater is the size of the real effect. It turns out that the power of the experiment varies with the size of the real effect. Thus, when doing a power analysis with the sign test, we must consider all $P_{\text {real }}$ values of possible interest.

## POWER ANALYSIS OF THE AIDS EXPERIMENT

Suppose y ou a re planning a $n$ e xperiment to $t$ est $t$ he $h$ ypothesis $t$ hat " $m$ arijuana affects appetite in AIDS patients." You plan to randomly select five AIDS patients from your hospital AIDS population and conduct the experiment as previously

[^16]described. S ince $y$ ou want to 1 imit $t$ he pro bability of f alsely re jecting $t$ he $n$ ull hypothesis to a low level, you set $\alpha=0.05_{2 \text { tail }}$. Given this stringent alpha level, if you reject $H_{0}$, you can be reasonably confident your results are due to marijuana and not to chance. But what is the probability that you will reject the null hypothesis as a result of doing this experiment? To answer this question, we must first determine what sample results, if any, will allow $H_{0}$ to be rejected. The results most favorable for rejecting the null hypothesis are all pluses or all minuses. Suppose you got the strongest possible result-all pluses in the sample. Could you reject $H_{0}$ ? Since $H_{1}$ is nondirectional, a two-tailed evaluation is appropriate. With $N=5$ and $P_{\text {null }}=0.50$, from Table B in Appendix D,
\[

$$
\begin{aligned}
p(5 \text { pluses or } 5 \text { minuses }) & =p(5 \text { pluses or } 0 \text { pluses }) \\
& =0.0312+0.0312 \\
& =0.0624
\end{aligned}
$$
\]

Table B entry

|  | No. of $P$ | $P$ |
| :---: | :---: | :---: |
| $N$ | Events | 0.50 |
| 5 | 0 | 0.0312 |
|  | 5 | 0.0312 |

Since 0.0624 is g reater than alpha, if we obtained these results in the experiment, we must conclude by retaining $H_{0}$. Thus, even if the results were the most favorable possible for rejecting $H_{0}$, we still can't reject it!

Let's look at the situation a little more closely. Suppose, in fact, that marijuana has a very large effect on appetite and that it increases appetite so much that, if the experiment were conducted on the entire population, there would be all pluses. For example, if the population were 10,000 patients, there would be 10,000 pluses. The five scores in the sample would be a random sample from this population of scores, and the sample would have all pluses. But we've just determined that, even with five pluses in the sample, we would be unable to reject the null hypothesis. Thus, no matter how large the marijuana effect really is, we would not be able to reject $H_{0}$. With $N=5$ and $\alpha=0.05_{2 \text { tail }}$, there is no sample result that would allow $H_{0}$ to be rejected. This is the most insensitive experiment possible. Power has been defined as the probability of rejecting the null hypothesis if the independent variable has a real effect. In this experiment, the probability of rejecting the null hypothesis is zero, no matter how large the independent variable effect really is. Thus, the power of this experiment is zero for all $P_{\text {real }}$ values. We can place very little value on results from such an insensitive experiment.

## Effect of $\boldsymbol{N}$ and Size of Real Effect

Next, s uppose $N$ is i ncreased to 10 . A re there now a ny sa mple res ults that will allow us to re ject the null hypothesis? The solution is shown in Table 11.1. If the sample ou tcome is 0 p luses, from Table B, with $N=10$ a nd using $P_{\text {null }}=0.50$, $p(0$ or 10 pluses $)=0.0020$. Note we included 10 pluses because the alternative hypothesis is nondirectional, requiring a two-tailed evaluation. Since 0.0020 is less than alpha, we would reject $H_{0}$ if we got this sample outcome. Since the two-tailed probability for 10 pluses is also 0.0020 , we would also reject $H_{0}$ with this outcome. From Table B, we can se e that, if the sample outcome were 1 p lus or 9 p luses,
table 11.1 Determining the sample outcomes that will allow rejection of the null hypothesis with $N=10, P_{\text {null }}=0.50$, and $\alpha=0.05_{2 \text { tail }}$

| Sample Outcome | Probability | Decision |
| :---: | :---: | :---: |
| 0 pluses | $\begin{aligned} p(0 \text { or } 10 \text { pluses }) & =2(0.0010) \\ & =0.0020 \end{aligned}$ | Reject $H_{0}$ |
| 10 pluses | $\begin{aligned} p(0 \text { or } 10 \text { pluses }) & =2(0.0010) \\ & =0.0020 \end{aligned}$ | Reject $H_{0}$ |
| 1 plus | $\begin{aligned} p(0,1,9, \text { or } 10 \text { pluses }) & =2(0.0010+0.0098) \\ & =0.0216 \end{aligned}$ | Reject $H_{0}$ |
| 9 pluses | $\begin{aligned} p(0,1,9, \text { or } 10 \text { pluses }) & =2(0.0010+0.0098) \\ & =0.0216 \end{aligned}$ | Reject $H_{0}$ |
| 2 pluses | $\begin{aligned} p(0,1,2,8,9, \text { or } 10 \text { pluses }) & =2(0.0010+0.0098+0.0439) \\ & =0.1094 \end{aligned}$ | Retain $H_{0}$ |
| 8 pluses | $\begin{aligned} p(0,1,2,8,9, \text { or } 10 \text { pluses }) & =2(0.0010+0.0098+0.0439) \\ & =0.1094 \end{aligned}$ | Retain $H_{0}$ |

we would also reject $H_{0}(p=0.0216)$. However, if the sample outcome were 2 pluses or 8 pluses, the two-tailed probability value ( 0.1094 ) would be greater than alpha. Hence, we would retain $H_{0}$ with 2 or 8 pluses. If we can't reject $H_{0}$ with 2 or 8 pluses, we certainly can't reject $H_{0}$ if we get an outcome less extreme, such as $3,4,5,6$, or 7 pluses. Thus, the only outcomes that will allow us to re ject $H_{0}$ are $0,1,9$, or 10 pluses. Note that, in making this determination, since we were evaluating the null hypothesis, we u sed $P_{\text {null }}=0.50$ (which a ssumes no effect) a nd began at the extremes, working in toward the center of the distribution until we reached the first outcome for which the two-tailed probability exceeded alpha. The outcomes allowing re jection of $H_{0}$ a re the ones more e xtreme than this first outcome for which we retain $H_{0}$.

How can we use these outcomes to determine power? Power equals the probability of rejecting $H_{0}$ if the independent variable has a real effect. We've just determined that the only way we shall reject $H_{0}$ is if we obtain a sample outcome of $0,1,9$, or 10 pluses. Therefore, power equals the probability of getting $0,1,9$, or 10 pluses in our sample if the independent variable has a real effect. Thus,

$$
\begin{aligned}
\text { Power } & =\text { probability of rejecting } H_{0} \text { if the independent variable (IV) has a real } \\
& \text { effect } \\
& =p(0,1,9, \text { or } 10 \text { pluses }) \text { if IV has a real effect }
\end{aligned}
$$

But the probability of getting $0,1,9$, or 10 pluses depends on $t$ he size of $m$ arijuana's real effect on appetite. Therefore, power differs for different sizes of effect. To illustrate this point, we shall calculate power for se veral possible sizes of real effect. U sing $P_{\text {real }}$ as our mea sure of t he m agnitude a nd direction of t he m arijuana e ffect, we w ill ca lculate p ower f or $P_{\text {real }}=1.00,0.90,0.70,0.30,0.10$, and 0.00 . These values have been chosen to $s$ pan $t$ he $f u l l r$ ange of $p$ ossible real effects.

First, let's a ssume $m$ arijuana ha s such a la rge i ncreasing e ffect on app etite that, if it were given to the entire population, it would produce all pluses. In this case, $P_{\text {real }}=1.00$. Determining power for $P_{\text {real }}=1.00$ is as follows:

$$
\begin{aligned}
\text { Power } & =\text { probability of rejecting } H_{0} \text { if IV has a real effect } \\
& =p\left(0,1,9, \text { or } 10 \text { pluses) as the sample outcome if } P_{\text {real }}=1.00\right. \\
& =p(0)+p(1)+p(9)+p(10) \mathrm{i} \quad \mathrm{f} P_{\text {real }}=1.00 \\
& =0.0000+0.0000+0.0000+1.0000 \\
& =1.0000
\end{aligned}
$$

If $P_{\text {real }}=1.00$, the on ly p ossible scores a re pluses. Therefore, the sa mple of 10 scores must be all pluses. Thus, $p(0$ pluses $)=p(1 \mathrm{plus})=p(9$ pluses $)=0.0000$, and $p(10 \mathrm{p}$ luses $)=1.0000$. T hus, bythe a ddition rule, p ower $=1.0000$. The probability of rejecting the null hypothesis when it is false, such that $P_{\text {real }}=1.00$, is equal to 1.0000 . It is certain that if the effect of marijuana is as large as described, the experiment with 10 subjects will detect its effect. $H_{0}$ will be rejected with certainty.

Suppose, however, that the effect of marijuana on appetite is not quite as large as has been described-that is, if it were given to the population, there would still be many more pluses than minuses, but this time there would be 9 pluses on the average for every 1 minus . In this case, $P_{\text {real }}=0.90$. The power for this somewhat lower magnitude of real effect is found from Table B , using $P=0.90(Q=0.10)$. Thus,

$$
\begin{aligned}
\text { Power } & =\text { probability of rejecting } H_{0} \text { if IV has a real effect } \\
& =p(0,1,9, \text { or } 10 \text { pluses }) \text { as the sample outcome if } P_{\text {real }}=0.90 \\
& =p(0)+p(1)+p(9)+p(10) \mathrm{i} \quad \text { f } P_{\text {real }}=0.90 \\
& =0.000+0.0000+0.3874+0.3487 \\
& =0.7361
\end{aligned}
$$

Table B entry

|  | No. of $\boldsymbol{Q}$ <br> Events | $\boldsymbol{Q}$ <br> $\mathbf{0 . 1 0}$ |
| :--- | :---: | :---: |
| $\boldsymbol{N}$ | $\ldots \ldots$ | $\ldots \ldots \ldots$ |
| 10 | 0 | 0.3487 |
|  | 1 | 0.3874 |
|  | 9 | 0.0000 |
|  | 10 | 0.0000 |

The power of this experiment to detect an effect represented by $P_{\text {real }}=0.90$ is 0.7361. Thus, the p ower of the experiment ha s de creased. N ote that in det ermining the p ower f or $P_{\text {real }}=0.90$, the sa mple ou tcomes f or re jecting $H_{0}$ ha ven't c hanged. As before, they are $0,1,9$, or 10 pluses. Since these are the outcomes that will allow rejection of $H_{0}$, they are dependent on on ly $N$ and $\alpha$. Remember that we find these outcomes for the given $N$ and $\alpha$ level by assuming chance alone is at work ( $P_{\text {null }}=0.50$ ) and determining the sample outcomes for which the obtained probability is e qual to or less than $\alpha$ using $P_{\text {null }}$.

MENTORINGTIP
Power varies directly with $N$ and directly with size of real effect.

What happens to the power of the experiment if the marijuana has only a medium effect such that $P_{\text {real }}=0.70$ ?

$$
\begin{aligned}
\text { Power } & =\text { probability of rejecting } H_{0} \text { if IV has a real effect } \\
& =p\left(0,1,9, \text { or } 10 \text { pluses) as the sample outcome if } P_{\text {real }}=0.70\right. \\
& =p(0)+p(1)+p(9)+p(10) \mathrm{i} \quad \mathrm{f} P_{\text {real }}=0.70 \\
& =0.0000+0.0001+0.1211+0.0282 \\
& =0.1494
\end{aligned}
$$

Table B entry

|  | No. of $Q$ | $Q$ |
| :---: | :---: | :---: |
| $N$ | Events | 0.30 |
| 10 | 0 | 0.0282 |
|  | 1 | 0.1211 |
|  | 9 | 0.0001 |
|  | 10 | 0.0000 |

Power has decreased to 0.1494 . Power calculations have also been made for effect sizes represented by $P_{\text {real }}=0.30, P_{\text {real }}=0.10$, and $P_{\text {real }}=0.00$. The results are summarized in Table 11.2.

At this point, several generalizations are possible. First, as $N$ increases, power goes up. Second, for a particular $N$, say $N=10$, power varies directly with the size of the real effect. As the size decreases, the power of the experiment decreases. When the size of the effect approaches that predicted by the null hypothesis, power gets very low. This relationship is shown in Figure 11.2.
table 11.2 Calculation of power and beta

| $N$ | $\mathrm{H}_{0}$ | $\alpha$ | Sample Outcomes* | Size of Marijuana Effect | Power | $\beta$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | $P_{\text {null }}=0.50$ | $0.05_{2}$ tail | None | For all $P_{\text {real }}$ values | 0 | 1.0000 |
| 10 | $P_{\text {null }}=0.50$ | $0.05_{2 \text { tail }}$ | $0,1,9$, or 10 pluses | $\begin{aligned} & P_{\text {real }}=1.00 \\ & P_{\text {real }}=0.90 \end{aligned}$ | $\begin{aligned} & 1.0000 \\ & 0.7361 \end{aligned}$ | $\begin{aligned} & 0.0000 \\ & 0.2639 \end{aligned}$ |
|  |  |  |  | $P_{\text {real }}=0.70$ | 0.1494 | 0.8506 |
|  |  |  |  | $P_{\text {null }}=0.50$ | $\dagger$ |  |
|  |  |  |  | $P_{\text {real }}=0.30$ | 0.1494 | 0.8506 |
|  |  |  |  | $P_{\text {real }}=0.10$ | 0.7361 | 0.2639 |
|  |  |  |  | $P_{\text {real }}=0.00$ | 1.0000 | 0.0000 |
| 20 | $P_{\text {null }}=0.50$ | $0.05_{2 \text { tail }}$ | $\begin{aligned} & 0-5 \text { or } \\ & 15-20 \text { pluses } \end{aligned}$ | $P_{\text {real }}=0.30$ | 0.4163 | 0.5837 |
| 20 | $P_{\text {null }}=0.50$ | $0.01_{2 \text { tail }}$ | $\begin{aligned} & 0-3 \text { or } \\ & 17-20 \text { pluses } \end{aligned}$ | $P_{\text {real }}=0.30$ | 0.1070 | 0.8930 |

[^17]
figure 11.2 Power of sign test with $N=10$ and $\alpha=0.05_{2 \text { tail }}$.

## Power and Beta ( $\beta$ )

As the power of an experiment increases, the probability of making a Type II er ror decreases. This can be shown as follows.

When we draw a conc lusion from an experiment, there a re on ly t wo p ossibilities: We ei ther reject $H_{0}$ or $r$ etain $H_{0}$. These p ossibilities a re a lso m utually exclusive. Therefore, the sum of their probabilities must equal 1. A ssuming $H_{0}$ is false,

$$
p\left(\text { rejecting } H_{0} \text { if it is false }\right)+p\left(\text { retaining } H_{0} \text { if it is false }\right)=1
$$

but

$$
\begin{aligned}
\text { Power } & =p\left(\text { rejecting } H_{0} \text { if it is false }\right) \\
\text { Beta } & =p\left(\text { retaining } H_{0} \text { if it is false }\right)
\end{aligned}
$$

Thus,

$$
\text { Power }+ \text { Beta }=1
$$

or

$$
\text { Beta }=1 \text { - Power }
$$

Thus, as power increases, beta decreases. The appropriate beta values are shown in the last column of Table 11.2.

You will note that Table 11.2 has some additional entries. When $N=20$, the power for this experiment to detect an effect of $P_{\text {real }}=0.30$ is equal to 0.4163 . When $N=10$, the power is only 0.1494 . This is another demonstration that as $N$ increases, power increases.

## MENTORINGTIP

Summary: Power varies directly with $N$, size of real effect, and alpha level.

## Power and Alpha ( $\alpha$ )

The last row of Table 11.2 demonstrates the fact that, by making alpha more stringent, p ower g oes do wn a nd b eta is i ncreased. Wi th $N=20, P_{\text {real }}=0.30$, a nd $\alpha=0.01_{2_{\text {tail }}}$ :

$$
\begin{aligned}
\text { Power } & =p(0-3 \text { or } 17-20 \text { pluses }) \\
& =0.1070
\end{aligned}
$$

Table B entry

$$
\begin{aligned}
\beta & =1-\text { Power } \\
& =1-0.1070 \\
& =0.8930
\end{aligned}
$$

路

|  | No. of $\boldsymbol{P}$ <br> Events | $\boldsymbol{P}$ |
| :--- | :---: | :---: |
| $\boldsymbol{N}$ | $\mathbf{0 . 3 0}$ |  |
| $\ldots \ldots \ldots \ldots \ldots$ | $\ldots \ldots \ldots$ |  |
| 20 | 0 | 0.0008 |
|  | 1 | 0.0068 |
|  | 2 | 0.0278 |
|  | 3 | 0.0716 |
|  | 17 | 0.0000 |
|  | 18 | 0.0000 |
|  | 19 | 0.0000 |
|  | 20 | 0.0000 |

By making alpha more s tringent, the possible sa mple outcomes for rejecting $H_{0}$ are decreased. Thus, for $\alpha=0.01_{2 \text { tail }}$, only $0-3$ or 17-20 pluses will allow rejection of $H_{0}$, whereas for $\alpha=0.05_{2 \text { tail, }}, 0-5$ or $15-20$ pluses will result in rejection of $H_{0}$. This naturally reduces the probability of rejecting the null hypothesis. The decrease in power results in an increase in beta.

Let's summarize a little.

1. The power of an experiment is the probability that the experiment will result in rejecting the null hypothesis if the independent variable has a real effect.
2. Po wer = 1 - Beta. Therefore, the higher the power is, the lower beta is.
3. Power varies directly with $N$. Increasing $N$ increases power.
4. Power v aries directly with the size of the real ef fect of the independent variable.
5. Power varies directly with alpha le vel. Po wer decreases with more stringent alpha levels.

The reader should be aware that the experimenter never knows how large the effect of the independent variable actually is $b$ efore doing the experiment. Otherwise, why do the experiment? In practice, we estimate its size from pilot work or other research and then design an experiment that has high power to detect that size of effect. For example, if a medium effect ( $P_{\text {real }}=0.70$ ) is expected, by selecting the appropriate $N$ we can arrive at a decent sensitivity (e.g., power $=0.8000$ or higher). How $h$ igh should p ower $b$ e? W hat size of effect should b e expected? T hese a re questions that must be answered by the researcher based on experience and available resources. It should be pointed out that by designing the experiment to have a power $=0.8000$ for $P_{\text {real }}=0.70$, the power of the experiment will be even higher if the effect of the independent variable is larger than expected. Thus, the strategy is to design the experiment for the maximum power that resources will allow for the minimum size of real effect expected.

When one does an experiment, there are only two possibilities: Either $H_{0}$ is really true or it is false. By minimizing alpha and beta, we maximize the likelihood that our conclusions will be correct. For example, if $H_{0}$ is really true, the probability of correctly concluding from the experiment is

$$
p(\text { correctly concluding })=p\left(\text { retaining } H_{0}\right)=1-\alpha
$$

If alpha is at a stringent level (say, 0.05), then $p$ (correctly concluding) is

$$
p(\text { correctly concluding })=1-\alpha=1-0.05=0.95
$$

On the other hand, if $H_{0}$ is really false, the probability of correctly concluding is

$$
p(\text { correctly concluding })=p\left(\text { rejecting } H_{0}\right)=\text { power }=1-\beta
$$

If beta is low (say, equal to 0.10 for the minimum real effect of interest), then

$$
p(\text { correctly concluding })=1-\beta=1-0.10=0.90
$$

Thus, whichever is the true state of affairs ( $H_{0}$ is true or $H_{0}$ is false), there is a high probability of correctly concluding when $\alpha$ is set at a sringent level and $\beta$ is low. One way of achieving a low beta level when $\alpha$ is set at a stringent level is to have a large $N$. Another way is to use the statistical inference test that is the most powerful for the data. A third way is to con trol the external conditions of the experiment such that the variability of the data is reduced. We shall discuss the latter two methods when we cover Student's $t$ test in Chapters 13 and 14.

## INTERPRETING NONSIGNIFICANT RESULTS

## MENTORINGTIP

Caution: it is not valid to conclude by accepting $H_{0}$ when the results fail to reach significance.

Although power aids in designing an experiment, it is much more often used when interpreting the results of an experiment that has already been conducted and that has yielded nonsignificant results. Failure to reject $H_{0}$ may occur because (1) $H_{0}$ is in fact true or (2) $H_{0}$ is false, but the experiment was of low power. It is due to the second possible reason that we can never accept $H_{0}$ as being cor rect when an experiment fails to y ield significance. Instead, we say the experiment has failed to allow the null hypothesis to be rejected. It is possible that $H_{0}$ is indeed false, but the experiment was insensitive; that is, it didn't give $H_{0}$ much of a chance to be rejected. A case in point is the example we presented before with $N=5$. In that experiment, whatever results we obtained, they would not reach significance. We could not reject $H_{0}$ no matter how large the real effect actually was. It would be a gross error to accept $H_{0}$ as a result of doing that experiment. The experiment did not give $H_{0}$ any chance of being rejected. From this viewpoint, we can see that every experiment exists to $g$ ive $H_{0}$ a chance to be rejected. The higher the power, the more the experiment allows $H_{0}$ to be rejected if it is false.

Perhaps an analogy will help in understanding this point. We can liken the power of a $n$ experiment to $t$ he use of a m icroscope. Physiological ps ychologists have long been interested in what happens in the brain to a llow the memory of an event to $b$ e recorded. One hypothesis states that a group of neurons fires together as a result of the stimulus presentation. With repeated firings (trials), there is growth across the synapses
of the cells, so after a while, they become activated together whenever the stimulus is presented. This "cell assembly" then becomes the physiological engram of the stimuli (i.e., it is the memory trace).

To test this hypothesis, an experiment is done involving visual recognition. After so me a nimals have pr acticed a $t$ ask, the appropr iate br ain cells from each are prepared on slides so as to look for growth across the synapses. $H_{0}$ predicts no growth; $H_{1}$ predicts growth. First, the slides are examined with the naked eye; no growth is seen. Can we therefore accept $H_{0}$ ? No, because the eye is n ot powerful enough to see growth even if it were there. The same holds true for a low-power experiment. If the results are not significant, we ca nnot conclude by accepting $H_{0}$ because even if $H_{0}$ is f alse, the low power makes it unlikely that we would reject the null hypothesis. So next, a light microscope is used, and still there is no growth seen between synapses. Even though this is a more p owerful experiment, can we conclude that $H_{0}$ is true? No, because a light microscope doesn't have enough power to see the synapses clearly. So finally, an electron microscope is used, producing a very powerful experiment in which all but the most minute structures at the synapse can be seen clearly. If $H_{0}$ is false (that is, if there is growth across the synapse), this powerful experiment has a h igher probability of detecting it. Thus, the higher the power of an experiment is, the more the experiment allows $H_{0}$ to be rejected if it is false.

In light of the foregoing discussion, whenever an experiment fails to yield significant results, we must be careful in our interpretation. Certainly, we can't assert that the null hypothesis is cor rect. However, if the power of the experiment is high, we can say a little more than just that the experiment has failed to allow rejection of $H_{0}$. For example, if power is 1.0000 for an effect represented by $P_{\text {real }}=1.00$ and we fail to reject $H_{0}$, we can at least conclude that the independent variable does not have that large an effect. If the power is, say, 0.8000 for a medium effect ( $P_{\text {real }}=0.70$ ), we can be reasonably confident the independent variable is $n$ ot that effective. On the ot her hand, if power is low, nonsignificant results tell us little about the true state of reality. Thus, a power analysis tells us how much confidence to place in experiments that fail to reject the null hypothesis. When we fail to reject the null hypothesis, the higher the power is to detect a given real effect, the more confident we are that the effect of the independent variable is not that large. However, note that as the real effect of the independent variable gets very small, the power of the experiment to detect it gets very low (see Figure 11.2). Thus, it is impossible to ever prove that the null hypothesis is true because the power to detect very small but real effects of the independent variable is always low.

## CALCULATION OF POWER

Calculation of power involves a two-step process for each level of $P_{\text {real }}$ :
STEP 1: Assume the null hypothesis is true. Using $P_{\text {null }}=0.50$, determine the possible sample outcomes in the experiment that allow $H_{0}$ to be rejected.
STEP 2: For the level of $P_{\text {real }}$ u nder cons ideration (e.g., $P_{\text {real }}=0.30$ ), d etermine the probability of getting any of the sample outcomes arrived at in Step 1. This probability is the power of the experiment to detect this level of real effect.

## Practice Problem 11.1

## MENTORINGTIP

Remember: for Step $1, P=0.50$. For Step 2, $P$ is a value other than 0.50 . For this example, in Step $2, P=0.80$ or $P=0.20$.

You are interested in determining whether word recall is better when (1) the words are just directly memorized or (2) a story that includes all the words is made up by the subjects. In the second method, the story, from which the words could be recaptured, would be recalled. You plan to run 14 subjects in a repeated measures experiment and a nalyze the data with the sign test. Each subject will use both methods with equivalent sets of words. The number of words remembered in each condition will be the dependent variable; $\alpha=0.05_{2 \text { tail }}$.
a. What is the power of the experiment to detect this large* effect of $P_{\text {real }}=0.80$ or 0.20 ?
b. What is the probability of a Type II error?

The solution follows. From the solution, we see that the power to detect a large difference ( $P_{\text {real }}=0.80$ or 0.20 ) in the effect on word recall between memorizing the words and making up a story including the words is 0.4480 . This means that we have about a $45 \%$ chance of rejecting $H_{0}$ if the effect is as large as $P_{\text {real }}=0.80$ or 0.20 and a $55 \%$ chance of making a Type II error. If the effect is smaller than $P_{\text {real }}=0.80$ or 0.20 , then the probability of making a Type II error is even higher. Of course, increasing $N$ in the experiment will increase the probability of rejecting $H_{0}$ and decrease the probability of making a Type II error.

## SOLUTION

a. Calculation of power: The calculation of power involves a two-step process:

STEP 1: Assume the null hypothesis is true ( $P_{\text {null }}=0.50$ ) and determine the possible sample outcomes in the experiment that will allow $\boldsymbol{H}_{0}$ to be rejected. $\alpha=0.05_{2 \text { tail }}$. With $N=14$ and $P=0.50$, from Table B,

| $p(0$ pluses $)$ | $=0.0001$ | $p(0$ pluses $)$ | $=0.0001$ |
| :--- | :--- | :--- | :--- |
| $p(1$ plus $)$ | $=0.0009$ | $p(1$ plus $)$ | $=0.0009$ |
| $p(2$ pluses $)$ | $=0.0056$ | $p(2$ pluses $)$ | $=0.0056$ |
| $p(12$ pluses $)$ | $=0.0056$ | $p(3$ pluses $)$ | $=0.0222$ |
| $p(13$ pluses $)$ | $=0.0009$ | $p(11$ pluses $)$ | $=0.0222$ |
| $p(14$ pluses $)$ | $=0.0001$ | $p(12$ pluses $)$ | $=0.0056$ |
| $\overline{p(0,1,2,12,13, \text { or } 14)}$ | $=\overline{0.0132}$ | $p(13$ pluses $)$ | $=0.0009$ |
|  |  | $\frac{p(14 \text { pluses })}{p(0,1,2,3,11,12,13, \text { or } 14)}=\overline{0.0576}$ |  |

[^18](continued)

Beginning at t he extremes a nd moving to ward the middle of t he distribution, we find that we can reject $H_{0}$ if we obtain 2 or 12 pluses ( $p=0.0132$ ), but we fail to reject $H_{0}$ if we obtain 3 or 11 pluses ( $p=0.0576$ ) in the sample. Therefore, the outcomes that will allow rejection of $H_{0}$ are $0,1,2,12,13$, or 14 pluses.
STEP 2: For $\boldsymbol{P}_{\text {real }}=\mathbf{0 . 2 0}$, determine the probability of getting any of the aforementioned sample outcomes. This probability is the power of the experiment to detect this hypothesized real effect. With $N=14$ and $P_{\text {real }}=0.20$, from Table B,
Power $=$ probability of rejecting $H_{0}$ if $I V$ has a real effect

$$
=p(0,1,2,12,13 \text {, or } 14 \text { pluses }) \text { as sample outcomes if } P_{\text {real }}=0.20
$$

$$
=0.0440+0.1539+0.2501+0.0000+0.0000+0.0000
$$

$$
=0.4480
$$



Note that the same answer would result for $P_{\text {real }}=0.80$.
b. Calculation of beta:

$$
\begin{aligned}
\beta & =1-\text { Power } \\
& =1-0.4480 \\
& =0.5520
\end{aligned}
$$

## Practice Problem 11.2

Assume you are planning an experiment to evaluate a drug. The alternative hypothesis is directional, in the direction to produce mostly pluses. You will use the sign test to a nalyze the data; $\alpha=0.05_{1 \text { tail }}$. You want to be able to detect a small effect of $P_{\text {real }}=0.60$ in the same direction as the alternative hypothesis. There will be 16 subjects in the experiment.
a. What is the power of the experiment to detect this small effect?
b. What is the probability of making a Type II error?

## SOLUTION

a. Calculation of power: There are two steps involved in calculating power:

STEP 1: Assume the null hypothesis is true $\left(P_{\text {null }}=0.50\right)$ and determine the possible sample outcomes in the experiment that will allow $\boldsymbol{H}_{0}$ to be rejected. $\alpha=0.05_{1 \text { tail }}$. With $N=16$ and $P=0.50$, from Table B,

| $p(12$ pluses $)$ | $=0.0278$ | $p(11$ pluses $)$ | $=0.0667$ |
| :--- | :--- | :--- | :--- |
| $p(13$ pluses $)$ | $=0.0085$ | $p(12$ pluses $)$ | $=0.0278$ |
| $p(14$ pluses $)$ | $=0.0018$ | $p(13$ pluses $)$ | $=0.0085$ |
| $p(15$ pluses $)$ | $=0.0002$ | $p(14$ pluses $)$ | $=0.0018$ |
| $p(16$ pluses $)$ | $=0.0000$ | $p(15$ pluses $)$ | $=0.0002$ |
| $p(12,13,14,15$, or 16$)$ | $=0.0383$ | $\frac{p(16 \text { pluses })}{p(11,12,13,14,15, \text { or } 16)}$ | $=\overline{0.0000}$ |

Since the alternative hypothesis is in the direction of mostly pluses, outcomes for rejecting $H_{0}$ a re found under the tail with the higher numbers of pluses. Beginning with 16 pluses and moving toward the middle of the distribution, we find that we shall reject $H_{0}$ if we obtain 12 pluses $(p=0.0383)$, but we shall fail to reject $H_{0}$ if we obtain 11 pluses ( $p=0.1050$ ) in the sample. Therefore, the outcomes that will allow rejection of $H_{0}$ are $12,13,14,15$, or 16 pluses.
STEP 2: For $\boldsymbol{P}_{\text {real }}=\mathbf{0 . 6 0}$, determine the probability of getting any of the aforementioned sample outcomes. This probability is the power of the experiment to detect this hypothesized real effect. With $N=16$ and $P_{\text {real }}=0.60(Q=0.40)$, from Table B,

$$
\begin{aligned}
\text { Power } & =\text { probability of rejecting } H_{0} \text { if } I V \text { has a real effect } \\
& =p(12,13,14,15, \text { or } 16 \text { pluses }) \text { as sample outcomes if } P_{\text {real }}=0.60 \\
& =0.1014+0.0468+0.0150+0.0030+0.0003 \\
& =0.1665
\end{aligned}
$$

Table B entry

|  | No. of $\boldsymbol{Q}$ <br> Events | $\boldsymbol{Q}$ <br> $\boldsymbol{0 . 4 0}$ |
| :--- | :---: | :---: |
| $\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots$ |  |  |
| 16 | 0 | 0.0003 |
|  | 1 | 0.0030 |
|  | 2 | 0.0150 |
|  | 3 | 0.0468 |
|  | 4 | 0.1014 |

b. Calculation of beta:

$$
\begin{aligned}
\beta & =1-\text { Power } \\
& =1-0.1665 \\
& =0.8335
\end{aligned}
$$

This experiment is very insensitive to a small drug effect of $P_{\text {real }}=0.60$. The probability of a Type II error is too high. The $N$ should be made larger to increase the power of the experiment to detect the small drug effect.

## Practice Problem 11.3

In Practice Problem 10.2 (p. 262), you conducted an experiment testing the directional alternative hypothesis that watching a pa rticular TV program cause d increased v iolence int eenagers. T he e xperiment i ncluded 15 s ubjects, a nd $\alpha=0.01_{1 \text { tail. }}$. The data were analyzed with the sign test, and we retained $H_{0}$.
a. In that experiment, what was the power to detect a medium effect of $P_{\text {real }}=0.70$ in the direction of the alternative hypothesis?
b. What was the probability of a Type II error?

## SOLUTION

a. Calculation of power: There are two steps involved in calculating power:

STEP 1: Assume the null hypothesis is true ( $P_{\text {null }}=0.50$ ) and determine the possible sample outcomes in the experiment that will allow $\boldsymbol{H}_{0}$ to be rejected. $\alpha=0.01_{1 \text { tail }}$. With $N=15$ and $P=0.50$, from Table B,

| $p(13$ pluses $)$ | $=0.0032$ | $p(12$ pluses $)$ | $=0.0139$ |
| :--- | :--- | :--- | :--- |
| $p(14$ pluses $)$ | $=0.0005$ | $p(13$ pluses $)$ | $=0.0032$ |
| $p(15$ pluses $)$ | $=0.0000$ | $p(14$ pluses $)$ | $=0.0005$ |
| $\frac{p(13,14, \text { or } 15)}{}=\overline{0.0037}$ | $\frac{p(15 \text { pulses })}{p(12,13,14, \text { or } 15)}$ | $=\underline{0.0000}$ |  |
|  |  | 0.0176 |  |

Since the alternative hypothesis is in the direction of mostly pluses, outcomes for rejecting $H_{0}$ are found under the tail with the higher numbers of pluses. B eginning with 15 pluses a nd moving to ward the middle of the distribution, we find that we shall reject $H_{0}$ if we obtain 13 pluses ( $p=0.0037$ ), but we shall retain $H_{0}$ if we obtain 12 pluses ( $p=0.0176$ ) in the sample. Therefore, the outcomes that will allow rejection of $H_{0}$ are 13,14 , or 15 pluses.
STEP 2: For $\boldsymbol{P}_{\text {real }}=\mathbf{0 . 7 0}$, determine the probability of getting any of the aforementioned sample outcomes. This probability is the power of the experiment to detect this hypothesized real effect. With $N=15$ and $P_{\text {real }}=0.70$, from Table B,
Power $=$ probability of rejecting $H_{0}$ if $I V$ has a real effect
$=p\left(13,14\right.$, or 15 pluses) as sample outcomes if $P_{\text {real }}=0.70$
$=0.0916+0.0305+0.0047$
$=0.1268$

## Table B entry

| $N$ | No. of $Q$ Events | $\underset{0.30}{Q}$ |
| :---: | :---: | :---: |
| 15 | 0 | 0.0047 |
|  | 1 | 0.0305 |
|  | 2 | 0.0916 |

b. Calculation of beta:

$$
\begin{aligned}
\beta & =1-\text { Power } \\
& =1-0.1268 \\
& =0.8732
\end{aligned}
$$

Note that since the power to detect a me dium effect of $P_{\text {real }}=0.70$ is very low, even though we retained $H_{0}$ in the experiment, we can't conclude that the program does not affect violence. The experiment should be redone with increased power to allow a better evaluation of the program's effect on violence.

## WHAT IS THE TRUTH?

## Astrology and Science



A newspaper article appeared in a recent issue of the Pittsburgh PostGazette with the headline, "When Clinical Studies Mislead." Excerpts from the article are reproduced here:

Shock waves rolled through the medical community two weeks ago when researchers announced that a frequently prescribed triad of drugs previously shown to be helpful after a heart attack had proved useless in new studies....
"People are constantly dazzled by numbers, but they don't know what lies behind the numbers," said Alvan R. Feinstein, a professor of medicine and epidemiology at the Yale University School of Medicine. "Even scientists and physicians have been brainwashed into thinking that
the magic phrase 'statistical significance' is the answer to everything."

The recent heart-drug studies belie that myth. Clinical trials involving thousands of patients over a period of several years had shown previously that nitrate-containing drugs such as nitroglycerine, the enzyme inhibitor captopril and magnesium all helped save lives when administered after a heart attack.

Comparing the life spans of those who took the medicines with those who didn't, researchers found the difference to be statistically significant, and the drugs became part of the standard medical practice. In the United States, more than 80 percent of heart attack patients are given nitrate drugs.

> But in a new study involving more than 50,000 patients, researchers found no benefit from nitrates
or magnesium and captopril's usefulness was marginal. Oxford epidemiologist Richard Peto, who oversaw the latest study, said the positive results from the previous trial must have been due to "the play of chance." ... Faulty number crunching, Peto said, can be a matter of life and death.

He and his colleagues drove that point home in 1988 when they submitted a paper to the British medical journal The Lancet. Their landmark report showed that heart attack victims had a better chance of surviving if they were given aspirin within a few hours after their attacks. As Peto tells the story, the journal's editors wanted the researchers to break down the data into various subsets, to see whether certain kinds of patients who differed from each
(continued)

WHAT IS THE TRUTH? (continued)
other by age or other characteristics were more or less likely to benefit from aspirin.

Peto objected, arguing that a study's validity could be compromised by breaking it into too many pieces. If you compare enough subgroups, he said, you're bound to get some kind of correlation by chance alone. When the editors insisted, Peto capitulated, but among other things he divided his patients by zodiac birth signs and demanded that his findings be included in the published paper. Today, like a warning sign to the statistically uninitiated, the wacky numbers are there for all
to see: Aspirin is useless for Gemini and Libra heart attack victims but is a lifesaver for people born under any other sign....

Studies like these exemplify two of the more common statistical offenses committed by scientistsmaking too many comparisons and paying too little attention to whether something makes sensesaid James L. Mills, chief of the pediatric epidemiology section of the National Institute of Child Health and Human Development.
"People search through their results for the most exciting and positive things," he said. "But you also have to look at the biological plausibility. A lot of findings that don't withstand the test of time
didn't really make any sense in the first place....

In the past few years, many scientists have embraced larger and larger clinical trials to minimize the chances of being deceived by a fluke.

What do you think? If you were a physician, would you continue to prescribe nitrates to heart attack patients? Is it really true that the early clinical trials are an example of Type I error, as suggested by Dr. Peto? Will larger and larger clinical trials minimize the chances of being deceived by a fluke? Finally, is aspirin really useless for Gemini and Libra heart attack victims but a lifesaver for people born under any other sign?

PRESCRIPTIONS
AND
astrological ASPIRIN


## - U MMARY

In this chapter, I discussed the topic of power. Power is defined as the probability of rejecting the null hypothesis when $t$ he i ndependent $v$ ariable has a rea leffect. Since power varies with the size of the realeffect, it should be calculated for the smallest real effect of interest. The p ower will be e ven $h$ igher for la rger effects. Calculation of p ower i nvolves $t$ wo $s$ teps. In $t$ he first step, the null hypothesis is assumed true ( $P_{\text {null }}=0.50$ ), and all the possible sample outcomes in the experiment that would allow the null hypothesis to be rejected are determined. Next, for the real effect under consideration (e.g., the effect represented by $P_{\text {real }}=0.30$ ), the probability of getting any of these sample outcomes is calculated. This probability is the power of the experiment to detect this effect $\left(P_{\text {real }}=0.30\right)$.

With ot her factors he ld cons tant, p ower i ncreases with increases in $N$ and increases in the size of the real effect of the independent variable. Power decreases as the alpha level is made more stringent. Power equals 1 - beta. Therefore, maximizing power minimizes the probability
of a Type II error. Thus, by minimizing alpha and beta, we $m$ aximize $t$ he pro bability of cor rectly det ermining the $t$ rue effect of $t$ he i ndependent $v$ ariable, n o $m$ atter what the state of reality.

A power analysis is useful when (1) initially designing an experiment and (2) interpreting the res ults of experiments that retain the null hypothesis. When an experiment is conducted and the results are not significant, it may be because the null hypothesis is true or because the experiment ha s low p ower. It is $f$ or this rea son that, when the results are not significant, we do not conclude by accepting the null hypothesis but rather by failing to $r$ eject it . The null hypothesis actually may be false, but the experiment did not have high enough power to det ect it. Every experiment exists to give the null hypothesis a chance to be rejected. The more powerful the experiment, the higher the probability the null hypothesis will be rejected if it is false. Since power gets low as the real effect of the independent variable decreases, it is impossible to prove that $H_{0}$ is true.

## IMPORTANT NEW TERMS

$P_{\text {null }}$ (p. 279)
$P_{\text {real }}$ (p. 279)

Power (p. 278)
Real effect (p. 278)

## ■ QUESTIONS AND PROBLEMS

1. What is power? How is it defined?
2. In what two situations is a p ower a nalysis especially useful? Explain.
3. In hypothesis testing experiments, why is the conclusion "We retain $H_{0}$ " preferable to "We accept $H_{0}$ as true"?
4. In hypothesis-testing experiments, is it ever correct to conclude that the independent variable has had no effect? Explain.
5. In computing power, why do we always compute the sample outcomes that will allow rejection of $H_{0}$ ?
6. Using $\alpha$ and $\beta$, explain how we ca n maximize t he probability of cor rectly conc luding $f$ rom a $n$ e xperiment, regardless of whether $H_{0}$ is true or false. As part of your explanation, choose values for $\alpha$ and $\beta$ and determine $t$ he pro bability of cor rectly conc luding when $H_{0}$ is true and when $H_{0}$ is false.
7. You are considering testing a new drug that is supposed to facilitate learning in mentally retarded children. Because there is re latively little known about the drug, you plan to use a n ondirectional alternative hypothesis. Your resources are limited, so y ou can test only 15 subjects. The subjects will be run in a rep eated mea sures des ign a nd the $d$ ata a nalyzed with the sign test using $\alpha=0.05_{2 \text { tail }}$. If the drug has a medium effect on learning such that $P_{\text {real }}=0.70$, what is the probability you will detect it when doing your experiment? What is the probability of a Type II error? cognitive
8. In Chapter 10, Problem 10 (p. 273), a new teaching method was evaluated. Twenty pairs of subjects were run in a repeated measures design. The results were in favor of the new met hod but did not reach significance ( $H_{0}$ was not rejected) using the sign test
with $\alpha=0.05_{1 \text { tail }}$. In trying to i nterpret why the results were not significant, you reason that there are two possibilities: either (1) the two teaching methods are really equal in effectiveness ( $H_{0}$ is true) or (2) the new method is better, but the experiment was insensitive. To evaluate the latter possibility, you conduct an a nalysis to det ermine $t$ he p ower of $t$ he experiment to det ect a la rge difference favoring the new method such that $P_{\text {real }}=0.80$. What is the power of the experiment to detect this effect? What is beta? education
9. A researcher is $g$ oing to cond uct an experiment to determine $w$ hether one $n$ ight's s leep loss a ffects performance. A ssume $t$ he re quirements a re met for a d irectional a lternative $h$ ypothesis. F ourteen subjects will be run in a repeated measures design. The data will be analyzed with the sign test, using $\alpha=0.05_{1 \text { tail }}$. E ach s ubject will re ceive t wo conditions: cond ition 1 , w here $t$ he $p$ erformance of the subject is mea sured after a good night's sleep, and cond ition 2, where performance is mea sured after one n ight's sleep deprivation. The better the performance, the higher the score. When the data are analyzed, the scores of condition 2 will be subtracted from those of condition 1 . If one night's loss of s leep has a la rge det rimental effect on performance such that $P_{\text {real }}=0.90$, what is the power of the experiment to detect this effect? What is the probability of a Type II error? cognitive
10. In Chapter 10, Problem 12 (p. 274), what is the power of the experiment to detect a medium effect such that $P_{\text {real }}=0.70 ? \mathrm{I} / \mathrm{O}$
11. A psychiatrist is planning an experiment to determine whether stimulus isolation affects depression. Eighteen subjects will be run in a repeated measures design. The data will be a nalyzed with the sign $t$ est, us ing $\alpha=0.05_{2 \text { tail }}$. E ach s ubject w ill receive $t$ wo cond itions: cond ition 1 , one $w$ eek of living in an environment with a normal amount of external stimulation, and condition 2 , one week in a $n$ en vironment where external stimulation ha s been radically curtailed. A questionnaire measuring
depression will be administered after each condition. The higher the score on the questionnaire, the greater the subject's depress ion. In a nalyzing the data, the scores of cond ition 1 w ill be subtracted from the scores of condition 2. If one week of stimulus isolation has an effect on depression such that $P_{\text {real }}=0.60$, what is t he p ower of the experiment to det ect $t$ his s mall effect? W hat is b eta? If the results of the experiment a re not significant, is it legitimate for the psychiatrist to conclude that stimulus iso lation has no effect on depress ion? Why? cognitive, clinical, health
12. In C hapter 10, P ractice P roblem 10.2 (p. 262), a n experiment $w$ as cond ucted to det ermine w hether watching a particular TV program resulted in increased violence in teenagers. In that experiment, 15 s ubjects were $r$ un with each subject ser ving in an e xperimental a nd co ntrol co ndition. $T$ he sign test was used to analyze the data, with $\alpha=0.01_{1 \text { tail }}$. Suppose t he T V pro gram do es i ncrease v iolence and that the effect size is medium $\left(P_{\text {real }}=0.70\right)$. Before $r$ unning the experiment, what is $t$ he probability that the experiment will detect at least this level of real effect? What is the probability of a Type II error? The data collected in this experiment failed to allow re jection of $H_{0}$. A re we therefore justified in concluding that the TV program has no effect on violence in teenagers? Explain. social

## What Is the Truth? Questions

## 1. Astrology and Science

a. If y ou were a ph ysician, w ould y ou con tinue to prescribe nitrates to heart attack patients? Why or why not?
b. Is it really true that the early clinical trials are an example of Type I error, as suggested by Dr. Peto? Discuss.
c. Will larger and larger clinical trials minimize the chances of being deceived by a fluke? Explain
d. Is a spirin rea lly use less $f$ or $G$ emini a nd $L$ ibra heart attack victims but a lifesaver for people born under another sign? Explain.

## NOTES

11.1 This probability is not equal to power because when $P=0.50, H_{0}$ is true. Power is ca lculated when $H_{0}$ is false. The probability of rejecting $H_{0}$ when $H_{0}$ is true is defined as the probability of making a Type I error. For this example:
$p\left(\right.$ reject $H_{0}$ when $\left.P=0.50\right)=p$ (Type I error)
$=p(0)+p(1)+p(9)+p(10)$
$=0.0010+0.0098+0.0098+0.0010$
$=0.0216$

Note $t$ hat t he pro bability of m aking a T ype I er ror ( 0.0216 ) is not equal to the $\alpha$ level $(0.05)$ because the number of pluses is a discrete variable rather than a continuous v ariable. To ha ve $p$ (Type I er ror) e qual alpha, we w ould ne ed a $n$ ou tcome between 8 a nd 9 p luses. Of course, this is i mpossible b ecause the number of pluses can only be 8 or 9 (discrete values). The probability of making a Type I er ror is equal to alpha when the variable is continuous.

## ONLINE STUDY RESOURCES

## CENGAGE braiin

Login to CengageBrain.com to access the resources your instructor has assigned. For this book, you can access the book's co mpanion website for chapter-specific learning tools including Know and Be Able to Do, practice quizzes, flash cards, a nd glossaries, a nd a 1 ink to $S$ tatistics and Research Methods Workshops.

## aplia

If your professor has assigned Aplia homework:

1. Sign in to your account.
2. Complete the cor responding ho mework exercises as required by your professor.
3. When finished, click "G rade It N ow" to se e which areas you have mastered and which need more work, and for detailed explanations of every answer.

Visit www.cengagebrain.com to access your account and to purchase materials.

## 12

## Sampling Distributions, Sampling Distribution of the Mean, the Normal Deviate (z) Test

## LEARNING OBJECTIVES

After completing this chapter, you should be able to:

- Specify the two basic steps involved in analyzing data.
- Define null-hypothesis population, and explain how to generate sampling distributions empirically.
- Define the sampling distribution of a statistic, define the sampling distribution of the mean and specify its characteristics, and state the Central Limit Theorem.
- Define critical region, critical value(s) of a statistic, critical value(s) of $\bar{X}$, and critical value(s) of $z$.
- Solve inference problems using the $z$ test and specify the conditions under which the $z$ test is appropriate.
- Define $\mu_{\text {null }}$ and $\mu_{\text {real }}$.
- Compute power using the $z$ test.
- Specify the relationship between power and the following: $N$, size of real effect, and alpha level.
- Understand the illustrative examples, do the practice problems, and understand the solutions.


In Chapters 10 and 11, we have seen how to use $t$ he scientific method to i nvestigate hypotheses. We have introduced the replicated measures and the independent groups designs and discussed how to analyze the resulting data. At the heart of the analysis is the ability to answer the question, what is the probability of getting the obtained result or results even more extreme if chance alone is responsible for the differences between the experimental and control scores?

Although it hasn't been emphasized, the answer to this question involves two steps: (1) calculating the appropriate statistic and (2) evaluating the statistic based on its sampling distribution. In this chapter, we shall more formally discuss the topic of a statistic and its sampling distribution. Then we shall begin our analysis of single sample experiments, using the mean of the sample as a statistic. This involves the sampling distribution of the mean and the normal deviate $(z)$ test.

## SAMPLING DISTRIBUTIONS

What is a sampling distribution?

## definition

## MENTORING TIP

This is the essential process underlying all of hypothesis testing, no matter what inference test is used. I suggest you spend a little extra time here to be sure you understand it.

The sampling distribution of a statistic gives (1) all the values that the statistic can take and (2) the probability of getting each value under the assumption that it resulted from chance alone.

In the replicated measures design, we used the sign test to analyze the data. The statistic calculated was the number of pluses in the sample of $N$ difference scores. In one version of the "marijuana and appetite" experiment, we obtained nine pluses and one minus. This result was e valuated by using the binomial distribution. The binomial distribution with $P=0.50$ lists all the possible values of the statistic, the number of pluses, along with the probability of getting each value under the assumption that chance alone produced it. The binomial distribution with $P=0.50$ is the sampling distribution of the statistic used in the sign test. Note that there is a different sampling distribution for each sample size $(N)$.

Generalizing from this example, it can be seen that data analysis basically involves two steps:

1. Calculating the appropriate statistic-for example, number of pluses and minuses for the sign test
2. Evaluating the statistic based on its sampling distribution

If the probability of getting the obtained value of the statistic or a ny value more extreme is equal to or less than the alpha level, we reject $H_{0}$ and accept $H_{1}$. If not, we retain $H_{0}$. If we reject $H_{0}$ and it is true, we've made a Type I error. If we retain $H_{0}$ and it's false, we've made a Type II error. This process applies to all experiments involving hypothesis testing. What changes from experiment to experiment is the statistic used and its a ccompanying sampling distribution. Once you u nderstand this concept, you can appreciate that a large part of teaching inferential statistics is devoted to presenting the most often used statistics, their sa mpling distributions, a nd the cond itions under which each statistic is appropriately used.

## Generating Sampling Distributions

We have defined a sampling distribution as a probability distribution of all the possible values of a s tatistic under the assumption that chance alone is op erating. One way of deriving sampling distributions is from basic probability considerations. We used this approach in generating the binomial distribution. Sampling distributions can also be derived from an empirical sampling approach. In this approach, we have an actual or theoretical set of population scores that exists if the independent variable has no effect. We derive the sampling distribution of the statistic by

1. Determining all the possible different samples of size $N$ that can be formed from the population of scores
2. Calculating the statistic for each of the samples
3. Calculating the probability of getting each value of the statistic if chance alone is operating

To illustrate the sampling approach, let's suppose we are conducting an experiment with a sample size $N=2$, using the sign test for analysis. We can imagine a theoretical set of scores that would result if the experiment were done on the entire population and the independent variable had no effect. This population set of scores is called the nullhypothesis population.

## definition <br> The null-hypothesis population is an actual or theoretical set of population scores that would result if the experiment were done on the entire population and the independent variable had no effect. It is c alled the null-hypothesis population because it is used to test the validity of the null hypothesis.

In the case of the sign test, if the independent variable had no effect, the nullhypothesis population would have an equal number of pluses and minuses ( $P=Q=0.50$ ).

For co mputational ea se in g enerating the sa mpling distribution, let's a ssume there are only six scores in the population: three pluses and three minuses. To derive the sampling distribution of "the number of pluses" with $N=2$, we must first determine all the different samples of size $N$ that can be formed from the population. Sampling is one at a time, with replacement. Figure 12.1 shows the population and, schematically, the different samples of size 2 that can be drawn from it. It turns out that there are 36 different samples of size 2 p ossible. These are listed in the table of Figure 12.1, column 2. Next, we must calculate the value of the statistic for each sample. This information is presented in the table of Figure 12.1, columns 3 and 4. Note that of the 36 different samples possible, 9 have two pluses, 18 have one plus, and 9 have no pluses. The last step is to calculate the probability of getting each value of the statistic. If chance alone is operating, each sample is equally likely. Thus,

$$
\begin{aligned}
p(2 \text { pluses }) & =\frac{9}{36}=0.2500 \\
p(1 \text { plus }) & =\frac{18}{36}=0.5000 \\
p(0 \text { pluses }) & =\frac{9}{36}=0.2500
\end{aligned}
$$



| Sample Composition |  |  |  | Sample Composition |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sample number <br> (1) | Element numbers <br> (2) | Actual scores (3) | Statistic, no. of pluses (4) | Sample number <br> (1) | Element numbers (2) | Actual scores (3) | Statistic, no. of pluses (4) |
| 1 | 1,1 | ++ | $2+$ | 19 | 4,1 | -+ | 1+ |
| 2 | 1,2 | ++ | $2+$ | 20 | 4,2 | -+ | $1+$ |
| 3 | 1,3 | ++ | $2+$ | 21 | 4,3 | -+ | $1+$ |
| 4 | 1,4 | +- | $1+$ | 22 | 4, 4 | -- | 0+ |
| 5 | 1,5 | +- | $1+$ | 23 | 4,5 | -- | $0+$ |
| 6 | 1,6 | +- | $1+$ | 24 | 4,6 | -- | 0+ |
| 7 | 2,1 | ++ | $2+$ | 25 | 5,1 | -+ | $1+$ |
| 8 | 2,2 | ++ | $2+$ | 26 | 5,2 | -+ | $1+$ |
| 9 | 2,3 | ++ | $2+$ | 27 | 5,3 | -+ | $1+$ |
| 10 | 2, 4 | +- | $1+$ | 28 | 5,4 | -- | $0+$ |
| 11 | 2,5 | +- | $1+$ | 29 | 5,5 | -- | $0+$ |
| 12 | 2,6 | +- | $1+$ | 30 | 5,6 | -- | 0+ |
| 13 | 3,1 | ++ | $2+$ | 31 | 6,1 | -+ | $1+$ |
| 14 | 3,2 | ++ | $2+$ | 32 | 6,2 | -+ | $1+$ |
| 15 | 3,3 | ++ | $2+$ | 33 | 6,3 | -+ | $1+$ |
| 16 | 3, 4 | +- | $1+$ | 34 | 6,4 | -- | $0+$ |
| 17 | 3,5 | +- | $1+$ | 35 | 6,5 | -- | 0+ |
| 18 | 3, 6 | +- | $1+$ | 36 | 6,6 | -- | 0+ |

figure 12.1 All of the possible samples of size 2 that can be drawn from a population of three pluses and three minuses. Sampling is one at a time, with replacement.

figure 12.2 Sampling distribution of "number of pluses" with $N=2$ and $P=0.50$.

We have now derived the sampling distribution for $N=2$ of the statistic "number of pluses." The distribution is plotted in Figure 12.2. In this example, we used a population in which there were only six scores. The identical sampling distribution would have resulted (even though there would be many more "different" samples) had we use da larger population as long as the number of pluses equaled the number of minuses and the sample size equaled 2. Note that this is the same sampling distribution we arrived at through basic probability considerations when we were discussing the binomial distribution with $N=2$ (see Figure 12.3 for a comparison). This time, however, we generated it by sampling from the null-hypothesis population. The sampling distribution of a statistic is often defined in terms of this process. Viewed in this manner, we obtain the following definition.

| Empirical Sampling Approach |  |  | A Priori Approach |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { Draw } \\ 1 \end{gathered}$ | $\begin{gathered} \text { Draw } \\ 2 \end{gathered}$ | Number of ways | $\underset{1}{\text { Coin }}$ | $\begin{gathered} \text { Coin } \\ 2 \end{gathered}$ | Number of ways |
| + | + | 9 | H | H | 1 |
| $\pm$ | - | 18 | ${ }_{T}^{\mathrm{H}}$ | T H \} | 2 |
| - | - | 9 | T | T | 1 |
|  |  | $\overline{36}$ |  |  | $\overline{4}$ |
| $p(2+)=\frac{9}{36}=0.2500$ |  |  | $p(2 \mathrm{H})=\frac{1}{4}=0.2500$ |  |  |
| $p(1+)=\frac{18}{36}=0.5000$ |  |  | $p(1 \mathrm{H})=\frac{2}{4}=0.5000$ |  |  |
| $p(0+)=\frac{9}{36}=0.2500$ |  |  | $p(0 \mathrm{H})=\frac{1}{4}=0.2500$ |  |  |

figure 12.3 Comparison of empirical sampling approach and a priori approach for generating sampling distributions.

A sampling distribution gives all the values a statistic can take, along with the probability of getting each value if sampling is random from the null-hypothesis population.

## THE NORMAL DEVIATE (z) TEST

Although much of the foregoing has been abstract and seemingly impractical, it is necessary to understand the sampling distributions underlying many of the statistical tests that follow. One such test, the normal deviate $(z)$ test, is used when we know the parameters of the null-hypothesis population. The $z$ test employs the mean of the sample as a basic statistic. Let's consider an experiment where the $z$ test is appropriate.

## Evaluating a School Reading Program

Assume you are superintendent of public schools for the city in which you live. Recently, local citizens have been concerned that the reading program in the public schools may be an inferior one. Since this is a serious issue, you decide to conduct an experiment to investigate the matter. You set $\alpha=0.05_{1 \text { tail }}$ for making your decision. You begin by comparing the reading level of current high school seniors with established norms. The norms are based on sc ores from a reading proficiency test administered nationally to a large number of high school seniors. The scores of this population are normally distributed with $\mu=75$ and $\sigma=16$. For your experiment, you administer the reading test to 100 randomly selected high school seniors in your city. The obtained mean of the sample $\left(\bar{X}_{\text {obt }}\right)=72$. What is your conclusion?

There is no doubt that the sample mean of 72 is lower than the national population mean of 75 . Is it significantly lower, however? If chance alone is at work, then we can consider the 100 sample scores to be a random sample from a population with $\mu=75$ and $\sigma=16$. What is the probability of getting a mean score as low as or even lower than 72 if the 100 scores are a random sample from a normally distributed population having a mean of 75 and standard deviation of 16 ? If the probability is equal to or lower than alpha, we reject $H_{0}$ and accept $H_{1}$. If not, we retain $H_{0}$. It is clear that the statistic we are using is the mean of the sample. Therefore, to determine the appropriate probability, we must know the sampling distribution of the mean.

In the following section, we shall discuss the sampling distribution of the mean. For the time being, set aside the "Super" and his problem. We shall return to him soon enough. For now, it is sufficient to realize that we are going to use the mean of a sample to evaluate $H_{0}$, and to do that, we must know the sampling distribution of the mean.

## Sampling Distribution of the Mean

Applying the definition of the sampling distribution of a statistic to the mean, we obtain the following:

## definition

The sampling distribution of the mean gives all the values the mean can take, along with the probability of getting each value if sampling is random from the null-hypothesis population.

MENTORINGTIP
Caution: $N=$ the size of each sample, not the number of samples.

The sa mpling distribution of t he mea n can b e det ermined empi rically a nd theoretically, the latter through use of the Central Limit Theorem. The theoretical derivation is co mplex a nd beyond the level of this textbook. Therefore, for pedagogical reasons, we prefer to present the empirical approach. When we follow this approach, we can determine the sampling distribution of the mean by actually taking a s pecific population of r aw scores ha ving a mea $\mathrm{n} \mu$ and standard deviation and (1) drawing all possible different samples of a fixed size $N$, (2) calculating the mean of each sample, and (3) calculating the probability of getting each mean value if chance alone were operating. This process is shown in Figure 12.4. After performing these three steps, we would have derived the sampling distribution of the mean for samples of size $N$ taken from a s pecific population with mean $\mu$ and standard deviation $\sigma$. This sampling distribution of the mean would give all the values that the mea $n$ could take for sa mples of size $N$, a long with the probability of $g$ etting each value if sampling is random from the specified population. By repeating the three-step process for populations of different score v alues a nd by systematically varying $N$, we can determine that the sa mpling distribution of the mean has the

## Raw-score population $(\mu, \sigma)$


figure 12.4 Generating the sampling distribution of the mean for samples of size $N$ taken from a population of raw scores.
following general characteristics. For samples of any size $N$, the sampling distribution of the mean
(1) is a distribution of scores, each score of which is a sample mean of $N$ scores. This distribution has a mean and a standard deiation. The distribution is shown in the bottom part of Figure 12.4. You should note that this is a population set of scores even though the scores are based on samples, because the distribution contains the complete set of sample means. We shall symbolize the mean of the distribution as $\mu_{\bar{X}}$ and the standard deviation as $\sigma_{\bar{X}}$. Thus,

$$
\begin{aligned}
\mu_{\bar{X}} & =\text { mean of the sampling distribution of the mean } \\
\sigma_{\bar{X}} & =\text { standard deviation of the sampling distribution of the mean } \\
& =\text { standard error of the mean }
\end{aligned}
$$

$\sigma_{\bar{X}}$ is also called the standard error of the mean because each sample mean can be considered an estimate of the mean of the ra w-score population. Variability between sample means then occurs due to errors in estimation-hence the phrase standard error of the mean for $\sigma_{\bar{X}}$.
(2) has a mean equal to the mean of the raw-score population. In equation form,

$$
\mu_{\bar{X}}=\mu
$$

(3) has a standard deviation equal to the standard deviation of the raw-score population divided by $\sqrt{N}$. In equation form,

$$
\sigma_{\bar{X}}=\frac{\sigma}{\sqrt{N}}
$$

(4) is normally shaped, depending on the shape of the rav-score population and on the sample size, $N$.

The first characteristic is rather obvious. It merely states that the sampling distribution of the mean is made up of sample mean scores. As such, it, too, must have a mean and a standard deviation. The second characteristic says that the mean of the sampling distribution of the mean is e qual to the mean of the raw scores $\left(\mu_{\bar{X}}=\mu\right)$. We can gain some insight into this relationship by recognizing that each sample mean is an estimate of the mean of the raw-score population. Each will differ from the mean of the raw-score population due to chance. Sometimes the sample mean will be greater than the population mean, and sometimes it will be smaller because of chance factors. As we take more sample means, the average of these sample means will get closer to the mean of the raw-score population because the chance factors will cancel. Finally, when we have all of the possible different sample means, their average will equal the mean of the raw-score population $\left(\mu_{\bar{X}}=\mu\right)$.

The third characteristic says that the standard deviation of the sampling distribution of the mean is e qual to the standard deviation of the raw-score population divided by $\sqrt{N}\left(\sigma_{\bar{X}}=\sigma / \sqrt{N}\right)$. This says that the standard deviation of the sampling distribution of the mean varies directly with the standard deviation of the raw-score population and inversely with $\sqrt{N}$. It is fairly obvious why $\sigma_{\bar{X}}$ should vary directly with $\sigma$. If the scores in the population are more variable, $\sigma$ goes up and so does the variability between the means ba sed on $t$ hese scores. Understanding why $\sigma_{\bar{X}}$ va ries i nversely with $\sqrt{N}$ is a little more difficult. Recognizing that each sample mean is an estimate of the mean of the raw-score population is the key. As $N$ (the number of scores in each sample) goes up, each sample mean becomes a more accurate estimate of $\mu$. Since the sample means are more a ccurate, they will vary less f rom sa mple to sa mple, caus ing the variance $\left(\sigma_{\bar{X}}{ }^{2}\right)$ of t he sa mple mea ns to de crease. T hus, $\sigma_{\bar{X}}{ }^{2}$ va ries i nversely w ith $N$. S ince
$\sigma_{\bar{X}}=\sqrt{\sigma_{\bar{X}}^{2}}$, then $\sigma_{\bar{X}}$ va ries inversely with $\sqrt{N}$. We would like to f urther point out that, since the standard deviation of the sampling distribution of the mean $\left(\sigma_{\bar{X}}\right)$ changes with sample size, there is a different sampling distribution of the mean for each different sample size. This seems reasonable, because if the sample size changes, then the scores in each sample change and, consequently, so do the sample means. Thus, the sampling distribution of the mean for samples of size 10 should be different from the sampling distribution of the mean for samples of size 20 and so forth.

Regarding the fourth point, there are two factors that determine the shape of the sampling distribution of the mean: (1) the shape of the population raw scores and (2) the sample size $(N)$. Concerning the first factor, if the population of raw scores is $n$ ormally distributed, the sampling distribution of the mean will also be normally distributed, regardless of sample size. However, if the population of raw scores is not normally distributed, the shape of the sampling distribution depends on the sample size. The Central Limit Theorem tells us that, regardless of the shape of the population of raw scores, the sampling distribution of the mean approaches a normal distribution as sample size $N$ increases. If $N$ is sufficiently large, the sampling distribution of the mean is approximately normal. How large must $N$ be for the sampling distribution of the mean to be considered normal? This depends on the shape of the raw-score population. The further the raw scores deviate from normality, the larger the sample size must be for the sampling distribution of the mean to be normally shaped. If $N \geq 300$, the shape of the population of raw scores is no longer important. With this size $N$, regardless of the shape of the raw-score population, the sampling distribution of the mean will deviate so little from normality that, for statistical calculations, we can consider it normally distributed. Since most populations encountered in the behavioral sciences do not differ greatly from normality, if $N \geq 30$, it is usu ally assumed that the sampling distribution of the mean will be normally shaped.*

Although it is beyond the scope of this text to prove these characteristics, we can demonstrate them, as well as gain more understanding about the sampling distribution of the mean, by considering a population and deriving the sampling distribution of the mean for samples taken from it. To simplify computation, let's use a population with a small number of scores. For the purposes of this illustration, assume the population raw scores are $2,3,4,5$, and 6 . The mean of the population $(\mu)$ equals 4.00 , and the standard deviation $(\sigma)$ equals 1.41 . We want to derive the sampling distribution of the mean for samples of size 2 taken from this population. Again, assume sampling is one score at a time, with replacement. The first step is to draw all possible different samples of size 2 from the population. Figure 12.5 shows the population raw scores a nd, schematically, the different samples of size 2 that can be drawn from it. There are 25 different samples of size 2 possible. These are listed in the table of Figure 12.5, column 2. Next, we must calculate the mean of each sample. The results are shown in column 3 of this table. It is now a simple matter to calculate the probability of getting each mean value. Thus,

$$
\begin{aligned}
& p(\bar{X}=2.0)=\frac{\text { Number of possible } \bar{X} \text { s of } 2.0}{\text { Total number of } \bar{X} \mathrm{~s}}=\frac{1}{25}=0.04 \\
& p(\bar{X}=2.5)=\frac{2}{25}=0.8 \\
& p(\bar{X}=3.0)=\frac{3}{25}=0.12 \\
& p(\bar{X}=3.5)=\frac{4}{25}=0.16 \\
& p(\bar{X}=4.0)=\frac{5}{25}=0.20
\end{aligned}
$$

[^19]\[

$$
\begin{aligned}
& p(\bar{X}=4.5)=\frac{4}{25}=0.16 \\
& p(\bar{X}=5.0)=\frac{3}{25}=0.12 \\
& p(\bar{X}=5.5)=\frac{2}{25}=0.08 \\
& p(\bar{X}=6.0)=\frac{1}{25}=0.04
\end{aligned}
$$
\]

We have now derived the sampling distribution of the mean for samples of $N=2$ taken from a population comprising the raw scores $2,3,4,5$, and 6 . We have determined

figure 12.5 All of the possible samples of size 2 that can be drawn from a population comprising the raw scores $2,3,4,5$, and 6 . Sampling is one at a time, with replacement.
table 12.1 Sampling distribution of the mean with $N=2$ and population raw scores of 2,3 , 4,5 , and 6

| $\bar{X}$ | $p(\bar{X})$ |
| :---: | :---: |
| 2.0 | 0.04 |
| 2.5 | 0.08 |
| 3.0 | 0.12 |
| 3.5 | 0.16 |
| 4.0 | 0.20 |
| 4.5 | 0.16 |
| 5.0 | 0.12 |
| 5.5 | 0.08 |
| 6.0 | 0.04 |

all the mean values possible from sampling two scores from the given population, along with the probability of obtaining each mean value if sampling is random from the population. The complete sampling distribution is shown in Table 12.1.

Suppose, for so me reason, we wanted to k now the probability of obtaining a $n$ $\bar{X} \geq 5.5$ due to randomly sampling two scores, one at a time, with replacement, from the raw-score population. We can determine the answer by consulting the sampling distribution of the mean for $N=2$. Why? Because this distribution contains all of the possible sa mple mean values and their probability under the a ssumption of random sampling. Thus,

$$
p(\bar{X} \geq 5.5)=0.08+0.04=0.12
$$

Now, let's cons ider the characteristics of $t$ his distribution: first, its shape. The original population of raw scores and the sampling distribution have been plotted in Figure 12.6(a) and (b). In part (c), we have plotted the sampling distribution of the mean with $N=3$. Note that the shape of the two sampling distributions differs greatly from the population of raw scores. Even with an $N$ as small as 3 and a very nonnormal population of raw scores, the sampling distribution of the mean has a shape that approaches normality. This is a n illustration of what the Central Limit Theorem is telling us-namely, that as $N$ increases, the shape of the sampling distribution of the mean approaches that of a normal distribution. Of course, if the shape of the raw-score population were normal, the shape of the sa mpling distribution of the mean would be too.

Next, let's demonstrate that $\mu_{\bar{X}}=\mu$ :

$$
\begin{aligned}
\mu & =\frac{\sum X}{\text { Number of raw scores }} & \mu_{\bar{X}} & =\frac{\sum}{\text { Number of } \mathrm{n}} \\
& =\frac{20}{5}=4.00 & & =\frac{100}{25}=4.00
\end{aligned}
$$

Thus,

$$
\mu_{\bar{X}}=\mu
$$

The mean of the raw scores is found by dividing the sum of the raw scores by the number of raw scores: $\mu=4.00$. The mean of the sampling distribution of the mean is found by dividing the sum of the sample mean scores by the number of mean scores: $\mu_{\bar{X}}=4.00$. Thus, $\mu_{\bar{X}}=\mu$.

Finally, we need to show that $\sigma_{\bar{X}}=\sigma / \sqrt{N} . \sigma_{\bar{X}}$ can be calculated in two ways: (1) from the equation $\sigma_{\bar{X}}=\sigma / \sqrt{N}$ and (2) directly from the sample mean scores themselves. Our demonstration will involve calculating $\sigma_{\bar{X}}$ in both ways, showing that they lead to the same value. The calculations are shown in Table 12.2. Since both methods yield the same value ( $\sigma_{\bar{X}}=1.00$ ), we have demonstrated that

$$
\sigma_{\bar{X}}=\frac{\sigma}{\sqrt{N}}
$$

Note that $N$ in the previous equation is the number of scores in each sample. Thus, we have demonstrated that

1. $\mu_{\bar{X}}=\mu$
2. $\sigma_{\bar{X}}=\sigma / \sqrt{N}$
3. The sampling distribution of the mean takes on a shape similar to normal e ven if the raw scores are nonnormal.
(a) Population of raw scores

(b) Sampling distribution of $\bar{X}$ with $N=2$
(c) Sampling distribution of $\bar{X}$ with $N=3$

figure 12.6 Population scores and the sampling distribution of the mean for samples of size $N=2$ and $N=3$.

## The Reading Proficiency Experiment Revisited

We are now in a position to return to the "Super" and evaluate the data from the experiment evaluating reading proficiency. Let's restate the experiment.

You are superintendent of public schools and have conducted an experiment to investigate whether the reading proficiency of high school seniors living in your city is deficient.
table 12.2 Demonstration that $\sigma_{\bar{X}}=\frac{\sigma}{\sqrt{N}}$
Using $\sigma_{\bar{X}}=\sigma / \sqrt{N} \quad$ Using the Sample Mean Scores

$$
\begin{aligned}
\sigma_{\bar{X}} & =\frac{\sigma}{\sqrt{N}} & \sigma_{\bar{X}} & =\sqrt{\frac{\Sigma\left(\bar{X}-\mu_{\bar{X}}\right)^{2}}{\text { Number of mean scores }}} \\
& =\frac{1.41}{\sqrt{2}} & & =\sqrt{\frac{(2.0-4.0)^{2}+(2.5-4.0)^{2}+\cdots+(6.0-4.0)^{2}}{25}} \\
& =1.00 & & =\sqrt{\frac{25}{25}}=1.00
\end{aligned}
$$

A random sample of 100 high school seniors from this population had a me an reading score of $72\left(\bar{X}_{\text {obt }}=72\right)$. National norms of reading proficiency for high school seniors show a normal distribution of scores with a mean of $75(\mu=75)$ and a standard deviation of $16(\sigma=16)$. Is it reasonable to consider the 100 scores a random sample from a nor mally distributed p opulation of reading sc ores where $\mu=75$ a nd $\sigma=16$ ? U se $\alpha=0.05_{1 \text { tail }}$.

If we take all possible samples of size 100 from the population of normally distributed reading scores, we can determine the sampling distribution of the mean samples with $N=100$. From what has been said before, this distribution (1) is normally shaped, (2) has a mea n $\mu_{\bar{X}}=\mu=75$, a nd (3) has a s tandard de viation $\sigma_{\bar{X}}=\sigma / \sqrt{N}=16 / \sqrt{100}=1.6$. The t wo distributions a re shown in Figure 12.7. Note th at the sampling di stribution of the mean contains all the possible mean scores from samples of size 100 drawn from the null-hypothesis population ( $\mu=75$, $\sigma=16$ ). For the sake of clarity in the following exposition, we have re drawn the sampling distribution of the mean alone in Figure 12.8.

The shaded area of Figure 12.8 contains all the mean values of samples of $N=100$ that are as low as or lower than $\bar{X}_{\text {obt }}=72$. The proportion of shaded area to total area will tell us the probability of obtaining a sample mean equal to or less than 72 if chance alone is at work (another way of saying this is, "if the sample is a random sample from the null-hypothesis population"). Since the sampling distribution of the mean is normally shaped, we can find the proportion of the shaded area by (1) calculating the $z$ transform $\left(z_{\mathrm{ob}}\right)$ for $\bar{X}_{\mathrm{obt}}=72$ and (2) determining the appropriate area from Table A, Appendix D, using $z_{\mathrm{ob}}$.

The equation for $z_{\text {obt }}$ is very similar to the $z$ equation in Chapter 5, but instead of dealing with raw scores, we are dealing with mean values. The two equations are shown in Table 12.3.
table 12.3 $z$ equations

| Raw Scores | Mean Scores |
| :--- | ---: |
| $z=\frac{X-\mu . \ldots . \omega_{1}}{\sigma}$ | $z_{\mathrm{obt}}=\frac{\bar{X}_{\mathrm{obt}}-\mu_{\bar{X}}}{\sigma_{\bar{X}}}$ |
| $z$ |  |

Population of raw scores $(\mu=75, \sigma=16)$


Sampling distribution of the mean for samples with $N=100$
figure 12.7 Sampling distribution of the mean for samples of size $N=100$ drawn from a population of raw scores with $\mu=75$ and $\sigma=16$.

figure 12.8 Evaluation of reading proficiency data comparing the obtained probability with the alpha level.

Since $\mu_{\bar{X}}=\mu$, the $z_{\text {obt }}$ equation for sample means simplifies to

$$
z_{\mathrm{obt}}=\frac{\bar{X}_{\mathrm{obt}}-\mu}{\sigma_{\bar{X}}} \quad z \text { transformation for } \bar{X}_{\mathrm{obt}}
$$

Calculating $z_{\text {obt }}$ for the present experiment, we obtain

$$
z_{\mathrm{obt}}=\frac{\bar{X}_{\mathrm{obt}}-\mu}{\sigma_{\bar{X}}}=\frac{72-75}{1.6}=-1.88 \quad \text { for } \quad \bar{X}_{\mathrm{obt}}=72
$$

From Table A, column C, in Appendix D,

$$
p\left(\bar{X}_{\mathrm{obt}} \leq 72\right)=0.0301
$$

Since $0.0301<0.05$, we reject $H_{0}$ and conclude that it is unreasonable to assume that the 100 scores are a random sample from a population where $\mu=75$. The reading proficiency of high school seniors in your city appears deficient.

## Alternative Solution Using $\boldsymbol{z}_{\text {obt }}$ and $\boldsymbol{z}_{\text {crit }}$

MENTORINGTIP
This is the preferred method.

The results of this experiment can be analyzed in another way. This method is actually the preferred method because it is simpler and it sets the pattern for the inference tests to follow. However, it builds upon the previous method and therefore couldn't be presented until now. To use this method, we must first define some terms.

The critical region for rejection of the null hypothesis is the area under the curve that contains all the values of the statistic that allow rejection of the null hypothesis.

- The critical value of a statistic is the value of the statistic that bounds the critical region.

To analyze the data using the alternative method, all we need do is ca lculate $z_{\mathrm{ob}}$, determine the critical value of $z\left(z_{\text {crit }}\right)$, and assess whether $z_{\text {obt }}$ falls within the critical region for rejection of $H_{0}$. We already know how to calculate $z_{\text {obt }}$.

The critical re gion for rejection of $H_{0}$ is determined by the alpha level. For example, if $\alpha=0.05_{1 \text { tail }}$ in the direction predicting a ne gative $z_{\text {obt }}$ value, as in the previous example, then the critical region for rejection of $H_{0}$ is the area under the left tail of the curve that equals 0.0500 . We find $z_{\text {crit }}$ for this area by using Table A in a reverse manner. Referring to Table A and skimming column C until we locate 0.0500 , we can determine the $z$ value that corresponds to 0.0500 . It turns out that 0.0500 falls midway between the $z$ scores of 1.64 and 1.65 . Therefore, the $z$ value corresponding to 0.0500 is 1.645 . Since we are dealing with the left tail of the distribution,

$$
z_{\text {crit }}=-1.645
$$

This score defines the critical re gion for rejection of $H_{0}$ and, hence, is called $z_{\text {crit }}$ If $z_{\text {obt }}$ falls in the critical region for rejection, we will reject $H_{0}$. These relationships are shown in Figure 12.9 (a). If $\alpha=0.05_{1 \text { tail }}$ in the direction predicting a positive $z_{\text {obt }}$ value, then

$$
z_{\text {crit }}=1.645
$$



## MENTORINGTIP

With a 1-tailed test, the entire $5 \%$ is under one tail.

figure 12.9 Critical region of rejection for $H_{0}$ for (a) $\alpha=0.05_{1 \text { tail }}, z_{\text {obt }}$ negative; (b) $\alpha=0.05_{1 \text { tail }}, z_{\text {obt }}$ positive; and (c) $\alpha=0.05_{2 \text { tail }}$.

Adapted from Fundamental Statistics for Behavioral Sciences by Robert B. McCall, © 1998 by Brooks/Cole.

This is shown in Figure 12.9(b). If $\alpha=0.05_{2 \text { tail }}$, then the combined area under the two tails of the curve must equal 0.0500 . Thus, the area under each tail must equal 0.0250 , as in Figure 12.9(c). For this area,

$$
z_{\text {crit }}= \pm 1.96
$$

To reject $H_{0}$, the obtained sample mean ( $\left.\bar{X}_{\text {obt }}\right)$ must have a $z$-transformed value $\left(z_{\text {obt }}\right)$ that falls within the critical region for rejection.

Let's now use these concepts to analyze the reading data. First, we calculate $z_{\mathrm{obt}}$ :

$$
z_{\mathrm{obt}}=\frac{\bar{X}_{\mathrm{obt}}-\mu}{\sigma_{\bar{X}}}=\frac{72-75}{1.6}=\frac{-3}{1.6}=-1.88
$$

The next step is to determine $z_{\text {crit }}$. Since $\alpha=0.05_{1 \text { tail }}$, the area under the left tail equals 0.0500 . For this area, from Table A we obtain

$$
z_{\text {crit }}=-1.645
$$

Finally, we must determine whether $z_{\text {obt }}$ falls within the critical region. If it does, we reject the null hypothesis. If it doesn't, we retain the null hypothesis. The decision rule states the following:

$$
\text { If }\left|z_{\text {obt }}\right| \geq\left|z_{\text {crit }}\right|, \text { reject the null hypothesis. If not, retain the null hypothesis. }
$$

Note that this equation is just a shorthand way of specifying that, if $z_{\text {obt }}$ is positive, it must be equal to or greater than $+z_{\text {crit }}$ to fall within the critical region. If $z_{\text {obt }}$ is negative, it must be equal to or less than $-z_{\text {crit }}$ to fall within the critical region.

In the present example, since $\left|z_{\text {obb }}\right|>1.645$, we reject the null hypothesis. The complete solution using this method is shown in Figure 12.10. We would like to point out that, in us ing this met hod, we are following the t wo-step pro cedure outlined pre viously in this chapter for a nalyzing data: (1) ca lculating the appropr iate statistic a nd (2) evaluating the statistic based on its sampling distribution. Actually, the experimenter calculates two statistics: $\bar{X}_{\mathrm{obt}}$ and $z_{\mathrm{obt}}$. The final one e valuated is $z_{\mathrm{obt}}$. If the sampling

STEP 1: Calculate the appropriate statistic: $z_{\mathrm{obt}}=\frac{\bar{X}_{\mathrm{obt}}-\mu}{\sigma_{\bar{X}}}=\frac{72-75}{1.6}=-1.88$
STEP 2: Evaluate the statistic based on its sampling distribution. The decision rule is as follows: If $\left|z_{\text {obt }}\right| \geq\left|z_{\text {crit }}\right|$, reject $H_{0}$. Since $\alpha=0.05_{1 \text { tail }}$, from Table A,

$$
z_{\text {crit }}=-1.645
$$

Since $\left|z_{\text {obt }}\right|<1.645$, it fall within the critical region for rejection of $H_{0}$. Therefore, we reject $H_{0}$.

figure 12.10 Solution to reading proficiency experiment using $z_{\text {obt }}$ and the critical region.
distribution of $\bar{X}$ is normally shaped, then the $z$ distribution will also be normal and the appropriate probabilities will be given by Table A. Of course, the $z$ distribution has a mean of 0 and a standard deviation of 1 , as discussed in Chapter 5.

Let's try another problem using this approach.

## Practice Problem 12.1

A university president believes that, over the past few years, the average age of students attending his university has changed. To test this hypothesis, an experiment is conducted in which the age of 150 students who have been randomly sampled from the student body is measured. The mean age is 23.5 years. A complete census taken at the university a few years before the experiment showed a mean age of 22.4 years, with a standard deviation of 7.6.
a. What is the nondirectional alternative hypothesis?
b. What is the null hypothesis?
c. Using $\alpha=0.05_{2 \text { tail }}$, what is the conclusion?

## SOLUTION

a. Nondirectional alternative hypothesis: Over the past few years, the average age of students at the university has changed. Therefore, the sample with $\bar{X}_{\text {obt }}=23.5$ is a random sample from a population where $\mu \neq 22.4$.
b. Null hypothesis: The null hypothesis asserts that it is reasonable to consider the sample with $\bar{X}_{\text {obt }}=23.5$ a random sample from a population with $\mu=22.4$.
c. Conclusion, using: $\alpha=0.05_{2 \text { tail }}$ :

STEP 1: Calculate the appropriate statistic. $T$ he $d$ ata a re $g$ iven int he problem.

$$
\begin{aligned}
z_{\mathrm{obt}} & =\frac{\bar{X}_{\mathrm{obt}}-\mu}{\sigma_{\bar{X}}} \\
& =\frac{\bar{X}_{\mathrm{obt}}-\mu}{\sigma / \sqrt{N}}=\frac{23.5-22.4}{7.6 / \sqrt{150}} \\
& =\frac{1.1}{0.6205}=1.77
\end{aligned}
$$

STEP 2: Evaluate the statistic based on its sampling distribution. The decision rule is as follows: If $\left|z_{\text {obt }}\right| \geq\left|z_{\text {crit }}\right|$, reject $H_{0}$. If not, retain $H_{0}$. Since $\alpha=0.05_{2 \text { tail }}$, from Table A,

$$
z_{\text {crit }}= \pm 1.96
$$

Since $\left|z_{\text {obt }}\right|<1.96$, it does not fall within the critical region for rejection of $H_{0}$. Therefore, we retain $H_{0}$. We cannot conclude that the average age of students attending the university has changed.

## Practice Problem 12.2

A gasoline manufacturer believes a ne w additive will result in more $m$ iles per gallon. A la rge number of mileage mea surements on $t$ he $g$ asoline without the additive have been made by the company under rigorously controlled conditions. The results show a mean of 24.7 miles per gallon and a standard deviation of 4.8 . Tests are conducted on a sa mple of 75 cars using the gasoline plus the additive. The sample mean equals 26.5 miles per gallon.
a. Let's assume there is a dequate basis for a one-tailed test. What is the directional alternative hypothesis?
b. What is the null hypothesis?
c. What is the conclusion? Use $\alpha=0.05_{1 \text { tail }}$.

## SOLUTION

a. Directional alternative hypothesis: The new additive increases the number of miles per gallon. Therefore, the sample with $\bar{X}_{\mathrm{obt}}=26.5$ is a random sample from a population where $\mu>24.7$.
b. Null hypothesis $H_{0}$ : The sample with $\bar{X}_{\text {obt }}=26.5$ is a random sample from a population with $\mu \leq 24.7$.
c. Conclusion, using $\alpha=0.05_{1 \text { tail }}$ :

STEP 1: Calculate the appropriate statistic. $T$ he $d$ ata a re $g$ iven in $t$ he problem.

$$
\begin{aligned}
z_{\text {obt }} & =\frac{\bar{X}_{\text {obt }}-\mu}{\sigma / \sqrt{N}} \\
& =\frac{26.5-24.7}{4.8 / \sqrt{75}}=\frac{1.8}{0.5543} \\
& =3.25
\end{aligned}
$$

STEP 2: Evaluate the statistic based on its sampling distribution. The decision rule is as follows: If $\left|z_{\text {obt }}\right| \geq\left|z_{\text {crit }}\right|$, reject $H_{0}$. If not, retain $H_{0}$. Since $\alpha=0.05_{1 \text { tail }}$, from Table A,

$$
z_{\text {crit }}=1.645
$$

Since $\left|z_{\text {obt }}\right|>1.645$, it falls within the critical region for rejection of $H_{0}$. Therefore, we reject the null hypothesis and conclude that the gasoline additive does increase miles per gallon.

## Conditions Under Which the $\mathbf{z}$ Test Is Appropriate

The $z$ test is appropriate when the experiment involves a single sample mean ( $\bar{X}_{\text {obt }}$ ) and the parameters of the null-hypothesis population a re k nown (i.e., when $\mu$ and $\sigma$ are known). In addition, to use t his test, the sampling distribution of the mean should be normally distributed. This, of course, requires that $N \geq 30$ or that the null-hypothesis
population itself be normally distributed.* This normality requirement is spoken of as "the mathematical assumption underlying the $z$ test."

## Power and the $\mathbf{z}$ Test

MENTORINGTIP
This is a difficult section. Please be prepared to spend more time on it.

In Chapter 11, we discussed power in conjunction with the sign test. Let's review some of the main points made in that chapter.

1. Conceptually, power is the sensitivity of the experiment to detect a real effect of the independent variable, if there is one.
2. Power is defined mathematically as the probability that the experiment will result in rejecting the null hypothesis if the independent variable has a real effect.
3. Po wer + Beta $=1$. Thus, power varies inversely with beta.
4. Power varies directly with $N$. Increasing $N$ increases power.
5. Power varies directly with the size of the real effect of the independent variable. The power of an experiment is greater for large effects than for small effects.
6. Power varies directly with alpha le vel. If alpha is made more stringent, po wer decreases.
These points about power are true regardless of the inference test. In this section, we will again illustrate these conclusions, only this time in conjunction with the normal deviate test. We will begin with a discussion of power and sample size.

## Power and Sample Size ( $N$ )

Let's return to the illustrative experiment at t he beginning of this chapter. We'll assume you are again wearing the hat of superintendent of public schools. This time, however, you are just designing the experiment. It has not yet been conducted. You want to determine whether the reading program for high school seniors in your city is deficient. As described previously, the national nor ms of reading proficiency of high school seniors is a normal distribution of population scores with $\mu=75$ and $\sigma=16$. You plan to test a random sample of high school seniors from your city, and you are trying to determine how large the sample size should be. You will use $\alpha=0.05_{1 \text { tail }}$ in evaluating the data when collected. You want to be able to detect proficiency deficiencies in your program of 3 or more mean points from the national norms. That is, if the mean reading proficiency of the population of high school seniors in your city is lower than the national norms by 3 or mor e points, you want your experiment to have a high probability to detect it.
a. If you decide to use a sample size of $25(N=25)$, what is the po wer of your e xperiment to detect a population deficiency in reading proficiency of 3 mean points from the national norms?
b. If you increase the sample size to $N=100$, what is the po wer now to detect a population deficiency in reading proficiency of 3 mean points?
c. What size $N$ should you use for the pover to be approximately 0.9000 to detect a population deficiency in reading proficiency of 3 mean points?

## SOLUTION

a. Po wer with $N=25$.

As discussed in Chapter 11, po wer is the probability of rejecting $H_{0}$ if the independent variable has a real ef fect. In computing the po wer to detect a hypothesized real ef fect, we

[^20]must first determine the sample outcomes that will allo w rejection of $H_{0}$. Then, we must determine the probability of getting any of these sample outcomes if the independent variable has the hypothesized real ef fect. The resulting probability is the po wer to detect the hypothesized real effect. Thus, there are two steps in computing power:

STEP 1: Determine the possible sample mean outcomes in the experiment that would allow $H_{0}$ to be rejected. With the $z$ test, this means determining the critical region for rejection of $H_{0}$, using $\bar{X}$ as the statistic.
STEP 2: Assuming the hypothesized real effect of the independent variable is $t$ he true state of affairs, determine the probability of getting a sample mean in the critical region for rejection of $H_{0}$.
Let's now compute the po wer to detect a population deficiency in reading proficiency of 3 mean points from the national norms, using $N=25$.

STEP 1: Determine the possible sample mean outcomes in the experiment that would allow $H_{0}$ to be rejected. With the $z$ test, this means determining the critical region for rejection of $H_{0}$, using $\bar{X}$ as the statistic.
When evaluating $H_{0}$ with the $z$ test, we assume the sample is a random sample from the null-hypothesis population. We will symbolize the mean of the null-hypothesis population as $\mu_{\text {null }}$. In the present e xample, the null-hypothesis population is the set of scores established by national testing, that is, a normal population of scores with $\mu_{\text {null }}=75$. With $\alpha=0.05_{1 \text { tail }}, z_{\text {crit }}=-1.645$. To determine the critical value of $\bar{X}$, we can use the $z$ equation solved for $\bar{X}_{\text {crit }}$ :

$$
\begin{aligned}
& z_{\text {crit }}=\frac{\bar{X}_{\text {crit }}-\mu_{\text {null }}}{\sigma_{\bar{X}}} \\
& \bar{X}_{\text {crit }}=\mu_{\text {null }}+\sigma_{\bar{X}}\left(z_{\text {crit }}\right)
\end{aligned}
$$

Substituting the data with $N=25$,

$$
\begin{aligned}
\bar{X}_{\text {crit }} & =75+3.2(-1.645) \\
& =75-5.264 \\
& =69.74
\end{aligned}
$$

Thus, with $N=25$, we will reject $H_{0}$ if, when we conduct the experiment, the mean of the sample $\left(\bar{X}_{\text {obt }}\right) \leq 69.74$. See Figure 12.11 for a pictorial representation of these relationships.

STEP 2: Assuming the hypothesized real effect of the independent variable is $t$ he true state of affairs, determine the probability of getting a sample mean in the critical region for rejection of $H_{0}$.
If the independent variable has the hypothesized real effect, then the sample scores in your experiment are not a random sample from the null-hypothesis population. Instead, they are a random sample from a p opulation having a me an as specified by the hypothesized real effect. We shall symbolize this mean as $\mu_{\text {real }}$. Thus, if the reading proficiency of the population of seniors in your city is 3 mean points lower than the national norms, then the sample in your experiment is a random sample from a population where $\mu_{\text {real }}=72$. The probability of your sample mean falling in the critical region if the sample is actually a random sample from a population where $\mu_{\text {real }}=72$ is found by obtaining the $z$ transform for $\bar{X}_{\text {obt }} \leq 69.74$ and looking up its corresponding area in Table A. Thus,

$$
\begin{aligned}
z_{\mathrm{obt}} & =\frac{\bar{X}_{\mathrm{obt}}-\mu_{\text {real }}}{\sigma_{\bar{X}}} \quad \sigma_{\bar{X}}=\frac{\sigma}{\sqrt{N}}=\frac{16}{\sqrt{25}}=3.2 \\
& =\frac{69.74-72}{3.2} \\
& =-0.71
\end{aligned}
$$


figure 12.11 Power for $N=25$.

From Table A,

$$
p\left(\bar{X}_{\mathrm{obt}} \leq 69.74\right)=p\left(z_{\mathrm{obt}} \leq-0.71\right)=0.2389
$$

Thus,

$$
\begin{aligned}
\text { Power } & =0.2389 \\
\text { Beta } & =1-\text { Power }=1-0.2389=0.7611
\end{aligned}
$$

Thus, the power to detect a deficiency of 3 mean points with $N=25$ is 0.2389 and beta $=0.7611$.

Since the probability of a Type II error is too high, you decide not to go ahead and run the experiment with $N=25$. Let's now see what happens to power and beta if $N$ is increased to 100 .
b. If $N=100$, what is the po wer to detect a population dif ference in reading proficiency of 3 mean points?

STEP 1: Determine the possible sample mean outcomes in the experiment that would allow $H_{0}$ to be rejected. With the $z$ test, this means determining the critical region for rejection of $H_{0}$, using $\bar{X}$ as the statistic:

$$
\begin{aligned}
\bar{X}_{\text {crit }} & =\mu_{\text {null }}+\sigma_{\bar{X}}\left(z_{\text {crit }}\right) \quad \sigma_{\bar{X}}=\frac{\sigma}{\sqrt{N}}=\frac{16}{\sqrt{100}}=1.6 \\
& =75+1.6(-1.645) \\
& =75-2.632 \\
& =72.37
\end{aligned}
$$

STEP 2: Assuming the hypothesized real effect of the independent variable is $t$ he true state of affairs, determine the probability of getting a sample mean in the critical region for rejection of $H_{0}$.

$$
\begin{aligned}
z_{\mathrm{obt}} & =\frac{\bar{X}_{\mathrm{obt}}-\mu_{\mathrm{real}}}{\sigma_{\bar{X}}} \quad \sigma_{\bar{X}}=\frac{\sigma}{\sqrt{N}}=\frac{16}{\sqrt{100}}=1.6 \\
& =\frac{72.37-72}{1.6} \\
& =0.23
\end{aligned}
$$

## From Table A,

$$
p\left(\bar{X}_{\mathrm{obt}} \leq 72.37\right)=0.5000+0.0910=0.5910
$$

Thus,

$$
\begin{aligned}
\text { Power } & =0.5910 \\
\text { Beta } & =1-\text { Power }=1-0.5910=0.4090
\end{aligned}
$$

Thus, by increasing $N$ from 25 to 100 , the po wer to detect a deficiency of 3 mean points has increased from 0.2389 to 0.5910 . Beta has decreased from 0.7611 to 0.4090 . This is a demonstration that po wer varies directly with $N$ and beta varies inversely with $N$. Thus, increasing $N$ causes an increase in power and a decrease in beta. Figure 12.12 summarizes the relationships for this problem.
c. What size $N$ should you use for the power to be approximately 0.9000 ?

For the power to be 0.9000 to detect a population deficiency of 3 mean points, the probability that $\bar{X}_{\text {obt }}$ will f all in the critical re gion must be equal to 0.9000 . As shown in Figure 12.13, this dictates that the area between $z_{\text {obt }}$ and $\mu_{\text {real }}=0.4000$. From Table A, $z_{\text {obt }}=1.28$. (Note that we have taken the closest table reading rather than interpolating. This will result in a power close to 0.9000 , but not exactly equal to 0.9000 .) By solving the $z_{\text {obt }}$ equation for $\bar{X}_{\text {obt }}$ and setting $\bar{X}_{\text {obt }}$ equal to $\bar{X}_{\text {crit }}$, we can determine $N$. Thus,

$$
\begin{aligned}
& \bar{X}_{\text {obt }}=\mu_{\text {real }}+\sigma_{\bar{X}}\left(z_{\text {obt }}\right) \\
& \bar{X}_{\text {crit }}=\mu_{\text {null }}+\sigma_{\bar{X}}\left(z_{\text {crit }}\right)
\end{aligned}
$$

Setting $\bar{X}_{\text {obt }}=\bar{X}_{\text {crit }}$, we have

$$
\mu_{\text {real }}+\sigma_{\bar{X}}\left(z_{\text {obt }}\right)=\mu_{\text {null }}+\sigma_{\bar{X}}\left(z_{\text {crit }}\right)
$$

Solving for $N$,

$$
\begin{aligned}
\mu_{\text {real }}-\mu_{\text {null }} & =\sigma_{\bar{X}}\left(z_{\text {crit }}\right)-\sigma_{\bar{X}}\left(z_{\text {obt }}\right) \\
\mu_{\text {real }}-\mu_{\text {null }} & =\sigma_{\bar{X}}\left(z_{\text {crit }}-z_{\text {obt }}\right) \\
\mu_{\text {real }}-\mu_{\text {null }} & =\frac{\sigma}{\sqrt{N}}\left(z_{\text {crit }}-z_{\text {obt }}\right) \\
\sqrt{N}\left(\mu_{\text {real }}-\mu_{\text {null }}\right) & =\sigma\left(z_{\text {crit }}-z_{\text {obt }}\right) \\
N & =\left[\frac{\sigma\left(z_{\text {crit }}-z_{\text {obt }}\right)}{\mu_{\text {real }}-\mu_{\text {null }}}\right]^{2}
\end{aligned}
$$


figure 12.12 Power for $N=100$.

figure 12.13 Determining $N$ for power $=0.9000$.

Thus, to determine $N$, the equation we use is

$$
N=\left[\frac{\sigma\left(z_{\text {crit }}-z_{\mathrm{obt}}\right)}{\mu_{\text {real }}-\mu_{\text {null }}}\right]^{2} \quad \text { equation for determining } N
$$

Applying this equation to the problem we have been considering, we get

$$
\begin{aligned}
N & =\left[\frac{\sigma\left(z_{\text {crit }}-z_{\text {obt }}\right)}{\mu_{\text {real }}-\mu_{\text {null }}}\right]^{2} \\
& =\left[\frac{16(-1.645-1.28)}{72-75}\right]^{2} \\
& =243
\end{aligned}
$$

Thus, if you increase $\quad N$ to 243 subjects, the po wer will be approximately 0.9000 (power $=0.8997$ ) to detect a population deficiency in reading proficiency of 3 mean points. I suggest you confirm this power calculation yourself, using $N=243$ as a practice exercise.

Power and alpha level Next, let's take a look at the relationship between power and alpha. Suppose you had set $\alpha=0.01_{1 \text { tail }}$ instead of $0.05_{1 \text { tail }}$. What happens to the resulting power? (We'll assume $N=100$ in this question.)

## SOLUTION

STEP 1: Determine the possible sample mean outcomes in the experiment that would allow $H_{0}$ to be rejected. With the $z$ test, this means determining the critical region for rejection of $H_{0}$, using $\bar{X}$ as the statistic:

$$
\begin{array}{rlrl}
\bar{X}_{\text {crit }} & =\mu_{\text {null }}+\sigma_{\bar{X}}\left(z_{\text {crit }}\right) & & \sigma_{\bar{X}}=\frac{\sigma}{\sqrt{N}}=\frac{16}{100}=1.6 \\
& =75+1.6(-2.33) & & z_{\text {crit }}=-2.33 \\
& =71.27 &
\end{array}
$$

STEP 2: Assuming the hypothesized real effect of the independent variable is $t$ he true state of affairs, determine the probability of getting a sample mean in the critical region for rejection of $H_{0}$.

$$
\begin{aligned}
z_{\text {obt }} & =\frac{\bar{X}_{\text {obt }}-\mu_{\text {real }}}{\sigma_{\bar{X}}} \quad \sigma_{\bar{X}}=\frac{\sigma}{\sqrt{N}}=\frac{16}{100}=1.6 \\
& =\frac{71.27-72}{1.6} \\
& =-0.46
\end{aligned}
$$

From Table A,

$$
p\left(\bar{X}_{\mathrm{obt}} \leq 71.27\right)=0.3228
$$

Th us,

$$
\begin{aligned}
\text { Power } & =0.3228 \\
\text { Beta } & =1-\text { Power }=0.6772
\end{aligned}
$$

Thus, by making alpha more stringent (changing it from $0.05 \quad 1$ tail to $0.01{ }_{1 \text { tail }}$ ), po wer has decreased from 0.5910 to 0.3228 . Beta has increased from 0.4090 to 0.6772 .
This demonstrates that there is a direct relationship between alpha and po wer and an inverse relationship between alpha and beta. Figure 12.14 sho ws the relationships for this problem.

Relationship bet ween size of $r$ eal ef fect and po wer Next, let's investigate the relationship between the size of the real effect and power. To do this, let's calculate the power to detect a population deficiency in reading p roficiency of 5 mean points from the national norms. We'll assume $N=100$ a nd $\alpha=0.05_{1 \text { tail }}$. Figure 12.15 s hows t he re lationships f or t his problem.

figure 12.14 Power for $N=100$ and $\alpha=0.01_{1 \text { tail }}$.

figure 12.15 Power for $N=100$ and $\mu_{\text {real }}=70$.

## SOLUTION

STEP 1: Determine the possible sample mean outcomes in the experiment that would allow $H_{0}$ to be rejected. With the $z$ test, this means determining the critical region for rejection of $H_{0}$, using $\bar{X}$ as the statistic:

$$
\begin{aligned}
\bar{X}_{\text {crit }} & =\mu_{\text {null }}+\sigma_{\bar{X}}\left(z_{\text {crit }}\right) \quad \sigma_{\bar{X}}=\frac{\sigma}{\sqrt{N}}=\frac{16}{100}=1.6 \\
& =75+1.6(-1.645) \\
& =72.37
\end{aligned}
$$

STEP 2: Assuming the hypothesized real effect of the independent variable is $t$ he true state of affairs, determine the probability of getting a sample mean in the critical region for rejection of $H_{0}$ :

$$
\begin{aligned}
z_{\text {obt }} & =\frac{\bar{X}_{\text {obt }}-\mu_{\text {real }}}{\sigma_{\bar{X}}} \quad \sigma_{\bar{X}}=\frac{\sigma}{\sqrt{N}}=\frac{16}{100}=1.6 \\
& =\frac{72.37-70}{1.6} \\
& =1.48
\end{aligned}
$$

From Table A,

$$
p\left(\bar{X}_{\mathrm{obt}} \leq 72.37\right)=0.5000+0.4306=0.9306
$$

Th us,

$$
\begin{aligned}
\text { Power } & =0.9306 \\
\text { Beta } & =1-\text { Power }=1-0.9306=0.0694
\end{aligned}
$$

Thus, by increasing the size of the real efect from 3 to 5 mean points, pover has increased from 0.5910 to 0.9306 . Beta has decreased from 0.4090 to 0.0694 . This demonstrates that there is a direct relationship between the size of the real ef fect and the po wer to detect it.

## SUMMARY

In $t$ his c hapter, I d iscussed t he topi cs of t he sa mpling distribution of a statistic, how to generate sampling distributions from an empirical sampling approach, the sampling distribution of the mean, and how to analyze single sample experiments with the $z$ test. I pointed out that the procedure for a nalyzing data in most hypothesis-testing experiments is to ca lculate the appropr iate statistic and then evaluate the statistic based on its sampling distribution. The sampling distribution of a statistic gives all the values that the statistic can take, along with the probability of getting each value if sampling is random from the null-hypothesis p opulation. T he sa mpling d istribution can beg enerated $t$ heoretically w ith $t$ he $C$ entral $L$ imit Theorem or empi rically by (1) determining all the possible different samples of size $N$ that can be formed from the raw-score population, (2) calculating the statistic for each of the samples, and (3) calculating the probability of getting each value of the statistic if sampling is $r$ andom from the null-hypothesis population.

The sampling distribution of the mean is a distribution of sample mean values having a mean $\left(\mu_{\bar{X}}\right)$ equal to $\mu$ and a standard deviation $\left(\sigma_{\bar{X}}\right)$ equal to $\sigma / \sqrt{N}$. It is
normally distributed if the raw-score population is normally distributed or if $N \geq 30$, assuming the raw-score population is not radically different from normality. The $z$ test is appropriate for analyzing single-sample experiments, where $\mu$ and $\sigma$ are known and the sample mean is used as the basic statistic. When this test is used, $z_{\text {obt }}$ is calculated and then evaluated to det ermine whether it falls in the critical region for rejecting the null hypothesis. To use the $z$ test, the sampling distribution of the mean must be normally distributed. This in turn requires that the null-hypothesis population be normally distributed or that $N \geq 30$.

Finally, I d iscussed power in con junction w ith the $z$ test. Power is the probability of rejecting $H_{0}$ if the independent variable has a real effect. To calculate power, we followed a two-step procedure: determining the possible sample means that allowed rejection of $H_{0}$ and finding the probability of getting any of these sample means, assuming the hypothesized real effect of the independent variable is true. Power varies directly with $N$, alpha, and the size of the real effect of the independent variable. Power varies inversely with beta.

## ■IMPORTANT NEW TERMS

Critical region (p. 312)
Critical value of a statistic (p. 312)
Critical value of $\bar{X}$ (p. 318)
Critical value of $z$ (p. 312)
Mean of the sampling distribution
of the mean (p. 305)

Normal deviate (z) test (p. 303)
Null-hypothesis population (p. 300)
Sampling distribution of a statistic (p. 299)

Sampling distribution of the mean (p. 303)

Standard error of the mean (p. 305)
$\mu_{\text {null }}$ (p. 318)
$\mu_{\text {real }}$ (p. 318)

## ■QUESTIONSANDPROBLEMS

1. Define each of the terms in the Important New Terms section.
2. Why is the sampling distribution of a statistic important to be able to use the statistic in hypothesis testing? Explain in a short paragraph.
3. How a re sa mpling d istributions $g$ enerated us ing the empirical sampling approach?
4. What are the two basic steps used when analyzing data?
5. What a re the a ssumptions underlying the use of the $z$ test?
6. What are the characteristics of the sampling distribution of the mean?
7. Explain why the standard deviation of the sampling distribution of the mean is sometimes referred to as the "standard error of the mean."
8. How do each of the following differ?
a. $s$ and $s_{\bar{X}}$
b. $s^{2}$ and $\sigma^{2}$
c. $\mu$ and $\mu_{\bar{X}}$
d. $\sigma$ and $\sigma_{\bar{X}}$
9. Explain why $\sigma_{\bar{X}}$ should vary directly with $\sigma$ and inversely with $N$.
D. Why should $\mu_{\bar{X}}=\mu$ ?
10. Is the shape of the sampling distribution of the mean always the same as the shape of the null-hypothesis population? Explain.
11. When using the $z$ test, why is it i mportant that the sampling distribution of the mean be normally distributed?
12. If the assumptions underlying the $z$ test are met, what are $t$ he $c$ haracteristics of $t$ he sa mpling distribution of $z$ ?
13. Define power, both conceptually and mathematically.
14. Explain what happens to the power of the $z$ test when each of the following variables increases.
a. $N$
b Alpha level
c. Size of real effect of the independent variable d. $\sigma$
15. How does increasing the $N$ of an experiment affect the following?
a. Power
b. Beta
c. Alpha
d. Size of real effect
16. Given the population set of scores $3,4,5,6,7$,
a. Determine the sampling distribution of the mean for sample sizes of 2 . Assume sampling is one at a time, with replacement.
b Demonstrate that $\mu_{\bar{X}}=\mu$.
c. Demonstrate that $\sigma_{\bar{X}}=\sigma / \sqrt{N}$.
17. If a population of raw scores is normally distributed and ha s a mea $\mathrm{n} \mu=80$ a nd as tandard de viation $\sigma=8$, determine the parameters ( $\mu_{\bar{X}}$ and $\sigma_{\bar{X}}$ ) of the sampling distribution of the mean for the following sample sizes.
a. $N=16$
b. $N=35$
c. $N=50$
d. Explain what happens as $N$ gets larger. other
18. Is it reasonable to consider a sample of 40 scores with $\bar{X}_{\text {obt }}=65$ to be a random sample from a population of scores that is normally distributed, with $\mu=60$ and $\sigma=10$ ? Use $\alpha=0.05_{2 \text { tail }}$ in making your decision. other
19. A set of sa mple scores f rom an experiment has an $N=30$ and an $\bar{X}_{\text {obt }}=19$.
a. Can we reject the null hypothesis that the sample is a random sample from a normal population with $\mu=22$ and $\sigma=8$ ? Use $\alpha=0.01_{1 \text { tail }}$. Assume the sample mean is in the correct direction.
b. What is $t$ he power of the experiment to det ect a real effect such that $\mu_{\text {real }}=20$ ?
c. What is t he power to det ect a $\mu_{\text {real }}=20$ if $N$ is increased to 100 ?
d. What v alue do es $N$ ha ve to e qual to a chieve a power of 0.8000 to detect a $\mu_{\text {real }}=20$ ? Use the nearest table value for $z_{\mathrm{ob}}$. other
20. On $t$ he ba sis of her ne wly de veloped $t$ echnique, a student believes she can reduce the a mount of time schizophrenics spend in an institution. As director of training at a nea rby institution, you ag ree to let her try her method on 20 schizophrenics, randomly sampled from your institution. The mean duration that schizophrenics stay at your institution is 85 weeks, with a standard deviation of 15 weeks. The scores are normally distributed. The results of the experiment show that the pat ients treated by the student stay a mean duration of 78 weeks, with a standard deviation of 20 weeks.
a. What is the alternative hypothesis? In this case, assume a nond irectional hypothesis is appro priate because there are insufficient theoretical and empi rical ba ses to w arrant a d irectional hypothesis.
b. What is the null hypothesis?
c. What do y ou conc lude ab out the student's technique? Use $\alpha=0.05_{2 \text { tail }}$. Clinical, health
21. A professor has been teaching statistics for many years. His records show that the overall mean for final e xam scores is 82 , w ith a s tandard de viation of 10 . The professor believes that this year's class is superior to his previous ones. The mean for final exam scores for this year's class of 65 students is 87 . W hat do y ou conc lude? U se $\alpha=0.05_{1 \text { tail }}$. education
22. An au tomotive en gineer $b$ elieves $t$ hat her ne wly designed en gine $w$ ill be a $g$ reat $g$ as saver. A la rge number of tests on engines of the old design yielded a mean gasoline consumption of 27.5 miles per gallon, with a s tandard de viation of 5.2 . Fifteen ne w engines are tested. The mean gasoline consumption is 29.6 m iles per g allon. W hat is y our conc lusion? Use $\alpha=0.05_{1 \text { tail }}$. Other
23. In Practice Problem 12.2 (p. 316), we presented data testing a ne $\mathrm{w} g$ asoline a dditive. A la rge n umber of mileage mea surements on $t$ he $g$ asoline $w$ ithout $t$ he additive showed a mean of 24.7 miles per gallon and a standard de viation of 4.8. An experiment was performed in which 75 cars were tested using the gasoline plus the additive. The results showed a sample mean of 26.5 miles per gallon. To evaluate these data, a directional test with $\alpha=0.05_{1 \text { tail }}$ was used. Suppose that before doing the experiment, the manufacturer wants to det ermine $t$ he pro bability $t$ hat he $w$ ill be ab le to detect a real mean increase of 2.0 miles per gallon with the additive if the additive is at least that effective.
a. If he tests 20 ca rs, what is the power to det ect a mean increase of 2.0 miles per gallon?
b. If he i ncreases t he $N$ to 75 cars, what is the power to detect a mean increase of 2.0 miles per gallon?
c. How many cars should he use if he wants to have a $99 \%$ c hance of det ecting a mea $n$ i ncrease of 2.0 miles per gallon? I/O
24. A ph ysical e ducation pro fessor $b$ elieves $t$ hat exercise ca $n s$ low $t$ he ag ing pro cess. F or $t$ he pa st

10 years, he has been conducting an exercise class for 14 individuals who a re c urrently 50 years old. Normally, as one ages, maximum oxygen consumption d ecreases. T he n ational n orm f or m aximum oxygen cons umption in 50 -year-old i ndividuals is 30 milliliters per kilogram per minute, with a standard deviation of 8.6. The mean of the 14 individuals is 40 m illiliters p er k ilogram p er m inute. W hat do y ou conc lude? U se $\alpha=0.05_{1 \text { tail }}$. biological, health

## ONLINE STUDY RESOURCES

## CENGAGE braiin

Login to CengageBrain.com to access the resources your instructor has assigned. For this book, you can access the book's co mpanion website for c hapter-specific learning tools including Know and Be Able to Do, practice quizzes, flash cards, a nd glossaries, a nd a 1 ink to $S$ tatistics and Research Methods Workshops.

If your professor has assigned Aplia homework:

1. Sign in to your account.
2. Complete $t$ he cor responding ho mework e xercises a s required by your professor.
3. When finished, c lick "G rade It N ow" to se e w hich areas you have mastered and which need more work, and for detailed explanations of every answer.

Visit www.cengagebrain.com to access your account and to purchase materials.


## CHAPTER OUTLINE

 IntroductionComparison of the $z$ and $t$ Tests
Experiment: Increasing Early Speaking in Children
The Sampling Distribution of $t$ Degrees of Freedom
$t$ and $z$ Distributions Compared
Early Speaking Experiment Revisited
Calculating $t_{\text {obt }}$ from Original Scores
Conditions Under Which the $t$ Test Is Appropriate
Size of Effect Using Cohen's d
Confidence Intervals for the Population Mean
Construction of the 95\% Confidence Interval
Experiment: Estimating the Mean IQ of Professors
General Equations for Any Confidence Interval
Testing the Significance of Pearson $r$
Summary
Important New Terms
Questions and Problems
SPSS

## Notes

Online Study Resources

## Student's t Test for Single Samples

## LEARNING OBJECTIVES

After completing this chapter, you should be able to:

- Contrast the $t$ test and the $z$ test for single samples.
- Define degrees of freedom.
- Define the sampling distribution of $t$, and state its characteristics.
- Compare the $t$ and $z$ distributions.
- Solve problems using the $t$ test for single samples and specify the conditions under which the $t$ test for single samples is appropriate.
- Compute size of effect using Cohen's $d$.
- Contrast point and interval estimation.
- Define confidence interval and confidence limits.
- Define and construct the $95 \%$ and $99 \%$ confidence limits for the population mean.
- Determine for the significance of Pearson $r$ using two methods.
- Understand the illustrative examples, do the practice problems, and understand the solutions.

In C hapter 12 , wed iscussed t he $z$ test and determined that it was appropriate in situations in which both the mean and the standard de viation of the nullhypothesis population were known. However, these situations are relatively rare. It is more co mmon to encou nter situations in which the mea $n$ of the $n$ ullhypothesis population can be specified and the standard deviation is unknown. In these cases, the $z$ test cannot be used. Instead, another test, called Student's test, is employed. The $t$ test is very similar to the $z$ test. It was developed by W. S. Gosset, writing u nder t he p en na me of " S tudent." S tudent's $t$ test is a practical, quite powerful test widely used in the behavioral sciences. In this chapter, we shall discuss the $t$ test in con junction with e xperiments involving a s ingle sa mple. In Chapter 14, we shall discuss the $t$ test as it applies to experiments using two samples or conditions.

## COMPARISON OF THE z AND $\boldsymbol{t}$ TESTS

## MENTORINGTIP

The $t$ test is like the $z$ test, except it uses $s$ instead of $\sigma$.

The $z$ and $t$ tests for single sample experiments are quite alike. The equations for each are shown in Table 13.1.

In comparing these equations, we can see that the only difference is $t$ hat the $z$ test uses the standard deviation of the null-hypothesis population $(\sigma)$, whereas the $t$ test uses the standard de viation of the sample ( $s$ ). When $\sigma$ is unknown, we estimate it using the estimate given by $s$, and the resulting statistic is ca lled $t$. Thus, the denominator of the $t$ test is $s / \sqrt{N}$ rather than $\sigma / \sqrt{N}$. The symbol $s_{\bar{X}}$ replaces $\sigma_{\bar{X}}$ where

$$
s_{\bar{X}}=\frac{s}{\sqrt{N}} \quad \text { estimated standard error of the mean }
$$

We are ready now to consider an experiment using the $t$ test to analyze the data.

## table 13.1 Comparison of equations

 for the $z$ and $t$ tests
## $z$ Test

$t$ Test

$$
\begin{aligned}
z_{\mathrm{obt}} & =\frac{\bar{X}_{\mathrm{obt}}-\mu}{\sigma / \sqrt{N}} & t_{\mathrm{obt}} & =\frac{\bar{X}_{\mathrm{obt}}-\mu}{s / \sqrt{N}} \\
& =\frac{\bar{X}_{\mathrm{obt}}-\mu}{\sigma_{\bar{X}}} & & =\frac{\bar{X}_{\mathrm{obt}}-\mu}{s_{\bar{X}}}
\end{aligned}
$$

where s $=$ estimate of $\sigma$
$s_{\bar{X}}=$ estimate of $\sigma_{\bar{X}}$

## experiment

## Increasing Early Speaking in Children

Suppose you have a technique that you believe will affect the age at which children begin speaking. In your locale, the average age of first word utterances is 13.0 months. The standard deviation is u nknown. You apply y our technique to a r andom sa mple of 15 children. The results show that the sample mean age of first word utterances is 11.0 months, with a standard deviation of 3.34 .

1. What is the nondirectional alternative hypothesis?
2. What is the null hypothesis?
3. Did the technique work? Use $\alpha=0.05_{2 \text { tail }}$.

## SOLUTION

1. Alternative hypothesis: The technique affects the age at which children begin speaking. Therefore, the sample with $\bar{X}_{\text {obt }}=11.0$ is a random sample from a population where $\mu \neq 13.0$.
2. Null hypothesis: $H_{0}$ : The sample with $\bar{X}_{\mathrm{obt}}=11.0$ is a random sample from a population with $\mu=13.0$.
3. Conclusion using $\alpha=0.05_{2 \text { tail }}$ :

STEP 1: Calculate the appropriate statistic. Si nce $\sigma$ is unknown, it is impossible to determine $z_{\mathrm{obt}}$. However, $s$ is known, so we can calculate $t_{\mathrm{obt}}$. Thus,

$$
\begin{aligned}
t_{\mathrm{obt}} & =\frac{\bar{X}_{\mathrm{obt}}-\mu}{s / \sqrt{N}} \\
& =\frac{11.0-13.0}{3.34 / \sqrt{15}} \\
& =\frac{-2}{0.862} \\
& =-2.32
\end{aligned}
$$

The next step ordinarily would be to evaluate $t_{\mathrm{obt}}$ using the sampling distribution of $t$. However, because this distribution is not yet familiar, we need to discuss it before we can proceed with the evaluation.

## THE SAMPLING DISTRIBUTION OF $\boldsymbol{t}$

Using the definition of sampling distribution developed in Chapter 12, we note the following.

## definition <br> The sampling distribution of $\boldsymbol{t}$ is a probability distribution of the $\boldsymbol{t}$ values that would occur if all possible different samples of a fixed size $N$ were drawn from the null-hypothesis population. It gives (1) all the possible different t values for samples of size $N$ a nd (2) the probability of getting each value if s ampling is random from the null-hypothesis population.

As with the sampling distribution of the mean, the sampling distribution of $t$ can be determined theoretically or empirically. Again, for pedagogical reasons, we prefer the
empirical approach. The sampling distribution of $t$ can be derived empirically by taking a specific population of raw scores, drawing all possible different samples of a fixed size $N$, and then calculating the $t$ value for each sample. O nce all the possible $t$ values are obtained, it is a simple matter to calculate the probability of getting each different $t$ value under the a ssumption of random sa mpling from the population. By varying $N$ and the population scores, one can derive sampling distributions for various populations and sample sizes. Empirically or theoretically, it turns out that, if the null-hypothesis population is normally shaped, or if $N \geq 30$, the $t$ distribution looks very much like the $z$ distribution except that there is a family of $t$ curves that vary with sample size. You will recall that the $z$ distribution has only one curve for all sample sizes (the values represented in Table A in Appendix D). On the other hand, the $t$ distribution, like the sampling distribution of the mean, has many curves depending on sample size. Since we are estimating by using $s$ in the $t$ equation and the size of the sample influences the accuracy of the estimate, it makes sense that there should be a different sampling distribution of $t$ for different sample sizes.

## Degrees of Freedom

Although the $t$ distribution varies with sample size, Gosset found that it varies uniquely with the degrees of freedom associated with $t$, rather than simply with sample size. Why this is so will not be apparent until Chapter 14. For now, let's just pursue the concept of degrees of freedom.

The degrees of freedom (df) for any statistic is the number of scores that are free to vary in calculating that statistic.

For example, there are $N$ degrees of freedom associated with the mean. How do we know this? For any set of scores, $N$ is given. If there are three scores and we know the first two scores, the last score can take on any value. It has no restrictions. There is no way to tell what it must be by knowing the other two scores. The same is true for the first two scores. Thus, all three scores are free to vary when calculating the mean. Thus, there are $N$ degrees of freedom.

Contrast this with calculating the standard deviation:

$$
s=\sqrt{\frac{\sum(X-\bar{X})^{2}}{N-1}}
$$

Since the sum of deviations about the mean must equal zero, only $N-1$ of the deviation scores are free to take on any value. Thus, there are $N-1$ degrees of freedom associated with $s$. Why is this so? Consider the raw scores 4,8 , and 12 . The mean is 8 . Table 13.2 shows what happens when calculating $s$.
table 13.2 Number of deviation scores free to vary

| $\boldsymbol{X}$ | $\bar{X}$ | $\boldsymbol{X}-\overline{\bar{X}}$ |  |  |
| ---: | :---: | :---: | :---: | :---: |
| $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ |  |
| 4 | 8 | -4 |  |  |
| 8 | 8 |  |  |  |
| 12 | 8 |  | 0 |  |

Since the mean is 8 , the deviation score for the raw score of 4 is -4 and for the raw score of 8 is 0 . Since $\Sigma(X-\bar{X})=0$, the last deviation is fixed by the other deviations. It must be +4 (see the "?" in Table 13.2). It cannot take on any value; instead it is fixed at +4 by the other two deviation scores. Therefore, only two of the three deviation scores are free to vary. Whatever value these take, the third is fixed. In calculating $s$, only $N-1$ deviation scores are free to vary. Thus, there are $N-1$ de grees of freedom associated with the standard deviation.

In calculating $t$ for single samples, we must first calculate $s$. We lose 1 de gree of freedom in calculating $s$, so there are $N-1$ degrees of freedom associated with $t$. Thus, for the $t$ test,

$$
\mathrm{df}=N-1 \text { degrees of freedom for test (single sample) }
$$

## t AND $z$ DISTRIBUTIONS COMPARED

Figure 13.1 shows the $t$ distribution for various de grees of f reedom. The $t$ distribution is $s$ ymmetrical $a b$ out $z$ ero $a \operatorname{nd} b$ ecomes $c$ loser to $t$ he $n$ ormally $d$ istributed $z$ distribution with increasing df. Notice how quickly it approaches the normal curve. Even with df as small as 20, the $t$ distribution rather closely approximates the normal

figure $13.1 t$ distribution for various degrees of freedom.

## MENTORINGTIP

The $t$ test is less powerful than the $z$ test.

## MENTORINGTIP

When using Table D, if alpha is two-tailed, you need to supply the " $\pm$ " sign for $t_{\text {crit }}$. If alpha is one-tailed, and the predicted direction of the real effect is a decrease in the $\mathrm{DV}, t_{\text {crit }}$ is negative.
curve. Theoretically, when $\mathrm{df}=\infty, *$ the $t$ distribution is identical to the $z$ distribution. This makes sense because as the df increases, sample size increases and the estimate $s$ gets closer to $\sigma$. At any df other than $\infty$, the $t$ distribution has more extreme $t$ values than the $z$ distribution, since there is more variability in $t$ because we used $s$ to estimate $\sigma$. A nother way of saying this is t hat the tails of the $t$ distribution are elevated relative to the $z$ distribution. Thus, for a given alpha level, the critical value of $t$ is higher than for $z$, making the $t$ test less powerful than the $z$ test. That is, for any alpha level, $t_{\text {obt }}$ must be higher than $z_{\text {obt }}$ to reject the null hypothesis. Table 13.3 shows the critical values of $z$ and $t$ at the 0.05 and 0.01 alpha levels. As the df increases, the critical value of $t$ approaches that of $z$. The critical $z$ value, of course, doesn't change with sample size.

Critical values of $t$ for various alpha levels and df are contained in Table D of Appendix D. These values have been obtained from the sampling distribution of $t$ for each df and alpha level. In Table D, the degrees of freedom range from 1 to $\infty$. One-tailed alpha levels vary from .0005 to .10 ; two-tailed alpha levels vary from .001 to .20 . A portion of Table D is shown below in Table 13.4. As can be seen from Table 13.4, df values are given in the leftmost column and alpha levels are given as column headings. $t_{\text {crit }}$ values are given in the cell at the intersection of a given df and alpha level. For example, with $\mathrm{df}=13$ and $\alpha=0.05_{2 \text {-tail }}, t_{\text {crit }}= \pm 2.160$ (gray shading). Note that the table doesn't supply the " $\pm$ " sign; you must do so yourself for all two-tailed alpha levels. If $\mathrm{df}=13$ and $\alpha=0.05_{1-\text { tail }}$, then $t_{\text {crit }}=1.771$ (blue shading)
table 13.3 Critical values of $z$ and $t$ at the 0.05 and 0.01 alpha levels, one-tailed

| $d f$ | $z_{0.05}$ | $t_{0.05}$ | $z_{0.01}$ | $t_{0.01}$ |
| :---: | :---: | :---: | :---: | :---: |
| 5 | 1.645 | 2.015 | 2.326 | 3.365 |
| 30 | 1.645 | 1.697 | 2.326 | 2.457 |
| 60 | 1.645 | 1.671 | 2.326 | 2.390 |
| $\infty$ | 1.645 | 1.645 | 2.326 | 2.326 |

table 13.4 $t_{\text {crit }}$ values, a portion of Table D

| $d f$ | Level of Significance for One-Tailed Test, $\alpha_{1 \text {-tail }}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | . 05 | . 025 | . 01 | . 005 |
|  | Level of Significance for Two-Tailed Test, $\alpha_{2 \text {-tail }}$ |  |  |  |
|  | . 10 | . 05 | . 02 | . 01 |
| 12 | 1.782 | 2.179 | 2.681 | 3.055 |
| 13 | 1.771 | 2.160 | 2.650 | 3.012 |
| 14 | 1.761 | 2.145 | 2.624 | 2.977 |
| 15 | 1.753 | 2.131 | 2.602 | 2.947 |

[^21]or $t_{\text {crit }}=-1.771$, depending on the direction of the predicted effect. Again, you must supply the appropriate sign. Table D is used for evaluating $t_{\mathrm{obt}}$ for any experiment.

We are now ready to return to the illustrative example.

## EARLY SPEAKING EXPERIMENT REVISITED

You a re investigating at echnique pu rported to a ffect the age at which children begin speaking: $\mu=13.0$ months; $\sigma$ is unknown; the sample of 15 children using your technique has a mean for first word utterances of 11.0 months and a standard deviation of 3.34.

1. What is the nondirectional alternative hypothesis?
2. What is the null hypothesis?
3. Did the technique work? Use $\alpha=0.05_{2 \text { tail }}$.

## SOLUTION

1. Alternative hypothesis: The technique af fects the age at which children be gin speaking. Therefore, the sample with $\bar{X}_{\mathrm{obt}}=11.0$ is a random sample from a population where $\mu \neq 13.0$.
2. Null hypothesis: $H_{0}$ : The sample with $\bar{X}_{\text {obt }}=11.0$ is a random sample from a population with $\mu=13.0$.
3. Conclusion using $\alpha=0.05_{2 \text { tail }}$ :

STEP 1: Calculate the appropriate statistic. Since this is a single sample experiment with unknown $\sigma, t_{\text {obt }}$ is appropriate:

$$
\begin{aligned}
t_{\mathrm{obt}} & =\frac{\bar{X}_{\mathrm{obt}}-\mu}{\mathrm{s} / \sqrt{N}} \\
& =\frac{11.0-13.0}{3.34 / \sqrt{15}} \\
& =-2.32
\end{aligned}
$$

STEP 2: Evaluate the statistic based on its sampling distribution. Just as with the $z$ test, if

$$
\left|t_{\text {obt }}\right| \geq\left|t_{\text {crit }}\right|
$$

then it falls within the critical region for rejection of the null hypothesis. $t_{\text {crit }}$ is found in Table D under the appropriate alpha level and df. For this example, with $\alpha=0.05_{2 \text { tail }}$ and df $=N-1=15-1=14$, from Table D,

$$
t_{\text {crit }}= \pm 2.145
$$

Since $\quad\left|t_{\text {obt }}\right|>2.145$, we reject $H_{0}$ and conclude that the technique does affect the age at which children in your locale first begin speaking. It appears to increase early speaking. The solution is sho wn in Figure 13.2.

STEP 1: Calculate the appropriate statistic. Since $\sigma$ is unknown, $t_{\mathrm{obt}}$ is appropriate.

$$
t_{\mathrm{obt}}=\frac{\bar{X}_{\mathrm{obt}}-\mu}{s / \sqrt{N}}=\frac{11.0-13.0}{3.34 / \sqrt{15}}=-2.32
$$

STEP 2: Evaluate the statistic. If $\left|t_{\text {obt }}\right| \geq\left|t_{\text {crit }}\right|$, reject $H_{0}$. Since $\alpha=0.05_{2 \text { tail }}$ and df $=N-1=15-1=14$, from Table D,

$$
t_{\text {crit }}= \pm 2.145
$$

Since $\left|t_{\text {obt }}\right|>2.145$, it falls within the critical re gion. T herefore, we reject $H_{0}$.

figure 13.2 Solution to the first word utterance experiment using Student's $t$ test.

## CALCULATING $\boldsymbol{t}_{\text {obt }}$ FROM ORIGINAL SCORES

If in a given situation the original scores are available, $t$ can be calculated directly without first having to calculate $s$. The appropriate equation is given here:*

$$
\begin{aligned}
t_{\mathrm{obt}}= & \frac{\bar{X}_{\mathrm{obt}}-\mu}{\sqrt{\frac{S S}{N(N-1)}}} \text { equation for computing } t_{\mathrm{obt}} \text { from raw scores } \\
& =\Sigma(X-\bar{X})^{2}=\Sigma X^{2}-\frac{(\Sigma X)^{2}}{N}
\end{aligned}
$$

where SS

Suppose the original data in the previous problem were as shown in Table 13.5. Let's calculate $t_{\mathrm{obt}}$ directly from these raw scores.

SOLUTION

$$
\begin{aligned}
t_{\mathrm{obt}} & =\frac{\bar{X}_{\mathrm{obt}}-\mu}{\sqrt{\frac{S S}{N(N-1)}}=\frac{11.0-13.0}{\sqrt{\frac{156}{15(14)}}}=\frac{-2}{0.862} \quad S S} \begin{aligned}
& =\Sigma X^{2}-\frac{(\Sigma X)^{2}}{N} \\
& =156
\end{aligned} \\
& =-2.32
\end{aligned}
$$

[^22]
## table 13.5 Raw scores for first word utterances example

| Age (months) |  |
| :---: | :---: |
| $\boldsymbol{X}$ | $\boldsymbol{X}^{2}$ |
| $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$ |  |
| 8 | 64 |
| 9 | 81 |
| 10 | 100 |
| 15 | 225 |
| 18 | 324 |
| 17 | 289 |
| 12 | 144 |
| 11 | 121 |
| 7 | 49 |
| 8 | 64 |
| 10 | 100 |
| 11 | 121 |
| 8 | 64 |
| 9 | 81 |
| 12 |  |
| 165 |  |
| $N=15$ | $\bar{X}_{\text {obt }}=\frac{165}{15}=11.0$ |

This is the same value arrived at previously. Note that it is all right to first calculate $s$ and then use the original $t_{\text {obt }}$ equation. However, the answer is more subject to rounding error.

Let's try another problem.

## Practice Problem 13.1

A researcher believes that in recent years women have been getting taller. She knows that 10 years ago the average height of young adult women living in her city was 63 inches. The standard deviation is u nknown. She randomly samples eight young adult women currently residing in her city and measures their heights. The following data are obtained:

| Height (in.) |  |
| :---: | :---: |
| X | $X^{2}$ |
| 64 | 4,096 |
| 66 | 4,356 |
| 68 | 4,624 |
| 60 | 3,600 |


| Height (in.) |  |
| :---: | :---: |
| $\boldsymbol{X}$ | $X^{2}$ |
| 62 | 3,844 |
| 65 | 4,225 |
| 66 | 4,356 |
| 63 | 3,969 |
| 514 | 33,070 |
| $N=8$ | $\frac{514}{8}=64.25$ |

a. What is $t$ he alternative hypothesis? In evaluating this experiment, a ssume a nondirectional hypothesis is appropr iate because there are insufficient theoretical and empirical bases to warrant a directional hypothesis.
b. What is the null hypothesis?
c. What is your conclusion? Use $\alpha=0.01_{2 \text { tail }}$.

## SOLUTION

a. Nondirectional a lternative hypothesis: In re cent years, the he ight of women has been changing. Therefore, the sample with $\bar{X}_{\mathrm{obt}}=64.25$ is a random sample from a population where $\mu \neq 63$.
b. Null hypothesis: The null hypothesis asserts that it is reasonable to consider the sample with $\bar{X}_{\mathrm{obt}}=64.25$ a random sample from a population with $\mu=63$.
c. Conclusion, using $\alpha=0.01_{2 \text { tail }}$ :

STEP 1: Calculate the appropriate statistic. The d ata w ere $g$ iven pre viously. Since $\sigma$ is unknown, $t_{\mathrm{obt}}$ is appropriate. There are two ways to find $t_{\mathrm{obt}}$ : (1) by calculating $s$ first and then $t_{\mathrm{obt}}$ and (2) by calculating $t_{\text {obt }}$ directly from the raw scores. Both methods are shown here:
$s$ first and then $t_{\mathrm{obt}}$ :

$$
\begin{aligned}
s & =\sqrt{\frac{S S}{N-1}}=\sqrt{\frac{45.5}{7}} \quad S S=\Sigma X^{2}-\frac{(\Sigma X)^{2}}{N}=33,070-\frac{(514)^{2}}{8} \\
& =\sqrt{6.5}=2.550 \quad=33,070-33,024.5=45.5 \\
t_{\mathrm{obt}} & =\frac{\bar{X}_{\mathrm{obt}}-\mu}{s / \sqrt{N}}=\frac{64.25-63}{2.550 / \sqrt{8}} \\
& =\frac{1.25}{0.902}=1.39 \\
t_{\mathrm{obt}} & =\frac{\bar{X}_{\mathrm{obt}}-\mu}{\sqrt{\frac{S S}{N(N-1)}}=\frac{64.25-63}{\sqrt{\frac{45.5}{8(7)}}} \quad \quad \quad S S=\Sigma X^{2}-\frac{(\Sigma X)^{2}}{N}} \quad . \quad . \quad
\end{aligned}
$$

$$
\begin{aligned}
=\frac{1.25}{\sqrt{0.812}}=1.39 & =33,070-\frac{(514)^{2}}{8} \\
& =33,070-33,024.5=45.5
\end{aligned}
$$

STEP 2: Evaluate the statistic. If $\left|t_{\text {obt }}\right| \geq\left|t_{\text {crit }}\right|$, re ject $H_{0}$. If not, ret ain $H_{0}$. With $\alpha=0.01_{2 \text { tail }}$ and $\mathrm{df}=N-1=8-1=7$, from Table D,

$$
t_{\text {crit }}= \pm 3.499
$$

Si
nce $\left|t_{\text {obt }}\right|<3.499$, it doesn't fall in the critical region. Therefore, we retain $H_{0}$. We cannot conclude that young adult women in the researcher's city have been changing in height in recent years.

## Practice Problem 13.2

A friend of yours has been "playing" the stock market. He claims he ha s spent years doing research in this area and has devised an empirically successful method for investing. Since you are not averse to becoming a little richer, you are considering giving him some money to invest for you. However, before you do, you decide to evaluate his method. He agrees to a "dry run" during which he will use his method, but instead of actually buying and selling, you will just monitor the stocks he re commends to se e whether h is met hod rea lly works. During the trial time period, the recommended stocks showed the following price changes (a plus score means an increase in price, and a minus indicates a decrease):


During the same time period, the average price change of the stock market as a whole was $+\$ 3.25$. Since you want to k now whether the method does better or worse than chance, you decide to use a two-tailed evaluation.
(continued)
a. What is the nondirectional alternative hypothesis?
b. What is the null hypothesis?
c. What is your conclusion? Use $\alpha=0.05_{2 \text { tail }}$.

## SOLUTION

a. Nondirectional alternative hypothesis: Your friend's method results in a choice of stocks whose change in price differs from that expected due to random sampling from the stock market in general. Thus, the sample with $\bar{X}_{\text {obt }}=\$ 4.52$ cannot be considered a random sample from a population where $\mu=\$ 3.25$.
b. Null hypothesis: Your friend's method results in a choice of stocks whose change in price doesn't differ from that expected due to random sampling from the stock market in general. Therefore, the sample with $\bar{X}_{\text {obt }}=\$ 4.52$ can be considered a random sample from a population where $\mu=\$ 3.25$.
c. Conclusion, using $\alpha=0.05_{2 \text { tail }}$ :

STEP 1: Calculate the appropriate statistic. The data are given in the previous table. Since $\sigma$ is unknown, $t_{\text {obt }}$ is appropriate.

$$
\begin{array}{rlrl}
t_{\mathrm{obt}} & =\frac{\bar{X}_{\mathrm{obt}}-\mu}{\sqrt{\frac{S S}{N(N-1)}}} & S S & =\Sigma X^{2}-\frac{(\Sigma X)^{2}}{N} \\
& =\frac{4.52-3.25}{\sqrt{\frac{4.940}{7(6)}}} & & =147.953-\frac{(31.64)^{2}}{7} \\
& =\frac{1.27}{0.343}=3.70 & & \\
& &
\end{array}
$$

STEP 2: Evaluate the statistic. With $\alpha=0.05_{2}$ tail and $\mathrm{df}=N-1=7-1=6$, from Table D,

$$
t_{\text {crit }}= \pm 2.447
$$

Since $\left|t_{\text {obd }}\right|>2.447$, we reject $H_{0}$. Your friend appears to be a winner. His method does seem to work! However, before investing heavily, we suggest you run the experiment at least one more time to guard against Type I er ror. Remember that replication is essen tial before accepting a result as factual. Better to be safe than poor.

## CONDITIONS UNDER WHICH THE $\boldsymbol{t}$ TEST IS APPROPRIATE

The $t$ test (single sample) is appropr iate when the experiment has only one sa mple, $\mu$ is specified, $\sigma$ is u nknown, and the mean of the sample is use d as the basic statistic. Like the $z$ test, the $t$ test requires that the sampling distribution of $\bar{X}$ be normal. For the sampling distribution of $\bar{X}$ to be normal, $N$ must be $\geq 30$ or the population of raw scores must be normal.*

[^23]
## SIZE OF EFFECT USING COHEN'S d

Thus far, we have discussed the $t$ test for single samples and shown how to use it to determine whether the independent variable has a rea leffect on $t$ he dependent variable being measured. To determine whether the data show a real effect, we calculate $t_{\mathrm{ob}}$; if $t_{\mathrm{obt}}$ is significant, we conclude there is a real effect. Of course, this gives us very important information. It allows us to support and further delineate theories involving the independent and dependent variables as well as provide information that may have important practical consequences.

In addition to determining whether there is a rea 1 effect, it is often desirable to determine the size of the effect. For example, in the experiment dealing with early speaking ( p .333 ), $t_{\mathrm{obt}}$ wassignificant and we were able to conclude that the technique had a real effect. Although we might be content with finding that there is a real effect, we might also be interested in determining the magnitude of the effect. Is it so small as to have negligible practical consequences, or is it a large and important discovery?

Cohen (1988)* has provided a simple method for determining the magnitude of real effect. Used with the $t$ test, the method relies on the fact that there is a direct relationship between the size of real effect and the size of the mean difference. With the $t$ test for single samples, the mean difference of interest is $\bar{X}_{\text {obt }}-\mu$. As the size of the real effect gets greater, so does the difference between $\bar{X}_{\text {obt }}$ and $\mu$. Since size of real effect is the variable of interest, not direction of real effect, the statistic measuring size of real effect is $g$ iven a p ositive value by taking the absolute value of the mean difference. We have symbolized this by "|mean difference|." The statistic used is labeled $d$ and is a standardized measure of |mean difference|. Standardization is achieved by dividing by the population standard deviation, similar to what was done with the $z$ score in Chapter 5. Thus, $d$ has a positive value that indicates the size (magnitude) of the mean difference in standard deviation units. For example, for the $t$ test for single samples, a value of $d=0.42$ tells us that the sample mean differs from the population mean by 0.42 standard deviation units.

In its generalized form, the equation for $d$ is given by

$$
d=\frac{\mid \text { mean difference } \mid}{\text { population standard deviation }} \text { general equation for size of effect }
$$

The general equation for $d$ is the same whether we are considering the $t$ test for single samples, the $t$ test for correlated groups or the $t$ test for independent g roups (Chapter 14). What differs from test to test is the mean difference and population standard deviation used in each test. For the $t$ test for single samples, $d$ is given by the following conceptual equation:

$$
d=\frac{\left|\bar{X}_{\mathrm{obt}}-\mu\right|}{\sigma} \text { conceptual equation for size of effect, single sample test }
$$

Taking the absolute value of $\bar{X}_{\text {obt }}-\mu$ in the previous equation keeps $d$ positive regardless of whether $\bar{X}_{\text {obt }}>\mu$ or $\bar{X}_{\text {obt }}<\mu$. Of course in situations in which we use

[^24]the $t$ test for single samples, we don't know $\sigma$, so we estimate it with $s$. The resulting equation yields an estimate of $d$ that is given by
\[

$$
\begin{aligned}
& \hat{d}=\frac{\left|\bar{X}_{\mathrm{obt}}-\mu\right|}{s} \quad \text { computational equation for size of effect, single sample } t \text { test } \\
& \text { where } \quad \begin{aligned}
\hat{d} & =\text { estimated } d \\
\bar{X}_{\mathrm{obt}} & =\text { the sample mean } \\
\mu & =\text { the population mean } \\
s & =\text { the sample standard deviation }
\end{aligned}
\end{aligned}
$$
\]

This is the computational equation for computing size of effect for the single samples $t$ test. Please note that when applying this equation, if $H_{1}$ is directional, $\bar{X}_{\text {obt }}$ must be in the direction predicted by $H_{1}$. If it is not in the predicted direction, when analyzing the data of the experiment, the conclusion would be to retain $H_{0}$ and, ordinarily, it would $m$ ake no sense to i nquire ab out the size of the real effect. The la rger $\hat{d}$, the greater is the size of effect. How large should $\hat{d}$ be for a small, medium, or large effect? Cohen ha s provided criteria for a nswering this question. These criteria a re presented in Table 13.6 below.

## Early Speaking Experiment

Let's now apply this theoretical discussion to some data. We will use the experiment evaluating the technique for affecting early speaking (p. 333). You will recall when we evaluated the data, we obtained a significant $t$ value; we rejected $H_{0}$ and concluded that the technique had a real effect. Now the question is, "What is the size of the effect?"

To answer this question, we compute $\hat{d} . \bar{X}_{\text {obt }}=11.0, \mu=13.0$, and $s=3.34$. Substituting these values in the equation for $\hat{d}$, we obtain

$$
\hat{d}=\frac{\left|\bar{X}_{\mathrm{obt}}-\mu\right|}{s}=\frac{|11.0-13.0|}{3.34}=\frac{2}{3.34}=0.60
$$

The obtained value of $\hat{d}$ is 0.60 . This falls in the range of $0.21-0.79$ of Table 13.6 and therefore indicates a medium effect. Although there is a fair amount of theory to get through to understand $\hat{d}$, computation and interpretation of $\hat{d}$ are quite easy!
table 13.6 Cohen's criteria for interpreting the value of $\hat{d}^{*}$

| Value of $\hat{\boldsymbol{d}}$ | Interpretation of $\hat{\boldsymbol{d}}$ |
| :---: | :---: |
| 0.00-0.20 | Small effect |
| 0.21-0.79 | Medium effect |
| $\geq 0.80$ | Large effect |

*Cohen's criteria have some limitations, and should not be interpreted too rigidly. For a discussion of this point, see D.C. Howell, Statistical Methods for Psychology, 6th ed., Thompson/Wadsworth, Belmont, CA, 2007.

## CONFIDENCE INTERVALS FOR THE POPULATION MEAN



Sometimes it is des irable to k now the value of a p opulation mean. Since it is very uneconomical to measure everyone in the population, a random sample is taken and the sample mean is used as an estimate of the population mean. To illustrate, suppose a university administrator is interested in the average IQ of professors at her university. A random sample is taken, and $\bar{X}=135$. The estimate, then, would be 135 . The value 135 is called a point estimate because it uses on ly one value for the estimate. However, if we asked the administrator whether she thought the population mean was exactly 135 , her answer would almost certainly be "no." Well, then, how close is 135 to the population mean?

The usual way to answer this question is to $g$ ive a range of values for which one is reasonably con fident that the range includes the population mean. This is ca lled interval estimation. For example, the administrator might have some confidence that the population mean lies within the range 130-140. Certainly, she would have more confidence in the range of 130-140 than in the single value of 135 . How ab out the range $110-160$ ? Clearly, there would be more confidence in this range than in the range 130-140. Thus, the wider the range, the greater is the confidence that it contains the population mean.

## definitions

- A confidence interval is a range of values that probably contains the population value.

Confidence limits are the values that bound the confidence interval.

It is possible to be more quantitative about the degree of confidence we have that the interval contains the population mean. In fact, we can construct confidence intervals about which there are specified degrees of confidence. For example, we could construct the $95 \%$ confidence interval:

The $95 \%$ confidence interval is a n interval such that the probability is 0.95 that the interval contains the population value.

Although there are many different intervals we could construct, in practice the $95 \%$ and $99 \%$ confidence intervals are most often used. Let's consider how to construct these intervals.

## Construction of the 95\% Confidence Interval

Suppose we have randomly sampled a set of $N$ scores from a population of raw scores having a mean $=\mu$ and have calculated $t_{\mathrm{obt}}$. Assuming the assumptions of $t$ are met, we see that the probability is 0.95 that the following inequality is true:

$$
-t_{0.025} \leq t_{\mathrm{obt}} \leq t_{0.025}
$$

$t_{0.025}$ is the c ritical va lue of $t$ for $\alpha=0.025_{1 \text { tail }}$ and df $=N-1$. All this inequality says is that if we randomly sample $N$ scores from a population of raw scores having a mean of $\mu$ and calculate $t_{\mathrm{ob}}$, the probability is 0.95 that $t_{\mathrm{obt}}$ will lie between $-t_{0.025}$ and $+t_{0.025}$. The truth of this statement can be understood best by referring to F igure 13.3. This figure shows the $t$ distribution for $N-1$ de grees of

figure 13.3 Percentage of $t$ scores between $\pm t_{\text {crit }}$ for $\alpha=0.05_{2 \text { tail }}$ and $\mathrm{df}=N-1$.
freedom. We've located $+t_{0.025}$ and $-t_{0.025}$ on the distribution. Remember that these values a re t he c ritical va lues of $t$ for $\alpha=0.025_{1 \text { tail }}$. By de finition, $2.5 \%$ of the $t$ values must lie under each tail, and $95 \%$ of the values must lie between $-t_{0.025}$ and $+t_{0.025}$. It follows, then, that the probability is 0.95 that $t_{\text {obt }}$ will lie between $-t_{0.025}$ and $+t_{0.025}$.

We can use the previously given inequality to derive an equation for estimating the value of an unknown $\mu$. Thus,

$$
-t_{0.025} \leq t_{\mathrm{obt}} \leq t_{0.025}
$$

but

$$
t_{\mathrm{obt}}=\frac{\bar{X}_{\mathrm{obt}}-\mu}{s_{\bar{X}}}
$$

Therefore,

$$
-t_{0.025} \leq \frac{\bar{X}_{\text {obt }}-\mu}{s_{\bar{X}}} \leq t_{0.025}
$$

Solving this inequality for $\mu$, we obtain*

$$
\bar{X}_{\mathrm{obt}}-s_{\bar{X}} t_{0.025} \leq \mu \leq \bar{X}_{\mathrm{obt}}+s_{\bar{X}} t_{0.022}
$$

This states that the chances are 95 in 100 that the interval $\bar{X}_{\text {obt }} \pm s_{\bar{X}} t_{0.025}$ contains the population mean. Thus, the interval $\bar{X}_{\mathrm{obt}} \pm s_{\bar{X}} t_{0.025}$ is $\mathrm{the} 95 \%$ con fidence interval. The lower and upper confidence limits are given by

$$
\begin{array}{ll}
\mu_{\text {lower }}=\bar{X}_{\mathrm{obt}}-s_{\bar{X}} t_{0.025} & \text { lower limit for } 95 \% \text { confidence interval } \\
\mu_{\text {upper }}=\bar{X}_{\mathrm{obt}}+s_{\bar{X}} t_{0.025} & \text { upper limit for } 95 \% \text { confidence interval }
\end{array}
$$

We are now ready to do an example. Let's return to the university administrator.

[^25]
## experiment

## Estimating the Mean IQ of Professors

Suppose a university administrator is interested in determining the average IQ of professors at her university. It is too costly to test all of the professors, so a random sample of 20 is drawn from the population. Each professor is given an IQ test, and the results show a sample mean of 135 and a sa mple standard deviation of 8 . Con struct the $95 \%$ confidence interval for the population mean.

## SOLUTION

The $95 \%$ confidence interval for the population mean can be found by solving the equations for the upper and lower confidence limits. Thus,

$$
\mu_{\text {lower }}=\bar{X}_{\mathrm{obt}}-s_{\bar{X}} t_{0.025} \text { and } \mu_{\text {upper }}=\bar{X}_{\mathrm{obt}}+s_{\bar{X}} t_{0.025}
$$

Solving for $s_{\bar{X}}$,

$$
s_{\bar{X}}=\frac{s}{\sqrt{N}}=\frac{8}{\sqrt{20}}=1.789
$$

From Table D, with $\alpha=0.025_{1 \text { tail }}$ and $\mathrm{df}=N-1=20-1=19$,

$$
t_{0.025}=2.093
$$

Substituting the values for $s_{\bar{X}}$ and $t_{0.025}$ in the confidence limit equations, we obtain

$$
\begin{array}{rlrl}
\mu_{\text {lower }} & =\bar{X}_{\mathrm{obt}}-s_{\bar{X}} t_{0.025} \text { a nd } & \mu_{\text {upper }} & =\bar{X}_{\mathrm{obt}}+s_{\bar{X}} t_{0.025} \\
& =135-1.789(2.093) & & \\
& =135-3.744 & & \\
& =135+3.789(2.093) \\
& =131.26 \text { lower limit } & &
\end{array}
$$

Thus, the $95 \%$ confidence interval $=131.26-138.74$.

What precisely does it mean to say that the $95 \%$ confidence interval equals a certain range? In the case of the previous sample, the range is $131.26-138.74$. A second sample would yield a different $\bar{X}_{\text {obt }}$ and a different range, perhaps $\bar{X}_{\text {obt }}=138$ and a range of 133.80-142.20. If we took all of the different possible samples of $N=20$ from the population, we would have der ived the sa mpling distribution of the $95 \%$ confidence interval for samples of size 20. The important point here is that $95 \%$ of these intervals will contain the population mean; $5 \%$ of the intervals will not. Thus, when we say "the $95 \%$ confidence interval is $131.26-138.74$," we mean the probability is 0.95 that the interval contains the population mean. Note that the probability value applies to the interval and not to the population mean. The population mean is constant. What varies from sample to sample is the interval. Thus, it is not technically proper to state "the probability is 0.95 that the population mean lies within the interval." Rather, the proper statement is "the probability is 0.95 that the interval contains the population mean."

## General Equations for Any Confidence Interval

The equations we have presented thus far deal only with the $95 \%$ confidence interval. However, they are easily extended to form general equations for any confidence interval. Thus,

$$
\begin{array}{ll}
\mu_{\text {lower }}=\bar{X}_{\mathrm{obt}}-s_{\bar{X}} t_{\mathrm{crit}} & \text { general equation for lower confidence limit } \\
\mu_{\mathrm{upper}}=\bar{X}_{\mathrm{obt}}+s_{\bar{X}} t_{\mathrm{crit}} & \text { general equation for upper confidence limit }
\end{array}
$$

## MENTORINGTIP

Remember: the larger the interval, the more confidence we have that the interval contains the population mean.
where $t_{\text {crit }}=$ the critical one-tailed value of $t$ corresponding to the desired confidence interval.

Thus, if we were interested in the $99 \%$ confidence interval, $t_{\text {crit }}=t_{0.005}=$ the critical value of $t$ for $\alpha=0.005_{1 \text { tail }}$. To illustrate, let's solve the previous problem for the $99 \%$ confidence interval.

## SOLUTION

From Table D, with df $=19$ and $\alpha=0.005_{1 \text { tail }}$,

$$
t_{0.005}=2.861
$$

From the previous solution, $s_{\bar{X}}=1.789$. Substituting these values into the equations for confidence limits, we have

$$
\begin{aligned}
\mu_{\text {lower }} & =\bar{X}_{\mathrm{obt}}-s_{\bar{X}} t_{\mathrm{crit}} & \text { and } & \mu_{\mathrm{upper}}
\end{aligned}=\bar{X}_{\mathrm{obt}}+s_{\bar{X}} t_{\mathrm{crit}} .
$$

Thus, the $99 \%$ confidence interval $=129.88-140.12$.
Note that this interval is larger than the $95 \%$ confidence interval (131.26-138.74). As discussed previously, the la rger the interval, the more con fidence we have that it contains the population mean.

Let's try a practice problem.

## Practice Problem 13.3

An ethologist is interested in determining the average weight of adult Olympic marmots (found on ly on the Olympic Peninsula in Washington). It w ould be expensive and impractical to trap and measure the whole population, so a $r$ andom sa mple of 15 adults is $t$ rapped a nd weighed. The sa mple has a mea $n$ of 7.2 kilograms and a s tandard deviation of 0.48 . Construct the $95 \%$ confidence interval for the population mean.

## SOLUTION

The data are given in the problem. The $95 \%$ confidence interval for the population mean is found by determining the upper and lower confidence limits. Thus,

$$
\mu_{\mathrm{lower}}=\bar{X}_{\mathrm{obt}}-s_{\bar{X}} t_{0.025} \text { a } \quad \text { nd } \quad \mu_{\mathrm{upper}}=\bar{X}_{\mathrm{obt}}+s_{\bar{X}} t_{0.025}
$$

Solving for $s_{\bar{X}}$,

$$
s_{\bar{X}}=\frac{s}{\sqrt{N}}=\frac{0.48}{\sqrt{15}}=0.124
$$

From Table D, with $\alpha=0.025_{1 \text { tail }}$ and $\mathrm{df}=N-1=15-1=14$,

$$
t_{0.025}=2.145
$$

Substituting the values for $s_{\bar{X}}$ and $t_{0.025}$ in the confidence limit equations, we obtain

$$
\begin{aligned}
\mu_{\text {lower }} & =\bar{X}_{\mathrm{obt}}-s_{\bar{X}} t_{0.025} \text { a } \text { nd } & \mu_{\text {upper }} & =\bar{X}_{\mathrm{obt}}+s_{\bar{X}} t_{0.025} \\
& =7.2-0.124(2.145) & & =7.2+0.124(2.145) \\
& =7.2-0.266 & & =7.2+0.266 \\
& =6.93 \text { lower limit } & & =7.47 \quad \text { upper limit }
\end{aligned}
$$

Thus, the $95 \%$ confidence interval $=6.93-7.47$ kilograms.

## Practice Problem 13.4

To es timate the a verage life of its 100 -watt $l$ ight bu lbs, the manufacturer $r$ andomly samples 200 light bulbs and keeps them lit until they burn out. The sample has a mean life of 215 hours and a standard deviation of 8 hours. Construct the $99 \%$ confidence limits for the population mean. In solving this problem, use the closest table value for degrees of freedom.

## SOLUTION

The data are given in the problem.

$$
\begin{gathered}
\mu_{\text {lower }}=\bar{X}_{\mathrm{obt}}-s_{\bar{X}} t_{0.005} \quad \text { and } \quad \mu_{\mathrm{upper}}=\bar{X}_{\mathrm{obt}}+s_{\bar{X}} t_{0.005} \\
s_{\bar{X}}=\frac{s}{\sqrt{N}}=\frac{8}{\sqrt{200}}=0.567
\end{gathered}
$$

From Table D, with $\alpha=0.005_{1 \text { tail }}$ and $\mathrm{df}=N-1=200-1=199$,

$$
t_{0.005}=2.617
$$

Note that this is the closest table value available from Table D. Substituting the values for $s_{\bar{X}}$ and $t_{0.005}$ in the confidence limit equations, we obtain

$$
\begin{array}{rlrl}
\mu_{\text {lower }} & =\bar{X}_{\mathrm{obt}}-s_{\bar{X}} t_{0.005} \text { a nd } \quad \mu_{\mathrm{upper}} & =\bar{X}_{\mathrm{obt}}+s_{\bar{X}} t_{0.005} \\
& =215-0.567(2.617) & & \\
& =213.52 \text { lower limit } & & \\
& =216.48 \quad \text { upper limit }
\end{array}
$$

Thus, the $99 \%$ confidence interval $=213.52-216.48$ hours.

When a cor relational study is cond ucted, it is r are f or t he w hole p opulation to b e involved. Rather, the usual procedure is to $r$ andomly sample from the population and calculate the correlation coefficient on $t$ he sample data. To determine whether a correlation exists in the population, we must test the significance of the obtained $r\left(r_{\mathrm{ob}}\right)$. Of course, this is the same procedure we have used all along for testing hypotheses. The population cor relation coefficient is symbolized by the Greek letter $\rho$ (rho). A nond irectional alternative hypothesis asserts that $\rho \neq 0$. A directional alternative hypothesis asserts that $\rho$ is positive or negative depending on the predicted direction of the relationship. The null hypothesis is tested by assuming that the sample set of $X$ and $Y$ scores having a cor relation equal to $r_{\text {obt }}$ is a random sample from a population where $\rho=0$. The sampling distribution of $r$ can be generated empirically by taking all samples of size $N$ from a population in which $\rho=0$ and calculating $r$ for each sample. By systematically varying the population scores and $N$, the sampling distribution of $r$ is generated.

The significance of $r$ can be evaluated using the $t$ test. Thus,

$$
t_{\mathrm{obt}}=\frac{r_{\mathrm{obt}}-\rho}{s_{r}} \quad t \text { test for testing the significance of } r
$$

$$
\text { wherer } \begin{aligned}
\text { obt } & =\text { correlation obtained on a sample of } N \text { subjects } \\
\rho & =\text { population correlation coefficient } \\
s_{r} & =\text { estimate of the standard deviation of the sampling distribution of } r
\end{aligned}
$$

Note that this is very similar to the $t$ equation used when dealing with the mean of a s ingle sample. The on ly difference is $t$ hat the statistic we are dealing with is $r$ rather than $\bar{X}$.

$$
t_{\mathrm{obt}}=\frac{r_{\mathrm{obt}}-\rho}{s_{r}}=\frac{r_{\mathrm{obt}}}{\sqrt{\frac{1-r_{\mathrm{obt}}^{2}}{N-2}}}
$$

$$
\text { where } \quad \begin{aligned}
\rho & =0 \\
s_{r} & =\sqrt{\left(1-r_{\mathrm{obt}}^{2}\right) /(N-2)} \\
\mathrm{df} & =N-2
\end{aligned}
$$

Let's use this equation to test the significance of the cor relation obtained in the "IQ and grade point average" problem presented in Chapter 6, p. 135. Assume that the 12 students were a random sample from a population of university undergraduates and that we want to determine whether there is a correlation in the population. We'll use $\alpha$ $=0.05_{2 \text { tail }}$ in making our decision.

Ordinarily, the first step in a problem of this sort is to calculate $r_{\text {obt }}$. However, we have already done t his and found that $r_{\mathrm{obt}}=0.856$. Substituting this value into the $t$ equation, we obtain

$$
t_{\mathrm{obt}}=\frac{r_{\mathrm{obt}}}{\sqrt{\frac{1-r_{\mathrm{obt}}^{2}}{N-2}}}=\frac{0.856}{\sqrt{\frac{1-(0.856)^{2}}{10}}}=\frac{0.856}{0.163}=5.252=5.25
$$

From Table D, with $\mathrm{df}=N-2=10$ and $\alpha=0.05_{2 \text { tail }}$,

$$
t_{\text {crit }}= \pm 2.228
$$

Since $\left|t_{\text {obt }}\right|>2.228$, we reject $H_{0}$ and conclude that there is a significant positive correlation in the population.

Although the foregoing method works, there is an even easier way to solve this problem. By substituting $t_{\text {crit }}$ into the $t$ equation, $r_{\text {crit }}$ can be determined for any df and any $\alpha$ level. Once $r_{\text {crit }}$ is known, all we need do is compare $r_{\text {obt }}$ with $r_{\text {crit }}$. The decision rule is

$$
\text { If }\left|r_{\text {obt }}\right| \geq \mid r_{\text {crit }}, \text { reject } H_{0} \text {. }
$$

Statisticians have already calculated $r_{\text {crit }}$ for various df and $\alpha$ levels. These are shown in Table E in Appendix D. This table is used in the same way as the $t$ table (Table D) except the entries list $r_{\text {crit }}$ rather than $t_{\text {crit }}$.

Applying the $r_{\text {crit }}$ method to the present problem, we would first calculate $r_{\text {obt }}$ and then determine $r_{\text {crit }}$ from Table E. Finally, we would compare $r_{\text {obt }}$ with $r_{\text {crit }}$ using the decision rule. In the present example, we have already determined that $r_{\text {obt }}=0.856$. From Table E, with $\mathrm{df}=10$ and $\alpha=0.05_{2 \text { tail }}$,

$$
r_{\text {crit }}= \pm 0.5760
$$

Since $\left|r_{\text {obd }}\right|>0.5760$, we reject $H_{0}$, as before. This solution is pre ferred because it is shorter and easier than the solution that involves comparing $t_{\text {obt }}$ with $t_{\text {crit }}$.

Let's try some problems for practice.

## Practice Problem 13.5

Folklore ha sit that there is a n i nverse cor relation between m athematical a nd artistic ability. A ps ychologist decides to determine whether there is a nything to this notion. She randomly samples 15 undergraduates and gives them tests measuring these two abilities. The resulting data are shown here. Is there a correlation in the population between mathematical ability and artistic ability? Use $\alpha=0.01_{2}$ tail .

| Subject No. | Math Ability X | Artistic Ability Y | $X^{2}$ | $\boldsymbol{Y}^{\mathbf{2}}$ | XY |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 15 | 19 | 225 | 361 | 285 |
| 2 | 30 | 22 | 900 | 484 | 660 |
| 3 | 35 | 17 | 1,225 | 289 | 595 |
| 4 | 10 | 25 | 100 | 625 | 250 |
| 5 | 28 | 23 | 784 | 529 | 644 |
| 6 | 40 | 21 | 1,600 | 441 | 840 |
| 7 | 45 | 14 | 2,025 | 196 | 630 |
| 8 | 24 | 10 | 576 | 100 | 240 |
| 9 | 21 | 18 | 441 | 324 | 378 |
| 10 | 25 | 19 | 625 | 361 | 475 |
| 11 | 18 | 30 | 324 | 900 | 540 |
| 12 | 13 | 32 | 169 | 1,024 | 416 |
| 13 | 9 | 16 | 81 | 256 | 144 |
| 14 | 30 | 28 | 900 | 784 | 840 |
| 15 | 23 | 24 | 529 | 576 | 552 |
| Total | 366 | 318 | 10,504 | 7,250 | 7,489 |

## SOLUTION

STEP 1: Calculate the appropriate statistic:

$$
\begin{aligned}
r_{\mathrm{obt}} & =\frac{\sum X Y-\frac{(\Sigma X)(\Sigma Y)}{N}}{\sqrt{\left[\Sigma X^{2}-\frac{(\Sigma X)^{2}}{N}\right]\left[\Sigma Y^{2}-\frac{(\Sigma Y)^{2}}{N}\right]}} \\
& =\frac{7489-\frac{366(318)}{15}}{\sqrt{\left[10,504-\frac{(366)^{2}}{15}\right]\left[7,250-\frac{(318)^{2}}{15}\right]}} \\
& =\frac{-270.2}{894.437} \\
& =-0.302 \\
& =-0.30
\end{aligned}
$$

STEP 2: Evaluate the statistic. From Table E, with $\mathrm{df}=N-2=15-2=13$ and $\alpha=0.01_{2 \text { tail }}$,

$$
r_{\text {crit }}= \pm 0.6411
$$

Since $\left|r_{\text {obl }}\right|<0.6411$, we conclude by retaining $H_{0}$.

## Practice Problem 13.6

In Chapter 6, Practice Problem 6.2, we calculated the Pearson $r$ for the relationship between similarity of attitudes a nd at traction in a sa mple of 15 college students. In that example, $r_{\text {obt }}=0.94$. Using $\alpha=0.05_{2 \text { tail }}$, let's now determine whether this is a significant value for $r_{\mathrm{ob}}$.

## SOLUTION

From Table E, with $\mathrm{df}=N-2=13$ and $\alpha=0.05_{2 \text { tail }}$,

$$
r_{\text {crit }}= \pm 0.5139
$$

Since $\left|r_{\text {obl }}\right|>0.5139$, we reject $H_{0}$ and conclude there is a significant correlation in the population.

## $\square$ SUMMARY

In this chapter, I discussed the use of Student's $t$ test for (1) te sting hypotheses in volving single sample experiments, (2) estimating the population mean by constructing confidence intervals, and (3) testing the significance of Pearson $r$.

In testing hypotheses involving single sample experiments, the $t$ test is appropriate when the mean of the nullhypothesis population is known and the standard deviation is unknown. In this situation, we estimate $\sigma$ by using the sample s tandard de viation. The e quation for ca lculating $t_{\text {obt }}$ is very similar to $z_{\text {obt }}$, but we use $s$ instead of $\sigma$. The sampling distribution of $t$ is a family of curves that varies with the degrees of freedom a ssociated with calculating $t$. There are $N-1$ degrees of freedom associated with the $t$ test for single samples. The sampling distribution curves are symmetrical, bell-shaped curves having a mean equal to 0 . However, these are elevated at the tails relative to the normal distribution. In us ing the $t$ te st, $t_{\text {obt }}$ is compu ted and then evaluated to determine whether it falls within the critical region. The $t$ test is appropriate when the sampling distribution of $\bar{X}$ is normal. For the sampling distribution of $\bar{X}$ to be normal, the population of raw scores must be normally distributed, or $N \geq 30$.

After discussing how to e valuate $t_{\text {obt }}$ to det ermine if there is a real effect, I discussed how to compute the size of the effect, using Cohen's $d$ statistic. Cohen's $d$, for the si ngle samples $t$ test, is a s tandardized mea sure of
the absolute difference between $\bar{X}$ and $\mu$, with standardization being achieved by dividing this difference by $\sigma$. Since we don't know $\sigma$ when using the $t$ test, we estimate it using $s$ and, hence, compute $\hat{d}$, instead of $d$. The larger $\hat{d}$ is, the greater the real effect. Criteria were also given for determining if the obtained value of $\hat{d}$ represents a small, medium, or large effect.

Next I d iscussed cons tructing con fidence intervals for $t$ he $p$ opulation mea $n$. A con fidence i nterval $w$ as defined as a r ange of values that probably contains the population value. Confidence limits a re the values that bound the confidence interval. In discussing this topic, we showed how to cons truct confidence intervals about which we have a specified degree of confidence that the interval contains the population mean. Illustrative a nd practice problems were given for constructing the $95 \%$ and $99 \%$ confidence intervals.

The la st topi c i nvolved t esting t he significance of Pearson $r$. I p ointed out that, because most cor relative data are collected on samples, we must evaluate the sample $r$ value ( $r_{\text {obt }}$ ) to see whether there is a correlation in the population. The evaluation involves the $t$ test. However, by substituting $t_{\text {crit }}$ into the $t$ equation, we can determine $r_{\text {crit }}$ for a ny df a nd a ny a lpha level. The value of $r_{\text {obt }}$ is evaluated by comparing it with $r_{\text {crit }}$ for the given df and alpha level. Several problems were given for practice in evaluating $r_{\mathrm{obt}}$.

## IMPORTANT NEW TERMS

Cohen's $d$ (p. 339)
Confidence interval (p. 341)
Confidence limits (p. 341)

Critical value of $r$ (p. 347)
Critical value of $t$ (p.332)
Degrees of freedom (p. 330)

Sampling distribution of $t$ (p. 329) Student's $t$ test for single samples (p. 328)

## ■ QUESTIONSAND PROBLEMS

1. Define each of the terms in the Important New Terms section.
2. Assuming the assumptions underlying the $t$ test are met, $w$ hat a re $t$ he $c$ haracteristics of $t$ he sa mpling distribution of $t$ ?
3. Elaborate on w hat is mea nt by degrees offreedom. Use an example.
4. What are the assumptions underlying the proper use of the $t$ test?
5. Discuss the similarities and differences between the $z$ and $t$ tests.
6. Explain in a s hort pa ragraph why the $z$ test is more powerful than the $t$ test.
7. Which of the following two statements is technically more correct? (1) We are $95 \%$ confident that the population mean lies in the interval $80-90$, or (2) We are $95 \%$ c onfident th at the in terval $80-90$ c ontains the population mean. Explain.
8. Explain why $\mathrm{df}=N-1$ when the $t$ test is used with single samples.
9. If $t$ he sa mple cor relation co efficient ha $s$ a $v$ alue different f rom z ero (e.g., $r=0.45$ ), this automatically means that the correlation in the population is also different from zero. Is $t$ his $s$ tatement cor rect? Explain.
10. For the same set of sample scores, is the $99 \%$ confidence interval for the p opulation mean $g$ reater or smaller than the 95\% confidence interval? Does this make sense? Explain.
11. A sa mple set of 30 scores ha s a mea $n$ equal to 82 and a s tandard de viation of 12 . Can we re ject the hypothesis that this sample is a random sample from a normal population with $\mu=85$ ? Use $\alpha=0.01_{2 \text { tail }}$ in making your decision. other
12. A sa mple set of 29 scores ha s a mea $n$ of 76 and a standard deviation of 7 . Can we accept the hypothesis that the sample is a $r$ andom sample from a p opulation with a mean greater than 72 ? Use $\alpha=0.01_{1 \text { tail }}$ in making your decision. other
13. Is it reasonable to consider a sample with $N=22$, $\bar{X}_{\text {obt }}=42$, and $s=9$ to be a random sample from a normal population with $\mu=38$ ? Use $\alpha=0.05_{1 \text { tail }}$ in making your decision. Assume $\bar{X}_{\text {obt }}$ is in the right direction. other
14. Using each of the following random samples, determine the $95 \%$ and $99 \%$ confidence intervals for the population mean:
a. $\bar{X}_{\text {obt }}=25, s=6, N=15$
b. $\bar{X}_{\text {obt }}=120, s=8, N=30$
c. $\bar{X}_{\text {obt }}=30.6, s=5.5, N=24$
d. Redo part a with $N=30$. W hat happens to $t$ he confidence interval as $N$ increases? other
15. In P roblem 21 of $C$ hapter 12, a s tudent cond ucted an experiment on 25 schizophrenic patients to test the effect of a new technique on the amount of time schizophrenics need to stay institutionalized. The results $s$ howed $t$ hat $u$ nder $t$ he ne $w t$ reatment, $t$ he 25 schizophrenic patients stayed a mean duration of 78 weeks, with a standard deviation of 20 weeks. Previously co llected d ata on a la rge $n$ umber of schizophrenic patients showed a normal distribution of scores, w ith a mea n of 85 weeks and a s tandard deviation of 15 weeks. These data were evaluated using $\alpha=0.05_{2 \text { tail }}$. The res ults s howed a s ignificant effect. For the present problem, assume that the standard deviation of the population is unknown. Again, using $\alpha=0.05_{2 \text { tail }}$, what do you conclude about the new technique? Explain the difference in conclusion between Problem 21 and this one. clinical, health
16. As the pr incipal of a pr ivate high school, y ou a re interested in finding out how the training in mathematics at your school compares with that of the public schools in your area. For the last 5 years, the public sc hools have g iven all g raduating sen iors a mathematics proficiency test. The distribution has a mean of 78 . You give all the graduating seniors in your school the same mathematics proficiency test. The results show a distribution of 41 scores, with a mean of 83 and a standard deviation of 12.2 .
a. What is $t$ he alternative hypothesis? Use a $n$ ondirectional hypothesis.
b. What is the null hypothesis?
c. Using $\alpha=0.05_{2 \mathrm{tail}}$, w hat do y ou conc lude? education
17. A college counselor wants to det ermine the average amount of time first-year s tudents sp end s tudying. He randomly samples 61 students from the freshman class a nd a sks them how many hou rs a w eek they study. The mean of the resulting scores is 20 hou rs, and the standard deviation is 6.5 hours.
a. Construct the $95 \%$ con fidence i nterval $f$ or $t$ he population mean.
b. Construct t he $99 \%$ con fidence i nterval $f$ or $t$ he population mean. education
18. A professor in the women's studies program believes that the amount of smoking by women has increased in recent years. A complete census taken 2 years ago of women living in a ne ighboring city showed that the mean number of cigarettes smoked daily by the women was 5.4 with a standard deviation of 2.5 . To assess her belief, the professor determined the daily smoking $r$ ate of a r andom sa mple of 200 w omen currently living in that city. The data show that the number of cigarettes smoked daily by the 200 women has a mean of 6.1 and a standard deviation of 2.7.
a. Is $t$ he pro fessor's b elief cor rect? A ssume a directional $H_{1}$ is appropriate and use $\alpha=0.05_{1 \text { tail }}$ in making your decision. Be sure that the most sensitive test is used to analyze the data.
b. Assume $t$ he $p$ opulation mea $n$ is $u$ nknown a nd reanalyze $t$ he $d$ ata us ing $t$ he sa me a lpha 1 evel. What is your conclusion this time?
c. Explain any differences between part $\mathbf{a}$ and part $\mathbf{b}$.
d. Determine the size of the effect found in part $\mathbf{b}$. social
19. A co gnitive ps ychologist b elieves $t$ hat a pa rticular drug improves short-term memory. The drug is safe, with no side effects. An experiment is conducted in which 8 r andomly se lected s ubjects a re g iven t he drug and then given a s hort time to memor ize a list of 10 words. The subjects are then tested for retention

15 minutes after the memorization period. The number of words correctly recalled by each subject is as follows: $8,9,10,6,8,7,9,7$. Over the past few years, the ps ychologist ha s co llected al ot of data us ing this task with similar subjects. Although he has lost the or iginal data, he rememb ers that the mean was 6 w ords cor rectly re called a nd $t$ hat $t$ he $d$ ata w ere normally distributed.
a. On the basis of these data, what can we conclude about the effect of the drug on short-term memory? Use $\alpha=0.05_{2 \text { tail }}$ in making your decision.
b. Determine the size of the effect. cognitive
20. A physician employed by a large corporation believes that due to an increase in sedentary life in the past decade, middle-age men have become fatter. In 1995, the cor poration mea sured the percentage of $f$ at in their employees. For the middle-age men, the scores were normally distributed, with a mean of $22 \%$. To test her h ypothesis, the physician mea sures t he f at percentage in a random sample of 12 middle-age men currently employed by the corporation. The fat percentages found were as follows: $24,40,29,32,33$, $25,15,22,18,25,16,27$. On the basis of these data, can we conclude that middle-age men employed by the corporation have become fatter? Assume a directional $H_{1}$ is legitimate and use $\alpha=0.05_{1 \text { tail }}$ in making your decision. health
21. A local business school claims that its graduating seniors $g$ et $h$ igher-paying $j$ obs $t$ han $t$ he nat ional average for business school graduates. Last year's figures for salaries paid to all business school graduates on their first job showed a mean of $\$ 10.20$ per hour. A r andom sample of 10 g raduates from last year's class of the local business school showed the following hourly salaries for their first job: \$9.40, $\$ 10.30, \$ 11.20, \$ 10.80, \$ 10.40, \$ 9.70, \$ 9.80, \$ 10.60$, $\$ 10.70, \$ 10.90$. You a re s keptical of $t$ he bus iness school claim and de cide to e valuate the sa lary of the business school graduates, using $\alpha=0.05_{2 \text { tail }}$. What do you conclude? education
22. You wanted to estimate the mean number of vehicles crossing a busy bridge in your neighborhood each morning during rush hour for the past year. To a ccomplish $t$ his, y ou s tationed y ourself and a $f$ ew a ssistants at one end o $f$ the bridge on 18 randomly selected mornings during the year and cou nted the number of vehicles c rossing the bridge in a 10 -minute period during rush hour. You found the mean to be 125 vehicles per minute, with a standard deviation of 32 .
a. Construct the $95 \%$ confidence limits for the population mean (vehicles per minute).
b. Construct the $99 \%$ confidence limits for the population mean (vehicles per minute). other
23. In Chapter 6, Problem 17, data were presented from a s tudy cond ucted to i nvestigate $t$ he re lationship between ci garette s moking a nd illness. The number of cigarettes smoked daily a nd the number of days absent from work in the last year due to illness was determined for 12 individuals employed at the company where the researcher worked. The data are shown again here.

| Subject | Cigarettes Smoked | Days Absent |  |
| :---: | :---: | :---: | :---: |
|  | 1 |  |  |
|  | 2 |  |  |
|  | 3 |  |  |
|  | 40 | 1 | 10 |
|  | 53 | 1 |  |
|  | 60 | 2 | 14 |
|  | 77 | 2 |  |
|  | 85 | 3 |  |
|  | 95 | 3 | 12 |
| 10 | 44 |  | 16 |
| 11 | 53 |  | 10 |
| 12 | 60 |  | 16 |

a. Construct a scatter plot for these data.
b. Calculate the value of Pearson $r$.
c. Is the correlation between cigarettes smoked and days absent significant? Use $\alpha=0.05_{2 \text { tail }}$. health
24. In Chapter 6, Problem 18, an educator evaluated the reliability of a t est for mechanical aptitude that she had cons tructed. T wo a dministrations of $t$ he $t$ est, spaced 1 month apart, were given to 10 students. The data are again shown here.

| Student | Administration 1 | Administration 2 |  |
| :---: | :---: | :---: | :---: |
|  | 10 | 1 | 10 |
|  | 22 | 1 | 15 |
|  | 30 | 2 | 17 |
|  | 45 | 2 | 25 |
|  | 57 | 2 | 32 |
|  | 65 | 3 | 37 |
|  | 73 | 4 | 40 |
|  | 80 | 4 | 38 |
|  | 92 | 3 | 30 |
| 10 | 47 |  | 49 |

a. Calculate t he v alue of P earson $r \mathrm{f}$ or t he t wo administrations of the mechanical aptitude test.
b. Is the cor relation significant? Use $\alpha=0.05_{2 \text { tail }}$. I/O
25. In Chapter 6, Problem 15, a sociology professor gave two exams to 8 students. The results are again shown here.

| Student | Exam 1 | Exam 2 |  |
| :---: | :---: | :---: | :---: |
| $\cdots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$ |  |  |  |
| 1 | 60 | 0 | 6 |
| 2 | 75 | 100 |  |
| 3 | 70 | 0 | 8 |
| 4 | 72 | 68 |  |
| 5 | 54 | 3 | 7 |
| 6 | 83 | 7 | 9 |
| 7 | 80 | 5 | 8 |
| 8 | 65 | 0 | 9 |

a. Calculate t he v alue of P earson $r \mathrm{f}$ or t he t wo exams.
b. Us ing $\alpha=0.05_{2 \text { tail }}$, determine whether the correlation is significant. If not, does this mean that $\rho=0$ ? Explain.
c. Assume y ou i ncreased t he n umber of s tudents to 20 , and now $r=0.653$. Using the same alpha level as in part $\mathbf{b}$, what do you conclude this time? Explain. education
26. A de velopmental ps ychologist is i nterested in whether tense parents tend to ha ve tense children. A study is done i nvolving one pa rent for each of 15 f amilies a nd t he o ldest c hild in ea ch family, measuring tension in each pair. Pearson $r=0.582$. Using $\alpha=0.05_{2 \text { tail }}$, is the relationship significant? developmental, clinical

## SPSS ILLUSTRATIVE EXAMPLE 13.1

The general operation of SPSS and data entry are described in Appendix E, Introduction to SPSS. This chapter of the textbook discusses the $t$ test for single samples. SPSS calls Student's $t$ test for Single Samples the One-Sample $T$ Test. When analyzing the data for $t$ tests, SPSS computes the obtained $t$ value (we call it $t_{\mathrm{ob}}$; SPSS just calls it $\mathbf{t}$ ) and the two-tailed probability of getting $\mathbf{t}$ or a value more extreme if chance alone is at work. SPSS calls this probability Sig. (2-tailed). We call this probability $p$ (2-tailed).

SPSS does not provide a value for $t_{\text {crit }}$. However, since SPSS gives the two-tailed probability of getting $\mathbf{t}$ or a value more extreme assuming chance alone is at work, it is not necessary to compare $\mathbf{t}$ with $t_{\text {crit }}$ when evaluating $H_{0}$, as is done in the textbook. Instead, we compare Sig. (2-tailed) with the alpha level and conclude following the decision rules given below.

For non-directional $H_{1}$ 's:
if Sig. (2-tailed) $\leq \alpha$, reject $H_{0}$
if $\mathbf{S i g}$. (2-tailed) $>\alpha$, retain $H_{0}$
For directional $H_{1}$ 's where the sample mean is in the predicted direction:
if $\mathbf{S i g}$. (2-tailed)/ $\mathbf{2} \leq \alpha$, reject $H_{0}$
if Sig. (2-tailed)/2 $\boldsymbol{>} \boldsymbol{\alpha}$, retain $H_{0}$
As you are no doubt aware, for directional $H_{1}$ 's, if the sample mean is in the direction opposite to that predicted, we don't even need to do a probability analysis. The conclusion must be to retain $H_{1}$.

| example |  |  | Use SPSS to do the illustrative problem in the textbook Chapter 13, p. 333, involving a technique for increasing early speaking in children. For your convenience, the example is repeated here: <br> Suppose you have a technique that you believe will affect the age at which children begin speaking. In your locale, the average age of first word utterances is 13.0 months. The standard deviation is unknown. You apply your technique to a random sample of 15 children. The results are shown in the table below. |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Child No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| Age (months) | 8 | 9 | 10 | 15 | 18 | 17 | 12 | 11 | 7 | 8 | 10 | 11 | 8 | 9 | 12 |

Did the technique work? Use $\alpha=0.05_{2 \text { tail }}$. Compare your conclusion based on the SPSS analysis and the value of $t_{\mathrm{obt}}$ computed by SPSS with that given in the textbook. In solving the example, name the variable Age.

## SOLUTION

STEP 1: Enter the Data. Enter the Age scores in the first column (VAR00001) of the SPSS Data Editor, beginning with the first score listed above in the first cell of the first column of the Data Editor.

STEP 2: Name the Variables. In this example, we will give the default variable VAR00001 the name of Age. Here's how it is done.

1. Click the Variable View tab in the lower left corner of the Data Editor.
2. Click VAR00001; then type Age in the highlighted cell and then press Enter.

This displays the Variable View on screen with VAR00001 displayed in the first cell of the Name column.

Age is entered as the variable name, replacing VAR00001.

STEP 3: Analyze the Data. The appropriate test for this example is Student's $t$ test for Single Samples. To have SPSS do the analysis using this test,

1. Click on Analyze; then select Compare Means; then click on One-Sample T Test....
2. Click the arrow in the middle of the dialog box.
3. In the Test Value: box, replace 0 with 13.0.
4. Click OK.

This produces the One-Sample T Test dialog box with Age highlighted in the large box on the left.

This moves Age into the Test Variable(s): box on the right.

This puts the value $\mathbf{1 3 . 0}$ in the Test Value: box. $\mathbf{1 3 . 0}$ is the value of the null hypothesis population mean.

SPSS analyzes the data using the One-Sample T Test and outputs the results in the two tables shown below.

## Analysis Results

One-Sample Statistics

|  | N | Mean | Std. Deviation | Std. Error Mean |
| :---: | :---: | :---: | :---: | :---: |
| Age | 15 | 11.000 | 3.33809 | .86189 |

One-Sample Test

|  | Test Value $=13.0$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | $95 \%$ <br> Confidence Interval <br> of the Difference |  |
|  | t | df | Sig. <br> (2-tailed) | Mean <br> Difference | Lower | Upper |
|  | -2.320 | 14 | .036 | -2.00000 | -3.8486 | -.1514 |

The One-Sample Statistics table gives values for N, Mean,
Std. Deviation and the Std. Error mean for the sample. The One-Sample Test table gives the results of the inferential analysis. Our conclusion is based on this table. It shows that $\mathbf{t}=\mathbf{- 2 . 3 2 0}$, and that Sig. (2-tailed) $=.036_{2 \text {-tailed. }}$ Since $.036<0.05$, we reject $H_{0}$ and affirm $H_{1}$. Note that the SPSS and textbook $t$ values are the same. The conclusion reached in both cases is also the same. The One-Sample Test table contains additional information that is not germane to our analysis, so we will ignore it.

## SPSS ADDITIONAL PROBLEMS

1. Use SPSS to do P ractice Problem 13.1, p. 335 of the textbook. Compare your answer with that given in the textbook. Name the variable Height.
2. A physician employed by a large corporation believes that due to an increase in sedentary life in the past decade, middle-age men have become fatter. In 1995, the cor poration measures the percentage of fat in its employees. For the middle-age men, t he scores were normally distributed, with a mean of $22 \%$. To test her hypothesis, the physician measures the fat percentage in a r andom sa mple of 12 m iddle-age men c urrently employed b y t he cor poration. T he f at p ercentages found were as follows: $24,40,29,32,33,25,15,22$, 18, 25, 16, 27.
a. On the basis of these data, can we conclude that middle-age men emp loyed b y t he cor poration
have become fatter? A ssume a d irectional $H_{1}$ is legitimate and use $\alpha=0.05_{1 \text { tail }}$ in making your decision.
b. Although $H_{0}$ was retained in part a, the physician notes that the sample mean was in the right direction. She suspects that the failure to reject $H_{0}$ was due to running too few subjects (low power). Therefore s he cond ucts $t$ he e xperiment ag ain, this time using a random sample of 36 men from her corporation. The following percentages of fat were obtained: $26,24,31,40,31,29,30,32,35$, $33,23,25,17,15,20,22,20,18,23,25,18,16$, $25,27,22,42,27,34,31,27,13,24,16,27,14$, 29. Using $\alpha=0.05_{1 \text { tail }}$, what is y our conclusion this time?

## NOTES

$13.1 \quad t_{\mathrm{obt}}=\frac{\bar{X}_{\mathrm{obt}}-\mu}{s / \sqrt{N}}$
$=\frac{\bar{X}_{\mathrm{obt}}-\mu}{\sqrt{\frac{S S}{N-1}} / \sqrt{N}}$
$\left(t_{\mathrm{obt}}\right)^{2}=\frac{\left(\bar{X}_{\mathrm{obt}}-\mu\right)^{2}}{\left(\frac{S S}{N-1}\right)\left(\frac{1}{N}\right)}=\frac{\left(\bar{X}_{\mathrm{obt}}-\mu\right)^{2}}{\frac{S S}{N(N-1)}}$
$t_{\mathrm{obt}}=\frac{\bar{X}_{\mathrm{obt}}-\mu}{\sqrt{\frac{S S}{N(N-1)}}}$
Given
Substituting $\sqrt{\frac{S S}{N-1}}$ for $s$

Squaring both sides of the equation and rearranging terms

Taking the square root of both sides of the equation

Given
Multiplying by $s_{\bar{X}}$
Subtracting $\bar{X}_{\text {obt }}$
Multiplying by -1
Rearranging terms

## ONLINE STUDY RESOURCES

## CENGAGE brain

Login to CengageBrain.com to access the resources your instructor has assigned. For this book, you can access the book's co mpanion website for chapter-specific learning tools including Know and Be Able to Do, practice quizzes, flash cards, and glossaries, and a link to Statistics and Research Methods Workshops.

If your professor has assigned Aplia homework:

1. Sign in to your account.
2. Complete the cor responding ho mework e xercises as required by your professor.
3. When finished, click "G rade It N ow" to se e which areas you have mastered and which need more work, and for detailed explanations of every answer.

Visit www.cengagebrain.com to access your account and to purchase materials.

## Student's t Test for Correlated and Independent Groups

## LEARNING OBJECTIVES

After completing this chapter, you should be able to:

- Contrast the single sample and correlated groups $t$ tests.
- Understand that the correlated groups $t$ test is an extension of the single sample $t$ test, only using difference scores rather than raw scores.
- Solve problems involving the $t$ test for correlated groups.
- Compute size of effect using Cohen's $d$, with the $t$ test for correlated groups.
- Specify which test is generally more powerful, the $t$ test for correlated groups or the sign test, and justify your answer.
- Compare the repeated measures and the independent groups designs.
- Specify $H_{0}$ and $H_{1}$ in terms of $\mu_{1}$ and $\mu_{2}$ for the independent groups design.
- Define and specify the characteristics of the sampling distribution of the difference between sample means.
- Understand the derivation of $s_{w}{ }^{2}$, and explain why $\mathrm{df}=N-2$ for the independent groups $t$ test.
- Solve problems using the $t$ test for independent groups, state the assumptions underlying this test, and state the effect on the test of violations of its assumptions.
- Compute size of effect using Cohen's $d$ with the independent groups $t$ test.
- Determine the relationship between power and $N$, size of real effect, and sample variability, using $t$ equations.
- Compare the correlated groups and independent groups $t$ tests regarding their relative power.
- Explain the difference between the null hypothesis approach and the confidence interval approach, and specify an advantage of the confidence interval approach.
Violation of the Assumptions of the $t$ Test
Size of Effect Using Cohen's d Experiment: Thalamus and Pain Perception
Power of the $t$ Test
Correlated Groups and Independent Groups Designs Compared
Alternative Analysis Using Confidence Intervals Constructing the 95\% Confidence Interval for $\mu_{1}-\mu_{2}$
Conclusion Based on the Obtained Confidence Interval
Constructing the 99\% Confidence Interval for $\mu_{1}-\mu_{2}$
Summary
Important New Terms
Questions and Problems
SPSS
Notes
Online Study Resources
- Construct the $95 \%$ and $99 \%$ confidence interval for $\mu_{1}-\mu_{2}$ for data from the two-group, independent groups design, and interpret these results.
- Understand the illustrative examples, do the practice problems, and understand the solutions.

In Chapters 12 and 13, we have se en that hypothesis testing ba sically involves t wo steps: (1) calculating the appropriate statistic and (2) evaluating the statistic using its sampling distribution. We further discussed how to use $t$ he $z$ and $t$ te sts to evaluate hypotheses that have been investigated with single sample experiments. In this chapter, we shall present the $t$ test in conjunction with experiments involving two conditions or two samples.

We have already encountered the two-condition experiment when using the sign test. The two-condition experiment, whether of the cor related groups or i ndependent groups design, has great advantages over the single sample experiment previously discussed. A major limitation of the single sample experiment is the requirement that at least one population parameter $(\mu)$ must be specified. In the great majority of cases, this information is not available. As will be shown later in this chapter, the two-treatment experiment completely eliminates the need to measure population parameters when testing hypotheses. This has obvious widespread practical utility.

A second major advantage of the two-condition experiment has to do with interpreting the results of the study. Correct scientific methodology does not often allow an investigator to use previously acquired population data when conducting an experiment. For example, in the illustrative problem involving early speaking in children (p. 329), we used a population mean value of 13.0 months. How do we really know the mean is 13.0 months? Suppose the figures were collected 3 to 5 years before performing the experiment. How do we know that infants haven't changed over those years? And what about the conditions under which the population data were collected? Were they the same as in the experiment? Isn't it possible that the people collecting the population data were not as motivated as the experimenter and, hence, were not as careful in collecting the data? Just how were the data collected? By being on ha nd
at the moment that the child spoke the first word? Quite unlikely. The data probably were collected by asking parents when their children first spoke. How accurate, then, is the population mean?

Even if the foregoing problems didn't exist, there are others having to do with the experimental method itself. For example, assuming 13.0 months is accurate and applies properly to the sample of 15 infants, how can we be sure it was the experimenter's technique that produced the early utterances? Couldn't they have been due to the extra attention or handling or stimulation given the children in conjunction with the method rather than the method itself?

Many of these problems can be overcome by the use of the two-condition experiment. By using two groups of infants (arrived at by matched pairs [correlated groups design] or random assignment [independent groups design]), giving each group the same treatment except for the experimenter's particular technique (same in attention, handling, etc.), running both groups concurrently, using the same people to collect the data from both groups, and so forth, most alternative explanations of results can be ruled out. In the discussion that follows, we shall first consider the $t$ test for the correlated groups design and then for the independent groups design.

## STUDENT'S $\boldsymbol{t}$ TEST FOR CORRELATED GROUPS*

## MENTORINGTIP

Remember: analysis is done on the difference scores.

You will recall that, in the repeated measures or correlated groups design, each subject gets two or more treatments: a difference score is ca lculated for each subject, and the resulting difference scores are analyzed. The simplest experiment of this type uses two conditions, often called control and experimental, or before and after. In a v ariant of this design, instead of the same subject being used in both conditions, pairs of subjects that are matched on one or more characteristics serve in the two conditions. Thus, pairs might be matched on IQ, age, gender, and so forth. The difference scores between the matched pairs are then analyzed in the same manner as when the same subject serves in both conditions. This design is also referred to as a correlated groups design because the subjects in the groups are not independently assigned; that is, the pairs share specifically matched common characteristics. In the independent groups design, which is discussed later in this chapter, there is no pairing.

We first encou ntered $t$ he cor related $g$ roups des ign when us ing $t$ he sign $t$ est. However, the sign test had low power because it ignored the magnitude of the difference scores. We use d the sign test because of its simplicity. In the a nalysis of actual experiments, a nother test, such as the $t$ test, would probably be use d. The $t$ test for correlated groups allows utilization of both the magnitude and direction of the difference scores. Essentially, it treats the difference scores as though they were raw scores and tests the assumption that the difference scores are a random sample from a population of difference scores having a mean of zero. This can best be seen through an example.

## Brain Stimulation and Eating

To illustrate, suppose a neu roscientist believes that a br ain region called the lateral hypothalamus is i nvolved in eating behavior. One way to test this belief is touse a g roup of animals (e.g., rats) and electrically stimulate the lateral hypothalamus through a chronically

[^26]indwelling electrode. If the lateral hypothalamus is involved in eating behavior, electrical stimulation of the lateral hypothalamus might alter the amount of food eaten. To control for the effect of brain stimulation per se, another electrode would be implanted in each animal in a neu tral brain area. Each area would be stimulated for a fixed period of time, and the amount of food eaten would be recorded. A difference score for each animal would then be calculated.

Let's a ssume there is i nsufficient supporting evidence to w arrant a d irectional alternative hypothesis. Therefore, a two-tailed evaluation is planned. The alternative hypothesis states that electrical stimulation of the lateral hypothalamus affects the amount of food eaten. The null hypothesis specifies that electrical stimulation of the lateral hypothalamus does not affect the amount of food eaten. If $H_{0}$ is true, the difference score for each rat would be due to chance factors. Sometimes it would be positive, and other times it would be negative; sometimes it would be large in magnitude and other times small. If the experiment were done on a large number of rats, say, the entire population, the mean of the difference scores would equal zero.* Figure 14.1 shows such a distribution. Note, carefully, that the mean of this population is known $\left(\mu_{D}=0\right)$ and that the standard deviation is unknown ( $\sigma_{D}=$ ?). The chance explanation assumes that the difference scores of the sample in the experiment are a random sample from this population of difference scores. Thus, we have a situation in which there is one set of scores (e.g., the sample difference scores), and we are interested in determining whether it is reasonable to consider these scores a random sample from a population of difference scores having a known mean ( $\mu_{D}=0$ ) and unknown standard deviation.

## Comparison Between Single Sample and Correlated Groups $\boldsymbol{t}$ Tests

The situation just described is almost identical to those we have previously considered regarding the $t$ test with single samples. The only change is that in the correlated groups experiment we are analyzing difference scores rather than raw scores. It follows, then, that the equations for each should be quite similar. These equations a re presented in Table 14.1.

figure 14.1 Null-hypothesis population of difference scores.

[^27]table 14.1 $t$ Test for single samples and correlated groups

\[

$$
\begin{aligned}
& t_{\mathrm{obt}}=\frac{\bar{X}_{\mathrm{obt}}-\mu}{s / \sqrt{N}} \\
& t_{\mathrm{obt}}=\frac{\bar{D}_{\mathrm{obt}}-\mu_{D}}{s_{D} / \sqrt{N}} \\
& t_{\text {obt }}=\frac{\bar{X}_{\text {obt }}-\mu}{\sqrt{\frac{S S}{N(N-1)}}} \\
& t_{\mathrm{obt}}=\frac{\bar{D}_{\mathrm{obt}}-\mu_{D}}{\sqrt{\frac{S S_{D}}{N(N-1)}}} \\
& S S=\Sigma X^{2}-\frac{(\Sigma X)^{2}}{N} \\
& S S_{D}=\Sigma D^{2}-\frac{(\Sigma D)^{2}}{N}
\end{aligned}
$$
\]

It is obvious that the two sets of equations are identical except that, in the single sample case, we are dealing with raw scores, whereas in the correlated groups experiment, we are a nalyzing difference scores. Let's now add so me numbers to $t$ he brain stimulation experiment and see how to use the $t$ test for correlated groups.

## Brain Stimulation Experiment Revisited and Analyzed

A neuroscientist believes that the lateral hypothalamus is involved in eating behavior. If so, then electrical stimulation of that area might affect the amount eaten. To test this possibility, chronic indwelling electrodes a re implanted in 10 rats . Each rat has two electrodes: one i mplanted in the lateral hypothalamus and the other in an area where electrical stimulation is known to have no effect. After the animals have recovered from surgery, they each receive 30 minutes of electrical stimulation to each brain area, and the a mount of food eaten during the stimulation is mea sured. The a mount of food in grams that was eaten during stimulation is shown in Table 14.2.

1. What is the alternati ve hypothesis? Assume a nondirectional hypothesis is appropriate.
2. What is the null hypothesis?
3. What is the conclusion? Use $\alpha=0.05_{2 \text { tail }}$ -

## SOLUTION

1. Alternative hypothesis: The alternati ve hypothesis specifies that electrical stimulation of the lateral hypothalamus af fects the amount of food eaten. The sample difference scores having a mean $\bar{D}_{\text {obt }}=5.3$ are a random sample from a population of difference scores having a mean $\mu_{D} \neq 0$.
table 14.2 Data from brain stimulation experiment

| Subject | Food Eaten |  | Difference |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Lateral hypothalamus (g) | Neutral area (g) |  |  |
|  |  |  | D | $D^{2}$ |
|  | 10 | 1 | 46 | 616 |
|  | 28 | 1 | 108 | 8100 |
|  | 36 | 111 | 5 | 25 |
|  | 42 | 214 | 8 | 64 |
|  | 54 | 110 | 4 | 16 |
|  | 65 | 220 | 5 | 25 |
|  | 77 | 110 | 7 | 49 |
|  | 82 | 218 | 4 | 16 |
|  | 92 | 114 | -2 | 4 |
| 10 | 21 | 13 | 8 | 64 |
|  |  |  | 53 | 379 |
|  | $N=10$ | $\bar{D}_{\text {obt }}=\frac{\sum D}{N}=\frac{53}{10}=5.3$ |  |  |

2. Null hypothesis: The null hypothesis states that electrical stimulation of the lateral hypothalamus has no ef fect on the amount of food eaten. The sample difference scores having a mean $\bar{D}_{\text {obt }}=5.3$ are a random sample from a population of difference scores having a mean $\mu_{D}=0$.
3. Conclusion, using $\alpha=0.05_{2 \text { tail }}$.

STEP 1: Calculate the appropriate statistic. Since this is a correlated groups design, we are interested in the diference between the paired scores rather than the scores in each condition per se. The difference scores are sho wn in Table 14.2. Of the tests co vered so f ar, both the sign test and the $t$ test are possible choices. We want to use the test that is most po werful, so the $t$ test has been chosen. From the data table, $\quad N=10$ and $\bar{D}_{\text {obt }}=5.3$. The calculation of $t_{\text {obt }}$ is as follows:

$$
\begin{aligned}
t_{\text {obt }} & =\frac{\bar{D}_{\text {obt }}-\mu_{D}}{\sqrt{\frac{S S_{D}}{N(N-1)}}} & S S_{D} & =\Sigma D^{2}-\frac{(\Sigma D)^{2}}{N} \\
& =\frac{5.3-0}{\sqrt{\frac{98.1}{10(9)}}} & & =379-\frac{(53)^{2}}{10} \\
& =\frac{5.3}{\sqrt{1.04}} & & \\
& =5.08 & &
\end{aligned}
$$

STEP 2: Evaluate the statistic. As with the $t$ test for single samples, if $t_{\mathrm{obt}}$ falls within the critical region for rejection of $H_{0}$, the conclusion is to reject $H_{0}$. Thus, the same decision rule applies, namely,

$$
\text { if }\left|t_{\text {obt }}\right| \geq \mid t_{\text {crit }}, \text {, reject } H_{0} \text {. }
$$

The degrees of freedom are equal to the number of dif ference scores minus 1 . Thus, $\mathrm{df}=N-1=10-1=9$. From Table D in Appendix D, with $\alpha=0.05_{2}$ tail and $\mathrm{df}=9$,

$$
t_{\text {crit }}= \pm 2.262
$$

Since $\quad\left|t_{\text {obt }}\right|>2.262$, we reject $H_{0}$ and conclude that electrical stimulation of the lateral hypothalamus affects eating behavior. It appears to increase the amount eaten.

## Practice Problem 14.1

To motivate citizens to conserve gasoline, the government is considering mounting a nationwide conservation campaign. However, before doing so on a national level, it decides to conduct an experiment to evaluate the effectiveness of the campaign. For the experiment, the conservation campaign is conducted in a small but representative geographical area. Twelve families are randomly selected from the area, and the a mount of gasoline they use is mon itored for 1 month before the advertising campaign and for 1 month after the campaign. The following data are collected:

| Family | Before the Campaign (gal/mo.) | After the Campaign (gal/mo.) | Difference |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | D | $D^{2}$ |  |
| A | 55 | 48 |  | 79 | 4 |
| B | 43 | 38 |  | 55 | 2 |
| C | 51 | 53 | -2 | 4 |  |
| D | 62 | 58 |  | 46 | 1 |
| E | 35 | 36 | $-1$ | 1 |  |
| F | 48 | 42 |  | 66 | 3 |
| G | 58 | 55 |  | 3 |  |
| H | 45 | 40 |  | 55 | 2 |
| I | 48 | 49 | -1 | 1 |  |
| J | 54 | 50 |  | 46 | 1 |
| K | 56 | 58 | -2 | 4 |  |
| L | 32 | 25 |  | $7 \underline{9}$ | 4 |
|  |  |  | 35 | 235 |  |
|  | $N=12$ | $\bar{D}_{\mathrm{obt}}=\frac{\sum D}{N}=$ |  |  |  |

a. What is the alternative hypothesis? Use a nondirectional hypothesis.
b. What is the null hypothesis?
c. What is the conclusion? Use $\alpha=0.05_{2 \text { tail }}$.

## SOLUTION

a. Alternative h ypothesis: $T$ he conser vation ca mpaign a ffects $t$ he a mount of gasoline use d. The sa mple with $\bar{D}_{\text {obt }}=2.917$ is a random sample from a population of difference scores where $\mu_{D} \neq 0$.
b. Null hypothesis: The conser vation ca mpaign has no effect on the a mount of gasoline used. The sample with $\bar{D}_{\text {obt }}=2.917$ is a random sample from a population of difference scores where $\mu_{D}=0$.
c. Conclusion, using $\alpha=0.05_{2 \text { tail }}$ :

STEP 1: Calculate the appropriate statistic. T he d ifference scores a re included in the previous table. We have subtracted the "after" scores from the "before" scores. Assuming the assumptions of $t$ a re met, the appropr iate s tatistic is $t_{\mathrm{obt}}$. From the data table, $N=12$ a nd $\bar{D}_{\text {obt }}=2.917$.

$$
\begin{aligned}
t_{\text {obt }} & =\frac{\bar{D}_{\text {obt }}-\mu_{D}}{\sqrt{\frac{S S_{D}}{N(N-1)}}} \\
& =\frac{2.917-0}{\sqrt{\frac{132.917}{12(11)}}} \\
& =2.91
\end{aligned}
$$

STEP 2: Evaluate the statistic. Degrees of freedom $=N-1=12-1=11$. From Table D, with $\alpha=0.05_{2 \text { tail }}$ and 11 df ,

$$
t_{\text {crit }}= \pm 2.201
$$

Since $\left|t_{\text {obt }}\right|>2.201$, we reject $H_{0}$. T he conser vation ca mpaign affects the amount of gasoline used. It appears to decrease gasoline consumption.

## Size of Effect Using Cohen's d

As we pointed out in the discussion of size of effect in conjunction with the $t$ test for single samples, in addition to determining whether there is a real effect, it is often desirable to determine the size of the effect. For example, in the experiment investigating the involvement of the lateral hypothalamus in eating behavior (p. 360), $t_{\mathrm{obt}}$ was significant and we were able to conclude that electrical stimulation of the lateral hypothalamus had a real effect on eating behavior. It seems reasonable that we would also like to know the size of the effect.

To evaluate the size of effect we will again use Cohen's method involving the statistic $d . *$ For convenience, we have repeated below the general equation for $d$, given in Chapter 13, p. 339.

$$
d=\frac{\mid \text { mean difference } \mid}{\text { population standard deviation }}
$$

General equation for size of effect

In the correlated groups design, it is the magnitude of the mean of the difference scores $(\bar{D})$ that varies directly with the size of effect, and the standard deviation of the population difference scores $\left(\sigma_{D}\right)$ that are of interest. Thus, for this design,

$$
d=\frac{\left|\bar{D}_{\mathrm{obt}}\right|}{\sigma_{D}} \quad \begin{aligned}
& \text { Conceptual equation for size of effect, } \\
& \text { correlated groups } t \text { test }
\end{aligned}
$$

Taking t he abso lute v alue of $\bar{D}_{\text {obt }}$ in the previous equation keeps $d$ po sitive regardless of whether the convention used in subtracting the two scores for each subject produces a positive or negative $\bar{D}_{\text {obt }}$. Please note that when applying this equation, if $H_{1}$ is directional, $\bar{D}_{\text {obt }}$ must be in the direction predicted by $H_{1}$. If it is not in the predicted direction, then when a nalyzing the data of the experiment, the conclusion would be to retain $H_{0}$ and ordinarily, as with the single sample $t$ test, it would make no sense to inquire about the size of the real effect.

Since we don't know $\sigma_{D}$, as usual, we estimate it with $s_{D}$, the standard deviation of the sample difference scores. The resulting equation is given by

$$
\hat{d}=\frac{\left|\bar{D}_{\mathrm{obt}}\right|}{s_{D}} \quad \begin{aligned}
& \text { Computational equation for size } \\
& \text { of effect, correlated groups t test }
\end{aligned}
$$

where

$$
\hat{d}=\text { estimated } d
$$

$\left|\bar{D}_{\text {obt }}\right|=$ the absolute value of the mean of the sample difference scores
$s_{D}=$ the standard deviation of the sample difference scores

## experiment

## Lateral Hypothalamus and Eating Behavior

Let's no w ap ply this theory to some data. For the experiment investigating the effect of electrical stimulation of the lateral hypothalamus on eating behavior (p. 360), we concluded that the electrical stimulation had a real effect. Now, let's determine the size of the effect. In that experiment,

$$
\bar{D}_{\text {obt }}=5.3 \text { and } s_{D}=\sqrt{\frac{S S_{D}}{N-1}}=\sqrt{\frac{98.1}{10-1}}=3.30
$$

Substituting these values in the equation for $\hat{d}$, we obtain

$$
\hat{d}=\frac{\bar{D}_{\mathrm{obt}}}{s_{D}}=\frac{5.3}{3.30}=1.61
$$

To interpret the $\hat{d}$ value, we use the same criterion of Cohen $t$ hat was presented in Table 13.6 on p. 340. For convenience we have reproduced the table again here.

[^28]table 14.3 Cohen's criteria for interpreting the value of $\hat{d}$

| Value of $\hat{\boldsymbol{d}}$ | Interpretation of $\hat{\boldsymbol{d}}$ |
| :---: | :---: |
| 0.00-0.20 | Small effect |
| 0.21-0.79 | Medium effect |
| $\geq 0.80$ | Large effect |

Since the $\hat{d}$ value of 1.61 is higher than 0.80 , we conclude that the electrical stimulation of the lateral hypothesis had a large effect on eating behavior.*

## $\boldsymbol{t}$ Test for Correlated Groups and Sign Test Compared

It would have been possible to solve either of the previous two problems using the sign test. We chose the $t$ test because it is more powerful. To illustrate this point, let's use the sign test to solve the problem dealing with gasoline conservation.

## SOLUTION USING SIGN TEST

STEP 1: Calculate the statistic. There are 8 pluses in the sample.
STEP 2: Evaluate the statistic. With $N=12, P=0.50$, and $\alpha=0.05_{2 \text { tail }}$,

$$
p(8 \text { or more pluses })=p(8)+p(9)+p(10)+p(11)+p(12)
$$

From Table B in Appendix D,

$$
\begin{aligned}
p(8 \text { or more pluses }) & =0.1208+0.0537+0.0161+0.0029+0.0002 \\
& =0.1937
\end{aligned}
$$

Since the alpha level is two-tailed, $p$ (outcome at least as extreme as 8 pluses) $=2[(p 8$ or more pluses $)]$

$$
\begin{aligned}
& =2(0.1937) \\
& =0.3874
\end{aligned}
$$

Since $0.3874>0.05$, we conclude by retaining $H_{0}$.
We are unable to reject $H_{0}$ with the sign test, but we were able to reject $H_{0}$ with the $t$ test. Does this mean the ca mpaign is e ffective if we a nalyze the data with the $t$ test and ineffective if we use the sign test? Obviously not. With the low power of the sign test, there is a high chance of making a Type II error (i.e., retaining $H_{0}$ when it is false). The $t$ test is usually more powerful than the sign test. The

## MENTORING TIP

When analyzing real data, always use the most powerful test that the data and assumptions of the test allow.
additional power gives $H_{0}$ a better chance to be rejected if it is false. In this case, the additional power resulted in rejection of $H_{0}$. When se veral tests a re appropriate for analyzing the data, it is a general rule of statistical analysis to use the most powerful one, because this gives the highest probability of rejecting $H_{0}$ when it is false.

[^29]
## Assumptions Underlying the $\boldsymbol{t}$ Test for Correlated Groups

The assumptions are very similar to those underlying the $t$ test for single samples. The $t$ test for correlated groups requires that the sampling distribution of $\bar{D}$ be normally distributed. This means that $N$ should be $\geq 30$, assuming the population shape doesn't differ greatly from normality, or the population scores themselves should be normally distributed.*

## $z$ AND $t$ TESTS FOR INDEPENDENT GROUPS

MENTORINGTIP
Remember: for the independent groups design, the samples (groups) are separate; there is no basis for pairing of scores, and the raw scores within each group are analyzed separately.

## Independent Groups Design

Two basic experimental designs are used most frequently in studying behavior. The first was introduced when discussing the sign test and the $t$ test for correlated groups. This design is called the repeated or replicated measures design. The simplest form of the design uses $t$ wo cond itions: a $n$ experimental a nd a con trol cond ition. The essential feature of the design is that there are paired scores between conditions, and difference scores from each score pair are analyzed to determine whether chance alone can reasonably explain them.

The ot her $t$ ype of des ign is ca lled $t$ he independent $g$ roups de sign. Like $t$ he correlated $g$ roups des ign, $t$ he i ndependent $g$ roups des ign i nvolves e xperiments using two or more cond itions. Each condition uses a different level of the independent variable. The most basic experiment has on ly two conditions: an experimental and a control condition. In this chapter, we shall consider this basic experiment involving only two conditions. More complicated experiments will be considered in Chapter 15.

In the independent groups design, subjects are randomly selected from the subject population and then randomly assigned to either the experimental or the control condition. There is no basis for pairing of subjects, and each subject is tested only once. All of the subjects in the experimental condition receive the level of the independent variable appropriate for the experimental condition, and the subjects themselves are referred to as the "experimental group." All of the subjects in the control condition receive the level of the independent variable appropriate for the control condition and are referred to as the "control group."

When a nalyzing the data, since subjects are randomly assigned to cond itions, there is $n$ o ba sis for pairing scores $b$ etween $t$ he cond itions. $R$ ather, a s tatistic is computed for each g roup separately, a nd $t$ he $t$ wo $g$ roup $s$ tatistics a re co mpared to determine whether chance a lone is a rea sonable explanation of the differences between the group statistics. The statistic that is computed on each group depends on the inference test being used. The $t$ test for independent groups computes the mean of each group and then analyzes the difference between these two group means to determine $w$ hether c hance a lone is a rea sonable explanation ofthe difference between the two means.

[^30]
## MENTORINGTIP

Remember: for a directional $H_{1}: \mu_{1}>\mu_{2}$ or $\mu_{1}<\mu_{2}$; for a nondirectional $H_{1}: \mu_{1} \neq \mu_{2}$.
$\boldsymbol{H}_{\mathbf{1}}$ and $\boldsymbol{H}_{\mathbf{0}}$ The sample scores in one of the conditions (say, condition 1) can be considered a random sample from a normally distributed population of scores that would result if all the individuals in the population received that condition (condition 1). Let's call the mean of this hypothetical population $\mu_{1}$ and the standard deviation $\sigma_{1}$. Similarly, the sample scores in condition 2 can be considered a random sample from a normally distributed population of scores that would result if all the individuals in the population were given condition 2 . We can call the mean of this second population $\mu_{2}$ and the standard deviation $\sigma_{2}$. Thus,
$\mu_{1}=$ mean of the population that receives condition 1
$\sigma_{1}=$ standard deviation of the population that receives condition 1
$\mu_{2}=$ mean of the population that receives condition 2
$\sigma_{2}=$ standard deviation of the population that receives condition 2
Changing the level of the independent variable is assumed to affect the mean of the distribution $\left(\mu_{2}\right)$ but not the standard deviation $\left(\sigma_{2}\right)$ or variance $\left(\sigma_{2}{ }^{2}\right)$. Thus, under this assumption, if the independent variable has a real effect, the means of the populations will differ but their variances will stay the same. Hence, $\sigma_{1}{ }^{2}$ is assumed equal to $\sigma_{2}{ }^{2}$. One way in which this assumption would be met is if the independent variable has an equal effect on each individual. A directional alternative hypothesis would predict that the samples are random samples from populations where $\mu_{1}>\mu_{2}$ or $\mu_{1}<\mu_{2}$, depending on the direction of the effect. A nondirectional alternative hypothesis would predict $\mu_{1} \neq \mu_{2}$. If the independent variable has no effect, the samples would be random samples from populations where $\mu_{1}=\mu_{2}^{*}$ and chance alone would account for the differences between the sample means.

## TEST FOR INDEPENDENT GROUPS

Before discussing the $t$ test for independent groups, we shall present the $z$ test. In the two-group situation, the $z$ test is almost never used because it requires that $\sigma_{1}{ }^{2}$ or $\sigma_{2}{ }^{2}$ be known. However, it provides an important conceptual foundation for understanding the $t$ test. After presenting the $z$ test, we shall move to the $t$ test.

Let's begin with an experiment.

## experiment

## Hormone X and Sexual Behavior

A ph ysiologist $h$ as $t$ he $h$ ypothesis $t$ hat hor mone $X$ is $i$ mportant in producing s exual behavior. To investigate this hypothesis, 20 m ale rats were randomly sampled and then randomly assigned to two groups. The animals in group 1 were injected with hormone X and then were placed in individual housing with a sexually receptive female. The animals in group 2 were given similar treatment except they were injected with a placebo solution. The number of matings was counted over a 20 -minute period. The results are shown in Table 14.4.

As shown in Table 14.4, the me an of group 1 is $h$ igher than the me an of $g$ roup 2. The difference between the means of the two samples is 2.8 and is in the direction that

[^31]table 14.4 Data from hormone X and sexual behavior experiment

| Hormone $\mathbf{X}$ | Placebo |
| :---: | ---: |
| Group 1 | Group 2 |


| 8 | 5 |
| :---: | ---: |
| 10 | 6 |
| 12 | 3 |
| 6 | 4 |
| 6 | 7 |
| 7 | 8 |
| 9 | 6 |
| 8 | 5 |
| 7 | $\frac{8}{5}$ |
| $\frac{11}{84}$ | $n_{2}=10$ |
| $n_{1}=10$ | $\bar{X}_{2}=5.6$ |
| $\bar{X}_{1}=8.4$ |  |
| $\bar{X}_{1}-\bar{X}_{2}=2.8$ |  |

indicates a positive effect. Is it legitimate to conclude that hormone X was responsible for the difference in means? The answer, of course, is no. Before drawing this conclusion, we must evaluate the null-hypothesis explanation. The statistic we are using for this evaluation is the difference between the means of the two samples. As with all other statistics, we must know its sampling distribution before we can evaluate the null hypothesis.

## The Sampling Distribution of the Difference Between Sample Means ( $\bar{X}_{1}-\bar{X}_{2}$ )

Like the sa mpling distribution of the mean, this sa mpling distribution can be determined theoretically or empi rically. A gain, for pedagogical pu rposes, we pre fer the empirical approach. To empi rically der ive the sa mpling distribution of $\bar{X}_{1}-\bar{X}_{2}$, all possible different samples of size $n_{1}$ would be drawn from a population with a mean of $\mu_{1}$ and variance of $\sigma_{1}{ }^{2}$. Likewise, all possible samples of size $n_{2}$ would be drawn from another population with a mea n of $\mu_{2}$ and variance of $\sigma_{2}{ }^{2}$. The values of $\bar{X}_{1}$ and $\bar{X}_{2}$ would then be calculated for each sample. Next, $\bar{X}_{1}-\bar{X}_{2}$ would be calculated for all possible pairings of samples of size $n_{1}$ and $n_{2}$. The resulting distribution would contain all the possible different $\bar{X}_{1}-\bar{X}_{2}$ scores that could be obtained from the populations when sample sizes are $n_{1}$ and $n_{2}$. Once this distribution has been obtained, it is a simple matter to calculate the probability of obtaining each mean difference score $\bar{X}_{1}-\bar{X}_{2}$, assuming sampling is random of $n_{1}$ and $n_{2}$ scores from their respective populations. This then would be the sampling distribution of the difference between sample means for samples of $n_{1}$ and $n_{2}$ taken from the specified populations. This process would be repeated for different sample sizes and population scores. Whether determined theoretically or empirically, the sampling distribution of the difference between sample means has the following characteristics:

1. If the populations from which the samples are talen are normal, then the sampling distribution of the difference between sample means is also normal.
2. $\mu_{\bar{X}_{1}-\bar{X}_{2}}=\mu_{1}-\mu_{2}$
wher $e \quad \mu_{\bar{X}_{1}-\bar{X}_{2}}=$ the mean of the sampling distribution of the difference between sample means
3. $\sigma_{\bar{X}_{1}-\bar{X}_{2}}=\sqrt{\sigma_{\bar{X}_{1}}^{2}+\sigma_{\bar{X}_{2}}{ }^{2}}$
where $\quad \sigma_{\bar{X}_{1}-\bar{X}_{2}}=$ standard de viation of the sampling distrib ution of the difference between sample means ; alternati vely, standard error of the difference between sample means
$\sigma_{\bar{X}_{1}}^{2}=$ variance of the sampling distrib ution of the mean for samples of size $n_{1}$ taken from the first population
$\sigma_{\bar{X}_{2}}{ }^{2}=$ variance of the sampling distrib ution of the mean for samples of size $n_{2}$ taken from the second population
If, as mentioned previously, we assume that the variances of the two populations are equal $\left(\sigma_{1}{ }^{2}=\sigma_{2}{ }^{2}\right)$, then the equation for $\sigma_{\bar{X}_{1}-\bar{X}_{2}}$ can be simplified as follows:

$$
\begin{aligned}
\sigma_{\bar{X}_{1}-\bar{X}_{2}} & =\sqrt{\sigma_{\bar{X}_{1}}{ }^{2}+\sigma_{\bar{X}_{2}}{ }^{2}} \\
& =\sqrt{\frac{\sigma_{1}{ }^{2}}{n_{1}}+\frac{\sigma_{2}{ }^{2}}{n_{2}}} \\
& =\sqrt{\sigma^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}
\end{aligned}
$$


figure 14.2 Sampling distribution of the difference between sample mean scores.
where

$$
\sigma^{2}=\sigma_{1}{ }^{2}=\sigma_{2}{ }^{2}=\text { the variance of each population }
$$

The $d$ istribution is $s$ hown in F igure 14.2 . N ow 1 et's ret urn to t he illustrative example.

## Hormone X Experiment Revisited

The results of the experiment showed that 10 rats injected with hormone X had a mean of 8.4 matings, whereas the mean of the 10 rats injected with a placebo was 5.6. Is the mean difference ( $\bar{X}_{1}-\bar{X}_{2}=2.8$ ) significant? Use $\alpha=0.05_{2}$ tail.

## SOLUTION

The sampling distribution of $\bar{X}_{1}-\bar{X}_{2}$ is shown in Figure 14.3. The shaded area contains all the mean difference scores of 2.8 or more. Assuming the sampling distribution of $\bar{X}_{1}-\bar{X}_{2}$ is normal, if the sample mean difference (2.8) can be converted to its $z$ value, we can use the $z$ test to solve the problem. The equation for $z_{\text {obt }}$ is similar to the other $z$ equations we have already considered. However, here the value we are converting is $\bar{X}_{1}-\bar{X}_{2}$. Thus,

$$
z_{\mathrm{obt}}=\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)-\mu_{\bar{X}_{1}-\bar{X}_{2}}}{\sigma_{\bar{X}_{1}-\bar{X}_{2}}} \quad \text { equation for } z_{\mathrm{obt}} \text {, independent groups design }
$$

If hormone X had no effect on mating behavior, then both samples are random samples from populations where $\mu_{1}=\mu_{2}$ and $\mu_{\bar{X}_{1}}-\bar{X}_{2}=\mu_{1}-\mu_{2}=0$. Thus,

$$
z_{\mathrm{obt}}=\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)-0}{\sqrt{\sigma^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}=\frac{2.8}{\sqrt{\sigma^{2}\left(\frac{1}{10}+\frac{1}{10}\right)}}
$$

Note that the variance of the populations ( $\sigma^{2}$ ) must be known before $z_{\text {obt }}$ can be calculated. Since $\sigma^{2}$ is almost never known, this limitation severely restricts the practical use of the $z$ test in this design. However, as you might guess, $\sigma^{2}$ can be estimated from the sample data. When this is done, we have the $t$ test for independent groups.

figure 14.3 Sampling distribution of the difference between sample mean scores for the hormone problem.

## STUDENT'S t TEST FOR INDEPENDENT GROUPS

## Comparing the Equations for $\boldsymbol{z}_{\text {obt }}$ and $\boldsymbol{t}_{\text {obt }}$

The equations for the $z$ and $t$ test are shown in Table 14.5. The $z$ and $t$ equations are identical except that the $t$ equation uses $s_{W}{ }^{2}$ to estimate the population variance $\left(\sigma^{2}\right)$. This situation is analogous to the $t$ test for single samples. You will recall in that situation we used the sample standard deviation $(s)$ to estimate $\sigma$. However, in the $t$ test for independent groups, there are two samples, and we wish to estimate $\sigma^{2}$. Since $s$ is an accurate estimate of $\sigma, s^{2}$ is an accurate estimate of $\sigma^{2}$. There are two samples, and either could be used to estimate $\sigma^{2}$, but we can get a more precise estimate by using both. It turns out the most precise estimate of $\sigma^{2}$ is obtained by using a weighted

## MENTORINGTIP

The $t$ test is used instead of the $z$ test because the value of $\sigma^{2}$ is almost never known.
table 14.5 $z$ and $t$ equations compared

$$
\begin{aligned}
& z_{\mathrm{obt}}=\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)-\mu_{\bar{X}_{1}-\bar{X}_{2}}}{\sigma_{\bar{X}_{1}-\bar{X}_{2}}} \\
& t_{\mathrm{obt}}=\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)-\mu_{\bar{X}_{1}-\bar{X}_{2}}}{s_{\bar{X}_{1}-\bar{X}_{2}}} \\
& =\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)-\mu_{\bar{X}_{1}-\bar{X}_{2}}}{\sqrt{\sigma^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}} \\
& =\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)-\mu_{\bar{X}_{1}-\bar{X}_{2}}}{\sqrt{s_{W}^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}} \\
& \text { Where } s_{W}{ }^{2}=\text { weighted estimate of } \sigma^{2} \\
& s_{\bar{X}_{1}-\bar{X}_{2}}=\text { estimate of } \sigma_{\bar{X}_{1}-\bar{X}_{2}}=\text { estimated standard error of } \\
& \text { the difference between sample means }
\end{aligned}
$$

average of the sample variances $s_{1}{ }^{2}$ and $s_{2}{ }^{2}$. Weighting is done using degrees of freedom as the weights. Thus,

$$
s_{W}^{2}=\frac{\mathrm{df}_{1} s_{1}^{2}+\mathrm{df}_{2} s_{2}^{2}}{\mathrm{df}_{1}+\mathrm{df}_{2}}=\frac{\left(n_{1}-1\right)\left(\frac{S S_{1}}{n_{1}-1}\right)+\left(n_{2}-1\right)\left(\frac{S S_{2}}{n_{2}-1}\right)}{\left(n_{1}-1\right)+\left(n_{2}-1\right)}=\frac{S S_{1}+S S_{2}}{n_{1}+n_{2}-2}
$$

where $s_{W}{ }^{2}=$ weighted estimate of $\sigma^{2}$
$s_{1}{ }^{2}=$ variance of the first sample
$s_{2}{ }^{2}=$ variance of the second sample
$S S_{1}=$ sum of squares of the first sample
$S S_{2}=$ sum of squares of the second sample
Substituting for $s_{W}{ }^{2}$ in the $t$ equation, we arrive at t he computational equation for $t_{\text {obt. }}$. Thus,

$$
t_{\mathrm{obt}}=\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)-\mu_{\bar{X}_{1}-\bar{X}_{2}}}{\sqrt{s_{W}^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}=\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)-\mu_{\bar{X}_{1}-\bar{X}_{2}}}{\sqrt{\left(\frac{S S_{1}+S S_{2}}{n_{1}+n_{2}-2}\right)\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}
$$

computational equation for $t_{\text {obt }}$ independent groups design

To evaluate the null hypothesis, we assume both samples are random samples from populations having the sa me mean value ( $\mu_{1}=\mu_{2}$ ). Therefore, $\mu_{\bar{X}_{1}-\bar{X}_{2}}=0$. * The previous equation reduces to

$$
t_{\mathrm{obt}}=\frac{\bar{X}_{1}-\bar{X}_{2}}{\sqrt{\left(\frac{S S_{1}+S S_{2}}{n_{1}+n_{2}-2}\right)\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}} \quad \begin{aligned}
& \text { computational equation for } t_{\mathrm{ob}} \text {, } \\
& \text { assuming } \mu_{\bar{X}_{1}-\bar{X}_{2}}=0
\end{aligned}
$$

## MENTORINGTIP

Remember: the $t$ distribution varies uniquely with df, not with $N$.

$$
\mathrm{df}=\left(n_{1}-1\right)+\left(n_{2}-1\right)=n_{1}+n_{2}-2=N-2
$$

where $N \quad=n_{1}+n_{2}$
Table D, then, can be used in the same manner as with the $t$ test for single samples, except in the two-sample case, we enter the table with $N-2 \mathrm{df}$. Thus, the $t$ distribution varies both with $N$ and degrees of freedom, but it varies uniquely only with degrees of freedom. That is, the $t$ distribution corresponding to 13 df is the same whether it is derived from the single sample situation with $N=14$ or the two-sample situation with $N=15$.

[^32]
## Analyzing the Hormone X Experiment

At long last, we a re ready to e valuate the hor mone data. The problem and data are restated for convenience.

A physiologist has conducted an experiment to e valuate the effect of hormone X on sexual behavior. Ten rats were injected with hormone $X$, and 10 other rats received a placebo injection. The number of matings was counted over a 20-minute period.

The results are shown in Table 14.6.

1. What is the alternative hypothesis? Use a nondirectional hypothesis.
2. What is the null hypothesis?
3. What do you conclude? Use $\alpha=0.05_{2 \text { tail }}$.

## SOLUTION

1. Alternative hypothesis: The alternati ve hypothesis specifies that hormone X affects sexual behavior. The sample mean dif ference of 2.8 is due to random sampling from populations where $\mu_{1} \neq \mu_{2}$.
2. Null hypothesis: The null hypothesis states that hormone $X$ is not related to sexual behavior. The sample mean difference of 2.8 is due to random sampling from populations where $\mu_{1}=\mu_{2}$.
3. Conclusion, using $\alpha=0.05_{2 \text { tail }}$ :

STEP 1: Calculate the appropriate statistic. For now, assume $t$ is appropriate. We shall discuss the assumptions of $t$ in a later section. From
table 14.6 Data from hormone X experiment

| Hormone $\mathbf{X}$ <br> Group 1 |  | Placebo Group 2 |  |
| :---: | :---: | :---: | :---: |
| $X_{1}$ | $X_{1}{ }^{2}$ | $X_{2}$ | $\mathrm{X}_{2}{ }^{2}$ |
| 8 | 64 | 5 | 25 |
| 10 | 100 | 6 | 36 |
| 12 | 144 | 3 | 9 |
| 6 | 36 | 4 | 16 |
| 6 | 36 | 7 | 49 |
| 7 | 49 | 8 | 64 |
| 9 | 81 | 6 | 36 |
| 8 | 64 | 5 | 25 |
| 7 | 49 | 4 | 16 |
| 11 | 121 | 8 | 64 |
| 84 | 744 | 56 | 340 |
|  | $n_{1}=10$ |  |  |
|  | $\bar{X}_{1}=8.4$ |  |  |
| $\bar{X}_{1}-\bar{X}_{2}=2.8$ |  |  |  |

Table 14.6, $n_{1}=10, n_{2}=10, \bar{X}_{1}=8.4$, and $\bar{X}_{2}=5.6$. Solving for $S S_{1}$ and $S S_{2}$,

$$
\begin{aligned}
S S_{1} & =\Sigma X_{1}^{2}-\frac{\left(\Sigma X_{1}\right)^{2}}{n_{1}} & S S_{2} & =\Sigma X_{2}^{2}-\frac{\left(\Sigma X_{2}\right)^{2}}{n_{2}} \\
& =744-\frac{(84)^{2}}{10} & & =340-\frac{(56)^{2}}{10} \\
& =38.4 & & =26.4
\end{aligned}
$$

Substituting these values in the equation for $t_{\mathrm{ob}}$, we have

$$
t_{\mathrm{obt}}=\frac{\bar{X}_{1}-\bar{X}_{2}}{\sqrt{\left(\frac{S S_{1}+S S_{2}}{n_{1}+n_{2}-2}\right)\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}=\frac{8.4-5.6}{\sqrt{\left(\frac{38.4+26.4}{10+10-2}\right)\left(\frac{1}{10}+\frac{1}{10}\right)}}=3.30
$$

STEP 2: Evaluate the statistic. As with the pre vious $t$ tests, if $t_{\mathrm{obt}}$ falls in the critical region for rejection of $H_{0}$, we reject $H_{0}$. Thus,

$$
\begin{gathered}
\text { If }\left|t_{\text {obt }}\right| \geq\left|t_{\text {crit }}\right| \text {, reject } H_{0} . \\
\text { If not, retain } H_{0} .
\end{gathered}
$$

The number of degrees of freedom is $\mathrm{df}=N-2=20-2=18$. From Table D, with $\alpha=0.05_{2 \text { tail }}$ and $\mathrm{df}=18$,

$$
t_{\text {crit }}= \pm 2.101
$$

Since $\left|t_{\text {obt }}\right|>2.101$, we conclude by rejecting $H_{0}$.

## Calculating $\boldsymbol{t}_{\text {obt }}$ When $\boldsymbol{n}_{\mathbf{1}}=\boldsymbol{n}_{\mathbf{2}}$

When the sample sizes are equal, the equation for $t_{\mathrm{obt}}$ can be simplified. Thus,

$$
t_{\mathrm{obt}}=\frac{\bar{X}_{1}-\bar{X}_{2}}{\sqrt{\left(\frac{S S_{1}+S S_{2}}{n_{1}+n_{2}-2}\right)\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}
$$

but $n_{1}=n_{2}=n$. Substituting $n$ for $n_{1}$ and $n_{2}$ in the equation for $t_{\mathrm{obt}}$

$$
t_{\mathrm{obt}}=\frac{\bar{X}_{1}-\bar{X}_{2}}{\sqrt{\left(\frac{S S_{1}+S S_{2}}{n+n-2}\right)\left(\frac{1}{n}+\frac{1}{n}\right)}}=\frac{\bar{X}_{1}-\bar{X}_{2}}{\sqrt{\left(\frac{S S_{1}+S S_{2}}{2(n-1)}\right)\left(\frac{2}{n}\right)}}=\frac{\bar{X}_{1}-\bar{X}_{2}}{\sqrt{\left(\frac{S S_{1}+S S_{2}}{n(n-1)}\right)}}
$$

Thus,

$$
t_{\mathrm{obt}}=\frac{\bar{X}_{1}-\bar{X}_{2}}{\sqrt{\frac{S S_{1}+S S_{2}}{n(n-1)}}} \quad \text { equation for calculating } t_{\mathrm{obt}} \text { when } n_{1}=n_{2}
$$

Since $n_{1}=n_{2}$ in the previous problem, we can use the simplified equation to calculate $t_{\text {obt }}$. Thus,

$$
t_{\mathrm{obt}}=\frac{\bar{X}_{1}-\bar{X}_{2}}{\sqrt{\frac{S S_{1}+S S_{2}}{n(n-1)}}}=\frac{8.4-5.6}{\sqrt{\frac{38.4+26.4}{10(9)}}}=3.30
$$

This is the same value for $t_{\mathrm{obt}}$ that we obtained when using the more complicated equation. Whenever $n_{1}=n_{2}$, it's easier to use the simplified equation. When $n_{1} \neq n_{2}$, the more complicated equation must be used.

Let's do one more problem for practice.

## Practice Problem 14.2

A neurosurgeon believes that lesions in a particular area of the brain, called the thalamus, will decrease pain perception. If so, this could be important in the treatment of terminal illness that is a ccompanied by intense pain. As a first attempt to test this hypothesis, he conducts an experiment in which 16 rats are randomly divided into two groups of eight each. Animals in the experimental group receive a small lesion in the part of the thalamus thought to be involved with pain perception. Animals in the control group receive a comparable lesion in a brain area believed to be unrelated to pain. Two weeks after surgery, each animal is given a brief electrical shock to the paws. The shock is administered in an ascending series, beginning with a very low intensity level and increasing until the animal first flinches. In this manner, the pain threshold to e lectric shock is det ermined for each rat. The following data are obtained. Each score represents the current level (milliamperes) at which flinching is first observed. The higher the current level is, the higher is the pain threshold. Note that one animal died during surgery and was not replaced.

| Neutral Area Lesions Control Group Group 1 |  | Thalamic Lesions Experimental Group Group 2 |  |
| :---: | :---: | :---: | :---: |
| $X_{1}$ | $X_{1}{ }^{2}$ | $X_{2}$ | $X_{2}{ }^{2}$ |
| 0.8 | 0.64 | 1.9 | 3.61 |
| 0.7 | 0.49 | 1.8 | 3.24 |
| 1.2 | 1.44 | 1.6 | 2.56 |
| 0.5 | 0.25 | 1.2 | 1.44 |
| 0.4 | 0.16 | 1.0 | 1.00 |
| 0.9 | 0.81 | 0.9 | 0.81 |
| 1.4 | 1.96 | 1.7 | 2.89 |
| 1.1 | 1.21 | 10.1 | 15.55 |
| 7.0 | 6.96 |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  | . 568 |  |

a. What is the alternative hypothesis? In this problem, assume there is sufficient theoretical and experimental basis to use a directional hypothesis.
b. What is the null hypothesis?
c. What do you conclude? Use $\alpha=0.05_{1 \text { tail }}$.

## SOLUTION

a. Alternative hypothesis: The a lternative hypothesis states that lesions of the thalamus decrease pain perception. The difference between sample means of -0.568 is due to random sampling from populations where $\mu_{1}<\mu_{2}$.
b. Null hypothesis: T he n ull h ypothesis s tates th at l esions of the th alamus either have no effect or they increase pain perception. The difference between sample means of -0.568 is due to random sampling from populations where $\mu_{1} \geq \mu_{2}$.
c. Conclusion, using $\alpha=0.05_{1 \text { tail }}$ :

STEP 1: Calculate the appropriate statistic. Assuming the assumptions of $t$ are met, $t_{\text {obt }}$ is the appropriate statistic. From the data table, $n_{1}=8$, $n_{2}=7, \bar{X}_{1}=0.875$, and $\bar{X}_{2}=1.443$. Solving for $S S_{1}$ and $S S_{2}$, we obtain

$$
\begin{aligned}
S S_{1} & =\Sigma X_{1}^{2}-\frac{\left(\Sigma X_{1}\right)^{2}}{n_{1}} & S S_{2} & =\Sigma X_{2}^{2}-\frac{\left(\Sigma X_{2}\right)^{2}}{n_{2}} \\
& =6.960-\frac{(7)^{2}}{8} & & =15.550-\frac{(10.1)^{2}}{7} \\
& =0.835 & & =0.977
\end{aligned}
$$

Substituting these values into the general equation for $t_{\mathrm{ob}}$, we have

$$
\begin{aligned}
t_{\mathrm{obt}} & =\frac{\bar{X}_{1}-\bar{X}_{2}}{\sqrt{\left(\frac{S S_{1}+S S_{2}}{n_{1}+n_{2}-2}\right)\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}} \\
& =\frac{0.875-1.443}{\sqrt{\left(\frac{0.835+0.977}{8+7-2}\right)\left(\frac{1}{8}+\frac{1}{7}\right)}}=-2.94
\end{aligned}
$$

STEP 2: Evaluate the statistic. Degrees of freedom $=N-2=15-2=13$. From Table D, with $\alpha=0.05_{1 \text { tail }}$ and $\mathrm{df}=13$,

$$
t_{\text {crit }}=-1.771
$$

Since $\left|t_{\text {obt }}\right|>1.771$, we reject $H_{0}$ a nd conc lude that lesions of the thalamus decrease pain perception.

## Assumptions Underlying the $\boldsymbol{t}$ Test

The assumptions underlying the $t$ test for independent groups are as follows:

1. The sampling distribution of $\bar{X}_{1}-\bar{X}_{2}$ is normally distrib uted. This means the populations from which the samples were taken should be normally distributed.
2. There is homogeneity of variance. You will recall that, at the be ginning of our discussion concerning the $t$ test for independent groups, we pointed out that the
$t$ test assumes that the independent variable affects the means of the populations but not their standard deviations $\left(\sigma_{1}=\sigma_{2}\right)$. Since the variance is just the square of the standard deviation, the $t$ test for independent groups also assumes that the variances of the two populations are equal; that is, $\sigma_{1}{ }^{2}=\sigma_{2}{ }^{2}$. This is spoken of as the homogeneity of variance assumption. If the v ariances of the samples in the experiment $\left(s_{1}{ }^{2}\right.$ and $\left.s_{2}{ }^{2}\right)$ are very different (e.g., if one variance is more than 4 times larger than the other), the two samples probably are not random samples from populations where $\sigma_{1}{ }^{2}=\sigma_{2}{ }^{2}$. If this is true, the homogeneity of v ariance assumption is violated $\left(\sigma_{1}{ }^{2} \neq \sigma_{2}{ }^{2}\right)$.*

## Violation of the Assumptions of the $\boldsymbol{t}$ Test

Experiments have been conducted to determine the effect on the $t$ test for independent groups of violating the assumptions of normality of the raw-score populations and homogeneity of variance. Fortunately, it turns out that the $t$ test is a robust test. A test is said to be robust if it is relatively insensitive to violations of its underlying mathematical as sumptions. The $t$ test is relatively insensitive to violations of normality and homogeneity of variance, depending on sample size and the type and magnitude of the violation. ${ }^{\dagger}$ If $n_{1}=n_{2}$ and the size of each sample is equal to or greater than 30 , the $t$ test for independent groups may be used without appreciable error despite moderate violation of the normality and/or the homogeneity of variance assumptions. If there are extreme violations of these assumptions, then an alternative test such as the Mann-Whitney $U$ test should be used. This test is discussed in Chapter 17.

Before leaving this topic, it is worth noting that, when the two samples show large differences in their variances, it may indicate that the independent variable is not having an equal effect on all the subjects within a condition. This can be an important finding in its own right, leading to further experimentation into how the independent variable varies in its effects on different types of subjects.

## Size of Effect Using Cohen's d

As has been pre viously discussed, in addition to det ermining whether there is a rea 1 effect, it is often desirable to determine the size of the effect. For example, in the experiment investigating the role of the thalamus in pain perception (p. 374), $t_{\text {obt }}$ was significant and we were able to conclude that lesions of the thalamus decrease pain perception. But surely, it would also be desirable to know how large a role the thalamus plays. Does the thalamus totally control pain perception such that if the relevant thalamic nuclei were completely destroyed, the subject would no longer feel pain? On the other hand, is the effect so small that for any practical purposes, it can be ignored? After all, even small effects are likely to be significant if $N$ is large enough. Determining the size of the thalamic effect would be particularly important for the neu rosurgeon do ing this

[^33]research in hope of developing a treatment for reducing the intense pain felt by some terminal patients.

To evaluate the size of effect we will again use Cohen's method involving the statistic $d .^{*}$ With the $t$ test for independent groups, it is the magnitude of the difference between the two sample means $\left(\bar{X}_{1}-\bar{X}_{2}\right)$ that varies directly with the size of effect. Thus, for this design,

$$
d=\frac{\left|\bar{X}_{1}-\bar{X}_{2}\right|}{\sigma} \quad \begin{aligned}
& \text { Conceptual equation for size of } \\
& \text { effect, independent groups t test }
\end{aligned}
$$

Taking the absolute value of $\bar{X}_{1}-\bar{X}_{2}$ in the previous equation keeps $d$ positive regardless of whether the convention used in assigning treatments to cond ition 1 and condition 2 results in a positive or negative value for $\bar{X}_{1}-\bar{X}_{2}$. Again, please note that when applying this equation, if $H_{1}$ is directional, $\bar{X}_{1}-\bar{X}_{2}$ must be in the direction predicted by $H_{1}$. If it is not in the predicted direction, then when analyzing the data of the experiment, the conclusion would be to retain $H_{0}$ and, as with the other $t$ tests, it would make no sense to inquire about the size of the real effect.

Since we don't know $\sigma$, we es timate it with $\sqrt{s_{W}{ }^{2}}$. The resulting equation is given by

$$
\hat{d}=\frac{\left|\bar{X}_{1}-\bar{X}_{2}\right|}{\sqrt{s_{W}^{2}}} \quad \begin{aligned}
& \text { Computational equation for size of } \\
& \text { effect, independent groups t test }
\end{aligned}
$$

where

$$
\hat{d}=\text { estimated } d
$$

$$
\begin{aligned}
\left|\bar{X}_{1}-\bar{X}_{2}\right|= & \text { the absolute value of the difference } \\
& \text { between the two sample means } \\
\sqrt{s_{W}^{2}}= & \text { weighted estimate of } \sigma
\end{aligned}
$$

## Thalamus and Pain Perception

Let's now apply this theory to some data. For the experiment investigating whether thalamic lesions decrease pain perception (Practice Problem 14.2, p. 374),

$$
\left|\bar{X}_{1}-\bar{X}_{2}\right|=|0.875-1.443|=0.568
$$

and

$$
s_{W}^{2}=\frac{S S_{1}+S S_{2}}{n_{1}+n_{2}-2}=\frac{0.835+0.977}{8+7-2}=0.139
$$

Substituting these values into the equation for $\hat{d}$, we obtain

$$
\hat{d}=\frac{\left|\bar{X}_{1}-\bar{X}_{2}\right|}{\sqrt{s_{W}^{2}}}=\frac{0.568}{\sqrt{0.139}}=1.52
$$

To interpret the $\hat{d}$ value, we again use the same criterion of Cohen that was presented in Table 13.6 on p. 340 . For convenience we have reproduced the table here.

[^34]table 14.7 Cohen's criteria for interpreting the value of $\hat{d}^{*}$

| Value of $\hat{\boldsymbol{d}}$ | Interpretation of $\hat{\boldsymbol{d}}$ |
| :---: | :---: |
| 0.00-0.20 | Small effect |
| 0.21-0.79 | Medium effect |
| $\geq 0.80$ | Large effect |

Since the $\hat{d}$ value of 1.52 is higher than 0.80 , we conclude that the thalamic lesions had a large effect on pain perception.

The three equations for $t_{\text {obt }}$ are as follows:

$$
t_{\mathrm{obt}}=\frac{\bar{X}_{\mathrm{obt}}-\mu}{\sqrt{\frac{S S}{N(N-1)}}} \quad t_{\mathrm{obt}}=\frac{\bar{D}_{\mathrm{obt}}-0}{\sqrt{\frac{S S_{D}}{N(N-1)}}} \quad t_{\mathrm{obt}}=\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)-0}{\sqrt{\frac{S S_{1}+S S_{2}}{n(n-1)}}}
$$

It se ems fairly obvious that the larger $t_{\mathrm{obt}}$ is, t he more 1 ikely $H_{0}$ will be rejected. Hence, anything that increases the likelihood of obtaining high values of $t_{\mathrm{obt}}$ will result in a m ore powerful $t$ test. This can occur in se veral ways. First, the la rger the real effect of the independent variable is, the more likely $\bar{X}_{\text {obt }}-\mu, \bar{D}_{\text {obt }}-0$, or $\left(\bar{X}_{1}-\bar{X}_{2}\right)-0$ will be large. Since these difference scores are in the numerator of the $t$ equation, it follows that the greater the effect of the independent variable, the higher the power of the test (other factors held constant). Of course, we don't know before doing the experiment what the actual effect of the independent variable is. If we did, then why do the experiment? Nevertheless, this a nalysis is use ful because it suggests that, when designing an experiment, it is des irable to use the level of independent variable that the experimenter believes is the most effective to maximize the chances of detecting its effect. This analysis further suggests that, $g$ iven meag er resou rces for cond ucting a $n$ e xperiment, $t$ he experiment $m$ ay still be powerful enough to detect the effect if the independent variable has a large effect.

The denominator of the $t$ equation varies as a function of sample size and sample variability. As sample size increases, the denominator decreases. Therefore,

$$
\sqrt{\frac{S S}{N(N-1)}}, \sqrt{\frac{S S_{D}}{N(N-1)}} \text {, and } \sqrt{\frac{S S_{1}+S S_{2}}{n(n-1)}}
$$

decrease, causing $t_{\text {obt }}$ to increase. Thus, increasing sample size increases the power of the test.

[^35]
## MENTORINGTIP

Remember: power varies directly with $N$ and size of effect, and inversely with sample variability.

The denominator also varies as a function of sample variability. In the single sample case, $S S$ is the measure of variability. $S S_{D}$ in the correlated groups experiments and $S S_{1}+S S_{2}$ in the independent groups experiments reflect the variability. As the variability increases, the denominator in each case also increases, causing $t_{\text {obt }}$ to decrease. Thus, high sample va riability decreases power. Therefore, it is des irable to decrease va riability as much as possible. One way to decrease variability is to ca refully control the experimental conditions. For example, in a reaction-time experiment, the experimenter might use a warning signal that directly precedes the stimulus to which the subject must respond. In this way, variability due to at tention lapses cou ld be eliminated. A nother way is to use $t$ he appropriate experimental design. For example, in certain situations, using a correlated groups design rather than an independent groups design will decrease variability.

## CORRELATED GROUPS AND INDEPENDENT GROUPS DESIGNS COMPARED

You are probably aware that many of the hypotheses presented in illustrative examples could have been investigated with either the correlated groups design or the independent groups design. For instance, in Practice Problem 14.1, we presented an experiment that was conducted to evaluate the effect of a conservation campaign on gasoline consumption. The experiment used a correlated groups design, and the data were analyzed with the $t$ test for cor related $g$ roups. For con venience, the data a nd a nalysis a re provided again in Table 14.8.

The conservation campaign could also have been evaluated using the independent groups design. Instead of using the sa me subjects in each condition, there would be two groups of subjects. One group would be monitored before the campaign and the other group monitored after the campaign. To evaluate the null hypothesis, each sample would be treated as an independent sample randomly selected from populations where $\mu_{1}=\mu_{2}$. The basic statistic calculated would be $\bar{X}_{1}-\bar{X}_{2}$. For the sake of comparison, let's analyze the conservation campaign data as though they were collected by using an independent groups design.* A ssume there a re two different g roups. The families in group 1 (before) are monitored for 1 month with respect to the amount of gasoline used before the conser vation ca mpaign is cond ucted, whereas the families in group 2 a re monitored for 1 month after the campaign has been conducted.

Since $n_{1}=n_{2}$, we can use the $t_{\text {obt }}$ equation for equal $n$. In this experiment, $n_{1}=$ $n_{2}=12$. Solving for $\bar{X}_{1}, \bar{X}_{2}, S S_{1}$, and $S S_{2}$, we obtain

$$
\begin{aligned}
\bar{X}_{1} & =\frac{\sum X_{1}}{n_{1}}=\frac{587}{12}=48.917 & \bar{X}_{2} & =\frac{\sum X_{2}}{n_{2}}=\frac{552}{12}=46.000 \\
S S_{1} & =\Sigma X_{1}^{2}-\frac{\left(\Sigma X_{1}\right)^{2}}{n_{1}} & S S_{2} & =\Sigma X_{2}^{2}-\frac{\left(\Sigma X_{2}\right)^{2}}{n_{2}} \\
& =29,617-\frac{(587)^{2}}{12} & & =26,496-\frac{(552)^{2}}{12} \\
& =902.917 & & =1104
\end{aligned}
$$

[^36]table 14.8 Data and analysis from conservation campaign experiment

| Family | Before the Campaign (gal) | After the Campaign (gal) | Difference |  |
| :---: | :---: | :---: | :---: | :---: |
|  | (1) | (2) | D | $D^{2}$ |
| A | 55 | 48 |  | 79 |
| B | 43 | 38 |  | 55 |
| C | 51 | 53 | -2 | 4 |
| D | 62 | 58 |  | 46 |
| E | 35 | 36 | -1 | 1 |
| F | 48 | 42 |  | 66 |
| G | 58 | 55 |  | 3 |
| H | 45 | 40 |  | 55 |
| I | 48 | 49 | -1 | 1 |
| J | 54 | 50 |  | 46 |
| K | 56 | 58 | -2 | 4 |
| L | 32 | 25 |  | 79 |
|  |  |  | 35 | 235 |

$$
N=12 \quad \bar{D}_{\text {obt }}=\frac{\Sigma D}{N}=\frac{35}{12}=2.917
$$

$$
\begin{array}{rlrl}
t_{\mathrm{obt}} & =\frac{\bar{D}_{\mathrm{obt}}-\mu_{D}}{\sqrt{\frac{S S_{D}}{N(N-1)}}} & S S_{D} & =\Sigma D^{2}-\frac{(\Sigma D)^{2}}{N} \\
& =\frac{2.917-0}{\sqrt{\frac{132.917}{12(11)}}} & & =235-\frac{(35)^{2}}{12} \\
& & =132.917
\end{array}
$$

From Table D, with $\mathrm{df}=11$ and $\alpha=0.05_{2 \text { tail }}$,

$$
t_{\text {crit }}= \pm 2.201
$$

Since $\left|t_{\text {obt }}\right|>2.201$, we rejected $H_{0}$ and concluded that the conservation campaign does indeed affect gasoline consumption. It significantly lowered the amount of gasoline used.

Substituting these values into the equation for $t_{\text {obt }}$ with equal $n$, we obtain

$$
t_{\text {obt }}=\frac{\bar{X}_{1}-\bar{X}_{2}}{\sqrt{\frac{S S_{1}+S S_{2}}{n(n-1)}}}=\frac{48.917-46.000}{\sqrt{\frac{902.917+1104}{12(11)}}}=0.748=0.75
$$

From Table D, with $\mathrm{df}=N-2=24-2=22$ and $\alpha=0.05_{2 \text { tail }}$,

$$
t_{\text {crit }}= \pm 2.074
$$

Since $\left|t_{\text {obl }}\right|<2.074$, we retain $H_{0}$.

Something seems strange here. When the data were collected with a cor related groups design, we were able to reject $H_{0}$. However, with an independent groups design, we were unable to reject $H_{0}$, even though the data were identical. Why? The correlated groups design allows us to use $t$ he subjects as their own control. This maximizes the possibility that there will be a high correlation between the scores in the two conditions. In the present illustration, Pearson $r$ for the correlation between the paired before and after scores equals 0.938 . When the correlation is high,* the difference scores will be much less variable than the original scores. For example, consider the scores of families A a nd L. Family A uses quite a lot of gasoline ( 55 gallons), whereas family L uses much less ( 32 gallons). As a result of the conservation campaign, the scores of both families decrease by 7 g allons. Their difference scores a re identical (7). There is novariability between the difference scores $f$ or $t$ hese families, whereas there is great variability between their raw scores. It is the potential for a high correlation and, hence, decreased variability that causes the correlated groups design to be potentially more powerful than the independent groups design. The decreased variability in the present illustration can be seen most clearly by viewing the two solutions side by side. This is shown in Table 14.9.

The two equations yield the same values except for $S S_{D}$ in the correlated groups design and $S S_{1}+S S_{2}$ in the independent groups design. $S S_{D}$ is a measure of the variability of the difference scores. $S S_{1}+S S_{2}$ are measures of the variability of the raw scores. $S S_{\mathrm{D}}=132.917$, whereas $S S_{1}+S S_{2}=2006.917$. $S S_{D}$ is much smaller than $S S_{1}+S S_{2}$. It is this decreased variability that causes $t_{\mathrm{obt}}$ to be greater in the correlated groups analysis.

If the correlated groups design is potentially more powerful, why not always use this design? First, the independent groups design is much more efficient from a df per measurement analysis. The degrees of freedom are important because the higher the df , the lower $t_{\text {crit }}$. In the present illustration, for the correlated groups design, there were 24 measurements taken, but only 11 df resulted. For the independent groups design, there were 24 measurements and 22 df . Thus, the independent groups design results in twice the df for the same number of measurements.

Second, many experiments preclude using the same subject in both conditions. For example, suppose we a re interested in investigating whether men a nd women differ in agg ressiveness. Ob viously, the sa me s ubject cou ld n ot be use din both
table 14.9 Solutions for correlated and independent groups designs

| Correlated Groups | Independent Groups |
| :---: | :---: |
| $t_{\mathrm{obt}}=\frac{\bar{D}}{\sqrt{\frac{S S_{D}}{N(N-1)}}}$ | $t_{\mathrm{obt}}=\frac{\bar{X}_{1}-\bar{X}_{2}}{\sqrt{\frac{S S_{1}+S S_{2}}{n(n-1)}}}$ |
| $=\frac{2.917}{\sqrt{\frac{132.917}{12(11)}}}$ | $=\frac{2.917}{\sqrt{\frac{902.917+1104}{12(11)}}}$ |
| $=2.91$ | $=0.75$ |

[^37]conditions. Sometimes the effect of the first condition persists too long over time. If the experiment calls for the two conditions to b e administered closely in time, it may not be possible to $r$ un the same subject in both conditions without the first condition affecting performance in the se cond condition. Often, when the subject is run in the first condition, he or she is " used up" or ca n't be run in the second condition. This is particularly true in learning experiments. For example, if we are interested in the effects of exercise on learning how to ski, we know that once the subjects have learned to ski, they can't be used in the second condition because they already know how to ski. When the same subject can't be used in the two conditions, then it is still possible to match subjects. However, matching is time-consuming and costly. Furthermore, it is often true that the experimenter doesn't know which variables are important for matching so as to produce a higher correlation. For all these reasons, the independent groups design is used more often than the correlated groups design.

## ALTERNATIVE ANALYSIS USING CONFIDENCE INTERVALS

Thus far in the inferential statistics part of the textbook, we have been evaluating the effect of the independent variable by determining if it is reasonable to reject the null hypothesis, given the data of the experiment. If it is reasonable to reject $H_{0}$, then we can conclude by affirming that the independent variable has a real effect. We will call this the null-hypothesis approach. A limitation of the null-hypothesis approach is that by itself it does not tell us anything about the size or the effect.

An alternative approach also allows us to determine if it is reasonable to affirm that the independent variable has a real effect and at the same time gives us an estimate of the size of the real effect. This method uses confidence intervals. Not surprisingly, we will call this method the confidence-interval approach. We will illustrate this confidenceinterval approach using the two-group, independent groups design.

You will recall that in Chapter 13, when we were discussing the $t$ test for single samples, we showed how to construct confidence intervals for the population mean $\mu$. Typically, we constructed the $95 \%$ or the $99 \%$ confidence interval for $\mu$. Of course in that chapter, we were discussing single sample experiments. In the two-group, independent groups design, we have not one but two samples, and each sample is considered to be a random sample from its own population. We have designated the population mean of sample 1 as $\mu_{1}$ and the population mean of sample 2 as $\mu_{2}$. The difference $\mu_{1}-\mu_{2}$ is a measure of the real effect of the independent variable. If there is no real effect, then $\mu_{1}=\mu_{2}$ and $\mu_{1}-\mu_{2}=0$. By constructing the $95 \%$ or $99 \%$ confidence interval for the difference $\mu_{1}-\mu_{2}$, we can determine if it is rea sonable to a ffirm that there is a real effect, and if so, we can estimate its size.

## Constructing the 95\% Confidence Interval for $\mu_{\mathbf{1}}$ - $\mu_{\mathbf{2}}$

Constructing the $95 \%$ or $9 \%$ con fidence interval for $\mu_{1}-\mu_{2}$ is very much like constructing these intervals for $\mu$. We will illustrate by comparing the equations for both used to cons truct the $95 \%$ con fidence interval. These equations are shown in Table 14.10.

As you can see from the table, the equations for constructing the $95 \%$ confidence interval for $\mu$ and for $\mu_{1}-\mu_{2}$ are identical, except that in the two-sample experiment, ( $\bar{X}_{1}-\bar{X}_{2}$ ) is used instead of $\bar{X}_{\text {obt }}$ and $s_{\bar{X}_{1}}-s_{\bar{X}_{2}}$ is used instead of $s_{\bar{X}}$.
table 14.10 Comparison of equations for constructing the 95\% confidence interval for $\mu$ and $\mu_{1}-\mu_{2}$

| Single Sample Experiment | Two Sample Experiment |
| :---: | :---: |
| $\mathbf{9 5 \%}$ Confidence Interval for $\mu$ | $\mathbf{9 5 \%}$ Confidence Interval for $\mu_{1}-\mu_{2}$ |
| $\mu_{\text {lower }}=\bar{X}_{\text {obt }}-s_{\bar{X}} t_{0.025}$ | $\mu_{\text {lower }}=\left(\bar{X}_{1}-\bar{X}_{2}\right)-s_{\bar{X}_{1}-\bar{X}_{2} t_{0.025}}$ |
| $\mu_{\text {upper }}=\bar{X}_{\text {obt }}+s_{\bar{X}} t_{0.025}$ | $\mu_{\text {upper }}=\left(\bar{X}_{1}-\bar{X}_{2}\right)+s_{\bar{X}_{1}-\bar{X}_{2} t_{0.025}}$ |
| where $s_{\bar{X}}=\frac{s}{\sqrt{n}}$ | where $s_{\bar{X}_{1}-\bar{X}_{2}}=\sqrt{\left(\frac{S S_{1}+S S_{2}}{n_{1}+n_{2}-2}\right)\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}$ |

So far, we have been rather theoretical. Now let's try an example. Let's assume we are interested in analyzing the data from the hormone X experiment, using the confi-dence-interval approach. For your convenience, we have repeated the experiment below.

A physiologist has conducted an experiment to evaluate the effect of hormone X on sexual behavior. Ten male rats were injected with hor mone $X$, a nd 10 other male rats received a placebo injection. The animals were then placed in individual housing with a sexually receptive female. The number of matings was counted over a 20 -minute period. The results are shown in Table 14.11.

Evaluate the data of this experiment by constructing the $95 \%$ confidence interval for $\mu_{1}-\mu_{2}$. What is your conclusion?
table 14.11 Results from hormone $X$ experiment

| Hormone $\mathbf{X}$ <br> Group 1 | Placebo Group 2 |
| :---: | :---: |
| $X_{1}$ | $X_{2}$ |
|  | 8 |
| 10 | 6 |
| 12 | 3 |
|  | 6 |
|  | 6 |
|  | 7 |
|  | 9 |
|  | 8 |
|  | 7 |
| 11 | 8 |
| 84 | 56 |
| $n_{1}=10$ | $n_{2}=10$ |
| $\Sigma X_{1}=84$ | $\Sigma X_{2}=56$ |
| $\bar{X}_{1}=8.4$ | $\bar{X}_{2}=5.6$ |
| $\Sigma X_{1}{ }^{2}=744$ | $\Sigma X_{2}{ }^{2}=340$ |

The equations used to construct the $95 \%$ confidence interval are

$$
\mu_{\text {lower }}=\left(\bar{X}_{1}-\bar{X}_{2}\right)-s_{\bar{X}_{1}-\bar{X}_{2}} t_{0.025} \text { and } \mu_{\text {upper }}=\left(\bar{X}_{1}-\bar{X}_{2}\right)+s_{\bar{X}_{1}-\bar{X}_{2}} t_{0.025}
$$

Solving first for $S S_{1}$ and $S S_{2}$,

$$
\begin{aligned}
S S_{1} & =\Sigma X_{1}^{2}-\frac{\left(\Sigma X_{1}\right)^{2}}{n_{1}} & S S_{2} & =\Sigma X_{2}^{2}+\frac{\left(\Sigma X_{2}\right)^{2}}{n_{2}} \\
& =744-\frac{(84)^{2}}{10} & & =340+\frac{(56)^{2}}{10} \\
& =38.4 & & =26.4
\end{aligned}
$$

Solving next for $s_{\bar{X}_{1}-\bar{X}}$,

$$
\begin{aligned}
s_{\bar{X}_{1}-\bar{X}_{2}} & =\sqrt{\left(\frac{S S_{1}+S S_{2}}{n_{1}+n_{2}-2}\right)\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)} \\
& =\sqrt{\left(\frac{38.4+26.4}{10+10-2}\right)\left(\frac{1}{10}+\frac{1}{10}\right)}=0.849
\end{aligned}
$$

The last value we need to compute $\mu_{\text {lower }}$ and $\mu_{\text {upper }}$ is the value of $t_{0.025}$. From Table D, with $\alpha=0.025_{1 \text { tail }}$ and $\mathrm{df}=N-2=20-2=18$,

$$
t_{0.025}=2.101
$$

We now have all the values we need to compute $\mu_{\text {lower }}$ and $\mu_{\text {upper }}$. For convenience, we've listed them again here. $\bar{X}_{1}=8.4, \bar{X}_{2}=5.6, s_{\bar{X}_{1}-\bar{X}_{2}}=0.849$, and $t_{0.025}=2.101$.

Substituting these values in the equations for $\mu_{\text {lower }}$ and $\mu_{\text {upper }}$, we obtain

$$
\begin{aligned}
\mu_{\text {lower }} & =\left(\bar{X}_{1}-\bar{X}_{2}\right)-s_{\bar{X}_{1}}-\bar{X}_{2} t_{0.025} & \mu_{\text {upper }} & =\left(\bar{X}_{1}-\bar{X}_{2}\right)+s_{\bar{X}_{1}-\bar{X}_{2}} t_{0.025} \\
& =(8.4-5.6)-0.849(2.101) & & =(8.4-5.6)+0.849(2.101) \\
& =1.02 & & =4.58
\end{aligned}
$$

Thus, the 95\% confidence interval for $\mu_{1}-\mu_{2}=1.02-4.58$.

## Conclusion Based on the Obtained Confidence Interval

Having computed the $95 \%$ confidence interval for $\mu_{1}-\mu_{2}$, we can both come to a conclusion with regard to the null hypothesis and also give an estimate of the size of the real effect of hormone X. The $95 \%$ confidence interval corresponds to $\alpha=0.05_{2 \text { tail }}(0.025$ under each tail; see Figure 13.3, p. 342). The nondirectional null hypothesis pre dicts that $\mu_{1}-\mu_{2}=0$. Since the obtained $95 \%$ confidence interval does not include a value of 0 , we can reject the null hypothesis and affirm that hormone X appears to have a real effect. This is $t$ he conclusion we reached when we a nalyzed the $d$ ata using the nullhypothesis approach with $\alpha=0.05_{2 \text { tail }}$.

In addition, we have an estimate of the size of the real effect. We are $95 \%$ confident that the range of $1.02-4.58$ contains the real effect of hormone X . If so, then the real effect of hormone X is to cause $1.0-4.58$ more m atings than the placebo. Note that if the interval contained the value 0 , we would not be able to reject $H_{0}$, in which case we couldn't affirm that hormone X has a real effect.

## Constructing the 99\% Confidence Interval for $\mu_{\mathbf{1}} \mathbf{-} \mu_{\mathbf{2}}$

Constructing the $99 \%$ con fidence interval for $\mu_{1}-\mu_{2}$ is very much like constructing the $95 \%$ confidence interval. The one difference is that for the $99 \%$ confidence interval we use $t_{0.005}$ in the equations for the $\mu_{\text {lower }}$ and $\mu_{\text {upper }}$ instead of $t_{0.025}$. This corresponds to $\alpha=0.01_{2 \text { tail }}$. The equations used to compute the $99 \%$ confidence interval are shown here.

$$
\mu_{\text {lower }}=\left(\bar{X}_{1}-\bar{X}_{2}\right)-s_{\bar{X}_{1}-\bar{X}_{2}} t_{0.005} \text { and } \mu_{\text {upper }}=\left(\bar{X}_{1}-\bar{X}_{2}\right)+s_{\bar{X}_{1}-\bar{X}_{2}} t_{0.005}
$$

For the hor mone X e xperiment, $\bar{X}_{1}=8.4, \bar{X}_{2}=5.6$, and $s_{\bar{X}_{1}-\bar{X}_{2}}=0.849$. From Table D, with a $\alpha=0.005_{1 \text { tail }}$ and $\mathrm{df}=N-2=20-2=18$,

$$
t_{0.005}=2.878
$$

Using these equations with the data of the hormone X experiment, we obtain

$$
\begin{aligned}
\mu_{\text {lower }} & =\left(\bar{X}_{1}-\bar{X}_{2}\right)-s_{\bar{X}_{1}-\bar{X}_{2}} t_{0.005} & \mu_{\text {upper }} & =\left(\bar{X}_{1}-\bar{X}_{2}\right)+s_{\bar{X}_{1}-\bar{X}_{2}} t_{0.005} \\
& =(8.4-5.6)-0.849(2.878) & & =(8.4-5.6)+0.849(2.878) \\
& =0.36 & & =5.24
\end{aligned}
$$

Thus, the $99 \%$ con fidence interval for the data of the hor mone $X$ e xperiment is $0.36-5.24$. Since the obtained $99 \%$ confidence interval does not contain the value 0 , we can reject $H_{0}$ at $\alpha=0.01_{2 \text { tail. }}$. In addition, we are $99 \%$ confident that the size of the real effect of hormone $X$ falls in the interval of $0.36-5.24$. If this interval does contain the real effect, then the real effect is somewhere between 0.36 and 5.24 more matings than the placebo. As was true for the $95 \%$ confidence interval, if the $99 \%$ confidence interval did contain the value 0 , we would not be able to re ject $H_{0}$, and therefore we couldn't affirm $H_{1}$. Notice also that the $99 \%$ confidence interval (0.36-5.24) is la rger than the $95 \%$ confidence interval (1.02-4.58). This is what we would expect from our discussion in Chapter 13, because the larger the interval, the more confidence we have that it contains the population value being estimated.

## S U M M A R Y

In this chapter, I have discussed the $t$ test for correlated and independent groups. I pointed out that the $t$ test for correlated groups was really just a s pecial case of the $t$ test for single samples. In the correlated groups design, the differences between paired scores a re analyzed. If the independent variable has no effect and chance alone is res ponsible for the difference scores, $t$ hen they can be considered a random sample from a population of difference scores w here $\mu_{D}=0$ a nd $\sigma_{D}$ is u nknown. But these are the exact conditions in which the $t$ test for single samples applies. The only change is that, in the correlated groups design, we analyze difference scores, whereas in the single sa mple design, we a nalyze raw scores. After presenting some illustrative and practice problems, I d iscussed computing size of effect. Using Cohen's method with the $t$ test for correlated groups, we again estimate $d$ using $\hat{d}$. With the correlated groups
$t$ test, the magnitude of real effect varies directly with the size of $\bar{D}_{\text {obt }}$. The statistic $\hat{d}$ gives a s tandardized value, achieved by dividing $\bar{D}_{\text {obt }}$ by $s_{\mathrm{D}}$; the greater $\hat{d}$, the greater is the real effect. In addition to explaining Cohen's met hod for det ermining s ize of realeffect, criteria were given for assessing whether the obtained value of $\hat{d}$ represents a small, medium, or large effect. After discussing size of effect, I concluded our discussion of the $t$ test for correlated groups by comparing it with the sign test. I showed that although both are appropriate for the correlated groups design, as long as its assumptions are met, the $t$ test should be used because it is more powerful.

The $t$ test for independent groups is used when there are two independent groups in the experiment. The statistic that is analyzed is the difference between the means of the two samples $\left(\bar{X}_{1}-\bar{X}_{2}\right)$. The scores of sample 1 can
be considered a random sample from a population having a mean $\mu_{1}$ and a standard deviation $\sigma_{1}$. The scores of sample 2 are a random sample from a population having a mean $\mu_{2}$ and a standard deviation $\sigma_{2}$.

If the independent variable has a real effect, then the difference between sample means is due to random sampling from p opulations where $\mu_{1} \neq \mu_{2}$. Changing the $l$ evel of $t$ he independent $v$ ariable is a ssumed to affect the means of the populations but not their standard deviations or variances. If the independent variable has no effect and chance alone is res ponsible for the differences between the two samples, then the difference between sample means is due to random sampling f rom p opulations where $\mu_{1}=\mu_{2}$. Under these conditions, the sa mpling distribution of $\bar{X}_{1}-\bar{X}_{2}$ has a mean of zero a nd as tandard de viation whose value depends on $k$ nowing $t$ he $v$ ariance of the populations from which the sa mples were taken. Since this value is never known, the $z$ test cannot be used. However, we can es timate the v ariance us ing a w eighted es timate taken from both samples. When this is done, the resulting statistic is $t_{\mathrm{ob}}$.

The $t$ s tatistic, then, is a lso use d for a nalyzing the data f rom $t$ he $t$ wo-sample, i ndependent $g$ roups e xperiment. The sampling distribution of $t$ for this design is the same as for the single sample design, except the degrees of freedom are different. In the independent groups design, $\mathrm{df}=N-2$. After presenting some illustrative and practice problems, I discussed the assumptions underlying the $t$ test for independent groups. I p ointed out that this test requires that (1) the raw-score populations be n ormally distributed and (2) there be homogeneity of variance. I also
pointed out that the $t$ test is robust with regard to violations of the population normality and homogeneity of variance assumptions. In addition to determining whether there is a significant effect, it is a lso important to det ermine the size of the effect. In an independent groups experiment, the size of effect of the independent variable may be found by e stimating Cohen's $d$ with $\hat{d}$. The statistic $\hat{d}$ gives a standardized value, a chieved by di viding $\left|\bar{X}_{1}-\bar{X}_{2}\right|$ by the weighted e stimate of $\sigma, \sqrt{s_{W}{ }^{2}}$. The g reater $\hat{d}$, the greater is $t$ he real effect. A gain, criteria were $g$ iven for assessing whether the o btained value of $\hat{d}$ represe nts a small, medium, or large effect.

Next, I discussed the power of the $t$ test. I showed that its power varies directly with the size of the real effect of the independent variable and the $N$ of the experiment but varies inversely with the variability of the sample scores.

Then, I co mpared the cor related $g$ roups a nd independent g roups des igns. W hen the cor relation between paired scores is high, the correlated groups design is more powerful than the independent groups design. However, it is ea sier and more efficient regarding degrees of freedom to cond uct an independent groups experiment. In addition, there are many situations in which the correlated groups design is inappropriate.

Finally, I showed how to evaluate the effect of the independent variable using a confidence-interval approach in experiments emp loying the $t$ wo-group, $i$ ndependent groups design. This approach is more complicated than the ba sic h ypothesis testing approa ch use $\mathrm{d} t$ hroughout the inference part of this textbook but has the advantage that it allows both the evaluation of $H_{0}$ and an estimation of the size of effect of the independent variable.

## ■IMPORTANT NEW TERMS

Confidence-interval approach (p. 382)

Degrees of freedom (p. 371)
Estimated standard error of the difference between sample means (p. 368)

Homogeneity of variance (p. 375)
Independent groups design (p. 366)
Mean of the population of difference scores (p. 360)

Mean of the sampling distribution of the difference between sample means (p. 368)
Null-hypothesis approach (p. 382)
Sampling distribution of the difference between sample means (p. 368)

Size of effect (p. 376)

Standard deviation of the sampling distribution of the difference between sample means (p. 368)
Standard error of the difference between sample means (p. 368) $t$ test for correlated groups (p. 358) $t$ test for independent groups (p. 366, 370)

## ■ QUESTIONS AND PROBLEMS

1. Identify or d efine t he t erms in t he I mportant New Terms section.
2. Discuss the advantages of the two-condition experiment c ompared with the a dvantages of the s ingle sample experiment.
3. The $t$ test for correlated groups can be thought of as a special case of the $t$ test for single samples, discussed in the previous chapter. Explain.
4. What is $t$ he main advantage of using the $t$ te st for correlated groups over using the sign test to analyze data from a correlated groups experiment?
5. What are the characteristics of the sampling distribution of the difference between sample means?
6. Why is the $z$ test for independent groups never used?
7. What is es timated int he $t \mathrm{t}$ est f or i ndependent groups? How is the estimate obtained?
8. It is said that the variance of the sample data has an important bearing on the power of the $t$ test. Is this statement true? Explain.
9. What are the advantages and disadvantages of using a correlated groups design as compared with using an independent groups design?
10. What a re the a ssumptions underlying the $t$ te st for independent groups?
11. Having just made what you believe to be a Type II error, us ing a $n$ i ndependent $g$ roups des ign a nd a $t$ test a nalysis, name all the things you might do in the ne xt experiment to re duce the pro bability of a Type II error.
12. Is t he s ize ofe ffect oft he i ndependent v ariable important? Explain.
13. If the effect of the independent variable is significant, does that necessarily mean the effect is a la rge one? Explain.

For each of the following problems, unless otherwise told, assume normality in the population.
14. You a re in terested in d etermining w hether a $n$ experimental birth control pill has the side effect of changing blood pressure. You randomly sample ten w omen from the city in which y ou live. You give five of them a $p$ lacebo for a mon th a nd then measure $t$ heir diastolic blood press ure. Then y ou switch $t$ hem to $t$ he birth con trol pill for a mon th and again measure their blood pressure. The other
five women receive the same treatment except they are $g$ iven $t$ he birth con trol pill first for a mon th, followed byt he placebo for a mon th. T he blood pressure read ings a re s hown here. $N$ ote $t$ hat to safeguard the w omen from u nwanted pre gnancy, another means of birth control that does not interact with the pill was used for the duration of the experiment.

|  | Diastolic Blood Pressure |  |
| :---: | :---: | :---: |
| Birth control |  |  |
| pubject No. | Placebo |  |
| $\ldots \ldots \ldots$ |  |  |
| 1 | 108 | 102 |
| 2 | 76 | 68 |
| 3 | 69 | 66 |
| 4 | 78 | 71 |
| 5 | 74 | 76 |
| 6 | 85 | 80 |
| 7 | 79 | 82 |
| 8 | 78 | 79 |
| 9 | 80 | 78 |
| 10 | 81 | 85 |

a. What is $t$ he a lternative $h$ ypothesis? A ssume a nondirectional hypothesis is appropriate.
b. What is the null hypothesis?
c. What do you conclude? Use $\alpha=0.01_{2 \text { tail }}$. social, biological, health
15. On the ba sis of pre vious resea rch a nd sou nd theoretical cons iderations, a co gnitive ps ychologist believes that memory for pictures is superior to memory for words. To test this hypothesis, the psychologist performs an experiment in which students from an introductory psychology class are used as subjects. E ight $r$ andomly se lected $s$ tudents $v$ iew 30 slides with nouns printed on them, and a nother group of e ight $r$ andomly se lected $s$ tudents $v$ iews 30 slides with pictures of the same nouns. Each slide con tains either one $n$ oun or one pi cture a nd is viewed for 4 se conds. A fter viewing the slides, subjects a re given a re call test, a nd the number of
correctly remembered items is mea sured. The data follow:

| No. of Pictures Recalled | No. of Nouns Recalled |
| :---: | :---: |
| 18 | 12 |
| 21 | 9 |
| 14 | 21 |
| 25 | 17 |
| 23 | 16 |
| 19 | 10 |
| 26 | 19 |
| 15 | 22 |

a. What is the alternative hypothesis? Assume that a directional hypothesis is warranted.
b. What is the null hypothesis?
c. Using $\alpha=0.05_{1 \text { tail, }}$, what is your conclusion?
d. Estimate the size of the real effect. cognitive
16. A n urse w as h ired b y ag overnmental e cology agency to i nvestigate the impact of a lead smelter on the level of lead in the blood of children living near the smelter. Ten children were chosen at random from those living near the smelter. A comparison group of seven children was randomly selected from those living in an area relatively free from possible lead pollution. Blood samples were taken from the children and lead levels determined. The following are the results (scores are in micrograms of lead per 100 milliliters of blood):

| Lead Levels |  |
| :---: | :---: |
| Children living near smelter | Children living in unpolluted area |
| 18 | 9 |
| 16 | 13 |
| 21 | 8 |
| 14 | 15 |
| 17 | 17 |
| 19 | 12 |
| 22 | 11 |
| 24 |  |
| 15 |  |
| 18 |  |

a. Using $\alpha=0.01_{1 \text { tail }}$, what do you conclude?
b. Estimate the size of the real effect. health
17. The $m$ anager of $t$ he cos metics se ction of a la rge department $s$ tore $w$ ants to det ermine w hether newspaper advertising really does affect sales. For her experiment, she randomly selects 15 items currently in stock and proceeds to establish a baseline. The 15 items are priced at their usual competitive values, a nd the quantity of each item so ld for a 1 -week period is re corded. Then, without changing their price, she places a la rge ad in the newspaper, advertising the 15 items. Again, she records the quantity sold for a 1 -week period. The results follow.

| Item | No. Sold <br> Before Ad | No. Sold <br> After Ad |
| :---: | :---: | :---: |
|  | 15 | 232 |
|  | 28 | 124 |
|  | 3 |  |
|  | 42 | 40 |
|  | 56 | 119 |
|  | 60 | 225 |
|  | 73 | 223 |
|  | 82 | 335 |
|  | 90 | 665 |
| 10 | 40 | 43 |
| 11 | 27 | 28 |
| 12 | 7 | 11 |
| 13 | 13 | 12 |
| 14 | 23 | 32 |
| 15 | 16 | 28 |

a. Using $\alpha=0.05_{2 \text { tail, }}$, what do you conclude?
b. What is the size of the effect? I/O
18. Since muscle tension in the head region has been associated $w$ ith $t$ ension hea daches, $y$ ou rea son that if the muscle tension cou ld be re duced, perhaps $t$ he hea daches $w$ ould de crease or $g$ o a way altogether. Y ou des ign a n e xperiment in which nine subjects with t ension hea daches pa rticipate. The $s$ ubjects $k$ eep da ily 1 ogs of $t$ he $n$ umber of headaches they experience during a 2 -week baseline $p$ eriod. $T$ hen $y$ ou $t$ rain $t$ hem to $l$ ower $t$ heir muscle $t$ ension in the headre gion, us ing abiofeedback device. For this experiment, the biofeedback de vice is con nected to $t$ he frontalis muscle, a muscle in the forehead re gion. The de vice tells the subject t he a mount of t ension int he m uscle
to w hich it is at tached (in t his ca $\mathrm{se}, \mathrm{f}$ rontalis) and he lps $t$ hem a chieve low tension levels. A fter 6 weeks of training, during which the subjects have become s uccessful a t m aintaining 1 ow fr ontalis muscle tension, they again keep a 2 -week $\log$ of the number of hea daches experienced. The following are the numbers of headaches recorded during each 2-week period.

| Subject No. | No. of Headaches |  |  |
| :---: | :---: | :---: | :---: |
|  | Baseline | Afte | training |
|  | 17 | 1 | 3 |
|  | 23 | 1 | 7 |
|  | 3 |  | 2 |
|  | 4 |  | 3 |
|  | 5 |  | 6 |
|  | 60 | 1 | 2 |
|  | 7 |  | 1 |
|  | 8 |  | 0 |
|  | 9 |  | 2 |

a. Using $\alpha=0.05_{2 \text { tail }}$, w hat do y ou conc lude? Assume the sampling distribution of the mean of the difference scores $(\bar{D})$ is normally distributed. Assume a nond irectional hypothesis is appropr iate, because there is insufficient empirical basis to warrant a directional hypothesis.
b. If the sampling distribution of $\bar{D}$ is not normally distributed, what other test could you use to a nalyze the d ata? W hat w ould y our conc lusion be? clinical, health
19. There is an interpretation difficulty $w$ ith $P$ roblem 18 . It is c lear $t$ hat $t$ he hea daches de creased significantly. However, it is possible that the decrease w as n ot d ue to t he b iofeedback t raining but $r$ ather to so me ot her a spect oft he situation, such as $t$ he at tention shown to $t$ he subjects. W hat is really needed is a g roup to control for this possibility. A ssume a nother group of nine headache patients was run at the same time as the group in Problem 18. This group was treated in the same way except the subjects did not receive a ny training i nvolving biofeedback. They just talked with you about their headaches each week for 6 weeks, and you showed them lots of warmth, loving care, and attention. The numbers of headaches for the baseline and 2 -week
follow-up p eriod $f$ or $t$ he con trol $g$ roup $w$ ere a $s$ follows:

| Subject No. | No. of Headaches |  |  |
| :---: | :---: | :---: | :---: |
|  | Baseline | Follow-up |  |
|  | 1 |  |  |
|  | 2 |  | 8 |
|  | 34 | 112 |  |
|  | 46 | 115 |  |
|  | 5 |  | 6 |
|  | 6 |  | 5 |
|  | 7 |  | 8 |
|  | 80 | 1 |  |
|  | 9 |  | 9 |
| Evaluate the effect of these ot her factors, such as attention, on $t$ he i ncidence o f hea daches. U se $\alpha=0.05_{2 \text { tail }}$. clinical, health |  |  |  |
| Since the control group in Problem 19 also showed significant reductions in headaches, the interpretation of the results in Problem 18 is in doubt. Did relaxation training contribute to the headache decrease, or was the decrease due solely to other factors, such as attention? To answer this question, we can compare the $c$ hange scores $b$ etween $t$ he $t$ wo $g$ roups. T hese scores are shown here: |  |  |  | scores are shown here:


| Headache Change Scores |  |
| :---: | :---: |
| Relaxation training group | Control group |
| 14 | 1 |
|  | 61 |
|  | 4 |
|  | 2 |
| -1 | 2 |
|  | 8 |
|  | 7 |
|  | 6 |
|  | 5 |

What is your conclusion? Use $\alpha=0.05_{2 \text { tail }}$. clinical, health
21. The director of human resources at a la rge company is considering hiring part-time employees to fill jobs
previously s taffed with full-time w orkers. H owever, he wonders if doing so will affect productivity. Therefore, he conducts an experiment to evaluate the idea before i mplementing itf actory-wide. S ix f ull-time job openings, from the parts manufacturing division of the company, a re each filled with two e mployees hired to work half-time. The output of these six halftime pairs is compared with the output of a randomly selected sa mple of six full-time employees from the same division. Note that all employees in the experiment a re en gaged in $m$ anufacturing the sa me parts. The average number of parts produced per day by the half-time pairs and full-time workers is shown here:

| Parts Produced per Day |  |
| :---: | :---: |
| Half-time pairs | Full-time workers |
| 24 | 20 |
| 26 | 28 |
| 46 | 40 |
| 32 | 36 |
| 30 | 24 |
| 36 | 30 |

Does the hiring of part-time workers affect productivity? Use $\alpha=0.05_{2 \text { tail }}$ in making your decision. I/O
22. On the ba sis of her e xperience w ith c lients, ac linical $p$ sychologist thin ks th at d epression $m$ ay aff ect sleep. She decides to test this idea. The sleep of nine depressed patients and eight normal controls is mon itored for three successive nights. The average number of hours slept by each subject during the last two nights is shown in the following table:

| Hours of Sleep |  |
| :---: | :---: |
| Depressed patients | Normal controls |
| 7.1 | 8.2 |
| 6.8 | 7.5 |
| 6.7 | 7.7 |
| 7.3 | 7.8 |
| 7.5 | 8.0 |
| 6.2 | 7.4 |
| 6.9 | 7.3 |
| 6.5 | 6.5 |
| 7.2 |  |

a. Is the clinician correct? Use $\alpha=0.05_{2 \text { tail }}$ in making your decision.
b. If the effect is significant, es timate $t$ he $s$ ize of the effect. Using Cohen's criterion, is the effect a large one? clinical, health
23. An educator wants to determine whether early exposure to school will affect IQ. He enlists the aid of the parents of 12 pa irs of presc hool-age i dentical $t$ wins who agree to let their twins participate in this experiment. One member of each twin pair is enrolled in preschool for 2 years while the other member of each pair remains at home. At the end of the 2 years, the IQs of all the children are measured. The results follow.

|  | IQ |  |
| :---: | :---: | :---: |
| Pair | Twin at <br> preschool | Twin at <br> home |
| $\ldots \ldots \ldots$ |  |  |
| 1 | 110 | 114 |
| 2 | 121 | 118 |
| 3 | 107 | 103 |
| 4 | 117 | 112 |
| 5 | 115 | 117 |
| 6 | 112 | 106 |
| 7 | 130 | 125 |
| 8 | 116 | 113 |
| 9 | 111 | 109 |
| 10 | 120 | 122 |
| 11 | 106 | 116 |
| 12 |  | 104 |

Does early exposure to school affect IQ? Use $\alpha=0.05_{2 \text { tail }}$.
cognitive, developmental, education
24. Researchers at a leading university were interested in the effect of sleep on memory consolidation. Twenty-four student volunteers from an introductory psychology course were randomly assigned to either a "Sleep" or "No-Sleep" group, such that there were 12 students in each group. On the first day, all students were flashed pictures of 15 different objects, for 200 milliseconds each, on a co mputer screen and asked to remember as many of the objects as possible. That night, the "Sleep" g roup got a n ord inary n ight's s leep. T he " No-Sleep" group was kept a wake until the se cond night. All
subjects got an ordinary night's sleep on $t$ he second a nd third nights. On the fourth day, all subjects were tested to se e how many of the original 15 objects they remembered. The following are the number of objects remembered by each subject on the test:

| Sleep Group | No-Sleep Group |
| :---: | :---: |
| 14 | 8 |
| 13 | 9 |
|  | 8 |
|  | 93 |
| 11 | 7 |
| 10 | 9 |
|  | 90 |
| 13 | 12 |
| 12 | 8 |
| 11 | 11 |
| 14 | 9 |
| 13 | 12 |

a. Using $\alpha=0.05_{2 \text { tail }}$, what do you conclude?
b. Using $t$ he con fidence-interval approach, construct the $95 \%$ con fidence interval for $\mu_{1}-\mu_{2}$. What do y ou conc lude re garding $H_{0}$ ? W hat is your estimate of the size of the effect?
c. Using the con fidence-interval appro ach, co nstruct the $99 \%$ confidence interval for $\mu_{1}-\mu_{2}$. What do y ou conc lude re garding $H_{0}$ ? W hat is your estimate of the size of the effect? cognitive
25. Developmental ps ychologists at a pro minent California uni versity c onducted a 1 ongitudinal study investigating the effect of high levels of curiosity in early childhood on intelligence. The local population of 3 -year-olds was sc reened via a t est battery a ssessing c uriosity. Twelve of the 3 -yearolds scoring in the upper $90 \%$ of this variable were given an IQ test at age 3 and again at age 11. The following IQ scores were obtained.

|  | Subject Number | IQ (Age 3) | IQ (Age 11) |
| :---: | :---: | :---: | :---: |
|  | 1 | 100 | 114 |
|  | 2 | 105 | 116 |
|  | 3 | 125 | 139 |
|  | 4 | 140 | 151 |
|  | 5 | 108 | 106 |
|  | 6 | 122 | 119 |
|  | 7 | 117 | 131 |
|  | 8 | 112 | 136 |
|  | $6 \quad 9$ | 135 | 148 |
|  | 10 | 128 | 139 |
|  | 11 | 104 | 122 |
|  | 12 | 98 | 113 |

a. Using $\alpha=0.01_{2 \text { t ail }}$, what do y ou conc lude? In drawing y our c onclusion, a ssume that it is w ell established that IQ stays re latively constant over these years for individuals with average or belowaverage levels of curiosity.
b. What is t he s ize oft he ffect? cognitive, developmental
26. Noting that women seem more interested in emotions than men, a resea rcher in the field of women's studies wondered if women re call emotional events better than men. She decides to gather some data on the matter. An experiment is conducted in which eight randomly selected men a nd women are shown 20 highly emotional photographs and then asked to recall them 1 week after the showing. The following recall data are obtained. Scores a re percent correct; one man failed to show up for the recall test.

| Men | Women |
| :--- | ---: |
| $\ldots \ldots \ldots \ldots . \ldots$ |  |
| 75 | 85 |
| 85 | 92 |
| 67 | 78 |
| 77 | 80 |
| 83 | 88 |
| 88 | 94 |
| 86 | 90 |
|  | 89 |

Using $\alpha=0.05_{2 \text { tail }}$, what do you conclude? cognitive, social
27. Since $t$ he res ults of the experiment in P roblem 26 were very close to $b$ eing significant, the resea rcher decides to rep licate that experiment, on ly this time increasing t he p ower b y i ncreasing $N$. T his study included 10 men a nd 10 w omen. T he f ollowing results were obtained.

| Men | Women |
| :---: | :---: |
| 74 | 87 |
| 87 | 90 |
| 64 | 80 |
| 76 | 77 |
| 85 | 91 |
| 86 | 95 |
| 84 | 89 |
| 78 | 92 |
| 77 | 90 |
| 80 | 94 |

Using $\alpha=0.05_{2 \text { tail }}$, what do you conclude this time? cognitive, social
28. A physics instructor believes that natural lighting in classrooms improves student learning. He conducts
an experiment in which he teaches the same physics unit to $t$ wo groups of seven randomly assigned students in each group. Everything is similar for the groups, except that one of the groups receives the instruction in a c lassroom that admits a 1 ot of natural light in addition to the fluorescent lighting, while the other uses a classroom with only fluorescent lighting. At the end of the unit, both g roups are $g$ iven $t$ he sa me end- of-unit e xam. $T$ here a re 20 possible points on the exam; the higher the score, the b etter t he p erformance. The following scores are obtained.

| Natural Plus <br> Fluorescent Lighting | Fluorescent Lighting Only |
| :---: | :---: |
| 16 | 17 |
| 18 | 13 |
| 14 | 12 |
| 17 | 14 |
| 16 | 13 |
| 19 | 15 |
| 17 | 14 |

Using $\alpha=0.05_{2 \text { tail, }}$, what do you conclude? education

## ■SPSS ILLUSTRATIVE EXAMPLE 14.1

The general operation of SPSS and data entry are described in Appendix E, Introduction to SPSS. Chapter 14 of the textbook discusses the $t$ test for cor related and independent groups. As discussed in the SPSS material for Chapter 13, when analyzing the data for $t$ tests, SPSS computes $\mathbf{t}$ and the two-tailed probability of getting $\mathbf{t}$ or a value more extreme if chance alone is at w ork. SPSS calls this probability Sig. (2-tailed). Remember:

Sig. $(2$-tailed $)=p(2$-tailed $)$
The decision rules we will follow to evaluate $H_{0}$ and $H_{1}$ are the same as in Chapter 13. For non-directional $H_{1}$ 's:
if Sig. (2-tailed) $\leq \alpha$, reject $H_{0}$ and affirm $H_{1}$ if Sig. (2-tailed) $>\alpha$, retain $H_{0}$; cannot affirm $H_{1}$

For directional $H_{1}$ 's where the sample mean difference is in the predicted direction:
if $\mathbf{S i g}$. (2-tailed)/2 $\leq \alpha$, reject $H_{0}$ and affirm $H_{1}$ if $\mathbf{S i g}$. (2-tailed)/2 $\mathbf{2} \boldsymbol{\alpha}$, retain $H_{0}$; cannot affirm $H_{1}$

For directional $H_{1}$ 's where sample mean difference is not in the predicted direction, we always retain $H_{0}$.

## example

Use SPSS to solve Practice Problem 14.1, p. 362, in the text. Compare your answer with that given in the practice problem. For convenience, the problem is repeated here.

To motivate citizens to conserve gasoline, the government is considering mounting a nationwide conservation campaign. However, before doing so on a national level, it decides to conduct an experiment to evaluate the effectiveness of the campaign. For the experiment, the conservation campaign is conducted in a small but representative geographical area. Twelve families are randomly selected from the area, and the amount of gasoline they use is monitored for 1 month before the advertising campaign and for 1 month after the campaign. The following data are collected:

|  | Before the Campaign (gal/month) | After the Campaign (gal/month) |
| :---: | :---: | :---: |
| Family |  |  |
| A | 55 | 48 |
| B | 43 | 38 |
| C | 51 | 53 |
| D | 62 | 58 |
| E | 35 | 36 |
| F | 48 | 42 |
| G | 58 | 55 |
| H | 45 | 40 |
| I | 48 | 49 |
| J | 54 | 50 |
| K | 56 | 58 |

What is your conclusion? Use $\alpha=0.05_{2 \text { tail }}$.

## SOLUTION

## STEP 1: Enter the Data.

1. Enter the scores of Group 1 in the first column (VAR00001) of the Data Editor, beginning with the first Group 1 score in the top cell of the first column.
2. Enter the scores of Group 2 in the second column (VAR00002) of the Data Editor, beginning with the first Group 2 score in the top cell of the second column.

STEP 2: Name the Variables. In this example, we will give the default variables VAR00001 and VAR00002 the new names of Before_C and After_C, respectively.

1. Click the Variable View tab in the lower left corner of the Data Editor.

This displays the Variable View on screen with VAR00001 and VAR00002 displayed in the first and second cells of the Name column, respectively.
2. Click VAR00001; then type Before_C in the highlighted cell and then press Enter.
3. Replace VAR00002 with After_C and then press Enter.

Before_C is entered as the variable name, replacing VAR00001. The cursor then moves to the next cell, highlighting VAR00002.

After_C is entered as the variable name, replacing VAR00002.

STEP 3: Analyze the Data. The appropriate test for this example is Student's $t$ test for Correlated Groups. SPSS calls this test the "Paired-Samples T test." To have SPSS do the analysis using the Paired-Samples T test,

1. Click Analyze; then select Compare Means; then click Paired-Samples T Test....
2. Click the arrow in the middle of the dialog box.
3. Click After_C; then click the arrow in the middle of the dialog box.
4. Click OK.

This produces the Paired-Samples T Test dialog box with Before_C and After_C displayed in the large box on the left. Before_C is highlighted.

This moves Before_C to the Paired Variables: box under the column heading of Variable1.

This moves After_C to the Paired Variables: box under the column heading of Variable2. The SPSS default is to subtract Variable2 scores from Variable1 scores. Since we entered Before_C under Variable1 and After_C under Variable2, SPSS will subtract the After_C scores from the Before_C scores. This will result in a positive $t$ value, since in our example, the Before_C scores are higher than the After_C scores.

SPSS analyzes the data using the Paired-Samples T Test and outputs the results.

## Analysis Results

The results are displayed in three tables: the Paired-Samples Statistics table, the Paired Samples Correlations table, and the Paired-Samples Test table. Since for this analysis we are interested in just the Paired-Samples Test table, we have displayed it here alone.

Paired Samples Test

|  | Paired Differences |  |  |  |  | t | df | Sig. (2-tailed) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Mean | Std. Deviation | Std. Error Mean | 95\% Confidence Interval of the Difference |  |  |  |  |
|  |  |  |  | Lower | Upper |  |  |  |
| Pair 1 Before_C - After_C | 2.91667 | 3.47611 | 1.00347 | . 70805 | 5.12528 | 2.907 | 11 | . 014 |

The Paired-Samples Test table shows that $\boldsymbol{t}=\mathbf{2 . 9 0 7}$, and that Sig. (2-tailed) $=.014_{\text {2tailed }}$. Since $.014<0.05$, we reject $H_{0}$ and affirm $H_{1}$. The campaign appears to reduce gasoline consumption. Please note that the SPSS $\mathbf{t}$ value when rounded to two decimal places is in agreement with the $t_{\text {obt }}$ value arrived at in the textbook. The conclusions are the same as well.

## SPSS ADDITIONAL PROBLEMS

1. Use SPSS to solve Problem 23 in Chapter 14, p. 390 of the textbook. When solving this problem, name the variables Preschool and Home. Compare your answer with the answer to Problem 23, given in Appendix C of the textbook.
2. Use SPSS to do Chapter 14, Problem 25, p. 391 of textbook. When solving this problem, name the variables $I Q \_3$ and $I Q \_11$.

## SPSS ILLUSTRATIVE EXAMPLE 14.2

## example

Use SPSS to analyze the Illustrative Problem, Hormone $X$ and Sexual Behavior, given in Chapter 14, p. 395 of the textbook. For convenience, the problem is repeated here.

A physiologist has the hypothesis that hormone $X$ is important in producing sexual behavior. To investigate this hypothesis, 20 male rats were randomly sampled and then randomly assigned to two groups. The animals in group 1 were injected with hormone $X$ and then were placed in individual housing with a sexually receptive female. The animals in group 2 were given similar treatment except they were injected with a placebo solution. The number of matings was counted over a 20-minute period. The results are shown in the table below.

| Hormone X | Placebo |
| :--- | ---: |
| Group 1 | Group 2 |
| $\ldots$ |  |


|  | 8 | 5 |
| :---: | :---: | :---: |
| 10 | 6 |  |
| 12 | 3 | 4 |
|  | 6 | 7 |
|  | 6 | 8 |
|  | 7 | 6 |
|  | 9 | 5 |
|  | 8 | 4 |
| 11 | 7 |  |

What do you conclude? Use $\alpha=0.05_{2 \text { tail }}$.

## SOLUTION

## STEP 1: Enter the Data.

1. For an independent groups a nalysis, the scores of each group are stacked vertically, one a fter the other, in a single column of the Data Editor. To enter all the scores in the first column (VAR00001) of the Data Editor, do as follows:
a. First, enter the scores of Group 1 in the first column (VAR00001) of the Data Editor, beginning with the first Group 1 score in the first cell of the first column.
b. Next, enter the scores of Group 2 in the first column, directly beneath the last Group 1 score. There should be no spaces or empty cells after the last Group 1 score. The first column should now contain the scores of both groups, beginning with the Group 1 scores and ending with the Group 2 scores, and there should be no spaces or empty cells between any of the scores.
2. In the second column (VAR00002) enter a coding number to designate to which group each score belongs. Do this as follows. In the second column (VAR00002) enter the number 1 next to each Group 1 score, and the number $\mathbf{2}$ next to each Group 2 score. These coding numbers identify the group to which each score belongs.

The resulting Data Editor is shown here. For the moment, ignore the variable name row; we will name the variables in the next step.

|  | Matings | Group | var |
| ---: | ---: | ---: | ---: | ---: |
| 1 | 8.00 | 1.00 |  |
| 2 | 10.00 | 1.00 |  |
| 3 | 12.00 | 1.00 |  |
| 4 | 6.00 | 1.00 |  |
| 5 | 6.00 | 1.00 |  |
| 6 | 7.00 | 1.00 |  |
| 7 | 9.00 | 1.00 |  |
| 8 | 8.00 | 1.00 |  |
| 9 | 7.00 | 1.00 |  |
| 10 | 11.00 | 1.00 |  |
| 11 | 5.00 | 2.00 |  |
| 12 | 6.00 | 2.00 |  |
| 13 | 3.00 | 2.00 |  |
| 14 | 4.00 | 2.00 |  |
| 15 | 7.00 | 2.00 |  |
| 16 | 8.00 | 2.00 |  |
| 17 | 6.00 | 2.00 |  |
| 18 | 5.00 | 2.00 |  |
| 19 | 4.00 | 2.00 |  |
| 20 | 8.00 | 2.00 |  |
|  |  |  |  |

STEP 2: Name the Variables. In this example, we will give the default variables VAR00001 and VAR00002 the new names of Matings and Group, respectively. To do so,

1. Click the Variable View tab in the lower left corner of the Data Editor.
2. Click VAR00001; then type Matings in the highlighted cell and then press Enter.
3. Replace VAR00002 with Group and then press Enter.

This displays the Variable View on screen, with VAR00001 and VAR00002 displayed in the first and second cells of the Name column, respectively.

Matings is entered as the variable name, replacing VAR00001. The cursor then moves to the next cell, highlighting VAR00002.

Group is entered as the variable name, replacing VAR00002.

STEP 3: Analyze the Data. The appropriate test for this example is Student's $t$ test for Independent Groups. SPSS calls this test the Independent-Samples T Test. To have SPSS do the analysis using the IndependentSamples T Test,

1. Click Analyze; then select Compare Means; then click on IndependentSamples T Test....
2. Click the top arrow for the Test Variable(s): box.
3. Click Group; then click the bottom arrow for the Grouping Variable box.
4. Click Define Groups....
5. Type 1 in the Group 1: box.
6. Type 2 in the Group 2: box.
7. Click on Continue.
8. Click OK.

This produces the Independent-Samples T Test dialog box with Matings and Group displayed in the large box on the left. Matings is highlighted.

This moves Matings to the Test Variable(s): dialog box. SPSS calls the dependent variable, the Test Variable.

This results in Group(??) being displayed in the Grouping Variable box. This is SPSS's way of identifying Group as the grouping variable and telling you that you need to define the groups.

This produces the Define Groups... dialog box. This is where you tell SPSS the number that you assigned Group 1 and Group 2 scores. SPSS needs to know to which group each score belongs to do the analysis.

This tells SPSS that Group 1 scores are coded with a 1.

This tells SPSS that Group 2 scores are coded with a 2. SPSS now has all the information it needs to carry out the analysis.

This returns you to the Independent-Samples T Test dialog box so that you can give the OK command.

SPSS analyzes the Matings data and displays the Group Statistics and the Independent Samples Test tables. Since for this analysis we are interested in just the Independent Samples Test table, we have displayed it here alone.

## Analysis Results

| Independent Samples Test |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Levene's Test for Equality of Variances |  | t-test for Equality of Means |  |  |  |  |  |  |
|  |  | F | Sig. | t | df | Sig. (2-tailed) | Mean Difference | Std. Error Difference | 95\% Confidence Interval of the Difference |  |
|  |  |  |  |  |  |  |  |  | Lower | Upper |
| Matings | Equal variances assumed | . 416 | . 527 |  | $10$ | . 004 |  |  | 1.01731 |  |
|  | Equal variances not assumed |  |  | 3.300 | 17.403 | . 004 | 2.80000 | . 84853 | 1.01292 | 4.58708 |

To conclude regarding $H_{0}$, we are interested in $\mathbf{t}$ and Sig. (2-tailed). This information is contained in the Equal variances assumed row of the table (remember, one of the assumptions of the independent groups $t$ test is homogeneity of variance). This row shows that $\boldsymbol{t}=\mathbf{3 . 3 0 0}$, and that Sig. (2-tailed) $=.004_{2 \text { tailed }}$. Since $.004<\mathbf{0 . 0 5}$, you conclude by rejecting $H_{0}$ and affirming $H_{1}$. Hormone $X$ appears to increase the number of matings. Note, the value obtained for $t_{\text {obt }}$ in the textbook and the value of $\mathbf{t}$ given by SPSS are the same; so are the conclusions reached by using each.

## SPSS ADDITIONAL PROBLEMS

1. Use SPSS to do C hapter 14, problem 24, part a, p. 390 . Name the grouping variable Group and name the scores Memory.
2. A health psychologist wants to evaluate the effects of a particular diet on weight. Thirty-five obese male volunteers are randomly selected and put on the diet for 3 months. Baseline and end-of-program weights are recorded for each subject. The weights (in pounds) shown here are obtained:

| Subject \# | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Baseline | 210 | 213 | 190 | 220 | 235 | 265 | 258 | 198 | 271 | 195 | 241 | 212 |
| End of Program | 200 | 201 | 185 | 210 | 230 | 245 | 263 | 193 | 261 | 184 | 237 | 200 |


| Subject \# | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Baseline | 261 | 272 | 185 | 242 | 266 | 247 | 232 | 170 | 243 | 180 | 275 | 248 |
| End of Program | 246 | 252 | 167 | 231 | 251 | 241 | 227 | 155 | 240 | 185 | 262 | 223 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Subject \# | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 |  |
| Baseline | 261 | 269 | 278 | 210 | 252 | 258 | 249 | 214 | 182 | 246 | 271 |  |
| End of Program | 240 | 245 | 250 | 196 | 237 | 238 | 241 | 201 | 167 | 232 | 256 |  |

a. Use SPSS and $\alpha=0.05_{2 \text { tail }}$ to evaluate the nondirectional $H_{1}$.
b. Next, analyze these data with the $t$ test for independent groups, calling the Baseline scores Group 1, and calling the End of Program scores Group 2. How do you explain the difference in outcome between part $\mathbf{a}$ and part $\mathbf{b}$ ?
3. The $r$ andom $n$ umbers in $t$ he $t$ able below were obtained from $t$ he $t$ able $J$, $t$ he $t$ able of $r$ andom $n$ umbers in Appendix G.

| Group 1 | 8 | 2 | 7 | 5 | 2 | 6 |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Group 2 | 7 | 5 | 6 | 3 | 1 | 7 | 4 | 1 |

a. Use SPSS to do a one-way, independent groups $t$ test on the data. Use $\alpha=0.05_{2 \text { tail }}$ -
b. Add a constant of 5 to the scores of Group 2. This process is analogous to what concerning the population scores? Reanalyze the data. What do you conclude this time? Explain the difference between conclusions in part a and part b.

## NOTES

14.1 Most textbooks present t wo met hods for finding $t_{\text {obt }}$ for the correlated groups design: (1) the directdifference method and (2) a method that requires calculations oft he de gree of re lationship ( the correlation co efficient) existing between the two sets of r aw scores. We ha ve o mitted t he lat ter method because it is rarely used in practice and, in our opinion, confuses many students. The directdifference m ethod flows nat urally a nd logically
from the discussion of the $t$ test for single samples. It is much easier to use and much more frequently employed in practice.
14.2 Occasionally, in a rep eated mea sures experiment in which the alternative hypothesis is directional, the researcher may want to test whether the independent variable has an effect $g$ reater than some specified value other than 0 . For example, assuming a d irectional $h$ ypothesis $w$ as justified in $t$ he
present experiment, the resea rcher might want to test whether the a verage re ward $v$ alue of a rea $A$ was greater than five bar presses per minute more than area B. In this case, the null hypothesis would be that the re ward value of a rea $A$ is $n$ ot $g$ reater than five bar presses per minute more than area $B$. In this case, $\mu_{D}=5$ rather than 0 .
14.3 Occasionally, in an experiment in volving in dependent groups, the alternative hypothesis is directional and specifies $t$ hat $t$ he independent $v$ ariable has an effect greater than some specified value other than 0 . For e xample, int he " hormone X "e xperiment, assuming a d irectional $h$ ypothesis $w$ as 1 egitimate, the physiologist might want to test whether hormone X has an average effect of over three matings more than the placebo. In this c ase, the null hypothesis would be that the average effect of the hormone X is $\leq 3$ matings more than the placebo. We would test this hypothesis by assuming that the sample which received hor mone $\mathrm{X} w$ as a r andom sa mple from a population having a mean 3 units more than the population from which the placebo sample was taken. In this case, $\mu_{\bar{X}_{1}}-\bar{X}_{2}=3$ and

$$
t_{\mathrm{obt}}=\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)-3}{\sqrt{\left(\frac{S S_{1}+S S_{2}}{n_{1}+n_{2}-2}\right)\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}
$$

14.4 Although we ha ven't pre viously presen ted the $t$ equations in this form, the following can be shown:

| $t$ Test for Independent Groups | $t$ Test for Correlated Groups |
| :---: | :---: |
| $t_{\mathrm{obt}}=\frac{\bar{X}_{1}-\bar{X}_{2}}{s_{\bar{X}_{1}-\bar{X}_{2}}}$ | $t_{\mathrm{obt}}=\frac{\bar{D}}{s_{D}}$ |
| $\bar{X}_{1}-\bar{X}_{2}$ | $\bar{D}$ |
| $=\sqrt{s_{\bar{X}_{1}}^{2}+s_{\bar{X}_{2}^{2}}{ }^{2}}$ | $\sqrt{s_{\bar{X}_{1}}{ }^{2}+s_{\bar{X}_{2}}{ }^{2}-2 r s_{\bar{X}_{1}} s_{\bar{X}_{2}}}$ |

Since $\bar{X}_{1}-\bar{X}_{2}$ is e qual to $\bar{D}$, the $t_{\text {obt }}$ equations for independent groups and correlated groups are identical except for the term $-2 r s_{\bar{X}_{1}-} s_{\bar{X}_{2}}$ in the denominator of $t$ he cor related $g$ roups e quation. Thus, the higher p ower of the cor related g roups design depends on the magnitude of $r$. The higher the value of $r$ is, the more powerful the correlated groups design will be relative to the independent groups design. Using the data of the conservation film experiment to illustrate the use of these equations, we obtain the following:

## Independent Groups

## Correlated Groups

$t_{\mathrm{obt}}=\frac{\bar{X}_{1}-\bar{X}_{2}}{\sqrt{s_{\bar{X}_{1}}^{2}+s_{\bar{X}_{2}^{2}}^{2}}}$

$$
\text { where } s_{\bar{X}_{1}}^{2}=\frac{s_{1}^{2}}{n_{1}}=\frac{82.083}{12}=6.840
$$

$$
\text { and } s_{\bar{X}_{2}^{2}}^{2}=\frac{s_{2}^{2}}{n_{2}}=\frac{100.364}{12}=8.364
$$

$$
\begin{aligned}
t_{\mathrm{obt}} & =\frac{\bar{D}}{\sqrt{s_{\bar{X}_{1}^{2}}^{2}+s_{\bar{X}_{2}}^{2}-2 r s_{\bar{X}_{1}} s_{\bar{X}_{2}}}} \\
& =\frac{2.917}{\sqrt{6.840+8.364-2(0.938)(2.615)(2.892)}} \\
& =\frac{2.917}{\sqrt{1.017}} \\
& =2.91
\end{aligned}
$$

Thus,

$$
\begin{aligned}
t_{\text {obt }} & =\frac{48.917-46.000}{\sqrt{6.840+8.364}}=\frac{2.917}{\sqrt{15.204}}=0.748 \\
& =0.75
\end{aligned}
$$

Note that these are the same values obtained previously.

## ■ ONLINE STUDY RESOURCES

## CENGAGEbrain

Login to CengageBrain.com to access the resources your instructor has assigned. For this book, you can access the book's co mpanion website for chapter-specific learning tools including Know and Be Able to Do, practice quizzes, flash cards, and glossaries, and a link to Statistics and Research Methods Workshops.

If your professor has assigned Aplia homework:

1. Sign in to your account.
2. Complete the cor responding ho mework exercises as required by your professor.
3. When finished, click "Grade It Now" to see which areas you have mastered and which need more work, and for detailed explanations of every answer.

Visit www.cengagebrain.com to access your account and to purchase materials.

CHAPTER OUTLINE
Introduction: The $F$ Distribution
F Test and the Analysis of Variance (ANOVA)
Overview of One-Way ANOVA
Within-Groups Variance Estimate, $M S_{\text {within }}$
Between-Groups Variance Estimate, $M S_{\text {between }}$
The $F$ Ratio
Analyzing Data with the ANOVA Technique
Experiment: Different Situations and Stress
Logic Underlying the One-Way ANOVA
Relationship Between ANOVA and the $t$ Test
Assumptions Underlying the Analysis of Variance
Size of Effect Using $\hat{\omega}^{2}$ or $\eta^{2}$ Omega Squared, $\hat{\omega}^{2}$ Eta Squared, $\eta^{2}$
Power of the Analysis of Variance
Power and $N$
Power and the Real Effect of the Independent Variable
Power and Sample Variability
Multiple Comparisons
A Priori, or Planned, Comparisons
A Posteriori, or Post Hoc, Comparisons

## Introduction to the Analysis of Variance

## LEARNING OBJECTIVES

After completing this chapter, you should be able to:

- Define the sampling distribution of $F$ and specify its characteristics.
- Specify the $H_{0}$ and $H_{1}$ for one-way, independent groups ANOVA.
- Solve problems using one-way ANOVA; understand the derivation of $M S_{\text {within }}$ and $M S_{\text {between }}$, and explain why $M S_{\text {between }}$ is always put in the numerator; explain why $M S_{\text {between }}$ is sensitive to the real effects of the IV and $M S_{\text {within }}$ is not; and specify the assumptions underlying one-way ANOVA.
- Explain why $H_{1}$ in one-way ANOVA is always nondirectional and why we evaluate it with a one-tailed evaluation.
- Calculate the size of effect for a one-way ANOVA using $\hat{\omega}^{2}$ and $\eta^{2}$, and explain the difference between the values obtained by each.
- Specify how power using one-way ANOVA varies with changes in $N$, size of the real effect, and sample variability.
- Specify the difference between planned and post hoc comparisons; specify which is more powerful, and explain why.
- Do multiple comparisons using planned comparisons and explain why $M S_{\text {within }}$ from the ANOVA is used.
- Do post hoc multiple comparisons using the Tukey HSD and the Scheffé tests; understand how each test accomplishes its goal of controlling Type I error.
- Understand the differences in power between planned comparisons, the Tukey HSD, and the Scheffé test.

The Tukey Honestly Significant Difference (HSD) Test
The Scheffé Test
Comparison Between Planned Comparisons, the Tukey HSD Test, and the Scheffé Test

## What Is The Truth?

- Much Ado About Almost Nothing

Summary
Important New Terms
Questions and Problems
What Is the Truth? Questions
SPSS
Notes
Online Study Resources

- Rank order planned comparisons, the Tukey HSD and the Scheffé test, with regard to power.
- Understand the illustrative examples, do the practice problems, and understand the solutions.


## INTRODUCTION: THE F DISTRIBUTION

In Chapters 12, 13, and 14, we have been using the mean as the basic statistic for evaluating the null hypothesis. It's also possible to use the variance of the data for hypothesis testing. One of the most important tests that does this is called the $F$ test, after R. A. Fisher, the statistician who developed it. In using this test, we calculate the statistic $F_{\text {ob }}$, which fundamentally is the ratio of two independent variance estimates of the sa me population variance $\sigma^{2}$. In equation form,

$$
F_{\text {obt }}=\frac{\text { Variance estimate } 1 \text { of } \sigma^{2}}{\text { Variance estimate } 2 \text { of } \sigma^{2}}
$$

The sampling distribution of $F$ can be generated empirically by (1) taking all possible samples of size $n_{1}$ and $n_{2}$ from the same population, (2) estimating the population variance $\sigma^{2}$ from each of the samples using $s_{1}{ }^{2}$ and $s_{2}{ }^{2}$, (3) calculating $F_{\text {obt }}$ for all possible combinations of $s_{1}{ }^{2}$ and $s_{2}{ }^{2}$, and then (4) calculating $p(F)$ for each different value of $F_{\text {obt }}$. The resulting distribution is the sampling distribution of $F$. Thus, as with all sampling distributions,

## definition $\quad$ The sampling distribution of $\boldsymbol{F}$ gives all the possible $F$ values along with the $p(F)$ for each value, assuming sampling is random from the population.

Like the $t$ distribution, the $F$ distribution varies with degrees of freedom. However, the $F$ distribution has two values for degrees of freedom, one for the numerator and one for the denominator. As you might guess, we lose 1 degree of freedom for each calculation of variance. Thus,

$$
\begin{aligned}
& \mathrm{df} \text { for the numerator }=\mathrm{df}_{1}=n_{1}-1 \\
& \mathrm{df} \text { for the denominator }=\mathrm{df}_{2}=n_{2}-1
\end{aligned}
$$

Figure 15.1 shows an $F$ distribution with 3 d f in the numerator and 16 df in the denominator. Several features are apparent. First, since $F$ is a ratio of variance

figure 15.1 $F$ distribution with 3 degrees of freedom in the numerator and 16 degrees of freedom in the denominator.
estimates, it never has a negative value ( $s_{1}{ }^{2}$ and $s_{2}{ }^{2}$ will always be positive). Second, the $F$ distribution is positively skewed. Finally, the median $F$ value is a pproximately equal to 1 .

Like the $t$ test, there is a family of $F$ curves. With the $F$ test, however, there is a different curve for each combination of $\mathrm{df}_{1}$ and $\mathrm{df}_{2}$. Table F in Appendix D gives the critical values of $F$ for various combinations of $\mathrm{df}_{1}$ and $\mathrm{df}_{2}$. There are two entries for every cell. The light entry gives the critical $F$ value for the 0.05 level. The dark entry gives the critical $F$ value for the 0.01 level. Note that these are one-tailed values for the right-hand tail of the $F$ distribution. To illustrate, Figure 15.2 shows the $F$ distribution for 4 df in the numerator and 20 df in the denominator. From Table F, $F_{\text {crit }}$ at the 0.05 level equals 2.87 . This means that $5 \%$ of the $F$ values are equal to or greater than 2.87. The area containing these values is shown shaded in Figure 15.2.

figure 15.2 Illustration showing that $F_{\text {crit }}$ in Table $F$ is one-tailed for the right-hand tail.

## F TEST AND THE ANALYSIS OF VARIANCE (ANOVA)

The $F$ test is appropriate in any experiment in which the scores can be used to form two independent estimates of the population variance. One quite frequent situation in the behavioral sciences for which the $F$ test is appropriate occurs when analyzing the data from experiments that use more than two groups or conditions.

Thus far in the text, we have discussed the most fundamental experiment: the two-group study i nvolving a con trol group and an experimental g roup. A lthough this design is still used frequently, it is more common to encounter experiments that involve three or more groups. A major limitation of the two-group study is that often two g roups a re not sufficient to a llow a c lear interpretation of the findings. For example, the "thalamus and pain perception" experiment (p. 374) included two groups. One received lesions in the thalamus and the other in an area "believed" to be unrelated to pain. The results showed a significantly higher pain threshold for the rats with thalamic lesions. Our conclusion was that lesions of the thalamus increased pain threshold. However, the difference between the two groups could just as well have been due to a lowering of pain threshold as a res ult of the other lesion rather than a raising of threshold because of the thalamic damage. This a mbiguity could have been dispelled if three groups had been run rather than two. The third group would be a non-lesion control group. Comparing the pain threshold of the two lesion groups with the non-lesion group would help resolve the issue.

Another class of experiments requiring more than two groups involves experiments in which the independent variable is $v$ aried as a factor; that is, a pre determined range of the independent variable is se lected, a nd se veral values spanning the range are used in the experiment. For example, in the "hormone X a nd sexual behavior" experiment, rather than arbitrarily picking one value of the hormone, the experimenter would probably pick several levels across the range of possible effective values. Each level would be administered to a different group of subjects, randomly sampled from the population. There would be as many groups in the experiment as there a re levels of the hor mone. This type of experiment has the advantage of allowing the experimenter to det ermine how the dependent variable changes with several different levels of $t$ he independent $v$ ariable. In $t$ his e xample, $t$ he e xperimenter would find out how mating behavior varies in frequency with different levels of hor mone X . N ot on ly do es using se veral levels a llow a la wful re lationship to emerge if one exists, but when the experimenter is unsure of what single level might be effective, using several levels increases the possibility of a positive result occurring from the experiment.

Given that it is frequently desirable to do experiments with more than two groups, you may wonder why these experiments a ren't a nalyzed in the usual way. For example, if the experiment used four independent groups, why not simply compare the group means two at a time using the $t$ test for independent groups? That is, why not just calculate $t$ values comparing group 1 with 2,3 , and $4 ; 2$ with 3 and 4; and 3 with 4 ?

The answer involves considerations of Type I error. You will recall that, when we set alpha at the 0.05 level, we are in effect saying that we are willing to risk being wrong $5 \%$ of the time when we reject $H_{0}$. In an experiment with two groups, there would be just one $t$ calculation, and we would compare $t_{\text {obt }}$ with $t_{\text {crit }}$ to see whether $t_{\text {obt }}$ fell in the critical region for rejecting $H_{0}$. Let's assume alpha $=0.05$. The critical value of $t$ at the 0.05 level was originally determined by taking the sampling distribution of
$t$ for the appropriate df and locating the $t$ value such that the proportion of the total number of $t$ values that were equal to or more extreme than it equaled 0.05 . That is, if we were randomly sampling one $t$ score from the $t$ distribution, the probability it would be $\geq t_{\text {crit }}$ is 0.05 .

Now what happens when we do an experiment involving many $t$ comparisons, say, 20 of them? We are no longer sampling just one $t$ value from the $t$ distribution but 20 . The probability of getting $t$ values equal to or greater than $t_{\text {crit }}$ obviously goes up. It is no longer equal to 0.05 . The probability of making a Type I er ror has increased as a result of doing an experiment with many groups and analyzing the data with more than one comparison.

## OVERVIEW OF ONE-WAY ANOVA



The analysis of variance is a statistical technique used to analyze multigroup experiments. Using the $F$ test allows us to make one overall comparison that tells whether there is a significant difference between the means of the groups. Thus, it avoids the problem of an increased probability of Type I error that occurs when assessing many $t$ values. The analysis of variance, or ANOVA, as it is frequently called, is used in both independent groups and repeated measures designs. It is also used when one or more factors (variables) are investigated in the same experiment. In this section, we shall consider the simplest of these designs: the simple randomized-group design. This design is also often referred to as the one-way analysis of variance, independent groups design. A third designation often used is the single factor experiment, independent groups design.* According to this design, subjects are randomly sampled from the population and then randomly assigned to the conditions, preferably such that there are an equal number of subjects in each condition. There are as many independent groups as there are conditions. If the study is investigating the effect of an independent variable as a factor, then the conditions would be the different levels of the independent variable used. Each group would receive a different level of the independent variable (e.g., a d ifferent conc entration of hor mone X ). Thus, in this design, scores from several independent groups are analyzed.

The alternative hypothesis used in the analysis of variance is nondirectional. It states that one or more of the conditions have different effects from at least one of the others on the dependent variable. The null hypothesis states that the different conditions a re all equally effective, in which case the scores in each g roup a re random samples from populations having the same mean value. If there are $k$ groups, then the null hypothesis specifies that

$$
\mu_{1}=\mu_{2}=\mu_{3}=\ldots=\mu_{k}
$$

where $\quad \mu_{1}=$ mean of the population from which group 1 is taken
$\mu_{2}=$ mean of the population from which group 2 is taken
$\mu_{3}=$ mean of the population from which group 3 is taken
$\mu_{k}=$ mean of the population from which group $k$ is taken

[^38]Like the $t$ test, the analysis of variance assumes that only the mean of the scores is affected by the independent variable, not the variance. Therefore, the a nalysis of variance assumes that

$$
\sigma_{1}{ }^{2}=\sigma_{2}{ }^{2}=\sigma_{3}{ }^{2}=\cdots=\sigma_{k}{ }^{2}
$$

where $\quad \sigma_{1}{ }^{2}=$ variance of the population from which group 1 is taken
$\sigma_{2}{ }^{2}=$ variance of the population from which group 2 is taken
$\sigma_{3}{ }^{2}=$ variance of the population from which group 3 is taken
$\sigma_{k}{ }^{2}=$ variance of the population from which group $k$ is taken
Essentially, the analysis of variance partitions the total variability of the data $\left(S S_{\text {total }}\right)$ in to two sources: the variability that exists within each group, called the within-groups sum of squares ( $S S_{\text {within }}$ ), and the variability that exists between the groups, called the between-groups sum of squares ( $S S_{\text {between }}$ ) (See Figure 15.3). Each sum of squares is used to form an independent estimate of the $H_{0}$ population variance. The estimate based on the within-groups variability is called the within-groups variance estimate ( $M S_{\text {within }}$ ), a nd the estimate based on $t$ he between-groups variability is called the between-groups variance estimate $\left(M S_{\text {between }}\right)$. Finally, an $F$ ratio is calculated where

$$
F_{\text {obt }}=\frac{\text { Between-groups variance estimate }}{\text { Within-groups variance estimate }}=\frac{M S_{\text {between }}}{M S_{\text {within }}}
$$

This process is shown in Figure 15.3. The between-groups variance estimate increases with the magnitude of the independent variable's effect, whereas the withingroups variance estimate is unaffected. Thus, the larger the $F$ ratio is, the more unreasonable the null hypothesis becomes. As with the other statistics, we evaluate $F_{\text {obt }}$ by comparing it with $F_{\text {crit }}$ If $F_{\text {obt }}$ is equal to or exceeds $F_{\text {crit }}$, we reject $H_{0}$. Thus, the decision rule states the following:

$$
\begin{aligned}
& \text { If } F_{\text {obt }} \geq F_{\text {crit }} \text {, reject } H_{0} \text {. } \\
& \text { If } F_{\text {obt }}<F_{\text {crit }} \text {, retain } H_{0} \text {. }
\end{aligned}
$$

## Within-Groups Variance Estimate, $\boldsymbol{M S}_{\text {within }}$

Remember from Chapter 4, variance is a concept that quantifies how large the differences are between the scores and the mean of a set of scores. The within-groups variance estimate of the $H_{0}$ population variance $\sigma^{2}$ is based on the variability within each

figure 15.3 Overview of the analysis of variance technique, simple randomized-groups design.
group. It tells us how large the differences are between the scores within each group and the g roup mean. It is s ymbolized by $M S_{\text {within }}$, wh ich stands for Mean $S$ quare within. This variance is the same variance estimate used in the $t$ test for independent groups that was symbolized by $s_{w}{ }^{2}$. Statistical tradition is quite strong that when dealing with the analysis of variance, the symbol $M S_{\text {within }}$ is employed to denote the within-groups variance estimate, instead of $s_{w}{ }^{2}$. For various reasons I have decided to follow tradition and use the symbol $M S_{\text {within }}$.

Since $M S_{\text {within }}$ and $s_{w}{ }^{2}$ symbolize the sa me variance es timate, y ou would expect the equations for each to be the same. This is indeed the case when there are only two groups in the experiment or study. The equations for $M S_{\text {within }}$ and $s_{w}{ }^{2}$ are given below.

$$
\begin{aligned}
s_{W}^{2} & =\frac{S S_{1}+S S_{2}}{\left(n_{1}-1\right)+\left(n_{2}-1\right)} \quad \text { t test, only } 2 \text { groups } \\
M S_{\text {wihhin }} & =\frac{S S_{1}+S S_{2}+S S_{3}+\cdots+S S_{k}}{\left(n_{1}-1\right)+\left(n_{2}-1\right)+\left(n_{3}-1\right)+\cdots+\left(n_{k}-1\right)}
\end{aligned}
$$

analysis of variance, usually more than 2 groups
where $\quad k=$ the number of groups in the experiment
From the above two equations, it can be seen that for a two-group experiment,

$$
M S_{\text {within }}=s_{W}^{2}
$$

The conceptual equation for $M S_{\text {within }}$ is given below.

$$
M S_{\text {within }}=\frac{S S_{1}+S S_{2}+S S_{3}+\cdots+S S_{k}}{\left(n_{1}-1\right)+\left(n_{2}-1\right)+\left(n_{3}-1\right)+\cdots+\left(n_{k}-1\right)}
$$

conceptual equation for withingroups variance estimate

This equation can be simplified to

$$
M S_{\text {within }}=\frac{S S_{1}+S S_{2}+S S_{3}+\cdots+S S_{k}}{N-k}
$$

where

$$
N=n_{1}+n_{2}+n_{3}+\cdots+n_{k}
$$

The numerator of this equation is called the within-groups sum of squares. It is symbolized by $S S_{\text {within }}$. The denominator equals the degrees of freedom for the withingroups variance estimate. Since we lose 1 degree of freedom for each sample variance calculated and there are $k$ variances, there are $N-k$ degrees of freedom. Thus,

$$
M S_{\text {within }}=\frac{S S_{\text {within }}}{\mathrm{df}_{\text {within }}} \quad \text { within-groups variance estimate }
$$

where $S$

$$
\begin{aligned}
S_{\text {wihhin }} & =S S_{1}+S S_{2}+S S_{3}+\ldots+S S_{k} \quad \text { within-groups sum of squares } \\
\mathrm{df}_{\text {wihhin }} & =N-k \quad \text { within-groups degrees of freedom }
\end{aligned}
$$

This e quation for $S S_{\text {within }}$ is fine conc eptually, bu t w hen a ctually co mputing $S S_{\text {within }}$, it is better to use another equation. This equation is the algebraic equivalent
of the conceptual equation, but it is easier to use and leads to fewer rounding errors. The computational equation is $g$ iven here a nd will be used subsequently when we analyze the data from an experiment:

$$
S S_{\text {within }}=\sum^{\substack{\text { all } \\ \text { scores }}} X^{2}-\left[\frac{\left(\sum X_{1}\right)^{2}}{n_{1}}+\frac{\left(\sum X_{2}\right)^{2}}{n_{2}}+\frac{\left(\sum X_{3}\right)^{2}}{n_{3}}+\cdots+\frac{\left(\sum X_{k}\right)^{2}}{n_{k}}\right]
$$

## Between-Groups Variance Estimate, $\boldsymbol{M S}_{\text {between }}$

The se cond estimate of the variance of the null-hypothesis populations, $\sigma^{2}$ is ba sed on the variability between the groups. It is symbolized by $M S_{\text {between }}$ and is ca lled the between-groups variance estimate.

The null hypothesis states that each group is a random sample from populations where $\mu_{1}=\mu_{2}=\mu_{3}=\ldots=\mu_{k}$. If the null hypothesis is correct, then we can use the variability between the means of the samples to es timate the variance of these populations, $\sigma^{2}$.

We know from Chapter 12 that, if we take all possible samples of size $n$ from a population and calculate their mean values, the resulting sampling distribution of means has a variance of

$$
\sigma_{\bar{X}}^{2}=\sigma^{2} / n .
$$

Solving for $\sigma^{2}$, we arrive at

$$
\sigma^{2}=n \sigma_{\bar{X}}^{2}
$$

Estimating $\sigma_{\bar{X}}{ }^{2}$, the previous equation becomes

$$
\text { estimate of } \sigma^{2}=n\left(\text { estimate of } \sigma_{\bar{X}}{ }^{2}\right)
$$

If $\sigma_{\bar{X}}{ }^{2}$ can be estimated, we can substitute the estimate in the previous equation to arrive at an independent estimate of $\sigma^{2}$. It turns out that $\sigma_{\bar{X}}{ }^{2}$ can be estimated because in the actual experiment there are several sample mean scores. We can use the variance of these mean scores to es timate the variance of the full set of sample mean scores, $\sigma_{\bar{X}}{ }^{2}$. This estimate of $\sigma_{\bar{X}}{ }^{2}$ is symbolized by $s_{\bar{X}}{ }^{2}$. Since there are $k$ sample means, to use the variability of the sample means as an estimate, we divide by $k-1$, just as when we have $N$ raw scores in a sample we divide by $N-1$ to es timate the variance of the raw score population [with sample raw scores, the estimate of $\sigma^{2}$ is $\left.\frac{\sum(X-\bar{X})^{2}}{N-1}\right]$. Thus,

$$
\begin{gathered}
s_{\bar{X}}^{2}=\frac{\sum\left(\bar{X}-\bar{X}_{G}\right)^{2}}{k-1} \quad \text { estimate of } \sigma_{\bar{X}}^{2} \text { and } \\
\left.M S_{\text {between }}=\text { estimate of } \sigma^{2}=n \text { (estimate of } \sigma_{\bar{X}}^{2}\right)=n s_{\bar{X}}^{2}=n\left[\frac{\sum\left(\bar{X}-\bar{X}_{G}\right)^{2}}{k-1}\right]
\end{gathered}
$$

where $\quad \bar{X}_{G}=$ grand mean (overall mean of all the scores combined)
$k=$ number of sample means $=$ number of groups

Expanding the summation, we arrive at the conceptual equation for $M S_{\text {between }}$.

## MENTORINGTIP

Caution: this equation can only be used when there is the same number of subjects in each group.

$$
M S_{\text {between }}=\frac{n\left[\left(\bar{X}_{1}-\bar{X}_{G}\right)^{2}+\left(\bar{X}_{2}-\bar{X}_{G}\right)^{2}+\left(\bar{X}_{3}-\bar{X}_{G}\right)^{2}+\cdots+\left(\bar{X}_{k}-\bar{X}_{G}\right)^{2}\right]}{k-1}
$$

The numerator of this equation is called the between-groups sum of squares. It is symbolized by $S S_{\text {between }}$. The denominator is the degrees of freedom for the betweengroups variance estimate. It is symbolized by $\mathrm{df}_{\text {between }}$. Thus,
where

$$
\begin{aligned}
M S_{\text {between }}= & \frac{S S_{\text {between }}}{\mathrm{df}_{\text {between }}} \quad \text { between-groups variance estimate } \\
S S_{\text {between }}= & n\left[\left(\bar{X}_{1}-\bar{X}_{G}\right)^{2}+\left(\bar{X}_{2}-\bar{X}_{G}\right)^{2}+\left(\bar{X}_{3}-\bar{X}_{G}\right)^{2}+\cdots\right. \\
& \left.+\left(\bar{X}_{k}-\bar{X}_{G}\right)^{2}\right] \quad \text { between-groups sum of squares } \\
\mathrm{df}_{\text {between }}= & k-1 \quad \text { between-groups degrees of freedom }
\end{aligned}
$$

It should be clear that, as the effect of the independent variable increases, the differences between the sample means increase. This causes $\left(\bar{X}_{1}-\bar{X}_{G}\right)^{2},\left(\bar{X}_{2}-\bar{X}_{G}\right)^{2}, \ldots$, $\left(\bar{X}_{k}-\bar{X}_{G}\right)^{2}$ to increase, which in turn produces an increase in $S S_{\text {between. }}$. Since $S S_{\text {between }}$ is in the numerator, increases in it produce increases in $M S_{\text {between }}$. Thus, the between-groups variance estimate $\left(M S_{\text {between }}\right)$ increases with the effect of the independent variable.

This equation for $S S_{\text {between }}$ is fine conc eptually, but when a ctually co mputing $S S_{\text {between }}$, it is better to use another equation. As with $S S_{\text {within }}$, there is a computational equation for $S S_{\text {between }}$ that is the algebraic equivalent of the conceptual equation but is easier to use and leads to fewer rounding errors. The computational equation is given here and will be discussed shortly when we analyze the data from an experiment:

$$
S S_{\text {between }}=\left[\frac{\left(\sum X_{1}\right)^{2}}{n_{1}}+\frac{\left(\sum X_{2}\right)^{2}}{n_{2}}+\frac{\left(\sum X_{3}\right)^{2}}{n_{3}}+\cdots+\frac{\left(\sum X_{k}\right)^{2}}{n_{k}}\right]-\frac{\left(\sum^{\substack{\text { all } \\ \text { scores }}}\right)^{2}}{N}
$$

computational equation for between-groups sum of squares

## The F Ratio

We noted earlier that $M S_{\text {between }}$ increases with the effect of the independent variable. However, since an assumption of the analysis of variance is that the independent variable affects only the mean and not the variance of each group, the within-groups variance estimate does not change with the effect of the independent variable. Since $F_{\text {obt }}=M S_{\text {between }} / M S_{\text {within }}, F$ increases w ith t he effect of t he independent v ariable. Thus, the larger the $F$ ratio is, the more reasonable it is that the independent variable has had a real effect. Another way of saying this is that $M S_{\text {between }}$ is really an estimate of $\sigma^{2}$ plus the effects of the independent variable, whereas $M S_{\text {within }}$ is just an estimate of $\sigma^{2}$. Thus,

$$
F_{\mathrm{obt}}=\frac{M S_{\text {between }}}{M S_{\text {within }}}=\frac{\sigma^{2}+\text { independent variable effects }}{\sigma^{2}}
$$

The larger $F_{\text {obt }}$ becomes, the more reasonable it is that the independent variable has had a real effect. Of course, $F_{\text {obt }}$ must be equal to or exceed $F_{\text {crit }}$ before $H_{0}$ can be rejected. If $F_{\text {obt }}$ is less than 1 , we don't even need to compare it with $F_{\text {crit }}$. It is obvious the $t$ reatment has not had a significant effect, a nd we can i mmediately conclude by retaining $H_{0}$.

So far, we have been quite theoretical. Now let's do a problem to illustrate the analysis of variance technique.

## experiment

## Different Situations and Stress

Suppose you are interested in determining whether certain situations produce differing amounts of stress. You know the amount of the hormone corticosterone circulating in the blood is a good measure of how stressed a person is. You randomly assign 15 students into three groups of 5 each. The students in group 1 have their corticosterone levels measured immediately a fter returning from vacations (low st ress). The st udents in g roup 2 h ave their c orticosterone levels me asured a fter they have been in class for a w eek (moderate stress). The students in g roup 3 a re me asured immediately before final exam week (high stress). All measurements are taken at the same time of day. You record the data shown in Table 15.1. Sc ores a re in milligrams of corticosterone per 100 m illiliters of blood.

1. What is the alternative hypothesis?
2. What is the null hypothesis?
3. What is the conclusion? Use $\alpha=0.05$.
table 15.1 Stress experiment data


## SOLUTION

1. Alternative hypothesis: The alternative hypothesis states that at least one of the situations affects stress differently than at least one of the remaining situations.Therefore, at least one of the means ( $\mu_{1}, \mu_{2}$, or $\mu_{3}$ ) differs from at least one of the others.
2. Null hypothesis: The null hypothesis states that the dif ferent situations af fect stress equally. Therefore, the three sample sets of scores are random samples from populations where $\mu_{1}=\mu_{2}=\mu_{3}$.
3. Conclusion, using $\alpha=0.05$ : The conclusion is reached in the same general way as with the other inference tests. First, we calculate the appropriate statistic, in this case, $F_{\text {obt }}$, and then we evaluate $F_{\text {obt }}$ based on its sampling distribution.

## A. Calculate $\boldsymbol{F}_{\text {obt }}$.

STEP 1: Calculate the between-groups sum of squares, $\boldsymbol{S} \boldsymbol{S}_{\text {between }}$. To ca lculate $S S_{\text {between }}$, we shall use the following computational equation:

$$
S S_{\text {between }}=\left[\frac{\left(\sum X_{1}\right)^{2}}{n_{1}}+\frac{\left(\Sigma X_{2}\right)^{2}}{n_{2}}+\frac{\left(\sum X_{3}\right)^{2}}{n_{3}}+\cdots+\frac{\left(\Sigma X_{k}\right)^{2}}{n_{k}}\right]-\frac{\left(\sum^{\substack{\text { all } \\ \text { scores }}}\right)^{2}}{N}
$$

computational equation for $S_{\text {between }}$
In this problem, since $k=3$, this equation reduces to

$$
S S_{\text {between }}=\left[\frac{\left(\sum X_{1}\right)^{2}}{n_{1}}+\frac{\left(\sum X_{2}\right)^{2}}{n_{2}}+\frac{\left(\sum X_{3}\right)^{2}}{n_{3}}\right]-\frac{\binom{\text { all }}{\text { scores }}^{2}}{N}
$$

where $\sum^{\substack{\text { all } \\ \text { scores }}} X=$ sum of all the scores
Substituting the appropriate v alues from Table 15.1 into this equation, we obtain

$$
S S_{\text {between }}=\left[\frac{(20)^{2}}{5}+\frac{(40)^{2}}{5}+\frac{(65)^{2}}{5}\right]-\frac{(125)^{2}}{15}=203.333
$$

STEP 2: Calculate the within-groups sum of squares, $\boldsymbol{S} S_{\text {within }}$. The computational equation for $S S_{\text {within }}$ is as follows:

$$
S S_{\text {within }}=\sum^{\substack{\text { all } \\ \text { scores }}} X^{2}-\left[\frac{\left(\sum X_{1}\right)^{2}}{n_{1}}+\frac{\left(\sum X_{2}\right)^{2}}{n_{2}}+\frac{\left(\sum X_{3}\right)^{2}}{n_{3}}+\cdots+\frac{\left(\sum X_{k}\right)^{2}}{n_{k}}\right]
$$

computational equation for $S_{\text {within }}$
where $\sum^{\substack{\text { all } \\ \text { scores }}} X^{2}=$ sum of all the squared scores
Since $k=3$, for this problem the equation reduces to

$$
S S_{\text {within }}=\sum^{\substack{\text { all } \\ \text { scores }}} X^{2}-\left[\frac{\left(\sum X_{1}\right)^{2}}{n_{1}}+\frac{\left(\sum X_{2}\right)^{2}}{n_{2}}+\frac{\left(\sum X_{3}\right)^{2}}{n_{3}}\right]
$$

Substituting the appropriate values into this equation, we obtain

$$
S S_{\text {within }}=1299-\left[\frac{(20)^{2}}{5}+\frac{(40)^{2}}{5}+\frac{(65)^{2}}{5}\right]=54.000
$$

## MENTORINGTIP

Step 3 is just a check on calculations in steps 1 and 2; it does not have to be done, but probably is a good idea before going on to Step 4.

STEP 3: Calculate the total sum of squares, $\boldsymbol{S S}_{\text {total }}$. This step is just a check to be sure the calculations in Steps 1 and 2 are correct. You will recall that at the beginning of the analysis of variance section, p. 406, we said this technique partitions the total variability into two parts: the within variability and the between variability. The measure of total variability is $S S_{\text {total }}$, the measure of within variability is $S S_{\text {within }}$, and the me asure of between variability is $S S_{\text {between. }}$. Thus,

$$
S S_{\text {total }}=S S_{\text {within }}+S S_{\text {between }}
$$

By independently calculating $S S_{\text {total }}$, we can check to see whether this relationship holds true for the calculations in steps 1 and 2. The equation for independent computation of $S S_{\text {total }}$ is

$$
S S_{\text {total }}=\sum^{\substack{\text { all } \\ \text { scores }}} X^{2}-\frac{\left(\sum^{\binom{\text {all }}{\text { scores }}^{2}}\right.}{N}
$$

You will recognize that this equation is quite similar to the sum of squares with each sample, except here we are using the scores of all the samples as a single group. Calculating $S S_{\text {total }}$, we obtain

$$
S S_{\text {total }}=1299-\frac{(125)^{2}}{15}=257.333
$$

Substituting the values of $S S_{\text {total }}, \mathrm{SS}_{\text {within }}$, and $S S_{\text {between }}$ into the equation, we obtain

$$
\begin{aligned}
S S_{\text {total }} & =S S_{\text {within }}+S S_{\text {between }} \\
257.333 & =54.000+203.333 \\
257.333 & =257.333
\end{aligned}
$$

Note that, if the within sum of squares plus the between sum of squares does not equal the total sum of squares, you' ve made a calculation error. Go back and check steps 1,2 , and 3 until the equation balances (within rounding error).

STEP 4: Calculate the degrees of freedom for each estimate.

$$
\begin{aligned}
\mathrm{df}_{\text {between }} & =k-1=3-1=2 \\
\mathrm{df}_{\text {within }} & =N-k=15-3=12 \\
\mathrm{df}_{\text {total }} & =N-1=15-1=14
\end{aligned}
$$

STEP 5: Calculate the between-groups variance estimate, $\boldsymbol{M S}_{\text {between }}$. The variance estimates are just the sums of squares divided by their degrees of freedom. Thus,

$$
M S_{\text {between }}=\frac{S S_{\text {between }}}{\mathrm{df}_{\text {between }}}=\frac{203.333}{2}=101.667
$$

STEP 6: Calculate the within-groups variance estimate, $M_{\text {within }}$.

$$
M S_{\text {within }}=\frac{S S_{\text {within }}}{\mathrm{df}_{\text {within }}}=\frac{54.000}{12}=4.500
$$

STEP 7: Calculate $\boldsymbol{F}_{\text {obt }}$. We have calculated two independent estimates of $\sigma^{2}, M S_{\text {between }}$ and $M S_{\text {within }}$. The $F$ value is the ratio of $M S_{\text {between }}$ to $M S_{\text {within }}$. Thus,

$$
F_{\text {obt }}=\frac{M S_{\text {between }}}{M S_{\text {within }}}=\frac{101.667}{4.500}=22.59
$$

Note that $M S_{\text {between }}$ is always put in the numerator and $M S_{\text {within }}$ in the denominator.
B. Evaluate $\boldsymbol{F}_{\text {obt }}$. Since $M S_{\text {between }}$ is a measure of the efect of the independent variable as well as an estimate of $\sigma^{2}$, it should be larger than $M S_{\text {within }}$, unless chance alone is at work. If $F_{\text {obt }} \leq 1$, it is clear that the independent ariable has not had a significant effect and we conclude by retaining $H_{0}$ without even bothering to compare $F_{\text {obt }}$ with $F_{\text {crit. }}$. If $F_{\text {obt }}>1$, we must compare it with $F_{\text {crit }}$. If $F_{\text {obt }} \geq F_{\text {crit }}$, we reject $H_{0}$.

Table F in Appendix D is used to determine $F_{\text {crit }}$. Table F presents the critical values of $F$ for Degrees of Freedom Numerator and Degrees of Freedom Denominator. These values have been obtained from the sampling distrib ution of $F$ for each combination of Degrees of $F$ reedom Numerator and Degrees of $F$ reedom Denominator.

$$
\begin{aligned}
\text { Degrees of Freedom Numerator } & =\mathrm{df}_{\text {numerator }}=\mathrm{df}_{\text {between }} \\
\text { Degrees of Freedom Denominator } & =\mathrm{df}_{\text {denominator }}=\mathrm{df}_{\text {within }}
\end{aligned}
$$

In Table F, the de grees of freedom for both the numerator and denominator range from 1 to $\infty$. A portion of Table $F$ is sho wn below in Table 15.2. As can be seen from Table 15.2, each cell in the table contains tw o values; both are critical values of $F$. The roman type entry is $F_{\text {crit }}$ for $\alpha=0.05$, and the bolded entry is $F_{\text {crit }}$ for $\alpha=0.01$. To use Table F, you must know Degrees of Freedom Numerator, Degrees of Freedom Denominator, and the alpha level.

The table is entered using the degrees of freedom for the numerator and the denominator for a particular e xperiment or study. The critical values of $F$ for these degrees of freedom are found in the cell located at the intersection of ro w and column appropriate for the de grees of freedom. F or example, referring to Table 15.2, if $\mathrm{df}_{\text {numerator }}=$ Degrees of Freedom Numerator $=3$ and $\mathrm{df}_{\text {denominator }}$ $=$ Degrees of Freedom Denominator $=11$, the appropriate $F_{\text {crit }}$ values are found in the cell at the intersection of the ro $w$ with heading " 11 " and the column with heading " 3 ." For these df values, the two numbers in the cell are 3.59 and 6.22. In this e xample, if $\mathrm{df}_{\text {numerator }}=3, \mathrm{df}_{\text {denominator }}=11$, and $\alpha=0.05$, then $F_{\text {crit }}=3.59$; if $\alpha=0.01$, then $F_{\text {crit }}=\mathbf{6 . 2 2}$.

We are no w ready to determine $F_{\text {crit }}$ for the stress e xperiment. From Table F in Appendix D , with $\mathrm{df}_{\text {numerator }}=2, \mathrm{df}_{\text {denominator }}=12$, and $\alpha=0.05$, we find that

$$
F_{\text {crit }}=3.88
$$

table 15.2 $F_{\text {crit }}$ values, a portion of table F

| Degrees of Freedom Denominator | Degrees of Freedom Numerator |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 |
| 10 | 4.96 | 4.10 | 3.71 | 3.48 |
|  | 10.04 | 7.56 | 6.55 | 5.99 |
| 11 | 4.84 | 3.98 | 3.59 | 3.36 |
|  | 9.65 | 7.20 | 6.22 | 5.67 |
| 12 | 4.75 | 3.88 | 3.49 | 3.26 |
|  | 9.33 | 6.93 | 5.95 | 5.41 |
| 13 | 4.67 | 3.80 | 3.41 | 3.18 |
|  | 9.07 | 6.70 | 5.74 | 5.20 |
| 14 | 4.60 | 3.74 | 3.34 | 3.11 |
|  | 8.86 | 6.51 | 5.56 | 5.03 |

Note that, in looking up $F_{\text {crit }}$ in Table F, it is important to keep the df for the numerator and denominator straight. If by mistak e you had entered the table with 2 df for the denominator and 12 df for the numerator $F_{\text {crit }}$ would equal 19.41 , which is quite different from 3.88.

Now that we have determined $F_{\text {crit }}$, we can evaluate $F_{\text {obt }}$. In the stress experiment, $F_{\text {obt }}=22.59$. Since $F_{\text {obt }}>3.88$, we reject $H_{0}$. The three situations are not all the same in the stress levels they produce. A summary of the solution is shown in Table 15.3.
table 15.3 Summary table for ANOVA problem involving stress

| Source | SS | df | MS | $F_{\text {obt }}$ |
| :---: | :---: | :---: | :---: | :---: |
| Between groups | 203.333 | 2 | 101.667 | 22.59* |
| Within groups | 54.000 | 12 | 4.500 |  |
| Total | 257.333 | 14 |  |  |

$*$ With $\alpha=0.05, F_{\text {crit }}=3.88$. Therefore, $H_{0}$ is rejected.

## LOGIC UNDERLYING THE ONE-WAY ANOVA

Now that we have worked through the calculations of an illustrative example, I would like to d iscuss in more det ail the logic underlying the one-way A NOVA. Earlier, I pointed out that the one-way ANOVA partitions the total variability $\left(S S_{\text {total }}\right)$ into two parts: the within-groups sum of squares $\left(S S_{\text {within }}\right)$ and the between-groups sum of squares $\left(S S_{\text {between }}\right)$. We can gain some insight into this partitioning by recognizing that it is ba sed on the simple idea that the deviation of each score from the grand mean is made up of two parts: the deviation of the score from its own group mean and the deviation of that group mean from the grand mean. Applying this idea to the first score in group 1, we obtain

| Deviation of each score from the grand mean | $=$ | Deviation of the score from its own group mean | $+$ | Deviation of that group mean from the grand mean |
| :---: | :---: | :---: | :---: | :---: |
| 2-8.33 | $=$ | 2-4.00 | + | 4.00-8.33 |
| $X-\bar{X}_{G}$ |  | $X-\bar{X}_{1}$ | + | $\bar{X}_{1}-\bar{X}_{G}$ |
| $\downarrow$ | $=$ | $\downarrow$ | $+$ | $\downarrow$ |
| $S S_{\text {total }}$ | $=$ | SS ${ }_{\text {within }}$ | $+$ | $S S_{\text {between }}$ |

Note that the term on the left $\left(\bar{X}_{1}-\bar{X}_{G}\right)$ when squared and summed over all the scores becomes $S S_{\text {total }}$. Thus,

$$
S S_{\text {total }}=\sum^{\substack{\text { all } \\ \text { scores }}}\left(X-\bar{X}_{G}\right)^{2}
$$

The term in the middle $\left(X-\bar{X}_{1}\right)$ when squared and summed for all the scores (of course, we must subtract the appropriate group mean from each score) becomes $S S_{\text {within }}$. Thus,

$$
\begin{aligned}
S S_{\text {within }} & =S S_{1}+S S_{2}+S S_{3} \\
& =\Sigma\left(X-\bar{X}_{1}\right)^{2}+\Sigma\left(X-\bar{X}_{2}\right)^{2}+\Sigma\left(X-\bar{X}_{3}\right)^{2}
\end{aligned}
$$

It is i mportant to $n$ ote $t$ hat, since $t$ he subjects within each $g$ roup re ceive $t$ he same treatment, variability a mong the scores $w$ ithin each g roup ca nnot be due to differences in the effect of the independent variable. Thus, the within-groups sum of $s$ quares $\left(S S_{\text {within }}\right)$ is $n$ ot a mea sure of $t$ he effect of $t$ he i ndependent $v$ ariable. Since $S S_{\text {within }} / \mathrm{df}_{\text {within }}=M S_{\text {within }}$, this means that the within-groups variance estimate $M S_{\text {within }}$ also is not a measure of the real effect of the independent variable. Rather, it provides us with an estimate of the inherent variability of the scores themselves. Thus, $M S_{\text {within }}$ is an estimate of $\sigma^{2}$ that is unaffected by treatment differences.

The last term in the equation partitioning the variability of score 2 from the grand mean is $\bar{X}_{1}-\bar{X}_{G}$. When this term is squared and summed for all the scores, it becomes $S S_{\text {between }}$. Thus,

$$
S S_{\text {between }}=n\left(\bar{X}_{1}-\bar{X}_{G}\right)^{2}+n\left(\bar{X}_{2}-\bar{X}_{G}\right)^{2}+n\left(\bar{X}_{3}-\bar{X}_{G}\right)^{2}
$$

As d iscussed pre viously, $S S_{\text {between }}$ is sens itive to $t$ he effect of the i ndependent variable, b ecause $t$ he $g$ reater $t$ he effect of $t$ he i ndependent variable, $t$ he more $t$ he means of each group will differ from each other and hence, will differ from $\bar{X}_{G}$. Since $S S_{\text {between }} / \mathrm{df}_{\text {between }}=M S_{\text {between }}$, this means that the between-groups variance estimate $M S_{\text {between }}$ is also sensitive to the real effect of the independent variable. Thus, $M S_{\text {between }}$ gives us an estimate of $\sigma^{2}$ plus the effects of the independent variable. Since

$$
F_{\mathrm{obt}}=\frac{M S_{\text {between }}}{M S_{\text {within }}}=\frac{\sigma^{2}+\text { effects of the independent variable }}{\sigma^{2}}
$$

the larger $F_{\text {obt }}$ is, the less reasonable the null-hypothesis explanation is. If the independent variable has no effect, then both $M S_{\text {between }}$ and $M S_{\text {within }}$ are independent estimates of $\sigma^{2}$ and their ratio is d istributed as $F$ with $\mathrm{df}=\mathrm{df}_{\text {between }}$ (numerator) a nd $\mathrm{df}_{\text {within }}$ (denominator). We evaluate the null hypothesis by comparing $F_{\text {obt }}$ with $F_{\text {crit }}$. If $F_{\text {obt }} \geq$ $F_{\text {crit }}$, we reject $H_{0}$.

Let's try one more problem for practice.

## Practice Problem 15.1

A college professor wants to det ermine the best way to presen $t$ an important topic to his class. He has the following three choices: (1) he can lecture, (2) he can lecture and assign supplementary reading, or (3) he can show a film and assign supplementary reading. He decides to do an experiment to evaluate the three options. He solicits 27 volunteers from his class and randomly assigns 9 to each of three conditions. In condition 1 , he lectures to the students. In condition 2,
(continued)
he lectures plus assigns supplementary reading. In condition 3 , the students see a film on the topic plus receive the same supplementary reading as the students in condition 2 . The students are subsequently tested on the material. The following scores (percentage correct) were obtained:

| Lecture <br> Condition 1/Group 1 |  | Lecture + Reading Condition 2/Group 2 |  | Film + Reading Condition 3/Group 3 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $X_{1}$ | $X_{1}{ }^{2}$ | $X_{2}$ | $X_{2}{ }^{2}$ | $X_{3}$ | $X_{3}{ }^{2}$ |
| 92 | 8,464 | 86 | 7,396 | 81 | 6,561 |
| 86 | 7,396 | 93 | 8,649 | 80 | 6,400 |
| 87 | 7,569 | 97 | 9,409 | 72 | 5,184 |
| 76 | 5,776 | 81 | 6,561 | 82 | 6,724 |
| 79 | 6,241 | 94 | 8,836 | 83 | 6,889 |
| 86 | 7,396 | 89 | 7,921 | 89 | 7,921 |
| 91 | 8,281 | 98 | 9,604 | 76 | 5,776 |
| 81 | 6,561 | 90 | 8,100 | 88 | 7,744 |
| 83 | 6,889 | 91 | 8,281 | 83 | 6,889 |
| 761 | $\overline{64,573}$ | $\overline{819}$ | $\overline{74,757}$ | 734 | $\overline{60,088}$ |
|  |  |  |  |  |  |
|  | 556 |  |  |  |  |
|  | $2314$ | $\sum^{\substack{\text { all } \\ \text { score }}}$ | $99,418$ | $\bar{X}_{G}$ | 85.704 |
| $N=27$ |  |  |  |  |  |

a. What is the overall null hypothesis?
b. What is the conclusion? Use $\alpha=0.05$.

## SOLUTION

a. Null h ypothesis: T he n ull h ypothesis s tates t hat t he d ifferent met hods of presenting the material are equally effective. Therefore, $\mu_{1}=\mu_{2}=\mu_{3}$.
b. Conclusion, using $\alpha=0.05$ : To a ssess $H_{0}$, we must calculate $F_{\text {obt }}$ a nd then evaluate it based on its sampling distribution.

## A. Calculate $\boldsymbol{F}_{\text {obt }}$.

STEP 1: Calculate $S_{\text {between }}$.

$$
\begin{aligned}
S S_{\text {between }} & \left.=\left[\frac{\left(\sum X_{1}\right)^{2}}{n_{1}}+\frac{\left(\sum X_{2}\right)^{2}}{n_{2}}+\frac{\left(\sum X_{3}\right)^{2}}{n_{3}}\right]-\frac{\left(\sum^{\text {sall }}\right.}{N} X\right)^{2} \\
& =\left[\frac{(761)^{2}}{9}+\frac{(819)^{2}}{9}+\frac{(734)^{2}}{9}\right]-\frac{(2314)^{2}}{27} \\
& =419.185
\end{aligned}
$$

## STEP 2: Calculate $S S_{\text {within }}$.

$$
\begin{aligned}
S S_{\text {within }} & =\sum^{\text {scorles }} X^{2}-\left[\frac{\left(\sum X_{1}\right)^{2}}{n_{1}}+\frac{\left(\sum X_{2}\right)^{2}}{n_{2}}+\frac{\left(\sum X_{3}\right)^{2}}{n_{3}}\right] \\
& =199,418-\left[\frac{(761)^{2}}{9}+\frac{(819)^{2}}{9}+\frac{(734)^{2}}{9}\right] \\
& =680.444
\end{aligned}
$$

## STEP 3: Calculate SS $_{\text {total }}$.

$$
\begin{aligned}
S S_{\text {total }} & =\sum^{\substack{\text { all } \\
\text { scores }}} X^{2}-\frac{\left(\sum^{\text {all }} X\right)^{2}}{N} \\
& =199,418-\frac{(2314)^{2}}{27} \\
& =1099.630
\end{aligned}
$$

This step is a c heck to se e whether $S S_{\text {between }}$ and $S S_{\text {within }}$ we re correctly calculated. If so, then $S S_{\text {total }}=S S_{\text {between }}+S S_{\text {within }}$. This check is shown here:

$$
\begin{aligned}
S S_{\text {total }} & =S S_{\text {between }}+S S_{\text {within }} \\
1099.630 & \cong 419.185+680.444 \\
1099.630 & \cong 1099.629 \text { (checks within rounding error) }
\end{aligned}
$$

## STEP 4: Calculate df.

$$
\begin{aligned}
\mathrm{df}_{\text {between }} & =k-1=3-1=2 \\
\mathrm{df}_{\text {within }} & =N-k=27-3=24 \\
\mathrm{df}_{\text {total }} & =N-1=27-1=26
\end{aligned}
$$

## STEP 5: Calculate $M S_{\text {between }}$.

$$
M S_{\text {between }}=\frac{S S_{\text {between }}}{\mathrm{df}_{\text {between }}}=\frac{419.185}{2}=209.593
$$

STEP 6: Calculate MS $_{\text {within }}$.

$$
M S_{\text {within }}=\frac{S S_{\text {within }}}{\mathrm{df}_{\text {within }}}=\frac{680.444}{24}=28.352
$$

## STEP 7: Calculate $\boldsymbol{F}_{\text {obt }}$.

$$
F_{\text {obt }}=\frac{M S_{\text {between }}}{M S_{\text {within }}}=\frac{209.593}{28.352}=7.39
$$

B. Evaluate $\boldsymbol{F}_{\text {obt }}$. With $\alpha=0.05, \mathrm{df}_{\text {numerator }}=2$, and $\mathrm{df}_{\text {denominator }}=24$, from Table F ,

$$
F_{\text {crit }}=3.40
$$

Snce $\mathrm{F}_{\text {obt }}>3.40$, we reject $H_{0}$. The methods of presentation are not equally effective. The solution is summarized in Table 15.4.
table 15.4 Summary ANOVA table for methods of presentation experiment

| Source | SS | df | MS | $F_{\text {obt }}$ |
| :---: | :---: | :---: | :---: | :---: |
| Between groups | 419.185 | 2 | 209.593 | 7.39* |
| Within groups | 680.444 | 24 | 28.352 |  |
| Total | 1099.630 | 26 |  |  |

*With $\alpha=0.05, F_{\text {crit }}=3.40$. Therefore, $H_{0}$ is rejected.

## RELATIONSHIP BETWEEN ANOVA AND THE $\boldsymbol{t}$ TEST

When a s tudy i nvolves just t wo i ndependent g roups a nd we a re t esting t he n ull hypothesis th at $\mu_{1}=\mu_{2}$, we ca n use e ither the $t \mathrm{t}$ est f or i ndependent g roups or the a nalysis of v ariance. In s uch s ituations, it ca nb e s hown a lgebraically that $t^{2}=F$. For a demons tration of this point, go to $t$ he O nline S tudy Resources website.

## ASSUMPTIONS UNDERLYING THE ANALYSIS OF VARIANCE

The assumptions underlying the analysis of variance are similar to those of the $t$ test for independent groups:

1. The populations from which the samples were taken are normally distributed.
2. The samples are drawn from populations of equal v ariances. As pointed out in Chapter 14 in connection with the $t$ test for independent groups, this is called the homogeneity of variance assumption. The analysis of variance also assumes homogeneity of variance.*

Like the $t$ test, the analysis of variance is a ro bust test. It is minimally affected by violations of population normality. It is also relatively insensitive to violations of homogeneity of variance, provided the samples are of equal size. ${ }^{\dagger}$

[^39]
## Omega Squared, $\hat{\omega}^{2}$

We have already discussed the size of the effect of the $X$ variable on the $Y$ variable in conjunction with correlational research when we discussed the coefficient of determination $\left(r^{2}\right)$ in Chapter 6, p. 139. You will recall that $r^{2}$ is a measure of the proportion of the total variability of $Y$ accounted for by $X$ and hence is a measure of the strength of the re lationship between $X$ and $Y$. If the $X$ variable is causal with regard to the $Y$ variable, the coefficient of determination is also a measure of the size of the effect of $X$ on $Y$.

The situation is very similar when we are dealing with the one-way, independent groups A NOVA. In this situation, the in dependent variable is the $X$ va riable a nd the dependent variable is the $Y$ variable. One of the statistics computed to measure size of effect in the one-way, independent groups ANOVA is o mega squared ( $\hat{\omega}^{2}$ ). The other is et a squared $\left(\eta^{2}\right)$, which we discuss in the next section. Conceptually, $\hat{\omega}^{2}$ and $\eta^{2}$ are like $r^{2}$ in that each provides an estimate of the proportion of the total variability of $Y$ that is accounted for by $X . \hat{\omega}^{2}$ is a relatively unbiased estimate of this proportion in the population, whereas the estimate provided by $\eta^{2}$ is more biased. The conceptual equation for $\hat{\omega}^{2}$ is given by

$$
\hat{\omega}^{2}=\frac{\sigma_{\text {between }}^{2}}{\sigma_{\text {between }}^{2}+\sigma_{\text {within }}^{2}} \quad \text { Conceptual equation }
$$

Since we do not know the values of these population variances, we estimate them from the sample data. The resulting equation is

$$
\hat{\omega}^{2}=\frac{S S_{\text {between }}-(k-1) M S_{\text {within }}}{S S_{\text {total }}+M S_{\text {within }}} \quad \text { Computational equation }
$$

Cohen (1988) suggests the criteria shown in Table 15.5 for interpreting $\hat{\omega}^{2}$ or $\eta^{2}$.
table 15.5 Cohen's criteria for interpreting the value of $\hat{\omega}^{2}$ or $\eta^{2 *}$

| $\hat{\boldsymbol{\omega}}^{2}$ or $\boldsymbol{\eta}^{2}$ (Proportion of |  |
| :---: | :--- |
| Variance Accounted for) | Interpretation |
| $\ldots \ldots \ldots$ |  |
| $0.01-0.05$ | Small effect |
| $0.06-0.13$ | Medium effect |
| $\geq 0.14$ | Large effect |

[^40]
## example

MENTORINGTIP
Caution: compute $\hat{\omega}^{2}$ to 3-decimal-place accuracy, since this proportion is often converted to a percentage.

## Stress Experiment

Let's compute the size of effect using $\hat{\omega}^{2}$ for the stress experiment, p. 410. For this experiment, $S S_{\text {between }}=203.333, S S_{\text {total }}=257.333, M S_{\text {within }}=4.500$, and $k=3$. The size of effect for these data, using $\hat{\omega}^{2}$, is

$$
\hat{\omega}^{2}=\frac{203.333-(3-1) 4.500}{257.333+4.500}=0.742
$$

Thus, the estimate provided by $\hat{\omega}^{2}$ tells us that the stress situations account for 0.742 or $74.2 \%$ of $t$ he v ariance in c orticosterone levels. Referring to Table 15.5 , since the value of $\hat{\omega}^{2}$ is greater than 0.14 , this is considered a large effect.

## Eta Squared, $\eta^{2}$

Eta squared is a n a lternative mea sure for determining size of effect in one-way, independent groups ANOVA experiments. It also provides an estimate of the proportion of the total variability of $Y$ that is accounted for by $X$, and is very similar to $\hat{\omega}^{2}$. However, it gives a more biased estimate than $\hat{\omega}^{2}$, and the biased estimate is usually larger than the true size of the effect. Nevertheless, it is quite easy to calculate, has been around longer than $\hat{\omega}^{2}$, and is still commonly used. Hence, we have included a discussion of it here. The equation for computing $\eta^{2}$ is given by

$$
\eta^{2}=\frac{S S_{\text {between }}}{S S_{\text {total }}} \quad \text { Conceptual and computational equation }
$$

## Stress Experiment

This time, let's compute $\eta^{2}$ for the data of the stress experiment. As previously mentioned, $S S_{\text {between }}=203.333$, and $S S_{\text {total }}=257.333$. Computing the value of $\eta^{2}$ for these data, we obtain

$$
\eta^{2}=\frac{S S_{\text {between }}}{S S_{\text {total }}}=\frac{203.333}{257.333}=0.790
$$

Based on $\eta^{2}$, the stress situations account for 0.790 or $79.0 \%$ of the variance in corticosterone levels. According to Cohen's criteria (see Table 15.5), this value of $\eta^{2}$ also indicates a large effect. Note, ho wever, that the value of $\eta^{2}$ is la rger than the value obt ained for $\hat{\omega}^{2}$, e ven though both were calculated on the same data. Because $\hat{\omega}^{2}$ provides a more accurate estimate of the size of effect, we recommend its use over $\eta^{2}$.

## POWER OF THE ANALYSIS OF VARIANCE

The power of the analysis of variance is affected by the same variables and in the same manner as was the case with the $t$ test for independent groups. You will recall that for the $t$ test for independence groups, power is affected as follows:

1. Power varies directly with $N$. Increasing $N$ increases power.
2. Power varies directly with the size of the real effect of the independent variable. The power of the $t$ test to detect a real effect is greater for large effects than for smaller ones.
3. Power varies inversely with sample variability. The greater the sample variability is, the lower the power to detect a real effect is.

Let's now look at each of these variables and how they affect the analysis of variance. This discussion is most easily understood by referring to the following equation for $F_{\text {obt }}$, for an experiment involving three groups.

$$
F_{\text {obt }}=\frac{M S_{\text {between }}}{M S_{\text {within }}}=\frac{n\left[\left(\bar{X}_{1}-\bar{X}_{G}\right)^{2}+\left(\bar{X}_{2}-\bar{X}_{G}\right)^{2}+\left(\bar{X}_{3}-\bar{X}_{G}\right)^{2}\right] / 2}{\left(S S_{1}+S S_{2}+S S_{3}\right) /(N-3)}
$$

## Power and $\mathbf{N}$

Obviously, anything that increases $F_{\text {obt }}$ also increases power. As $N$, the total number of subjects in the experiment, increases, so must $n$, the number of subjects in each group. Increases in each of these variables results in an increase in $F_{\text {obt }}$. This can be seen as follows. Referring to the $F_{\text {obt }}$ equation, as $N$ increases, since it is in the denominator of the equation for $M S_{\text {within }}, M S_{\text {within }}$ decreases. Since $M S_{\text {within }}$ is in the denominator of the $F_{\text {obt }}$ equation, $F_{\text {obt }}$ increases. Regarding $n$, since $n$ is in the numerator of the $F_{\text {obt }}$ equation and is a multiplier of positive values, increases in $n$ result in an increase in $M S_{\text {between }}$. Since $M S_{\text {between }}$ is in the numerator of the $F_{\text {obt }}$ equation, increases in $M S_{\text {between }}$ cause an increase in $F_{\text {obt }}$. As stated earlier, anything that increases $F_{\text {obt }}$ a lso increases power. Thus, increases in $N$ and $n$ result in increased power.

## Power and the Real Effect of the Independent Variable

The larger the real effect of the independent variable is, the larger will be the values of $\left(\bar{X}_{1}-\bar{X}_{G}\right)^{2},\left(\bar{X}_{2}-\bar{X}_{G}\right)^{2}$, and $\left(\bar{X}_{3}-\bar{X}_{G}\right)^{2}$. Increases in these values pro duce an increase in $M S_{\text {between. }}$. Since $M S_{\text {between }}$ is in the numerator of the $F_{\text {obt }}$ equation, increases in $M S_{\text {between }}$ result in an increase in $F_{\text {obt }}$. Thus, the larger the real effect of the independent variable is, the higher is the power.

## Power and Sample Variability

## MENTORINGTIP

Summary: power varies directly with $N$ and real effect of independent variable, and inversely with within-group variability.
$S S_{1}$ (the sum of squares of g roup 1), $S S_{2}$ (the sum of squares of group 2), a nd $S S_{3}$ (the sum of squares of group 3) a re measures of the variability within each group. Increases in $S S_{1}, S S_{2}$, and $S S_{3}$ result in an increase in the within-variance estimate $M S_{\text {within }}$. Since $M S_{\text {within }}$ is in the denominator of the $F_{\text {obt }}$ equation, increases in $M S_{\text {within }}$ result in a decrease in $F_{\mathrm{obt}}$. Thus, inc reases in within-group variability result in decreases in power.

## MULTIPLE COMPARISONS

In one-way ANOVA, a s ignificant $F$ value indicates that all the conditions do n ot have the same effect on the dependent variable. For example, in the stress experiment presented earlier in the chapter, a significant $F$ value was obtained and we concluded that the three situations were not the same in the stress levels they produced. For pedagogical reasons, we stopped the analysis at this conclusion. However, in actual practice, the analysis does not ordinarily end at this point. Usually, we are also interested in determining which of the conditions differ from each other. A s ignificant $F$ value tells us that at least one condition differs from at least one of the others. It is also possible that they are all different or any combination in between may be true.

## MENTORINGTIP

This equation is just like the $t$ equation for independent groups, except $M S_{\text {within }}$ from the ANOVA analysis replaces $\left(\frac{S S_{1}+S S_{2}}{n_{1}+n_{2}-2}\right)$.

To determine which conditions differ, multiple comparisons between pairs of group means are usually made. In the remainder of this chapter, we shall discuss two types of comparisons that may be made: a priori or planned comparisons and a posteriori or post hoc comparisons.

## A Priori, or Planned, Comparisons

A priori, or, as they are often called, planned comparisons are specific comparisons that are planned in advance of the experiment and often arise from predictions based on theory and prior research. These comparisons may be directional or $n$ ondirectional, depending on the pre diction. A posteriori or post hoc comparisons are not planned before conducting the experiment, and are not based on theory and prior research. Instead, they are done because the investigator looks at the data and then decides which groups to compare, or because the investigator wants to do all possible comparisons of interest to se e what the data might reveal. With planned comparisons, we do not correct for the higher probability of Type I er ror that arises due to multiple comparisons, as is done with the post hoc methods. This correction, which we shall cover in the next section, in effect makes it harder for the null hypothesis to be rejected. Because planned comparisons do not involve correcting for the higher probability of Type I er ror, planned comparisons have higher power than post hoc comparisons.

In doing planned comparisons, the $t$ test for independent groups is used. We could calculate $t_{\text {obt }}$ in the usual way. For example, in comparing conditions 1 and 2 , we could use the equation

$$
t_{\mathrm{obt}}=\frac{\bar{X}_{1}-\bar{X}_{2}}{\sqrt{\left(\frac{S S_{1}+S S_{2}}{n_{1}+n_{2}-2}\right)\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}
$$

However, remembering that $\left(S S_{1}+S S_{2}\right) /\left(n_{1}+n_{2}-2\right)$ is an estimate of $\sigma^{2}$ based on the within variance of the two groups, we can use a better estimate since we have three or more groups in the ANOVA experiment. Instead of $\left(S S_{1}+S S_{2}\right) /\left(n_{1}+n_{2}-2\right)$ we can use the within-variance estimate $M S_{\text {within }}$, which is based on all of the groups. Substituting $M S_{\text {within }}$ for $\left(S S_{1}+S S_{2}\right) /\left(n_{1}+n_{2}-2\right)$, we arrive at the general $t$ equation for planned comparisons.

$$
t_{\mathrm{obt}}=\frac{\bar{X}_{1}-\bar{X}_{2}}{\sqrt{M S_{\text {wihhin }}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}} \text { General t equation for planned comparisons }
$$

The $t$ equation for independent groups and the general $t$ equation for planned comparisons are shown below for comparison purposes.

$$
\begin{aligned}
t_{\mathrm{obt}} & =\frac{\bar{X}_{1}-\bar{X}_{2}}{\sqrt{\left(\frac{S S_{1}+\mathrm{SS}_{2}}{n_{1}+n_{2}-2}\right)\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}} \quad \mathbf{t} \text { Equation for independent groups } \\
t_{\mathrm{obt}} & =\frac{\bar{X}_{1}-\bar{X}_{2}}{\sqrt{M S_{\text {within }}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}} \text { General } \mathbf{t} \text { equation for planned comparisons, }
\end{aligned}
$$

With $n_{1}=n_{2}=n$, the general $t$ equation for planned comparisons becomes

$$
t_{\mathrm{obt}}=\frac{\bar{X}_{1}-\bar{X}_{2}}{\sqrt{2 M S_{\text {within }} / n}}
$$

## t equation for planned comparisons

 with equal n in the two groupsLet's apply this to t he stress experiment presented on p .410 . For con venience, the relevant statistics from that experiment are repeated here: $\bar{X}_{1}=4.00, \bar{X}_{2}=8.00$, $\bar{X}_{3}=13.00, n=5, M S_{\text {within }}=4.50$.

Suppose we have the a priori hypothesis based on theoretical grounds that the effect of Condition 3, Final Exam, will result in more stress than either Condition 1 or Condition 2. Therefore, prior to collecting any data, we have planned to compare the scores of Group 3 w ith those of Group 1 a nd Group 2, using a d irectional $H_{1}$. Accordingly, we will use $\alpha=0.05_{1 \text { tail }}$ for the evaluation.

To perform the planned comparisons, we first calculate the appropriate $t_{\mathrm{obt}}$ values and then compare them with $t_{\text {crit }}$. The calculations are as follows:

Group 1 and Group 3:

$$
t_{\text {obt }}=\frac{\bar{X}_{1}-\bar{X}_{3}}{\sqrt{2 M S_{\text {within }} / n}}=\frac{4.00-13.00}{\sqrt{2(4.50) / 5}}=-6.71
$$

Group 2 and Group 3:

$$
t_{\mathrm{obt}}=\frac{\bar{X}_{2}-\bar{X}_{3}}{\sqrt{2 M S_{\text {within }} / n}}=\frac{8.00-13.00}{\sqrt{2(4.50) / 5}}=-3.73
$$

Are a ny of these $t$ va lues significant? The value of $t_{\text {crit }}$ is f ound from Table Din Appendix D , using the degrees of freedom for $M S_{\text {within. }}$. Thus, with $\mathrm{df}=\mathrm{df}_{\text {within }}=N-k$ $=12$ and $\alpha=0.05_{1 \text { tail }}$,

$$
t_{\text {crit }}=-1.78
$$

Both of the obtained $t$ scores have absolute values greater than 1.78, and the direction of mean differences are in the predicted direction. Therefore, we conclude that condition 3 is significantly more stressful than Conditions 1 and 2.

## A Posteriori, or Post Hoc, Comparisons

When the comparisons are not planned in advance, we must use an a posteriori or post hoc test. These comparisons usually arise after the experimenter sees the data and picks groups with mean scores that are far apart, or else they arise from doing all the mea n co mparisons possible with no theoretical a priori ba sis. Since these comparisons were not planned before the experiment, we must correct for the inflated probability values that occur when doing multiple comparisons, as mentioned in the previous section.

Many methods are available for achieving this correction.* This topic is complex, and it is beyond the scope of this textbook to present all of the methods. Instead, we shall present two commonly accepted methods: a method devised by Tukey called the
*For a d etailed discussion of these methods, see R. E. Kirk, Experimental Design, 3rd ed., Brooks/Cole, Pacific Grove, CA, 1995, p. 144-159.

MENTORINGTIP
The HSD test uses $Q$ sampling distributions instead of $t$ sampling distributions.

Tukey HSD (Honestly Significant Difference) test and the Scheffé test. Both of these tests are post hoc multiple comparison tests. They both maintain the Type I error rate at $\alpha$. However, the Tukey HSD test maintains the Type I error rate at $\alpha$ when controlling for all possible comparisons between pairs of means, while the Scheffé test maintains the Type I error rate at $\alpha$ when controlling for all possible comparisons, not just pairwise mean comparisons. Since the Scheffé test controls for more comparisons, it is less powerful than the Tukey HSD test.

## The Tukey Honestly Significant Difference (HSD) Test

The Tukey H onestly Significant Difference test is designed to compare all possible pairs of means while maintaining the Type I er ror for making the complete set of pair-wise comparisons at $\alpha$. This test avoids the inflated probability of making a Type I er ror that would result from making these comparisons if $t$ and the sampling distribution of $t$ were used, by using a ne w statistic $Q$ and the sampling distri bution of $Q$.

The sampling distribution of $Q$ is also called the Studentized range distribution. It was developed by randomly taking $k$ samples (rather than just two as with the $t$ test) of equal $n$ from the same population and determining the difference between the highest and lowest sample means. The differences were then divided by $\sqrt{M S_{\text {within }} / n}$, producing $Q$ distributions that were like the $t$ distributions except that these provide the basis for making multiple comparisons between sample means, not just one comparison as in the $t$ test. The 95th and 99th percentile points for the $Q$ distribution are given in Table G in Appendix D. These values are the critical values of $Q$ for the 0.05 and 0.01 alpha levels. As you might guess, the critical values depend on the number of sample means and the degrees of freedom associated with $M S_{\text {within }}$.

The statistic calculated for the HSD test is $Q_{\mathrm{ob}}$. It is de fined by the following equation:

$$
Q_{\mathrm{obt}}=\frac{\bar{X}_{i}-\bar{X}_{j}}{\sqrt{M S_{\text {within }} / n}}
$$

where

$$
\begin{aligned}
\bar{X}_{i} & =\text { larger of the two means being compared } \\
\bar{X}_{j} & =\text { smaller of the two means being compared } \\
M S_{\text {within }} & =\text { within-groups variance estimate } \\
n & =\text { number of subjects in each group }
\end{aligned}
$$

Note that in calculating $Q_{\text {obt }}$, the smaller mean is always subtracted from the larger mean. This always makes $Q_{\text {obt }}$ positive. Otherwise, the $Q$ statistic is very much like the $t$ statistic. In fact, it can be shown that $Q=\sqrt{2 t}$. In performing the HSD test, we first calculate $Q_{\text {obt }}$ for the desired comparisons and then compare $Q_{\text {obt }}$ with $Q_{\text {crit }}$, determined from Table G. The decision rule states that

$$
\text { if } Q_{\text {obt }} \geq Q_{\text {crit, }} \text {, reject } H_{0} \text {. If not, then retain } H_{0} \text {. }
$$

To illustrate the use of the HSD test, we shall apply it to the data of the stress experiment. There are two steps in using the HSD test. First, we must calculate $Q_{\text {obt }}$ for each comparison a nd then compare each $Q_{\text {obt }}$ value with $Q_{\text {crit }}$. For con venience, the relevant statistics from the stress experiment are repeated here: $\bar{X}_{1}=4.00, \bar{X}_{2}=8.00$, $\bar{X}_{3}=13.00, n=5, M S_{\text {within }}=4.50$.

## STEP 1: Calculating the value of $Q_{\text {obt }}$.

Groups 1 and 2.

$$
Q_{\text {obt }}=\frac{\bar{X}_{2}-\bar{X}_{1}}{\sqrt{M S_{\text {within }} / n}}=\frac{8.00-4.00}{\sqrt{4.50 / 5}}=4.21
$$

Groups 1 and 3.

$$
Q_{\text {obt }}=\frac{\bar{X}_{3}-\bar{X}_{1}}{\sqrt{M S_{\text {wihhin }} / n}}=\frac{13.00-4.00}{\sqrt{4.50 / 5}}=9.48
$$

Groups 2 and 3.

$$
Q_{\text {obt }}=\frac{\bar{X}_{3}-\bar{X}_{2}}{\sqrt{M S_{\text {wihhin }} / n}}=\frac{13.00-8.00}{\sqrt{4.50 / 5}}=5.27
$$

STEP 2: Evaluating $Q_{\text {obt }}$. The next step is to compare the $Q_{\text {obt }}$ values with $Q_{\text {crit }}$. The value of $Q_{\text {crit }}$ is determined from Table G. To locate the appropriate value, we must kno w the df, $k$, and the alpha le vel. The df are the de grees of freedom associated with $M S_{\text {within }}$. In this experiment, $\mathrm{df}=\mathrm{df}_{\text {within }}=12$. As mentioned earlier, $k$ stands for the number of groups in the experiment. In the present experiment, $k=3$. For this experiment, alpha was set at 0.05 . From Table G, with $\mathrm{df}=12, k=3$, and $\alpha=0.05$, we obtain

$$
Q_{\text {crit }}=3.77
$$

Since $Q_{\text {obt }}>3.77$ for each comparison, we reject $H_{0}$ in each case and conclude that $\mu_{1} \neq \mu_{2} \neq \mu_{3}$. All three conditions differ in stress-inducing value.

## The Scheffé Test

The Scheffé test is the most conser vative of all the possible post hoc tests. It controls Type I er ror for doing a ll possible post hoc comparisons, not just pair-wise mean co mparisons. There a re $m$ any different post hoc comparisons that could be performed. For example, in the stress experiment, it is conceivable that we might want to compare Group 1 with Group 2 \& Group 3 combined, or Group 2 with Groups 1 \& 3 co mbined. We might also be interested to test whether the means of the three groups form a linear trend, and so forth. In theory, there are a g reat many post hoc comparisons that could be tested. The Scheffé test limits the probability of making a Type I error to the alpha level for all possible post hoc comparisons. Since it controls for all possible comparisons, the Scheffé test is the safest post hoc test one can use in protecting against making a Type I error.

Even though the Scheffé test controls for doing all possible post hoc comparisons, it is very often used to perform post hoc analysis on only pair-wise mean comparisons. Since this allows a good comparison with the Tukey HSD test, we will illustrate the Scheffé test by performing a post hoc analysis of all possible pair-wise mean comparisons, as we did with the HSD test. As we shall see, the Scheffé test provides its extra protection against making Type I error by using df between,$M S_{\text {within }}$ and $F_{\text {crit }}$ from

MENTORING TIP
The values for $\mathrm{df}_{\text {between }}, M S_{\text {within }}$ and $\mathrm{F}_{\text {crit }}$ are the values taken from the entire ANOVA.

MENTORINGTIP
Remember the data used in determining $S S_{\text {between (group i and } j \text { ) }}$ come from just the two groups being compared.
the entire ANOVA, rather than from the two groups being compared. Using $\mathrm{df}_{\text {between }}$, $M S_{\text {within }}$, and $F_{\text {crit }}$ from the entire ANOVA makes it harder to reject $H_{0}$ for any of the post hoc comparisons.

To perform the analysis, the Scheffé test computes $F_{\text {obt }}$ for each pair-wise comparison a nd then e valuates ag ainst $F_{\text {crit }}$. The numerator of each $F_{\text {obt }}$ is ab etweengroups variance estimate $M S_{\text {between (groups i and } j \text { ) }}$ derived from the two groups that are being compared, and the denominator is $M S_{\text {within }}$, the within-groups variance estimate that we calculated in doing the entire ANOVA. To determine $M S_{\text {between (groups iand } j \text { ) }}$ for each comparison, $S S_{\text {between (groups iand } j \text { ) }}$ for the two groups being compared is divided by the $\mathrm{df}_{\text {between }}$ we calculated in doing the entire ANOVA. To highlight the fact that the $F$ value the Scheffé test computes is ba sed on the two groups being compared, and the $\mathrm{df}_{\text {between }}$ and $M S_{\text {within }}$ are from the entire ANOVA rather than from two groups, we shall call the $F$ value, " $F_{\text {scheffe" }}$ instead of $F_{\text {obt }}$.

In equation form, for groups $i$ and $j$

$$
S S_{\text {between }(\text { groups } \text { iand } j)}=\left[\frac{\left(\Sigma X_{i}\right)^{2}}{n_{i}}+\frac{\left(\Sigma X_{j}\right)^{2}}{n_{j}}\right]-\frac{\left(\begin{array}{c}
\text { groups } \\
i \text { iand } j \\
j
\end{array}\right)^{2}}{n_{i}+n_{j}}
$$

computational equation for $\mathrm{SS}_{\text {between (groups i and j) }}$
where $\quad \sum X_{i}=$ sum of the scores of one of the groups being compared
$\sum X_{j}=$ sum of the scores of the other group being compared groups
$i$ and $j$
$\sum X=$ sum of the scores of the two groups being compared

$$
\mathrm{df}_{\text {between (entire ANOVA) }}=k-1
$$

where $k=$ the number of groups in the entire ANOVA

$$
\begin{aligned}
M S_{\text {between (groups } \left.\text { i and }_{j}\right)} & =\frac{S S_{\text {between (groups }} \text { iand } j \text { ) }}{\mathrm{df}_{\text {between (entire ANOVA) }}} \\
F_{\text {Scheffé }} & =\frac{\left.M S_{\text {between (groups }} \text { iand } j\right)}{M S_{\text {within (entire ANOVA) }}} \\
F_{\text {crit }} & =F_{\text {crit (entire ANOVA) }}
\end{aligned}
$$

Next, let's use the stress experiment to see how to do a post hoc analysis using the Scheffé test. For con venience, the relevant statistics from that experiment a re repeated here: $\Sigma X_{1}=20, \Sigma X_{2}=40, \Sigma X_{3}=65, n_{1}=n_{2}=n_{3}=5, \mathrm{~d}_{\text {between }}=2$, $M S_{\text {within }}=4.50$.

## A. Calculate $\boldsymbol{F}_{\text {Scheffé }}$ for each paired comparison.

STEP 1: Calculate the between-groups sum of squares, $S S_{\text {between (groups ia nd } j \text { ) }}$ for each paired comparison. In computing $\quad S S_{\text {between (groups ia ndj) }}$ remember that the data come from the two gr oups being compar ed,
and not from the entire ANOVA. F or e xample, in determining $S S_{\text {between (groups i and j) }}$ for Groups 1 and 2, all the data come from Group 1 and Group 2. Let's now do the calculations.

## Groups 1 and 2

$$
\begin{aligned}
S S_{\text {between (groups 1 and 2) }} & =\left[\frac{\left(\Sigma X_{1}\right)^{2}}{n_{1}}+\frac{\left(\Sigma X_{2}\right)^{2}}{n_{2}}\right]-\frac{\left(\sum^{\text {groups }} 1 \text { and } 2\right.}{n_{1}+n_{2}} \\
& =\left[\frac{(20)^{2}}{5}+\frac{(40)^{2}}{5}\right]-\frac{(60)^{2}}{10} \\
& =80+320-360=40.00
\end{aligned}
$$

## Groups 1 and 3

$$
\begin{aligned}
& S S_{\text {between (groups 1 and 3) }}\left.=\left[\frac{\left(\Sigma X_{1}\right)^{2}}{n_{1}}+\frac{\left(\Sigma X_{3}\right)^{2}}{n_{3}}\right]-\frac{\left(\sum^{\text {groups }} 1\right.}{1 \text { and } 3}\right)^{2} \\
& n_{1}+n_{3} \\
&=\left[\frac{(20)^{2}}{5}+\frac{(65)^{2}}{5}\right]-\frac{(85)^{2}}{10} \\
&=80+845-722.50=202.50
\end{aligned}
$$

## Groups 2 and 3

$$
\begin{aligned}
S S_{\text {between (groups 2 and 3) }} & =\left[\frac{\left(\Sigma X_{2}\right)^{2}}{n_{2}}+\frac{\left(\Sigma X_{3}\right)^{2}}{n_{3}}\right]-\frac{\left(\sum^{\text {groups }} 2\right.}{\left.\sum_{2} \text { and } 3\right)^{2}} \\
& =\left[\frac{(40)^{2}}{5}+\frac{(65)^{2}}{5}\right]-\frac{(105)^{2}}{10} \\
& =320+845-1102.50=62.50
\end{aligned}
$$

Step 2: Calculate $M S_{\text {between (groups } i \text { and } j \text { ) }}$ for each paired comparison. Groups 1 and 2

$$
M S_{\text {between (groups 1 and 2) }}=\frac{S S_{\text {between (groups 1 and 2) }}}{\mathrm{df}_{\text {between (entire ANOVA) }}}=\frac{40}{2}=20.00
$$

## Groups 1 and 3

$$
M S_{\text {between }(\text { groups } 1 \text { and 3) }}=\frac{S S_{\text {between }(\text { groups } 1 \text { and 3) }}}{\mathrm{df}_{\text {between }(\text { entire ANOVA) }}}=\frac{202.50}{2}=101.25
$$

## Groups 2 and 3

$$
M S_{\text {between (groups 2 and 3) }}=\frac{S S_{\text {between (groups 2 and 3) }}}{\mathrm{df}_{\text {between (entire ANOVA) }}}=\frac{62.50}{2}=31.25
$$

Step 3. Calculate $\boldsymbol{F}_{\text {Scheffé }}$ for each paired comparison. $F_{\text {Schefféf }}$ for each comparison is formed by di viding each $M S_{\text {between (groups i and } j \text { ) }}$ by $M S_{\text {within }}$ obtained from the entire ANOVA.

Groups 1 and 2

$$
F_{\text {Scheffé }}=\frac{M S_{\text {between (groups } 1 \text { and } 2)}}{M S_{\text {within (entire } A N O V A)}}=\frac{20.00}{4.50}=4.44
$$

## Groups 1 and 3

$$
F_{\text {Scheffé }}=\frac{M S_{\text {between (groups 1 and 3) }}}{M S_{\text {wihhin (entire ANOVA) }}}=\frac{101.25}{4.50}=22.50
$$

Groups 2 and 3

$$
F_{\text {Scheffé }}=\frac{M S_{\text {between (groups 2 and 3) }}}{M S_{\text {within (entire ANOVA) }}}=\frac{31.25}{4.50}=6.94
$$

## B. Evaluate each $\boldsymbol{F}_{\text {Scheffé }}$ value.

To e valuate e ach $F_{\text {Scheffé }}$ value, we compare each with the value of $F_{\text {crit }}$ from the entire ANOVA analysis. The decision rule is the same, namely,

$$
\text { If } F_{\text {Scheffé }} \geq F_{\text {crit }} \text {, reject } H_{0} \text {; if not, retain } H_{0}
$$

In the stress experiment,

$$
F_{\text {crit }}=3.88
$$

Since $F_{\text {Scheffe }} \geq 3.88$ for all three comparisons, we can reject $H_{0}$ in each case and conclude that $\mu_{1} \neq \mu_{2} \neq \mu_{3}$. The three stress conditions are significantly different from each other. This is the same result that we obtained with the Tukey HSD test. Even though the Scheffé test has lower power than the Tukey HSD test, in this example, it had enough power to result in significance for all three comparisons.

The analysis is summarized in table 15.6.
Now let's do a practice problem.
table 15.6 Summary table for Scheffé test post hoc analysis of stress experiment

| Groups | $\begin{aligned} & S S_{\text {between }} \\ & (\text { groups i and } j) \end{aligned}$ | $\mathrm{df}_{\text {between }}$ from ANOVA | $\text { MS }_{\text {between }}$ <br> (groups $i$ and $j$ ) | MS $_{\text {within }}$ from ANOVA | $\boldsymbol{F}_{\text {Scheffé }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 and 2 | 40.00 | 2 | 20.00 | 4.50 | 4.44* |
| 1 and 3 | 202.50 | 2 | 101.25 | 4.50 | 22.50* |
| 2 and 3 | 62.50 | 2 | 31.25 | 4.50 | 6.94* |

[^41]
## Practice Problem 15.2

Using the data of Practice Problem 15.1 (p. 415),
a. Test the planned comparisons that (1) Lecture + Reading and Lecture have different effects and (2) that Lecture + Reading and Film + Reading have different effects. A ssume there is a g ood theoretical basis for making these comparisons, but the predicted direction of the effect is unclear. Consequently, use $\alpha=0.05_{2 \text { tail }}$ in concluding.
b. Make all possible post hoc mean comparisons using the HSD test. Use $\alpha=0.05$.
c. Make all possible post hoc mean comparisons using the Scheffé test. Use $\alpha=0.05$.

## SOLUTION

a. Planned comparisons. For convenience, the relevant statistics from Practice Problem 15.1 are shown here: $\bar{X}_{1}=84.556, \bar{X}_{2}=91.000, \bar{X}_{3}=81.556, n=9$, $M S_{\text {within }}=28.352, \mathrm{df}_{\text {within }}=24, k=3$. The comparisons are as follows:

Lecture (1) and Lecture + Reading (2):

$$
t_{\mathrm{obt}}=\frac{\bar{X}_{2}-\bar{X}_{1}}{\sqrt{2 M S_{\text {within }} / n}}=\frac{91.000-84.556}{\sqrt{2(28.352) / 9}}=2.57
$$

Lecture + Reading (2) and Film + Reading (3):

$$
t_{\mathrm{obt}}=\frac{\bar{X}_{2}-\bar{X}_{3}}{\sqrt{2 M S_{\text {within }} / h}}=\frac{91.000-81.556}{\sqrt{2(28.352) / 9}}=3.76
$$

To evaluate these values of $t_{\text {obt }}$, we must determine $t_{\text {crit }}$. From Table D, with $\alpha=0.05_{2 \text { tail }}$ and $\mathrm{df}=\mathrm{df}_{\text {within }}=24$,

$$
t_{\text {crit }}= \pm 2.064
$$

Since $\left|t_{\text {obl }}\right|>2.064$ in both comparisons, we reject $H_{0}$ in each case and conclude that $\mu_{1} \neq \mu_{2}$ and $\mu_{2} \neq \mu_{3}$. By using a priori tests, Lecture + Reading appears to be the most effective method.
b. Post hoc comparisons using the HSD test. With the HSD test, $Q_{\text {obt }}$ is determined for each comparison and then evaluated against $Q_{\text {crit }}$. The value of $Q_{\text {crit }}$ is the same for each comparison and is such that the Type I er ror probability is maintained at $\alpha$. For convenience, the relevant statistics from Practice Problem 15.1 are shown here: $\bar{X}_{1}=84.556, \bar{X}_{2}=91.000, \bar{X}_{3}=81.556, n=9$, $M S_{\text {within }}=28.352 . \mathrm{df}_{\text {within }}=24, k=3$.
The calculations for $Q_{\text {obt }}$ are as follows:
Lecture (1) and Lecture + Reading (2):

$$
Q_{\mathrm{obt}}=\frac{\bar{X}_{2}-\bar{X}_{1}}{\sqrt{M S_{\text {within }} / n}}=\frac{91.000-84.556}{\sqrt{(28.352) / 9}}=3.63
$$

Lecture (1) and Film + Reading (3):

$$
Q_{\mathrm{obt}}=\frac{\bar{X}_{1}-\bar{X}_{3}}{\sqrt{M S_{\text {within }} / n}}=\frac{84.556-81.556}{\sqrt{(28.352) / 9}}=1.69
$$

Lecture + Reading (2) and Film + Reading (3):

$$
Q_{\text {obt }}=\frac{\bar{X}_{2}-\bar{X}_{3}}{\sqrt{M S_{\text {wihhin }} / n}}=\frac{91.000-81.566}{\sqrt{(28.352) / 9}}=5.32
$$

Next, we must determine $Q_{\text {crit. }}$. From Table G, with $\mathrm{df}=\mathrm{df}_{\text {within }}=24, k=3$, and $\alpha=0.05$, we obtain

$$
Q_{\text {crit }}=3.53
$$

Comparing the three values of $Q_{\text {obt }}$ with $Q_{\text {crit }}$, we find that the comparisons between cond itions 1 a nd 2 , a nd between 2 a nd 3 a re significant. For these comparisons, $Q_{\text {obt }}>3.53$. However, the remaining comparison between conditions 1 and 3 is not significant, because $Q_{\text {obt }}<3.53$. Thus, on the basis of the HSD test, we may reject $H_{0}$ for the Lecture and Lecture + Reading comparison and for the Lecture + Reading and Film + Reading comparison. Lecture + Reading appears to be the most effective condition. However, we cannot reject $H_{0}$ with regard to the Lecture and Film + Reading comparison.
c. Post hoc comparisons using the Scheffé test: To do the Scheffé test we first compute $F_{\text {scheffé }}$ for each paired comparison and then evaluate each $F_{\text {Scheffé }}$ against $F_{\text {crit }}$. The value of $F_{\text {crit }}$ is the value used in the one-way ANOVA. For convenience, the relevant statistics from Practice Problem 15.1 are presented here: $\Sigma X_{1}=761, \Sigma X_{2}=819, \Sigma X_{3}=734, n_{1}=n_{2}=n_{3}=9, k=3, \mathrm{df}_{\text {between }}=2$, $M S_{\text {within }}=28.352$.

## 1. Calculate $\boldsymbol{F}_{\text {Scheffe }}$ for each paired comparison.

Step 1. Calculate the between-groups sum of squares, $S S_{\text {between (groups iand } j \text { ), }}$, for each paired comparison.

## Groups 1 and 2:

$$
\begin{aligned}
S S_{\text {between (groups } 1 \text { and } 2)} & =\left[\frac{\left(\Sigma X_{1}\right)^{2}}{n_{1}}+\frac{\left(\Sigma X_{2}\right)^{2}}{n_{2}}\right]-\frac{\left(\begin{array}{c}
\left.\begin{array}{c}
\text { groups } \\
\text { ind } 2 \\
n_{1}
\end{array}\right)^{2} \\
n_{1}+n_{2} \\
9
\end{array}\right.}{} \\
& =\left[\frac{(761)^{2}}{9}+\frac{(819)^{2}}{9}\right]-\frac{(1580)^{2}}{18}=186.89
\end{aligned}
$$

## Groups 1 and 3:

$$
\begin{aligned}
S S_{\text {between }(\text { groups } 1 \text { and } 3)} & =\left[\frac{\left(\Sigma X_{1}\right)^{2}}{n_{1}}+\frac{\left(\Sigma X_{3}\right)^{2}}{n_{3}}\right]-\frac{\binom{\text { groups }}{1 \text { and } 3}^{2}}{n_{1}+n_{3}} \\
& =\left[\frac{(761)^{2}}{9}+\frac{(734)^{2}}{9}\right]-\frac{(1495)^{2}}{18}=40.50
\end{aligned}
$$

## Groups 2 and 3:

$$
\begin{aligned}
& S S_{\text {between (groups 2 and 3) }}\left.=\left[\frac{\left(\Sigma X_{2}\right)^{2}}{n_{2}}+\frac{\left(\Sigma X_{3}\right)^{2}}{n_{3}}\right]-\frac{\left(\sum^{\text {groups }} 2\right.}{2 \text { and } 3}\right)^{2} \\
& n_{2}+n_{3} \\
&=\left[\frac{(819)^{2}}{9}+\frac{(734)^{2}}{9}\right]-\frac{(1553)^{2}}{18}=401.39
\end{aligned}
$$

Step 2. Calculate $M S_{\text {between (groups iand } j \text { ) }}$ for each paired comparison.

## Groups 1 and 2:

$$
M S_{\text {between (groups 1 and 2) }}=\frac{S S_{\text {between (groups } 1 \text { and } 2)}}{\mathrm{df}_{\text {between }(\text { entire ANOVA) }}}=\frac{186.89}{2}=93.44
$$

## Groups 1 and 3:

$$
M S_{\text {between (groups 1 and 3) }}=\frac{S S_{\text {between (groups 1 and 3) }}}{\mathrm{df}_{\text {between (entire ANOVA) }}}=\frac{40.50}{2}=20.25
$$

## Groups 2 and 3:

$$
M S_{\text {between (groups } 2 \text { and 3) }}=\frac{S S_{\text {between (groups } 2 \text { and 3) }}}{\mathrm{df}_{\text {between (entire ANOVA) }}}=\frac{410.39}{2}=200.69
$$

Step 3. Calculate $\boldsymbol{F}_{\text {Scheffé }}$ for each paired comparison. $F_{\text {Scheffé }}$ for each comparison is formed by di viding each $M S_{\text {between (groupsiand j) }}$ by $M S_{\text {within }}$ obtained from the entire ANOVA.

## Groups 1 and 2:

$$
F_{\text {Scheffé }}=\frac{M S_{\text {between (groups } 1 \text { and } 2)}}{M S_{\text {within (entire ANOVA) }}}=\frac{93.44}{28.35}=3.30
$$

## Groups 1 and 3:

$$
F_{\text {Scheffé }}=\frac{M S_{\text {between (groups } 1 \text { and } 3)}}{M S_{\text {within (entire } A N O V A)}}=\frac{20.25}{28.35}=0.71
$$

## Groups 2 and 3:

$$
F_{\text {Scheffé }}=\frac{M S_{\text {between (groups } 2 \text { and } 3)}}{M S_{\text {within (entire ANOVA) }}}=\frac{200.69}{28.35}=7.08
$$

2. Evaluate each $\boldsymbol{F}_{\text {Scheffée }}$ value.

To evaluate each $F_{\text {Scheffé }}$ value, we compare each with the value of $F_{\text {crit }}$ from the entire one-way ANOVA analysis. The decision rule is

$$
\text { If } F_{\text {Scheffé }} \geq F_{\text {crit }}, \text { reject } H_{0} \text {; if not, retain } H_{0}
$$

In this experiment,

$$
F_{\text {crit }}=3.40
$$

Comparing each $F_{\text {Scheffé }}$ value with $F_{\text {crit, }}$, we find that $F_{\text {Scheffée }} \geq 3.40$ o nly for the Groups 2 and 3 comparison. For this comparison, we reject $H_{0}$ and conclude that there is a real difference between the scores in the Lecture and those in the Lecture + Reading conditions. Since $F_{\text {Scheffé }}<3.40$ for the other two comparisons, we must retain $H_{0}$ for these comparisons. Please note that this is not the same result that we obtained with the Tukey HSD test. Because the Tukey HSD test is more powerful than the Scheffé test, we were able to reject $H_{0}$ for both the Lecture and Lecture + Reading comparison and for the Lecture + Reading and Film + Reading comparison. Due to 1 oss of power, the Scheffé test was not able to reject $H_{0}$ for the Lecture and Lecture + Reading comparison. The analysis is summarized in table 15.7.
table 15.7 Summary table for Scheffé test post hoc analysis of Practice Problem 15.2

| Groups | $S S_{\text {between }}$ <br> (groups $\boldsymbol{i}$ and $\boldsymbol{j}$ ) | $\begin{gathered} \mathrm{df}_{\text {between }} \text { from } \\ \text { ANOVA } \end{gathered}$ | $\begin{gathered} \mathbf{M S}_{\text {between }} \\ (\text { groups } i \text { and } j \text { ) } \end{gathered}$ | $\begin{gathered} \text { MS }_{\text {within }} \text { from } \\ \text { ANOVA } \end{gathered}$ | $F_{\text {Scheffé }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 and 2 | 186.89 | 2 | 93.44 | 28.35 | 3.30 |
| 1 and 3 | 40.50 | 2 | 20.25 | 28.35 | 0.71 |
| 2 and 3 | 401.39 | 2 | 200.69 | 28.35 | 7.08* |

${ }^{*} F_{\text {crit }}$ from ANOVA $=3.40$. Therefore, reject $H_{0}$ for the groups 2 and 3 comparison; retain $H_{0}$ for the other two comparisons.

## MENTORING TIP

Planned comparisons are the most powerful of the multiple comparison tests.

## Comparison Between Planned Comparisons, the Tukey HSD Test, and the Scheffé Test

Table 15.8 , shown here, summarizes the multiple comparisons that were done on $t$ he data of the stress experiment. This table presents the value of the statistic computed for each comparison and the one- or two-tailed probability of getting that value of the statistic or one even more extreme, assuming chance alone is at work. You will recall that we called this probability the obtained probability in Chapter 10, p. 252, when discussing the sign test. If the obtained probability $\leq \alpha$, then we reject $H_{0}$; if not, we retain $H_{0}$.
table 15.8 Summary of Multiple Comparisons for the Stress Experiment

|  | Planned Comparisons |  | Post Hoc Comparisons |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $t$ test |  | Tukey HSD test |  | Scheffé test |  |
| Group <br> Comparisons | $t$ | Obtained Probability | $Q$ | Obtained <br> Probability | F | Obtained Probability |
| 1 and 2 |  |  | 4.21 | 0.029 | 4.44 | 0.036 |
| 1 and 3 | -6.71 | 0.00001 | 9.48 | 0.00006 | 22.50 | 0.00009 |
| 2 and 3 | -3.73 | 0.001 | 5.27 | 0.008 | 6.94 | 0.010 |

Obviously, the higher the obtained probability, the lower is the chance of rejecting $H_{0}$, and hence the lower the power. From the obtained probabilities shown in Table 15.8 we can see that the obtained probabilities for the Tukey HSD test range from 6 to 8 times higher than those of the planned comparisons, for the same comparisons. The table also shows that the obtained probabilities for the Scheffé test range from 1.2 to 1.5 times higher than those of the Tukey HSD test, for the same comparisons. This is an illustration of the general principle that planned comparisons are more powerful than post-hoc comparisons, and within the category of post-hoc comparisons, the Tukey HSD test is more powerful than the Scheffé test.

Since planned comparisons do not correct for an increased probability of making a Type I error, they are more powerful than either of the post hoc tests we have discussed. Moreover, planned comparisons can be directional, additionally increasing their power over post hoc tests, which by their very nat ure must be nondirectional. B ecause of its greater power, planned comparisons is the method of choice when applicable. It is important to note, however, that the planned comparisons should be relatively few and should flow meaningfully and logically from the experimental design.

If one is do ing on ly post $h o c$, pa ir-wise co mparisons b etween g roup mea ns , deciding between the Tukey HSD and the Scheffé tests really depends on one's research philosophy. If interest centers on getting the most power while at the same time reasonably controlling Type I er ror, then the Tukey HSD test is preferable to the Scheffé test. Because it controls Type I er ror only for pair-wise mean comparisons, the HSD test is more $p$ owerful than the Scheffé test. Con trolling Type I er ror for all possible comparisons, rather than just for all pair-wise mean comparisons, re duces the power of the Scheffé test. For this reason, if interest is limited to doing only pair-wise mean comparisons, I recommend using the Tukey HSD test over the Scheffé test. Of course, if one is interested in doing other than post hoc pair-wise mean comparisons, the Scheffé test is the only appropriate test considered here.

## WHAT IS THE TRUTH?



In a magazine advertisement placed by Rawlings Golf Company, Rawlings claims to have developed a new golf ball that travels a greater distance. The ball is called Tony Penna DB (DB stands for distance ball). To its credit, Rawlings not only offered terms such as high rebound core, Surlyn cover, centrifugal action, and so forth to explain why it is reasonable to believe that its ball would travel farther but also

## Much Ado About Almost Nothing

hired a consumer testing institute to conduct an experiment to determine whether, in fact, the Tony Penna DB ball does travel farther. In this experiment, six different brands of balls were evaluated. Fifty-one golfers each hit 18 new balls (3 of each brand) off a driving tee with a driver. The mean distance traveled for each ball was reported as follows:

1. Tony Penna DB
2. Titleist Pro Trajectory
254.57 yd
3. Wilson Pro Staff
252.50 yd
249.24 yd
4. Titleist DT
5. Spalding Top-Flite
6. Dunlop Blue Max
249.16 yd 247.12 yd 244.22 yd

Although no inference testing was reported, the ad concludes, "as you can see, while we can't promise you 250 yards off the tee, we can offer you a competitive edge, if only a yard or two. But an edge is an edge." Since you are by now thoroughly grounded in inferential statistics, how do you respond to this ad?
(continued)

## WHAT IS THE TRUTH? (continued)

Answer First, I think you should commend the company on conducting evaluative research that compares its product with competitors' on a very important dependent variable. It is to be further commended in engaging an impartial organization to conduct the research. Finally, it is to be commended for reporting the results and calling readers' attention to the fact that the differences between balls are quite small (although, admittedly, the wording of the ad tries to achieve a somewhat different result).

A major criticism of this ad (and an old friend by now) is that we have not been told whether these results are statistically significant. Without establishing this point, the most reasonable explanation of the differences may be "chance." Of course, if chance is the correct explanation, then using the Tony Penna DB ball
won't even give you a yard or two advantage! Before we can take the superiority claim seriously, the manufacturer must report that the differences were statistically significant. Without this statement, as a general rule, I believe we should assume the differences were tested and were not significant, in which case chance alone remains a reasonable explanation of the data. (By the way, what inference test would you have used? Did you answer ANOVA? Nice going!)

For the sake of my second point, let's say the appropriate inference testing has been done, and the data are statistically significant. We still need to ask: "So what? Even if the results are statistically significant, is the size of the effect worth bothering about?" Regarding the difference in yardage between the first two brands, I think the answer is "no." Even if I were an avid golfer, I fail to see how a yard or two would make
any practical difference in my golf game. In all likelihood, my 18-hole score would not change by even one stroke, regardless of which ball I used. On the other hand, if I had been using a Dunlop Blue Max ball, these results would cause me to try one of the top two brands. Regarding the third-, fourth-, and fifth-place brands, a reasonable person could go either way. If there were no difference in cost, I think I would switch to one of the first two brands, on a trial basis.

In summary, there are two points I have tried to make. The first is that product claims of superiority based on sample data should report whether the results are statistically significant. The second is that "statistical significance" and "importance" are different issues. Once statistical significance has been established, we must look at the size of the effect to see if it is large enough to warrant changing our behavior.


In this chapter, I discussed the $F$ test and the analysis of variance. The $F$ test is f undamentally the ratio of two independent variance estimates of the same population variance, $\sigma^{2}$. The $F$ distribution is a family of curves that varies with degrees of freedom. Since $F_{\text {obt }}$ is a ratio, there are two values for degrees of freedom: one for the numerator and one for the denominator. The $F$ distribution (1) is positively skewed, (2) has no negative values, and (3) has a median approximately equal to 1 , depending on the $n$ s of the estimates.

The analysis of variance technique is used in conjunction $w$ ith e xperiments i nvolving mor et han $t$ wo independent $g$ roups. B asically, it a llows the mea ns of the various groups to be compared in one overall evaluation, thus avoiding the inflated probability of making a Type I error when doing many $t$ tests. In the one-way analysis of $v$ ariance, $t$ he tot al $v$ ariability of $t$ he $d$ ata $\left(S S_{\text {total }}\right)$ is pa rtitioned i nto $t$ wo pa rts: $t$ he $v$ ariability that exists within each group, called the within-groups sum of squares ( $S S_{\text {within }}$ ), and the variability that exists between the groups, called the between-groups sum of squares $\left(S S_{\text {between }}\right)$. Each sum of squares is used to form an i ndependent es timate of $t$ he $v$ ariance of $t$ he $n u l l-$ hypothesis populations. Finally, an $F$ ratio is calculated, where the between-groups variance estimate $\left(M S_{\text {between }}\right)$ is int he $n$ umerator a nd $t$ he $w$ ithin-groups $v$ ariance estimate $\left(M S_{\text {within }}\right)$ is i $n t$ he den ominator. $S$ ince $t$ he between-groups $v$ ariance e stimate in creases w ith the effect of the independent variable and the within-groups variance estimate remains constant, the larger the $F$ ratio, the more unreasonable the null hypothesis becomes. We evaluate $F_{\text {obt }}$ by comparing it with $F_{\text {crit }}$. If $F_{\text {obt }} \geq F_{\text {crit }}$, we reject the null hypothesis and conclude that at least one of the conditions differs significantly from at least one of the other conditions.

Next, I d iscussed $t$ he a ssumptions underlying $t$ he analysis of variance. There are two assumptions: (1) The populations from which the samples are drawn should be normal, and (2) there should be homogeneity of variance. The $F$ test is robust with regard to violations of normality and homogeneity of variance.

After discussing assumptions, I presented two methods for estimating the size of effect of the independent variable. One of the statistics computed to measure size of effect in the one-way, independent groups ANOVA is o mega squ ared ( $\hat{\omega}^{2}$ ). The ot her is et a squ ared $\left(\eta^{2}\right)$. Conceptually, $\hat{\omega}^{2}$ and $\eta^{2}$ are like $r^{2}$ in that each provides an estimate of the proportion of the total variability of
$Y$ that is accounted for by $X$. The larger the proportion, the larger is the size of the effect. $\hat{\omega}^{2}$ gives a re latively unbiased estimate of this proportion in the population, whereas the estimate provided by $\eta^{2}$ is more biased. In addition to explaining how to compute $\hat{\omega}^{2}$ and $\eta^{2}$, criteria were given to determine if the computed size of effect was small, medium, or large.

Next, I presented a section on the power of the analysis of variance. As with the $t$ test, power of the ANOVA varies directly with $N$ and the size of the real effect and varies inversely with the sample variability.

Finally, I presen ted a se ction on m ultiple comparisons. I n e xperiments us ing the A NOVA t echnique, a significant $F$ value indicates that the cond itions are not all equal in their effects. To determine which conditions differ from each other, multiple comparisons between pairs of group means a re usually performed. There are two approaches to doing multiple comparisons: a priori, or planned, comparisons and a posteriori, or post hoc, comparisons.

In the a priori approach, there a re between-groups comparisons that have been planned in advance of collecting the data. These may be done i $n$ the usual way, regardless of whether the obtained $F$ value is significant, by calculating $t_{\mathrm{obt}}$ for the two groups and evaluating $t_{\mathrm{obt}}$ by comparing it with $t_{\text {crit }}$. In conducting the analysis, we use $t$ he $w$ ithin-groups $v$ ariance es timate ca lculated in doing $t$ he a nalysis of v ariance. S ince t his es timate is based on more groups than the two-group estimate used in the ordinary $t$ test, it is more accurate. There is no correction necessary for a priori multiple comparisons.

A p osteriori, or post hoc, co mparisons w ere n ot planned before conducting the experiment and arise after looking at the data. As a result, we must be very careful about Type I error considerations. Post hoc comparisons must be made with a method that corrects for the inflated Type I error probability. Many methods do this.

For post hoc comparisons, I described Tukey's HSD test and the Scheffé test. The HDS test maintains the Type I error rate at $\alpha$ for making all possible comparisons between pairs of sample means. The Scheffé test maintains the Type I error rate at $\alpha$ for making all possible comparisons. The HSD test controls for Type I error by using the $Q$ or S tudentized range statistic. As with the $t$ test, $Q_{\text {obt }}$ is calculated for each comparison and evaluated against $Q_{\text {crit }}$ determined from the sampling distribution of $Q$. If $Q_{\text {obt }} \geq Q_{\text {crit }}$, the null hypothesis is rejected. The Scheffé test uses the $F$ statistic and the sampling distribution of
$F$. For pair-wise mean comparisons, it computes $M S_{\text {between }}$ for the t wo g roups being compared using $\mathrm{df}_{\text {between }}$ from the overall ANOVA and $F_{\text {Scheffe }}$ for each pair-wise comparison. $F_{\text {Scheffe }}$ is computed by dividing $M S_{\text {between }}$ for the two groups being compared with $M S_{\text {within }}$ obtained from
the one-way ANOVA. Each $F_{\text {Scheffe }}$ is evaluated by comparing it with $F_{\text {crit }}$ from the overall ANOVA. The Scheffé test controls for Type I er ror by using df $\mathrm{detween}, M S_{\text {within }}$, and $F_{\text {crit }}$ from the one-way ANOVA, rather than from the two groups being compared.

## IMPORTANT NEW TERMS

A posteriori comparisons (p. 423)
A priori comparisons (p. 422)
Analysis of variance (p. 405)
Between-groups sum of squares
( $S S_{\text {between }}$ ) $($ p. 406, 409)
Between-groups variance estimate
$\left(M S_{\text {between }}\right)(\mathrm{p} .406,408)$
Eta squared ( $\eta^{2}$ ) (p. 420)
$F$ test (p. 402)
$F_{\text {crit }}($ p. 403, 413)
$F_{\text {Scheffé }}$ (p. 426)

Grand mean $\left(\bar{X}_{G}\right)$ (p. 408)
Omega squared ( $\hat{\omega}^{2}$ ) (p. 419)
One-way analysis of variance, independent groups design (p. 405)

Planned comparisons (p. 422)
Post hoc comparisons (p. 423)
$Q_{\text {crit }}$ (p. 424)
$Q_{\text {obt }}$ (p. 424)
Sampling distribution of $F$ (p. 402)
Scheffé test (p. 425)

Simple randomized-group design (p. 406)

Single factor experiment, independent groups design (p. 405)
Total variability ( $S S_{\text {total }}$ ) (p. 406, 412)

Tukey HSD test (p. 424)
Within-groups sum of squares
( $S S_{\text {within }}$ ) (p. 406, 407)
Within-groups variance estimate ( $M S_{\text {within }}$ ) (p. 406)

## QUESTIONS AND PROBLEMS

1. Identify ord efine $t$ he $t$ erms in $t$ he I mportant N ew Terms section.
2. What are the characteristics of the $F$ distribution?
3. What advantages are there in doing experiments with more than two groups or conditions?
4. When doing an experiment with many groups, what is the problem with doing $t$ tests between all possible groups without any cor rection? Why does use of the analysis of variance avoid that problem?
5. The analysis of variance technique analyzes the variability of the data. Yet a significant $F$ value indicates that there is at 1 east one $s$ ignificant mean difference between the conditions. How does analyzing the variability of the data allow conclusions about the means of the conditions?
6. What are the steps in forming an $F$ ratio in using the one-way analysis of variance technique?
7. In the a nalysis of variance, if $F_{\text {obt }}$ is less than 1 , we don't even need to compare it with $F_{\text {crit }}$. It is obvious that the independent variable has not had a significant effect. Why is this so?
8. What are the assumptions underlying the analysis of variance?
9. The analysis of variance is a nondirectional technique, yet it uses a one-tailed evaluation. Is this statement correct? Explain.
D. Find $F_{\text {crit }}$ for the following situations:
a. df (numerator $)=2, \mathrm{df}($ denominator $)=16, \alpha=0.05$
b. $\operatorname{df}$ (numerator $)=3, \mathrm{df}($ denominator $)=36, \alpha=0.05$
c. $\mathrm{df}($ numerator $)=3, \mathrm{df}($ denominator $)=36, \alpha=0.01$

What happens to $F_{\text {crit }}$ as the degrees of freedom increase and alpha is held constant? What happens to $F_{\text {crit }}$ when the degrees of freedom are held constant and alpha is made more stringent?
11. In C hapter 14 , P ractice P roblem 14.2 , a n i ndependent g roups e xperiment w as cond ucted to investigate $w$ hether $l$ esions of $t$ he $t$ halamus de crease pain perception. $\alpha=0.05_{1 \text { tail }}$ was used in the a nalysis. T he d ata a re ag ain presen ted here . Scores a re pa in $t$ hreshold ( milliamps) to e lectric shock. Higher scores indicate decreased pain perception.

| Neutral Area Lesions | Thalamic Lesions |
| :---: | :---: |
| 0.8 | 1.9 |
| 0.7 | 1.8 |
| 1.2 | 1.6 |
| 0.5 | 1.2 |
| 0.4 | 1.0 |
| 0.9 | 0.9 |
| 1.4 | 1.7 |
| 1.1 |  |

Using these data, verify that $F=t^{2}$ when there are just two groups in the independent groups experiment.
12. What are the variables that affect the power of the one-way analysis of variance technique?
13. For each of the variables identified in Question 12, state ho w p ower is a ffected ift he v ariable is i n creased. Use the equation for $F_{\text {obt }}$ on p. 421 to justify your answer.
14. E xplain $w$ hy $w e m$ ust cor rect $f$ or do ing $m$ ultiple comparisons when doing post hoc comparisons.
15. How do planned comparisons, post hoc comparisons using the Tukey HSD test, and post hoc comparisons using the Scheffé test differ with regard to
a. Power? Explain.
b. The probability of making a Type I error? Explain.
16. What a re the $Q$ or $S$ tudentized range distributions? How do $t$ hey a void the problem of i nflated Type I errors that result from doing multiple comparisons with the $t$ distribution?
17. In do ing $p$ lanned co mparisons, $i t$ is $b$ etter to use $M S_{\text {within }}$ from the ANOVA rather than the weighted variance estimate from the $t$ wo $g$ roups being compared. Is this statement correct? Why?
18. What three factors does the Scheffé test use to make it more difficult to reject $H_{0}$ ?
19. The accompanying table is a one -way, independent groups A NOVA s ummary $t$ able $w$ ith pa rt of $t$ he material missing.

| Source | $\boldsymbol{S S}$ | df | $\boldsymbol{M S}$ | $\boldsymbol{F}_{\text {obt }}$ |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $\ldots \ldots \ldots \ldots \ldots \ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ |  |
| Between groups | 1253.68 | 3 |  |  |  |
| Within groups |  |  |  |  |  |
| Total | 5016.40 | 39 |  |  |  |

a. Fill in the missing values.
b. How many groups are there in the experiment?
c. Assuming an equal number of subjects in each group, ho w m any s ubjects a re t here i n ea ch group?
d. What is the value of $F_{\text {crit }}$, using $\alpha=0.05$ ?
e. Is there a significant effect?
20. Assume you are a nutritionist who has been asked to determine whether there is a difference in sugar content among the three leading brands of breakfast cereal (brands A, B, and C). To assess the amount of sugar in the cereals, you r andomly sa mple six packages of each brand and chemically determine their sugar content. The following grams of sugar were found:

| Breakfast Cereal |  |  |
| :---: | :---: | ---: |
| A | B | C |
| $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$ |  |  |
| 1 | 7 | 6 |
| 2 | 5 | 4 |
| 3 | 3 | 4 |
| 3 | 7 | 5 |
| 2 | 4 | 7 |
| 6 | 7 | 8 |

a. Using $t$ he conc eptual e quations of t he one -way ANOVA, determine whether any of the brands differ in sugar content. Use $\alpha=0.05$.
b. Same as part a, except use the computational equations. Which do you prefer? Why?
c. Do a post hoc analysis on each pair of means using the Tukey HSD test with $\alpha=0.05$ to determine which cereals are different in sugar content.
d. Same as part c, but use the Scheffé test.
e. Explain any differences between the results of part $\mathbf{c}$ and part d. health
21. A sleep researcher conducts an experiment to determine whether sleep loss affects the ability to maintain s ustained at tention. F ifteen i ndividuals a re randomly divided into the following three $g$ roups of five subjects each: group 1 , which gets the normal amount of sleep ( $7-8$ hours); group 2, which is sleep-deprived for 24 hours; and group 3, which is sleep-deprived for 48 hou rs. All three g roups a re tested on $t$ he sa me aud itory vigilance $t$ ask. $S$ ubjects are presented with half-second tones spaced at irregular i ntervals o ver a 1 -hour d uration. O ccasionally, one of the tones is slightly shorter than the rest. The subject's task is to detect the shorter tones.

The following percentages of correct detections were observed:

| Normal Sleep | Sleep-Deprived for 24 Hours | Sleep-Deprived for 48 Hours |
| :---: | :---: | :---: |
| 85 | 60 | 60 |
| 83 | 58 | 48 |
| 76 | 76 | 38 |
| 64 | 52 | 47 |
| 75 | 63 | 50 |

a. Determine whether there is an overall effect for sleep deprivation, us ing the conc eptual e quations of $t$ he one-way ANOVA. Use $\alpha=0.05$.
b. Same as part a, except use the computational equations.
c. Which do you prefer? Why?
d. Determine the size of effect, using $\hat{\omega}^{2}$.
e. Determine the size of effect, using $\eta^{2}$.
f. Explain the difference in answers between part $\mathbf{d}$ and part $\mathbf{e}$.
g. Do a planned comparison between the means of the 48 -hour sleep-deprived group and the normal sleep group to see whether these conditions differ in their effect on the ability to maintain sustained attention. Use $\alpha=0.05_{2 \text { tail }}$. What do you conclude?
h. Do post hoc co mparisons, co mparing each pair of means using the Tukey HSD test and $\alpha=0.05$. What do you conclude?
i. Same as part $\mathbf{h}$, but use t he Scheffé test. Compare your answers to parts $\mathbf{h}$ and $\mathbf{i}$. Explain any difference. cognitive
22. To test whether memor y c hanges w ith ag e, a re searcher conducts an experiment in which there are four $g$ roups of six subjects each. The g roups differ according to the age of subjects. In group 1, the subjects a re each 30 y ears old; g roup 2,40 y ears old; group 3,50 years old; and g roup 4, 60 years old. Assume that the subjects are all in good health and that the $g$ roups a re $m$ atched on ot her i mportant variables such as years of education, IQ, gender, motivation, and so on. Each subject is shown a series of $n$ onsense syllables (a mea ningless co mbination of three letters such as DAF or F UM) at a rate of one s yllable e very 4 se conds. The ser ies is shown twice, after which the subjects are a sked to write down as many of the syllables as they can
remember. The number of syllables remembered by each subject is shown here:

| $\begin{aligned} & 30 \text { Years } \\ & \text { Old } \end{aligned}$ | 40 Years Old | 50 Years Old | 60 Years Old |
| :---: | :---: | :---: | :---: |
| 14 | 12 | 17 | 13 |
| 13 | 15 | 14 | 10 |
| 15 | 16 | 14 | 7 |
| 17 | 11 | 9 | 8 |
| 12 | 12 | 13 | 6 |
| 10 | 18 | 15 | 9 |

a. Use the analysis of variance with $\alpha=0.05$ to determine whether age has an effect on memory.
b. If there is a significant effect in part a, determine the size of effect, using $\hat{\omega}^{2}$.
c. Determine the size of effect, using $\eta^{2}$.
d. Explain the difference in answers between part $\mathbf{b}$ and part c .
e. Using planned comparisons with $\alpha=0.05_{2 \text { tail }}$, compare the means of the 60 -year-old and the 30 -year-old groups. What do you conclude?
f. Use the Scheffé test with $\alpha=0.05$ to compare all possible pairs of means. What do you conclude? cognitive
23. Assume you are employed by a consumer-products rating service and your assignment is to assess car batteries. For this part of your investigation, you want to determine whether there is a difference in useful life a mong the top-of-the-line car bat teries produced by three manufacturers (A, B, and C). To provide the database for your assessment, you randomly sample four batteries from each manufacturer and run them through laboratory tests that allow you to determine the useful life of each battery. The following are the results given in months of useful battery life:

| Battery Manufacturer |  |  |
| :---: | :---: | :---: |
| A | B | C |
| 56 | 46 | 44 |
| 57 | 52 | 53 |
| 55 | 51 | 50 |
| 59 | 50 | 51 |

a. Use the analysis of variance with $\alpha=0.05$ to determine whether there is a difference among these three brands of batteries.
b. Suppose you a re a sked to m ake a re commendation regarding the batteries based on use ful life. Use the Tukey HSD test with $\alpha=0.05$ to help you with your decision. I/O
24. In Chapter 14, a n illustrative experiment involved investigating the effect of hormone X on sexual behavior. Although we presented only two concentrations in that problem, let's assume the experiment actually i nvolved $f$ our $d$ ifferent conc entrations of the hor mone. The full data are shown here, where the conc entrations a re a rranged in a scending or der; that is, 0 conc entration is where there is $z$ ero amount of hor mone X ( this is t he placebo g roup), and concentration 3 represen ts the highest a mount of the hormone:

| Concentration of Hormone $\mathbf{X}$ |  |  |  |
| :--- | :---: | :---: | ---: |
| $\mathbf{0}$ | $\boldsymbol{1}$ | $\mathbf{2}$ | $\mathbf{3}$ |
| $\ldots \ldots$ | $\ldots$ | $\ldots$ | $\ldots$ |
| 5 | 4 | 8 | $\ldots$ |
| 6 | 5 | 10 | 13 |
| 3 | 6 | 12 | 10 |
| 4 | 4 | 6 | 9 |
| 7 | 5 | 6 | 12 |
| 8 | 7 | 7 | 12 |
| 6 | 7 | 9 | 14 |
| 5 | 8 | 8 | 9 |
| 4 | 4 | 7 | 13 |
| 8 | 8 | 11 | 10 |

a. Using the analysis of variance with $\alpha=0.05$, determine whether hormone X affects sexual behavior.
b. If there is a real effect, estimate the size of the effect using $\hat{\omega}^{2}$.
c. Using p lanned co mparisons with $\alpha=0.05_{2 \mathrm{tail}}$, compare the mean of concentration 3 w ith that of concentration 0 . What do you conclude?
d. Using the Tukey HSD test with $\alpha=0.05$, compare all possible pairs of means. What do y ou conclude? biological
25. A c linical p sychologist is in terested in e valuating the effectiveness of the following three techniques for $t$ reating $m$ ild depress ion: co gnitive res tructuring, assertiveness training, and an exercise/nutrition
program. F orty u ndergraduate s tudents s uffering from mild d epression a re r andomly sa mpled from the uni versity counseling center's waiting list and randomly assigned ten each to the three techniques previously men tioned, a nd the rem aining $t$ en to a placebo con trol g roup. Treatment is cond ucted for 10 weeks, after which depression is measured using the Beck Depression Inventory. The post-treatment depression scores are given here. Higher scores indicate greater depression.

| Treatment |  |  |  |
| :---: | :---: | :---: | :---: |
| Placebo | Cognitive Restructuring | Assertiveness Training | Exercise/ nutrition |
| 27 | 10 | 16 | 26 |
| 16 | 8 | 18 | 24 |
| 18 | 14 | 12 | 17 |
| 26 | 16 | 15 | 23 |
| 18 | 18 | 9 | 25 |
| 28 | 8 | 13 | 22 |
| 25 | 12 | 17 | 16 |
| 20 | 14 | 20 | 15 |
| 24 | 9 | 21 | 18 |
| 26 | 7 | 19 | 23 |

a. What is the overall null hypothesis?
b. Using $\alpha=0.05$, what do you conclude?
c. Do post h oc co mparisons, us ing t he Tukey HS D test, with $\alpha=0.05$. What do you conclude? clinical, health
26. A u niversity resea rcher k nowledgeable in C hinese medicine cond ucted a s tudy to det ermine w hether acupuncture can he lp re duce co caine a ddiction. In this experiment, 18 co caine addicts were randomly assigned to one o ft hree g roups of 6 a ddicts $p$ er group. One group received 10 weeks of acupuncture treatment in which $t$ he a cupuncture ne edles w ere inserted into points on $t$ he ou ter ear where stimulation is believed to be effective. Another group, a placebo $g$ roup, ha d a cupuncture ne edles i nserted into points on $t$ he ear believed not to $b$ e effective. The third group received no acupuncture treatment; instead, a ddicts int his $g$ roup re ceived re laxation therapy. All groups also received counseling over the 10 -week t reatment p eriod. $T$ he dep endent $v$ ariable was craving for cocaine as measured by the number
of co caine urges experienced by each addict in the last week of treatment. The following are the results.

| Acupuncture + <br> Counseling | Placebo + <br> Counseling | Relaxation Therapy + <br> Counseling |
| :---: | :---: | :---: | :---: |
| $\ldots \ldots \ldots$ |  |  |

a. Using $\alpha=0.05$, what do you conclude?
b. If $t$ here is a s ignificant effect, es timate $t$ he size of effect, using $\hat{\omega}^{2}$.
c. This time estimate the size of the effect, using $\eta^{2}$.
d. Explain the difference in answers between part $\mathbf{b}$ and part c. clinical, health
27. An instructor is teaching three sections of Introductory P sychology, ea ch se ction co vering t he sa me material. She has made up a d ifferent final exam for each section, but she suspects that one ofthe versions is more difficult th an the other two. She decides to conduct an experiment to evaluate the difficulty of the exams. During the review period, just before finals, she randomly selects five volunteers from each class. Class 1 volunteers are given
version 1 of the exam; class 2 v olunteers get version 2, and class 3 volunteers receive version 3 . Of course, all volunteers are sworn not to reveal any of the exam questions, a nd also, of course, all of the volunteers will receive a different final exam from the one they took in the experiment. The following are the results.

| Exam Version 1 | Exam Version 2 | Exam Version 3 |
| :---: | :---: | :---: |
| 70 | 95 | 88 |
| 92 | 75 | 76 |
| 85 | 81 | 84 |
| 83 | 83 | 93 |
| 78 | 72 | 77 |

Using $\alpha=0.05$, what do you conclude? education

## What Is the Truth? Questions

## Much Ado About Almost Nothing

a. The golf company rep orts mean data, but no significance analysis. Do you think it important to do a significance test on $t$ hese data? Explain why or why not. In general, do you believe advertisements should i nclude sa mple $d$ ata a nd significance testing? Explain.
b. The What Is the Truth? section says that "statistical inference" a nd "importance" a re different iss ues. Are they really different issues? Discuss.

## SPSS ILLUSTRATIVE EXAMPLE 15.1

The general operation of SPSS and data entry are discussed in Appendix E, Introduction to SPSS. As it did with the $t$ test, in doing a one-way ANOVA, SPSS computes $\mathbf{F}$ (the same as our $F_{\text {obt }}$ ) and the probability of getting $\mathbf{F}$ or a value more extreme if chance alone is at w ork. It calls this probability Sig. Again, using Sig. to denote a probability value is a bit confusing. However, that is the term SPSS chose, so we are stuck with it. Remember:

Sig. $=$ the probability of getting $F_{\text {obt }}$ or a value more extreme, assuming chance. The decision rule we will use to evaluate $H_{0}$ and $H_{1}$ is as follows.

If Sig. $\leq \alpha$, reject $H_{0}$ and affirm $H_{1}$.
If Sig. $>\alpha$, retain $H_{0}$; cannot affirm $H_{1}$.

## example

For this illustrative example, we'll use the stress experiment described in Chapter 15 of the textbook, p. 410. For convenience, this experiment is repeated here.

Suppose you are interested in determining whether certain situations produce differing amounts of stress. You know the amount of hormone corticosterone circulating in the blood is a good measure of how stressed a person is. You randomly assign 15 students into three groups of 5 each. The students in group 1 have their corticosterone levels measured immediately after returning from vacations (low stress). The students in group 2 have their corticosterone levels measured after they have been in class for a week (moderate stress). The students in group 3 are measured immediately before final exam week (high stress). All measurements are taken at the same time of day. You record the data shown in the table below. Scores are in milligrams of corticosterone per 100 milliliters of blood.

| Vacation | Class <br> Group 2 | Final Exam <br> Group 3 |
| :---: | :---: | :---: |
| $\ldots \ldots \ldots$ |  |  |
| 2 | 10 | 10 |
| 3 |  | 83 |
| 7 |  | $\boxed{ }$ |
| 2 |  | 53 |
| 6 | 10 | 15 |

What is your conclusion, using $\alpha=0.05$ ?

## SOLUTION

STEP 1: Enter the Data. The data are entered in the same manner that we did for the $t$ test for Independent Groups. The only difference is that in the present experiment there are three groups instead of two.

1. For an independent groups analysis, the scores of each group are stacked vertically, one after the other, in a single column of the Data Editor (like we did for the $t$ test for Independent Groups). To enter all the scores in the first column (VAR00001) of the Data Editor, do as follows:
a. First, enter the scores of Group 1 in the first column (VAR00001) of the Data Editor, beginning with the first Group 1 score in the first cell of the first column.
b. Next, enter the scores of Group 2 in the first column, directly beneath the last Group 1 score. There should be no spaces or empty cells after the last Group 1 score.
c. Finally, enter the scores of Group 3 in the first column directly beneath the last Group 2 score. There should be no spaces or empty cells after the last Group 2 score. The first column should now contain the scores of all three groups, beginning with the Group 1 scores and ending with the Group 3 scores, with no spaces or empty cells in between any of the scores.
2. In the second column (VAR00002), enter a coding number to designate to which group each score belongs. Do this as follows. In the second column (VAR00002) enter the number $\mathbf{1}$ next to each Group 1 score, the number $\mathbf{2}$ next to each Group 2 score, and the number $\mathbf{3}$ next to each Group 3 score. These coding numbers identify the group to which each score belongs.

The resulting Data Editor is shown here. For the moment, ignore the names of the variables. We will name the variables in the next step. Stress replaces VAR00001 and Group replaces VAR00002.

|  | Stress | Group | $V$ |
| ---: | ---: | ---: | ---: | ---: |
| 1 | 2.00 | 1.00 |  |
| 2 | 3.00 | 1.00 |  |
| 3 | 7.00 | 1.00 |  |
| 4 | 2.00 | 1.00 |  |
| 5 | 6.00 | 1.00 |  |
| 6 | 10.00 | 2.00 |  |
| 7 | 8.00 | 2.00 |  |
| 8 | 7.00 | 2.00 |  |
| 9 | 5.00 | 2.00 |  |
| 10 | 10.00 | 2.00 |  |
| 11 | 10.00 | 3.00 |  |
| 12 | 13.00 | 3.00 |  |
| 13 | 14.00 | 3.00 |  |
| 14 | 13.00 | 3.00 |  |
| 15 | 15.00 | 3.00 |  |
| 16 |  |  |  |

STEP 2: Name the Variables. In this example, we will give the default variables VAR00001 and VAR00002 the new names of Stress and Group, respectively. To do so,

1. Click the Variable View tab in the lower left corner of the Data Editor.
2. Click VAR00001; then type Stress in the highlighted cell and then press Enter.
3. Replace VAR00002 with Group and then press Enter.

This displays the Variable View on screen, with VAR00001 and VAR00002 displayed in the first and second cells of the Name column, respectively.

Stress is entered as the variable name, replacing VAR00001. The cursor then moves to the next cell, highlighting VAR00002.

Group is entered as the variable name, replacing VAR00002.

STEP 3: Analyze the Data. To do a one-way ANOVA on the stress scores,

1. Click Analyze; then select Compare Means; then click One-Way ANOVA....
2. Click the top arrow for the Dependent List: box.
3. Click Group in the large box on the left; then click the bottom arrow for the Factor: box.

This produces the One-Way ANOVA dialog box with Stress highlighted.

This moves Stress into the Dependent List: box. This identifies Stress as the dependent variable.

This moves Group into the Factor: box. This identifies Group as the independent variable, or Factor, as SPSS calls it.
4. Click the Options button on the right.
5. Click Descriptive.
6. Click Continue.
7. Click OK.

This produces the One-Way ANOVA: Options dialog box. This and the next two steps are not really necessary for the overall analysis. They instruct SPSS to compute some descriptive statistics. While not necessary, the descriptive statistics are often useful, so I recommend you include these two steps.

This puts a check in the Descriptive box, telling SPSS to compute default descriptive statistics and include them in the output.

This returns you to the One-Way ANOVA dialog box. SPSS is now ready to do the analysis once it gets the OK command.

SPSS analyzes the Stress data and displays the results.

## Analysis Results

The results are displayed in two tables, the Descriptives and ANOVA tables. These are shown here.

Descriptives

|  | N | Mean | Std. Deviation | Std. Error | 95\% Confidence Interval for Mean |  | Minimum | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Lower Bound | Upper Bound |  |  |
| 1.00 | 5 | 4.0000 | 2.34521 | 1.04881 | 1.0880 | 6.9120 | 2.00 | 7.00 |
| 2.00 | 5 | 8.0000 | 2.12132 | 94868 | 5.3660 | 10.6340 | 5.00 | 10.00 |
| 3.00 | 5 | 13.0000 | 1.87083 | . 83666 | 10.6771 | 15.3229 | 10.00 | 15.00 |
| Total | 15 | 8.3333 | 4.28730 | 1.10698 | 5.9591 | 10.7076 | 2.00 | 15.00 |

ANOVA
Stress

|  | Sum of <br> Squares | df | Mean Square | F | Sig. |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Between Groups | 203.333 | 2 | 101.667 | 22.593 | .000 |
| Within Groups | 54.000 | 12 | 4.500 |  |  |
| Total | 257.333 | 14 |  |  |  |

The Descriptives table gives descriptive statistics on the groups. The ANOVA table should be familiar to you. It is the ANOVA summary table given in the textbook, with the exception that SPSS adds a column at the end labeled "Sig." (for significance). This is the table we use to conclude about the overall effect of the independent variable. It shows that $\mathbf{F}=\mathbf{2 2 . 5 9 3}$ and Sig. $=.000(p=.000)$. Since $.000<0.05$, our conclusion is to reject $H_{0}$. The three situations are not all the same in the stress levels they produce. Please note that the value SPSS gives for $F$ is the same as $F_{\text {obt }}$ computed in the textbook. The conclusions are also the same.

## SPSS ADDITIONAL PROBLEMS

1. Use SPSS to analyze the data of Chapter 15, Problem 21, p. 437, of the textbook.

Name the scores Pct_Corr, and name the grouping variable Group.
2. A computer monitor manufacturer is interested in determining the effects of various display foreground and background colors on visual clarity. An experiment is conducted in which 60 subjects are randomly divided into four groups of 15 subjects each. Each group is exposed to a different combination of foreground and background colors. The combinations used are the ones the manufacturer believes will promote the greatest clarity. All subjects are given an acuity test via the computer screen using the combination they received. The following visual acuity results were obtained. The higher the score, the higher is the visual acuity.

| Group 1 | 75 | 85 | 71 | 77 | 87 | 67 | 89 | 63 | 73 | 76 | 92 | 86 | 68 | 65 | 72 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Group 2 | 73 | 74 | 81 | 70 | 95 | 85 | 68 | 67 | 85 | 69 | 78 | 73 | 87 | 75 | 71 |
| Group 3 | 94 | 78 | 93 | 92 | 82 | 90 | 69 | 86 | 75 | 94 | 98 | 69 | 76 | 84 | 76 |
| Group 4 | 81 | 83 | 77 | 91 | 84 | 67 | 82 | 90 | 65 | 67 | 78 | 88 | 66 | 77 | 69 |

What is your conclusion, using $\alpha=0.05$ ? Name the scores Acuity, and name the grouping variable Group.
3. The sets of scores shown in the table here are random numbers obtained from Table J, the table of random numbers, in Appendix G.

| Group 1 | 8 | 2 | 7 | 5 | 2 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Group 2 | 7 | 5 | 6 | 3 | 1 | 7 |
| Group 3 | 0 | 7 | 0 | 2 | 6 | 2 |

a. Use SPSS to do a one-way, independent groups ANOVA on the data, with $\alpha=0.05$. What do you conclude?
b. Add a cons tant of 4 to ea ch score in Group 1 . This is a nalogous to $w$ hat concerning the population scores? Reanalyze the data, again using $\alpha=0.05$. What do you conclude this time? Explain any difference in conclusions between part $\mathbf{a}$ and part $\mathbf{b}$.

## ONLINE STUDY RESOURCES

## CENGAGE braiin

Login to CengageBrain.com to access the resources your instructor has assigned. For this book, you can access the book's companion website for chapter-specific learning tools including Know and Be Able to Do, practice quizzes, flash cards, and glossaries, and a link to Statistics and Research Methods Workshops.

If your professor has assigned Aplia homework:

1. Sign in to your account.
2. Complete the cor responding ho mework e xercises a s required by your professor.
3. When finished, c lick "G rade It N ow" to se e which areas you have mastered and which need more work, and for detailed explanations of every answer.

Visit www.cengagebrain.com to access your account and to purchase materials.

## Introduction to Two-Way Analysis of Variance

## LEARNING OBJECTIVES

After completing this chapter, you should be able to:

- Define factorial experiment, main effect, and interaction effect.
- Correctly label graphs showing no effect and various combinations of main and interaction effects.
- Understand the partitioning of $S S_{\text {total }}$ into its four components, the formation of variance estimates, and the formation of the three $F$ ratios.
- Understand the derivation of the row, column, interaction, and the withincells variance estimates.
- Solve problems involving two-way ANOVA and specify the assumptions underlying this technique.
- Understand the illustrative example, do the practice problems, and understand the solutions.


## INTRODUCTION TO TWO-WAY ANOVA-QUALITATIVE PRESENTATION

In Chapter 15, we discussed the most elementary analysis of variance design. We called it the simple randomized-groups design, the one-way analysis of variance, independent groups design, or the single factor experiment, independent groups design. The characteristics of this design are that there is only one independent variable (one factor) that is being investigated, there are two or more levels or conditions of the independent variable, and subjects are randomly assigned to each condition.

Actually, the analysis of variance design is not limited to single factor experiments. In fact, the effect of many different factors may be investigated at the same time in one experiment. Such experiments are called factorial experiments.

A factorial experiment is o ne in which the effects of two or m ore factors or independent variables are assessed in one experiment.

In a factorial experiment, the conditions or treatments used are combinations of the levels of the factors. For example, in an experiment investigating the effects on sleep on two levels of exercise (light and heavy), carried out at two times of the day (morning and evening), there would be four treatments or conditions. One of the treatments would be the combination of light exercise done in the morning; another would be light exercise done in the evening; a third treatment would be heavy exercise done in the morning, and the remaining treatment would be heavy exercise done in the evening.

The two-way a nalysis of variance is more co mplicated than the one-way design. However, we get a lot more information from the two-way design. The two-way analysis of variance allows us in one experiment to evaluate the effect of two independent variables and the interaction between them.

Let's examine this design in more det ail, using the example given pre viously. Suppose a pro fessor in physical education conducts an experiment to co mpare the effects on nighttime sleep of different intensities of exercise and the time of day when the exercise is done. As mentioned previously, let's assume that there are two levels of exercise (light and heavy) and two times of day (morning and evening). The experiment is depicted diagrammatically in Figure 16.1. From this figure, we can see that there are two factors or i ndependent variables: factor A , which is time of day, and factor B, which is exercise intensity. Each factor has two levels. Thus, this design is referred to as a $2 \times 2$ (read "two by two") design. The first number refers to variable A and tells us there are two levels of variable A. The second number refers to variable B and again tells us there are two levels of variable B. If factor A had three levels, the experiment would be called a $3 \times 2$, two-way ANOVA. In a $2 \times 4 \times 3$ design, there would be three factors having two, four, a nd three levels, res pectively. This would be called a t hree-way A NOVA. Don't worry about how we would a ssign letters to the three variables. This is quite a complicated design and beyond the scope of this textbook.

In the present example, there are two factors, each having two levels. This results in four cells (conditions or treatments): $a_{1} b_{1}$ (morning-light exercise), $a_{1} b_{2}$ (morningheavy exercise), $a_{2} b_{1}$ (evening-light exercise), and $a_{2} b_{2}$ (evening-heavy exercise). Since this is an independent groups design, subjects would be randomly assigned to each

figure 16.1 Schematic diagram of two-way analysis of variance example involving exercise intensity and time of day.
of the cells so that a different group of subjects occupies each cell. Since the levels of each factor were systematically chosen by the experimenter rather than being randomly chosen, this is called a fixed effects design.

There are three analyses done in this design. First, we want to determine whether factor A has a significant effect, disregarding the effect of factor B. This is called the main effect of factor A. In this experiment, we are interested in determining whether time of day makes a difference in the effect of exercise on sleep, disregarding the effect of exercise intensity. Second, we want to determine whether factor B has a significant effect, without cons idering the effect of factor A. This is ca lled the main effect of factor B. For this experiment, we are interested in determining whether the exercise intensity makes a difference in sleep activity, disregarding the effect of time of day. Finally, we want to determine whether there is an interaction between factors A and B. This is called the interaction effect of factors A and B. In the present experiment, we want to det ermine whether there is a n interaction between time of day and exercise intensity in their effect on sleep.

## definitions <br> The effect of factor $A$ ( averaged over the levels of factor $B$ ) a ad the effect of factor $B$ ( averaged ov er the le vels offa ctor $A$ ) a re called main effects. An interaction effect occurs when the effect of one factor is not the same at all levels of the other factor.

Figure 16.2 shows some possible outcomes of this experiment. In part (a), there are no significant effects. In part (b), there is a significant main effect for time of day but no effect for exercise intensity and no interaction. Thus, the subjects get significantly more sleep if the exercise is done in the morning rather than in the evening. However, it doesn't seem to matter if the exercise is light or heavy. In part (c), there is a significant main effect for exercise intensity but no effect for time of day and no interaction.

figure 16.2 Some possible outcomes of the experiment investigating the effects of intensity of exercise and time of day.

In this example, heavy exercise results in significantly more sleep than light exercise, and it doesn't matter whether the exercise is done in the morning or evening; the effect appears to be the same. Part (d) shows a significant main effect for exercise intensity and time of day, with no interaction effect.

Both parts (e) and (f) show significant interaction effects. As stated previously, the essence of an interaction is that the effect of one factor is not the same at all levels of the other factor. This means that, when an interaction occurs between factors A and B, the differences in the dependent variable due to changes in one factor are not the same for each level of the other factor. In part (e), there is a significant interaction effect between exercise intensity and time of day. The effect of different intensities
of exercise is not the same for all levels of time of day. Thus, if the exercise is done in the evening, light exercise results in significantly more sleep than heavy exercise. On the other hand, if the exercise is done in the morning, light exercise results in significantly less sleep than heavy exercise. In part (f), there is a significant main effect for time of day and a significant interaction effect. Thus, when the exercise is done in the morning, it results in significantly more sleep than when done in the evening, regardless of whether it is light or heavy exercise. In addition to this main effect, there is an interaction between exercise intensity and time of day. Thus, there is no difference in the effect of the two intensities when the exercise is done in the evening, but when done in the morning, heavy exercise results in more sleep than light exercise.

In a nalyzing the data from a two-way analysis of variance design, we determine four v ariance e stimates: $M S_{\text {within-cells, }}, M S_{\text {rows }}, M S_{\text {columns }}$, and $M S_{\text {interaction }}$. The es timate $M S_{\text {within-cells }}$ is the within-cells variance estimate and corresponds to the within-groups variance estimate used in the one-way ANOVA. It becomes the standard against which the ot her estimates, $M S_{\text {rows }} M S_{\text {columns }}$, and $M S_{\text {interaction }}$, a re compared. The ot her estimates are sensitive to the effects of the independent variables. The estimate $M S_{\text {rows }}$ is called the row variance estimate. It is ba sed on the variability of the row means (see Figure 16.1) and, hence, is sensitive to the effects of variable A. The estimate $M S_{\text {columns }}$ is called the column va riance estimate. It is ba sed on $t$ he variability of the column means and, hence, is sensitive to the effects of variable B. The estimate $M S_{\text {interaction }}$ is the interaction variance estimate. It is based on the variability of the cell means and, hence, is sensitive to the interaction effects of variables A and B. If variable A has no effect, $M S_{\text {rows }}$ is an independent estimate of $\sigma^{2}$. If variable B has no effect, then $M S_{\text {columns }}$ is an independent estimate of $\sigma^{2}$. Finally, if there is no interaction between variables A and B, $M S_{\text {interaction }}$ is also an independent estimate of $\sigma^{2}$. Thus, the estimates $M S_{\text {rows }}, M S_{\text {columns }}$, and $M S_{\text {interaction }}$ are analogous to the between-groups variance estimate of the one-way design. To test for significance, three $F$ ratios are formed:

MENTORING TIP
This interaction would typically be called an " $A$ by $B$ " interaction.

$$
F_{\mathrm{obt}}=\frac{M S_{\text {rows }}}{M S_{\text {within-cells }}}
$$

$$
\text { For variable B, } \quad F_{\mathrm{obt}}=\frac{M S_{\text {columns }}}{M S_{\text {within-cells }}}
$$

For the interaction between A and B ,

$$
F_{\mathrm{obt}}=\frac{M S_{\text {interaction }}}{M S_{\text {within-cells }}}
$$

Each $F_{\text {obt }}$ value is evaluated against $F_{\text {crit }}$ as in the one-way analysis. For the rows comparison, if $F_{\text {obt }} \geq F_{\text {crit }}$, there is a significant main effect for factor A. If $F_{\text {obt }} \geq F_{\text {crit }}$ for the columns comparison, there is a s ignificant main effect for factor B. Finally, if $F_{\text {obt }} \geq F_{\text {crit }}$ for the interaction comparison, there is a significant interaction effect. Thus, there are many similarities between the one-way a nd two-way designs. The biggest difference is that, with a two-way design, we can do essentially two one-way experiments, plus we are able to evaluate the interaction between the two independent variables.

Thus far, the two-way a nalysis of variance, independent groups, fixed effects design has been discussed in a qualitative way. In the remainder of this chapter, we shall present a more det ailed, quantitative discussion of the data a nalysis for this design.

## QUANTITATIVE PRESENTATION OF TWO-WAY ANOVA



In the one-way a nalysis of variance, the tot al sum of squ ares is pa rtitioned into $t$ wo components: the within-groups sum of squares and the between-groups sum of squares. These two components are divided by the appropriate degrees of freedom to form two variance estimates: the within-groups variance estimate, $M S_{\text {within }}$ and the between-groups variance estimate $M S_{\text {between }}$. If the null hypothesis is correct, then both estimates are estimates of the null-hypothesis population variance ( $\sigma^{2}$ ), a nd the ratio $M S_{\text {between }} / M S_{\text {within }}$ will be distributed as $F$. If the independent variable has a real effect, then $M S_{\text {between }}$ will tend to be larger than otherwise and so will the $F$ ratio. Thus, the larger the $F$ ratio is, the more unreasonable the null hypothesis becomes. When $F_{\text {obt }} \geq F_{\text {crit }}$, we reject $H_{0}$ as being too unreasonable to entertain as an explanation of the data.

The situation is quite similar in the two-way analysis of variance. However, in the two-way analysis of variance, we partition the total sum of squares, $S S_{\text {total }}$, into four components: the within-cells sum of squares $\left(S S_{\text {within-cells }}\right)$, the row sum of squares $\left(S S_{\text {rows }}\right)$, the column sum of squares $\left(S S_{\text {columns }}\right)$, and the interaction sum of squares $\left(S S_{\text {interaction }}\right)$. This partitioning is shown in Figure 16.3. When these sums of squares are divided by the appropriate degrees of freedom, they form four variance estimates. These estimates are the within-cells variance estimate $\left(M S_{\text {within-cells }}\right)$, the row variance estimate $\left(M S_{\text {rows }}\right)$, the column variance estimate $\left(M S_{\text {columns }}\right)$, and the interaction variance estimate $\left(M S_{\text {interaction }}\right)$. In discussing each of these variance estimates, it will be useful to refer to Figure 16.4, which shows the notation and general layout of data for a two-way analysis of variance, independent groups design. We have assumed in the following discussion that the number of subjects in each cell is the same.

figure 16.3 Overview of two-way analysis of variance technique, independent groups design.

figure 16.4 Notation and general layout of data for a two-way analysis of variance design.

## Within-Cells Variance Estimate, $\boldsymbol{M S}_{\text {within-cells }}$

This estimate is derived from the variability of the scores within each cell. Since all the subjects within each cell receive the same level of variables A and B, the variability of their scores cannot be due to treatment differences. The within-cells variance estimate is a nalogous to $t$ he within-groups variance es timate use $d$ in the one-way analysis of variance. It is a mea sure of the inherent variability of the scores within each cell; hence, it is u naffected by the effects of factors A a nd B or their interaction. Therefore, it g ives us a n estimate of the null-hypothesis population variance $\left(\sigma^{2}\right)$ alone. It is the yardstick against which we compare each of the other variance estimates. In equation form,

$$
M S_{\text {within-cells }}=\frac{S S_{\text {within-cells }}}{\mathrm{df}_{\text {wihhin-cells }}}
$$

## conceptual equation for within-cells variance estimate

where $S \quad S_{\text {within-cells }}=$ within-cells sum of squares
df within-cells $=$ within-cells degrees of freedom
The within-cells sum of squares $\left(S S_{\text {within-cells }}\right)$ is just the sum of squares within each cell added together. Conceptually,

$$
S S_{\text {within-cells }}=S S_{11}+S S_{12}+\cdots+S S_{r c}
$$

conceptual equation for the within-cells sum of squares
where $S \quad S_{11}=$ sum of squares for the scores in the cell defined by the intersection of row 1 and column 1
$S S_{12}=$ sum of squares for the scores in the cell defined by the intersection of row 1 and column 2
$S S_{r c}=$ sum of squares for the scores in the cell defined by the intersection of row $r$ and column $c$; this is the last cell in the matrix

As has been the case so often previously, the conceptual equation is not the best equation to use for computational purposes. The computational equation is given here:

$$
S S_{\text {within-cells }}=\sum_{\substack{\text { all } \\
\text { scorres }}} X^{2}-\left[\frac{\left(\begin{array}{c}
\text { cell } \\
11 \\
11
\end{array}\right)^{2}+\left(\begin{array}{c}
\text { cell } \\
12
\end{array} \sum^{2}+\cdots+\left(\sum_{\text {cell }}^{\text {rc }} x\right)^{2}\right.}{n_{\text {cell }}}\right]
$$

computational equation for the within-cells sum of squares

Note the similarity of these equations to the comparable equations for the withingroups variance estimate used in the one-way ANOVA. The only difference is that in the two-way ANOVA, summation is with regard to the cells, whereas in the one-way ANOVA, summation is with regard to the groups.

In computing $S S_{\text {within-cells }}$, the number of deviation scores $=n_{\text {cell }}=n$. Therefore, there are $n-1$ degrees of freedom contributed by each cell. Since we sum over all cells in calculating $S S_{\text {within-cells, }}$, the within-cells degrees of freedom equal $n-1 \mathrm{~m}$ ultiplied by the number of cells. If we let $r$ equal the number of rows and $c$ equal the number of columns, then $r c$ equals the number of cells. Therefore, the within-cells degrees of freedom equal $r c(n-1)$. Thus,

$$
\mathrm{df}_{\text {within-cells }}=r c(n-1) \quad \text { within-cells degrees of freedom }
$$

where $r \quad=$ number of rows
$c=$ number of columns

## Row Variance Estimate, $\boldsymbol{M S}_{\text {rows }}$

This estimate is based on the differences between the row means. It is analogous to the between-groups variance estimate $\left(M S_{\text {between }}\right)$ in the one-way ANOVA. You will recall that $M S_{\text {between }}$ is an estimate of $\sigma^{2}$ plus the effect of the independent variable. Similarly, the row variance estimate $\left(M S_{\text {rows }}\right)$ in the two-way ANOVA is an estimate of $\sigma^{2}$ plus the effect of factor A. If factor A has no effect, then the population row means are equal ( $\mu_{a_{1}}=\mu_{a_{2}}=\cdots=\mu_{a_{r}}$ ), and the differences between sample row means will just be due to random sampling from identical populations. In this case, $M S_{\text {rows }}$ becomes an estimate of just $\sigma^{2}$ alone. If factor A has an effect, then the differences among the row means, and hence $M S_{\text {rows }}$, will tend to be larger than otherwise. In equation form,

$$
M S_{\text {rows }}=\frac{S S_{\text {rows }}}{\mathrm{df}_{\text {rows }}} \quad \text { conceptual equation for the row variance estimate }
$$

where $S$

$$
S_{\text {rows }}=\text { row sum of squares }
$$

df rows $=$ row degrees of freedom
The row sum of squares is very similar to the between-groups sum of squares in the one-way ANOVA. The only difference is that with the row sum of squares we use the row means, whereas the between-groups sum of squares used the group means.

MENTORINGTIP
Caution: you can't use this equation unless $n_{\text {row }}$ is the same for all rows.

The conceptual equation for $S S_{\text {rows }}$ follows. Note that in computing row means, all the scores in a $g$ iven row are combined and a veraged. This is re ferred to a s computing the row means "averaged over the columns" (see Figure 16.4). Thus, the row means are arrived at by averaging over the columns:

$$
S S_{\text {rows }}=n_{\text {row }}\left[\left(\bar{X}_{\text {row } 1}-\bar{X}_{G}\right)^{2}+\left(\bar{X}_{\text {row } 2}-\bar{X}_{G}\right)^{2}+\cdots+\left(\bar{X}_{\text {row } r}-\bar{X}_{G}\right)^{2}\right]
$$

conceptual equation for the row sum of squares

$$
\text { where } \begin{aligned}
\bar{X}_{\text {row } 1} & =\frac{\sum_{\text {row }}^{\substack{\text { row }}}}{n_{\text {row } 1}} \\
\bar{X}_{\text {row } r} & =\frac{\sum^{\text {row }} r}{n_{\text {row } r}} X \\
\bar{X}_{G} & =\text { grand mean }
\end{aligned}
$$

From the conceptual equation, it is easy to see that $S S_{\text {rows }}$ increases with the effect of variable A. As the effect of variable A increases, the row means become more widely separated, which in turn c auses $\left(\bar{X}_{\text {row } 1}-\bar{X}_{G}\right)^{2},\left(\bar{X}_{\text {row } 2}-\bar{X}_{G}\right)^{2} \ldots\left(\bar{X}_{\text {row } r}-\bar{X}_{G}\right)^{2}$, to increase. Since these terms are in the numerator, $S S_{\text {rows }}$ increases. Of course, if $S S_{\text {rows }}$ increases, so does $M S_{\text {rows }}$.

In calculating $S S_{\text {rows }}$, there are $r$ deviation scores. Thus, the row degrees of freedom equal $r-1$. In equation form,

$$
\mathrm{df}_{\text {rows }}=r-1 \quad \text { row degrees of freedom }
$$

Recall that the between-groups degrees of freedom $\left(\mathrm{df}_{\text {between }}\right)=k-1$ for the one-way ANOVA. The row degrees of freedom are quite similar except we are using rows rather than groups.

Again, the conceptual equation turns out not to be the best equation to use for computing $S S_{\text {rows }}$. The computational equation is given here:

$$
S S_{\text {rows }}=\left[\frac{\left(\begin{array}{c}
\text { row } \\
1 \\
1
\end{array} X\right)^{2}+\left(\begin{array}{c}
\text { row } \\
2
\end{array} \sum^{\text {r }} X\right)^{2}+\cdots+\left(\begin{array}{c}
\text { row } \\
r
\end{array} \sum^{2} X\right)^{2}}{n_{\text {row }}}\right]-\frac{\binom{\text { all }}{\text { scores }}^{2}}{N}
$$

computational equation for the row sum of squares

## Column Variance Estimate, $\boldsymbol{M S}_{\text {columns }}$

This estimate is based on the differences between the column means. It is exactly the same as $M S_{\text {rows }}$, except that it uses the column means rather than the row means. Since factor B a ffects the column means, the column variance estimate $\left(M S_{\text {columns }}\right)$ is a n estimate of $\sigma^{2}$ plus the effects of factor B. If the levels of factor B have no differential effect, then the population column means are equal ( $\mu_{b_{1}}=\mu_{b_{2}}=\mu_{b_{3}}=\ldots=\mu_{b_{c}}$ )

MENTORINGTIP
Caution: you can't use this equation unless $n_{\text {column }}$ is the same for all columns.
and the differences between the sample column means are due to random sampling from identical populations. In th is case, $M S_{\text {columns }}$ will be an estimate of $\sigma^{2}$ alone. If factor B has an effect, then the differences among the column means, and hence $M S_{\text {columns }}$, will tend to be larger than otherwise.

The equation for $M S_{\text {columns }}$ is

$$
M S_{\text {columns }}=\frac{S S_{\text {columns }}}{\mathrm{df}_{\text {columns }}} \quad \text { column variance estimate }
$$

$$
\text { where } S \quad \begin{aligned}
S_{\text {columns }} & =\text { column sum of squares } \\
\mathrm{df}_{\text {columns }} & =\text { column degrees of freedom }
\end{aligned}
$$

The column sum of squares is also very similar to the row sum of squares. The only difference is that we use the column means in calculating the column sum of squares rather than the row means. The conceptual equation for $S S_{\text {columns }}$ is shown here. Note that, in computing the column means, all the scores in a given column are combined and averaged. Thus, the column means are arrived at by averaging over the rows.

$$
S S_{\text {columns }}=n_{\text {column }}\left[\left(\bar{X}_{\text {column } 1}-\bar{X}_{G}\right)^{2}+\left(\bar{X}_{\text {column } 2}-\bar{X}_{G}\right)^{2}+\cdots+\left(\bar{X}_{\text {column } c}-\bar{X}_{G}\right)^{2}\right]
$$

conceptual equation for the column sum of squares
where $\quad \bar{X}_{\text {column } 1}=\frac{\sum^{\frac{1}{\text { column }} X}}{n_{\text {column } 1}}$
Again, we can see from the conceptual equation that $S S_{\text {columns }}$ increases with the effect of variable B. As the effect of variable B increases, the column means become more w idely s paced, which in t urn causes $\left(\bar{X}_{\text {column } 1}-\bar{X}_{G}\right)^{2},\left(\bar{X}_{\text {column } 2}-\bar{X}_{G}\right)^{2} \ldots$ $\left(\bar{X}_{\text {column } c}-\bar{X}_{G}\right)^{2}$ to increase. Since these terms are in the numerator of the equation for $S S_{\text {columns }}$, the result is an increase in $S S_{\text {columns. }}$. Of course, an increase in $S S_{\text {columns }}$ results in an increase in $M S_{\text {columns }}$.

Since there are $c$ deviation scores used in calculating $S S_{\text {columns }}$, the column degrees of freedom equal $c-1$. Thus,

$$
\mathrm{df}_{\text {columns }}=c-1 \quad \text { column degrees of freedom }
$$

The computational equation for $S S_{\text {columns }}$ is

$$
S S_{\text {columns }}=\left[\frac{\left(\begin{array}{c}
\text { column } \\
1
\end{array} x^{2}+\left(\begin{array}{c}
\text { column } \\
2
\end{array} \sum^{2}+\cdots+\binom{\text { column }}{\sum_{c}^{c} X}^{2}\right.\right.}{n_{\text {column }}}\right]-\frac{\left(\begin{array}{c}
\text { all } \\
\text { scores }
\end{array} \sum^{2}\right.}{N}
$$

## Interaction Variance Estimate, $\boldsymbol{M} \boldsymbol{S}_{\text {interaction }}$

Earlier in this chapter, we pointed out that an interaction exists when the effect of one of the variables is not the same at all levels of the other variable. Another way of saying this is that an interaction exists when the effect of the combined action of the variables is different from that which would be pre dicted by the individual effects of the variables. To illustrate this point, consider Figure 16.2(f), p. 448, where there is an interaction between time of day and exercise intensity. A n interaction exists because the sleep score for heavy exercise done in the morning is higher than would be predicted based on the individual effects of the time of day and exercise intensity variables. If there were no interaction, then we would expect the lines to be parallel. The exercise intensity variable would have the same effect when done in the evening as when done in the morning.

The interaction variance estimate $\left(M S_{\text {interaction }}\right)$ is used to evaluate the interaction of variables A a nd B. As such, it is ba sed on $t$ he differences between the cell means beyond that which is pre dicted by the individual effects of the two variables. The interaction variance estimate is an estimate of $\sigma^{2}$ plus the interaction of A and B. If there is no interaction and any main effects are removed, then the population cell means are equal $\left(\mu_{a_{1} b_{1}}=\mu_{a_{1} b_{2}}=\cdots=\mu_{a_{r} b_{c}}\right)$ and differences among cell means must be due to random sampling from identical populations. In this case, $M S_{\text {interaction }}$ will be an estimate of $\sigma^{2}$ alone. If there is an interaction between factors A and B , then the differences among the cell means and, hence $M S_{\text {interaction }}$, will tend to be higher than otherwise.

The equation for $M S_{\text {interaction }}$ is

$$
M S_{\text {interaction }}=\frac{S S_{\text {interaction }}}{\mathrm{df}_{\text {interaction }}} \quad \text { interaction variance estimate }
$$

where $S \quad S_{\text {interaction }}=$ interaction sum of squares
$\mathrm{df}_{\text {interaction }}=$ interaction degrees of freedom
The interaction sum of squares is equal to the variability of the cell means when the variability due to the individual effects of factors A and B has been removed. Both the conceptual and computational equations are given here:

MENTORINGTIP
Caution: you can't use this equation unless $n_{\text {cell }}$ is the same for all cells.

$$
\begin{aligned}
S S_{\text {interaction }}= & n_{\text {cell }}\left[\left(\bar{X}_{\text {cell 11 }}-\bar{X}_{G}\right)^{2}+\left(\bar{X}_{\text {cell 12 }}-\bar{X}_{G}\right)^{2}+\cdots+\left(\bar{X}_{\text {cell rc }}-\bar{X}_{G}\right)^{2}\right] \\
& -S S_{\text {rows }}-S S_{\text {columns }}
\end{aligned}
$$

conceptual equation for the
interaction sum of squares

$$
\begin{aligned}
S S_{\text {interaction }}= & {\left[\frac{\left(\begin{array}{l}
\text { cell } \\
11
\end{array} \sum^{2}+\left(\begin{array}{c}
\text { cell } \\
12 \\
\sum^{2}
\end{array}\right)^{2}+\cdots+\left(\begin{array}{c}
\text { cell } \\
r c \\
r c
\end{array}\right)^{2}\right.}{n_{\text {cell }}}\right]-\frac{\left(\begin{array}{l}
\text { all } \\
\text { scores } \\
\sum
\end{array}\right)^{2}}{N} } \\
& -S S_{\text {rows }}-S S_{\text {columns }}
\end{aligned}
$$

computational equation for the interaction sum of squares

The degrees of freedom for the interaction variance estimate equal $(r-1)(c-1)$. Thus,

$$
\mathrm{df}_{\text {interaction }}=(r-1)(c-1) \quad \text { interaction degrees of freedom }
$$

## Computing F Ratios

Once the variance estimates have been determined, they are used in conjunction with $M S_{\text {within-cells }}$ s fo form $F$ ratios (see Figure 16.3, p 450 ) to $t$ est the main effects of the variables and their interaction. The following three $F$ ratios are computed:

## To test the main effect of variable $A$ (row effect):

$$
F_{\text {obt }}=\frac{M S_{\text {rows }}}{M S_{\text {within-cells }}}=\frac{\sigma^{2}+\text { effects of variable A }}{\sigma^{2}}
$$

To test the main effect of variable $\boldsymbol{B}$ (column effect):

$$
F_{\text {obt }}=\frac{M S_{\text {columns }}}{M S_{\text {within-cells }}}=\frac{\sigma^{2}+\text { effects of variable } \mathrm{B}}{\sigma^{2}}
$$

To test the interaction of variables $\boldsymbol{A}$ and $\boldsymbol{B}$ (interaction effect):

$$
F_{\text {obt }}=\frac{M S_{\text {interaction }}}{M S_{\text {within-cells }}}=\frac{\sigma^{2}+\text { interaction effects of variable A and B }}{\sigma^{2}}
$$

The ratio $M S_{\text {rows }} / M S_{\text {within-cells }}$ is used to test the main effect of variable A. If variable A has no main effect, $M S_{\text {rows }}$ is an independent estimate of $\sigma^{2}$ and $M S_{\text {rows }} / M S_{\text {within-cells }}$ is distributed as $F$ with degrees of freedom equal to $\mathrm{df}_{\text {rows }}$ and $\mathrm{df}_{\text {within-cells }}$. If variable A has a main effect, $M S_{\text {rows }}$ will be larger than otherwise and the $F_{\text {obt }}$ value for rows will increase.

The r atio $M S_{\text {columns }} / M S_{\text {within-cells }}$ is used to test the main effect of variable B. If this variable has no main effect, then is an independent estimate of $\sigma^{2}$ and $M S_{\text {columns }} /$ $M S_{\text {within-cells }}$ is distributed as $F$ with degrees of freedom equal to $\mathrm{df}_{\text {columns }}$ and $\mathrm{df}_{\text {within-cells }}$. If variable B ha s a m ain effect, $M S_{\text {columns }}$ will be larger than otherwise, causing an increase in the $F_{\text {obt }}$ value for columns.

The interaction between A and B is tested using the ratio $M S_{\text {interaction }} / \mathrm{MS}_{\text {within-cells }}$. If there is no interaction, $M S_{\text {interaction }}$ is an independent estimate of $\sigma^{2}$ and $M S_{\text {interaction }} /$ $M S_{\text {within-cells }}$ is distributed as $F$ with degrees of freedom equal to df interaction and $\mathrm{df}_{\text {within-cells. }}$. If there is an interaction, $M S_{\text {interaction }}$ will be larger than otherwise, causing an increase in the $F_{\text {obt }}$ value for interaction.

The main effect of each variable and their interaction are tested by comparing the appropriate $F_{\text {obt }}$ value with $F_{\text {crit }} F_{\text {crit }}$ is found in Table F in Appendix D, using $\alpha$ and the degrees of freedom of the $F$ value being evaluated. The decision rule is the same as with the one-way ANOVA, namely,

If $F_{\text {obt }} \geq F_{\text {crit }}$, reject $H_{0}$. decision rule for evaluating $H_{0}$ in two-way ANOVA

## ANALYZING AN EXPERIMENT WITH TWO-WAY ANOVA

We are now ready to analyze the data from an illustrative example.

## experiment

## Effect of Exercise on Sleep

Let's assume a professor in physical education conducts an experiment to compare the effects on nighttime sleep of exercise intensity and of the time of day when the exercise is done. The experiment uses a fixed effects, $3 \times 2$ factorial design with independent groups. There are three levels of exercise intensity (light, moderate, and heavy) and two levels of time of day (morning and evening). Thirty-six college students in good physical condition are randomly
assigned to the six cells such that there are six subjects per cell. The subjects who do heavy exercise jog for 3 miles, the subjects who do moderate exercise jog for 1 mile , and the subjects in the light exercise condition jog for only $\frac{1}{4}$ mile. Morning exercise is done at 7:30 a.m., whereas evening exercise is done at 7:00 p.m. Each subject exercises once, and the number of hours slept that night is recorded. The data are shown in Table 16.1.

1. What are the null hypotheses for this experiment?
2. Using $\alpha=0.05$, what do you conclude?

## SOLUTION

1. Null hypotheses:
a. For the A variable (main effect): The time of day when exercise is done does not affect nighttime sleep. The population row means for morning and evening exercise averaged over the different levels of exercise intensity are equal ( $\mu_{a_{1}}=\mu_{a_{2}}$ ).
b. For the $B$ variable (main effect): The different levels of exercise intensity have the same effect on nighttime sleep. The population column means for light, medium, and heavy exercise intensity averaged over time of day conditions are equal $\left(\mu_{b_{1}}=\mu_{b_{2}}=\mu_{b_{3}}\right)$.
c. For the interaction between $A$ and $B$ : There is no interaction between time of day and exercise intensity. With any main effects removed, the population cell means are equal $\left(\mu_{a_{1} b_{1}}=\mu_{a_{1} b_{2}}=\mu_{a_{1} b_{3}}=\mu_{a_{2} b_{1}}=\mu_{a_{2} b_{2}}=\mu_{a_{2} b_{3}}\right)$.
2. Conclusion, using $\alpha=0.05$ :
a. Calculate $F_{\text {obt }}$ for each hypothesis.

STEP 1: Calculate the row sum of squares, $\boldsymbol{S S}_{\text {rows }}$. Note that time of day is the row variable.

$$
\begin{aligned}
S S_{\text {rows }} & =\left[\frac{\binom{\text { row }}{1}^{2}+\left(\begin{array}{c}
\text { row } \\
2
\end{array} \sum^{2} X\right.}{n_{\text {row }}}\right]-\frac{\binom{\text { all }}{\text { scores }}^{2}}{N} \\
& =\left[\frac{(129.2)^{2}+(147.2)^{2}}{18}\right]-\frac{(276.4)^{2}}{36}=9.000
\end{aligned}
$$

table 16.1 Data from exercise experiment

| Time of Day Factor A (row variable) | Exercise Intensity <br> Factor B (column variable) |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Light (1) | Moderate (2) | Heavy (3) |  |
| Morning (1) | 6.57 .4 | 7.47 .3 | 8.07 .6 | $\Sigma X=129.20$ |
|  | 7.37 .2 | 6.87 .6 | 7.76 .6 | $\Sigma X^{2}=930.50$ |
|  | 6.66 .8 | 6.77 .4 | 7.17 .2 | $n=18$ |
|  | $\bar{X}=6.97$ | $\bar{X}=7.20$ | $\bar{X}=7.37$ | $\bar{X}=7.18$ |
| Evening (2) | 7.17 .7 | 7.48 .0 | 8.28 .7 | $\Sigma X=147.20$ |
|  | 7.97 .5 | 8.17 .6 | 8.59 .6 | $\Sigma X^{2}=1212.68$ |
|  | 8.27 .6 | 8.28 .0 | 9.59 .4 | $n=18$ |
|  | $\bar{X}=7.67$ | $\bar{X}=7.88$ | $\bar{X}=8.98$ | $\bar{X}=8.18$ |
|  | $\Sigma X=87.80$ | $\Sigma X=90.50$ | $\Sigma X=98.10$ | $\Sigma X=276.40$ |
|  | $\Sigma X^{2}=645.30$ | $\Sigma X^{2}=685.07$ | $\Sigma X^{2}=812.81$ | $\Sigma X^{2}=2143.18$ |
|  | $n=12$ | $n=12$ | $n=12$ | $N=36$ |
|  | $\bar{X}=7.32$ | $\bar{X}=7.54$ | $\bar{X}=8.18$ |  |

## MENTORINGTIP

Again, this step is a check on the previous calculations. It is not necessary to do this step for the analysis.

STEP 2: Calculate the column sum of squares, $\boldsymbol{S} \boldsymbol{S}_{\text {columns }}$. Note that exercise intensity is the column variable.

$$
\begin{aligned}
S S_{\text {column }} & =\left[\frac{\binom{\text { column }}{1}^{2}+\left(\begin{array}{c}
\text { column } \\
2 \\
2
\end{array}\right)^{2}+\binom{\text { column }}{3}^{2}}{n_{\text {column }}}\right]-\frac{\binom{\text { all }}{\text { scores }}^{2}}{N} \\
& =\left[\frac{(87.8)^{2}+(90.5)^{2}+(98.1)^{2}}{12}\right]-\frac{(276.4)^{2}}{36}=4.754
\end{aligned}
$$

STEP 3: Calculate the interaction sum of squares, $S S_{\text {interaction }}$.

$$
\begin{aligned}
& S S_{\text {interaction }}=\left[\frac{\left(\begin{array}{c}
\text { cell } \\
11 \\
\sum_{2}
\end{array}\right)^{2}+\left(\begin{array}{c}
\text { cell } \\
12
\end{array} \sum^{2} x\right)^{2}+\left(\begin{array}{c}
\text { cell } \\
13
\end{array} \sum^{2} x\right)^{2}+\left(\begin{array}{l}
\text { cell } \\
21 \\
\sum_{\text {cell }}
\end{array}\right)^{2}+\left(\begin{array}{c}
\text { cell } \\
22
\end{array} \sum^{2}+\left(\begin{array}{l}
\text { cell } \\
23
\end{array} \sum^{2}\right)^{2}\right.}{n_{\text {n }}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\frac{(41.8)^{2}+(43.2)^{2}+(44.2)^{2}+(46.0)^{2}+(47.3)^{2}+(53.9)^{2}}{6}\right]-\frac{(276.4)^{2}}{36} \\
& \text { - } 9.000-4.754 \\
& =1.712
\end{aligned}
$$

STEP 4: Calculate the within-cells sum of squares, $S S_{\text {within-cells }}$.

$$
\begin{aligned}
& S S_{\text {within-cells }}=\sum^{\substack{\text { all } \\
\text { scores }}} X^{2} \\
& -\left[\frac{\left(\begin{array}{l}
\text { cell } \\
11 \\
\sum^{2}
\end{array}\right)^{2}+\left(\begin{array}{c}
\text { cell } \\
12
\end{array} \sum^{2} x\right)^{2}+\left(\begin{array}{c}
\text { cell } \\
13
\end{array} \sum^{2} x\right)^{2}+\left(\begin{array}{c}
\text { cell } \\
21
\end{array} \sum^{2}+\left(\begin{array}{c}
\text { cell } \\
22 \\
\sum_{\text {cell }}
\end{array}\right)^{2}+\left(\begin{array}{l}
\text { cell } \\
23
\end{array} \sum^{2} x\right)^{2}\right.}{n_{\text {cel }}}\right] \\
& =2143.18-\left[\frac{(41.8)^{2}+(43.2)^{2}+(44.2)^{2}+(46.0)^{2}+(47.3)^{2}+(53.9)^{2}}{6}\right] \\
& =5.577
\end{aligned}
$$

STEP 5: Calculate the total sum of squares, $\boldsymbol{S S}_{\text {total }}$. This step is a check to be sure the previous calculations are correct. Once we calculate $S S_{\text {total }}$, we can use the following equation to check the other calculations:

$$
S S_{\text {total }}=S S_{\text {rows }}+S S_{\text {columns }}+S S_{\text {interaction }}+S S_{\text {within-cells }}
$$

First, we must independently calculate $S S_{\text {total }}$.

$$
\begin{aligned}
S S_{\text {total }} & =\sum^{\substack{\text { all } \\
\text { scores }}} X^{2}-\frac{\binom{\text { all }}{\text { scores }}^{2}}{N} \\
& =2143.18-\frac{(276.4)^{2}}{36}=21.042
\end{aligned}
$$

Substituting the obtained values of $S S_{\text {total }}, S S_{\text {rows }}, S S_{\text {columns }}, S S_{\text {interaction }}$, and $S S_{\text {within-cells }}$ into the partitioning equation for $S S_{\text {total }}$, we obtain

$$
\begin{aligned}
S S_{\text {total }} & =S S_{\text {rows }}+S S_{\text {columns }}+S S_{\text {interaction }}+S S_{\text {within-cells }} \\
21.042 & \cong 9.000+4.754+1.712+5.577 \\
21.042 & \cong 21.043
\end{aligned}
$$

The equation checks within rounding accuracy. Therefore, we can assume our calculations up to this point are correct.

STEP 6: Calculate the degrees of freedom for each variance estimate.

$$
\begin{aligned}
\mathrm{df}_{\text {rows }} & =r-1=2-1=1 \\
\mathrm{df}_{\text {columns }} & =c-1=3-1=2 \\
\mathrm{df}_{\text {interaction }} & =(r-1)(c-1)=(1) 2=2 \\
\mathrm{df}_{\text {within-cells }} & =r c\left(n_{\text {cell }}-1\right)=2(3)(5)=30 \\
\mathrm{df}_{\text {total }} & =N-1=35
\end{aligned}
$$

Note that

$$
\begin{aligned}
\mathrm{df}_{\text {total }} & =\mathrm{df}_{\text {rows }}+\mathrm{df}_{\text {columns }}+\mathrm{df}_{\text {interaction }}+\mathrm{df}_{\text {within-cells }} \\
35 & =1+2+2+30 \\
35 & =35
\end{aligned}
$$

STEP 7: Calculate the variance estimates $M S_{\text {rows }}, M S_{\text {columns }}, M S_{\text {interaction }}$, and $M S_{\text {within-cells }}$. Each variance e stimate is e qual to the sum of squares divided by the ap propriate degrees of freedom. Thus,

$$
\begin{array}{r}
\text { Row variance estimate }=M S_{\text {rows }}=\frac{S S_{\text {rows }}}{\mathrm{df}_{\text {rows }}}=\frac{9.000}{1}=9.000 \\
\text { Column variance estimate }=M S_{\text {columns }}=\frac{S S_{\text {columns }}}{\mathrm{df}_{\text {columns }}}=\frac{4.754}{2}=2.377 \\
\text { Interaction variance estimate }=M S_{\text {interaction }}=\frac{S S_{\text {interaction }}}{\mathrm{df}_{\text {interaction }}}=\frac{1.712}{2}=0.856 \\
\text { Within-cells variance estimate }=M S_{\text {within-cells }}=\frac{S S_{\text {within-cells }}}{\mathrm{df}_{\text {within-cells }}}=\frac{5.577}{30}=0.186
\end{array}
$$

STEP 8: a. Calculate the $\boldsymbol{F}$ ratios: For the row effect,

$$
F_{\text {obt }}=\frac{M S_{\text {rows }}}{M S_{\text {within-cells }}}=\frac{9.000}{0.186}=48.42
$$

For the column effect,

$$
F_{\text {obt }}=\frac{M S_{\text {columns }}}{M S_{\text {within-cells }}}=\frac{2.377}{0.186}=12.78
$$

For the interaction effect,

$$
F_{\text {obt }}=\frac{M S_{\text {interaction }}}{M S_{\text {within-cells }}}=\frac{0.856}{0.186}=4.60
$$

## b. Evaluate the $\boldsymbol{F}_{\text {obt }}$ values.

For the ww effect: From Table F, with $\alpha=0.05, \mathrm{df}_{\text {numerator }}=\mathrm{df}_{\text {rows }}=1$, and $\mathrm{df}_{\text {denominator }}=$ $\mathrm{df}_{\text {within-cells }}=30, F_{\text {crit }}=4.17$. Since $F_{\text {obt }}(48.42)>4.17$, we reject $H_{0}$ with respect to the A variable, which in this experiment is time of day. There is a significant main effect for time of day.

For the column ef fect: From Table F, with $\alpha=0.05, \mathrm{df}_{\text {numerator }}=\mathrm{df}_{\text {columns }}=2$, and $\mathrm{df}_{\text {denominator }}=\mathrm{df}_{\text {within-cells }}=30, F_{\text {crit }}=3.32$. Since $F_{\text {obt }}(12.78)>3.32$, we reject $H_{0}$ with respect to the B variable, which in this experiment is exercise intensity. There is a significant main effect for exercise intensity.

For the interaction effect: From Table F, with $\alpha=0.05, \mathrm{df}_{\text {numerator }}=\mathrm{df}_{\text {interaction }}=2$, and $\mathrm{df}_{\text {denominator }}=\mathrm{df}_{\text {within-cells }}=30, F_{\text {crit }}=3.32$. Since $F_{\text {obt }}(4.60)>3.32$, we reject $H_{0}$ regarding the interaction of v ariables A and B . There is a significant interaction between time of day and exercise intensity.

The analysis is summarized in Table 16.2.
table 16.2 Summary ANOVA table for exercise and time of day experiment

| Source | SS | df | MS | $F_{\text {obt }}$ | $\mathrm{F}_{\text {crit }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Rows (time of day) | 9.000 | 1 | 9.000 | 48.42* | 4.17 |
| Columns (exercise intensity) | 4.754 | 2 | 2.377 | 12.78* | 3.32 |
| Interaction | 1.712 | 2 | 0.856 | 4.60* | 3.32 |
| Within-cells | 5.577 | 30 | 0.186 |  |  |
| Total | 21.042 | 35 |  |  |  |

*Since $F_{\text {obt }}>F_{\text {crit }}, H_{0}$ is rejected.

## Interpreting the Results

In the pre ceding a nalysis, we have re jected the null hypothesis for $b$ oth $t$ he row and column effects. A significant effect for rows indicates that variable A has had a significant main effect. The differences between the row means, averaged over the columns, were to o $g$ reat to at tribute to $r$ andom sampling from populations where $\mu_{a_{1}}=\mu_{a_{2}}$. In the present experiment, the significant row effect indicates that there was a significant main effect for the time of day factor. The differences between the means for the time of day levels averaged over the exercise intensity levels were too great to at tribute to chance. We have plotted the mean of each cell in Figure 16.5. From this figure, it can be seen that evening exercise resulted in greater sleep than morning exercise.

A significant effect for columns indicates that variable B has had a significant main effect-that the differences a mong the column means, computed by averaging over the rows, were to o $g$ reat to at tribute to $r$ andom sa mpling from the nullhypothesis population. In the present experiment, the significant effect for columns tells us that the differences between the means of the three exercise intensity levels computed by a veraging o ver the time of day levels were to o g reat to at tribute to random sampling fluctuations. From Figure 16.5 , it can be seen that the effect of

figure 16.5 Cell means from the exercise and sleep experiment.

## MENTORINGTIP

This is spoken of as an exercise intensity by time of day interaction.

## MENTORINGTIP

If there is a significant interaction effect, caution must be exercised in interpreting main effects. If there is a significant interaction effect, a main effect might be due solely to the independent variable having an effect at only one level of the other variable, and no effect at the other levels.
increasing the intensity of exercise averaged over the time of day levels was to increase the amount of sleep.

The results of this experiment also showed a s ignificant interaction effect. As discussed pre viously, a s ignificant interaction effect indicates that he effects of one of the variables are not the same at a 11 the levels of the ot her factor. Plotting the mean for each cell is particularly helpful for interpreting an interaction effect. From Figure 16.5, we can see that the increase in the a mount of sleep is ab out the same in going from light to mo derate exercise, whether the exercise is done in the morning or evening. However, the difference in the amount of sleep in going from moderate to hea vy exercise varies dep ending on whether the exercise is done in the mor ning or e vening. Heavy exercise results in a m uch greater increase in the amount of sleep when the exercise is done in the evening than when it is done in the morning.

When there is a significant interaction effect, care needs to be taken when interpreting main effects. Without a s ignificant interaction effect, it is us ually assumed that a main effect indicates that the independent variable has a significant effect at each level of the other variable, and that the effect is uniform over the levels. However, if there is a significant interaction effect, it is possible that the main effect is not uniform over all the values of the other independent variable. It is even possible that the entire main effect is due to the interaction effect.

Graphing the data helps interpret what a s ignificant main effect means when there is a s ignificant i nteraction e ffect. F or e xample, to i nterpret the s ignificant main effect for time of day, it is useful to plot the sleep scores separately for morning a nd e vening e xercise, plotting exercise intensity on t he $X$ axis as is done in Figure 16.5. Referring to $t$ his figure, it do esn't appear that there is a n interaction
at light and moderate exercise intensity. At these levels the morning a nd evening lines are parallel. However, at the heavy exercise intensity level, the difference in mean values between the e vening a nd mor ning g roups is m uch g reater t han y ou would expect ba sed on $t$ he mea $n$ value $d$ ifferences at $t$ he ot her $t$ wo levels. It is this "higher than expected" mean value for the heavy exercise-evening group that caused the $g$ reater difference, which in turn cause d the lines to diverge. It is $t$ his "higher than expected" mean value that is responsible for the significant interaction effect. It is also possible that the greatly elevated mean value for the heavy exerciseevening g roup is res ponsible for producing the significant main effect for time of day, that the time of day effect is significant only at t he heavy exercise intensity level, and that mean differences at the other two levels of exercise intensity are not significant at all. If so, then the significant main effect for time of day wo uld be due solely to its effect at the heavy level of exercise intensity. This is hardly an outcome that would be consistent with the interpretation ordinarily given to a significant main effect, namely, of a u niform effect that is significant at all levels of the other variable.

To resolve these issues, it is ne cessary to statistically compare mean differences at each level of the other variable. A nalyzing these mean differences falls within the topic of multiple comparisons. Conceptually this topic is similar to that discussed in conjunction with one-way ANOVA, but it is too complicated to be discussed here (see the se ction in this chapter titled Multiple Comparisons, p. 471). However, g iven the significant interaction effect in the present experiment, without graphing the data and doing these comparisons, it would be premature to conclude that the significant main effect for time of day indicates that the effect is uniform or that the effect is significant at all levels of exercise intensity.

Let's do another problem for practice.

## Practice Problem 16.1

A statistics professor conducts an experiment to co mpare the effectiveness of two methods of teaching his course. Method I is the usual way he teaches the course: lectures, ho mework a ssignments, a nd a final exam. Method II is $t$ he same as Method I, except that students receiving Method II get 1 additional hour per week in which they solve illustrative problems under the guidance of the professor. The professor is a lso interested in how the methods affect students of differing mathematical abilities, so 30 v olunteers for the experiment are subdivided a ccording to $m$ athematical ability into superior, a verage, a nd poor $g$ roups of 10 each. Five students from each $m$ athematics ability g roup are randomly a ssigned to M ethod I a nd the remaining 5 s tudents from each group to Method II. This random assignment results in 15 students receiving Teaching Method 1 and another 15 students receiving Method II. At the end of the course, all 30 students take the same final exam. The following final exam scores resulted:

| Mathematical Ability Factor A (row variable) | Teaching Method <br> Factor B <br> (column variable) |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Method I <br> (1) |  | Method II <br> (2) |  |
| Superior (1) | 39* | 41 | 49 | 47 |
|  | 48 | 42 | 47 | 48 |
|  | 44 |  | 43 |  |
| Average (2) | 43 | 36 | 38 | 46 |
|  | 40 | 35 | 45 | 44 |
|  | 42 |  | 42 |  |
| Poor (3) | 30 | 33 | 37 | 41 |
|  | 29 | 36 | 34 | 33 |
|  | 37 |  | 40 |  |

*Scores are the number of points received out of a total of 50 possible points.
a. What are the null hypotheses for this experiment?
b. Using $\alpha=0.05$, what do you conclude?

## SOLUTION

a. Null hypotheses:

1. For the A variable (main effect): The three levels of mathematical ability do not differentially affect final exam scores in this course. The population row means for the three levels of mathematical ability averaged over teaching method are equal $\left(\mu_{a_{1}}=\mu_{a_{2}}=\mu_{a_{3}}\right)$.
2. For the $B$ va riable (main effect): The two levels of teaching method are equal in their effects on final exam scores in this course. The population column means for teaching methods I and II averaged over the three levels of mathematical ability are equal $\left(\mu_{b_{1}}=\mu_{b_{2}}\right)$.
3. For the interaction bet ween va riables $A$ a nd $B$ : There is no interaction effect b etween mathematical ab ility a nd $t$ eaching met hod. Wi th a ny main e ffects remo ved, t he p opulation c ell mea ns a re e qual $\left(\mu_{a_{1} b_{1}}=\right.$ $\left.\mu_{a_{1} b_{2}}=\mu_{a_{2} b_{1}}=\mu_{a_{2} b_{2}}=\mu_{a_{3} b_{1}}=\mu_{a_{3} b_{2}}\right)$.
b. Conclusion, using $\alpha=0.05$ :
4. Calculating $F_{\text {obt }}$ :

STEP 1: Calculate SS $_{\text {rows }}$.

$$
\left.\begin{array}{rl}
S S_{\text {rows }} & \left.\left.=\left[\frac{\left.\binom{\text { row }}{1}^{2} X\right)^{2}+\left(\begin{array}{c}
\text { row } \\
2
\end{array}\right.}{n_{\text {row }}}\right)^{2}+\left(\begin{array}{c}
\text { row } \\
3
\end{array} X\right)^{2}\right]-\frac{\left(\sum^{\text {all }}\right. \text { sores }}{N}\right)^{2} \\
N
\end{array}\right]-\frac{(1209)^{2}}{30}=489.800
$$

(continued)

## STEP 2: Calculate $S S_{\text {columns }}$.

$$
\begin{aligned}
S S_{\text {columns }} & =\left[\frac{\binom{\text { column }}{1}^{2}+\binom{\text { column }}{2}^{2}}{n_{\text {column }}}\right]-\frac{\binom{\text { all }}{\text { scores }}^{2}}{N} \\
& =\left[\frac{(575)^{2}+(634)^{2}}{15}\right]-\frac{(1209)^{2}}{30}=116.033
\end{aligned}
$$

## STEP 3: Calculate $S_{\text {interaction }}$.

$$
\begin{aligned}
S S_{\text {interaction }}= & {\left[\frac{\left(\begin{array}{c}
\text { cell } \\
11 \\
\sum
\end{array}\right)^{2}+\left(\sum_{\text {cell }}^{12} X\right)^{2}+\left(\sum_{\text {cell }}^{\text {cell }} 21\right.}{\sum^{2}}\right)^{2}+\left(\sum^{\text {cell }} 22 x\right)^{2}+\left(\sum_{\sum_{\text {cell }}}^{31} X\right)^{2}+\left(\sum^{\text {cell }} 32\right)^{2} } \\
& -\frac{\binom{\text { all }}{\text { scores }}^{2}}{N}-S S_{\text {rows }}-S S_{\text {columns }} \\
= & {\left[\frac{(214)^{2}+(234)^{2}+(196)^{2}+(215)^{2}+(165)^{2}+(185)^{2}}{5}\right]-\frac{(1209)^{2}}{30} } \\
& -498.8-116.083=49,328.6-48,722.7-489.8-116.033=0.067
\end{aligned}
$$

STEP 4: Calculate $S S_{\text {within-cells }}$.

$$
\begin{aligned}
& S S_{\text {within-cells }}=\sum^{\substack{\text { all } \\
\text { scores }}} X^{2} \\
& -\left[\frac{\left(\begin{array}{c}
\text { cell } \\
11
\end{array} \sum^{2} x\right)^{2}+\left(\begin{array}{c}
\text { cell } \\
12 \\
\sum_{2}
\end{array}\right)^{2}+\left(\begin{array}{c}
\text { cell } \\
21
\end{array} \sum^{2} x\right)^{2}+\left(\begin{array}{c}
\text { cell } \\
22
\end{array} \sum^{2} x\right)^{2}+\left(\begin{array}{c}
\text { cell } \\
31 \\
n_{\text {cell }}
\end{array}\right)^{2}+\left(\begin{array}{c}
\text { cell } \\
32
\end{array} \sum^{2} x\right)^{2}}{}\right] \\
& =49,587-\left[\frac{(214)^{2}+(234)^{2}+(196)^{2}+(215)^{2}+(165)^{2}+(185)^{2}}{5}\right] \\
& =49,587-49,328.6=258.4
\end{aligned}
$$

STEP 5: Calculate $\boldsymbol{S}_{\text {total }}$. This step is to check the previous calculations.

$$
\begin{aligned}
S S_{\text {total }} & =\sum^{\substack{\text { all } \\
\text { scores }}} X^{2}-\frac{\left(\sum^{\substack{\text { scoll }}} X\right)^{2}}{N} \\
& =49,587-\frac{(1209)^{2}}{30}=864.3 \\
S S_{\text {total }} & =S S_{\text {rows }}+S S_{\text {columns }}+S S_{\text {interaction }}+S S_{\text {within-cells }} \\
864.3 & =489.8+116.033+0.067+258.4 \\
864.3 & =864.3
\end{aligned}
$$

Since the partitioning equation checks, we can assume our calculations thus far are correct.

## STEP 6: Calculate df.

$$
\begin{aligned}
\mathrm{df}_{\text {rows }} & =r-1=3-1=2 \\
\mathrm{df}_{\text {columns }} & =c-1=2-1=1 \\
\mathrm{df}_{\text {interaction }} & =(r-1)(c-1)=(3-1)(2-1)=2 \\
\mathrm{df}_{\text {within-cells }} & =r c\left(n_{\text {cell }}-1\right)=6(4)=24 \\
\mathrm{df}_{\text {total }} & =N-1=29
\end{aligned}
$$

STEP 7: Calculate $M S_{\text {rows }}, M S_{\text {columns }}, M S_{\text {interaction }}$, and $M S_{\text {within-cells }}$.

$$
\begin{gathered}
M S_{\text {rows }}=\frac{S S_{\text {rows }}}{\mathrm{df}_{\text {rows }}}=\frac{489.8}{2}=244.9 \\
M S_{\text {columns }}= \\
S S_{\text {columns }} \\
\mathrm{df}_{\text {columns }}
\end{gathered}=\frac{116.033}{1}=116.0332
$$

STEP 8: Calculate $\boldsymbol{F}_{\mathrm{obt}}$. For the row effect,

$$
F_{\mathrm{obt}}=\frac{M S_{\text {rows }}}{M S_{\text {within-cells }}}=\frac{244.9}{10.767}=22.75
$$

For the column effect,

$$
F_{\text {obt }}=\frac{M S_{\text {columns }}}{M S_{\text {within-cells }}}=\frac{116.033}{10.767}=10.78
$$

For the interaction effect,

$$
F_{\text {obt }}=\frac{M S_{\text {interaction }}}{M S_{\text {within-cells }}}=\frac{0.034}{10.767}=0.003
$$

2. Evaluate the $F_{\text {obt }}$ values.

For the row effect: From Table F, with $\alpha=0.05, \mathrm{df}_{\text {numerator }}=\mathrm{df}_{\text {rows }}=2$, and $\mathrm{df}_{\text {denominator }}=\mathrm{df}_{\text {within-cells }}=24, F_{\text {crit }}=3.40$. Since $F_{\text {obt }}(22.75)>3.40$, we reject $H_{0}$ with respect to the A variable. There is a significant effect for mathematical ability.

For the column effect: From Table F, with $\alpha=0.05, \mathrm{df}_{\text {numerator }}=\mathrm{df}_{\text {columns }}=1$, and $\mathrm{df}_{\mathrm{denominator}}=\mathrm{df}_{\text {within-cells }}=24, F_{\text {crit }}=4.26$. Since $F_{\text {obt }}(10.78)>4.26$, we reject $H_{0}$ with respect to the B variable. There is a significant main effect for teaching method.

For the interaction effect: Since $F_{\text {obt }}(0.003)<1$, we retain $H_{0}$ and conclude that the data do not support the hypothesis that there is an interaction between mathematical ability and teaching method.

The solution to this problem is summarized in Table 16.3.
table 16.3 Summary ANOVA table for mathematical ability and teaching method experiment

| Source | SS | df | MS | $F_{\text {obt }}$ | $F_{\text {crit }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Rows (mathematical ability) | 489.800 | 2 | 244.900 | 22.75* | 3.40 |
| Columns (teaching method) | 116.033 | 1 | 116.033 | 10.78* | 4.26 |
| Interaction | 0.067 | 2 | 0.034 | 0.003 | 3.40 |
| Within-cells | 258.400 | 24 | 10.767 |  |  |
| Total | 864.300 | 29 |  |  |  |

*Since $F_{\text {obt }}>F_{\text {crit }}, H_{0}$ is rejected.

Interpreting the results of Practice Problem 16.1 In the preceding analysis, we re jected the null hypothesis for both the row a nd column effects. Rejecting $H_{0}$ for rows means that there was a significant main effect for variable A, mathematical ability. The differences between the means for the different levels of mathematical ability averaged over teaching method were too great to attribute to chance. The mean of each cell has been plotted in Figure 16.6. From this figure, it can be seen that increasing the level of mathematical ability results in increased final exam scores.

Rejecting $H_{0}$ for columns indicates that there was a significant main effect for the B variable, teaching method. The difference between the means for Teaching Method I and Teaching Method II averaged over mathematical ability was too great to attribute to random sampling fluctuations. From Figure 16.6, we can see that method II was superior to method I.

In this experiment, there was no significant interaction effect. This means that, within the limits of sensitivity of this experiment, the effect of each variable was the

figure 16.6 Cell means from the teaching method and mathematical ability experiment.
same over all levels of the other variable. This can be most clearly seen by viewing Figure 16.6 with regard to variable A. The lack of a significant interaction effect indicates that the effect of different levels of mathematical ability on final exam scores was the same for Teaching Methods I and II. This results in parallel lines when the means of the cells are plotted (see Figure 16.6). In fact, it is a g eneral rule that, when the lines are parallel in a g raph of the individual cell means, there probably is no interaction effect. For there to be an interaction effect, the lines must diverge significantly from parallel. In this regard, it will be useful to review Figure 16.2 to see whether you can determine which graphs show interaction effects.*

## Practice Problem 16.2

A clinical psychologist is interested in the effect that anxiety le vel has on t he ability of individuals to learn new material. She is also interested in whether the effect of anxiety level depends on the difficulty of the new material. An experiment is cond ucted in which there are three levels of anxiety (low, medium, and high) and three levels of material difficulty (low, medium, and high). Out of a pool of volunteers, 15 low-anxious, 15 medium-anxious, and 15 high-anxious subjects are selected and randomly assigned 5 each to the three material difficulty levels. Each subject is given 30 minutes to learn the new material, after which the subjects are tested to determine the amount learned.

The following data are collected:

| Difficulty of Material Factor A (row variable) | $\begin{aligned} & \text { Anxiety Level* } \\ & \text { Factor B } \\ & \text { (column variable) } \end{aligned}$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Low (1) |  | Medium (2) |  | High (3) |  |
| Low (1) | 18 | 17 | 18 | 18 | 18 | 17 |
|  | 20 | 16 | 19 | 15 | 16 | 18 |
|  | 17 |  | 17 |  | 19 |  |
| Medium (2) | 18 | 14 | 18 | 17 | 14 | 15 |
|  | 17 | 16 | 18 | 15 | 17 | 12 |
|  | 14 |  | 14 |  | 16 |  |
| High (3) | 11 | 6 | 15 | 12 | 9 | 8 |
|  | 10 | 10 | 13 | 11 | 7 | 8 |
|  | 8 |  | 12 |  | 5 |  |

*Each score is the total points obtained out of a possible 20 points.
a. What are the null hypotheses?
b. Using $\alpha=0.05$, what do you conclude?

[^42]
## SOLUTION

a. Null hypotheses:

1. For variable A (main effect): The null hypothesis states that material difficulty has no effect on the amount learned. The population row means for material difficulty averaged over anxiety level are equal $\left(\mu_{a_{1}}=\mu_{a_{2}}=\mu_{a_{3}}\right)$.
2. For variable $B$ (main effect): The null hypothesis states that anxiety level has no effect on the amount learned. The population column means for low, medium, and high anxiety levels averaged over material difficulty are equal $\left(\mu_{b_{1}}=\mu_{b_{2}}=\mu_{b_{3}}\right)$.
3. For the interaction bet ween va riables $A$ a nd $B$ : The null hypothesis states that there is no interaction between material difficulty and anxiety level. With any main effects removed, the population cell means are equal $\left(\mu_{a_{1} b_{1}}=\mu_{a_{1} b_{2}}=\ldots=\mu_{a_{3} b_{3}}\right)$.
b. Conclusion, using $\alpha=0.05$ :
4. Calculate $F_{\text {obt }}$ :

STEP 1: Calculate SS $_{\text {rows }}$.

$$
\begin{aligned}
S S_{\text {rows }} & \left.=\left[\frac{\left(\begin{array}{c}
\text { row } \\
1
\end{array} x\right)^{2}+\left(\sum^{\text {row }}\right.}{2} x\right)^{2}+\left(\sum_{\text {row }}^{\text {row }} \begin{array}{l}
3
\end{array}\right)^{2}\right]-\frac{\binom{\text { all }}{\text { soces }}^{2}}{N} \\
& =\left[\frac{(263)^{2}+(235)^{2}+(145)^{2}}{15}\right]-\frac{(643)^{2}}{45}=506.844
\end{aligned}
$$

STEP 2: Calculate $S S_{\text {columns }}$.

$$
\begin{aligned}
S S_{\text {columns }} & =\left[\frac{\left.\left.\left(\sum^{\text {column }} X\right)^{2}+\left(\begin{array}{c}
\text { column } \\
2
\end{array} \sum^{2} X\right)^{2}+\left(\begin{array}{c}
\text { column } \\
3
\end{array} x\right)^{2}\right]-\frac{\left(\sum_{\text {column }}\right.}{\substack{\text { all } \\
\text { sores }}}\right)^{2}}{N}\right. \\
& =\left[\frac{(212)^{2}+(232)^{2}+(199)^{2}}{15}\right]-\frac{(643)^{2}}{45}=36.844
\end{aligned}
$$

STEP 3: Calculate $S_{\text {interaction }}$.

$$
\begin{aligned}
& S S_{\text {interaction }}=\left[\frac{\left(\begin{array}{c}
\text { cell } \\
11
\end{array} \sum^{2}+\left(\begin{array}{c}
\text { cell } \\
12
\end{array} \sum^{2}+\cdots+\left(\sum^{\substack{\text { cell } \\
33}} X\right)^{2}\right.\right.}{n_{\text {cell }}}\right] \\
& -\frac{\left(\sum^{\substack{\text { all } \\
\text { scores }}}\right)^{2}}{N}-S S_{\text {rows }}-S S_{\text {columns }} \\
& =\left[\frac{(88)^{2}+(87)^{2}+(88)^{2}+(79)^{2}+(82)^{2}+(74)^{2}+(45)^{2}+(63)^{2}+(37)^{2}}{5}\right] \\
& -\frac{(643)^{2}}{45}-506.844-36.844=40.756
\end{aligned}
$$

STEP 4: Calculate $S_{\text {within-cells }}$.

$$
\begin{aligned}
S S_{\text {within-cells }}= & \sum^{\substack{\text { all } \\
\text { scores }}} X^{2}-\left[\frac{\left.\left(\begin{array}{c}
\text { cell } \\
11
\end{array} X\right)^{2}+\binom{\text { cell }}{12}^{2}+\cdots+\left(\begin{array}{c}
\text { cell } \\
33
\end{array} \sum^{2} X\right)^{2}\right]}{n_{\text {cell }}}\right]=9871- \\
& {\left[\frac{(88)^{2}+(87)^{2}+(88)^{2}+(79)^{2}+(82)^{2}+(74)^{2}+(45)^{2}+(63)^{2}+(37)^{2}}{5}\right] } \\
= & 98.800
\end{aligned}
$$

STEP 5: Calculate $\boldsymbol{S S}_{\text {total }}$. This step is a check on the previous calculations:

$$
\begin{aligned}
S S_{\text {total }} & =\sum^{\substack{\text { all } \\
\text { scores }}} X^{2}-\frac{\left(\sum^{\substack{\text { all } \\
\text { scores }}}\right)^{2}}{N}=9871-\frac{(643)^{2}}{45}=683.244 \\
S S_{\text {total }} & =S S_{\text {rows }}+S S_{\text {columns }}+S S_{\text {interaction }}+S S_{\text {within-cells }} \\
683.244 & =506.844+36.844+40.756+98.800 \\
683.244 & =683.244
\end{aligned}
$$

Since the partitioning equation checks, we can assume our calculations thus far are correct.

## STEP 6: Calculate df.

$$
\begin{aligned}
\mathrm{df}_{\text {rows }} & =r-1=3-1=2 \\
\mathrm{df}_{\text {columns }} & =c-1=3-1=2 \\
\mathrm{df}_{\text {interaction }} & =(r-1)(c-1)=2(2)=4 \\
\mathrm{df}_{\text {within-cells }} & =r c\left(n_{\text {cell }}-1\right)=3(3)(5-1)=36 \\
\mathrm{df}_{\text {total }} & =N-1=45-1=44
\end{aligned}
$$

STEP 7: Calculate $M S_{\text {rows }}, M S_{\text {columns }}, \mathrm{MS}_{\text {interaction }}$, and $M S_{\text {within-cells }}$.

$$
\begin{gathered}
M S_{\text {rows }}=\frac{S S_{\text {rows }}}{\mathrm{df}_{\text {rows }}}=\frac{506.844}{2}=253.422 \\
M S_{\text {columns }}=\frac{S S_{\text {columns }}}{\mathrm{df}_{\text {columns }}}=\frac{36.844}{2}=18.442 \\
M S_{\text {interaction }}= \\
=\frac{S S_{\text {interaction }}}{\mathrm{df}_{\text {interaction }}}=\frac{40.756}{4}=10.189 \\
M S_{\text {within-cells }}=\frac{S S_{\text {within-cells }}}{\mathrm{df}_{\text {within-cells }}}=\frac{98.800}{36}=2.744
\end{gathered}
$$

STEP 8: Calculate $\boldsymbol{F}_{\text {obt }}$. For the row effect,

$$
F_{\text {obt }}=\frac{M S_{\text {rows }}}{M S_{\text {within-cells }}}=\frac{253.422}{2.744}=92.34
$$

For the column effect,

$$
F_{\text {obt }}=\frac{M S_{\text {columns }}}{M S_{\text {within-cells }}}=\frac{18.442}{2.744}=6.71
$$

For the interaction effect,

$$
F_{\text {obt }}=\frac{M S_{\text {interaction }}}{M S_{\text {within-cells }}}=\frac{10.189}{2.744}=3.71
$$

Evaluate $F_{\text {obt }}$ :
For the row effect: With $\alpha=0.05, \mathrm{df}_{\text {numerator }}=\mathrm{df}_{\text {rows }}=2$, and $\mathrm{df}_{\text {denominator }}=$ $\mathrm{df}_{\text {within-cells }}=36$, from Table F, $F_{\text {crit }}=3.26$. Since $F_{\text {obt }}(92.34)>3.26$, we reject $H_{0}$ for the $\mathrm{A} v$ variable. There is a s ignificant main effect for material difficulty.
For the column effect: With $\alpha=0.05, \mathrm{df}_{\text {numerator }}=\mathrm{df}_{\text {columns }}=2$, and $\mathrm{df}_{\text {denominator }}$ $=\mathrm{df}_{\text {within-cells }}=36$, from Table F, $F_{\text {crit }}=3.26$. Since $F_{\text {obt }}(6.71)>3.26, H_{0}$ is rejected for the B variable. There is a significant main effect for anxiety level.

For the interaction effect: With $\alpha=0.05, \mathrm{df}_{\text {numerator }}=\mathrm{df}_{\text {interaction }}=4$, and $\mathrm{df}_{\text {denominator }}=\mathrm{df}_{\text {within-cells }}=36$, from Table F, $F_{\text {crit }}=2.63$. Since $F_{\text {obt }}(3.71)$ $>2.63, H_{0}$ is re jected. There is a s ignificant interaction between material difficulty and anxiety level.

The solution is summarized in Table 16.4.
table 16.4 Summary ANOVA table for anxiety level and material difficulty experiment

| Source | SS | df | MS | $F_{\text {obt }}$ | $F_{\text {crit }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Rows (material difficulty) | 506.844 | 2 | 253.244 | 92.35* | 3.26 |
| Columns (anxiety level) | 36.844 | 2 | 18.442 | 6.71* | 3.26 |
| Interaction | 40.756 | 4 | 10.189 | 3.71* | 2.63 |
| Within-cells | 98.800 | 36 | 2.744 |  |  |
| Total | 683.244 | 44 |  |  |  |

*Since $F_{\text {obt }}>F_{\text {crit }}, H_{0}$ is rejected.

Interpreting the results of Practice Problem 16.2 In the preceding analysis, there was a significant main effect for both material difficulty and anxiety level. The significant main effect for material difficulty indicates that the differences among the means for the three difficulty levels averaged over anxiety levels were too great to at tribute to chance. The cell means have been plotted in Figure 16.7. From this figure, it can be seen that increasing the difficulty of the material results in lower mean values when the scores are averaged over anxiety levels.

The significant m ain effect f or anxiety le vel is more difficult to interpret. Of course, at $t$ he operational level, this main effect tells us $t$ hat the differences a mong the mea ns for the three levels of a nxiety when averaged over difficulty levels were

figure 16.7 Cell means from the difficulty of material and anxiety level experiment.
too great to at tribute to chance. However, beyond this, the interpretation is not clear because of the interaction between the two variables. From Figure 16.7, we can see that the effect of different anxiety levels depends on the difficulty of the material. At the low level of difficulty, differences in anxiety level seem to have no effect on the test scores. However, for the other two difficulty levels, differences in anxiety levels do affect performance. The interaction is a complicated one such that both low and high levels of anxiety seem to interfere with performance when compared with moderate anxiety. This is an example of the inverted $U$-shaped curve that occurs frequently in psychology when relating performance and arousal levels.

## MULTIPLE COMPARISONS

In the three examples we have just analyzed, we have ended the analyses by evaluating the $F_{\text {obt }}$ values. In actual practice, the analysis is usually carried further by doing multiple co mparisons on $t$ he appropr iate pairs of means. For example, in Practice Problem 16.2, there was a significant $F_{\text {obt }}$ value for material difficulty. The next step ordinarily is to determine which difficulty levels are significantly different from each other. Conceptually, this topic is very similar to that which we presented in Chapter 15 when discussing multiple comparisons in conjunction with the one-way ANOVA. One main difference is that in the two-way ANOVA we are often evaluating pairs of row means or column means rather than pairs of group means. Further exposition of this topic is beyond the scope of this textbook.*

[^43]
## ASSUMPTIONS UNDERLYING TWO-WAY ANOVA



The a ssumptions underlying the $t$ wo-way A NOVA a re the sa me as those for $t$ he one-way ANOVA:

1. The populations from which the samples were taken are normally distributed.
2. The population variances for each of the cells are equal.This is the homogeneity of variance assumption.

As with the one-way A NOVA, the two-way A NOVA is ro bust with regard to violations of these assumptions, provided the samples are of equal size.*

## S U M M A R Y

First, I presented a qualitative discussion of the two-way analysis of variance, independent groups design. Like the one-way design, in the two-way design, subjects are randomly assigned to the conditions. However, the two-way design allows us to investigate two independent variables and the interaction between them in one experiment. The effect of either independent variable (averaged over the levels of the other variable) is called a main effect. An interaction occurs when the effect of one of the variables is not the same at each level of the other variable.

The two-way analysis of variance is very similar to $t$ he one -way A NOVA. H owever, int he t wo-way ANOVA, the total sum of squares $\left(S S_{\text {total }}\right)$ is partitioned into four components: the within-cells sum of squares ( $S S_{\text {within-cells }}$ ), the row sum of squares $\left(S S_{\text {rows }}\right)$, the column sum of squares ( $S S_{\text {columns }}$ ), a nd the interaction sum of squares ( $S S_{\text {interaction }}$ ). When these sums of squares are divided $b$ y $t$ he appropr iate de grees of f reedom, t hey form four variance estimates: the within-cells variance estimate $\left(M S_{\text {within-cells }}\right)$, the row variance estimate ( $M S_{\text {rows }}$ ), the column variance estimate ( $M S_{\text {columns }}$ ), a and the interaction variance estimate $\left(M S_{\text {interaction }}\right)$.

The wi thin-cells v ariance es timate ( $M S_{\text {within-cells }}$ ) is the yardstick against which the other variance estimates are compared. Since all the subjects within each cell re ceive the sa me level of variables A a nd B, the
within-cells variability cannot be due to treatment differences. R ather, it is a mea sure of the inherent variability of the scores within each cell and, hence, gives us an estimate of the null-hypothesis population variance ( $\sigma^{2}$ ) alone. The row variance estimate $\left(M S_{\text {rows }}\right)$ is based on the differences between the row means. It is an estimate of $\sigma^{2}$ plus the effect of factor A and is used to evaluate the main effect of variable A. The column variance estimate ( $M S_{\text {columns }}$ ) is based on the differences between the column means. It is an estimate of $\sigma^{2}$ plus the effect of factor B and is used to e valuate the main effect of variable B. The interaction variance estimate $\left(M S_{\text {interaction }}\right)$ is ba sed on $t$ he differences between $t$ he cell means beyond that which is predicted by the individual effects of the two variables. It is an estimate of $\sigma^{2}$ plus the interaction of A and B. As such, it is used to evaluate the interaction of variables A and B.

In addition to presenting the conceptual basis for the two-way A NOVA, equations for computing each of the four variance estimates were de veloped, a nd se veral illustrative examples were given for practice in using the two-way A NOVA technique. It was further pointed out that multiple comparison techniques similar to those used with the one-way ANOVA are used with the twoway A NOVA. F inally, the a ssumptions u nderlying the two-way ANOVA were presented.

[^44]
## IMPORTANT NEW TERMS

Column degrees of freedom
( $\mathrm{df}_{\text {columns }}$ ) (p. 454)
Column sum of squares ( $S S_{\text {columns }}$ ) (p. 454)

Column variance estimate ( $M S_{\text {columns }}$ ) $(\mathrm{p} .449,454)$
Factorial experiment (p. 446)
Interaction degrees of freedom
$\left(\mathrm{df}_{\text {interaction }}\right)(\mathrm{p} .455)$
Interaction effect (p. 447)

Interaction sum of squares
( $S S_{\text {interaction }}$ ) (p. 455)
Interaction variance estimate
$\left(M S_{\text {interaction }}\right)(\mathrm{p} .449,455)$
Main effect (p. 447)
Row degrees of freedom ( $\mathrm{df}_{\text {rows }}$ ) (p. 452)

Row sum of squares ( $S S_{\text {rows }}$ ) (p. 452)
Row variance estimate ( $M S_{\text {rows }}$ ) (p. 449, 452)

Two-way analysis of variance (p. 446, 450)

Within-cells degrees of freedom ( $\mathrm{df}_{\text {within-cells }}$ ) (p. 451)
Within-cells sum of squares
$\left(S S_{\text {within-cells }}\right)$ (p. 451)
Within-cells variance estimate
$\left(M S_{\text {within-cells }}\right)(\mathrm{p} .449,451)$

## - QUESTIONS AND PROBLEMS

1. Define or identify each of the terms in the Important New Terms section.
2. What a re $t$ he a dvantages of $t$ he $t$ wo-way A NOVA compared with the one-way ANOVA?
3. What is a factorial experiment?
4. In $t$ he $t$ wo-way A NOVA, what is a main ef fect? What is an interaction? Is it possible to have a main effect without an interaction? An interaction without a main effect? Explain.
5. In the two-way ANOVA, the total sum of squares is partitioned into four components. What are the four components?
6. Why is the within-cells variance estimate used as the yardstick against which the other variance estimates are compared?
7. The f our v ariance es timates ( $M S_{\text {rows }}, M S_{\text {columns }}$, $M S_{\text {interaction }}$, and $M S_{\text {within-cells }}$ ) are also referred to as mean squares. Can you explain why?
8. If the A variable's effect increased, what do you expect would happ en to $t$ he differences a mong the row means? What would happen to $M S_{\text {rows }}$ ? Explain. Assuming there is no interaction, what would happen to the differences among the column means?
9. If the B variable's effect increased, what would happen to $t$ he differences a mong $t$ he co lumn mea ns? What would happen to $M S_{\text {columns }}$ ? Explain. Assuming there is no interaction, what would happen to the differences among the row means?
10. What a re $t$ he a ssumptions $u$ nderlying the $t$ wo-way ANOVA, independent groups design?
11. It is theorized that repetition aids recall and that the learning of new material can interfere with the recall of previously learned material. A professor interested in human learning and memory conducts a $2 \times 3$ factorial e xperiment to i nvestigate $t$ he effects of $t$ hese
two v ariables on re call. The material to $b$ e re called consists of a list of 16 nonsense syllable pairs. The pairs a re presen ted one at at ime, for 4 se conds, cycling $t$ hrough $t$ he en tire 1 ist, $b$ efore $t$ he first pair is shown ag ain. There a re three levels of rep etition: level 1 , in which each pair is shown 4 times; level 2, in which each pair is s hown 8 t imes; and level 3 , in which each pair is s hown 12 times. After being presented the list the requisite number of times and prior to testing for recall, each subject is re quired to l earn some intervening material. The intervening material is of two types: type 1 , which consists of number pairs, and type 2, which consists of nonsense syllable pairs. After $t$ he i ntervening $m$ aterial ha $s b$ een presen ted, the subjects are tested for recall of the original list of 16 n onsense s yllable pairs. Thirty-six c ollege freshmen serve as subjects. They are randomly assigned so that there a re six per cell. The following scores a re recorded; each is the number of syllable pairs from the original list correctly recalled.

| Intervening Material (row variable) | Number of Repetitions (column variable) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} 4 \\ \text { times } \end{gathered}$ |  | $\begin{gathered} 8 \\ \text { times } \end{gathered}$ |  | $\begin{gathered} 12 \\ \text { times } \end{gathered}$ |  |
| Number pairs | 10 | 11 | 16 | 12 | 16 | 14 |
|  | 12 | 15 | 11 | 15 | 16 | 13 |
|  | 14 | 10 | 13 | 14 | 15 | 16 |
| Nonsense syllable pairs | 8 | 7 | 11 | 13 | 14 | 12 |
|  | 4 | 5 | 9 | 10 | 16 | 15 |
|  | 5 | 6 | 8 | 9 | 12 | 13 |

a. What are the null hypotheses for this experiment?
b. Using $\alpha=0.05$, what do y ou conc lude? P lot a graph of the cell means to he lp you interpret the results. cognitive
12. Assume you have just accepted a position as chief scientist for a 1 eading ag ricultural co mpany. Your first assignment is to make a recommendation concerning the best type of grass to grow in the Pacific Northwest and the best fertilizer for it. To provide the database for your re commendation, having just graduated summa cum laude in statistics, you decide to conduct an experiment involving a factorial independent groups design. Since there are three types of $g$ rass a nd $t$ wo fertilizers $u$ nder a ctive consideration, the experiment you conduct is $2 \times 3$ factorial, where the A variable is the type of fertilizer and the B variable is the type of grass. In your field station, you duplicate the soil and the climate of the Pacific Northwest. Then you divide the soil into 30 equal areas a nd randomly set a side 5 f or each co mbination of treatments. Next, you fertilize the areas with the appropriate fertilizer and plant in each area the appropriate g rass se ed. T hereafter, a ll a reas a re treated alike. When the grass has grown sufficiently, you determine the number of grass blades per square inch in each area. Your recommendation is based on this dependent variable. The "denser" the g rass is, the better. The following scores are obtained:

| Fertilizer | Number of Grass Blades Per Square Inch |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Red Fescue |  | Kentucky Blue |  | Green <br> Velvet |  |
| Type 1 | 14 | 15 | 15 | 17 | 20 | 19 |
|  | 16 | 17 | 12 | 18 | 15 | 22 |
|  | 10 |  | 11 |  | 25 |  |
| Type 2 | 11 | 7 | 10 | 6 | 15 | 11 |
|  | 11 | 8 | 8 | 13 | 18 | 10 |
|  | 14 |  | 12 |  | 19 |  |

a. What are the null hypotheses for this experiment?
b. Using $\alpha=0.05$, what are your conclusions? Draw a graph of the cell means to help you interpret the results. I/O
13. A sleep researcher conducts an experiment to determine whether a hypnotic drug called Drowson, which is advertised as a remedy for insomnia, actually does promote sleep. In addition, the researcher is interested in whether a to lerance to the drug develops with chronic use. The design of the experiment is a $2 \times 2 \mathrm{f}$ actorial independent groups design. O ne of the variables is $t$ he conc entration of Drowson. There are two levels: (1) zero concentration (placebo) and (2) the manufacturer's minimum re commended dosag e. T he ot her v ariable concerns the previous use of Drowson. Again there are two levels: (1) subjects with no previous use and (2) chronic user s. Sixteen i ndividuals with sleeponset i nsomnia (difficulty in $f$ alling a sleep) who have had no previous use of Drowson are randomly assigned to the two concentration conditions, such that $t$ here a re e ight $s$ ubjects in ea ch cond ition. Sixteen chronic users of Drowson are also assigned randomly to $t$ he $t$ wo cond itions, e ight $s$ ubjects per cond ition. A 11 s ubjects $t$ ake $t$ heir presc ribed "medication" $f$ or 3 conse cutive $n$ ights, a nd $t$ he time to fall asleep is recorded. The scores shown in the following table are the mean times in minutes to fall asleep for each subject, averaged over the 3 days:

| Previous Use | Concentration of Drowson |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Placebo |  | $\begin{gathered} \text { Minimum } \\ \text { Recommended } \\ \text { Dosage } \end{gathered}$ |  |
| No previous use | 45 | 53 | 30 | 47 |
|  | 48 | 58 | 33 | 35 |
|  | 62 | 55 | 40 | 31 |
|  | 70 | 64 | 50 | 39 |
| Chronic users | 47 | 68 | 52 | 46 |
|  | 52 | 64 | 60 | 49 |
|  | 55 | 58 | 58 | 50 |
|  | 62 | 59 | 68 | 55 |

a. What are the null hypotheses for this experiment?
b. Using $\alpha=0.05$, what do y ou conc lude? P lot a graph of the cell means to he lp you interpret the results. clinical, health

## SPSS ILLUSTRATIVE EXAMPLE 16.1

The general operation of SPSS and data entry are presented in Appendix E, Introduction to SPSS. As it did in doing a one-way ANOVA, SPSS computes $\mathbf{F}$ (the same as our $F_{\text {obt }}$ ) and the probability of getting $\mathbf{F}$ or a value even greater, if chance alone is at work. It calls this probability, Sig. (meaning "significance"; this is a nother way to represent what we have been calling, "the $p$ value"). The decision rule we will follow to evaluate $H_{0}$ and $H_{1}$ is as follows.

> If Sig. $\leq \alpha$, reject $H_{0}$ and affirm $H_{1}$. If Sig. $>\alpha$, retain $H_{0} ;$ cannot affirm $H_{1}$

## example

Use SPSS to analyze the data given in the illustrative experiment described in Chapter 16 of the textbook, p. 456. For convenience the experiment is repeated here.

Let's assume a professor in physical education conducts an experiment to compare the effects on sleep of different amounts of exercise and the time of day when the exercise is done. The experiment uses a fixed effects, $3 \times 2$ factorial design with independent groups. There are three levels of exercise (light, moderate, and heavy) and two times of day (morning and evening). Thirty-six college students in good physical condition are randomly assigned to the six cells such that there are six subjects per cell. The subjects who do heavy exercise jog for 3 miles; the subjects who do moderate exercise jog for 1 mile; and the subjects in the light exercise condition jog for only $\frac{1}{4}$ mile. Morning exercise is done at 7:30 A.M., whereas evening exercise is done at 7:00 P.M. Each subject exercises once and the number of hours slept that night is recorded. The data are shown in the table below.

| Time of Day | Exercise |  |  |
| :---: | :---: | :---: | :---: |
|  | Light (1) | Moderate (2) | Heavy (3) |
| Morning (1) | 6.57 .4 | 7.47 .3 | 8.07 .6 |
|  | 7.37 .2 | 6.87 .6 | 7.76 .6 |
|  | 6.66 .8 | 6.77 .4 | 7.17 .2 |
| Evening (2) | 7.17 .7 | 7.48 .0 | 8.28 .7 |
|  | 7.97 .5 | 8.17 .6 | 8.59 .6 |
|  | 8.27 .6 | 8.28 .0 | 9.59 .4 |

Using SPSS, what do you conclude regarding the main effect for the column variable Exercise, the main effect for the row variable Time of Day, and the interaction effect between the row and column variables Exercise and Time of Day? Use $\alpha=0.05$.

## SOLUTION

STEP 1: Enter the Data. In the one-way A NOVA i ndependent g roups des ign there $w$ as on ly one i ndependent variable. For SPSS to a nalyze the data, we had to $t$ ell SPSS which treatment each score re ceived. We did this by specifying to which group each score belonged. In the two-way ANOVA, since there are two independent variables, we need to tell SPSS which combination of treatments each score received. We do this by specifying the level of Factor A (the row variable) and the level of Factor B (the column variable) to which each score belongs. Thus, for each dependent variable score, we need to enter two grouping values,
the level of Factor A and the level of Factor B associated with that dependent variable score. In all, there are three variables, the dependent variable score, the level of the Factor A variable, and the level of the Factor B variable.

The dependent variable scores are entered in a stacked manner in the first column (VAR00001); coding scores that identify the level of Factor A are stacked in the second column (VAR00002); and coding scores that identify the level of Factor B (VAR00003), are stacked in the third column. In the present experiment, the dependent variable is Sleep, Factor A is Time of Day, and Factor B is Exercise.

## Entering The Sleep Scores.

1. In the first column (VAR00001) of the Data Editor, enter the Sleep scores of all subjects who received the Time of Day treatment in the morning (Time of Day-Morning); there are 18 of these scores, the first score entered is " 6.5 ," and the last score is " 7.2 ." Then, directly under the last score of " 7.2 " (no empty cells), enter the sleep scores for all subjects who received the Time of Day-Evening treatment; these are the remaining 18 scores, beginning with " 7.1 " and ending with "9.4." When you have completed this step, all of the sleep scores will have been entered in the first column of the Data Editor in a stacked manner, with all the scores of Time of Day-Morning preceding the scores of Time of Day-Evening. There should be no gaps or empty cells between the scores of Time of Day-Morning and the scores of Time of Day-Evening.

## Entering the Coding Numbers for Time of Day

1. The code we will use is as follows: $\mathbf{1}=$ Morning and $\mathbf{2}=$ Evening. The numbers $\mathbf{1}$ and $\mathbf{2}$ are entered into the second column (VAR00002) of the Data Editor in a stacked manner in the order of $\mathbf{1}$, followed by $\mathbf{2}$. To do the coding, enter the code number 1 in the second column (VAR00002) next to each sleep score that received the Time of Day-Morning treatment. Then, directly under the last $\mathbf{1}$ just entered, enter the code number 2 next to each sleep score that received the Time of Day-Evening treatment. There should be no gaps or empty cells between the last $\mathbf{1}$ and the first $\mathbf{2}$. When this step is completed, all of the sleep scores will have been identified with respect to the level of the Time of Day treatment they received.

## Entering the Coding Numbers for Exercise

1. We will enter the coding for Exercise in the third column (VAR00003). The code we will use is as follows: $\mathbf{1}=$ Light, $\mathbf{2}=$ Moderate, and $\mathbf{3}=$ Heavy. The numbers $\mathbf{1}, \mathbf{2}$, and $\mathbf{3}$ for the Time of Day-Morning scores are entered first into the third column (VAR00003) in a stacked manner, followed by the numbers 1, 2, and $\mathbf{3}$ for the Time of Day-Evening scores.

To do the coding, we will first enter the codes for the sleep scores that received the Time of Day-Morning treatment. For these scores, enter the code number 1 in the third column (VAR00003) on the same row of each sleep score that received the Exercise-Light treatment. Then, directly under the last $\mathbf{1}$ just entered, enter the code number 2 on the same row of each Time of Day-Morning sleep score that received the Exercise-Moderate treatment. Finally, directly under the last $\mathbf{2}$ just entered, enter the code number $\mathbf{3}$ on the same row of each Time of Day-Morning sleep score that received the Exercise-Heavy treatment.

Next, we will code the sleep scores that received the Time of Day-Evening treatment. For these scores, directly under the last $\mathbf{3}$ previously entered, enter a $\mathbf{1}$ for each sleep score that received the Exercise-Light treatment. Then, directly under the last $\mathbf{1}$ just entered, enter the number $\mathbf{2}$ on the same row of each the Time of Day-Evening sleep score that received the Exercise-Moderate treatment. Finally, directly under the last $\mathbf{2}$ just entered, enter the number $\mathbf{3}$ on the same row of each Time of Day-Evening sleep score that received the Exercise-Heavy treatment. There should be no gaps or blank cells between the coding scores. When this step is completed, all of the Sleep scores will have been identified with respect to the level of the Exercise treatment they received. SPSS is now able to identify each sleep score with regard to the level of Time of Day and Exercise it received.

The resulting Data Editor is shown here. For now, ignore the variable name row; we name the variables in the next step.

|  | Sleep | T_Day | Exercise | var | va |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 6.50 | 1.00 | 1.00 |  |  |
| 2 | 7.30 | 1.00 | 1.00 |  |  |
| 3 | 6.60 | 1.00 | 1.00 |  |  |
| 4 | 7.40 | 1.00 | 1.00 |  |  |
| 5 | 7.20 | 1.00 | 1.00 |  |  |
| 6 | 6.80 | 1.00 | 1.00 |  |  |
| 7 | 7.40 | 1.00 | 2.00 |  |  |
| 8 | 6.80 | 1.00 | 2.00 |  |  |
| 9 | 6.70 | 1.00 | 2.00 |  |  |
| 10 | 7.30 | 1.00 | 2.00 |  |  |
| 11 | 7.60 | 1.00 | 2.00 |  |  |
| 12 | 7.40 | 1.00 | 2.00 |  |  |
| 13 | 8.00 | 1.00 | 3.00 |  |  |
| 14 | 7.70 | 1.00 | 3.00 |  |  |
| 15 | 7.10 | 1.00 | 3.00 |  |  |
| 16 | 7.60 | 1.00 | 3.00 |  |  |
| 17 | 6.60 | 1.00 | 3.00 |  |  |
| 18 | 7.20 | 1.00 | 3.00 |  |  |
| 19 | 7.10 | 2.00 | 1.00 |  |  |
| 20 | 7.90 | 2.00 | 1.00 |  |  |
| 21 | 8.20 | 2.00 | 1.00 |  |  |
| 22 | 7.70 | 2.00 | 1.00 |  |  |
| 23 | 7.50 | 2.00 | 1.00 |  |  |
| 24 | 7.60 | 2.00 | 1.00 |  |  |
| 25 | 7.40 | 2.00 | 2.00 |  |  |
| 26 | 8.10 | 2.00 | 2.00 |  |  |
| 27 | 8.20 | 2.00 | 2.00 |  |  |
| 28 | 8.00 | 2.00 | 2.00 |  |  |
| 29 | 7.60 | 2.00 | 2.00 |  |  |
| 30 | 8.00 | 2.00 | 2.00 |  |  |
| 31 | 8.20 | 2.00 | 3.00 |  |  |
| 32 | 8.50 | 2.00 | 3.00 |  |  |
| 33 | 9.50 | 2.00 | 3.00 |  |  |
| 34 | 8.70 | 2.00 | 3.00 |  |  |

STEP 2: Name the Variables. In this example, we will give the default variables VAR00001, VAR00002, and VAR00003, the new names of Sleep, T_Day, and Exercise, respectively. To do so,

1. Click the Variable View tab in the lower left corner of the Data Editor.
2. Click VAR00001; then type Sleep in the highlighted cell and then press Enter.
3. Replace VAR00002 with T_Day and then press Enter.
4. Replace VAR00003 with Exercise and then press Enter.

This displays the Variable View on screen, with VAR00001, VAR00002, and VAR00003 displayed in the first, second, and third cells of the Name column, respectively.

Sleep is entered as the variable name, replacing VAR00001. The cursor then moves to the next cell, highlighting VAR00002.

T_Day is entered as the variable name, replacing VAR00002. The cursor then moves to the next cell, highlighting VAR00003.

Exercise is entered as the variable name, replacing VAR00003.

STEP 3: Analyze the Data. The appropriate test is the two-way, independent groups analysis of variance. To have SPSS do the analysis using this test,

1. Click Analyze; then select General Linear Model; then click on Univariate....
2. Click the arrow for the Dependent Variable: box.
3. Click T_Day in the large box on the left; then click the arrow for the Fixed Factor(s): box.
4. Click Exercise in the large box on the left; then click the arrow for the Fixed Factor(s): box.
5. Click Options....
6. Click Descriptive statistics.

This produces the Univariate dialog box with Sleep highlighted in the large box on the left.

This moves Sleep into the Dependent Variable: box. This identifies Sleep as the dependent variable.

This moves T_Day into the Fixed Factor(s): box. This identifies T_Day as a fixed factor. SPSS differentiates between random and fixed factors. All the independent variables discussed in Chapters 15 and 16 are fixed factors. If you take an advanced course, you will learn the difference between fixed and random factors.

This moves Exercise into the Fixed Factor(s): box. This identifies Exercise as a fixed factor.

This produces the Univariate: Options dialog box. This and the next two steps are not really necessary for the overall analysis. They instruct SPSS to compute some descriptive statistics. While not necessary, the descriptive statistics are often useful, so I recommend you include these two steps.

This puts a check in the Descriptive statistics box, telling SPSS to compute some descriptive statistics and include them in the output.

## 7. Click Continue.

8. Click OK.

This returns you to the Univariate dialog box.

SPSS analyzes the Sleep data and outputs the results.

## Analysis Results

The results are displayed in three tables, the Between-Subjects Factors table, the Descriptive Statistics table, and the Tests of Between-Subjects Effects table. Since for this analysis we are interested in just the Tests of Between-Subjects Effects table, we have displayed it here alone.

Tests of Between-Subjects Effects
Dependent Variable:Sleep

| Source | Type III Sum <br> of Squares | df | Mean Square | F | Sig. |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Corrected Model | $15.466^{\mathrm{a}}$ | 5 | 3.093 | 16.640 | .000 |
| Intercept | 2122.138 | 1 | 2122.138 | 11416.163 | .000 |
| T_Day | 9.000 | 1 | 9.000 | 48.416 | .000 |
| Exercise | 4.754 | 2 | 2.377 | 12.787 | .000 |
| T_Day*Exercise | 1.712 | 2 | .856 | 4.604 | .018 |
| Error | 5.577 | 30 | .186 |  |  |
| Total | 2143.180 | 36 |  |  |  |
| Corrected Total | 21.042 | 35 |  |  |  |

a. R Squared $=.735$ (Adjusted R Squared $=.691$ )

The Tests of Between-Subjects Effects table gives us information about the main and interaction effects. This is a summary table, very much like the summary table shown in the textbook. This table shows that for the T_Day main effect, F $=48.416$ and Sig. $=.000$. Since $.000<.05$, we reject $H_{0}$. There is a significant T_Day main effect. This table also shows that for the Exercise main effect, $F=12.787$, and Sig. $=.000$. Since $.000<.05$, we reject $H_{0}$. There is a significant main effect for Exercise. Finally, the table shows that for the T_Day*Exercise* interaction, $F=4.604$, and Sig. $=.018$. Since $.018<.05$, we reject $H_{0}$. There is a significant interaction between Time of Day and Exercise.

[^45]
## SPSS ADDITIONAL PROBLEMS

1. Use SPSS to a nalyze the data of the experiment presented in Chapter 16, Problem 13, p. 474, in the textbook. Using SPSS, what do y ou conc lude re garding the main effect for Previous Use, the main effect for Drowson C oncentration, a nd the i nteraction e ffect between Previous Use and Drowson Concentration? Use $\alpha=0.05$. I n so lving this pro blem, na me the dependent variable Sleep, the row variable $P_{-}$Use, and the column variable $D$ _Conc.
2. A resea rcher is i nterested in whether the effects of $m$ arijuana $v$ ary $w$ ith pr ior usag e of $t$ he $d$ rug. An experiment is conducted in which 12 moderate users, 12 high users, and 12 nonusers (no prior use) are randomly sampled from the college population. Within each usage level, half of the subjects are randomly assigned to a placebo condition and the other half to an experimental condition. In the placebo condition, ea ch s ubject s mokes $t$ wo re gular ci garettes that taste and smell like marijuana cigarettes. In the experimental condition, each subject smokes two marijuana cigarettes. Immediately after finishing their cigarettes, each subject is given a reaction time test. The following scores in milliseconds are obtained.

| Marijuana Prior Usage | Placebo |  | Experimental (Marijuana) |  |
| :---: | :---: | :---: | :---: | :---: |
| None | 795 | 605 | 695 | 878 |
|  | 700 | 752 | 865 | 916 |
|  | 648 | 710 | 811 | 840 |
| Moderate | 800 | 610 | 843 | 665 |
|  | 705 | 757 | 765 | 810 |
|  | 645 | 712 | 713 | 776 |
| Heavy | 790 | 600 | 815 | 635 |
|  | 695 | 752 | 735 | 782 |
|  | 634 | 705 | 683 | 744 |

Perform at wo-way, independent g roups A NOVA on the data, using $\alpha=0.05$. Name the dependent variable scores $R T$, the row variable $P_{-}$Usage, and the column variable M_amt.
3. The set s of n umbers g iven below in each table cell were obtained from the table of random numbers,

Table J, in Appendix D. There a re 6 t able cells, one at the intersection of each combination of the levels of Factor A and Factor B, e.g., the cell located at the intersection of Factor A-Level 1 and Factor B-Level 1 contains the numbers $7,5,6,4,6$.

|  | Factor B |  |  |
| :--- | :---: | :---: | :---: |
| Factor A | Level 1 | Level 2 | Level 3 |
| Level 1 | 7 | 5 | $\ldots \ldots \ldots . \ldots$ |
|  | 5 | 7 | 2 |
|  | 6 | 3 | 2 |
|  | 4 | 4 | 7 |
| Level 2 | 6 | 6 | 4 |
|  | 2 | 4 | 5 |
|  | 6 | 9 | 7 |
|  | 2 | 6 | 8 |
|  | 8 | 0 | 4 |
|  | 1 | 8 | 5 |

a. Use S PSS a nd do at wo-way independent $g$ roups ANOVA with $\alpha=0.05$ to determine if there are any significant main or interaction effects.
b. Add a cons tant of 3 to ea ch score in row 1(Level 1 row of Factor A in the above data table). This process is analogous to what concerning a main or interaction effect? Co mpute $t$ he $t$ wo-way a nalysis of $v$ ariance again, and explain any differences between this result and that of part a.
c. Using the original scores, add a constant of 3 to each score in column 2 (Level 2 ) a nd a cons tant of 6 to each score in column 3 ( Level 3). This pro cess is analogous to what concerning a main or interaction effect? Co mpute the two-way a nalysis of $v$ ariance again, and explain any differences between this result and that of part $\mathbf{a}$.
d. Using the or iginal scores, a dd a cons tant of 3 to a ll the scores of cell 11 (the scores in the cell at the intersection of Factor $A$-Level 1 and Factor B-Level 1) of the above data table. The original scores in this cell are $7,5,6,4,6$. This process is analogous to what concerning a main or interaction effect? Compute the two-way analysis of variance again, and explain any differences between this result and that of part a.

## ONLINE STUDY RESOURCES

## CENGAGEbrain

Login to CengageBrain.com to access the resources your instructor has assigned. For this book, you can access the book's companion website for chapter-specific learning tools including Know and Be Able to Do, practice quizzes, flash cards, and glossaries, and a link to Statistics and Research Methods Workshops.

If your professor has assigned Aplia homework:

1. Sign in to your account.
2. Complete the cor responding ho mework e xercises a s required by your professor.
3. When finished, click "G rade It N ow" to se e which areas you have mastered and which need more work, and for detailed explanations of every answer.

Visit www.cengagebrain.com to access your account and to purchase materials.

## CHAPTER OUTLINE

Introduction: Distinction
between Parametric and
Nonparametric Tests
Chi-Square ( $\chi^{2}$ )
Single-Variable Experiments
Experiment: Preference for Different Brands of Light Beer
Test of Independence Between Two Variables
Experiment: Political Affiliation and Attitude
Assumptions Underlying $\chi^{2}$
The Wilcoxon Matched-Pairs Signed Ranks Test
Experiment: Changing Attitudes Toward Wildlife Conservation
Assumptions of the Wilcoxon Signed Ranks Test
The Mann-Whitney U Test
Experiment: The Effect of a HighProtein Diet on Intellectual Development
Tied Ranks
Assumptions Underlying the Mann-Whitney U Test
The Kruskal-Wallis Test
Experiment: Evaluating Two Weight Reduction Programs
Assumptions Underlying the Kruskal-Wallis Test
What Is the Truth?

- Statistics and Applied Social Research-Useful or "Abuseful"?


## Chi-Square and Other Nonparametric Tests

## LEARNING OBJECTIVES

After completing this chapter, you should be able to:

- Specify the distinction between parametric and nonparametric tests, when to use each, and give an example of each.
- Specify the level of variable scaling that chi-square requires for its use; understand that chi-square uses sample frequencies and predicts to population proportions.
- Define a contingency table; specify the $H_{1}$ and $H_{0}$ for chi-square analyses.
- Understand that chi-square basically computes the difference between $f_{e}$ and $f_{o}$, and the larger this difference, the more likely we can reject $H_{0}$.
- Solve problems using chi-square, and specify the assumptions underlying this test.
The following objective applies to the Wilcoxon matched-pairs signed ranks test, the Mann-Whitney $U$ test, and the Kruskal-Wallis test.
- Specify the parametric test that each substitutes for, solve problems using each test, and specify the assumptions underlying each test.
- Rank-order the sign test, the Wilcoxon match-pairs signed ranks test, and the $t$ test for correlated groups with regard to power.
- Understand the illustrative examples, do the practice problems, and understand the solutions.


## INTRODUCTION: DISTINCTION BETWEEN PARAMETRIC AND NONPARAMETRIC TESTS

Statistical inference tests are often classified as to whether they are parametric or nonparametric. You will re call from our discussion in Chapter 1 t hat a pa rameter is a characteristic of a population. A parametric inference test is one that depends considerably on p opulation characteristics, or pa rameters, for its use. The $z$ test, $t$ test, and $F$ test are examples of parametric tests. The $z$ test, for instance, requires that we specify the mean and standard deviation of the null-hypothesis population, as well as requiring that the population scores must be normally distributed for small $N s$. The $t$ test for single samples has the same requirements, except that we don't specify $\sigma$. The $t$ tests for two samples or conditions (correlated $t$ or independent $t$ ) both require that the population scores be normally distributed when the sa mples a re small. The independent $t$ test further requires that the population variances be equal. The analysis of variance has requirements quite similar to those for the independent $t$ test.

Although all inference tests depend on p opulation characteristics to so me extent, the requirements of n onparametric tests a re minimal. For example, the sign test is a nonparametric test. To use the sign test, it is not necessary to know the mean, variance, or shape of the population scores. Because nonparametric tests depend little on knowing population distributions, they are often referred to as distribution-free tests.

Since nonparametric inference tests have fewer requirements or a ssumptions about population characteristics, the question arises as to why we don't use them all the time and forget about parametric tests. The answer is twofold. First, many of the parametric inference tests are robust with regard to violations of underlying assumptions. You will recall that a test is robust if violations in the assumptions do not greatly disturb the sampling distribution of its statistic. Thus, the $t$ test is robust regarding the violation of normality in the population. Even though, theoretically, normality in the population is re quired with small samples, it turns out empirically that unless the departures from normality are substantial, the sampling distribution of $t$ remains essentially the same. Thus, the $t$ test can be used with data even though the data violate the assumptions of normality.

The main reasons for preferring parametric to nonparametric tests are that, in general, they are more powerful and more versatile than nonparametric tests. We saw an example of the higher power of parametric tests when we compared the $t$ test with the sign test for correlated groups. The factorial design discussed in Chapter 16 provides a good example of the versatility of parametric statistics. With this design, we can test two, three, four, or more $v$ ariables a nd their interactions. No comparable technique exists with nonparametric statistics.

As a g eneral rule, i nvestigators use pa rametric tests whenever p ossible. H owever, when there is an extreme violation of an assumption of the parametric test or if the
investigator believes the scaling of the data makes the pa rametric test inappropriate, a nonparametric inference test will be employed. We have already presented one nonparametric test: the sign test. In the remaining sections of this chapter, we shall present four more: c hi-square, t he Wi lcoxon m atched-pairs s igned r anks test , t he Ma nn-Whitney $U$ test, and the Kruskal-Wallis test.*

## Single-Variable Experiments

Thus far, we have presented inference tests use primarily in conjunction with ordinal, interval, or ratio data. But what about nominal data? Experiments involving nominal data occur fairly often, particularly in social psychology. You will recall that with this type of data, observations are grouped into several discrete, mutually exclusive categories, and one counts the frequency of occurrence in each category. The inference test most often used with nominal data is a nonparametric test called chi-square ( $\chi^{2}$ ). As has been our procedure throughout the text, we shall begin our discussion of chi-square with an experiment.

## experiment

## Preference for Different Brands of Light Beer

Suppose you are interested in determining whether there is a difference among beer drinkers living in the Puget Sound area in their preference for different brands of light beer. You decide to conduct an experiment in which you randomly sample 150 beer drinkers and let them taste the three leading brands. Assume all the precautions of good experimental design are followed, such as not disclosing the names of the brands to the subjects and so forth. The resulting data are presented in Table 17.1.
table 17.1 Preference for brands of light beer

| Brand A | Brand B | Brand C | Total |
| :---: | :---: | :---: | :---: |
| 145 | ${ }^{2} 40$ | ${ }^{3} 65$ | 150 |

## SOLUTION

The entries in each cell are the number or f requency of subjects appropriate to that cell. Thus, 45 subjects preferred brand A (cell 1); 40, brand B (cell 2); and 65, brand C (cell 3). Can we conclude from these data that there is a difference in preference in the population? The null hypothesis for this experiment states that there is no difference in preference among the brands in the population. More specifically, in the population, the proportion of individuals favoring brand A is e qual to the proportion favoring brand B , which is e qual to the proportion favoring brand C . Referring to the table, it is clear that in the sample the number of individuals preferring each brand is different. However, it doesn't necessarily follow that there is a difference in the population. Isn't it possible that these scores could be due to random sampling from a population of beer drinkers in which the proportion of individuals favoring each brand is equal? Of course, the answer is "yes." Chi-square allows us to evaluate this possibility.

[^46]Computation of $\chi_{\mathbf{o b t}}^{\mathbf{2}}$ To calculate $\chi_{\text {obt }}^{2}$, we must first determine the frequency we would expect to get in each cell if sampling is random from the null-hypothesis population. These frequencies are called expected frequencies and are symbolized by $f_{e}$. The frequencies actually obtained in the experiment are called observed frequencies and are symbolized by $f_{o}$. Thus,

$$
\begin{aligned}
f_{e}= & \text { expected frequency under the assumption sampling } \\
& \text { is random from the null-hypothesis population } \\
f_{o}= & \text { observed frequency in the sample }
\end{aligned}
$$

It should be clear that the closer the observed frequency of each cell is to the expected frequency for that cell, the more rea sonable is $H_{0}$. On the other hand, the greater the difference between $f_{o}$ and $f_{e}$ is, the more reasonable $H_{1}$ becomes.

After d etermining $f_{e} \mathrm{f}$ or ea ch cell, we o btain t he difference b etween $f_{o}$ and $f_{e}$, square the difference, and divide by $f_{e}$. In symbolic form, $\left(f_{o}-f_{e}\right)^{2} / f_{e}$ is computed for each cell. Finally, we sum the resultant values from each of the cells. In equation form,

$$
\chi_{\mathrm{obt}}^{2}=\sum \frac{\left(f_{o}-f_{e}\right)^{2}}{f_{e}} \quad \text { equation for calculating } \chi^{2}
$$

where $f \quad{ }_{o}=$ observed frequency in the cell
$f_{e}=$ expected frequency in the cell, and $\Sigma$ is over all the cells
From this equation, you can see that $\chi^{2}$ is basically a measure of how different the observed frequencies are from the expected frequencies.

To calculate the value of $\chi_{\mathrm{obt}}^{2}$ for the present experiment, we must determine $f_{e}$ for each cell. The values of $f_{o}$ are given in the table. If the null hypothesis is true, then the proportion of beer drinkers in the population that prefers brand A is equal to the proportion that prefers brand B , which in turn is equal to the proportion that prefers brand C . This means that one-third of the population must prefer brand A ; one-third, brand B ; and one-third, brand C . Therefore, if the null hypothesis is true, we would expect one-third of the individuals in the population and, hence, in the sa mple to prefer brand A, one-third to prefer brand B, and one-third to prefer brand C. Since there are 150 subjects in the sample, $f_{e}$ for each cell $=\frac{1}{3}(150)=50$. We have redrawn the data table and entered the $f_{e}$ values in parentheses:

| Brand A | Brand B | Brand C | Total |
| :---: | :---: | :---: | :---: |
| 45 | 40 | 65 |  |
| $\mathbf{( 5 0 )}$ | $\mathbf{( 5 0 )}$ | $\mathbf{1 5 0}$ |  |
| $\mathbf{( 5 0 )}$ | $\mathbf{( 1 5 0 )}$ |  |  |

Now that we have determined the value of $f_{e}$ for each cell, we can calculate $\chi_{\mathrm{obt}}^{2}$. All we need do is sum the values of $\left(f_{o}-f_{e}\right)^{2} / f_{e}$ for each cell. Thus,

MENTORINGTIP
Because $\left(f_{o}-f_{e}\right)$ is squared, $\chi_{\text {obt }}^{2}$ is always positive.

$$
\begin{aligned}
\chi_{\text {obt }}^{2} & =\sum \frac{\left(f_{o}-f_{e}\right)^{2}}{f_{e}} \\
& =\frac{(45-50)^{2}}{50}+\frac{(40-50)^{2}}{50}+\frac{(65-50)^{2}}{50} \\
& =0.50+2.00+4.50=7.00
\end{aligned}
$$

Evaluation of $\chi_{\text {obt }}^{2}$ The theoretical sa mpling distribution of $\chi^{2}$ is sho wn in Figure 17.1. The $\chi^{2}$ distribution consists of a family of curves that, like the $t$ distribution, varies with degrees of freedom. For the lower degrees of freedom, the curves are positively skewed. The degrees of freedom are determined by the number of $f_{o}$ scores that are free to vary. In the present experiment, two of the $f_{o}$ scores are free to vary. Once two of the $f_{o}$ scores are known, the third $f_{o}$ score is fixed, since the sum of the three $f_{o}$ scores must equal $N$. Therefore, $\mathrm{df}=2$. In general, with experiments involving just one variable, there are $k-1$ degrees of freedom, where $k$ equals the number of groups or categories. When we take up the use of $\chi^{2}$ with contingency tables, there will be another equation for determining degrees of freedom. We shall discuss it when the topic arises.

Table H in Appendix D g ives the critical values of $\chi^{2}$ for different alpha levels. Since $\chi^{2}$ is basically a mea sure of the overall discrepancy between $f_{o}$ and $f_{e}$, it follows that the larger the discrepancy between the observed and expected frequencies is, the larger the value of $\chi_{\mathrm{obt}}^{2}$ will be. Therefore, the la rger the value of $\chi_{\mathrm{obt}}^{2}$ is, $t$ he more unreasonable the null hypothesis is. As with the $t$ and $F$ tests, if $\chi_{\text {obt }}^{2}$ falls within the critical region for rejection, then we reject the null hypothesis. The decision rule states the following:

$$
\text { If } \chi_{\text {obt }}^{2} \geq \chi_{\text {crit }}^{2}, \text { reject } H_{0}
$$

It should be noted that in calculating $\chi_{\text {obt }}^{2}$ it do esn't matter whether $f_{o}$ is g reater or less than $f_{e}$. The difference is squared, divided by $f_{e}$, and added to the other cells to obtain $\chi_{\text {obt }}^{2}$. Since the direction of the difference is immaterial, the $\chi^{2}$ test is a nondirectional test (Please see Note 17.1 for further discussion of this point). Furthermore, since each difference adds to the value of $\chi^{2}$, the critical region for rejection always lies under the right-hand tail of the $\chi^{2}$ distribution.

figure 17.1 Distribution of $\chi^{2}$ for various degrees of freedom.
From Design and Analysis of Experiments in Psychology and Education by E.F. Lindquist. Copyright © 1953 Houghton Mifflin Company. Reproduced by permission.

figure 17.2 Evaluation of $\chi_{\text {obt }}^{2}$ for the light beer drinking problem, df $=2$ and $\alpha=0.05$.

In the present experiment, we determined that $\chi_{\mathrm{obt}}^{2}=7.00$. To evaluate it, we must determine $\chi_{\text {crit }}^{2}$ to see if $\chi_{\text {obt }}^{2}$ falls into the critical region for rejection of $H_{0}$. From Table H , with $\mathrm{df}=2$ and $\alpha=0.05$,

$$
\chi_{\text {crit }}^{2}=5.991
$$

Figure 17.2 shows the $\chi^{2}$ distribution with $\mathrm{df}=2$ a nd the critical region for $\alpha=0.05$. Since $\chi_{\text {obt }}^{2}>5.991$, it falls within the critical region and we reject $H_{0}$. There is a difference in the population regarding preference for the three brands of light beer tested. It appears as though brand C is the favored brand.

Let's try one more problem for practice.

## Practice Problem 17.1

A political scientist believes that, in recent years, the ethnic composition of the city in which he lives has changed. The most current figures (collected a few years ago) show that the inhabitants were 53\% Norwegian, 32\% Swedish, 8\% Irish, 5\% Hispanic, and 2\% Italian. (Note that nationalities with percentages under 2\% have not been included.) To test his belief, a random sample of 750 inhabitants is taken; the results are shown in the following table:

| Norwegian |  | Swedish |  | Irish |  | Hispanic |  | Italian | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1399 | 2 | 193 | 3 | 63 | 4 | 82 | 5 | 13 | 750 |

(continued)
a. What is the null hypothesis?
b. What do you conclude? Use $\alpha=0.05$.

## SOLUTION

a. Null hypothesis: The ethnic composition of the city has not changed. Therefore, the sample of 750 individuals is a random sample from a population in which $53 \%$ are Norwegian, $32 \%$ Swedish, 8\% Irish, 5\% Hispanic, and 2\% Italian.
b. Conclusion, using $\alpha=0.05$ :

STEP 1: Calculate the appropriate statistic. The appropriate statistic is $\chi_{\mathrm{obt}}^{2}$. The calculations are shown here:

| Cell No. | $f_{o}$ | $f_{e}$ | $\underline{\left(f_{o}-f_{e}\right)^{2}}$ |
| :---: | :---: | :---: | :---: |
|  |  |  | $f_{e}$ |
| 1 | 399 | $0.53(750)=397.5$ | $\frac{(399-397.5)^{2}}{397.5}=0.006$ |
| 2 | 193 | $0.32(750)=240.0$ | $\frac{(193-240)^{2}}{240}=9.204$ |
| 3 | 63 | $0.08(750)=60.0$ | $\frac{(63-60)^{2}}{60}=0.150$ |
| 4 | 82 | $0.05(750)=37.5$ | $\frac{(82-37.5)^{2}}{37.5}=52.807$ |
| 5 | 13 | $0.02(750)=15.0$ | $\frac{(13-15)^{2}}{15}=0.267$ |
| $\chi_{\mathrm{obt}}^{2}=\sum \frac{\left(f_{o}-f_{e}\right)^{2}}{f_{e}}=62.434$ |  |  |  |

STEP 2: Evaluate the statistic. Degrees of freedom $=5-1=4$. With df $=4$ and $\alpha=0.05$, from Table H,

$$
\chi_{\text {crit }}^{2}=9.488
$$

Since $\chi_{\text {obt }}^{2}>9.488$, we reject $H_{0}$. The ethnic composition of the city appears to have changed. There has been an increase in the proportion of Hispanics and a decrease in the Swedish.

## Test of Independence Between Two Variables

One of the main uses of $\chi^{2}$ is in determining whether two categorical variables are independent or are related. To illustrate, let's consider the following example.

## Political Affiliation and Attitude

Suppose a bi 11 that proposes to lower the legal age for drinking to eighteen is p ending before the state legislature. A political scientist living in the state is interested in determining whether there is a r elationship between political affiliation and at titude toward the bill. A random sample of 200 registered Republicans and 200 registered Democrats is sent letters explaining the scientist's interest and asking the recipients whether they are in favor of the bill, are undecided, or are against the bill. Strict confidentiality is assured. A self-addressed envelope is included to facilitate responding. Answers are received from all 400 Republicans and Democrats. The results are shown in Table 17.2.
table 17.2 Political affiliation and attitude data

|  | Attitude |  |  |
| :--- | :---: | :---: | :---: |
|  |  |  |  |
|  | For |  | Undecided | Against | Row |
| :---: |
| Marginal |

The entries in each cell are the frequency of subjects appropriate to the cell. For example, with the Republicans, 68 a re for the bill, 22 a re undecided, a nd 110 a re against. With the Democrats, 92 are for the bill, 18 are undecided, and 90 are against. This type of table is called a contingency table.

A contingency table is a two-way table showing the contingency between two variables where the va riables have been cl assified into m utually ex clusive categories and the cell entries are frequencies.

Note that in constructing a con tingency table, it is essen tial that the categories be mutually exclusive. Thus, if an entry is appropriate for one of the cells, the categories must be such that it cannot appropriately be entered in any other cell.

This contingency table contains the data bearing on $t$ he contingency between political a ffiliation a nd at titude to ward t he b ill. T he n ull h ypothesis s tates t hat there is no contingency between the variables in the population. For this example, $H_{0}$ s tates that, in the p opulation, at titude to ward the bill a nd p olitical a ffiliation are independent. If this is $t$ rue, then both the Republicans a nd Democrats in the population should have the same proportion of individuals "for," "undecided," and "against" the bill. It is clear that in the contingency table, the frequencies in these three columns a re different for Republicans a nd Democrats. The null hypothesis states that these frequencies are due to random sampling from a population in which the proportion of Republicans is equal to the proportion of Democrats in each of the categories. The alternative hypothesis is that Republicans and Democrats do differ in their attitudes toward the bill. If so, then in the population, the proportions would be different.

Computation of $\chi_{\text {obt }}^{2}$ To test the null hypothesis, we must calculate $\chi_{\text {obt }}^{2}$ and compare it with $\chi_{\text {crit }}^{2}$. With experiments involving two variables, the most difficult part of the process is in determining $f_{e}$ for each cell. As discussed, the null hypothesis states that, in the population, the proportion of Republicans for each category is the same as the proportion of Democrats. If we knew these proportions, we could just multiply them by the number of Republicans or Democrats in the sample to find $f_{e}$ for each cell. For example, suppose that, if $H_{0}$ is true, the prop ortion of Republicans in the population against the bill equals 0.50 . To find $f_{e}$ for that cell, all we would have to do is multiply 0.50 by the number of Republicans in the sample. Thus, for the "Republican-against" cell, $f_{e}$ would equal $0.50(200)=100$.

Since we do not know the population proportions, we estimate them from the sample. In the present experiment, 160 Republicans and Democrats out of 400 were for the bill, 40 out of 400 were undecided, and 200 out of 400 were against the bill. Since the null hypothesis assumes independence between political party and attitude, we can use these sample proportions as our estimates of the null-hypothesis population proportions. Then, we can use these estimates to calculate the expected frequencies. Our estimates for the null-hypothesis population proportions are as follows:

$\begin{aligned} & \text { Estimated } H_{0} \text { population } \\ & \text { proportion undecided }\end{aligned}=\frac{\text { Number of subjects undecided }}{\text { Total number of subjects }}=\frac{40}{400}$
 the bill

Using these estimates to ca lculate the expected frequencies, we obtain the following values for $f_{e}$ :

For the Republican-for cell (cell 1 in the table on p. 491):
$f_{e}=\binom{$ Estimated $H_{0}$ population }{ proportion for the bill }$\binom{$ Total number of }{ Republicans }$=\frac{160}{400}(200)=80$
For the Republican-undecided cell (cell 2):

$$
f_{e}=\binom{\text { Estimated } H_{0} \text { population }}{\text { proportion undecided }}\binom{\text { Total number of }}{\text { Republicans }}=\frac{40}{400}(200)=20
$$

For the Republican-against cell (cell 3):

$$
f_{e}=\left(\begin{array}{c}
\text { Estimated } H_{0} \text { population } \\
\text { proportion against } \\
\text { the bill }
\end{array}\right)\binom{\text { Total number of }}{\text { Republicans }}=\frac{200}{400}(200)=100
$$

For the Democrat-for cell (cell 4):

$$
f_{e}=\binom{\text { Estimated } H_{0} \text { population }}{\text { proportion for the bill }}\binom{\text { Total number of }}{\text { Democrats }}=\frac{160}{400}(200)=80
$$

For the Democrat-undecided cell (cell 5):

$$
f_{e}=\binom{\text { Estimated } H_{0} \text { population }}{\text { proportion undecided }}\binom{\text { Total number of }}{\text { Democrats }}=\frac{40}{400}(200)=20
$$

For the Democrat-against cell (cell 6):

$$
f_{e}=\left(\begin{array}{c}
\text { Estimated } H_{0} \text { population } \\
\text { proportion against } \\
\text { the bill }
\end{array}\right)\binom{\text { Total number of }}{\text { Democrats }}=\frac{200}{400}(200)=100
$$

For con venience, the $2 \times 3$ con tingency $t$ able has been re drawn here, a nd the $f_{e}$ values entered within parentheses in the appropriate cells:

|  | Attitude |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | For |  |  | Undecided |  | Against |$\quad$| Row |
| :---: |
| Marginal |

The same values for $f_{e}$ can also be found directly by multiplying the marginals for that cell and dividing by $N$. The marginals are the row and column totals lying outside the table. For example, the marginals for cell 1 are 160 (column total) and 200 (row total). Let's use this method to find $f_{e}$ for each cell. Multiplying the marginals and dividing by $N$, we obtain

$$
\begin{aligned}
& f_{e}(\text { cell } 1)=\frac{160(200)}{400}=80 \\
& f_{e}(\text { cell } 2)=\frac{40(200)}{400}=20 \\
& f_{e}(\text { cell } 3)=\frac{200(200)}{400}=100 \\
& f_{e}(\text { cell } 4)=\frac{160(200)}{400}=80 \\
& f_{e}(\text { cell } 5)=\frac{40(200)}{400}=20 \\
& f_{e}(\text { cell } 5)=\frac{200(200)}{400}=100
\end{aligned}
$$

These values are, of course, the same ones we arrived at previously. Although using the marginals doesn't give much insight into why $f_{e}$ should be that value, from a practical standpoint it is the best way to calculate $f_{e}$ for the various cells. You should note that a good check to make sure your calculations of $f_{e}$ are correct is to see whether the row and column totals of $f_{e}$ equal the row and column marginals.

Once $f_{e}$ for each cell has been determined, the next step is to calculate $\chi_{\mathrm{obt}}^{2}$. As before, this is done by summing $\left(f_{o}-f_{e}\right)^{2} / f_{e}$ for each cell. Thus, for the present experiment,

$$
\begin{aligned}
\chi_{\mathrm{obt}}^{2}= & \sum \frac{\left(f_{o}-f_{e}\right)^{2}}{f_{e}} \\
= & \frac{(68-80)^{2}}{80}+\frac{(22-20)^{2}}{20}+\frac{(110-100)^{2}}{100}+\frac{(92-80)^{2}}{80} \\
& +\frac{(18-20)^{2}}{20}+\frac{(90-100)^{2}}{100} \\
= & 1.80+0.20+1.00+1.80+0.20+1.00=6.00
\end{aligned}
$$

Evaluation of $\chi_{\text {obt }}^{2}$ Toe valuate $\chi_{\text {obt }}^{2}$, we must compare it with $\chi_{\text {crit }}^{2}$ for the appropriate df. As discussed previously, the degrees of freedom are equal to the number of $f_{o}$ scores that are free to vary while keeping the totals constant. In the two-variable experiment, we must keep both the column and row marginals at the same values. Thus, the degrees of freedom for experiments involving a contingency between two variables are equal to the number of $f_{o}$ scores that are free to vary while at the same time keeping the column and row marginals the same. In the case of a $2 \times 3$ table, there are only 2 degrees of freedom. Only two $f_{o}$ scores are free to vary, and all the remaining $f_{o}$ and $f_{e}$ scores are fixed.

To illustrate, consider the $2 \times 3$ table shown here:

| 68 | ${ }^{2} 22$ | 3 | 200 |
| :---: | :---: | :---: | :---: |
| 4 | 5 | 6 | 200 |
| 160 | 40 | 200 | 400 |

If we fill in any two $f_{o}$ scores, all the remaining $f_{o}$ scores are fully determined, provided the marginals are kept at the same values. For example, in the table, we have filled in the $f_{o}$ scores for cells 1 and 2 . Note that all the other scores are fixed in value once two $f_{o}$ scores are given; for example, the $f_{o}$ score for cell 3 must be 110 [200 - (68 + 22)].

There is also an equation to calculate the df for contingency tables. It states

$$
\mathrm{df}=(r-1)(c-1)
$$

where $r=$ number of rows

$$
c=\text { number of columns }
$$

Applying the equation to the present experiment, we obtain

$$
\mathrm{df}=(r-1)(c-1)=(2-1)(3-1)=2
$$

The $\chi^{2}$ test is not limited to $2 \times 3$ tables. It can be used with contingency tables containing a ny n umber of ro ws a nd co lumns. T his e quation is p erfectly g eneral a nd
applies to a $l l$ con tingency $t$ ables. $T$ hus, $i f w e d i d a n e x p e r i m e n t i n v o l v i n g ~ t w o ~$ variables a nd had four ro ws a nd six co lumns in the table, $\mathrm{d} f=(r-1)(c-1)=$ $(4-1)(6-1)=15$.

Returning to the evaluation of the present experiment, let's assume $\alpha=0.05$. With $\mathrm{df}=2$ and $\alpha=0.05$, from Table H,

$$
\chi_{\text {crit }}^{2}=5.991
$$

Since $\chi_{\text {obt }}^{2}>5.991$, we reject $H_{0}$. Political affiliation is related to attitude toward the bill. The Democrats appear to be more favorably disposed toward the bill than the Republicans. The complete solution is shown in Table 17.3.
table 17.3 Solution to political affiliation and attitude problem
a. Null h ypothesis: P olitical a ffiliation a nd at titude t oward t he bi ll a re i ndependent. T he frequency obtained in each cell is due to random sampling from a population where the proportions of Republicans and Democrats that are for, undecided about, and against the bill are equal.
b. Conclusion, using $\alpha=0.05$ :

STEP 1: Calculate the appropriate statistic. The appropriate statistic is $\chi_{\mathrm{obt}}^{2}$. The data are shown on p. 489. The calculations are shown here.
STEP 2: Evaluate the statistic. Degrees of freedom $=(r-1)(c-1)=(2-1)(3-1)=2$. With $\mathrm{df}=2$ and $\alpha=0.05$, from Table H ,

$$
\chi_{\text {crit }}^{2}=5.991
$$

Since $\chi_{\mathrm{obt}}^{2}>5.991$, we reject $H_{0}$. Political affiliation and attitude toward the bill are related. Democrats appear to favor the bill more than Republicans.

| Cell No. | $f_{0}$ | $f_{e}$ | $\underline{\left(f_{o}-f_{e}\right)^{2}}$ |
| :---: | :---: | :---: | :---: |
|  |  |  | $f_{e}$ |
| 1 | 68 | $\underline{160(200)}=80$ | $\underline{(68-80)^{2}}=1.80$ |
|  |  | $400=80$ | $80=1.80$ |
| 2 | 22 | $\underline{40(200)}=20$ | $\underline{(22-20)^{2}}=0.20$ |
|  |  | $400-20$ | 20 - $=0.20$ |
| 3 | 110 | $200(200)=100$ | $(110-100)^{2}$ |
|  |  | $400=100$ | 100 - $=1.00$ |
| 4 | 92 | $\underline{160(200)}=80$ | $\underline{(92-80)^{2}}=1.80$ |
|  |  | $400=80$ | 80 - $=1.80$ |
| 5 | 18 | $\underline{40(200)}=20$ | $\underline{(18-20)^{2}}=0.20$ |
|  |  | $400-20$ | $20=0.20$ |
| 6 | 90 | $\underline{200(200)}=100$ | $\frac{(90-100)^{2}}{}=1.00$ |
|  |  | $400-100$ | $100=\underline{1.00}$ |
|  |  |  | $\sum \frac{\left(f_{o}-f_{e}\right)^{2}}{f}=6.00$ |

Let's try a problem for practice.

## Practice Problem 17.2

A university is considering implementing one of the following three grading systems: (1) All grades are pass-fail, (2) all grades are on the 4.0 system, and (3) $90 \%$ of the grades are on the 4.0 system and $10 \%$ are pass-fail. A survey is taken to det ermine whether there is a re lationship between undergraduate major and grading system preference. A random sample of 200 students with engineering majors, 200 students with arts and sciences majors, and 100 students with fine a rts majors is se lected. Each student is a sked which of the three grading systems he or she prefers. The results are shown in the following $3 \times 3$ contingency table:

|  | Grading System |  |  | Row Marginal |
| :---: | :---: | :---: | :---: | :---: |
|  | $4.0 \text { and }$ |  |  |  |
| Fine arts | ${ }^{1} 26$ | $2 \quad 55$ | ${ }^{3} 19$ | 100 |
| Arts and sciences | ${ }^{4} 24$ | ${ }^{5} 118$ | ${ }^{6} 58$ | 200 |
| Engineering | ${ }^{7} 20$ | ${ }^{8} 112$ | ${ }^{9} 68$ | 200 |
| Column <br> Marginal | 70 | 285 | 145 | 500 |

a. What is the null hypothesis?
b. What do you conclude? Use $\alpha=0.05$.

## SOLUTION

a. Null h ypothesis: U ndergraduate m ajor a nd g rading s ystem pre ference a re independent. The frequency obtained in each cell is due to random sampling from a population where the proportions of fine arts, arts and sciences, and engineering majors who prefer each grading system are the same.
b. Conclusion, using $\alpha=0.05$ :

STEP 1: Calculate the appropriate statistic. The data a re shown in the following table. The appropriate statistic is $\chi_{\text {obt }}^{2}$. Before calculating $\chi_{\mathrm{ob}}^{2}$, we must first calculate $f_{e}$ for each cell. The values of $f_{e}$ were found using the marginals.


| Cell No. | $f_{\text {o }}$ | $f_{e}$ | $\underline{\left(f_{o}-f_{e}\right)^{2}}$ |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | $f_{e}$ |  |
| 3 | 19 | $\frac{145(100)}{500}=29$ | $\frac{(19-29)^{2}}{29}=$ | 3.448 |
| 4 | 24 | $\frac{70(200)}{500}=28$ | $\frac{(24-28)^{2}}{28}=$ | 0.571 |
| 5 | 118 | $\frac{285(200)}{500}=114$ | $\frac{(118-114)^{2}}{114}=$ | 0.140 |
| 6 | 58 | $\frac{145(200)}{500}=58$ | $\frac{(58-58)^{2}}{58}$ | 0.000 |
| 7 | 20 | $\frac{70(200)}{500}=28$ | $\frac{(20-28)^{2}}{28}=$ | 2.286 |
| 8 | 112 | $\frac{285(200)}{500}=114$ | $\frac{(112-114)^{2}}{114}=$ | 0.035 |
| 9 | 68 | $\frac{145(200)}{500}=58$ | $\frac{(68-58)^{2}}{58}=$ | 1.724 |
| $\chi_{\mathrm{obt}}^{2}=\sum \frac{\left(f_{o}-f_{e}\right)^{2}}{f_{e}}=18.561$ |  |  |  |  |

STEP 2: Evaluate the statistic. D egrees of f reedom $=(r-1)(c-1)=$ $(3-1)(3-1)=4$. With $\mathrm{df}=4$ and $\alpha=0.05$, from Table H,

$$
\chi_{\text {crit }}^{2}=9.488
$$

Since $\chi_{\text {obt }}^{2}>9.488$, we reject $H_{0}$. Undergraduate major and grading system preference are related.

In trying to det ermine what $t$ he $d$ ifferences in pre ference were between $t$ he groups, since the number of subjects differs considerably for the fine arts majors, it is necessary to convert the frequency entries into proportions. These proportions are shown in Table 17.4.
table 17.4 Preferences for grading systems expressed as proportions

|  | 4.0 and |  |  |
| :--- | :---: | :---: | :---: |
|  | Pass-fail | Pass-fail | 4.0 |
|  | 0.26 | 0.55 | 0.19 |
| Fine arts | 0.12 | 0.59 | 0.29 |
| Arts and sciences | 0.10 | 0.56 | 0.34 |
|  |  |  |  |

From this table, it appears that the differences between groups are in their preferences for the all pass-fail or all-4.0 grading systems. The fine arts students show a h igher prop ortion f avoring $t$ he pa ss-fail system $r$ ather $t$ han $t$ he all-4.0 system, whereas the arts and sciences and engineering students show the reverse pattern. All groups show about the same proportions favoring the system advocating a combination of 4.0 and pass-fail grades.

Let's try one more problem for practice.

## Practice Problem 17.3

A social psychologist is interested in determining whether there is a relationship between the e ducation level of pa rents a nd the n umber of children they have. Accordingly, a survey is taken, and the following results are obtained:

|  | No. of Children |  | Row <br> Marginal |
| :---: | :---: | :---: | :---: |
|  | Two less | More than two |  |
| College education | 153 | 22 | 75 |
| High school education only | 37 | 38 | 75 |
| Column <br> Marginal | 90 | 60 | 150 |

a. What is the null hypothesis?
b. What is the conclusion? Use $\alpha=0.05$.

## SOLUTION

a. Null hypothesis: The e ducational level of parents a nd the number of children they have are independent. The frequency obtained in each cell is due to random sampling from a population where the proportions of college-educated and only high-school-educated parents that have (1) two or fewer and (2) more than two children are equal.
b. Conclusion, using $\alpha=0.05$ :

STEP 1: Calculate the appropriate statistic. T he d ata a re s hown in the following table. The appropr iate statistic is $\chi_{\mathrm{obt}}^{2}$. The calculations follow.

|  |  |  | $\underline{\left(f_{o}-f_{e}\right)^{2}}$ |
| :---: | :---: | :---: | :---: |
| Cell no. | $f_{o}$ | $f_{e}$ | $f_{e}$ |
| 1 | 53 | $\underline{90(75)}=45$ | $\underline{(53-45)^{2}}=1.422$ |
|  | 5 | $150-45$ | $45=1.422$ |
| 2 | 22 | $\underline{60(75)}=30$ | $\underline{(22-30)^{2}}=2.133$ |
|  |  | $\frac{150}{}=30$ | $30=2.133$ |
| 3 | 37 | $\underline{90(75)}=45$ | $\underline{(37-45)^{2}}=1.422$ |
| 3 |  | $\frac{150}{}=45$ | $45=1.422$ |
| 4 | 38 | $\underline{60(75)}=30$ | $\underline{(38-30)^{2}}$ ( ${ }^{(133}$ |
| 4 | 38 | $\frac{150}{}=30$ | 30 - 2.133 |
|  |  |  | $\sum \frac{\left(f_{o}-f_{e}\right)^{2}}{f_{e}}=7.110$ |

STEP 2: Evaluate the statistic. D egrees of f reedom $=(r-1)(c-1)=$ $(2-1)(2-1)=1$. With df $=1$ and $\alpha=0.05$, from Table H,

$$
\chi_{\text {crit }}^{2}=3.841
$$

Since $\chi_{\mathrm{obt}}^{2}>3.841$, we reject $H_{0}$. The educational level of parents and the number of children they have are related.

## Assumptions Underlying $\chi^{\mathbf{2}}$

A basic assumption in using $\chi^{2}$ is that there is independence between each observation recorded in the contingency table. This means that each subject can have only one entry in the table. It is not permissible to take several measurements on the same subject and enter them as separate frequencies in the same or different cells. This error would produce a larger $N$ than there are independent observations.

A second assumption is that the sample size must be large enough that the expected frequency in each cell is at least 5 for tables where $r$ or $c$ is greater than 2 . If the table is a $1 \times 2$ or $2 \times 2$ table, then each expected frequency should be at least 10 . If the sample size is small enough to result in expected frequencies that violate these requirements, then the actual sampling distribution of $\chi^{2}$ deviates considerably from the theoretical one and the probability values given in Table H do not apply. If the experiment involves a $2 \times 2$ contingency table and the data violate this assumption, Fisher's exact probability test should be used.*

Although $\chi^{2}$ is used frequently when the data are only of nominal scaling, it is not limited to nominal data. Chi-square can be used with ordinal, interval, and ratio data. However, regardless of the actual scaling, the data must be reduced to mutually exclusive categories and appropriate frequencies before $\chi^{2}$ can be employed.

[^47]
## THE WILCOXON MATCHED-PAIRS SIGNED RANKS TEST

The Wilcoxon matched-pairs signed ranks test is used in conjunction with the correlated $g$ roups des ign with data that a re at 1 east ord inal in scaling. It is a re latively powerful test sometimes used in place of the $t$ test for correlated groups when there is a $n$ extreme $v$ iolation of the normality a ssumption or when the data a re not of appropriate sca ling. The Wi lcoxon $s$ igned $r$ anks $t$ est cons iders $b$ oth $t$ he $m$ agnitude of the difference scores a nd their direction, which makes it more $p$ owerful than the sign test. It is, however, less powerful than the $t$ test for correlated groups. To illustrate this test, let's consider the following experiment.

## experiment

## Changing Attitudes Toward Wildlife Conservation

A prominent ecological group is planning to mount an active campaign to increase wildlife conservation in their country. As part of the campaign, they plan to show a film designed to promote more favorable attitudes toward wildlife conservation. Before showing the film to the public at large, they want to evaluate its effects. A group of 10 subjects are randomly sa mpled a nd given a que stionnaire that me asures an individual's at titude toward wildlife conservation. Next, they are shown the film, after which they are again given the attitude questionnaire. The questionnaire has 50 possible points, and the higher the score is, the more favorable is the attitude toward wildlife conservation. The results are shown in Table 17.5.

1. What is the alternative hypothesis? Use a nondirectional hypothesis.
2. What is the null hypothesis?
3. What do you conclude? Use $\alpha=0.05_{2 \text { tail }}$.

## SOLUTION

1. The alternative hypothesis is usually stated without specifying an y population parameters. For this example, it states that the film affects attitudes toward wildlife conservation.
2. The null hypothesis is also usually stated without specifying an y population parameters. For this example, it states that the film has no effect on attitudes toward wildlife conservation.
3. Conclusion, using $\alpha=0.05_{2 \text { tail }}$ : As with all the other inference tests, the first step is to calculate the appropriate statistic. The data ha ve been obtained from questionnaires, so they are at least of ordinal scaling. To illustrate use of the Wilcoxon signed ranks test, we shall assume that the data meet the assumptions of this test (these will be discussed shortly). The statistic calculated by the Wilcoxon signed ranks test is $T_{\text {obt }}$. Determining $T_{\text {obt }}$ involves four steps:
a. Calculate the difference between each pair of scores.
b. Rank the absolute values of the difference scores from the smallest to the largest.
c. Assign to the resulting ranks the sign of the diference score whose absolute value yielded that rank.
d. Compute the sum of the ranks separately for the positive and negative signed ranks. The lower sum is $T_{\text {obt }}$.
These four steps $h$ ave been done $w$ ith the $d$ ata $f$ rom the at titude que stionnaire, a nd the resultant values have been entered in Table 17.5. Thus, the difference scores have been calculated and are shown in the fourth column of Table 17.5. The ranks of the absolute values of the difference scores are shown in the fifth column. Note that, as a check on whether the ranking has been done c orrectly, the sum of the unsigned ranks should equal $n(n+1) / 2$.

## table 17.5 Data and solution for wildlife conservation problem

| Subject | Attitude |  | Difference | Rank of [Difference] | Signed <br> Rank of Difference | Sum of <br> Positive Ranks | Sum of Negative Ranks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Before | After |  |  |  |  |  |
| 1 | 40 | 44 | 4 | 4 | 4 | 4 |  |
| 2 | 33 | 40 | 7 | 6 | 6 | 6 |  |
| 3 | 36 | 49 | 13 | 10 | 10 | 10 |  |
| 4 | 34 | 36 | 2 | 2 | 2 | 2 |  |
| 5 | 40 | 39 | -1 | 1 | -1 |  | 1 |
| 6 | 31 | 40 | 9 | 8 | 8 | 8 |  |
| 7 | 30 | 27 | -3 | 3 | -3 |  | 3 |
| 8 | 36 | 42 | 6 | 5 | 5 | 5 |  |
| 9 | 24 | 35 | 11 | 9 | 9 | 9 |  |
| 10 | 20 | 28 | 8 | 7 | 7 | 7 |  |
|  |  |  |  | 55 |  | 51 | 4 |
| $n(n+1)=10(11)$ |  |  |  |  |  |  | $T_{\text {obt }}=4$ |

From Table I, with $N=10$ and $\alpha=0.05_{2 \text { tail }}$,

$$
T_{\text {crit }}=8
$$

Since $T_{\text {obt }}<8, H_{0}$ is rejected. The film appears to promote more favorable attitudes toward wildlife conservation.

In the present example, this sum should equal $55[10(11) / 2=55]$, which it does. Step c asks us to give each rank the sign of the difference score whose absolute value yielded that rank. This has been done in the sixth column. Thus, the ranks of 1 and 3 are assigned minus signs, and the rest are positive. The ranks of 1 and 3 received minus signs because their associated difference scores are negative. $T_{\text {obt }}$ is determined by computing the sum of the positive ranks and the sum of the negative ranks. $T_{\text {obt }}$ is the lower of the two sums. In this example, the sum of the positive ranks equals 51 , and the sum of the negative ranks equals 4 . Thus,

$$
T_{\text {obt }}=4
$$

Note that often it is not necessary to compute both sums. Usually it is apparent by inspection which sum will be lower. The final step is to evaluate $T_{\mathrm{obt}}$. Table I in Appendix D contains the critical values of $T$ for various values of $N$. With $N=10$ and $\alpha=0.05_{2 \text { tail }}$, from Table I,

$$
T_{\text {crit }}=8
$$

With the Wilcoxon signed ranks test, the decision rule is

$$
\text { If } T_{\text {obt }} \leq T_{\text {crit }} \text {, reject } H_{0}
$$

Note that this is opposite to the rule we have been using for most of the other tests. Since, $T_{\text {obt }}<8$, we reject $H_{0}$ and conclude that the film does affect attitudes toward wildlife conservation. It appears to promote more favorable attitudes.

It is easy to see why the Wilcoxon signed ranks test is more powerful than the sign test but not as powerful as the $t$ test for correlated groups. The Wilcoxon signed ranks test takes into account the magnitude of the difference scores, which makes it more powerful than the sign test. However, it considers only the rank order of the difference scores, not their actual magnitude, as does the $t$ test. Therefore, the Wilcoxon signed ranks test is not as powerful as the $t$ test.

Let's try another problem for practice.

## Practice Problem 17.4

An investigator is interested in determining whether the difficulty of the material to be learned affects the anxiety level of college students. A random sample of 12 students is each given hard and easy learning tasks. Before doing each task, they are shown a few sample examples of the material to be learned. Then their anxiety level is a ssessed using an anxiety questionnaire. Thus, anxiety level is assessed before each learning task. The data are shown in the following table. The higher the score is, the greater is the anxiety level. What is the conclusion, using the Wilcoxon signed ranks test and $\alpha=0.05_{2 \text { tail }}$ ?

## SOLUTION

The solution is shown in the following table. Note that there are ties in some of the difference scores. Generally, two kinds of ties a re possible. First, the raw scores may be tied, yielding a difference score of 0 . If this occurs, these scores are disregarded and the overall $N$ is re duced by 1 for each 0 d ifference score. Ties can also occur in the difference scores, a s in the present example. When this happens, the ranks of these scores a re given a value equal to the mean of the tied ranks. This is the sa me procedure we followed for the Spearman rho correlation coefficient. Thus, in this example, the two tied difference scores of 3 are assigned ranks of $2.5[(2+3) / 2=2.5]$, and the tied difference scores of 10 receive the rank of 9.5 . Otherwise, the solution is quite similar to that of the previous example.

| Student No. | Anxiety |  | Difference | Rank of \|Difference| | Signed Rank of Difference | Sum of Positive Ranks | Sum of Negative Ranks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Hard tasks | Easy tasks |  |  |  |  |  |
| 1 | 48 | 40 | 8 | 7 | 7 | 7 |  |
| 2 | 33 | 27 | 6 | 5 | 5 | 5 |  |
| 3 | 46 | 34 | 12 | 11 | 11 | 11 |  |
| 4 | 42 | 28 | 14 | 12 | 12 | 12 |  |
| 5 | 40 | 30 | 10 | 9.5 | 9.5 | 9.5 |  |
| 6 | 27 | 24 | 3 | 2.5 | 2.5 | 2.5 |  |


| Student No. | Anxiety |  | Rank of Difference \|Difference |  | Signed Rank of Difference | Sum of Positive Ranks | Sum of Negative Ranks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Hard tasks | Easy tasks |  |  |  |  |  |
| 7 | 31 | 33 | -2 | 1 | -1 |  | 1 |
| 8 | 42 | 39 | 3 | 2.5 | 2.5 | 2.5 |  |
| 9 | 38 | 31 | 7 | 6 | 6 | 6 |  |
| 10 | 34 | 39 | -5 | 4 | -4 |  | 4 |
| 11 | 38 | 29 | 9 | 8 | 8 | 8 |  |
| 12 | 44 | 34 | 10 | 9.5 | 9.5 | 9.5 |  |
|  |  |  |  | 78.0 |  | 73.0 | 5 |
|  |  |  | $\frac{+1)}{2}=\frac{12(1}{2}$ | $\text { 13) }=78$ |  |  | $T_{\text {obt }}=5$ |

From Table I, with $N=12$ and $\alpha=0.05_{2 \text { tail, }}$,

$$
T_{\text {crit }}=13
$$

Since $T_{\text {obt }}<13$, we reject $H_{0}$ and conclude that the difficulty of material does affect anxiety. It appears that more difficult material produces increased anxiety.

## Assumptions of the Wilcoxon Signed Ranks Test

There are two assumptions underlying the Wilcoxon signed ranks test. First, the scores within each pair must be at least of ordinal measurement. Second, the difference scores must also have at least ordinal scaling. The second requirement arises because in computing $T_{\text {obt }}$ we rank-order the difference scores. Thus, the magnitude of the difference scores must be at least ordinal so that they can be rank-ordered.

The Mann-Whitney $U$ test is use d in con junction w ith t he i ndependent g roups design with data that are at least ordinal in scaling. It is a powerful nonparametric test used in place of the $t$ test for independent groups when there is an extreme violation of the normality assumption or when the data are not of appropriate scaling for the $t$ test.

To illustrate this inference test, let's consider the following experiment.

## experiment

## The Effect of a High-Protein Diet on Intellectual Development

A developmental psychologist, with special competence in nutrition, believes that a highprotein diet eaten during early childhood is i mportant for intellectual development. The diet in the geographic area where the psychologist lives is low in protein. The psychologist believes the low-protein diet eaten during the first few years of childhood is detrimental to intellectual development. If she is correct, a high-protein diet should result in higher intelligence. An experiment is conducted in which 18 children are randomly chosen from the 1 -year-old children living in a nearby city. The 18 children are then randomly divided
into two groups of 9 ch ildren each. The control group is fed the usual low-protein diet for 3 years, whereas the experimental group receives a diet high in protein for the same duration. At the end of the 3 years, each child is given an IQ test. The resulting data are shown in Table 17.6. One child in the experimental group moved to a different city and was not replaced.
table 17.6 Data from the protein and IQ experiment

| IQ Test Scores |  |
| :---: | :---: |
| Control group <br> low protein <br> $\boldsymbol{l}$ | Experimental group <br> high protein |
| $\ldots \ldots \ldots$ |  |
| 102 | 110 |
| 104 | 115 |
| 105 | 117 |
| 107 | 122 |
| 108 | 125 |
| 111 | 130 |
| 113 | 135 |
| 118 | 140 |
| 120 |  |

a. What is the directional alternative hypothesis?
b. What is the null hypothesis?
c. What do you conclude? Use $\alpha=0.05_{1 \text { tail }}$.

## SOLUTION

1. Alternative hypothesis: As with the $t$ test for independent groups, the alternati ve hypothesis states that a high-protein diet eaten during inf ancy will increase intellectual functioning relati ve to a lo w-protein diet. In the same manner as with the $t$ test for independent groups, each sample is considered a random sample from its o wn population set of scores, with parameters $\quad \mu_{1}, \sigma_{1}{ }^{2}$, and $\mu_{2}, \sigma_{2}{ }^{2}$, respecti vely. Ho wever, since this is a rank-order test, the Mann-Whitne y $U$ test does not e valuate sample mean differences and, hence, mak es no prediction about the relationship of $\quad \mu_{1}$ and $\mu_{2}$. Thus, there are no population parameters included in the statement of the alternati ve hypothesis.
2. Null hypothesis: The null hypothesis is also stated without an y population parameters. It states that the high-protein diet, eaten during inf ancy, either will ha ve no ef fect on intellectual functioning or will decrease intellectual functioning.
3. Conclusion using $\alpha=0.05_{1 \text { tail }}$ : As with the other inference tests, the conclusion involves a two-step process: Compute the appropriate statistic and then evaluate the statistic using its sampling distribution.

STEP 1: Compute the appropriate statistic. The st atistic ca lculated bythe Ma nn$U$ test is $U_{\text {obt }}$ or $U_{\text {obt }}^{\prime}$. These statistics measure the degree of separation between the $t$ wo sa mple sets of sc ores. As the real effect of the i ndependent variable increases, the samples become more separated (the scores of the two samples overlap less). As the degree of sample separation increases, $U_{\text {obt }}$ decreases and

## MENTORINGTIP

Remember: $U_{\text {obt }}=0$ indicates the greatest degree of separation possible for any data.
$U_{\text {obt }}^{\prime}$ increases. When there is complete separation between samples (no overlap), $U_{\text {obt }}=0$. For any experiment, $U_{\mathrm{obt}}+U_{\mathrm{obt}}^{\prime}=n_{1} n_{2}$. Both $U_{\mathrm{obt}}$ and $U_{\mathrm{obt}}^{\prime}$ measure the sa me degree of separation. Hence, in a nalyzing the data from a ny experiment, it is ne cessary to compute and evaluate only $U_{\mathrm{obt}}$ or $U_{\mathrm{obt}}^{\prime} . U_{\mathrm{obt}}$ and $U_{\mathrm{obt}}^{\prime}$ are computed as follows:
a. Combine the scores from both groups, rank-order them, and assign each a rank score, using 1 for the lowest score:

| Original Score | 102 | 104 | 105 | 107 | 108 | 110 | 111 | 113 | 115 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Rank | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| Original Score | 117 | 118 | 120 | 122 | 125 | 130 | 135 | 140 |  |
| Rank | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |  |

b. Sum the ranks for each group; that is, determine $R_{1}$ and $R_{2}$, where $R_{1}=$ sum of the ranks for group 1 and $R_{2}=$ sum of the ranks for group 2 .

| Control Group 1 |  | Experimental Group 2 |  |
| :---: | :---: | :---: | :---: |
| Original score | Rank | Original score | Rank |
| 102 | 1 | 110 | 6 |
| 104 | 2 | 115 | 9 |
| 105 | 3 | 117 | 10 |
| 107 | 4 | 122 | 13 |
| 108 | 5 | 125 | 14 |
| 111 | 7 | 130 | 15 |
| 113 | 8 | 135 | 16 |
| 118 | 11 | 140 | 17 |
| 120 | $\underline{12}$ |  | $R_{2}=100$ |
| $\begin{array}{r} R_{1}=53 \\ n_{1}=9 \end{array}$ |  |  | $n_{2}=8$ |
|  |  |  |  |

c. Solve the equations for $U_{\mathrm{obt}}$ and $U_{\mathrm{obt}}^{\prime} . U_{\mathrm{obt}}$ and $U_{\mathrm{obt}}^{\prime}$ are computed by solving the following equations:

$$
\begin{array}{ll}
U_{\mathrm{obt}}=n_{1} n_{2}+\frac{n_{1}\left(n_{1}+1\right)}{2}-R_{1} & \text { general equation for finding } \mathrm{U}_{o b t} \text { or } \mathrm{U}_{o b t}^{\prime} \\
U_{\mathrm{obt}}=n_{1} n_{2}+\frac{n_{2}\left(n_{2}+1\right)}{2}-R_{2} & \text { general equation for finding } \mathrm{U}_{o b t} \text { or } \mathrm{U}_{o b t}^{\prime}
\end{array}
$$

where $n \quad 1=$ number of scores in group 1
$n_{2}=$ number of scores in group 2
$R_{1}=$ sum of ranks for scores in group 1
$R_{2}=$ sum of ranks for scores in group 2

In solving these e quations, we identify one of the sa mples as group 1 a nd the ot her as group 2. Then, we just go ahead and solve the equations. One of the equations will yield a number lower than the number from the other equation. Arbitrarily, the lower of the two numbers is assigned as $U_{\text {obt }}$ and the higher of the two numbers as $U_{\text {obt }}^{\prime}$. It doesn't matter which sample is labeled group 1 and which is labeled group 2 . If we reversed the labels, we would still obtain the same numbers from the equations. What does change with labeling is which equation yields the higher number and which yields the lower number. Since this depends on which group is la beled group 1 a nd which group 2, these equations are both written initially in terms of $U_{\text {obt }}$. In an actual a nalysis, the equation that yields the lower number is the $U_{\text {obt }}$ equation; the one that yields the higher number is the $U_{\mathrm{obt}}^{\prime}$ equation. For the data in the present example,

$$
\begin{aligned}
U_{\mathrm{obt}} & =n_{1} n_{2}+\frac{n_{1}\left(n_{1}+1\right)}{2}-R_{1} & U_{\mathrm{obt}} & =n_{1} n_{2}+\frac{n_{2}\left(n_{2}+1\right)}{2}-R_{2} \\
& =9(8)+\frac{9(10)}{2}-53 & & =9(8)+\frac{8(9)}{2}-100 \\
& =72+45-53 & & =72+36-100 \\
& =64 & & =8
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
U_{\mathrm{obt}} & =8 \\
U_{\mathrm{obt}}^{\prime} & =64
\end{aligned}
$$

STEP 2: Evaluate $\boldsymbol{U}_{\text {obt }}$ or $\boldsymbol{U}_{\text {obt }}^{\prime}$. Tables C.1-C. 4 in Appendix D g ive the critical values of $U$ and $U^{\prime}$. For each cell, there are two entries. The upper entry is the highest value of $U_{\text {obt }}$ for various $n_{1}$ and $n_{2}$ combinations that will allow rejection of $H_{0}$. The lower entry is the lowest value of $U_{\text {obt }}^{\prime}$ that will allow rejection of $H_{0}$. The decision rule is as follows:

$$
\begin{aligned}
& \text { If } U_{\text {obt }} \leq U_{\text {crit }} \text {, reject } H_{0} \text { and affirm } H_{1} \text {. } \\
& \text { If } U_{\text {obt }} \geq U_{\text {crit }} \text {, reject } H_{0} \text { and affirm } H_{1} .
\end{aligned}
$$

Since both $U_{\text {obt }}$ and $U_{\text {obt }}^{\prime}$ measure the same degree of separation, we shall evaluate only $U_{\text {obt }}$. Each of the Tables C.1-C. 4 is for a different alpha level. For the data of the present experiment, Table C. 4 is appropriate. With $n_{1}=9$ and $n_{2}=8$, $U_{\text {crit }}=18$ a nd $U^{\prime}{ }_{\text {crit }}=54$. Evaluating $U_{\text {obt }}$, since $U_{\text {obt }}<18$, we reject $H_{0}$ and affirm $H_{1}$. A high-protein diet eaten during infancy appears to increase intellectual functioning relative to a low-protein diet.

## Tied Ranks

We've already shown how to rank-order tied scores when we discussed the Spearman rho cor relation coefficient (p. 141) a nd the Wi lcoxon signed ranks test (p. 500). To review, tied scores are handled by assigning them the average of the tied ranks. For example, consider the two sets of scores presen ted in Table 17.7. To rank-order the combined scores, we proceed as follows. First, the scores are arranged in ascending order. Thus,

| Raw Score | 11 | 12 | 12 | 14 | 15 | 16 | 17 | 17 | 17 | 18 | 20 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Rank | 1 | 2.5 | 2.5 | 4 | 5 | 6 | 8 | 8 | 8 | 10 | 11 |


| Group 1 | Group 2 |
| :---: | :---: |
| 12 | 11 |
| 14 | 12 |
| 15 | 16 |
| 17 | 17 |
| 18 | 17 |
|  | 20 |

Next, we assign each raw score its rank, beginning with 1 for the lowest score. This has been shown previously. Note that the two raw scores of 12 are tied at the ranks of 2 and 3. They are assigned the average of these tied ranks. Thus, they each get a rank of $2.5[(2+3) / 2=2.5]$. We have already used the ranks of 2 and 3 , so the next score gets a rank of 4 . The raw scores of 17 are tied at the ranks of 7,8 , and 9 . Therefore, they receive the rank of 8 , which is the average of 7,8 , and $9[(7+8+9) / 3=8]$. Note that the next rank is 10 (not 9 ) because we've already used ranks 7,8 , and 9 in computing the average. If the ranking is done correctly, unless there are tied ranks at the end, the last raw score should have a rank equal to $N$. In this case, $N=11$ and so does the rank of the last score. Once the ranks have been assigned, $U_{\text {obt }}$ and $U_{\text {obt }}^{\prime}$ are calculated in the usual way.

Let's do the following problem for practice.

## Practice Problem 17.5

Someone has told you that men are better in abstract reasoning than women. You are skeptical, so you decide to test this idea using a nondirectional hypothesis. You randomly se lect eight men a nd eight women from the freshman class at your university and administer an abstract reasoning test. A higher score reflects better abstract reasoning abilities. You obtain the following scores:

| Men | Women |
| :--- | ---: |
| $\ldots \ldots \ldots \ldots$ | $\ldots$ |
| 70 | 82 |
| 86 | 80 |
| 60 | 50 |
| 92 | 95 |
| 82 | 93 |
| 65 | 85 |
| 74 | 90 |
| 94 | 75 |

a. What is the alternative hypothesis? A ssume a n ondirectional hypothesis is appropriate.
b. What is the null hypothesis?
c. Using $\alpha=0.05_{2 \text { tail }}$, what do you conclude?

## SOLUTION

a. Nondirectional a lternative h ypothesis: Men a nd women differ in abs tract reasoning ability.
b. Null hypothesis: Men and women are equal in abstract reasoning ability.
c. Conclusion, using $\alpha=0.05_{2 \text { tail }}$ :

## STEP 1: Calculate $\boldsymbol{U}_{\text {obt }}$ for the data:

a. Combine the scores, $r$ ank-order them, a nd a ssign each a $r$ ank, using 1 for the lowest score:

| Original Score | 50 | 60 | 65 | 70 | 74 | 75 | 80 | 82 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Rank | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8.5 |
| Original Score | 82 | 85 | 86 | 90 | 92 | 93 | 94 | 95 |
| Rank | 8.5 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |

b. Sum the ranks for each group; that is, determine $R_{1}$ and $R_{2}$.

| $\begin{gathered} \text { Men } \\ 1 \end{gathered}$ |  | Women 2 |  |
| :---: | :---: | :---: | :---: |
| Original score | Rank | Original score | Rank |
| 60 | 2 | 50 | 1 |
| 65 | 3 | 75 | 6 |
| 70 | 4 | 80 | 7 |
| 74 | 5 | 82 | 8.5 |
| 82 | 8.5 | 85 | 10 |
| 86 | 11 | 90 | 12 |
| 92 | 13 | 93 | 14 |
| 94 | 15 | 95 | 16 |
| $R_{1}=61.5$ |  |  | 74.5 |
| $n_{1}=8$ |  |  | $=8$ |

c. Solve the equations for and $U_{\mathrm{obt}}$ and $U_{\mathrm{obt}}^{\prime}$ :

$$
\begin{aligned}
U_{\mathrm{obt}} & =n_{1} n_{2}+\frac{n_{1}\left(n_{1}+1\right)}{2}-R_{1} & U_{\mathrm{obt}} & =n_{1} n_{2}+\frac{n_{2}\left(n_{2}+1\right)}{2}-R_{2} \\
& =8(8)+\frac{8(9)}{2}-61.5 & & =8(8)+\frac{8(9)}{2}-74.5 \\
& =64+36-61.5=38.5 & & =64+36-74.5=25.5
\end{aligned}
$$

Thus,

$$
\begin{aligned}
U_{\mathrm{obt}} & =25.5 \\
U_{\mathrm{obt}}^{\prime} & =38.5
\end{aligned}
$$

STEP 2: Evaluate $\boldsymbol{U}_{\text {obt }}$. With $\alpha=0.05_{2 \text { tail }}$, Table C. 3 is appropriate. With $n_{1}=n_{2}=8, U_{\text {crit }}=13$ and $U_{\text {crit }}^{\prime}=51$. Since $U_{\text {obt }}>13$, we fail to reject $H_{0}$, and hence, we can't affirm $H_{1}$. These data do not support the hypothesis that men and women differ in abstract reasoning ability.

## Assumptions Underlying the Mann-Whitney U Test

Since we must be able to rank-order the data to compute $U_{\mathrm{obt}}$ or $U_{\mathrm{obt}}^{\prime}$, the MannWhitney $U$ test requires that the data be at least ordinal in scaling. It does not depend on the population scores being of a ny particular shape (e.g., normal distributions), as does the $t$ test for independent groups. Thus, the Mann-Whitney $U$ test can be used instead of the $t$ test for independent groups when there is a serious violation of the normality assumption or when the data are not of interval or ratio scaling. The Mann-Whitney $U$ test is a powerful test. However, since it uses only the ordinal property of the scores, it is n ot as powerful as $\mathrm{the} t$ test for independent g roups, which uses the interval property of the scores.

## THE KRUSKAL-WALLIS TEST

The Kruskal-Wallis test is a nonparametric test that is used with an independent groups design e mploying $k$ samples. It is used as a substitute for the parametric one-way A NOVA discussed in Chapter 15 , when the a ssumptions of $t$ hat test a re seriously violated. The Kruskal-Wallis test does not assume population normality or homogeneity of variance, as does parametric ANOVA, and requires only ordinal scaling of the dependent variable. It is use d when violations of population normality and/or ho mogeneity of variance a re extreme or when interval or $r$ atio scaling is re quired a nd n ot met $b y t h e d a t a$. To understand this test, let's begin with an experiment.

## Evaluating Two Weight Reduction Programs

A he alth psychologist, employed by a la rge corporation, is interested in evaluating two weight reduction programs she is c onsidering using with employees of her c orporation. She conducts an experiment in which 18 obese employees are randomly assigned to three conditions, with 6 subjects per condition. The subjects in condition 1 are placed on a diet that reduces their daily caloric intake by 500 calories. The subjects in condition 2 receive the same restricted diet, but in addition are required to walk 2 miles each day. Condition 3 is a control condition, in which the subjects are asked to maintain their usual eating and exercise habits. The data presented in Table 17.8 are the number of pounds lost by each subject over a 6 -month period. A p ositive number indicates weight loss and a ne gative number is weight gain. Assume the data show that there is a strong violation of population
table 17.8 Data from weight reduction experiment

| $\begin{gathered} 1 \\ \text { Diet } \end{gathered}$ |  | Diet + Exercise |  | $\stackrel{3}{\text { Control }}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Pounds |  | Pounds |  | Pounds |  |
| lost | Rank | lost | Rank | lost | Rank |
| 2 | 5 | 12 | 12 | 8 | 9 |
| 15 | 14 | 9 | 10 | 3 | 6 |
| 7 | 8 | 20 | 16 | -1 | 4 |
| 6 | 7 | 17 | 15 | -3 | 2 |
| 10 | 11 | 28 | 17 | -2 | 3 |
| 14 | 13 | 30 | 18 | -8 | 1 |
| $n_{1}=6$ | $R_{1}=58$ | $n_{2}=6$ | $R_{2}=88$ | $n_{3}=6$ | $R_{3}=25$ |

normality such that the psychologist decides to analyze the data with the Kruskal-Wallis test, rather than using parametric ANOVA.
a. What is the alternative hypothesis?
b. What is the null hypothesis?
c. What is the conclusion? Use $\alpha=0.05$.

## SOLUTION

a. Alternative hypothesis: As with parametric ANOVA, the alternative hypothesis states that at least one of the conditions af fects weight loss dif ferently than at least one of the other conditions. In the same manner as parametricANOVA, each sample is considered a random sample from its o wn population set of scores. If there are $k$ samples, there are $k$ populations. In this example, $k=3$. However, since this is a nonparametric test, Kruskal-W allis makes no prediction about the population means $\mu_{1}, \mu_{2}$, or $\mu_{3}$. It merely asserts that at least one of the population distrib utions is dif ferent from at least one of the other population distributions.
b. Null hypothesis: The samples are random samples from the same or identical population distributions. There is no prediction specifically regarding $\mu_{1}, \mu_{2}$, or $\mu_{3}$.
c. Conclusion, using $\alpha=0.05$ : As usual, in e valuating $H_{0}$, we follo w the tw o-step process: Compute the appropriate statistic and then evaluate the statistic using its sampling distribution.

STEP 1: Compute the appropriate statistic. T he st atistic we c ompute for the Kruskal-Wallis test is $H_{\text {obt }}$. The procedure is very much like computing $U_{\text {obt }}$ for the Mann-Whitney $U$ test. All of the scores are grouped together and rankordered, assigning the rank of 1 to the lowest score, 2 to the next to lowest, and $N$ to the highest. When this is done, the ranks for each condition or sample are summed. These procedures have been carried out for the data of the present example and entered in Table 17.8.

The sums of ranks for each group have been sy mbolized as $R_{1}, R_{2}$, and $R_{3}$, respectively. For these data, $R_{1}=58, R_{2}=88$, a nd $R_{3}=25$. The K ruskalWallis test assesses whether these sums of ranks differ so much that it is unreasonable to consider that they come from samples that were randomly selected from the sa me population. The larger the differences between the sums of the ranks of each sample are, the less likely it is that the samples are from the same population.

The equation for computing $H_{\text {obt }}$ is as follows:

$$
\begin{aligned}
H_{\mathrm{obt}} & =\left[\frac{12}{N(N+1)}\right]\left[\sum_{i=1}^{k} \frac{\left(R_{i}\right)^{2}}{n_{i}}\right]-3(N+1) \\
& =\left[\frac{12}{N(N+1)}\right]\left[\frac{R_{1}^{2}}{n_{1}}+\frac{R_{2}^{2}}{n_{2}}+\frac{R_{3}^{2}}{n_{3}}+\cdots+\frac{R_{k}^{2}}{n_{k}}\right]-3(N+1)
\end{aligned}
$$

where

$$
\sum_{i=1}^{k} \frac{\left(R_{i}\right)^{2}}{n_{i}}
$$

tells us to square the sum of ranks for each sample, divide each squared value by the number of scores in the sample, and sum over samples

$$
\begin{aligned}
k & =\text { number of samples or groups } \\
n_{i} & =\text { number of scores in the } i \text { th sample } \\
n_{1} & =\text { number of scores in sample } 1 \\
n_{2} & =\text { number of scores in sample } 2 \\
n_{3} & =\text { number of scores in sample } 3 \\
n_{k} & =\text { number of scores in sample } k \\
N & =\text { number of scores in all samples combined } \\
R_{i} & =\text { sum of the ranks for the } i \text { th sample } \\
R_{1} & =\text { sum of the ranks for sample } 1 \\
R_{2} & =\text { sum of the ranks for sample } 2 \\
R_{3} & =\text { sum of the ranks for sample } 3 \\
R_{k} & =\text { sum of the ranks for sample } k
\end{aligned}
$$

Substituting the appropriate values from the table into this equation, we obtain

$$
\begin{aligned}
H_{\mathrm{obt}} & =\left[\frac{12}{N(N+1)}\right]\left[\frac{\left(R_{1}\right)^{2}}{n_{1}}+\frac{\left(R_{2}\right)^{2}}{n_{2}}+\frac{\left(R_{3}\right)^{2}}{n_{3}}\right]-3(N+1) \\
& =\left[\frac{12}{18(18+1)}\right]\left[\frac{(58)^{2}}{6}+\frac{(88)^{2}}{6}+\frac{(25)^{2}}{6}\right]-3(18+1) \\
& =68.61-57 \\
& =11.61
\end{aligned}
$$

STEP 2: Evaluate the statistic. It can be shown that, if the number of scores in each sample is 5 or mor e, the sampling distribution of the statistic $H$ is approximately the same as chi-square with $\mathrm{df}=k-1$. In the present experiment, $\mathrm{df}=k-1=3-1=2$. From Table H , with $\alpha=0.05$, and $\mathrm{df}=2$,

$$
H_{\text {crit }}=5.991
$$

As with parametric ANOVA, the Kruskal-Wallis test is a nondirectional test.The decision rule states that

$$
\begin{aligned}
& \text { If } H_{\text {obt }} \geq H_{\text {crit }}, \text { reject } H_{0} \text {. } \\
& \text { If } H_{\text {obt }}<H_{\text {crit }}, \text { retain } H_{0} .
\end{aligned}
$$

Since $H_{\text {obt }}>5.991$, we reject $H_{0}$. It appears that the conditions are not equal with re gard to weight loss.

## Practice Problem 17.6

A business consultant is doing research in the area of management training. T here a re $t$ wo e ffective $m$ anagerial styles: $O$ ne is $p$ eople-oriented a nd a second is task-oriented. Well-defined, static jobs are better served by the people-oriented managers, and changing, newly created jobs are better served by the task-oriented $m$ anagers. The experiment being cond ucted investigates whether it is better to try to train managers to have both styles or whether it is better to match managers to jobs with no attempt to train in a second style. The managers for this experiment are 24 army officers, randomly selected from a large army base. The experiment involves three conditions. In condition 1 , the subjects receive training in both managerial styles. After training is completed, $t$ hese subjects a re $r$ andomly a ssigned to ne $w j$ obs $w$ ithout $m$ atching style and job. In condition 2 , the subjects receive no additional training but are assigned to j obs a ccording to a m atch between their single m anagerial style and the job requirements. Condition 3 is a con trol condition in which subjects receive no additional training and are assigned to new jobs, like those in condition 1 , $w$ ithout $m$ atching. A fter $t$ hey a re in $t$ heir ne $w j$ ob a ssignments for 6 months, a p erformance rating is o btained on ea ch officer. The data follow. The higher the score is, $t$ he better the performance. At the beginning of the experiment, there were eight subjects in each condition. However, one of the subjects in condition 2 d ropped out midway into the experiment and was not replaced. A ssume $t$ he $d$ ata do $n$ ot me et $t$ he a ssumptions $f$ or $t$ he pa rametric one-way ANOVA.

| Condition 1 Training |  | Condition 2 Matching |  | Condition 3 Control |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Score | Rank | Score | Rank | Score | Rank |
| 65 | 8 | 90 | 21 | 55 | 3 |
| 84 | 16 | 83 | 15 | 82 | 14 |
| 87 | 19.5 | 76 | 12 | 71 | 10 |
| 53 | 2 | 87 | 19.5 | 60 | 6 |
| 70 | 9 | 92 | 22 | 52 | 1 |
| 85 | 17 | 86 | 18 | 81 | 13 |
| 56 | 4 | 93 | 23 | 73 | 11 |
| 63 | 7 |  |  | 57 | 5 |
| $n_{1}=8$ | $R_{1}=\overline{82.5}$ | $n_{2}=7$ | $R_{2}=\overline{130.5}$ | $n_{3}=8$ | $R_{3}=\overline{63}$ |

a. What is the alternative hypothesis?
b. What is the null hypothesis?
c. What is the conclusion? Use $\alpha=0.05$.

## SOLUTION

a. Alternative hypothesis: At least one of the conditions has a different effect on job performance than at least one of the other conditions. Therefore, at least one of the population distributions is different from one of the others.
b. Null hypothesis: T he cond itions ha ve t he sa me e fect on j ob performance. Therefore, the samples are random samples from the same or identical population distributions.
c. Conclusion, using $\alpha=0.05$ :

## STEP 1: Compute the appropriate statistic.

$$
\begin{aligned}
H_{\mathrm{obt}} & =\left[\frac{12}{N(N+1)}\right]\left[\frac{\left(R_{1}\right)^{2}}{n_{1}}+\frac{\left(R_{2}\right)^{2}}{n_{2}}+\frac{\left(R_{3}\right)^{2}}{n_{3}}\right]-3(N+1) \\
& =\left[\frac{12}{23(23+1)}\right]\left[\frac{(82.5)^{2}}{8}+\frac{(130.5)^{2}}{7}+\frac{(63)^{2}}{8}\right]-3(23+1) \\
& =82.17-72 \\
& =10.17
\end{aligned}
$$

STEP 2: Evaluate the statistic. In the present experiment, $\mathrm{df}=k-1=$ $3-1=2$. From Table H, with $\alpha=0.05$, and $\mathrm{df}=2$,

$$
H_{\text {crit }}=5.991
$$

Since $H_{\text {obt }}>5.991$, we reject $H_{0}$. It appears that the conditions are not equal with regard to their effect on job performance.

## Assumptions Underlying the Kruskal-Wallis Test

To use the Kruskal-Wallis test, the data must be of at least ordinal scaling. In addition, there must be at least five scores in each sample to use the probabilities given in the table of chi-square.*

[^48]
## WHAT IS THE TRUTH?



A front-page article in The Wall Street Journal discussed the possible misuses of social science research in connection with federally mandated changes in the U.S. welfare system. Excerpts from the article are reproduced here.

## THINK TANKS BATTLE TO JUDGE THE IMPACT OF WELFARE OVERHAUL

Now that welfare overhaul is under way across the country, so is something else: an ideologically charged battle of the experts to label the various innovations as successes or failures.

Each side-liberal and conservative-fears the other will use early, and perhaps not totally reliable, results of surveys and studies of the impact of welfare reform to push a political agenda. And conservatives, along with other supporters of the law Congress recently passed to allow states to tinker with welfare, worry that they have the most to lose, because of the overwhelming presence of liberal scholars in the field of social science ....

Critics of the overhaul process make no bones that they intend to use research into the bill's effects to turn yesterday's angry taxpayers into tomorrow's friends of the downtrodden ....

The climate of ideological suspicions is exemplified by the California-based Kaiser Family Foundation's handling of a survey it financed of New Jersey welfare recipients. The study focused on the effect of New Jersey's controversial

## Statistics and Applied Social ResearchUseful or "Abuseful"?

rule barring additional benefits for women who have children while on welfare. Last spring, shortly before Kaiser was to announce the results, it canceled a planned news conference. Some critics suspect that Kaiser didn't like some of the answers it got, such as one showing that most recipients considered the "family cap" fair. The Rutgers University researcher who conducted the survey says he has been forbidden to discuss it. Kaiser says the suspicions are unfounded and that methodological errors destroyed the survey's usefulness ....

The hopes and fears of both sides are embodied in one of the biggest private social-policy research projects ever undertaken: a five-year, \$30-million study of welfare overhaul and other elements of the "New Federalism." The kick-off of the study will be announced today by the Washington-based Urban Institute.

The institute, founded three decades ago to examine the woes of the nation's cities, has assembled a politically balanced project staff and promises to post "nonpartisan, reliable data" on the Internet for all sides to examine. But memories are still fresh of the institute's prediction last year that the law would toss one million children into poverty, so even some of its top officials fret about how the research will be received in a political culture increasingly riven between opposing ideological camps.
"Everyone wants to attach a political label to everything that comes out," says Isabel Sawhill, a former Clinton administration

budget official .... For people on both sides, "there's no such thing as unbiased information or apolitical studies anymore," she says.

## Playing the Numbers

"Hopefully, the data we produce will be unassailable," says Anna Kondratas, a one-time Reagan administration aide who is the project's co-director. Yet she recalls a decade-old admonition from a Democratic congressman who didn't like her testimony about the food-stamp program: "Everybody's entitled to his own statistics ...."

In recent years, evaluations of high-profile social programs have often found them less beneficial than many political liberals had hoped. "We are in desperate need to learn about what works," says Doug Nelson, president of the Annie E. Casey Foundation, the philanthropic organization that is the largest single backer of the Urban Institute study.

Assessing the crazy quilt of state welfare innovations poses an immense challenge for researchers
of any ideological stripe. With so many policies changing at once, all involving potential effects on employment, childbearing and family life, figuring out which questions to ask may be as difficult as finding the answers. And the swirling cross-currents over race, economics and values-the possible conflict between attempts to reduce illegitimate births and attempts to prevent increases in abortion, for example-make determinations of "success" or "failure" highly subjective.

That is precisely why backers of the new law, which aims to reduce welfare spending by some $\$ 54$ billion over seven years, are bracing for a flood of critical studies.
"Social scientists want to help children and families, and they believe the way to do that is to give them more benefits," says Ron Haskins, a former developmental psychologist at the University of North Carolina who now heads the staff of a House welfare subcommittee. As a result, adds the Heritage Foundation's Robert Rector, most studies of the law's effect "will emphasize a bogus measure of material poverty" while shortchanging shifts in attitudes, values and behavior that may be hard to gauge and slower to manifest themselves ....

That contentious atmosphere has embroiled the Kaiser Foundation's \$90,000 survey of

New Jersey welfare recipients. Ted Goertzel, a Rutgers University sociologist not involved in the survey, notes rumors that ideology played a role in Kaiser's decision not to release the data. "The recipients said they agreed with the family cap," he says. "If you do research and don't like the results, are you obligated to release it? There's an ethical question here."

I've included this article at the end of this chapter because chi-square is one of the major inference tests used in social science research. I think you will agree that this article poses some very interesting and important questions regarding applied research in this area. For example, in applied social science research, is it really true that "there is no such thing as unbiased information"? Was the Democratic congressman correct in stating, "Everybody's entitled to his own statistics"? Is it really true that "most studies of the law's effect 'will emphasize a bogus measure of material poverty, while shortchanging shifts in attitudes, values and behavior that may be hard to gauge and slower to manifest themselves'"? If so, how will we ever find out whether this and other social programs really work? Or doesn't it matter whether we ever find out what social programs really work? Would it be better just to "pontificate" out of one's own private
social values (Method of Authority), or perhaps just to cite individual case examples? Or do you agree with Doug Nelson that, "We are in desperate need to learn about what works"? If so, how can appropriate data be collected?

What do you think about the notion that social scientists with strong political views will go out and do research, deliberately biasing their research instruments so that the data will confirm their own political views? If it is true, does that mean we should stop funding such research? How about the ordinary layperson: How will he or she be able to intelligently interpret the results of such studies? Does this mean students should stop studying statistics, or quite the contrary, that students need to learn even more about statistics so that they will not be taken in by poor, pseudo, or biased research? Finally, what do you think about the situation where an organization conducts socially relevant research and the findings turn out to be against the interest of the organization? Does the organization have an obligation to inform the public? Is it unethical if it doesn't?

Source: From "Think Tanks Battle to Judge the Impact of Welfare Overhaul," by John Harwood. Reprinted by permission of The Wall Street Journal via Copyright Clearance Center, © 1997 Dow Jones \& Company, Inc. All Rights Reserved Worldwide.

## SUMMARY

In t his c hapter, I d iscussed n onparametric s tatistics. Nonparametric i nference $t$ ests dep end cons iderably less on population characteristics than do parametric tests. The $z, t$, and $F$ tests are examples of parametric tests; the sign test and the Mann-Whitney $U$ test are examples of nonparametric tests. Parametric tests are used when possible because they are more powerful and versatile. However, when the a ssumptions of the parametric tests a re violated, nonparametric tests a re often used.

One of t he mos $\mathrm{t} f$ requently use d inference t ests for a nalyzing nominal $d$ ata is $t$ he $n$ onparametric test called c hi-square ( $\chi^{2}$ ). It is appropr iate f or a nalyzing frequency data dealing with one or $t$ wo variables. Chi-square essen tially mea sures $t$ he $d$ iscrepancy between the observed frequency $\left(f_{o}\right)$ and the expected frequency $\left(f_{e}\right)$ for each of the cells in a one-way or twoway t able. Ine quation f orm, $\chi_{\mathrm{obt}}^{2}=\Sigma\left(f_{o}-f_{e}\right)^{2} / f_{\mathrm{e}}$, where the summation is o ver all the e ells. In singlevariable situations, the data are presented in a one-way table a nd $t$ he $v$ arious expected $f$ requency $v$ alues a re determined on an a priori basis. In two-variable situations, the frequency data are presented in a contingency table, a nd we a re in terested in determining whether there is a re lationship between the two variables. The null hypothesis states that there is no relationship-that the two variables are independent. The alternative hypothesis states that the two variables are related. The expected frequency for each cell is the frequency that would be expected if sampling is random from a population where the proportions for each category of one variable are equal for each category of the other variable. Since $t$ he p opulation prop ortions a re $u$ nknown, $t$ heir expected values under the null hypothesis are estimated from $t$ he sa mple $d$ ata, a nd $t$ he e xpected $f$ requencies are calculated using these estimates.

The obtained value of $\chi^{2}$ is evaluated by comparing it with $\chi_{\text {crit }}^{2} \cdot$ If $\chi_{\text {obt }}^{2} \geq \chi_{\text {crit }}^{2}$, we reject the null hypothesis. The critical value of $\chi^{2}$ is determined by the sampling distribution of $\chi^{2}$ a nd the a lpha 1 evel. T he sa mpling distribution of $\chi^{2}$ is a family of curves that varies with the degrees of freedom. In the one-variable experiment, $\mathrm{df}=k-1$. In the two-variable situation, $\mathrm{df}=(r-1)$ ( $c-1$ ). A basic assumption of $\chi^{2}$ is that each subject can have only one entry in the table. A second assumption is that the expected frequency in each cell must be of a c ertain minimum size. The use of $\chi^{2}$ is not 1 imited to nominal data, but regardless of the scaling, the data
must finally be divided into mutually exclusive categories and the cell entries must be frequencies.

The Wilcoxon matched-pairs signed ranks test is a nonparametric test that is used with a correlated groups design. The statistic ca lculated is $T_{\mathrm{ob}}$. Determination of $T_{\text {obt }}$ involves four steps: (1) finding the difference between ea ch pa ir of scores, (2)ranking the abso lute values of the difference scores, (3) a ssigning the appropriate sign to the ranks, and (4) separately summing the positive and negative ranks. $T_{\mathrm{obt}}$ is the lower sum. It is evaluated by comparison with $T_{\text {crit }}$. If $T_{\mathrm{obt}} \leq$ $T_{\text {crit }}$, we re ject $H_{0}$. The Wi lcoxon s igned $r$ anks $t$ est requires that (1) the within-pair scores $b$ e at $l$ east of ordinal scaling and (2) the difference scores also be at least of ordinal scaling. This test serves as an alternative to the $t$ test for correlated groups when the assumptions of the $t$ test have not been met. It is more powerful than the sign test, but not as powerful as the $t$ test.

The Mann-Whitney $U$ test analyzes the degree of separation between the samples in a t wo-group, independent g roups e xperiment. T he l ess t he sepa ration, the more reasonable chance is as the underlying explanation. For a ny a nalysis, two statistics a re co mputed. Both indicate the same degree of separation. The lower value is arbitrarily called $U_{\text {obt }}$, and the higher value is called $U^{\prime}{ }_{\text {obt }}$. Tables C.1-C. 4 give the critical values of $U$ and $U^{\prime}$. If $U_{\text {obt }} \leq U_{\text {crit }}$, reject $H_{0}$ and affirm $H_{1}$. If $U_{\text {obt }}^{\prime}$ $\geq U_{\text {crit }}^{\prime}$, reject $H_{0}$ and affirm $H_{1}$. Otherwise, we retain $H_{0}$. The Mann-Whitney $U$ test is appropr iate for an independent groups design where the data are at least ordinal in scaling. It is a p owerful test, often use in in place of Student's $t$ test when the data do not meet the assumptions of the $t$ test.

The Kruskal-Wallis test is used as a substitute for one-way parametric ANOVA. It uses the independent g roups design with $k$ samples. The null hypothesis a sserts th at the $k$ sa mples a re r andom sa mples from the s ame or i dentical population di stributions. No at tempt is $m$ ade to $s$ pecifically $t$ est $f$ or $p$ opulation mean differences, as is the case with parametric A NOVA. T he s tatistic co mputed is $H_{\text {obt }}$. If t he number of scores in each sample is five or more, the sampling distribution of $H_{\text {obt }}$ is close enough to that of chi-square to use the latter in determining $H_{\text {crit }}$. If $H_{\text {obt }}$ $\geq H_{\text {crit }}, H_{0}$ is re jected. To compute $H_{\text {obt }}$, the scores of the $k$ samples are combined and rank-ordered, assigning 1 to the lowest score. The ranks are then summed for ea ch sa mple. K ruskal-Wallis $t$ ests whether it is
reasonable to cons ider the s ummed r anks for ea ch sample to be due to random sampling from a single population set of scores. The $g$ reater $t$ he $d$ ifferences between the sum of ranks for each sample are, the less tenable is $t$ he null hypothesis. This test a ssumes that
the dependent variable is measured on a scale that is of at least ordinal scaling. There must also be five or more scores in ea ch sa mple to v alidly use t he c hi-square sampling distribution.

## IMPORTANT NEW TERMS

Chi-square ( $\chi^{2}$ ) (p. 484)
Contingency table (p. 489)
Degree of separation (p. 502)
Expected frequency $\left(f_{e}\right)$ (p. 485)

Kruskal-Wallis test (H) (p. 507)
Mann-Whitney $U$ test $\left(U\right.$ or $\left.U^{\prime}\right)$ (p. 501)

Marginals (p. 491)

Observed frequency $\left(f_{o}\right)$ (p. 485)
Wilcoxon matched-pairs signed ranks test ( $T$ ) (p. 498)

## ■ QUESTIONSAND PROBLEMS

1. Briefly identify or de fine the terms in the Important New Terms section.
2. What is $t$ he underlying rationale for the determination of $f_{e}$ in the two-variable experiment?
3. What are the assumptions underlying chi-square?
4. In situations in volving more than 1 degree of freedom, the $\chi^{2}$ test is nondirectional. Is this statement correct? Explain.
5. What distinguishes pa rametric from nonparametric tests? Explain, giving some examples.
6. Are pa rametric $t$ ests pre ferable to $n$ onparametric tests? Explain.
7. When might we use a $n$ onparametric test? Give an example.
8. Under what conditions might one use the Wilcoxon signed ranks test?
9. Compare $t$ he Wi lcoxon s igned $r$ anks $t$ est $w$ ith $t$ he sign test a nd he $t$ test for correlated groups with regard to power. Explain any differences.
10. What a re the a ssumptions of $t$ he Wi lcoxon signed ranks test?
11. In a t wo-condition, independent groups experiment, how is $t$ he de gree of sepa ration b etween sa mples affected by the size of real effect?
12. Under $w$ hat cond itions $m$ ight one use $t$ he Ma nnWhitney $U$ test?
13. W hat a re $t$ he a ssumptions $u$ nderlying $t$ he Ma nnWhitney $U$ test?
14. Compare t he p ower of S tudent's $t$ t est a nd t he Mann-Whitney $U$ test.
15. What are the a ssumptions underlying the KruskalWallis test?
16. A researcher is i nterested in whether there really is a prevailing view that overweight people are more
jolly. A random sample of 80 individuals was asked the ques tion, "Do y ou b elieve fat people a re more jolly?" The following results were obtained:

| Yes | No |
| :--- | :--- |
| 44 | 36 |
|  | 80 |

Using $\alpha=0.05$, what is your conclusion? social
17. A study was conducted to determine whether big-city and small-town dwellers differed in their helpfulness to strangers. In this study, the investigators rang the doorbells of s trangers 1 iving in N ew York C ity or small towns in the vicinity. They explained they had misplaced the address of a friend living in the neighborhood and asked to use $t$ he phone. The following data show the number of individuals who admitted or did not admit the strangers (the investigators) into their homes:

|  | Helpfulness to Strangers |  |
| :--- | :---: | :---: |
|  | Admitted <br> strangers into <br> their home | Did not admit <br> strangers into <br> their home |
| Big-city <br> dweller <br> Small-town <br> dweller | 60 | 90 |
|  | 70 | 30 |
|  | 130 | 120 |

Do big-city dwellers differ in their helpfulness to strangers? U se $\alpha=0.05$ in making your decision. social
18. Because of r ampant i nflation, t he g overnment is considering i mposing w age a nd pr ice con trols. A $g$ overnment ec onomist, in terested in d etermining $w$ hether $t$ here is a re lationship $b$ etween occupation a nd a ttitude $t$ oward w age a nd $p$ rice controls, co llects $t$ he $f$ ollowing $d$ ata. $T$ he $d$ ata show for each occupation the number of individuals in the sa mple who were for or against the controls:


Do $t$ hese o ccupations d iffer re garding at titudes toward wage and price controls? Use $\alpha=0.01$ in making your decision. I/O
19. The hea $d$ of $t$ he $m$ arketing division of a 1 eading soap manufacturer must decide among four differently s tyled $w$ rappings $f$ or $t$ he soap. To pro vide a d atabase for the de cision, he ha s the soap placed in $t$ he $d$ ifferent $w$ rapping styles a nd distributed $t o$ fives upermarkets. A $t$ he end o $f$ 2 w eeks, he finds $t$ hat $t$ he following a mounts of soap were sold:

| Wrapping $A$ | Wrapping $B$ | Wrapping $C$ | Wrapping $D$ |
| :---: | :---: | :---: | :---: |
| 90 | 98 | 130 | 82 |

400
Is $t$ here $s$ ufficient ba sis f or m aking a de cision among wrappings? If so, which should he pick? Use $\alpha=0.05$. I/O
20. A resea rcher believes that individuals in different occupations will show differences in their ab ility to be hypnotized. Six lawyers, six physicians, and six professional dancers are randomly selected for the e xperiment. At est of $h$ ypnotic s usceptibility is administered to ea ch. The results a re shown in the next column. The higher the score, the $h$ igher the $h$ ypnotizability. A ssume $t$ he $d$ ata $v$ iolate $t$ he assumptions required for use of the $F$ test, but are at least of ordinal scaling. Using $\alpha=0.05$, what is your conclusion?

| Condition 1 <br> Lawyers | Condition 2 <br> Physicians | Condition 3 <br> Dancers |
| :---: | :---: | :---: |
| $\ldots \ldots \ldots$ |  |  |
| 26 | 14 | 30 |
| 17 | 19 | 21 |
| 27 | 28 | 35 |
| 32 | 22 | 29 |
| 20 | 25 | 37 |
| 25 | 15 | 34 |

cognitive, social
21. A pro fessor of re ligious s tudies is i nterested in finding out whether there is a re lationship between church at tendance a nd e ducational level. Dat a a re collected on a sample of individuals who completed only high school and on another sample who received a college education. The following are the resultant frequency data:

|  | Church Attendance |  |
| :--- | :---: | :---: |
|  | Attend regularly <br> Do not attend <br> regularly |  |
| High school <br> College | 88 | 112 |
|  | 56 | 104 |
|  | 144 |  |

What is your conclusion? Use $\alpha=0.05$. social
22. A coffee manufacturer advertises that, in a re cent experiment in which $t$ heir br and (brand A) w as compared $w$ ith $t$ he ot her four leading br ands of coffee, more $p$ eople pre ferred $t$ heir br and to $t$ he other four. The data from the experiment are given here:

Coffee Brand

| $A$ | $B$ | $C$ | $D$ | $E$ |
| :---: | :---: | :---: | :---: | :---: |
| 60 | 45 | 52 | 43 | 50 |

Do $y$ ou b elieve $t$ he $a \mathrm{~d}$ to b em isleading? U se $\alpha=0.05$ in making your decision. I/O
23. A study was conducted to determine whether there is a relationship between the amount of contact white housewives have with blacks and changes in their attitudes to ward blacks. In this study, the changes in attitude toward blacks were measured for white housewives who had moved into segregated public housing pro jects where there was ittle daily contact with blacks and for white housewives who had
moved into fully integrated public housing projects where there was a great deal of contact. The following frequency data were recorded:

|  | Attitude Toward Blacks |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Less favorable | No change | More favorable |  |
| Segregated housing proj. |  | 92 | 424 | 75 |
| Integrated housing proj. |  | 76 | 472 | 125 |
|  | 16 | 88 | 96 | 200 |

Based on these data, what is your conclusion? Use $\alpha=0.05$. social
24. A psychologist investigates the hypothesis that birth order affects assertiveness. Her subjects are 20 young adults b etween 20 a nd 25 y ears of age. There a re seven first-born, s ix se cond-born, a nd se ven $t$ hirdborn subjects. Each subject is given an assertiveness test, with the following results. High scores indicate greater assertiveness. Assume the data are so far from normally distributed that the $F$ test can't be used, but the data are at least of ordinal scaling. Use $\alpha=0.01$ to evaluate the data. What is your conclusion?

| Condition 1 First-Born | Condition 2 <br> Second-Born | Condition 3 <br> Third-Born |
| :---: | :---: | :---: |
| 18 | 18 | 7 |
|  | 82 | 119 |
|  | 4 |  |
| 21 | 24 | 30 |
| 28 | 22 | 18 |
| 32 | 1 | 5 |
| 10 |  | 14 |

social
25. An investigator believes that students who rank high in certain kinds of motives will behave differently in ga mbling situations. To investigate this hypothesis, the investigator randomly samples 50 students high in af filiation motivation, 50 students high in achievement mot ivation, a nd 50 s tudents h igh in power mot ivation. The students a re a sked to p lay the game of roulette, and a record is kept of the bets they make. The data are then grouped into the number of subjects with each kind of motivation who make $b$ ets i nvolving low, me dium, a nd $h$ igh $r$ isk.

Low risk means they make bets involving low odds (even money or less), medium risk involves bets of medium odds (from 2 to 1 to 5 to 1 ), and high risk involves playing long shots (from 17 to 1 to 35 to 1 ). The following data are obtained:

|  | Kind of Motive |  |  |
| :--- | :---: | :---: | :---: |
|  | Affiliation | Achievement | Power |
|  |  |  |  |
|  | 26 | 13 | 9 |
| 48 |  |  |  |
| Low risk | 26 | 14 | 57 |
| Med. Risk | 16 | 27 | 27 |
| High risk | 8 | 10 | 55 |
|  | 50 | 50 | 50 | 150

Using $\alpha=0.05$, is there a relationship between these different kinds of mot ives a nd g ambling b ehavior? How do the groups differ? social
26. A major o il co mpany cond ucts a $n$ e xperiment to assess w hether a film designed to tell the truth about, a nd a lso pro mote more f avorable at titudes toward, la rge o il co mpanies rea lly do es res ult in more f avorable at titudes. T welve i ndividuals a re run in a replicated measures design. In the "Before" condition, each subject fills out a questionnaire designed to a ssess at titudes to ward la rge oil co mpanies. In the "After" condition, the subjects see the film, a fter which $t$ hey fill ou $t$ he ques tionnaire. The following scores w ere o btained. High scores indicate more f avorable at titudes to ward la rge o il companies.

| Before | After |
| :--- | :---: |
| $\cdots \cdots \ldots \ldots \ldots \ldots$ |  |
| 43 | 45 |
| 48 | 60 |
| 25 | 22 |
| 24 | 33 |
| 15 | 7 |
| 18 | 22 |
| 35 | 41 |
| 28 | 21 |
| 41 | 55 |
| 28 | 33 |
| 34 | 44 |
| 12 | 23 |

Analyze the data us ing the Wi lcoxon signed ranks test with $\alpha=0.05_{1 \text { tail }}$. What do you conclude? I/O
27. In C hapter 14 , P roblem 18, p .388 , a n e xperiment $w$ as cond ucted to $e$ valuate $t$ he effect of decreases inf rontalis $m$ uscle $t$ ension on hea daches. The number of headaches experienced in a 2-week baseline period was recorded in nine subjects $w$ ho ha $d b$ een $e$ xperiencing $t$ ension headaches. $T$ hen $t$ he s ubjects w ere $t$ rained to lower frontalis muscle tension using biofeedback, after which the number of hea daches in a nother 2 -week period was ag ain re corded. The data a re again shown here.

| Subject No. | No. of Headaches |  |
| :---: | :---: | :---: |
|  | Baseline | After training |
| 1 | 17 | 3 |
| 2 | 13 | 7 |
| 3 |  | 62 |
| 4 |  | 53 |
| 5 |  | 56 |
| 6 | 10 | 2 |
| 7 |  | 81 |
| 8 |  | 60 |
| 9 |  | 72 |

In that problem, the sampling distribution of $\overline{\mathrm{D}}$ was assumed to be normally distributed, and the analysis was conducted using the $t$ test. For this problem a ssume the $t$ test cannot be used because of an extreme violation of its normality a ssumption. Use the Wilcoxon signed ranks test to a nalyze the data. What do y ou conclude, using $\alpha=0.05_{2 \text { tail }}$ ? clinical, health
28. In Chapter 14, Problem 14, p. 387, an experiment was cond ucted to det ermine if a ne xperimental birth con trol pill has the side effect of changing blood press ure. Ten women were $r$ andomly sa mpled from the city in which you live. Five of them were $g$ iven a p lacebo for a mon th a nd then their diastolic b lood press ure w as mea sured. T hen they were s witched to $t$ he birth con trol pill for a month a nd ag ain b lood press ure w as mea sured. The other five women were given the birth control pill first for a mon th, followed by the placebo for
a mon th. The blood press ure rea dings a re ag ain shown here.

| Subject No. | Diastolic Blood Pressure |  |
| :---: | :---: | :---: |
|  | Birth control pill | Placebo |
| 1 | 108 | 102 |
| 2 | 76 | 68 |
| 3 | 69 | 66 |
| 4 | 78 | 71 |
| 5 | 74 | 76 |
| 6 | 85 | 80 |
| 7 | 79 | 82 |
| 8 | 78 | 79 |
| 9 | 80 | 78 |
| 10 | 81 | 85 |

In that problem, the sampling distribution of $\overline{\mathrm{D}}$ was assumed to be normally distributed, and the a nalysis was conducted using the $t$ test for correlated groups. For this problem, a ssume the data a re so far from normally distributed as to invalidate use of the $t$ test for correlated groups. Analyze the data with the Wilcoxon signed ranks test. What do you conclude, using $\alpha=0.01_{2 \text { tail }}$ ? biological, health, social
29. A so cial sci entist b elieves $t$ hat $u$ niversity $t$ heology professors a re more conser vative in political orientation th an th eir colleagues in p sychology. Ar andom sa mple of 8 pro fessors $f$ rom $t$ he $t$ heology depa rtment a nd 12 pro fessors $f$ rom the psychology d epartment at a lo cal university a re given a 50 -point ques tionnaire that mea sures the degree of $p$ olitical conser vatism. $T$ he $f$ ollowing scores were obtained. Higher scores indicate greater conservatism.
a. What is the alternative hypothesis? In this case, assume a nond irectional $h$ ypothesis is appro priate b ecause $t$ here a re i nsufficient theoretical and empi rical ba ses to w arrant ad irectional hypothesis.
b. What is the null hypothesis?
c. What is your conclusion? Use the Mann-Whitney $U$ test and $\alpha=0.05_{2 \text { tail }}$.

| Theology <br> Professors <br> $\cdots \ldots \ldots \ldots \ldots \ldots \ldots$ | Psychology <br> Professors |
| :---: | :---: |
| 36 | 13 |
| 42 | 25 |
| 22 | 40 |
| 48 | 29 |
| 31 | 10 |
| 35 | 26 |
| 47 | 43 |
| 38 | 17 |
|  | 12 |
|  | 32 |
|  | 27 |
|  | 32 |

$$
\begin{aligned}
& \text { social } \\
& \text { 30. An ornithologist thinks that injections of follicle- } \\
& \text { stimulating hor mone ( FSH) i ncrease t he s ing- } \\
& \text { ing } \mathrm{r} \text { ate of } \mathrm{h} \text { is capt ive } \mathrm{m} \text { ale cot ingas ( birds). To } \\
& \text { test this hypothesis, he randomly selects } 20 \text { sing- } \\
& \text { ing cotingas and divides them into two } \mathrm{g} \text { roups of } \\
& 10 \text { birds each. The first } g \text { roup re ceives injections } \\
& \text { of FS H a nd the se cond } g \text { ets i njections of sa line } \\
& \text { solution, as a con trol for the trauma of re ceiving } \\
& \text { an injection. He then re cords the singing rate (in } \\
& \text { songs per hou r) for both groups. The res ults a re } \\
& \text { given in the following table. Note that two of the } \\
& \text { FSH birds escap ed during i njection a nd were not } \\
& \text { replaced. }
\end{aligned}
$$

| Saline $\ldots \ldots \ldots \ldots$. |  |
| :--- | ---: |
| $\ldots \ldots \ldots \ldots$ |  |
| 17 | 10 |
| 31 | 29 |
| 14 | 37 |
| 12 | 41 |
| 29 | 16 |
| 23 | 45 |
|  | 4 |
| 19 | 57 |
| 28 |  |
| 3 |  |

a. What is $t$ he alternative hypothesis? Use a d irectional alternative hypothesis.
b. What is the null hypothesis?
c. Using the Mann-Whitney $U$ test and $\alpha=0.05_{1 \text { tail }}$, what is your conclusion? biological
31. A psychologist is interested in determining whether left-handed and right-handed people differ in spatial ab ility. S he r andomly se lects 101 eft-handers and 10 right-handers from the students en rolled in the university where she works a nd administers a test that measures spatial ability. The following are the scores (a higher score indicates better spatial ability). Note that one of the subjects did not show up for the testing.

| Left-Handers | Right-Handers |
| :---: | :---: |
| 87 | 47 |
| 94 | 68 |
| 56 | 92 |
| 74 | 73 |
| 98 | 71 |
| 83 | 82 |
| 92 | 55 |
| 84 | 61 |
| 76 | 75 |
|  | 85 |

a. What is the alternative hypothesis? Use a n ondirectional hypothesis.
b. What is the null hypothesis?
c. Using the Mann-Whitney $U$ test and $\alpha=0.05_{2 \text { tail }}$, what do you conclude? cognitive
32. A un iversity c ounselor be lieves t hat h ypnosis is more effective $t$ han $t$ he standard $t$ reatment $g$ iven to students who have high test anxiety. To test his belief, he r andomly divides 22 students with high test a nxiety i nto $t$ wo $g$ roups. O ne of $t$ he $g$ roups receives $t$ he $h$ ypnosis $t$ reatment, a nd $t$ he ot her group receives the standard treatment. W hen the treatments a re concluded, each student is g iven a test anxiety questionnaire. High scores on the questionnaire indicate high anxiety. Following are the results:

| Hypnosis Treatment | Standard Treatment |
| :---: | :---: |
| 20 | 42 |
| 21 | 35 |
| 33 | 30 |
| 40 | 53 |
| 24 | 57 |
| 43 | 26 |
| 48 | 37 |
| 31 | 30 |
| 22 | 51 |
| 44 | 62 |
| 30 | 59 |

a. What is the alternative hypothesis? Assume there is sufficient basis for a directional hypothesis.
b. What is the null hypothesis?
c. Using the Mann-Whitney $U$ test and $\alpha=0.05_{1 \text { tail }}$, what do you conclude? clinical, health
33. In Chapter 15, Problem 21, p. 437, an experiment was cond ucted to det ermine whether s leep 1 oss affects the ability to maintain sustained attention. Fifteen i ndividuals w ere r andomly d ivided into the following three g roups of five s ubjects e ach: group 1 , which $g$ ot $t$ he $n$ ormal a mount of s leep ( $7-8$ hou rs); g roup 2 , which w as s leep-deprived for 24 hou rs; a nd $g$ roup 3 , w hich $w$ as s leepdeprived for 48 hours. All three groups were tested on the sa me aud itory vigilance task. Ha lf-second tones spaced at i rregular intervals were presented over a 1 -hour d uration. O ccasionally, one of t he tones was slightly shorter than the rest. The subject's $t$ ask $w$ as to det ect $t$ he $s$ horter tones. $T$ he following p ercentages of cor rect det ections were observed:

| Normal <br> Sleep | Sleep-Deprived <br> for 24 Hours | Sleep-Deprived <br> for 48 Hours |
| :---: | :---: | :---: |
| $\ldots \ldots \ldots$ |  |  |
| 85 | 60 | 60 |
| 83 | 58 | 48 |
| 76 | 76 | 38 |
| 64 | 52 | 47 |
| 75 | 63 | 50 |

In th at p roblem, the n ormality a ssumption w as assumed met, a nd $t$ he a nalysis $w$ as cond ucted
using t he $F \mathrm{t}$ est. F or t his pro blem, a ssume t he $F$ test cannot be used because of an extreme violation of t he n ormality a ssumption. A nalyze t he data with the Kruskal-Wallis test, using $\alpha=0.05$. cognitive
34. A social psychologist is interested in whether there is a re lationship b etween cohab itation b efore marriage and divorce. A random sample of 150 couples that were married in the past 10 years in a midwestern city were asked if they lived together before getting $m$ arried a nd if their $m$ arriage $w$ as still intact. The following res ults were obtained.

|  | Divorced | Still married |
| :--- | :---: | :---: |
|  |  |  |
| Cohabited before <br> marriage | 58 | 42 |
| Did not cohabit <br> before marriage | 100 |  |
|  | 18 | 32 |
| 76 |  | 74 |

Using $\alpha=0.05$, what do you conclude? social
35. A political scientist conducts a s tudy to det ermine whether $t$ here is a re lationship $b$ etween $g$ ender and at titude re garding g overnment involvement in citizen affairs. A questionnaire is sent to a random sample of 1000 adult men a nd women, a sking the question, "As a g eneral policy, do $y$ ou pre fer the government to have a large, moderate, or small involvement in citizen affairs?" The following results were obtained.

|  | Attitude Regarding Federal Government Involvement |  |  |
| :---: | :---: | :---: | :---: |
|  | Large | Moderate | Small |
| Women | 240 | 30 | 230 |
| Men | 180 | 20 | 300 |
|  | 420 | 50 | 530 |

Using $\alpha=0.05$, what do you conclude? I/O, social
36. Medical experts have long noticed that blacks do not receive the latest high-tech treatments. To determine whether physician bias contributed to this phenomenon, social psychologists analyzed Medicare records of 150 black and 150 white randomly selected heart attack patients who were treated either by a black or white physician. A different physician was required for each patient record used. The variable of interest
is whether the patients received an angiogram. The following data were collected.

|  | Patients Receiving <br> Angiograms |  |
| :--- | :---: | :---: |
| Physician | White | Black |
| White | 72 | 48 |
| Black | 52 | 28 |
| 120 |  |  |
|  | 124 | 86 |

Using $\alpha=0.05$, what do y ou conc lude? health, social
37. A family therapist living in a large midwestern city is conc erned $t$ hat $t$ he prop ortion of $s$ ingle-father homes is i ncreasing. The therapist finds that t wo relevant st udies have been conducted. B oth st udies randomly surveyed 1000 families living in the city a nd $g$ ave information re garding single-father homes. The first was conducted in 1996; it reported there were 50 single-father homes. The second was conducted in 2002; it reported 76 such homes. If you were the therapist, what would you conclude? Use $\alpha=0.05$ in making your decision. clinical, social
38. A public health researcher believes that smoking affects the $g$ ender of offspring. He re cords the gender of newborns that are delivered in local hospitals over a 1 -year period. He also interviews the pa rents of the ne wborns to det ermine $t$ heir degree of cigarette smoking. The following data are collected.

| Cigarette Smoking | Offspring |  |  |
| :---: | :---: | :---: | :---: |
|  | Boys | Girls |  |
| Neither parent smokes at least a pack a day | 60 | 40 | 100 |
| One parent smokes at least a pack a day | 57 | 43 | 100 |
| Both parents smoke at least a pack a day | 18 | 32 | 50 |
|  | 135 | 115 | 250 |

What is t he conc lusion? U se $\alpha=0.05$. health, social
39. The director of the athletic department of a major state $u$ niversity is cons idering a dding a nother women's $v$ arsity $t$ eam. $S$ he is $t$ rying to de cide among volleyball, soccer, and softball. A survey of 750 u ndergraduate women re vealed the following first-choice preferences.

| Volleyball | Soccer | Softball |
| :---: | :---: | :---: |
| 250 | 350 | 150 |

Does the survey re veal a re liable preference? Use $\alpha=0.05$ in making your decision. I/O
40a. The Jones survey co mpany conducted a nat ional survey to see if religious sentiment in the United States changed a fter the terrorist at tacks on $t$ he Twin Towers in New York City and the Pentagon in Washington, DC, on Sept ember 11, 2001. The survey of 1100 Americans was conducted 2 weeks after the attack; the question asked was, "Did you attend church in the past week?" Fortunately for comparison purposes, 6 months before the attack, the co mpany had cond ucted a s imilar survey of 900 A mericans, a sking $t$ he sa me ques tion. $T$ he data follow.

|  | Yes | No |
| :--- | ---: | :---: |
| 6 Months Preattack | 360 | 540 |
| 2 Weeks Postattack | 660 | 440 |
|  | 1020 | 980 |

Using $\alpha=0.05$, what do you conclude? I/O, social 40b. One year after the attacks, the Jones company conducted another national survey of 1100 Americans to det ermine whether the i ncrease in re ligious sentiment following the attacks was still evident. To make this determination, the company used the data from their 6 -month preattack and 1-year postattack surveys. The data follow.

|  | Yes | No |
| :--- | :---: | :---: |
|  | 360 | 540 |
| 1 Months Preattack | 360 | 680 |
|  | 420 |  |

Using $\alpha=0.05$, w hat do y ou conc lude t his time? I/O, social

## What Is the Truth? Questions

Statistics a nd A pplied $S$ ocial Resea rch $-U$ seful or "Abuseful"?

1. a. In applied social science research, is it really true that "there is no such thing as unbiased information?" If so, why bother to do the research?
b. Was the Democratic con gressman cor rect in stating, "Everybody's entitled to his own statistics?" Discuss.
c. What do y ou think ab out t he n otion t hat so cial scientists w ith s trong p olitical v iews w ill go ou t and do research, deliberately biasing their research instruments so that the data will confirm their own political views?

## ■ SPSS ILLUSTRATIVE EXAMPLE 17.1

The general operation of SPSS and data entry are described in Appendix E, Introduction to $S P S S$. In a nalyzing the data of a C hi-square problem, SPSS computes the value of Pearson Chi-Square (the same thing as our $\chi_{\text {obt }}^{2}$ ) and the probability of getting this value or $g$ reater if chance alone is at $w$ ork. It calls this probability Asymp. Sig. (2-sided). Asymp. Sig. (2-sided) is another way to represent $p$ (2-sided) or $p$ (2-tailed).

The decision rule we will follow to evaluate $H_{0}$ and $H_{1}$ is as follows.
If Asymp. Sig. (2-sided) $\leq \alpha$, reject $H_{0}$ and affirm $H_{1}$. If Asymp. Sig. $(2$-sided $)>\alpha$, retain $H_{0}$; cannot affirm $H_{1}$.

## example

Use SPSS to analyze the data given in the illustrative experiment described in Chapter 17 of the textbook, p. 489. For convenience the experiment is repeated here.

Suppose a bill that proposes to lower the legal age for drinking to eighteen is pending before the state legislature. A political scientist living in the state is interested in determining whether there is a relationship between political affiliation and attitude toward the bill. A random sample of 200 registered Republicans and 200 registered Democrats is sent letters explaining the scientist's interest and asking the recipients whether they are in favor of the bill, are undecided, or are against the bill. Strict confidentiality is assured. A self-addressed envelope is included to facilitate responding. Answers are received from all 400 Republicans and Democrats. The results are shown here.


What do you conclude about the independence of Attitude and Political Aff liation? Use $\alpha=0.05$.

## SOLUTION

STEP 1: Enter the Data. To analyze the data, SPSS must be told the observed frequency scores $\left(f_{o}\right)$, and the row and column number of each $f_{o}$ score. Let's enter this information now.

1. Enter the observed frequency scores $\left(f_{o}\right)$ in the first column (VAR00001) of the Data Editor. They may be entered in any order.
2. Enter the row number of each $f_{o}$ score in the second column (VAR00002) of the Data Editor.
3. Enter the column number of each $f_{o}$ score in the third column (VAR00003) of the Data Editor.

The resulting Data Editor is shown here. For now, ignore the variable name row; we name the variables in the next step.

|  | f_obs | row_num | col_umn | va |
| ---: | ---: | ---: | ---: | ---: |
| 1 | 68.00 | 1.00 | 1.00 |  |
| 2 | 22.00 | 1.00 | 2.00 |  |
| 3 | 110.00 | 1.00 | 3.00 |  |
| 4 | 92.00 | 2.00 | 1.00 |  |
| 5 | 18.00 | 2.00 | 2.00 |  |
| 6 | 90.00 | 2.00 | 3.00 |  |
| 7 |  |  |  |  |

STEP 2: Name the Variables. In this example, we will give the default variables VAR00001, VAR00002, a ad VAR00003 the new names of $f_{-}$obs, row_num, and col_num, respectively. To do so,

1. Click the Variable View tab in the lower left corner of the Data Editor; then replace VAR00001 with f_obs and then press Enter.
2. Replace VAR00002 with row_num and then press Enter.
3. Replace VAR00003 with col_num and then press Enter.
f_obs is entered as the name of the dependent variable, replacing VAR00001.
row_num is entered as the variable name, replacing VAR00002.
col_num is entered as the variable name, replacing VAR00003.

STEP 3: Analyze the Data. The appropriate test is Chi-square. To have SPSS do the analysis using this test,

1. Click Data on the menu bar at the top, then click Weight Cases....
2. Click Weight cases by; then click the arrow for the Frequency Variable: box.
3. Click OK.
4. Click Analyze on the menu bar at the top; then select Descriptive Statistics; then click Crosstabs....

This produces the Weight Cases dialog box, with f_obs highlighted in the large box on the left.

This moves f_obs into the Frequency Variable: box, identifying f_obs as name of the observed frequency variable.

This moves you back to the Data Editor, from which you can carry out the rest of the analysis.

This produces the Crosstabs dialog box. This is where you tell SPSS the variable names in the Data Editor that contain the row and column coding values.
5. Click row_num in the large box on the left; then click the arrow for the Row(s): box on the right.
6. Click col_num in the large box on the left; then click the arrow for the Column(s): box on the right.
7. Click the Statistics... button on the upper right; then click Chi-square; then click Continue.
8. Click OK.

This moves row_num into the Row(s): box on the right, telling SPSS that row_num contains the row coding.

This moves col_num into the Column(s): box on the right, telling SPSS that col_num contains the column coding. This and the preceding step enable SPSS to identify the row and column location in the contingency table of each $f_{-}$obs score.

This tells SPSS to do a chi-square analysis when it gets the OK command and then returns you to the Crosstabs dialog box where you can give the OK command.

SPSS computes and analyzes the data and outputs the results.

## Analysis Results

The results are displayed in three tables, the Case Processing Summary, the row_num*col_num Crosstabulation, and Chi-Square Tests tables. We have only shown below the latter two tables because the Case Processing Summary table is not useful for our analysis.


Chi-Square Tests

|  | Value | df | Asymp. Sig. <br> (2-sided) |
| :--- | ---: | ---: | ---: |
| Fearson Chi-Square | $6.000^{\mathrm{a}}$ | 2 | .050 |
| Likelihood Ratio | 6.018 | 2 | .049 |
| Linear-by-Linear | 5.425 | 1 | .020 |
| Association |  |  |  |
| Nof Valid Cases | 400 |  |  |

a. 0 cells ( $0 \%$ ) have expected count less than 5 . The minimum expected count is 20.00 .

The row_num*col_num Crosstabulation table displays the contingency table that SPSS used. You can use it to make sure your Data Editor entries were correct. You can see that it is the same as the contingency table shown in the statement of the illustrative example.


#### Abstract

The Chi-Square Tests table contains the information we need for evaluating $H_{0}$. Instead of using the symbol $\chi^{2}$ obt to designate the Chi-square statistic, SPSS uses Pearson Chi-Square. From the table, Pearson Chi-Square $=6.000$ and Asymp. Sig. $\left(2\right.$-sided) $=.050$. Since $050 \leq 0.05$, we reject $H_{0}$ and conclude that Attitude and Political Affiliation are not independent; there appears to be a relationship between them. Please note that the results and conclusions using SPSS are the same as given in the textbook.


## ■ SPSS ADDITIONAL PROBLEMS

1. A computer manufacturer believes that there is a relationship between the age of computer users and preference for desktop or laptop computers. An experiment is cond ucted in which a r andom sa mple is o btained of 50 customers for each age group for the following ages: $12-25,40-45$, and $60-65$ years old. Subjects are asked their preference for desktop or laptop computers and the results are shown in the table below. Entries are the number of customers in each age g roup that preferred each computer type.

|  | Age |  |  |
| :--- | :---: | :---: | :---: |
| Computer Type | $20-25$ | $40-45$ | $60-65$ |
|  |  |  |  |
| Laptops | 42 | 30 | 22 |
| Desktops | 8 | 20 | 28 | | 94 |  |  |
| ---: | ---: | ---: |
|  | 50 | 50 |
| 50 | 150 |  |

What do you conclude? Use $\alpha=0.05$.
2. A local microbrewery company is doing some marketing research. The company wants to determine if there
is a re lationship between gender and preference for its light, dark, or regular beer. A r andom sample of 100 women and 100 adult men is taken from the beerdrinking population living in the city where the company is located. Each individual is allowed to sample a s mall a mount of each beer type and then is a sked which one is pre ferred. The order in which the three types of beers are presented is cou nterbalanced over subjects. $T$ he $f$ ollowing con tingency $t$ able presen ts the resulting data. Entries are the number of men and women who preferred each type of beer.

|  | Beer Types |  |  |
| :--- | :---: | :---: | :---: |
| Gender | Light | Dark | Regular |
| Men | 25 | 35 | 40 |
| Women | 58 | 12 | 30 |
|  | 83 | 47 | 70 |

Is there a relationship between gender and preference for beer type? Use $\alpha=0.05$.

## NOTES

17.1 When $\mathrm{d} \mathrm{f}=1$, d irectional a lternative h ypotheses can be tested with $\chi^{2}$. With df $=1, z_{\mathrm{obt}}=\sqrt{\chi_{\mathrm{obt}}^{2}}$. Therefore, we can convert $\chi_{\text {obt }}^{2}$ to $z_{\text {obt }}$ and evaluate
$z_{\text {obt }}$ us ing $z_{\text {crit }}$ f or t he appropr iate one -tailed a lpha level. Of course, the difference between $f_{o}$ and $f_{e}$ must be in the predicted direction to perform this test.

## ■ONLINE STUDY RESOURCES

## CENGAGE braiin

Login to CengageBrain.com to access the resources your instructor has assigned. For this book, you can access the book's co mpanion website for chapter-specific learning tools including Know and Be Able to Do, practice quizzes, flash cards, and glossaries, and a link to Statistics and Research Methods Workshops.

If your professor has assigned Aplia homework:

1. Sign in to your account.
2. Complete the cor responding ho mework exercises as required by your professor.
3. When finished, click "G rade It N ow" to se e which areas you have mastered and which need more work, and for detailed explanations of every answer.

Visit www.cengagebrain.com to access your account and to purchase materials.

## Review of Inferential Statistics

## LEARNING OBJECTIVES

After completing this review chapter, you should be able to:

- Understand the big picture in regard to hypothesis testing and inferential statistics, utilizing the knowledge gained from this textbook.
- Select and use the appropriate inference test depending on scaling of data, experiment design, number of groups, and whether assumptions have been violated.
- Use this chapter to review important aspects of the inference tests covered in the textbook.

We have covered a lot of material since we began our discussion of hypothesis testing with the sign test. I s hall begin our review of this material with the most important terms and concepts pertaining to the general process of hypothesis testing. Then we shall discuss the general process itself. From there, we shall summarize the experimental designs and the inference tests used with each design. Since this material is very logical and interconnected, I hope this review will help bring closure and greater insight to the topic of inferential statistics.

## TERMS AND CONCEPTS

Alternative hypothesis $\left(\boldsymbol{H}_{\mathbf{1}}\right)$ The alternative hypothesis states that the differences in scores between conditions are due to the action of the independent variable. The alternative hypothesis may be nondirectional or directional. A nondirectional hypothesis states that the independent variable has an effect on the dependent variable but doesn't specify the direction of the effect. A directional hypothesis states the direction of the expected effect.

Null hypothesis $\left(\boldsymbol{H}_{\mathbf{0}}\right)$ The null hypothesis is set up as the logical counterpart to the alternative hypothesis such that if the null hypothesis is false, the alternative hypothesis must be true. Conversely, if the null hypothesis is $t$ rue, the alternative hypothesis must be false. The null hypothesis for a n ondirectional alternative hypothesis is that the independent variable has no effect on the dependent variable. For a directional alternative hypothesis, the null hypothesis states that the independent variable does not have an effect in the direction specified.

Null-hypothesis population(s) The null-hypothesis population(s) is the set or sets of scores that would result if the experiment were done on the entire population and the independent variable had no effect. In a single sample design, it is the population with known $\mu$. In a replicated measures design, it is the population of difference scores with $\mu_{D}=0$ or $P=0.50$. In an independent groups design, there are as many populations as there are groups and the samples are random samples from populations where $\mu_{1}=\mu_{2}=\mu_{3}=\mu_{k}$.

Sampling dist ribution The sa mpling distribution of a s tatistic $g$ ives a 11 the values the statistic can take, a long with the probability of getting that value if chance alone is responsible or if sampling is random from the null-hypothesis population(s). This distribution ca $n$ be der ived $t$ heoretically from ba sic pro bability, as we did with the sign test, or empirically, as with the $z, t$, and $F$ tests. Three steps are involved in constructing the sa mpling distribution of a s tatistic using the empirical approach. First, all possible different samples of size $N$ that can be formed from the p opulation a re det ermined. Se cond, the statistic for each of the sa mples is ca lculated. Finally, the pro bability of getting each value of the statistic is ca $1-$ culated $u$ nder $t$ he a ssumption $t$ hat sa mpling is $r$ andom $f$ rom $t$ he $n$ ull-hypothesis population(s).

Critical region for rejection of $\boldsymbol{H}_{\mathbf{0}}$ The critical region for rejection of $H_{0}$ is the area under the curve that contains all the values of the statistic that will allow rejection of the null hypothesis. The critical value of a statistic is that value of the statistic that bounds the critical region. It is determined by the alpha level.

Alpha level ( $\alpha$ ) The alpha level is the threshold probability level against which the obtained probability is compared to det ermine the reasonableness of the null hypothesis. It also determines the critical region for rejection of the null hypothesis. Alpha is usually set at 0.05 or 0.01 . The alpha level is set at the beginning of an experiment and limits the probability of making a Type I error.

Type I e rror A Type I er ror occurs when the null hypothesis is re jected and it is true.

Type II error A Type II error occurs when the null hypothesis is retained and it is false. Beta is equal to the probability of making a Type II error.

Power The power of an experiment is e qual to $t$ he probability of rejecting the null hypothesis if the independent variable has a real effect. It is useful to know the power of an experiment when designing the experiment and when interpreting nonsignificant results from an experiment that has already been conducted. Calculation of power i nvolves two steps: (1) det ermining the sa mple outcomes that will a llow rejection of the null hypothesis and (2) determining the probability of getting these outcomes under the assumed real effect of the independent variable. Power $=1-\beta$. Thus, as power increases, beta decreases. Power can be increased by increasing the number of subjects in the experiment, by increasing the size of real effect of the independent variable, by decreasing the variability of the data through careful experimental control and proper experimental design, and by using the most sensitive inference test possible for the design and data.

## PROCESS OF HYPOTHESIS TESTING

We have se en that in every experiment involving hypothesis testing there a re two hypotheses that attempt to explain the data. They are the alternative hypothesis and the null hypothesis. In analyzing the data, we always evaluate the null hypothesis and indirectly conclude with regard to the alternative hypothesis. If $H_{0}$ can be rejected, then $H_{1}$ is accepted. If $H_{0}$ is not rejected, then $H_{1}$ is not accepted.

Two steps are involved in assessing the null hypothesis. First, we calculate the appropriate statistic, and second, we evaluate the statistic. To evaluate the statistic, we assume that the independent variable has no effect and that chance alone is res ponsible for the score differences between conditions. Another way of saying this is that we assume sampling is random from the null-hypothesis population(s). Then we calculate the probability of getting the obtained result or any result more extreme under the previous assumption. This probability is one- or two-tailed depending on whether the alternative hypothesis is directional or nondirectional. To calculate the obtained probability, we must know the sampling distribution of the statistic. If the obtained probability is e qual to or 1 ess than the a lpha level, we reject $H_{0}$. Alternatively, we determine whether the obtained statistic falls in the critical region for rejecting $H_{0}$.

If it does, we reject the null hypothesis. Otherwise, $H_{0}$ remains a reasonable explanation, and we retain it.

If we reject $H_{0}$ and it is true, we have made a Type I error. The alpha level limits the probability of a Type I er ror. If we ret ain $H_{0}$ and it is false, we have made a Type II error. The power of the experiment determines the probability of making a Type II error. We have defined beta as the probability of making a Type II error. As power increases, beta decreases. By maintaining alpha sufficiently low and power sufficiently high, we achieve a high probability of making a cor rect decision when analyzing the data, no matter whether $H_{0}$ is true or false.

These statements apply to a ll experiments involving hypothesis testing. W hat varies from experiment to experiment is the inference test used, the statistic calculated, and its sampling distribution. The inference test used will depend on the experimental design and the data collected.

## SINGLE SAMPLE DESIGNS



With single sample experimental designs, one or more of the null-hypothesis population parameters (the mean and/or standard deviation) must be specified. Since it is not common to have this information, the single sample experiment occurs rather infrequently. The $z$ and $t$ tests are appropriate for this design. Both tests evaluate the effect of the independent variable on the mean ( $\bar{X}_{\text {obt }}$ ) of the sample. For these tests, the nondirectional $H_{1}$ states that $\bar{X}_{\text {obt }}$ is a random sample from a population having a mean $\mu$ that is not equal to the mean of the null-hypothesis population. The corresponding $H_{0}$ states that $\mu$ equals the mean of the null-hypothesis population. The directional $H_{1}$ states that $\bar{X}_{\text {obt }}$ is a random sample from a population where $\mu$ is greater or less than the mean of the null-hypothesis population, depending on the expected direction of the effect. Let's now review the $z$ and $t$ tests for single samples:

## z Test for Single Samples

Test Statistic Calculated Decision Rule
$z$ test for single samples $\quad z_{\text {obt }}=\frac{\bar{X}_{\text {obt }}-\mu}{\sigma / \sqrt{N}} \quad$ If $\left|z_{\text {obt }}\right| \geq\left|z_{\text {crit }}\right|$, reject $H_{0}$.

General comments The $z$ test is used in situations in which both the mean and standard deviation of the null-hypothesis population can be specified. To evaluate $H_{0}$, we assume $\bar{X}_{\text {obt }}$ is a random sample from a population having a mean $\mu$ and standard deviation $\sigma$ that are equal to the mean and standard deviation of the null-hypothesis population. The sampling distribution of $\bar{X}$ gives all the possible values of $\bar{X}$ for samples of size $N$ and the probability of getting each value, if sampling is random from the population with a mean $\mu$ and a standard deviation $\sigma$. The sampling distribution of $\bar{X}$ has a mean $\mu_{\bar{X}}=\mu$, has a standard deviation $\sigma_{\bar{X}}=\sigma / \sqrt{N}$, and is normally shaped if the population from which the sample was drawn is normal or if $N \geq 30$, provided the population does not differ greatly from normality.

We c an a ssess $H_{0}$ by (1) c onverting $\bar{X}_{\mathrm{obt}}$ to its $z$-transformed value ( $z_{\mathrm{obt}}$ ) a nd determining the probability of getting a value as extreme as or more e xtreme than $z_{\text {obt }}$ if chance alone is operating or (2) calculating $z_{\text {obt }}$ and comparing it with $z_{\text {crit }}$. It is
easier to do the latter. The equation for $z_{\text {obt }}$ is given in the preceding table. The value of $z_{\text {obt }}$ is evaluated by comparison with $z_{\text {crit }}$. The alpha level in conjunction with the sampling distribution of $z$ determines the value of $z_{\text {crit }}$. The sampling distribution of $z$ has a mean of 0 and a standard deviation of 1 . If $\bar{X}_{\mathrm{obt}}$ is normally distributed, then so is $t$ he corresponding $z$ distribution and $z_{\text {crit }}$ can be determined from Table A in Appendix D. Thus, the $z$ test requires that $N \geq 30$ or that the population of raw scores be normally distributed.

## $t$ Test for Single Samples

Test
$\begin{array}{rlr}t \text { test for single samples } & t_{\text {obt }} & =\frac{\bar{X}_{\text {obt }}-\mu}{s / \sqrt{N}} \\ t_{\text {obt }} & =\frac{\bar{X}_{\text {obt }}-\mu}{\sqrt{\frac{S S}{N(N-1)}}}\end{array} \quad$ If $\left|t_{\text {obt }}\right| \geq\left|t_{\text {crit }}\right|$, reject $H_{0}$.
Statistic Calculated

General comments The $t$ test is used in situations in which the mean of the null-hypothesis population can be specified and standard deviation is unknown. In testing $H_{0}$, we a ssume $\bar{X}_{\text {obt }}$ is a random sample from a population having a mean $\mu$ e qual to $t$ he mean of the null-hypothesis population and an unknown standard deviation. The $t$ test is very much like the $z$ test, except that since $\sigma$ is unknown, we estimate it with $s$. When $s$ is substituted for $\sigma$ in the equation for $z_{\mathrm{ob}}$, the first equation given in the table for $t_{\mathrm{obt}}$ results. The second equation in the table is a computational equation for $t_{\mathrm{obt}}$, using the raw scores. To evaluate $H_{0}$, the value of $t_{\mathrm{obt}}$ is compa red against $t_{\text {crit }}$, using the decision rule. The value of $t_{\text {crit }}$ is determined by the alpha level and the sampling distribution of $t$. This distribution is a family of curves, shaped like the $z$ distribution. The curves vary uniquely with degrees of freedom. The degrees of freedom for a statistic are equal to the number of scores that are free to vary in calculating the statistic. For the $t$ test used with single samples, $\mathrm{df}=N-1$, because 1 degree of freedom is lost calculating $s$. The values of $t_{\text {crit }}$ are found in Table D in Appendix D , using df and $\alpha$. The $t$ test has the same underlying assumptions as the $z$ test. The population of raw scores should be normally distributed, or $N \geq 30$.

## $t$ Test for Testing the Significance of Pearson $r$

| Test | Statistic Calculated | Decision Rule |
| :---: | :---: | :---: |
| $t$ test for testing the significance of Pearson $r$ | $r_{\text {obt }}$ | If $\left\|r_{\text {obt }}\right\| \geq\left\|r_{\text {crit }}\right\|$, re |

General comments To determine whether a cor relation exists in the population, we must test the significance of $r_{\mathrm{ob}}$. This can be done using the $t$ test. The resulting equation is

$$
t_{\mathrm{obt}}=\frac{r_{\mathrm{obt}}-\rho}{\sqrt{\frac{1-r_{\mathrm{obt}}^{2}}{N-2}}}
$$

By substituting $t_{\text {crit }}$ for $t_{\text {obt }}$ in this equation, $r_{\text {crit }}$ can be determined for any df and $\alpha$ level. Once $r_{\text {crit }}$ is known, all we need to do is compare $r_{\text {obt }}$ with $r_{\text {crit }}$. The decision rule is given in the preceding table. The values of $r_{\text {crit }}$ are found in Table E in Appendix D, using df and $\alpha$. Degrees of freedom equal $N-2$.

## CORRELATED GROUPS DESIGN: TWO GROUPS

The essential feature of this design is that there are paired scores between the conditions, and the differences between the paired scores a re analyzed. The paired scores can result from using the same subjects in each condition, from using identical twins, or from using subjects that have been matched in some other way. The most basic form of the design employs just $t$ wo cond itions: an experimental cond ition a nd a con trol condition. The two cond itions a re kept as a like as possible except for values of the independent variable, which are intentionally made different. We covered three tests for analyzing data from experiments of this design: the $t$ test for correlated groups, the Wilcoxon matched-pairs signed ranks test, and the sign test.

## t Test for Correlated Groups

| Test | Statistic Calculated | Decision Rule |
| :---: | :---: | :---: |
| $t$ test for correlated groups | $t_{\mathrm{obt}}=\frac{\bar{D}_{\mathrm{obt}}-\mu_{D}}{\sqrt{\frac{S S_{D}}{N(N-1)}}}$ | If $\left\|t_{\text {obt }}\right\| \geq\left\|t_{\text {crit }}\right\|$, reject $H_{0}$. |

General comments The $t$ test for correlated groups analyzes the effect of the independent variable on the mean of the sample difference scores $\left(\bar{D}_{\text {obt }}\right)$. If the independent variable has no effect, then $\bar{D}_{\text {obt }}$ is a random sample from a population of difference scores having a mean $\mu_{D}=0$ a nd unknown $\sigma_{D}$. This situation is the same as what we encountered when using the $t$ test for single samples (specifiable population mean but unknown standard deviation), except that we are dealing with difference scores r ather than raw scores. Thus, the $t$ test for correlated groups is identical to the $t$ test for single samples, but it evaluates difference scores instead of raw scores.

The nondirectional $H_{1}$ s tates that the independent variable ha s a n effect, in which case $\bar{D}_{\text {obt }}$ is due to random sampling from a population of difference scores where $\mu_{D} \neq 0$. The directional $H_{1}$ specifies that $\mu_{D}>0$ (for which $H_{0}$ states that $\mu_{D} \leq 0$ ) or $\mu_{D}<0$ (for which $H_{0}$ states that $\mu_{D} \geq 0$ ). $H_{0}$ is tested by assuming $\bar{D}_{\text {obt }}$ is a random sample from a population of difference scores where $\mu_{D}=0$.

The statistic calculated is $t_{\text {obt }}$ (see the preceding table), which is e valuated by comparing it with $t_{\text {crit }}$. The sampling distribution of $t$ is $t$ he same as discussed in conjunction with the $t$ test for single samples. The degrees of freedom are equal to $N-1$, where $N=$ the number of difference scores. The values of $t_{\text {crit }}$ are found in Table D , using df and $\alpha$. The assumptions of this test are the same as those for the $t$ test for single samples. This test is more sensitive than (1) the $t$ test for independent groups when the correlation between the paired scores is high and (2) the Wilcoxon matched-pairs signed ranks test and the sign test, which are also appropriate for the correlated groups design.

## Wilcoxon Matched-Pairs Signed Ranks Test

| Test | Statistic Calculated | Decision Rule |
| :---: | :---: | :---: |
| Wilcoxon matched-pairs signed ranks test | $T_{\text {obt }}$ | If $T_{\text {obt }} \leq T_{\text {crit }}$, reject |

General comments This is a $n$ onparametric test that takes into a ccount the magnitude and direction of the difference scores. It is therefore much more p owerful than the sign test. Both the alternative and null hypotheses are usually stated without specifying population parameters. In analyzing the data, $T_{\text {obt }}$ is calculated by (1) obtaining the difference score for each pair of scores, (2) rank-ordering the absolute values of the difference scores, (3) assigning the appropriate signs to the ranks, and (4) separately summing the positive and negative ranks. $T_{\mathrm{obt}}$ is the lower of the sums. $T_{\mathrm{obt}}$ is compared with $T_{\text {crit }}$. The values of $T_{\text {crit }}$ are given in Table I in Appendix D, using $N$ and $\alpha$. The decision rule is shown in the preceding table. This test is recommended as an alternative to the $t$ test for correlated groups when the assumptions of the $t$ test are not met. The Wilcoxon signed ranks test requires that the within-pair scores be at least of ordinal scaling and that the difference scores also be at least of ordinal scaling.

## Sign Test

| Test | Statistic Calculated | Decision Rule |
| :---: | :---: | :---: |
| Sign test | Number of $P$ events in a sample of size $N$ | If the one- or two-tailed $p$ (number of $P$ events) $\leq \alpha$, reject $H_{0}$. |

General comments We used the sign test to i introduce hypothesis testing because it is a simple test to understand. It is not commonly used in practice because it ignores the magnitude of the difference scores and considers only their direction.

In analyzing data with the sign test, we determine the number of pluses in the sample and evaluate this statistic by using the binomial distribution. The binomial distribution is $t$ he appropr iate sa mpling distribution when (1) there is a ser ies of $N$ trials, (2) there are only two possible outcomes on ea ch trial, (3) there is i ndependence between trials, (4) the outcomes on each trial are mutually exclusive, and (5) the probability of each possible outcome on any trial stays the same from trial to trial. The binomial distribution is given by $(P+Q)^{N}$, where $P$ is the probability of a plus on a ny trial and $Q$ is the probability of a minus. If the independent variable has no effect, then $P=Q=0.50$. The nondirectional $H_{1}$ states that $P \neq Q \neq 0.50$. The directional $H_{1}$ specifies $P>0.50$ or $P<0.50$, depending on the expected direction of the effect.
$H_{0}$ is tested by assuming that the number of $P$ events in the sample is due to random sampling from a population where $P=Q=0.50$. The one-or two-tailed $p$ (number of $P$ e vents) is co mpared with t he a lphal evel to e valuate $H_{0}$. T his probability is found in Table B in Appendix D, using $N$, number of $P$ events, and $P=0.50$. A lternatively, g iven a lpha, $N$, a nd the binomial distribution, we cou ld have also determined the critical region for rejecting $H_{0}$ (as we did with the other statistics), in which case we would compare the obtained number of $P$ events with the critical number of $P$ events. To use the sign test, the data must be at least ordinal in scaling and ties must be excluded from the analysis.

This design involves random sampling of subjects from the population and then random assignment of the subjects to each condition. There can be many conditions. The most basic form of the design uses two conditions, with each condition employing a different level of the independent variable. This design differs from the correlated groups design in that there is no basis for pairing scores between conditions. A nalysis is performed separately on the raw scores of each sample, not on the difference scores. Both the $t$ test and the Mann-Whitney $U$ test are appropriate for this design.

## t Test for Independent Groups


 groups

$$
t_{\mathrm{obt}}=\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)-\mu_{\bar{x}_{1}-\bar{X}_{2}}}{\sqrt{\left(\frac{S S_{1}+S S_{2}}{n_{1}+n_{2}-2}\right)\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}
$$

When $n_{1}=n_{2}$,

$$
t_{\mathrm{obt}}=\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)-\mu_{\bar{X}_{1}-\bar{X}_{2}}}{\sqrt{\frac{S S_{1}+S S_{2}}{n(n-1)}}}
$$

General comments This test a ssumes that the i ndependent variable a ffects the mean of the scores and not their variance. The mean of each sample is calculated, and then the difference between sample means $\left(\bar{X}_{1}-\bar{X}_{2}\right)$ is determined. The $t$ test for independent groups analyzes the effect of the independent variable on $\left(\bar{X}_{1}-\bar{X}_{2}\right)$. The sample value $\bar{X}_{1}$ is due to random sampling from a population having a mean $\mu_{1}$ and a variance $\sigma_{1}^{2}$. The sample value $\bar{X}_{2}$ is due to random sampling from a population having a mean $\mu_{2}$ and a variance $\sigma_{2}^{2}$. The variance of both populations is a ssumed equal $\left(\sigma_{1}^{2}=\sigma_{2}^{2}=\sigma^{2}\right)$.

The s ampling distribution of $\bar{X}_{1}-\bar{X}_{2}$ ha st he f ollowing c haracteristics: (1) it has a mea n $\mu_{\bar{X}_{1}-\bar{X}_{2}}=\mu_{1}-\mu_{2}$, (2) it has as tandard de viation $\sigma_{\bar{X}_{1}-\bar{X}_{2}}=$ $\sqrt{\sigma^{2}\left[\left(1 / n_{1}\right)+\left(1 / n_{2}\right)\right]}$, and (3) it is normally shaped if the population from which the samples have been taken is $n$ ormal. If the independent variable has no effect, then $\mu_{1}=\mu_{2}$. The nondirectional $H_{1}$ states that $\mu_{1} \neq \mu_{2}$. The directional $H_{1}$ states that $\mu_{2}>\mu_{1}$ or $\mu_{1}<\mu_{2}$, depending on the expected direction of the effect.

To a ssess $H_{0}$, we assume that the independent variable has no effect, in which case $\mu_{1}=\mu_{2}$ and $\mu_{\bar{x}_{1}-\bar{X}_{2}}=0$. To test $H_{0}$, we could calculate $z_{\mathrm{obt}}$, but we need to know $\sigma^{2}$ for this calculation. Since $\sigma^{2}$ is unknown, we estimate it using a weighted estimate from both samples. The resulting statistic is $t_{\mathrm{ob}}$. Two equations for calculating $t_{\mathrm{obt}}$ are given in the table. The first is a general equation, and the second can be used when the $n$ s in the two samples are equal. The degrees of freedom associated with calculating $t_{\mathrm{obt}}$ for the independent groups design is $N-2$. We calculate two variances in determining $t_{\mathrm{ob}}$, and we lose 1 degree of freedom for each calculation. The sampling distribution of $t$ is as described earlier. The value of $t_{\mathrm{obt}}$ is e valuated by comparing it with $t_{\text {crit }}$ according to the decision rule given in the preceding table. The values of $t_{\text {crit }}$ are found in Table D, using df and $\alpha$.

To use this test, the sampling distribution of $\mu_{\bar{X}_{1}-\bar{X}_{2}}$ must be normally distributed. This means that the populations from which the samples were taken should be normally distributed.

In addition, to use the $t$ test for independent groups, there should be homogeneity of variance. This test is considered robust with regard to violations of the normality and homogeneity of variance assumptions, provided $n_{1}=n_{2} \geq 30$. If there is a severe violation of an assumption, the Mann-Whitney $U$ test serves as an alternative to the $t$ test.

## Mann-Whitney U Test

Test
Statistic Calculated
$U_{\text {obt }}$ and $U_{\text {obt }}^{\prime}$, where $\quad$ If $U_{\text {obt }} \leq U_{\text {crit }}$, reject $H_{0}$.
$U_{\mathrm{obt}}=n_{1} n_{2}+\frac{n_{1}\left(n_{1}+1\right)}{2}-R_{1}$

$$
U_{\mathrm{obt}}=n_{1} n_{2}+\frac{n_{2}\left(n_{2}+1\right)}{2}-R_{2}
$$

General comments The Mann-Whitney $U$ test is a nonparametric test that analyzes the degree of separation between the samples. The less the separation, the more reasonable chance is a sthe underlying explanation. F or a ny a nalysis, there a re two values that indicate the degree of separation. They both indicate the same degree of separation. The lower value is called $U_{\mathrm{obt}}$, and the higher value is called $U_{\mathrm{obt}}^{\prime}$. The lower the $U_{\text {obt }}$ value is, the greater the separation.
$U_{\text {obt }}$ and $U_{\text {obt }}^{\prime}$ can be determined by using the e quations $g$ iven in the preceding table. For any a nalysis, one of the equations will yield $U$ and the other $U^{\prime}$. However, which yields $U$ and which $U^{\prime}$ depends on which group is labeled group 1 and which is group 2 . Since both $U$ and $U^{\prime}$ are measures of the same degree of separation, it is necessary to evaluate only one of them.

To evaluate $U_{\text {obt }}$, it is compared with the critical values of $U$ given in Tables C.1-C.4. Naturally, these values depend on the sampling distribution of $U$. The decision rule for rejecting $H_{0}$ is given in the preceding table.

The Mann-Whitney $U$ test is appropr iate for anindependent g roups design in which the data are at least ordinal in scaling. It is a powerful test, often used in place of Student's $t$ test when the data do not meet the assumptions of the $t$ test.

## MULTIGROUP EXPERIMENTS

Although a two-group design is used fairly frequently in the behavioral sciences, it is more common to encounter experiments with three or more groups. Having more than two groups has two main advantages: (1) additional groups often clarify the interpretation of the results, and (2) a dditional g roups allow many levels of the independent variable to be evaluated in one experiment. There is, however, one problem with doing multigroup experiments. Since many comparisons can be made, we run the risk of an inflated Type I error probability when analyzing the data. The analysis of variance technique allows us to analyze the data without incurring this risk.
One-Way Analysis of Variance, F Test


General comments The parametric analysis of variance uses the $F$ test to evaluate the data. In using this test, we calculate $F_{\text {obt }}$, which is f undamentally the ratio of two independent variance estimates of a population variance $\sigma^{2}$. The sampling distribution of $F$ is composed of a family of positively skewed curves that vary with degrees of freedom. There are two values for degrees of freedom: one for the numerator and one for the denominator. The $F$ distribution (1) is positively skewed, (2) has no negative values, and (3) has a median approximately equal to 1 .

The parametric analysis of variance technique can be used with both the independent groups and the correlated groups designs. We have considered only the one-way ANOVA independent groups design. The technique allows the means of all the groups to be compared in one overall evaluation, thus avoiding the inflated Type I error probability that occurs when doing many individual comparisons. Essentially, the analysis of variance partitions the total variability of the data into two parts: the variability that exists within each group (the within-groups sum of squares) and the variability that exists between the groups (the between-groups sum of squares). Each sum of squares is used to form an independent estimate of the variance of the nullhypothesis populations, $\sigma^{2}$. Finally, an $F$ ratio is calculated where the between-groups variance estimate is in the numerator and the within-groups variance estimate is in the denominator.

The steps and equations for calculating $F_{\text {obt }}$ are as follows:
STEP 1: Calculate the between-groups sum of squares, $S S_{\text {between }}$.

$$
S S_{\text {between }}=\left[\frac{\left(\sum X_{1}\right)^{2}}{n_{1}}+\frac{\left(\sum X_{2}\right)^{2}}{n_{2}}+\frac{\left(\sum X_{3}\right)^{2}}{n_{3}}+\cdots+\frac{\left(\sum X_{k}\right)^{2}}{n_{k}}\right]-\frac{\left(\sum^{\substack{\text { sall } \\ \text { scores }}}\right)^{2}}{N}
$$

STEP 2: Calculate the within-groups sum of squares, $S S_{\text {within }}$.

$$
S S_{\text {within }}=\sum^{\substack{\text { all } \\ \text { scores }}} X^{2}-\left[\frac{\left(\sum X_{1}\right)^{2}}{n_{1}}+\frac{\left(\sum X_{2}\right)^{2}}{n_{2}}+\frac{\left(\sum X_{3}\right)^{2}}{n_{3}}+\cdots+\frac{\left(\sum X_{k}\right)^{2}}{n_{k}}\right]
$$

STEP 3: Calculate the total sum of squares, $S S_{\text {total }}$; check that $S S_{\text {total }}=S S_{\text {within }}+$ $S S_{\text {between }}$.

$$
\begin{aligned}
& S S_{\text {total }}=\sum_{\substack{\text { all } \\
\text { scores }}} X^{2}-\frac{\binom{\text { all }}{\text { scores }}^{2}}{N} \\
& S S_{\text {total }}=S S_{\text {within }}+S S_{\text {between }}
\end{aligned}
$$

STEP 4: Calculate the degrees of freedom for each estimate.

$$
\begin{aligned}
\mathrm{df}_{\text {between }} & =k-1 \\
\mathrm{df}_{\text {within }} & =N-k \\
\mathrm{df}_{\text {total }} & =N-1
\end{aligned}
$$

STEP 5: Calculate the between-groups variance estimate, $M S_{\text {between }}$.

$$
M S_{\text {between }}=\frac{S S_{\text {between }}}{\mathrm{df}_{\text {between }}}
$$

STEP 6: Calculate the within-groups variance estimate, $M S_{\text {within }}$.

$$
M S_{\text {within }}=\frac{S S_{\text {within }}}{\mathrm{df}_{\text {within }}}
$$

STEP 7: Calculate $\boldsymbol{F}_{\text {obt }}$.

$$
F_{\text {obt }}=\frac{M S_{\text {between }}}{M S_{\text {within }}}
$$

The null hypothesis for the a nalysis of variance assumes that the independent variable has no effect and that the samples a re random sa mples from populations where $\mu_{1}=\mu_{2}=\mu_{3}=\mu_{k}$. Since the between-groups variance estimate increases with the effect of the independent variable and the within-groups variance estimate remains constant, the larger the $F$ ratio is, the more unreasonable the null hypothesis becomes. We evaluate $F_{\text {obt }}$ by comparing it with $F_{\text {crit }}$. If $F_{\text {obt }} \geq F_{\text {crit }}$, we reject $H_{0}$ and conclude that at least one of the conditions differs from at least one of the other conditions. Note that the analysis of variance technique is nondirectional.

Multiple comparisons To determine which conditions differ from each other, a priori or a posteriori comparisons between pairs of groups are performed. A priori comparisons (also ca lled planned co mparisons) a re appropr iate when the co mparisons have been planned in advance. No adjustment for multiple comparisons is made. Planned co mparisons s hould be re latively few a nd should a rise from the logic a nd meaning of the experiment. In doing the planned comparisons, we usually compare the means of the specified groups using the $t$ test for independent groups. The value for $t_{\text {obt }}$ is determined in the usual way, except we use $M S_{\text {within }}$ from the analysis of variance in the denominator of the $t$ equation. The $t_{\text {obt }}$ value is compared with $t_{\text {crit }}$, using $\mathrm{df}_{\text {within }}$ and the alpha level and Table D to determine $t_{\text {crit }}$. The equations for calculating $t_{\mathrm{obt}}$ are given as follows:

$$
t_{\mathrm{obt}}=\frac{\bar{X}_{1}-\bar{X}_{2}}{\sqrt{M S_{\text {within }}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}
$$

$$
\text { If } n_{1}=n_{2},
$$

$$
t_{\mathrm{obt}}=\frac{\bar{X}_{1}-\bar{X}_{2}}{\sqrt{2 M S_{\text {within }} / n}}
$$

A posteriori, or post hoc, com parisons w ere n ot p lanned b efore cond ucting the experiment. They a rise e ither after looking at $t$ he $d$ ata or $f$ rom a ssuming the
"shotgun" approach of doing all possible mean comparisons in an attempt to g ain as much information from the experiment as possible. For these reasons, comparisons made post hoc must cor rect for the increase in the pro bability of a T ype I error that arises due to m ultiple comparisons. There are many techniques that do this. We have described Tukey's Honestly Significant Difference (HSD) test and the Scheffé test.

## Tukey's HSD Test

| Test | Statistic Calculated | Decision Rule |
| :---: | :---: | :---: |
| Tukey's HSD test | $Q_{\text {obt }}$, where | If $Q_{\text {obt }} \geq Q_{\text {crit }}$, reject $H_{0}$. |
|  | $\bar{X}_{i}-\bar{X}_{j}$ |  |
|  | bt $=\frac{X_{i}-X_{j}}{\sqrt{M S_{\text {wilhin }} / n}}$ |  |

General Comments The HSD test is designed to compare all possible pairs of means while maintaining the Type I error rate for making the complete set of comparisons at $\alpha$. The $Q$ statistic is very much like the $t$ statistic, but it is always positive and uses the $Q$ distributions rather than the $t$ distributions. The $Q$ (Studentized range) distributions are der ived by randomly taking $k$ sa mples of equal $n$ from the same population rather than just two samples as with the $t$ distributions and determining the difference between the highest and lowest sample means. To use this test, we calculate $Q_{\text {obt }}$ for the desired comparisons and compare $Q_{\text {obt }}$ with $Q_{\text {crit }}$. The values of $Q_{\text {crit }}$ are found in Table G in Appendix D, using $k$, df for $M S_{\text {within }}$, and $\alpha$. The decision rule is given in the preceding table.

## Scheffé Test

| Test | Statistic Calculated | Decision Rule |
| :---: | :---: | :---: |
| Scheffé test | $F_{\text {Scheffé }}=\frac{M S_{\text {between (groups i and } \text { ) }}}{M S_{\text {within (entire ANOVA) }}}$ | If $F_{\text {Scheffe }} \geq F_{\text {crit }}$, reject $H_{0}$. |

General comments The Scheffé test limits the probability of making a Type I error to the alpha level for all possible post hoc comparisons. In that regard, it is more versatile than the HSD test. However, in practice, it is often used to perform post hoc analysis on on ly pair-wise mean comparisons. It provides its extra protection against making Type I error by using $\mathrm{df}_{\text {between }}, M S_{\text {within }}$, and $F_{\text {crit }}$ from the entire ANOVA, rather than from the two groups being compared. Using $\mathrm{df}_{\text {between }}, M S_{\text {within }}$, and $F_{\text {crit }}$ from the entire A NOVA makes it ha rder to re ject $H_{0}$ for a ny of the post hoc co mparisons. Although more versatile, the Scheffé test is less powerful than the HSD test. Because of this, it is not recommended if only doing pair-wise, post hoc comparisons.

To perform the analysis on pair-wise mean comparisons, the Scheffé test computes $F_{\text {Scheffe }}$ for each pair-wise comparison and then evaluates against $F_{\text {crit }}$. The numerator of each $F_{\text {Scheffe }}$ is a between-groups variance estimate $M S_{\text {between (groups i and } j) \text { derived from }}$ the two groups that are being compared, and the denominator is $M S_{\text {within }}$, the withingroups variance estimate that was calculated in doing the entire ANOVA. To determine $M S_{\text {between (groups i iand } j \text { ) }}$ for each comparison, $S S_{\text {between (groups iand } j \text { ) } \text { for the two groups being }}$ compared is divided by the $\mathrm{df}_{\text {between }}$ calculated when doing the entire ANOVA.

The steps and equations for calculating $F_{\text {Scheffe }}$ are as follows:
STEP 1: Calculate the between-groups sum of squares, $S S_{\text {between (groups iand } j \text { ) }}$, for each paired comparison.

$$
S S_{\text {between }(\text { groups iand } j)}=\left[\frac{\left(\Sigma X_{i}\right)^{2}}{n_{i}}+\frac{\left(\Sigma X_{j}\right)^{2}}{n_{j}}\right]-\frac{\left(\sum^{\frac{\text { groups }}{i} \text { and } j}\right)^{2}}{n_{i}+n_{j}}
$$

STEP 2: Calculate $M S_{\text {between (groups iand } j \text { ) }}$ for each paired comparison.

$$
M S_{\text {between (groups i iand } j \text { ) }}=\frac{S S_{\text {between (groups i and } j \text { ) }}}{\mathrm{df}_{\text {within (entire ANOVA) }}}
$$

STEP 3: Calculate $\boldsymbol{F}_{\text {Scheffe }}$ for each paired comparison.

$$
F_{\text {Scheffé }}=\frac{M S_{\text {between (groups i and } j)}}{M S_{\text {within }(\text { entire ANOVA })}}
$$

We evaluate $F_{\text {Scheffe }}$ by comparing it with $F_{\text {crit }}$ from the entire ANOVA. If $F_{\text {Scheffe }} \geq$ $F_{\text {crit }}$, we reject $H_{0}$ and conclude that the two $g$ roups being compared are significantly different. The procedure is repeated for each pair-wise comparison.

## One-Way Analysis of Variance, Kruskal-Wallis Test

Test Statistic Calculated Decision Rule

Nonparametric one-way analysis of variance, Kruskal-Wallis test

$$
\begin{aligned}
H_{\mathrm{obt}}= & {\left[\frac{12}{N(N+1)}\right]\left[\sum_{i=1}^{k} \frac{\left(R_{i}\right)^{2}}{n_{i}}\right] } \\
& -3(N+1)
\end{aligned}
$$

General comments The Kruskal-Wallis test is a $n$ onparametric test, appropriate for a $k$ group, independent groups design. It is used as an alternative test to one-way parametric ANOVA when the assumptions of that test a re ser iously violated. The K ruskalWallis test does not assume population normality and requires only ordinal scaling of the dependent variable. All the scores a re g rouped together and rank-ordered, assigning the rank of 1 to $t$ he lowest score, 2 to $t$ he next to lowest, and $N$ to the highest. The ranks for each condition are then summed. The Kruskal-Wallis test assesses whether these sums of ranks differ so much that it is unreasonable to consider that they come from samples that were randomly selected from the same population.

## Two-Way Analysis of Variance, F Test

| Test | Statistic Calculated | Decision Rule |
| :---: | :---: | :---: |
| Parametric two-way analysis of variance, $F$ test | $F_{\text {obt }}=\frac{M S_{\text {rows }}}{M S_{\text {within-cells }}}$ | If $F_{\text {obt }}>F_{\text {crit }}$, reject $H_{0}$. |
|  | $F_{\text {obt }}=\frac{M S_{\text {columns }}}{M S_{\text {within-cells }}}$ |  |
|  | $F_{\text {obt }}=\frac{M S_{\text {interaction }}}{M S_{\text {within-cells }}}$ |  |

The parametric two-way analysis of variance allows us to evaluate the effects of two variables and their interaction in one experiment. In the parametric two-way ANOVA, we partition the tot al sum of squares ( $S S_{\text {total }}$ ) into four co mponents: the within-cells sum of squares ( $S S_{\text {within-cells }}$ ), the row sum of squares ( $S S_{\text {rows }}$ ), the column sum of squares $\left(S S_{\text {columns }}\right)$, and the interaction sum of squares $\left(S S_{\text {interaction }}\right)$. When these sums of squares are divided by the appropriate degrees of freedom, they form four variance estimates: the within-cells variance estimate $M S_{\text {within-cells }}$, the row variance estimate $M S_{\text {rows }}$, the column variance estimate $M S_{\text {columns }}$, and the interaction variance estimate $M S_{\text {interaction }}$. The effect of each of the variables is determined by computing the appropriate $F_{\text {obt }}$ value and comparing it with $F_{\text {crit }}$.

The steps and equations for calculating the various $F_{\text {obt }}$ values are as follows:
STEP 1: Calculate the row sum of squares, $S S_{\text {rows }}$.

$$
S S_{\text {rows }}=\left[\frac{\left(\begin{array}{c}
\text { row } \\
1
\end{array} \sum^{2} X\right)^{2}+\left(\sum_{\text {row }}^{\text {row }} X\right)^{2}+\cdots+\left(\begin{array}{c}
\text { row } \\
r
\end{array} x\right)^{2}}{n_{\text {row }}}\right]-\frac{\left(\begin{array}{c}
\substack{\text { all } \\
(c o r e s}
\end{array}\right)^{2}}{N}
$$

STEP 2: Calculate the column sum of squares, $S S_{\text {columns }}$.

$$
S S_{\text {columns }}=\left[\frac{\left(\begin{array}{c}
\text { column } \\
1 \\
1
\end{array}\right)^{2}+\left(\begin{array}{c}
\text { column } \\
2
\end{array} \sum^{2} X\right)^{2}+\cdots+\binom{\text { column }}{c}^{2}}{n_{\text {column }}}\right]-\frac{\left(\begin{array}{c}
\text { all } \\
\text { sores } \\
\sum
\end{array}\right)^{2}}{N}
$$

STEP 3: Calculate the interaction sum of squares, $S S_{\text {interaction }}$.

$$
\begin{aligned}
S S_{\text {interaction }}= & {\left[\frac{\left(\begin{array}{c}
\text { cell } \\
11
\end{array} \sum^{2} X\right)^{2}+\left(\begin{array}{c}
\text { cell } \\
12
\end{array} \sum^{2} X\right)^{2}+\cdots+\left(\begin{array}{c}
\text { cell } \\
r c
\end{array} \sum^{2}\right]}{n_{\text {cell }}}\right]-\frac{\left(\begin{array}{c}
\text { all } \\
\text { scores } \\
\sum_{\text {cows }}
\end{array}\right)^{2}}{N} } \\
& -S S_{\text {columns }}
\end{aligned}
$$

STEP 4: Calculate the within-cells sum of squares, $S S_{\text {within-cells }}$.

$$
S S_{\text {within-cells }}=\sum_{\substack{\text { all } \\
\text { scores }}} X^{2}-\left[\frac{\left(\begin{array}{c}
\text { cell } \\
11
\end{array} \sum^{2}+\left(\sum^{\text {cell }} 12 x\right)^{2}+\cdots+\left(\begin{array}{c}
\text { cell } \\
\text { rc }
\end{array} \sum^{2} X\right)^{2}\right.}{n_{\text {cell }}}\right]
$$

STEP 5: Calculate the total sum of squares, $S S_{\text {total }}$, and check that $S S_{\text {total }}=S S_{\text {rows }}+$ $S S_{\text {columns }}+S S_{\text {interaction }}+S S_{\text {within-cells }}$.

$$
\begin{aligned}
& S S_{\text {total }}=\sum_{\substack{\text { all } \\
\text { scores }}} X^{2}-\frac{\left(\sum_{\substack{\text { all } \\
\text { scores }}}\right)^{2}}{N} \\
& S S_{\text {total }}=S S_{\text {rows }}+S S_{\text {columns }}+S S_{\text {interaction }}+S S_{\text {within-cells }}
\end{aligned}
$$

STEP 6: Calculate the degrees of freedom for each variance estimate.

$$
\begin{aligned}
\mathrm{df}_{\text {rows }} & =r-1 \\
\mathrm{df}_{\text {columns }} & =c-1 \\
\mathrm{df}_{\text {interaction }} & =(r-1)(c-1) \\
\mathrm{df}_{\text {within-cells }} & =r c\left(n_{\text {cell }}-1\right) \\
\mathrm{df}_{\text {total }} & =N-1
\end{aligned}
$$

STEP 7: Calculate the variance estimates.

$$
\begin{array}{r}
\text { Row variance estimate }=M S_{\text {rows }}=\frac{S S_{\text {rows }}}{\mathrm{df}_{\text {rows }}} \\
\text { Column variance estimate }=M S_{\text {columns }}=\frac{S S_{\text {columns }}}{\mathrm{df}_{\text {columns }}} \\
\text { Interaction variance estimate }=M S_{\text {interaction }}=\frac{S S_{\text {interaction }}}{\mathrm{df}_{\text {interaction }}} \\
\text { Within-cells variance estimate }=M S_{\text {within-cells }}=\frac{S S_{\text {within-cells }}}{\mathrm{df}_{\text {within-cells }}}
\end{array}
$$

## STEP 8: Calculate the $F$ ratios.

For the row effect,

$$
F_{\text {obt }}=\frac{M S_{\text {rows }}}{M S_{\text {within-cells }}}
$$

For the column effect,

$$
F_{\mathrm{obt}}=\frac{M S_{\text {columns }}}{M S_{\text {within-cells }}}
$$

For the interaction effect,

$$
F_{\mathrm{obt}}=\frac{M S_{\text {interaction }}}{M S_{\text {within-cells }}}
$$

After calculating the $F_{\text {obt }}$ values, compare them with $F_{\text {crit }}$ and conclude.

## ANALYZING NOMINAL DATA

You w ill re call $t$ hat $w$ ith $n$ ominal d ata, o bservations a re $g$ rouped into se veral discrete, m utually e xclusive cat egories, a nd one cou nts $t$ he $f$ requency of o ccurrence in each cat egory. The inference test most often use d with nominal data is chi-square.


#### Abstract

Chi-Square Test Test Statistic Calculated Decision Rule

Chi-square $$
\chi_{\mathrm{obt}}^{2}=\Sigma \frac{\left(f_{o}-f_{e}\right)^{2}}{f_{e}}
$$ $$
\text { If } \chi_{\mathrm{obt}}^{2} \geq \chi_{\text {crit }}^{2}, \text { reject } H_{0}
$$


General comments This test is appropriate for analyzing frequency data involving one or t wo variables. In the two-variable situation, the frequency data are presented in a contingency table and we test to see whether there is a relationship between the two variables. The null hypothesis states that there is no relationship-that the variables are independent. The alternative hypothesis states that the two variables are related.

Chi-square measures the discrepancy between the observed frequency $\left(f_{o}\right)$ and the expected frequency $\left(f_{e}\right)$ for each cell in the table and then sums across cells. The equation for $\chi_{\text {obt }}^{2}$ is given in the table. When the data involve two variables, the expected frequency for each cell is the frequency that would be expected if sampling is random from a population where the two variables are equal in proportions for each category. Since the population proportions are unknown, their expected values under $H_{0}$ are estimated from the sample data, and the expected frequencies are calculated using these estimates. The simplest way to determine $f_{e}$ for each cell is to multiply the marginals for that cell and divide by $N$. If the data involve only one $v$ ariable, the population proportions are determined on some a priori basis (e.g., equal population proportions for each category).

The obtained value of $\chi^{2}$ is e valuated by comparing it with $\chi_{\text {crit }}^{2}$ according to the decision rule given in the table. The critical value of $\chi^{2}$ is determined by the sampling distribution of $\chi^{2}$ and the alpha level. The sampling distribution of $\chi^{2}$ is a family of curves that varies with the degrees of freedom. In the one-variable experiment, $\mathrm{df}=$ $k-1$. In the two-variable situation, $\mathrm{df}=(r-1)(c-1)$. The values of $\chi_{\text {crit }}^{2}$ are found in Table H in Appendix D, using df and $\alpha$.

Proper use of this test assumes that (1) each subject has only one en try in the table (no repeated measures on the same subjects); (2) if $r$ or $c$ is greater than $2, f_{e}$ for each cell should be at least 5 ; and (3) if the table is a $1 \times 2$ or $2 \times 2$ table, each $f_{e}$ should be at least 10 .

Chi-square can also be used with ordinal, interval, a nd ratio data. However, regardless of the actual scaling, to use $\chi^{2}$, the data must be reduced to mutually exclusive categories and appropriate frequencies.

## CHOOSING THE APPROPRIATE TEST



## MENTORING TIP

Refer to Figure 18.1 when deciding which tests are candidates for analyzing any given data set. If more than one test is possible, always choose the most powerful one whose assumptions are met by the data.

One of the important aspects of statistical inference is choosing which test to use for any experiment or problem. Up to now, it has been easy. We just used the test that we were studying for the particular chapter. However, in this review chapter, the situation is more challenging. Since we have covered many inference tests, we now have the opportunity to choose among them in deciding which to use. This, of course, is much more like the situation we face when doing research.

In choosing an inference test, the fundamental rule that we should follow is:

## Use the most powerful test possible.

To determine which tests are possible for a given experiment or problem, we must consider two factors: the measurement scale of the dependent variable and the design of the experiment. Referring to the flowchart of Figure 18.1, the first question we ask is, "What is the level of measurement used for the dependent variable?" If it is nominal, the only inference test we've covered that is appropriate for nominal data is $\chi^{2}$. Thus, if the

data are nominal in scaling and the requirements of $\chi^{2}$ (frequency data, large enough $N$, mutually exclusive categories, and independent observations) are met, then we should choose the $\chi^{2}$ test. If the assumptions are not met, then you probably don't know what test to use, because it hasn't been covered in this introductory text. In the flowchart, this regrettable state of affairs is indicated by a "?". I hasten to reassure you, however, that the inference tests we've covered are the most commonly encountered ones, with the possible exception of more complicated ANOVAs. Wherever you see a "?" you should assume appropriate tests do exist, but I believe they are too specialized or too complicated to be included in this introductory textbook.

If the data are not nominal, they must be ordinal, interval, or ratio in scaling. Having ruled out nominal data, we should next ask, "What is the experimental design?" The design used in the experiment limits the inference tests that we can use to a nalyze the data. We have covered three basic designs: single-sample, two-sample or two-condition, and multigroup experiments. If the design use $d$ is a s ingle-sample design (path 1 in Figure 18.1), the two tests we have covered for this design are the $z$ test and the $t$ test for single samples. If the data meet the assumptions for these tests, to decide which to use we must ask the question, "Is $\sigma$ known?" If the answer is "yes," then the appropriate test is the $z$ test for single samples. If the answer is "no," then we must estimate $\sigma$ and use the $t$ test for single samples.

If the experimental design is a $t$ wo-sample or $t$ wo-condition design (path 2), we need to determine whether it is a cor related or independent groups design. If it is correlated groups and the assumptions of $t$ are met, the appropriate test is the $t$ test for correlated groups. Why? Because, if the assumptions are met, it is the most powerful test we can use for that design. If the assumptions are seriously violated, we should use an alternative test such as the Wilcoxon (if its assumptions are met) or the sign test. If it is an independent groups design and the assumptions of $t$ are met, we should use the $t$ test for independent groups. If the assumptions of $t$ are seriously violated, we should use an alternative test such as the Mann-Whitney $U$ test.

If the experimental design is a multigroup design (path 3), we need to determine whether it is a $n$ independent or cor related groups design. In this text, we have covered multigroup experiments that use the independent groups design. If the experiment is $m$ ultigroup, uses a $n$ i ndependent $g$ roups design, i nvolves one variable, and the assumptions of parametric ANOVA are met, the appropriate test is parametric one-way ANOVA ( $F$ test). If the assumptions are seriously violated, we should use its alternative, the Kruskal-Wallis test. If the design is a multigroup, independent groups design, involving two variables, and the data meet the assumptions of parametric two-way ANOVA, we would use parametric two-way ANOVA ( $F$ test) to a nalyze the data. We have not considered the more co mplex designs involving three or more variables.

## ■QUESTIONSANDPROBLEMS

Note to the student: In the previous chapters covering inferential statistics, when you were asked to solve an end-of-chapter problem, there was no ques tion ab out which inference test y ou w ould use -you w ould use $t$ he $t$ est covered in the chapter. For example, if you were doing a problem in Chapter 13, you knew you should use the $t$ test for single samples, because that was the test the chapter covered. Now you have reached the elevated position in
which you know so m uch statistics that when solving a problem, there may be more than one inference test that could be used. Often, both a parametric and nonparametric test may be possible. This is a new challenge. The rule to follow is to use the most powerful test that the data will allow. For the problems in this chapter, always assume that the a ssumptions underlying the pa rametric test a re met, unless the problem explicitly indicates otherwise.

1. Briefly define the following terms:

Alternative hypothesis
Null hypothesis
Null-hypothesis population
Sampling distribution
Critical region for rejection of $H_{0}$
Alpha level
Type I error
Type II error
Power
2. Briefly describe the process of hypothesis testing. Be sure to include the terms listed in Question 1 in your discussion.
3. Why are sampling distributions important in hypothesis testing?
4. An educator conducts an experiment using an independent groups design to evaluate two methods of teaching third-grade spelling. The results are not significant, and the educator concludes that the two methods are equal. Is this conclusion sound? Assume that the study was properly designed a nd conducted; that is, prop er controls $w$ ere presen $t$, sa mple s ize $w$ as rea sonably large, proper statistics were used, and so forth.
5. Why a re pa rametric tests generally pre ferred o ver nonparametric tests?
6. List the factors that affect the power of an experiment and explain how they can be used to increase power.
7. What factors determine which inference test to use in analyzing the data of an experiment?
8. List the various experimental designs covered in this textbook. In addition, list the inference tests appropriate for each design in the order of their sensitivity.
9. What a re $t$ he a ssumptions $u$ nderlying ea ch inference test?
10. What are the two steps followed in analyzing the data from any study involving hypothesis testing?
11. A new competitor in the scotch whiskey industry conducts a s tudy to co mpare its scotch whiskey (called McPherson's Joy) to the ot her three leading brands. Two hundred scotch drinkers are randomly sampled from the scotch drinkers living in New York City. Each individual is asked to taste the four scotch whiskeys and pick the one they like the best. Of course, the whiskeys are unmarked, and the order in which they are $t$ asted is ba lanced. The n umber of subjects that preferred each brand is shown in the following table:

| McPherson's <br> Joy | Brand | Brand | Brand <br> Jon |
| :---: | :---: | :---: | :---: |
| 58 | 52 | 48 | 42 |

a. What is the alternative hypothesis? Use a $n$ ondirectional hypothesis.
b. What is the null hypothesis?
c. Using $\alpha=0.05$, what do you conclude? I/O
12. A psychologist interested in animal learning conducts a $n$ experiment to det ermine the effect of adrenocorticotropic hor mone ( ACTH ) on a voidance learning. Twenty 100-day-old male rats are randomly selected from the university vivarium for the experiment. Of the 20,10 randomly chosen rats receive injections of ACTH 30 minutes before being placed in the avoidance situation. The other 10 receive placebo injections. The number of trials for each a nimal to learn the task is given here:

| ACTH | Placebo |
| :---: | :---: |
| $\ldots \ldots \ldots \ldots \ldots$ |  |
| 58 | 74 |
| 73 | 92 |
| 80 | 87 |
| 78 | 84 |
| 75 | 72 |
| 74 | 82 |
| 79 | 76 |
| 72 | 90 |
| 66 | 95 |
| 77 | 85 |

a. What is the nondirectional alternative hypothesis?
b. What is the null hypothesis?
c. Using $\alpha=0.01_{2 \text { tail }}$, what do you conclude?
d. What error may you have made by concluding as you did in part c?
e. To what population do these results apply?
f. What is the size of the effect? biological
13. A university nutritionist wonders whether the recent emphasis on eating a healthy diet has affected freshman students at her u niversity. Conse quently, she conducts a s tudy to det ermine whether the diet of freshman students cu rrently en rolled con tains less fat than that of previous freshmen. To determine their percentage of daily fat intake, 15 students in this year's freshman class keep a record of everything they eat for 7 d ays. The results show that for the 15 s tudents, $t$ he mea $n$ p ercentage of d aily $f$ at intake is $37 \%$, with a standard deviation of $12 \%$. Records kept on a large number of freshman students from previous years show a mean percentage of daily f at i ntake of $40 \%$, a s tandard de viation of $10.5 \%$, and a normal distribution of scores.
a. Based on these data, is the daily fat intake of currently enrolled freshmen less than that of previous years? Use $\alpha=0.05_{1 \text { tail }}$.
b. If the actual mean daily fat intake of currently enrolled freshmen is $35 \%$, what is the power of the experiment to detect this level of real effect?
c. If $N$ is increased to 30 , what is the power to detect a real mean daily fat intake of $35 \%$ ?
d. If the nutritionist wants a power of 0.9000 to detect a real effect of at least 5 mean points below the established population norms, what $N$ should she run? health, I/O
14. A physiologist conducts an experiment designed to determine the effect of exogenous thyroxin (a hormone produced by the thyroid gland) on activity. Forty male rats are randomly assigned to four groups such that there are 10 rats per group. Each of the groups is i njected with a different a mount of thyroxin. Group 1 g ets no thyroxin and receives saline solution instead. Group 2 receives a small amount, group 3 a mo derate a mount, and group 4 a high amount of thyroxin. After the injections, each animal is tested in an open-field apparatus to measure its activity level. The open-field apparatus is composed of a fairly large platform with sides around it to prevent the animal from leaving the platform. A grid configuration is painted on the surface of the platform such that the entire surface is covered with squares. To measure activity, the experimenter merely counts the number of squares that the animal has crossed during a fixed period of time. In the present experiment, each rat is tested in the open-field apparatus for 10 minutes. The results are shown in the table; the scores a re the number of squares crossed per minute.

| Amount of Thyroxin |  |  |  |
| :---: | :---: | :---: | :---: |
| Zero | Low | Moderate | High |
| 1 | 2 | 3 | 4 |
| 2 | 4 | 8 | 12 |
| 3 | 3 | 7 | 10 |
| 3 | 5 | 9 | 8 |
| 2 | 5 | 6 | 7 |
| 5 | 3 | 5 | 9 |
| 2 | 2 | 8 | 13 |
| 1 | 4 | 9 | 11 |
| 3 | 3 | 7 | 8 |
| 4 | 6 | 8 | 7 |
| 5 | 4 | 4 | 9 |

a. What is the overall null hypothesis?
b. Using $\alpha=0.05$, what do you conclude?
c. What is the size of the effect, using $\hat{\omega}^{2}$ ?
d. Evaluate the a pr iori h ypothesis th at a hi gh amount of exogenous thyroxin produces an effect on activity different from that of saline. Use $\alpha=$ $0.05_{2 \text { tail }}$.
e. Use the Tukey HSD test with $\alpha=0.05$ to compare all possible pairs of means. What do you conclude? biological
15. A study is cond ucted to det ermine whether dieting plus exercise is more e ffective in producing weight loss $t$ han $d$ ieting a lone. T welve pa irs of $m$ atched subjects a re run in the study. Subjects are matched on initial weight, initial level of exercise, age, a nd gender. One member of each pair is put on a diet for 3 months. The other member receives the same diet but, in addition, is put on a mo derate exercise regimen. The following scores indicate the weight loss in pounds over the 3-month period for each subject:

| Pair | Diet Plus Exercise | Diet Alone |
| :---: | :---: | :---: |
| $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$ |  |  |
| 1 | 24 | 16 |
| 2 | 20 | 18 |
| 3 | 22 | 19 |
| 4 | 15 | 16 |
| 5 | 23 | 18 |
| 6 | 21 | 18 |
| 7 | 16 | 17 |
| 8 | 17 | 19 |
| 9 | 19 | 13 |
| 10 | 25 | 18 |
| 11 | 24 | 19 |
| 12 | 13 | 14 |

In a nswering $t$ he $f$ ollowing ques tions, a ssume $t$ he data are very nonnormal so as to preclude using the appropriate parametric test.
a. What is the alternative hypothesis? Use a d irectional hypothesis.
b. What is the null hypothesis?
c. Using $\alpha=0.05_{1 \text { tail }}$, what do you conclude? health

16 a. What ot her n onparametric t est cou ld y ou ha ve used to analyze the data presented in Problem 15?
b. Use this test to analyze the data. What do you conclude with $\alpha=0.05_{1 \text { tail }}$ ?
c. Explain the difference between your conclusions for Problems 16b and 15c.
d. Let $P$ equal the probability for each subject that diet plus exercise will yield greater weight loss. If $P_{\text {real }}=0.75$, using the sign test with $\alpha=0.05_{1 \text { tail }}$, what is the power of the experiment to detect this level of effect? What is the probability of making a Type II error? health
17. A researcher in human sexuality is interested in determining whether there is a relationship between gender and time-of-day preference for having intercourse. A survey is conducted, and the results are shown in the following table; entries are the number of individuals who preferred morning or evening times:

|  | Intercourse |  |
| :--- | :---: | :---: |
| Gender | Morning | Evening |
|  |  |  |
| Male | 36 | 24 |
| Female | 28 | 32 |
|  | 60 | 50 |
|  | 64 | 120 |

a. What is the null hypothesis?
b. Using $\alpha=0.05$, what do you conclude? social
18. A psychologist is interested in whether the internal states of individuals affect their perceptions. Specifically, the psychologist wants to determine whether hunger i nfluences perception. To $t$ est $t$ his hypothesis, s he r andomly d ivides 24 s ubjects i nto $t$ hree groups of 8 s ubjects p er g roup. T he s ubjects a re asked to describe "pictures" that they are shown on a screen. Actually, there are no pictures, just ambiguous shapes or forms. Hunger is manipulated through food depr ivation. O ne g roup is s hown the pictures 1 hou $r$ a fter eat ing, a nother $g$ roup 4 hou rs a fter eating, a nd the la st $g$ roup 12 hou rs a fter eat ing. The number of food-related objects reported by each subject is recorded. The following data are collected:

| Food Deprivation |  |  |
| :---: | :---: | :---: |
| $\boldsymbol{1} \boldsymbol{h r}$ | $\mathbf{4} \boldsymbol{h r s}$ | $\mathbf{1 2} \boldsymbol{h r s}$ |
| $\boldsymbol{1}$ | $\boldsymbol{2}$ | $\mathbf{3}$ |
| $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$ |  |  |
| 2 | 6 | 8 |
| 5 | 7 | 10 |
| 7 | 6 | 15 |
| 2 | 10 | 19 |
| 1 | 15 | 9 |
| 8 | 12 | 14 |
| 7 | 7 | 15 |
| 6 | 6 | 12 |

a. What is the overall null hypothesis?
b. What is your conclusion? Use $\alpha=0.05$.
c. If there is a significant effect, estimate the size of the effect, using $\hat{\omega}^{2}$.
d. Estimate the size of the effect, using $\eta^{2}$.
e. Using the Scheffé test with $\alpha=0.05$, do all possible post $h$ oc co mparisons b etween pa irs of means. What is your conclusion? cognitive
19. An en gineer $w$ orking $f$ or al eading e lectronics firm claims to have invented a process for making longer-lasting LCD TVs. Tests run on 24 LCD TVs made with the new process show a mea $n$ life of 1725 hours a nd a s tandard de viation of 85 hours. Tests run over the last 3 years on a very large number of LCD TVs made with the old process show a mean life of 1538 hours.
a. Is the engineer correct in her claim? Use $\alpha=0.01_{1 \text { tail }}$ in making your decision.
b. If the engineer is correct, what is the size of the effect? I/O
20. In a study to determine the effect of alcohol on aggressiveness, 17 adult volunteers were randomly assigned to $t$ wo $g$ roups: a $n$ experimental $g$ roup a nd a con trol group. The subjects in the experimental group drank vodka disguised in or ange juice, a nd the subjects in the control g roup drank only or ange juice. After the drinks w ere finished, at est of agg ressiveness $w$ as administered. T he f ollowing scores w ere o btained. Higher scores indicate greater aggressiveness:

| Orange Juice | Vodka Plus Orange Juice |
| :---: | :---: |
| 11 | 14 |
| 9 | 13 |
| 14 | 19 |
| 15 | 16 |
| 7 | 15 |
| 10 | 17 |
| 8 | 11 |
| 10 | 18 |
| 8 |  |

a. What is the alternative hypothesis? Use a n ondirectional hypothesis.
b. What is the null hypothesis?
c. Using $\alpha=0.05_{2 \mathrm{t} \text { ail }}$, w hat is y our c onclusion? social, clinical
21. The dean of admissions at a large university wonders how strong the re lationship is b etween high school
grades and college grades. During the 2 years that he has held this position, he ha s weighted high school grades $h$ eavily wh en d eciding wh ich st udents $t$ o admit to the university, yet he has never seen any data relating the t wo v ariables. Having as trong experimental ba ckground, he de cides to cond uct a s tudy and find out for himself. He randomly sa mples 15 seniors $f$ rom $h$ is unversity a nd obtains their $h$ igh school a nd co llege $g$ rades. The following $d$ ata a re obtained:

| Grades |  |  |
| :---: | :---: | :---: |
| Subject | High school | College |
| $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$ |  |  |
| 1 | 2.2 | 1.5 |
| 2 | 2.6 | 1.7 |
| 3 | 2.5 | 2.0 |
| 4 | 2.2 | 2.4 |
| 5 | 3.0 | 1.7 |
| 6 | 3.0 | 2.3 |
| 7 | 3.1 | 3.0 |
| 8 | 2.6 | 2.7 |
| 9 | 2.8 | 3.2 |
| 10 | 3.2 | 3.6 |
| 11 | 3.4 | 2.5 |
| 12 | 3.5 | 2.8 |
| 13 | 4.0 | 3.2 |
| 14 | 3.6 | 3.9 |
| 15 | 3.8 | 4.0 |

a. Compute $r_{\text {obt }}$ for these data.
b. Is the correlation significant? Use $\alpha=0.05_{2 \text { tail }}$.
c. What prop ortion of $t$ he $v$ ariability in co llege grades is accounted for by the high school grades?
d. Is $t$ he dea n ustified in $w$ eighting $h$ igh $s$ chool grades heavily when determining which students to admit to the university? education
22. An experiment is cond ucted to e valuate the effect of smoking on heart rate. Ten subjects who smoke cigarettes are randomly selected for the experiment. Each subject serves in two conditions. In condition 1, the subject rests for an hour, after which heart rate is mea sured. In condition 2, the subject rests for an hour and then smokes two cigarettes. In condition 2, heart rate is measured after the subject has finished smoking the cigarettes. The data follow.

|  | Heartbeats per Minute |  |
| :---: | :---: | :---: |
| So smoking | Smoking |  |
| Subject | $\boldsymbol{1}$ | $\mathbf{2}$ |
| $\ldots \ldots \ldots$ |  |  |
| 1 | 72 | 76 |
| 2 | 80 | 84 |
| 3 | 68 | 75 |
| 4 | 74 | 73 |
| 5 | 80 | 86 |
| 6 | 85 | 88 |
| 7 | 86 | 84 |
| 8 | 78 | 80 |
| 9 | 68 | 72 |
| 10 | 67 | 70 |

a. What is the nondirectional alternative hypothesis?
b. What is the null hypothesis?
c. Using $\alpha=0.05_{2 \text { tail }}$, what do you conclude?
d. If your conclusion in part $\mathbf{c}$ is to affirm $H_{1}$, what is the size of the effect? biological, clinical
23. To meet the current oil crisis, the government must decide on a course of action to follow. There are two choices: (1) to a llow the price of oil to $r$ ise or (2) to impose gasoline rationing. A survey is taken a mong i ndividuals of various o ccupations to see whether there is a re lationship between the occupations and the favored course of action. The results are shown in the following $3 \times 2$ table; cell entries are the number of individuals favoring the course of action that heads the cell:

|  | Course of Action |  |  |
| :---: | :---: | :---: | :---: |
| Oil Occupation rise | price | Gasoline rationing |  |
| Business 180 |  | 120 | 300 |
| Homemaker 135 |  | 165 | 300 |
| Labor 152 |  | 148 | 300 |
| 67 |  | 433 | 900 |

a. What is the null hypothesis?
b. Using $\alpha=0.05$, what do you conclude? I/O
24. You a re interested int esting $t$ he $h$ ypothesis $t$ hat adult men a nd women differ in logical rea soning ability. To do so, you randomly select 16 adults from the city in which you live and administer a logical reasoning $t$ est to $t$ hem. A h igher score i ndicates
better 1 ogical rea soning ab ility. T he f ollowing scores are obtained:

| Men | Women |
| :---: | :---: |
| 70 | 80 |
| 60 | 50 |
| 82 | 81 |
| 65 | 75 |
| 83 | 95 |
| 92 | 85 |
| 85 | 93 |
|  | 75 |
|  | 90 |

In a nswering $t$ he following ques tions, a ssume $t$ hat the data violate the assumptions underlying the use of the appropriate parametric test and that you must analyze the data with a nonparametric test.
a. What is the null hypothesis?
b. Using $\alpha=0.05_{2 \text { tail }}$, what is your conclusion?
c. What $t$ ype er ror $m$ ight ha ve $b$ een $m$ ade $b y t$ he conclusion of part b? cognitive, social
25. For her doctoral thesis, a graduate student in women's studies investigated the effects of stress on the menstrual cycle. Forty-two women were randomly sampled and run in a two-condition replicated measures design. However, one of the women dropped out of the study. In the stress condition, the mean length of menstrual cycle for the remaining 41 women was 29 days, with a standard deviation of 14 days. Based on these data, determine the $95 \%$ confidence interval for $t$ he p opulation mea $n$ length of mens trual cycle when under stress. health, social
26. A researcher interested in social justice believes that Hispanics are underrepresented in high school teachers in the part of the country in which she lives. A random sample of 150 high school teachers is taken from her g eographical locale. The results show that there were 15 Hispanic teachers in the sample. The percentage of Hispanics living in the population of that locale equals $22 \%$.
a. What is the null hypothesis?
b. Using $\alpha=0.05$, what is your conclusion? social
27. A student believes that ph ysical sci ence professors are more authoritarian than social science professors. She conducts an experiment in which six physics, six
psychology, a nd s ix so ciology pro fessors a re r andomly selected and given a questionnaire measuring authoritarianism. T he res ults a re s hown here. T he higher the score is, the more authoritarian is the individual. A ssume the data ser iously violate normality assumptions. What do you conclude, using $\alpha=0.05$ ?

| Professors |  |  |
| :--- | :---: | :---: |
| Physics | Psychology | Sociology |
| $\ldots \ldots \ldots \ldots$ | $\ldots$ | $\ldots$ |
| 75 | 73 | $\ldots$ |
| 82 | 80 | $\ldots$ |
| 80 | 85 | $\ldots$ |
| 97 | 92 | 80 |
| 94 | 70 | 90 |
| 76 | 69 | 78 |

social
28. A s leep r esearcher i s in terested in d etermining whether taking naps can improve performance and, if so, whether it matters if the naps a re taken in the afternoon or evening. Thirty undergraduates are randomly sampled and assigned to one of six conditions: napping in the afternoon or evening, resting in the afternoon or evening, or engaging in a normal activity control condition, again in the afternoon or evening. There are five subjects in each condition. Each subject performs the activity appropr iate for his or her assigned condition, after which a performance test is given. The higher the score is, the better is the performance. The following results were obtained. What is your conclusion? Use $\alpha=0.05$ and assume the data are from normally distributed populations.

|  | Activity |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Time of Day | Napping | Resting |  | Normal |  |  |
| Afternoon | 8 | 9 | 7 | 8 | 3 | 4 |
|  | 7 | 5 | 6 | 4 | 5 | 5 |
|  | 6 |  | 5 |  | 6 |  |
| Evening | 6 | 5 | 5 | 3 | 4 | 2 |
|  | 7 | 4 | 4 | 5 | 3 | 4 |
|  | 6 |  | 4 |  | 3 |  |

## cognitive

## ONLINE STUDY RESOURCES

## CENGAGE brain

Login to CengageBrain.com to access the resources your instructor has assigned. For this book, you can access the book's co mpanion website for chapter-specific learning tools including Know and Be Able to Do, practice quizzes, flash cards, and glossaries, and a link to Statistics and Research Methods Workshops.

## ॐ <br> aplia

If your professor has assigned Aplia homework:

1. Sign in to your account.
2. Complete the cor responding ho mework exercises as required by your professor.
3. When finished, click "G rade It Now" to se e which areas you have mastered and which need more work, and for detailed explanations of every answer.

Visit www.cengagebrain.com to access your account and to purchase materials.

## APPENDIXES

## A Review of Prerequisite Mathematics <br> 553

## B <br> Equations 563

C
Answers to End-of-Chapter Questions and Problems and SPSS Problems 571
D Tables 590
E Introduction to SPSS 615

# Review of Prerequisite Mathematics 

Introduction
Solving Equations with One Unknown
Linear Interpolation

In this appendix, we shall present a review of some basic mathematical skills that we believe a re important as background for an introductory course in statistics. This appendix is intended to be a review of material that you have already learned but that may be a little "rusty" from disuse. For students who have been away from mathematics for many years and who feel unsure of their mathematical background, we re commend the following b ooks: H. M. W alker, Mathematics E ssential for Elementary Statistics (rev. ed., Holt, New York, 1951) or A. J. Washington, Arithmetic and Beginning Algebra (Addison-Wesley, Reading, MA, 1984). In addition, there is a web site for online learning of basic and advanced mathematics that has received high praise. The web address is www.khanacedemy.org. For the prerequisite material required by this course, I recommend you view the modules that have "Algebra" or "Equations" in the title. Of course, it makes sense to study only those modules that deal with material that requires reviewing.

## Algebraic Symbols

| Symbol | Explanation |
| :---: | :---: |
| $>$ | Is greater than |
| $5>4$ | 5 is greater than 4. |
| $X>10$ | $X$ is greater than 10. |
| $a>b$ | $a$ is greater than $b$. |
| $<$ | Is less than |
| $7<9$ | 7 is less than 9 . |
| $x<12$ | $X$ is less than 12. |
| $a<b$ | $a$ is less than $b$. |
| $2<X<20$ | $X$ is greater than 2 and less than 20, or the value of $X$ lies between 2 and 20. |
| $X<2$ or $X>20$ | $X$ is less than 2 or greater than 20 , or the value of $X$ lies outside the interval of 2 to 20 . |
| $\geq$ | Is equal to or greater than |
| $X \geq 3$ | $X$ is equal to or greater than 3. |
| $a \geq b$ | $a$ is equal to or greater than $b$. |
| $\leq$ | Is equal to or less than |
| $X \leq 5$ | $X$ is equal to or less than 5. |
| $a \leq b$ | $a$ is equal to or less than $b$. |
| $\neq$ | Is not equal to |
| $3 \neq 5$ | 3 is not equal to 5 . |
| $X \neq 8$ | $X$ is not equal to 8 . |
| $a \neq b$ | $a$ is not equal to $b$. |
| $\|X\|$ | The absolute value of $X$; the absolute value of $X$ equals the magnitude of $X$ irrespective of its sign. |
| $\|+7\|$ | The absolute value of $7 ;\|+7\|=7$. |
| $\|-5\|$ | The absolute value of $-5 ;\|-5\|=5$. |

## Arithmetic Operations

## Operation

## Example

1. Addition of two positive numbers: $2+8=10$
To add two positive numbers, sum their absolute values and give the result a plus sign.
2. Addition of two negative numbers: To add two negative numbers, sum their absolute values and give the result a minus sign.
3. Addition of two numbers with opposite signs: To add two numbers with opposite signs, find the difference between their absolute values and give the number the sign of the larger absolute value.
4. Subtraction of one number from another: To subtract one number from another, change the sign of the number to be subtracted and proceed as in addition (operations 1, 2, or 3).
5. Multiplying a series of numbers:
a. When multiplying a series of numbers, the result is positive if there are an even number of negative values in the series.
b. When multiplying a series of numbers, the result is negative if there are an odd number of negative values in the series.
6. Dividing a series of numbers:
a. When dividing a series of numbers, the result is positive if there are an even number of negative values.
b. When dividing a series of numbers, the result is negative if there are an odd number of negative values.
$16+(-10)=6$
$3+(-14)=-11$

$$
-3+(-4)=-7
$$

$$
3+(-14)=-11
$$

$16-4=16+(-4)=12$
$5-8=5+(-8)=-3$
$9-(-6)=9+(+6)=15$
$-3-5=-3+(-5)=-8$
$2(-5)(-6)(3)=180$
$-3(-7)(-2)(-1)=42$
$-a(-b)=a b$
$4(-5)(2)=-40$
$-8(-2)(-5)(3)=-240$
$-a(-b)(-c)=-a b c$
$\frac{-4}{-8}=\frac{1}{2}$
$\frac{-3(-4)(2)}{6}=4$
$\frac{-a}{-b}=\frac{a}{b}$
$\frac{-2}{5}=-0.40$
$\frac{-3(-2)}{-4}=-1.5$
$\frac{-a}{b}=-\frac{a}{b}$

## Rules Governing the Order of Arithmetic Operations

Rule Example

1. The order in which numbers are added does not change the result.
2. The order in which numbers are multiplied does not change the result.
3. If both multiplication and addition or subtraction are specified, the multiplication should be performed first unless parentheses or brackets indicate otherwise.
4. If both division and addition or subtraction are specified, the division should be performed first unless parentheses or brackets indicate otherwise.
$6+4+11=4+6+11=11+6+4=21$
$6+(-3)+2=-3+6+2=2+6+(-3)=5$
$3 \times 5 \times 8=8 \times 5 \times 3=5 \times 8 \times 3=120$
$4 \times 5+2=20+2=22$
$6 \times(14-12) \times 3=6 \times 2 \times 3=36$
$6 \times(4+3) \times 2=6 \times 7 \times 2=84$
$12 \div 4+2=3+2=5$
$12 \div(4+2)=12 \div 6=2$
$12 \div 4-2=3-2=1$
$12 \div(4-2)=12 \div 2=6$

## Rules Governing Parentheses and Brackets

## Rule

Example

1. Parentheses and brackets indicate that whatever is shown within them is to be treated as a single number.
2. Where there are parentheses contained within brackets, perform

$$
\begin{aligned}
& {[(4)(6-3+2)+6][2]=[(4)(5)+6][2]} \\
& \quad=[20+6][2]=[26][2]=52
\end{aligned}
$$ the operations contained within the parentheses first.

3. When it is inconvenient to reduce whatever is contained within the parentheses to a single number, the parentheses may be removed as follows:
a. If a positive sign precedes the parentheses, remove the parentheses without changing the sign of any number they contained.
b. If a negative sign precedes the parentheses, remove the parentheses and change the signs of the numbers they contained.
c. If a multiplier exists outside the parentheses, all the terms within the parentheses must be multiplied by the multiplier.
d. The product of two sums is found by multiplying each element of one sum by the elements of the other sum.
e. If whatever is contained within the parentheses is operated on in any way, always do the operation first, before $4-(6-2-1)=4-6+2+1=1$ combining with other terms.

## Fractions

## Operation

## Example

1. Addition of fractions:

To add two fractions, (1) find the least common denominator, (2) express each fraction in terms of the least common denominator, and (3) add the numerators and divide the sum by the common denominator.
2. Multiplication of fractions: To multiply two fractions, multiply the numerators together and divide by the product of the denominators.
3. Changing a fraction into its decimal equivalent:
To convert a fraction into a decimal, perform the indicated division, rounding to the required number of digits (two digits in the example shown).
4. Changing a decimal into a percentage:

To convert a decimal fraction into a percentage, multiply the decimal fraction by 100 .
5. Multiplying an integer by a fraction:

To multiply an integer by a fraction, multiply the integer by the numerator of the fraction and divide the product by the denominator.
6. Cancellation:

When multiplying several fractions together, identical factors in the numerator and denominator may be canceled.

$$
\begin{aligned}
& \frac{1}{3}+\frac{1}{2}=\frac{2}{6}+\frac{3}{6}=\frac{5}{6} \\
& \frac{a}{b}+\frac{c}{d}=\frac{a d}{b d}+\frac{c b}{b d}=\frac{a d+c b}{b d}
\end{aligned}
$$

$$
\frac{2}{5}\left(\frac{3}{7}\right)=\frac{6}{35}
$$

$$
\frac{a}{b}\left(\frac{c}{d}\right)=\frac{a c}{b d}
$$

$$
\frac{3}{7}=0.429=0.43
$$

$$
0.43 \times 100=43 \%
$$

$$
\frac{2}{5}(4)=\frac{8}{5}=1.60
$$

$$
\frac{\frac{1}{5}}{\underset{3}{12}}\left(\frac{1}{4}\left(\underset{3}{\frac{4}{9}}\right)\left(\underset{2}{\frac{1}{3}} \underset{2}{10}\right)=\frac{1}{18}\right.
$$

Exponents
Operation

## Example

1. Multiplying a number by itself 2 times
2. Multiplying a number by itself 3 times
3. Multiplying a number by itself $N$ times
4. Multiplying two exponential quantities having the same base:
The product of two exponential quantities having the same base is the base raised to the sum of the exponents.
5. Dividing two exponential quantities having the same base:
The quotient of two exponential quantities having the same base is the base raised to an exponent equal to the exponent of the quantity in the numerator minus the exponent of the quantity in the denominator.
6. Raising a base to a negative exponent:

A base raised to a negative exponent is equal to 1 divided by the base raised to the positive value of the exponent.

$$
\begin{aligned}
& (4)^{2}=4(4)=16 \\
& a^{2}=a a
\end{aligned}
$$

$$
(4)^{3}=4(4)(4)=64
$$

$$
a^{3}=a a a
$$

$$
\begin{aligned}
& 4^{N}=\overbrace{4(4)(4) \cdots(4)}^{N} \\
& (2)^{2}(2)^{4}=(2)^{2+4}=(2)^{6} \\
& a^{N} a^{P}=a^{N+P}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{(2)^{4}}{(2)^{2}}=(2)^{2} \\
& \frac{a^{N}}{a^{P}}=a^{N-P}
\end{aligned}
$$

$$
(2)^{-3}=\frac{1}{(2)^{3}}
$$

$$
a^{-N}=\frac{1}{a^{N}}
$$

Factoring When factoring an algebraic expression, we try to reduce the expression to the simplest components that when multiplied together yield the original expression.
Example

$$
\begin{aligned}
& a b+a c+a d=a(b+c+d) \\
& a b c-2 a b=a b(c-2) \\
& a^{2}+2 a b+b^{2}=(a+b)^{2}
\end{aligned}
$$

We factored out $a b$ from both terms.
This expression can be reduced to $a+b$ times itself.

## SOLVING EQUATIONS WITH ONE UNKNOWN

When solving equations with one unknown, the basic idea is to isolate the unknown on one side of the equation and reduce the other side to its smallest possible value. In so doing, we make use of the principle that the equation remains an equality if whatever we do to one side of the equation, we also do the same to the other side. Thus, for example, the equation remains an equality if we add the same number to both sides. In solving the equation, we alter the equation by adding, subtracting, multiplying dividing, squaring,
and so forth, so as to isolate the unknown. This is permissible as long as we do the same operation to $b$ oth sides of the equation, thus maintaining the equality. The following examples illustrate many of the operations commonly used to solve equations having one unknown. In each of the examples, we shall be solving the equation for $Y$.

| Example | Explanation |
| :---: | :---: |
| $\begin{aligned} & Y+5=2 \\ & Y=2-5 \\ & =-3 \end{aligned}$ | To isolate $Y$, subtract 5 from both sides of the equation. |
| $\begin{aligned} & Y-4=6 \\ & Y=6+4 \\ & =10 \end{aligned}$ | To isolate $Y$, add 4 to both sides of the equation. |
| $\begin{aligned} \frac{Y}{2} & =8 \\ Y & =8(2) \\ & =16 \end{aligned}$ | To isolate $Y$, multiply both sides of the equation by 2 . |
| $\begin{aligned} 3 Y & =7 \\ Y & =\frac{7}{3} \\ & =2.33 \end{aligned}$ | To isolate $Y$, divide both sides of the equation by 3 . |
| $\begin{aligned} & 6=\frac{Y-3}{2} \\ & 12=Y-3 \\ & 3+12=Y \\ & 15=Y \\ & Y=15 \end{aligned}$ | To isolate $Y$, <br> (1) multiply both sides by 2 and <br> (2) add 3 to both sides. |
| $\begin{aligned} & 3=\frac{2}{Y} \\ & 3 Y=2 \\ & Y=\frac{2}{3} \end{aligned}$ | To isolate $Y$, <br> (1) multiply both sides by $Y$ and <br> (2) divide both sides by 3 . |
| $\begin{aligned} & 4(Y+1)=3 \\ & Y+1=\frac{3}{4} \\ & Y=\frac{3}{4}-1 \\ & \quad=-\frac{1}{4} \end{aligned}$ | To isolate $Y$, <br> (1) divide both sides by 4 and <br> (2) subtract 1 from both sides. |
| $\frac{4}{Y+2}=8$ | To isolate $Y$, |
| $\frac{Y+2}{4}=\frac{1}{8}$ | (1) take the reciprocal of both sides, |
| $Y+2=\frac{4}{8}$ | (2) multiply both sides by 4 , and |
| $\begin{aligned} Y & =\frac{4}{8}-2 \\ & =-1 \frac{1}{2} \end{aligned}$ | (3) subtract 2 from both sides. |
| $\begin{aligned} & 2 Y+4=10 \\ & 2 Y=10-4 \end{aligned}$ | To isolate $Y$, <br> (1) subtract 4 from both sides and |
| $\begin{aligned} Y & =\frac{10-4}{2} \\ & =3 \end{aligned}$ | (2) divide both sides by 2 . |

Linear interpolation is often necessary when looking up values in a table. For example, suppose we wanted to find the square root of 96.5 using a table that only has the square root of 96 and 97 but not 96.5 , as shown here:

| Number | Square <br> root |
| :---: | :---: |
| 96 | 9.7980 |
| 97 | 9.8489 |

Looking in the column headed by Number, we note that there is no value corresponding to 96.5 . The closest values are 96 a nd 97 . From the table, we can see that the square root of 96 is 9.7980 and that the square root of 97 is 9.8489 . Obviously, the square root of 96.5 must lie between 9.7980 and 9.8489 . Using linear interpolation, we assume there is a linear relationship between the number and its square root, and we use this linear relationship to approximate the square root of numbers not given in the table. Since 96.5 is halfway between 96 and 97 , using linear interpolation, we would expect the square root of 96.5 to lie halfway between 9.7980 and 9.8489 . If we let $X$ equal the square root of 96.5 , then

$$
X=9.7980+0.5(9.8489-9.7980)=9.8234
$$

Although it wasn't made explicit, the computed value for $X$ was the result of setting up the following proportions and solving for $X$ :

| 96.5-96 | $X-9.7980$ | Number | Square Root |
| :---: | :---: | :---: | :---: |
| 97-96 | 9.8489-9.7980 |  |  |
|  |  | 96 | 9.7980 |
|  |  | 96.5 | $X$ |
|  |  | 97 | 9.8489 |

The relationship is shown graphically in Figure A.1.

figure A. 1 Linear interpolation of $\sqrt{96.5}$.

## Equations

Listed here a re the computational equations used in this textbook. The page number refers to the page where the equation first appears.

| Equation | Description | Equation First Occurs on Page: |
| :---: | :---: | :---: |
| $\sum_{i=1}^{N} X_{i}=X_{1}+X_{2}+X_{3}+\cdots+X_{N}$ | summation | 27 |
| $\operatorname{cum} \%=\frac{\operatorname{cum} f}{N} \times 100$ | cumulative percentage | 55 |
| Percentile point $=X_{L}+\left(i / f_{i}\right)\left(\operatorname{cum} f_{p}-\operatorname{cum} f_{L}\right)$ | equation for computing percentile point | 58 |
| $\text { Percentile rank }=\frac{\operatorname{cum} f_{L}+\left(f_{i} / i\right)\left(X-X_{L}\right)}{N} \times 100$ | equation for computing percentile rank | 59 |
| $\bar{X}=\frac{\sum X_{i}}{N}$ | mean of a sample | 81 |
| $\mu=\frac{\sum X_{i}}{N}$ | mean of a population of raw scores | 81 |
| $\bar{X}_{\text {overall }}=\frac{n_{1} \bar{X}_{1}+n_{2} \bar{X}_{2}+\cdots+n_{k} \bar{X}_{k}}{n_{1}+n_{2}+\cdots+n_{k}}$ | overall mean of several groups | 84 |
| $\operatorname{Mdn}=P_{50}=X_{L}+\left(i / f_{i}\right)\left(\operatorname{cum} f_{p}-\operatorname{cum} f_{L}\right)$ | median of a distribution | 85 |
| Range $=$ Highest score - Lowest score | range of a distribution | 89 |
| $X-\bar{X}$ | deviation score for sample data | 90 |
| $X-\mu$ | deviation score for population data | 90 |
| $\sigma=\sqrt{\frac{S S_{\mathrm{pop}}}{N}}=\sqrt{\frac{\sum(X-\mu)^{2}}{N}}$ | standard deviation of a population of raw scores | 91 |
| $s=\sqrt{\frac{S S}{N-1}}=\sqrt{\frac{\sum(X-\bar{X})^{2}}{N-1}}$ | standard deviation of a sample of raw scores | 91 |


| Equation | Description | Equation First Occurs on Page: |
| :---: | :---: | :---: |
| $S S=\Sigma X^{2}-\frac{(\Sigma X)^{2}}{N}$ | sum of squares | 93 |
| $s^{2}=\frac{S S}{N-1}$ | variance of a sample of raw scores | 95 |
| $\sigma^{2}=\frac{S S_{\mathrm{pop}}}{N}$ | variance of a population of raw scores | 95 |
| $z=\frac{X-\mu}{\sigma}$ | $z$ score for population data | 106 |
| $z=\frac{X-\bar{X}}{s}$ | $z$ score for sample data | 106 |
| $X=\mu+\sigma z$ | equation for finding a population raw score from its $z$ score | 114 |
| $Y=b X+a$ | equation of a straight line | 125 |
| $b=\text { Slope }=\frac{\Delta Y}{\Delta X}=\frac{Y_{2}-Y_{1}}{X_{2}-X_{1}}$ | slope of a straight line | 125 |
| $r=\frac{\sum z_{X} z_{Y}}{N-1}$ | computational equation for Pearson $r$ using $z$ scores | 133 |
| $r=\frac{\sum X Y-\frac{\left(\sum X\right)\left(\sum Y\right)}{N}}{\sqrt{\left[\Sigma X^{2}-\frac{(\Sigma X)^{2}}{N}\right]\left[\Sigma Y^{2}-\frac{(\Sigma Y)^{2}}{N}\right]}}$ | computational equation for Pearson $r$ | 133 |
| $r_{s}=1-\frac{6 \sum D_{i}^{2}}{N^{3}-N}$ | computational equation for Spearman rho | 141 |
| $Y^{\prime}=b_{Y} X+a_{Y}$ | linear regression equation for predicting $Y$ given $X$ | 162 |
| $b_{Y}=\frac{\sum X Y-\frac{\left(\sum X\right)\left(\sum Y\right)}{N}}{\sum X^{2}-\frac{(\Sigma X)^{2}}{N}}$ | regression constant $\boldsymbol{b}$ for predicting $Y$ given $X$, computational equation with raw scores | 163 |
| $a_{Y}=Y-b_{Y} \bar{X}$ | regression constant $\boldsymbol{a}$ for predicting $Y$ given $X$ | 163 |
| $s_{\mathrm{Y} \mid \mathrm{X}}=\sqrt{\frac{S S_{Y}-\frac{\left[\sum X Y-\left(\sum X\right)\left(\sum Y\right) / N\right]^{2}}{S S_{X}}}{N-2}}$ | computational equation for the standard error of estimate when predicting $Y$ given $X$ | 170 |
| $b_{Y}=r \frac{s_{Y}}{s_{X}}$ | equation relating $r$ to the $b_{\mathrm{Y}}$ regression constant | 173 |
| $R^{2}=\frac{r_{Y X_{1}}^{2}+r_{Y X_{2}^{2}}^{2}-2 r_{Y X_{1}} r_{Y X_{2}} r_{X_{1} X_{2}}}{1-r_{X_{1} X_{2}}^{2}}$ | equation for computing the squared multiple correlation | 176 |


| Equation | Description | Equatio First Occurs on Page |
| :---: | :---: | :---: |
| $p(A)=\frac{\text { Number of events classifiable as } A}{\text { Total number of possible events }}$ | a priori probability | 193 |
| $p(A)=\frac{\text { Number of times } A \text { has occurred }}{\text { Total number of occurrences }}$ | a posteriori probability | 194 |
| $p(A$ or $B)=p(A)+p(B)-p(A$ and $B)$ | addition rule for two events, general equation | 196 |
| $p(A$ or $B)=p(A)+p(B)$ | addition rule when $A$ and $B$ are mutually exclusive | 196 |
| $p(A$ or $B$ or $C$ or $\ldots$ or $Z)=p(A)+p(B)+p(C)+\ldots+p(Z)$ | addition rule with more than two mutually exclusive events | 200 |
| $p(A)+p(B)+p(C)+\ldots+p(Z)=1.00$ | when events are exhaustive and mutually exclusive | 200 |
| $P+Q=1.00$ | when two events are exhaustive and mutually exclusive | 201 |
| $p(A$ and $B)=p(A) p(B \mid A)$ | multiplication rule with two events-general equation | 201 |
| $p(A$ and $B)=0$ | multiplication rule with mutually exclusive events | 201 |
| $p(A$ and $B)=p(A) p(B)$ | multiplication rule with independent events | 202 |
| $p(A$ and $B$ and $C$ and $\ldots$ and $Z)=p(A) p(B) p(C) \ldots p(Z)$ | multiplication rule with more than two independent events | 206 |
| $p(A$ and $B)=p(A) p(B \mid A)$ | multiplication rule with dependent events | 207 |
| $p(A$ and $B$ and $C$ and $\ldots$ and $Z)=p(A) p(B \mid A) p(C \mid A B) \ldots p(Z \mid A B C \ldots)$ | multiplication rule with more than two dependent events | 210 |
| $p(A)=\frac{\text { Area under curve corresponding to } A}{\text { Total area under curve }}$ | probability of $A$ with a continuous variable | 214 |
| $(P+Q)^{N}$ | binomial expansion | 229 |
| Number of $Q$ events $=N-$ Number of $P$ events | relationship between number of $Q$ events, number of $P$ events, and $N$ | 235 |
| $\mu=N P$ | mean of the normal distribution approximated by the binomial distribution | 239 |
| $\sigma=\sqrt{N P Q}$ | standard deviation of the normal distribution approximated by the binomial distribution | 239 |
| Beta $=1-$ Power | relationship between beta and power | 285 |
| $\mu_{\bar{X}}=\mu$ | mean of the sampling distribution of the mean | 305 |
| $\sigma_{\bar{X}}=\frac{\sigma}{\sqrt{N}}$ | standard deviation of the sampling distribution of the mean or standard error of the mean | 305 |

Equation

    First
    
    Occurs
    on Page:

| Equation | Description | Equation First Occurs on Page: |
| :---: | :---: | :---: |
| $z_{\mathrm{obt}}=\frac{\bar{X}_{\mathrm{obt}}-\mu}{\sigma_{\bar{X}}}$ | $z$ transformation for $\bar{X}_{\text {obt }}$ | 312 |
| $z_{\mathrm{obt}}=\frac{\bar{X}_{\mathrm{obt}}-\mu}{\sigma / \sqrt{N}}$ | $z$ transformation for $\bar{X}_{\text {obt }}$ | 315 |
| $N=\left[\frac{\sigma\left(z_{\text {crit }}-z_{\mathrm{obt}}\right)}{\mu_{\text {real }}-\mu_{\mathrm{null}}}\right]^{2}$ | determining $N$ for a specified power | 321 |
| $t_{\mathrm{obt}}=\frac{\bar{X}_{\mathrm{obt}}-\mu}{s / \sqrt{N}}$ | equation for calculating the $t$ statistic | 328 |
| $t_{\mathrm{obt}}=\frac{\bar{X}_{\mathrm{obt}}-\mu}{s_{\bar{X}}}$ | equation for calculating the $t$ statistic | 328 |
| $s_{\bar{X}}=\frac{s}{\sqrt{N}}$ | estimated standard error of the mean | 328 |
| $\mathrm{df}=N-1$ | degrees of freedom for $t$ test (single sample) | 331 |
| $t_{\mathrm{obt}}=\frac{\bar{X}_{\mathrm{obt}}-\mu}{\sqrt{\frac{S S}{N(N-1)}}}$ | equation for calculating the $t$ statistic from raw scores | 334 |
| $d=\frac{\mid \text { mean difference } \mid}{\text { population standard deviation }}$ | general equation for size of effect | 339 |
| $d=\frac{\left\|\bar{X}_{\mathrm{obt}}-\mu\right\|}{\sigma}$ | conceptual equation for size of effect, single sample $t$ test | 339 |
| $\hat{d}=\frac{\left\|\bar{X}_{\mathrm{obt}}-\mu\right\|}{s}$ | computational equation for size of effect, single sample $t$ test | 340 |
| $\mu_{\text {lower }}=\bar{X}_{\text {obt }}-s_{\bar{X}} t_{0.025}$ | lower limit for the $95 \%$ confidence interval | 342 |
| $\mu_{\text {upper }}=\bar{X}_{\text {obt }}+s_{\bar{X}} t_{0.025}$ | upper limit for the $95 \%$ confidence interval | 342 |
| $\mu_{\text {lower }}=\bar{X}_{\text {obt }}-s_{\bar{X}} t_{\text {crit }}$ | general equation for the lower limit of the confidence interval | 343 |
| $\mu_{\text {upper }}=\bar{X}_{\text {obt }}+s_{\bar{X}} t_{\text {crit }}$ | general equation for the upper limit of the confidence interval | 343 |
| $\mu_{\text {lower }}=\bar{X}_{\text {obt }}-s_{\bar{X}} t_{0.005}$ | lower limit for the $99 \%$ confidence interval | 344 |
| $\mu_{\text {upper }}=\bar{X}_{\text {obt }}+s_{\bar{X}} t_{0.005}$ | upper limit for the $99 \%$ confidence interval | 344 |
| $t_{\mathrm{obt}}=\frac{r_{\mathrm{obt}}-p}{s_{r}}$ | $t$ test for testing the significance of $r$ | 346 |


| Equation | Description | Equation First Occurs on Page: |
| :---: | :---: | :---: |
| $t_{\mathrm{obt}}=\frac{r_{\mathrm{obt}}}{\sqrt{\frac{1-r_{\mathrm{obt}}^{2}}{N-2}}}$ | $t$ test for testing the significance of $r$ | 346 |
| $t_{\mathrm{obt}}=\frac{\bar{D}_{\mathrm{obt}}-\mu_{D}}{s_{D} / \sqrt{N}}$ | $t$ test for correlated groups | 360 |
| $t_{\mathrm{obt}}=\frac{\bar{D}_{\mathrm{obt}}-\mu_{D}}{\sqrt{\frac{S S_{D}}{N(N-1)}}}$ | $t$ test for correlated groups | 360 |
| $S S_{D}=\Sigma D^{2}-\frac{(\Sigma D)^{2}}{N}$ | sum of squares of the difference scores | 360 |
| $d=\frac{\left\|\bar{D}_{\mathrm{obt}}\right\|}{\sigma_{D}}$ | conceptual equation for size of effect, correlated groups $t$ test | 364 |
| $\hat{d}=\frac{\left\|\bar{D}_{\text {obt }}\right\|}{s_{D}}$ | computational equation for size of effect, correlated groups $t$ test | 364 |
| $\mu_{\bar{X}_{1}-\bar{X}_{2}}=\mu_{1}-\mu_{2}$ | mean of the difference between sample means | 368 |
| $\sigma_{\bar{X}_{1}-\bar{X}_{2}}=\sqrt{\sigma^{2}\left(\frac{1}{n_{1}}+\frac{l}{n_{2}}\right)}$ | standard deviation of the difference between sample means | 368 |
| $t_{\mathrm{obt}}=\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)-\mu{\overline{\bar{X}_{1}}-\bar{X}_{2}}^{\sqrt{\left(\frac{S S_{1}+S S_{2}}{n_{1}+n_{2}-2}\right)\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}}{\text { 的 }}$ | computational equation for $t_{\mathrm{obt}}$, independent groups design | 371 |
| $t_{\mathrm{obt}}=\frac{\bar{X}_{1}-\bar{X}_{2}}{\sqrt{\left(\frac{S S_{1}+S S_{2}}{n_{1}+n_{2}-2}\right)\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}$ | computational equation for $t_{\mathrm{obt}}$ assuming the independent variable has no effect | 371 |
| $S S_{1}=\Sigma X_{1}^{2}-\frac{\left(\sum X_{1}\right)^{2}}{n_{1}}$ | sum of squares for group $x$ | 373 |
| $S S_{2}=\Sigma X_{2}^{2}-\frac{\left(\Sigma X_{2}\right)^{2}}{n_{2}}$ | sum of squares for group $x$ | 373 |
| $t_{\mathrm{obt}}=\frac{\bar{X}_{1}-\bar{X}_{2}}{\sqrt{\frac{S S_{1}+S S_{2}}{n(n-1)}}}$ | computational equation for $t_{\text {obt }}$ when $n_{1}=n_{2}$ | 373 |
| $d=\frac{\left\|\bar{X}_{1}-\bar{X}_{2}\right\|}{\sigma}$ | conceptual equation for size of effect, independent groups $t$ test | 377 |
| $\hat{d}=\frac{\left\|\bar{X}_{1}-\bar{X}_{2}\right\|}{\sqrt{s_{W}^{2}}}$ | computational equation for size of effect, independent groups $t$ test | 377 |


| Equation | Description | Equation First Occurs on Page: |
| :---: | :---: | :---: |
| $\mu_{\text {lower }}=\left(\bar{X}_{1}-\bar{X}_{2}\right)-s_{\bar{X}_{1}}-\bar{X}_{2} t_{0.025}$ | lower limit for the $95 \%$ confidence interval for $\mu_{\bar{X}_{1}}-\bar{X}_{2}$ | 383 |
| $\mu_{\text {upper }}=\left(\bar{X}_{1}-\bar{X}_{2}\right)+s_{\bar{X}_{1}}-\bar{X}_{2} t_{0.025}$ | upper limit for the $95 \%$ confidence interval for $\mu_{\bar{X}_{1}}-\bar{X}_{2}$ | 383 |
| $\mu_{\text {lower }}=\left(\bar{X}_{1}-\bar{X}_{2}\right)-s_{\bar{X}_{1}}-\bar{X}_{2} t_{0.005}$ | lower limit for the $99 \%$ confidence interval for $\mu_{\bar{X}_{1}}-\bar{X}_{2}$ | 385 |
| $\mu_{\text {upper }}=\left(\bar{X}_{1}-\bar{X}_{2}\right)+s_{\bar{X}_{1}}-\bar{X}_{2} t_{0.005}$ | upper limit for the $99 \%$ confidence interval for $\mu_{\bar{X}_{1}}-\bar{X}_{2}$ | 385 |
| $F=\frac{\text { Variance estimate } 1 \text { of } \sigma^{2}}{\text { Variance estimate } 2 \text { of } \sigma^{2}}$ | basic definition of $F$ | 402 |
| $F_{\text {obt }}=\frac{\text { Between-groups variance estimate }}{\text { Within-groups variance estimate }}=\frac{M S_{\text {between }}}{M S_{\text {within }}}$ | $F$ equation for the analysis of variance | 406 |
| $s_{W}^{2}=\frac{S S_{1}+S S_{2}}{\left(n_{1}-1\right)+\left(n_{2}-1\right)}$ | $t$ test, only 2 groups | 407 |
| $M S_{\text {within }}=s_{W}{ }^{2}$ | both are estimates of $\sigma^{2}$ | 407 |
| $M S_{\text {within }}=\frac{S S_{1}+S S_{2}+S S_{3}+\cdots+S S_{k}}{\left(n_{1}-1\right)+\left(n_{2}-1\right)+\left(n_{3}-1\right)+\cdots+\left(n_{k}-1\right)}$ | conceptual equation for $M S_{\text {within }}$ | 407 |
| $M S_{\text {within }}=\frac{S S_{1}+S S_{2}+S S_{3}+\cdots+S S_{k}}{N-k}$ | simplified equation for $M S_{\text {within }}$ | 407 |
| $M S_{\text {within }}=\frac{S S_{\text {within }}}{\mathrm{df}_{\text {within }}}$ | within-groups variance estimate | 407 |
| $S S_{\text {within }}=S S_{1}+S S_{2}+S S_{3}+\cdots+S S_{k}$ | within-groups sum of squares | 407 |
| $\mathrm{df}_{\text {within }}=N-k$ | within-groups degrees of freedom | 407 |
| $S S_{\text {within }}=\sum^{\substack{\text { all } \\ \text { scores }}} X^{2}-\left[\frac{\left(\sum X_{1}\right)^{2}}{n_{1}}+\frac{\left(\sum X_{2}\right)^{2}}{n_{2}}+\frac{\left(\sum X_{3}\right)^{2}}{n_{3}}+\cdots+\frac{\left(\sum X_{k}\right)^{2}}{n_{k}}\right]$ | computational equation for withingroups sum of squares | 408 |
| $M S_{\text {between }}=\frac{n\left[\left(\bar{X}_{1}-\bar{X}_{G}\right)^{2}+\left(\bar{X}_{2}-\bar{X}_{G}\right)^{2}+\left(\bar{X}_{3}-\bar{X}_{G}\right)^{2}+\cdots+\left(\bar{X}_{k}-\bar{X}_{G}\right)^{2}\right]}{k-1}$ | conceptual equation for betweengroups variance estimate | 409 |
| $M S_{\text {between }}=\frac{S S_{\text {between }}}{\mathrm{df}_{\text {between }}}$ | between-groups variance estimate | 409 |
| $S S_{\text {between }}=n\left[\left(\bar{X}_{1}-\bar{X}_{G}\right)^{2}+\left(\bar{X}_{2}-\bar{X}_{G}\right)^{2}+\left(\bar{X}_{3}-\bar{X}_{G}\right)^{2}+\cdots+\left(\bar{X}_{3}-\bar{X}_{G}\right)^{2}\right.$ | between-groups sum of squares | 409 |
| $\mathrm{df}_{\text {between }}=k-1$ | between-groups degrees of freedom | 409 |
| $\left.S S_{\text {between }}=\left[\frac{\left(\sum X_{1}\right)^{2}}{n_{1}}+\frac{\left(\sum X_{2}\right)^{2}}{n_{2}}+\frac{\left(\sum X_{3}\right)^{2}}{n_{3}}+\cdots+\frac{\left(\sum X_{k}\right)^{2}}{n_{k}}\right]-\frac{\left(\sum^{\text {all }} \text { acos }\right.}{\text { scor }}\right)^{2}$ | computational equation for between-groups sum of squares | 409 |
| $S S_{\text {total }}=S S_{\text {within }}+S S_{\text {between }}$ | equation for checking $S S_{\text {within }}$ and $S S_{\text {between }}$ | 412 |


| Equation | Description | Equation <br> First <br> Occurs <br> on Page: |
| :---: | :---: | :---: |
| $S S_{\text {total }}=\sum_{\substack{\text { all } \\ \text { scores }}} X^{2}-\frac{\binom{\text { scores }}{\sum}^{2}}{N}$ | equation for calculating the total variability | 412 |
| $\hat{\omega}^{2}=\frac{S S_{\text {between }}-(k-1) M S_{\text {within }}}{S S_{\text {total }}+M S_{\text {within }}}$ | computational equation for estimating $\hat{\omega}^{2}$ | 419 |
| $\eta^{2}=\frac{S S_{\text {between }}}{S S_{\text {total }}}$ | conceptual and computational equation for eta squared | 420 |
| $F_{\mathrm{obt}}=\frac{M S_{\text {between }}}{\mathrm{MS}_{\text {within }}}=\frac{n\left[\left(\bar{X}_{1}-\bar{X}_{G}\right)^{2}+\left(\bar{X}_{2}-\bar{X}_{G}\right)^{2}+\left(\bar{X}_{3}-\bar{X}_{G}\right)^{2}\right] / 2}{\left(S S_{1}+S S_{2}+S S_{3}\right) /(N-3)}$ | $F$ equation for three-group experiment | 421 |
| $t_{\mathrm{obt}}=\frac{\bar{X}_{1}-\bar{X}_{2}}{\sqrt{M S_{\text {within }}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}$ | general equation for $t$ equation for planned comparisons, | 422 |
| $t_{\mathrm{obt}}=\frac{\bar{X}_{1}-\bar{X}_{2}}{\sqrt{2 M S_{\text {within }} / n}}$ | $t$ equation for planned comparisons with equal $n$ in the two groups | 423 |
| $Q_{\mathrm{obt}}=\frac{\bar{X}_{i}-\bar{X}_{j}}{\sqrt{M S_{\text {within }} / n}}$ | equation for calculating $Q_{\text {obt }}$ | 424 |
| $S S_{\text {between }(\text { groups } i \text { and } j)}=\left[\frac{\left(\sum X_{i}\right)^{2}}{n_{i}}+\frac{\left(\sum X_{j}\right)^{2}}{n_{j}}\right]-\frac{\left(\sum^{\left(\begin{array}{c}\text { groups } \\ i \text { and } j \\ \end{array}\right)^{2}} \text { nit } n_{j}\right.}{\text { a }}$ | computational equation for $S S_{\text {between (groups i and j) }}$ | 426 |
| $M S_{\text {between (groups } i \text { and j) }}=\frac{S S_{\text {between }(\text { groups } i \text { and } j)}}{\mathrm{df}_{\text {between }(\text { entire ANOVA) }}}$ | conceptual equation for <br> $M S_{\text {between (groups } i \text { and } j \text { ) }}$ | 426 |
| $F_{\text {Scheffé }}=\frac{M S_{\text {between }(\text { groups } \text { i and } j \text { ) }}}{M S_{\text {between (entire ANOVA) }}}$ | equation for $F_{\text {Scheffé }}$ | 426 |
| $F_{\text {crit }}=F_{\text {crit (entire ANOVA) }}$ | $F_{\text {crit }}$ for Scheffé test | 426 |
| $M S_{\text {within-cells }}=\frac{S S_{\text {within }- \text { cells }}}{\mathrm{df}_{\text {within }- \text { cells }}}$ | conceptual equation for equation for within-cells variance estimate | 451 |
| $S S_{\text {within-cells }}=S S_{11}+S S_{12}+\cdots+S S_{r c}$ | conceptual equation for within-cells sum of squares | 451 |
| $\left.\begin{array}{l} S S_{\text {within-cells }}=\sum_{\substack{\text { all } \\ \text { scores }}} X^{2}-\left[\frac{\left(\begin{array}{l} \text { cell } \\ 11 \\ \mathrm{df}_{\text {within-cells }} \end{array}\right)^{2}+\left(\begin{array}{rl}  \\ \hline \end{array}\right)^{\text {cell }}(n-1)}{12} X\right)^{2}+\cdots+\left(\begin{array}{l} \text { cell } \\ r c \\ \sum^{2} X \end{array}\right)^{2} \\ n_{\text {cell }} \end{array}\right]$ | computational equation for withincells sum of squares <br> within-cells degrees of freedom | 452 452 |
| $M S_{\text {rows }}=\frac{S S_{\text {rows }}}{\mathrm{df}_{\text {rows }}}$ | conceptual equation for the row variance estimate | 452 |
| $S S_{\text {rows }}=n_{\text {row }}\left[\left(\bar{X}_{\text {row } 1}-\bar{X}_{G}\right)^{2}+\left(\bar{X}_{\text {row } 2}-\bar{X}_{G}\right)^{2}+\cdots+\left(\bar{X}_{\text {row } r}-\bar{X}_{G}\right)^{2}\right]$ | conceptual equation for the row sum of squares | 453 |


|  |  | Equation First Occurs |
| :---: | :---: | :---: |
| Equation | Description | on Page: |
| $\mathrm{df}_{\text {rows }}=r-1$ | row degrees of freedom | 453 |
| $S S_{\text {rows }}=\left[\frac{\left(\begin{array}{c}\text { row } \\ 1 \\ \sum\end{array}\right)^{2}+\left(\begin{array}{c}\text { row } \\ 2 \\ \sum\end{array}\right)^{2}+\cdots+\binom{\text { row }}{\sum^{r} X}^{2}}{n_{\text {row }}}\right]-\frac{\left(\begin{array}{c}\text { all } \\ \text { coores } \\ \sum\end{array}\right)^{2}}{N}$ | computational equation for the row sum of squares | 453 |
| $M S_{\text {columns }}=\frac{S S_{\text {columns }}}{\mathrm{df}_{\text {columns }}}$ | column variance estimate | 454 |
| $\begin{aligned} S S_{\text {columns }}= & n_{\text {column }}\left[\left(\bar{X}_{\text {column } 1}-\bar{X}_{G}\right)^{2}+\left(\bar{X}_{\text {column } 2}-\bar{X}_{G}\right)^{2}\right. \\ & \left.+\cdots+\left(\bar{X}_{\text {column c }}-\bar{X}_{G}\right)^{2}\right] \end{aligned}$ | conceptual equation for the column sum of squares | 454 |
| $\mathrm{df}_{\text {columns }}=c-1$ | column degrees of freedom | 454 |
| $S S_{\text {columns }}=\left[\frac{\left(\begin{array}{c} \text { column } \\ 1 \\ 2 \end{array}\right)^{2}+\left(\begin{array}{c} \text { column } \\ 2 \\ 2 \end{array}\right)^{2}+\cdots+\left(\begin{array}{c} \text { column } \\ c \\ \sum^{c} \end{array}\right)^{2}}{n_{\text {column }}}\right]-\frac{\binom{\text { all }}{\sum^{\text {alores }} X}^{2}}{N}$ | computational equation for the column sum of squares | 454 |
| $M S_{\text {interaction }}=\frac{S S_{\text {interaction }}}{\mathrm{df}_{\text {interaction }}}$ | interaction variance estimate | 455 |
| $\begin{aligned} S S_{\text {interaction }}= & n_{\text {cell }}\left[\left(\bar{X}_{\text {cell 11 }}-\bar{X}_{G}\right)^{2}+\left(\bar{X}_{\text {cell 12 }}-\bar{X}_{G}\right)^{2}+\cdots+\left(\bar{X}_{\text {cell } r c}-\bar{X}_{G}\right)^{2}\right] \\ & -S S_{\text {rows }}-S S_{\text {columns }} \end{aligned}$ | conceptual equation for the interaction sum of squares | 455 |
| $S S_{\text {interaction }}=\left[\frac{\binom{\text { cell }}{\sum_{11} X}^{2}+\left(\begin{array}{c}\text { cell } \\ 12 \\ \sum\end{array}\right)^{2}+\cdots+\left(\begin{array}{c}\text { cell } \\ r c \\ \sum\end{array}\right)^{2}}{n_{\text {cell }}}\right]-\frac{\left(\begin{array}{c}\text { all } \\ \text { coores } \\ \sum X\end{array}\right)^{2}}{N}$ | computational equation for the interaction sum of squares | 455 |
| $-S S_{\text {rows }}-S S_{\text {columns }}$ |  |  |
| $\mathrm{df}_{\text {interaction }}=(r-1)(c-1)$ | interaction degrees of freedom | 455 |
| $\chi_{\mathrm{obt}}^{2}=\sum \frac{\left(f_{o}-f_{e}\right)^{2}}{f_{e}}$ | equation for calculating $\chi_{\text {obt }}^{2}$ | 485 |
| $U_{\mathrm{obt}}=n_{1} n_{2}+\frac{n_{1}\left(n_{1}+1\right)}{2}-R_{1}$ | general equation for calculating $U_{\text {obt }}$ or $U_{\text {obt }}^{\prime}$ | 503 |
| $U_{\mathrm{obt}}=n_{1} n_{2}+\frac{n_{2}\left(n_{2}+1\right)}{2}-R_{2}$ | general equation for calculating $U_{\text {obt }}$ or $U_{\text {obt }}^{\prime}$ | 503 |
| $H_{\mathrm{obt}}=\left[\frac{12}{N(N+1)}\right]\left[\sum_{i=1}^{k} \frac{\left(R_{i}\right)^{2}}{n_{i}}\right]-3(N+1)$ | equation for computing $H_{\mathrm{obt}}$ | 509 |

## APPENDIX

## Answers to End-of-Chapter Questions and Problems and SPSS Problems

## ■CHAPTER 1

6. b. (1) functioning of the hypothalamus; (2) daily food intake; (3) the 30 rats selected for the e xperiment; (4) all rats li ving in the uni versity vivarium at the time of the e xperiment; (5) the daily food intak e of each animal during the 2 -week period after recovery; (6) the mean daily food intak e of each group c. (1) methods of treating depression; (2) de gree or amount of depression; (3) the 60 depressed students; (4) the undergraduate body at a large university at the time of the e xperiment; (5) depression scores of the 60 depressed students; (6) mean of the depression scores of each treatment d. (1) and (2) since this is a study and not an e xperiment, there is no independent variable and no dependent $v$ ariable. The two variables studied are the tw o levels of education and the annual salaries for each educational le vel; (3) the 200 indi viduals whose annual salaries were deter mined; (4) all indi viduals li ving in the city at the time of the e xperiment, ha ving either of the educational le vels; (5) the 200 annual salaries; (6) the mean annual salary for each educational le vel e. (1) spacing of practice sessions; (2) number of words correctly recalled; (3) the 30 se venth graders who participated in the e xperiment; (4) all se venth graders enrolled at the local junior high school at the time of the e xperiment; (5) the retention test scores of the 30 subjects; (6) mean $v$ alues for each group
of the number of w ords correctly recalled in the test period f. (1) visualization $v$ ersus visualization plus appropriate self-talk; (2) foul shooting accurac y; (3) the ten players participating in the e xperiment; (4) all players on the colle ge bask etball team at the time of the experiment; (5) foul shooting accurac y of the ten players, before and after 1 month of practicing the techniques; (6) the mean of the diference scores of each group g. (1) the arrangement of typing k eys; (2) typing speed; (3) the 20 secretarial trainees who were in the e xperiment; (4) all secretarial trainees enrolled in the business school at the time of the e $x$ periment; (5) the typing speed scores of each trainee obtained at the end of training; (6) the mean typing speed of each group
7. a. constant
b. constant
c. variable
d. variable
e. constant
f. variable
g. variable
h. constant
8. a. descriptive statistics
b. descriptive statistics
c. descriptive statistics
d. inferential statistics
e. inferential statistics
f. descriptive statistics
9. a. The sample scores are the 20 scores gi ven. The population scores are the 213 scores that $w$ ould have resulted if the number of drinks during "happ y hour" were measured from all of the bars. c. The sample scores are the 25 lengths measured. The
population scores are the 600 lengths that $w$ ould be obtained if all 600 blanks were measured.
d. The sample scores are the 30 diastolic heart rates that were recorded. The population scores are the heart rate scores that w ould result from recording resting, diastolic heart rate from all the female students attending Tacoma University at the time of the experiment.

## CHAPTER 2

2. a. continuous
b. discrete
c. discrete
d. continuous
e. discrete
f. continuous
g. continuous
h. continuous
3. a. ratio
b. nominal
c. interval
d. ordinal
e. ordinal
f. ratio
g. ratio
h. interval
i. ordinal
4. No, ratios are not le gitimate on an interv al scale. We need an absolute zero point to perform ratios.
Since an ordinal scale does not have an absolute zero point, the ratio of the absolute values represented by 30 and 60 will not be $\frac{1}{2}$
5. a. 18
b. 21.1
d. 590
6. a. 14.54
c. 37.84
d. 46.50
e. 52.46
f. 25.49
7. a. 9.5-10.5
b. 2.45-2.55
d. 2.005-2.015
e. 5.2315-5.2325
8. a. 25
b. 35
d. 101
9. a. $X_{1}=250, X_{2}=378,=X_{3}=451, X_{4}=275$, $X_{5}=225, X_{6}=430, X_{7}=325, X_{8}=334$
b. 2668
10. a. $\sum_{i=1}^{N} X_{i}$
b. $\sum_{i=1}^{3} X_{i}$
c. $\sum_{i=2}^{4} X_{i}$
d. $\sum_{i=2}^{5} X_{i}^{2}$
11. a. 1.4
b. 23.2
c. 100.8
d. 41.7
e. 35.3
12. For 5b: $\Sigma X^{2}=104.45$ and $(\Sigma X)^{2}=445.21$; for 5c: $\Sigma X^{2}=3434$ and $(\Sigma X)^{2}=21,904$
13. a. 34
b. 14
d. 6.5
14. a. $4.1,4.15$
b. $4.2,4.15$
c. $4.2,4.16$
d. $4.2,4.20$

SPSS

1. a. 176
b. 29.30
c. 3116.00
2. a. 42.70
b. 651.00

## CHAPTER 3

| 5. a. Score | $f$ | Score | $f$ | Score | $f$ | Score | $f$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 98 | 1 | 84 | 2 | 70 | 2 | 57 | 2 |
| 97 | 0 | 83 | 3 | 69 | 2 | 56 | 1 |
| 96 | 0 | 82 | 4 | 68 | 4 | 55 | 2 |
| 95 | 0 | 81 | 3 | 67 | 2 | 54 | 0 |
| 94 | 2 | 80 | 0 | 66 | 1 | 53 | 0 |
| 93 | 2 | 79 | 2 | 65 | 1 | 52 | 0 |
| 92 | 1 | 78 | 5 | 64 | 3 | 51 | 0 |
| 91 | 2 | 77 | 2 | 63 | 1 | 50 | 0 |
| 90 | 2 | 76 | 4 | 62 | 2 | 49 | 2 |
| 89 | 1 | 75 | 3 | 61 | 1 | 48 | 0 |
| 88 | 1 | 74 | 1 | 60 | 1 | 47 | 0 |
| 87 | 2 | 73 | 4 | 59 | 0 | 46 | 0 |
| 86 | 0 | 72 | 6 | 58 | 0 | 45 | 1 |
| 85 | 4 | 71 | 3 |  |  |  |  |

b. | Class Interval | Real Limits | $\boldsymbol{f}$ |
| :---: | ---: | ---: |
| $\cdots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$ |  |  |
| $96-99$ | $95.5-99.5$ | 1 |
| $92-95$ | $91.5-95.5$ | 5 |
| $88-91$ | $87.5-91.5$ | 6 |
| $84-87$ | $83.5-87.5$ | 8 |
| $80-83$ | $79.5-83.5$ | 10 |
| $76-79$ | $75.5-79.5$ | 13 |
| $72-75$ | $71.5-75.5$ | 14 |
| $68-71$ | $67.5-1.5$ | 11 |
| $64-67$ | $63.5-67.5$ | 7 |
| $60-63$ | $59.5-63.5$ | 5 |
| $56-59$ | $55.5-59.5$ | 3 |
| $52-55$ | $51.5-55.5$ | 2 |
| $48-51$ | $47.5-51.5$ | 2 |
| $44-47$ | $43.5-47.5$ | $\underline{1}$ |
|  |  | 88 |

6. Class Relative Cumulative Cumulative

| Interval | $\boldsymbol{f}$ | $\boldsymbol{f}$ | $\boldsymbol{f}$ | $\boldsymbol{\%}$ |
| :---: | ---: | :---: | :---: | :---: | :---: |
| $\ldots \ldots \ldots$ | $\ldots$ | $\ldots \ldots \ldots$ |  |  |
| $96-99$ | 1 | 0.01 | 88 | 100.00 |
| $92-95$ | 5 | 0.06 | 87 | 98.86 |
| $88-91$ | 6 | 0.07 | 82 | 93.18 |
| $84-87$ | 8 | 0.09 | 76 | 86.36 |
| $80-83$ | 10 | 0.11 | 68 | 77.27 |
| $76-79$ | 13 | 0.15 | 58 | 65.91 |
| $72-75$ | 14 | 0.16 | 45 | 51.14 |
| $68-71$ | 11 | 0.12 | 31 | 35.23 |
| $64-67$ | 7 | 0.08 | 20 | 22.73 |
| $60-63$ | 5 | 0.06 | 13 | 14.77 |
| $56-59$ | 3 | 0.03 | 8 | 9.09 |
| $52-55$ | 2 | 0.02 | 5 | 5.68 |
| $48-51$ | 2 | 0.02 | 3 | 3.41 |
| $44-47$ | $\underline{1}$ | $\underline{0.01}$ | 1 | 1.14 |
|  | 88 | 1.00 |  |  |


11. Class Interval $f \quad$ Relative $f$ Cumulative $f$

| $60-64$ | 1 | 0.01 | 78 |
| :---: | ---: | :---: | :---: |
| $55-59$ | 1 | 0.01 | 77 |
| $50-54$ | 2 | 0.03 | 76 |
| $45-49$ | 2 | 0.03 | 74 |
| $40-44$ | 4 | 0.05 | 72 |
| $35-39$ | 5 | 0.06 | 68 |
| $30-34$ | 7 | 0.09 | 63 |
| $25-29$ | 12 | 0.15 | 56 |
| $20-24$ | 17 | 0.22 | 44 |
| $15-19$ | 16 | 0.21 | 27 |
| $10-14$ | 8 | 0.10 | 11 |
| $5-9$ | $\frac{3}{78}$ | $\underline{0.04}$ | 3 |
|  |  | 1.00 |  |

12. a. 23.03
13. a. 88.72
b. 67.18
14. a. 3.30
b. 2.09
15. 65.62
16. $\begin{aligned} & \text { a. } 34.38 \quad \text { b. } 33.59 \quad \text { c. Some accurac } y \text { is } \\ & \text { lost when grouping scores because the grouped } \\ & \text { scores analysis assumes the scores are evenly distrib- } \\ & \text { uted throughout the interval. }\end{aligned}$
17. a. Class Interval $f$

| $360-369$ | 1 |
| :--- | :--- |
| $350-359$ | 2 |
| $340-349$ | 5 |
| $330-339$ | 3 |
| $320-329$ | 3 |
| $310-319$ | 9 |
| $300-309$ | 4 |
| $290-299$ | 8 |
| $280-289$ | 5 |
| $270-279$ | 5 |
| $260-269$ | 4 |
| $250-259$ | $\frac{1}{50}$ |

21. 

| Class |  | Relative | Cumulative | Cumulative |
| :---: | :---: | :---: | :---: | :---: |
| Interval | $f$ | $f$ | $f$ | \% |
| 360-369 | 1 | 0.02 | 50 | 100.00 |
| 350-359 | 2 | 0.04 | 49 | 98.00 |
| 340-349 | 5 | 0.10 | 47 | 94.00 |
| 330-339 | 3 | 0.06 | 42 | 84.00 |
| 320-329 | 3 | 0.06 | 39 | 78.00 |
| 310-319 | 9 | 0.18 | 36 | 72.00 |
| 300-309 | 4 | 0.08 | 27 | 54.00 |
| 290-299 | 8 | 0.16 | 23 | 46.00 |
| 280-289 | 5 | 0.10 | 15 | 30.00 |
| 270-279 | 5 | 0.10 | 10 | 20.00 |
| 260-269 | 4 | 0.08 | 5 | 10.00 |
| 250-259 | 1 | 0.02 | 1 | 2.00 |
|  | $\overline{50}$ | 1.00 |  |  |

22. a. 304.50
b. 324.50
23. a. 15.50
b. 69.30
24. a.

| Score | $f$ |
| :---: | :---: |
| 12 | 1 |
| 11 | 2 |
| 10 | 4 |
| 9 | 7 |
| 8 | 9 |
| 7 | 13 |
| 6 | 15 |
| 5 | 11 |
| 4 | 10 |
| 3 | 6 |
| 2 | 5 |
| 1 | 1 |
| 0 | 1 |

d. $27.06,96.47$

## SPSS

1.b.


The distribution is not symmetrical; it is positiely skewed
2.

Histogram


## ■CHAPTER 4

13. All the scores must have the same value.
14. a. $\bar{X}=3.56, \mathrm{Mdn}=3$, mode $=2$
c. $\bar{X}=3.03, \mathrm{Mdn}=2.70$, no mode
15. a. $\bar{X}_{\text {orig. }}=4.00, \bar{X}_{\text {new }}=6.00, \bar{X}_{\text {new }}=\bar{X}_{\text {orig. }}+a$
b. $\bar{X}_{\text {orig. }}=4.00, \bar{X}_{\text {new }}=2.00, \bar{X}_{\text {new }}=\bar{X}_{\text {orig. }}-a$
c. $\bar{X}_{\text {orig. }}=4.00, \bar{X}_{\text {new }}=8.00, \bar{X}_{\text {new }}=a \bar{X}_{\text {orig. }}$
d. $\bar{X}_{\text {orig. }}=4.00, \bar{X}_{\text {new }}=2.00, \bar{X}_{\text {new }}=\bar{X}_{\text {orig. }} / a$
16. a. 72.00
b. 72
17. a. 68.83
b. 64.5
18. a. 2.93
b. 2.8
19. a. the mean, because there are no e xtreme scores
b. the mean, again because there are no e xtreme scores c. the median, because the distrib ution contains an extreme score (25)
20. a. positively skewed b. negatively skewed
c. symmetrical
21. a. $\bar{X}=2.54$ hours per day
b. $\operatorname{Mdn}=2.7$ hours per day
c. mode $=0$ hours per day
22. a. $\bar{X}=15.44 \quad$ b. Mdn $=14 \quad$ c. There is no mode.
23. 197.44
24. a. range $=6, s=2.04, s^{2}=4.41$
c. range $=9.1, s=3.64, s^{2}=13.24$
25. 4.00 minutes
26. 7.17 months
27. a. $s_{\text {orig. }}=2.12, s_{\text {new }}=2.12, s_{\text {new }}=s_{\text {orig. }}$.
b. $s_{\text {orig. }}=2.12, s_{\text {new }}=2.12, s_{\text {new }}=s_{\text {orig. }}$.
c. $s_{\text {orig. }}=2.12, s_{\text {new }}=4.24, s_{\text {new }}=a s_{\text {orig. }}$.
d. $s_{\text {orig. }}=2.12, s_{\text {new }}=1.06, s_{\text {new }}=s_{\text {orig }} / a$
28. 

a. 4.50
b. 5
c. 7
d. 7
e. 2.67
f. 7.14
33. Distribution $b$ is most variable, followed by distribution $a$ and then distribution $c$. F or distribution $b, s=$ 11.37; for distribution $a, s=3.16$; and for distrib ution $c, s=0$.
34. a. $s=1.86$ b. 11.96, Because the standard de viation is sensiti ve to e xtreme scores and 35 is an e $x$ treme score
35. a. $\bar{X}=7.90$
b. 8
c. 8
d. 15
e. 4.89
f. 23.88
36. a. 347.50
b. 335
c. There is no mode.
d. 220
e. 87.28
f. 7617.50
37. a. 22.56
b. 21.50
c. There is no mode.
d. 22
e. 7.80
f. 60.78
38. a. $\bar{X}+a$
b. $\bar{X}-a$
c. $a \bar{X}$
d. $\bar{X} / a$
39. a. $s$ stays the same.
b. $s$ stays the same.
c. $s$ is multiplied by $a$.
d. $s$ is divided by $a$.
40. a. $2.67,3.33,6.33,4.67,6.67,4.67,3.00,4.00$, $7.67,6.67$ b. $3.00,2.00,8.00,6.00,6.00,4.00$,
2.00, 3.00, 8.00, 7.00
c. Expect more v ariability in
the medians. $\quad$ d. $s$ (medians $)=2.38, s$ (means $)=1.76$

## S P S S

1. a.

Descriptive Statistics

|  | $N$ | Range | Mean | Std. Deviation | Variance |
| :--- | ---: | ---: | :--- | ---: | ---: |
| Scores | 13 | 13.00 | 8.3846 | 4.07305 | 16.590 |
| Valid $N$ (listwise) | 13 |  |  |  |  |

b.

Descriptive Statistics

|  | $N$ | Range | Mean | Std. Deviation | Variance |
| :--- | ---: | ---: | :--- | ---: | ---: |
| Scores | 10 | 6.90 | 5.1400 | 2.43867 | 5.947 |
| Valid $N$ (listwise) | 10 |  |  |  |  |

c.

Descriptive Statistics

|  | $N$ | Range | Mean | Std. Deviation | Variance |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Scores | 13 | 63.00 | 50.2308 | 20.22850 | 409.192 |
| Valid $N$ (listwise) | 13 |  |  |  |  |

d.

Descriptive Statistics

|  | $N$ | Range | Mean | Std. Deviation | Variance |
| :--- | ---: | :---: | :---: | ---: | :---: |
| Scores | 11 | 388.00 | 413.9091 | 135.70000 | 18414.491 |
| Valid $N$ (listwise) | 11 |  |  |  |  |

## CHAPTER 5

8. a.

| Raw Score | $\boldsymbol{z}$ Score |
| :---: | :---: |
| $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$ |  |
| 10 | -1.41 |
| 12 | -0.94 |
| 16 | 0.00 |
| 18 | 0.47 |
| 19 | 0.71 |
| 21 | 1.18 |

b. mean $=0.00$, standard deviation $=1.00$
9. a.

| Raw Score | $z$ Score |
| :---: | :---: |
| $\ldots \ldots \ldots \ldots \ldots$ |  |
| 10 | -1.55 |
| 12 | -1.03 |
| 16 | 0.00 |
| 18 | 0.52 |
| 19 | 0.77 |
| 21 | 1.29 |

b. mean $=0.00$, standard deviation $=1.00$
10.
a. 1.14
b. -0.86
c. 1.86
d. 0.00
e. 1.00
f. -1.00
11. a. $50.00 \%$
b. $15.87 \%$
c. $6.18 \%$
d. $2.02 \%$
e. $0.07 \%$
f. $32.64 \%$
12. a. $34.13 \%$
b. $34.13 \%$
c. $49.04 \%$
d. $49.87 \%$
e. $0.00 \%$
f. $25.17 \%$
g. $26.73 \%$
13. a. 0.00
b. 1.96
c. 1.64
d. 0.52
e. -0.84
f. -1.28
15. a. statistics
b. 92.07
16. a. $3.75 \%$
b. $99.81 \%$
c. $98.54 \%$
d. $12.97 \%$
e. 3.95 kilograms
f. 3.64
g. 13,623
17. a. $95.99 \%$
b. $99.45 \%$
c. $15.87 \%$
d. $4.36 \%$
e. $50.00 \%$
18. a. $16.85 \%$
b. $0.99 \%$
d. $97.50 \%$
e. $50.00 \%$
c. $59.87 \%$
19. a. $51.57 \%$
b. $34.71 \%$
c. $23.28 \%$
20. a. Distance $z$ Score

| $\ldots \ldots \ldots \ldots \ldots$ |  |
| :---: | :---: |
| 30 | -1.88 |
| 31 | -1.50 |
| 32 | -1.13 |
| 33 | -0.75 |
| 34 | -0.38 |
| 35 | 0.00 |
| 36 | 0.38 |
| 37 | 0.75 |
| 38 | 1.13 |


|  | I |  |
| ---: | ---: | ---: |
|  | $Y$ | ZY |
| 1 | 10.00 | -1.56616 |
| 2 | 13.00 | -.90673 |
| 3 | 15.00 | -.46710 |
| 4 | 16.00 | -.24729 |
| 5 | 18.00 | .19234 |
| 6 | 20.00 | .63196 |
| 7 | 21.00 | .85177 |
| 8 | 24.00 | 1.51121 |

2. 

|  | Distance | ZDistance |
| ---: | ---: | ---: |
| 1 | 32.00 | -1.12771 |
| 2 | 35.00 | .00000 |
| 3 | 30.00 | -1.87952 |
| 4 | 38.00 | 1.12771 |
| 5 | 37.00 | .75181 |
| 6 | 36.00 | .37590 |
| 7 | 38.00 | 1.12771 |
| 8 | 36.00 | .37590 |
| 9 | 38.00 | 1.12771 |
| 10 | 35.00 | .00000 |
| 11 | 31.00 | -1.50362 |
| 12 | 33.00 | -.75181 |
| 13 | 34.00 | -.37590 |
| 14 | 37.00 | .75181 |

## CHAPTER 6

3. a. linear, perfect positive
b. curvilinear, perfect
c. linear, imperfect negative
d. curvilinear, imperfect
e. linear, perfect negative
f. linear, imperfect positive
4. a. For set $\mathrm{A}, r=1.00$; for set $\mathrm{B}, r=0.11$; for set C , $r=-1.00 \quad$ b. same value as in part a. c. The $r$ values are the same. d. The $r$ values remain the same. e. The $r$ values do not change if a constant is subtracted from the ra w scores or if the ra w scores are divided by a constant. The value of $r$ does not change when the scale is altered by adding or subtracting a constant to it, nor does $r$ change if the scale is transformed by multiplying or di viding by a constant.
5. b. $r=0.79$
6. b. $r=0.68$ c. 0.03 . Decreasing the range produced a decrease in $r$. d. $r^{2}=0.46$. If illness is causally related to smoking, $r^{2}$ allows us to evaluate
how important af actor smoking is in producing illness.
7. b. $r=0.98$ c. Yes, this is a reliable test because $r^{2}=0.95$. Almost all of the variability of the scores on the second administration can be accounted for by the scores on the first administration.
8. a. $r=0.85$
b. $r_{s}=0.86$
9. b. $r=-0.06$
e. $r=0.93$
10. b. $r=0.95$
11. a. negative b. $r=-0.56$
12. a. $r_{s}=0.85$ b. For the paper and pencil test and psychiatrist $\mathrm{A}, r_{s}=0.73$; for the paper and pencil test and psychiatrist B, $r_{s}=0.79$.
13. b. $r=0.59 \quad$ d. $r=0.91 \quad$ e. Yes, test 2, because $r^{2}$ accounts for $82.4 \%$ of the v ariability in work performance. Although there are no doubt other factors operating, this test appears to of fer a good adjunct to the intervie w. Test 1 does not do nearly as well.

## - S P S

1. a .

b. The relationship is linear, imperfect and positive.
c. The SPSS Correlations table shows that Pearson $r$ for these data is $\mathbf{8 5 2}$.
2. a.

b. The relationship is linear, imperfect and positive.
c. The SPSS Correlations table shows that Pearson $r$ for these data is $\mathbf{8 0 7}$.
d. 0.65 of the variance of RT is accounted for by Age. (SPSS table doesn't provide this information)

## ■CHAPTER 7

10. b. The relationship is ne gative, imperfect, and linear. c. $r=-0.56$ d. $Y^{\prime}=-0.513 X+$ 24.964; ne gative, because the relationship is ne gative f. 13.16
11. a. No. A scatter plot of the paired scores re veals that there is a perfect relationship between length of left index finger and weight. Thus, Mr. Clairvoyant can exactly predict my weight ha ving measured the length of my left index finger.
b. $Y^{\prime}=7.5 X+37$
c. 79.75
12. b. The relationship is negative, imperfect, and linear c. $r=-0.69$
d. $Y^{\prime}=-1.429 X+125.883$; negative, because the relationship is ne gative
f. 71.60 g. 10.87
13. a. $Y^{\prime}=10.828 X+11.660$
b. $\$ 196,000$
c. Technically, the relationship holds only within the range of the base data. It may be that if a lot more mone y
is spent, the relationship w ould change such that no additional profit or e ven loss is the result. Of course, the manager could e xperiment by "testing the w aters" (e.g., by spending $\$ 25,000$ on adv ertising to see whether the relationship still holds at that level).
14. a. Yes, $r=0.85$
b. \% games w on $=$ 5.557 (tenure) +34.592
c. $73.49 \%$
15. a. $Y^{\prime}=-1.212 X+131.77$
b. $\$ 130.96$
c. 17.31
16. a. $Y^{\prime}=4.213 X+91.652$
b. 123.25
17. a. $Y^{\prime}=0.857 X+17.894$
b. 32.46
18. a. $Y^{\prime}=-0.075 X+6.489$
b. 3.28
19. $R^{2}=85.3 \%, r^{2}=82.4 \%$; using test 1 doesn' t seem worth the extra work.

## SPSS

1. a.

b. $Y^{\prime}=.074 X-7.006$
2. a.

b. The relationship is linear , imperfect and positive. c. $Y^{\prime}=.005 X+.468$. d. Standard Error of Estimate $=0.27$.

## CHAPTER 8

9. $\mathrm{a}, \mathrm{c}, \mathrm{e}$
10. a, c, d, e
11. $\mathrm{a}, \mathrm{c}$
12. a. 2 to 3
b. 0.6000
c. 0.4000
13. a. 0.0192
b. 0.0769
c. 0.3077
d. 0.5385
14. a. 0.4000
b. 0.0640
c. 0.0350
d. 0.2818
15. a. 0.4000
b. 0.0491
c. 0.0409
d. 0.2702
16. a. 0.0029
b. 0.0087
c. 0.0554
17. 0.0001
18. 0.0238
19. a. 0.0687
b. 0.5581
c. 0.2005
20. 0.1479
21. 0.00000001
22. a. 0.1429
b. 0.1648
c. 0.0116
23. a. 0.0301
b. 0.6268
c. 0.0301
24. a. 0.0192
b. 0.9525
c. 0.1949
25. a. 0.0146
b. 0.9233
c. 0.0344
26. 

a. 0.0764
b. 0.4983
c. 0.0021
30.
a. 0.0400
b. 0.1200
c. 0.0400

## CHAPTER 9

3. 0.90
4. a. 0.0369
b. $6 P^{5} Q$
c. 0.0369 (The answers are the same.)
5. a. 0.0161
b. 0.0031
c. 0.0192
d. 0.0384
6. a. 0.0407
b. 0.0475
c. 0.0475
7. a. 0.1369
b. 0.2060
c. 0.2060
8. a. 0.0020
b. 0.0899
c. 0.1798
9. 0.0681
10. 0.3487
11. 0.0037
12. 0.0039
13. a. 0.0001
b. 0.0113
14. a. 32
b. 37
15. 

a. 0.0001
b. 0.4437
c. 0.1382
d. 0.5563
18. a. 0.0039
b. 0.3164
c. 0.6836
19. a. 0.0576
b. 0.0001
c. 0.0100
d. 0.8059
20. a. 0.0000
b. 0.0013
21. 0.8133
22. a. 0.0098
b. 1

■ CHAPTER 10
10. a. The alternati ve hypothesis states that the ne w teaching method increases the amount learned.
b. The null hypothesis states that the tw o methods are equal in the amount of material learned or the old method does better . c. $p(14$ or more pluses) $=0.0577$. Since $0.0577>0.05$, you retain $H_{0}$. You cannot conclude that the ne w method is better. d. You may be making a Type II error, retaining $H_{0}$ if it is f alse. e. The results apply to the eighth-grade students in the school district at the time of the experiment.
11. a. The alternati ve hypothesis states that increases in the le vel of angiotensin II will produce change in thirst le vel. b. The null hypothesis states that increases in the le vel of angiotensin II will not ha ve any ef fect on thirst. c. $p(0,1,2,14,15$, or 16 pluses) $=0.0040$. Since $0.0040<0.05$, you reject $H_{0}$. Increases in the le vel of angiotensin II appear to increase thirst. d. You may be making aType I error, rejecting $H_{0}$ if it is true. e. The results apply to the rats living in the vivarium of the drug company at the time of the experiment.
12. a. The alternative hypothesis states that using Very Bright toothpaste instead of Brand X results in brighter teeth. b. The null hypothesis states that Very Bright and Brand X toothpastes are equal in their brightening ef fects or Brand X is better c. $p(7$ or more pluses $)=0.1719$. Since $0.1719>$ 0.05 , you retain $H_{0}$. You cannot conclude that Very Bright is better. d. You may be making a Type II error, retaining $H_{0}$ if it is f alse. e. The results apply to the emplo yees of the P asadena plant at the time of the experiment.
13. a. The alternative hypothesis states that acupuncture affects pain tolerance. b. The null hypothesis states that acupuncture has no ef fect on pain toler ance. c. $p(0,1,2,3,12,13,14$, or 15 pluses) $=0.0352$. Since $0.0352<0.05$, you reject $H_{0}$ and conclude that acupuncture af fects pain tolerance.

It appears to increase pain tolerance.
d. You may have made a Type I error, rejecting $H_{0}$ if it is true. e. The conclusion applies to the lar ge pool of university undergraduate volunteers.

## ■ CHAPTER 11

8. For $P_{\text {real }}=0.80$, power $=0.8042$, and beta $=0.1958$.
9. power $=0.9559$, beta $=0.0441$
10. power $=0.1493$
11. Power $=0.0955$, and beta $=0.9045$. No, it is not legitimate to conclude that stimulus isolation had no effect on depression. That conclusion is the same thing as concluding that $H_{0}$ is true. Of course, we cannot prove $H_{0}$ is true from the data of an e xperiment. Particularly, in this case, the preceding analysis shows that this experiment has a low probability of detecting a real bit small effect (power $=0.0955$ ). This experiment is insensiti ve to small ef fects, and therefore, we cannot conclude stimulus isolation has no effect just because the results of the e xperiment were not significant.
12. Power $=0.1268$, and beta $=0.8732$. No, we cannot conclude that the TV program has no ef fect on violence in teenagers. We cannot prove $H_{0}$ is true. In this experiment, the power to detect a medium effect was quite low (0.1268). It could $v$ ery well be true that the program really does increase violence, $b$ ut due to lack of sufficient power, we failed to detect it.

## ■ CHAPTER 12

17. a. The sampling distrib ution of the mean is gi ven here:

| $(\overline{\boldsymbol{X}})$ | $\boldsymbol{p}(\overline{\boldsymbol{X}})$ |
| :---: | :---: |
| $\ldots \ldots \ldots . \ldots$ |  |
| 7.0 | 0.04 |
| 6.5 | 0.08 |
| 6.0 | 0.12 |
| 5.5 | 0.16 |
| 5.0 | 0.20 |
| 4.5 | 0.16 |
| 4.0 | 0.12 |
| 3.5 | 0.08 |
| 3.0 | 0.04 |

b. From the population ras scores, $\mu=5.00$, and from the 25 sample means, $\mu_{\bar{X}}=5.00$. Therefore, $\mu_{\bar{X}}=\mu$. c. From the 25 sample means, $\quad \sigma_{\bar{X}}=1.00$. From the population ra w scores, $\sigma=1.41$. Thus, $\sigma_{\bar{X}}=\sigma / \sqrt{N}=1.41 / \sqrt{2}=1.41 / 1.41=1.00$.
18. a. The distrib ution is normally shaped; $\mu_{\bar{X}}=80$, $\sigma_{\bar{X}}=2.00$. b. The distrib ution is normally shaped; $\mu_{\bar{X}}=80, \sigma_{\bar{X}}=1.35$. c. The distribution is normally shaped; $\mu_{\bar{X}}=80, \sigma_{\bar{X}}=1.13 \quad$ d. As $N$ increases, $\mu_{\bar{X}}$ stays the same but $\sigma_{\bar{X}}$ decreases.
19. $z_{\text {obt }}=3.16$, and $z_{\text {crit }}= \pm 1.96$. Since $\left|z_{\text {obt }}\right|>1.96$, we reject $H_{0}$. It is not reasonable to consider the sample a random sample from a population with $\mu=60$ and $\sigma=10$.
20. a. $z_{\mathrm{obt}}=-2.05$, and $z_{\text {crit }}=-2.33$. Since $\left|z_{\mathrm{obt}}\right|<2.33$, we can' t reject the hypothesis that the sample is a random sample from a population with $\quad \mu=22$ and $\sigma=8$. b. power $=0.1685 \quad$ c. power $=$ 0.5675 d. $N=161$ (actually gi ves a po wer $=$ 0.7995)
22. $z_{\text {obt }}=4.03$, and $z_{\text {crit }}=1.645$. Since $\left|z_{\text {obt }}\right|<1.645$, reject $H_{0}$ and conclude that this year' s class is superior to the previous ones.
23. $z_{\text {obt }}=1.56$, and $z_{\text {crit }}=1.645$. Since $\left|z_{\text {obt }}\right|<1.645$, retain $H_{0}$. We cannot conclude that the ne w engine saves gas.
24. a. power $=0.5871$ b. power $=0.9750$
c. $N=91$ (rounded to nearest integer)
25. $z_{\text {obt }}=4.35$, and $z_{\text {crit }}=1.645$. Since $\left|z_{\text {obt }}\right|>1.645$, reject $H_{0}$ and conclude that exercise appears to slow down the "aging" process, at least as measured by maximum oxygen consumption.

## ■CHAPTER13

11. $t_{\text {obt }}=-1.37$, and $t_{\text {crit }}$ with $29 \mathrm{df}= \pm 2.756$. Since $\left|t_{\text {obt }}\right|<2.756$, we retain $H_{0}$. It is reasonable to consider the sample a random sample from a population with $\mu=85$.
12. $t_{\text {obt }}=3.08$, and $t_{\text {crit }}$ with $28 \mathrm{df}=2.467$. Since $\left|t_{\text {obt }}\right|>$ 2.467, we can reject $H_{0}$, which specifies that the sample is a random sample from a population with a mean $\leq 72$. Therefore, we can accept the hypothesis that the sample is a random sample from a population with a mean $>72$.
13. $t_{\text {obt }}=2.08$, and $t_{\text {crit }}$ with $21 \mathrm{df}=1.721$. Since $\left|t_{\text {obt }}\right|>$ 1.721, we reject $H_{0}$. It is not reasonable to consider
the sample a random sample from a normal population with $\mu=38$.
14. 

| $\mathbf{9 5 \%}$ | $\mathbf{9 9 \%}$ |
| :--- | ---: |
| $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$ |  |
| a. $21.68-28.32$ | $20.39-29.61$ |
| c. $28.28-32.92$ | $27.45-33.75$ |
| d. $22.76-27.24$ | $21.98-28.02$ |

Increasing $N$ decreases the width of confidence interval.
15. $t_{\mathrm{obt}}=-1.57$, and $t_{\text {crit }}= \pm 2.093$. Since $\left|t_{\mathrm{obt}}\right|<$ 2.093, you fail to reject $H_{0}$ and therefore cannot conclude that the student's technique shortens the duration of stay. The difference in conclusions is due to the greater sensitivity of the $z$ test.
17. a. 18.34-21.66 b. 17.79-22.21
18. a. $z_{\text {obt }}=3.96$, and $z_{\text {crit }}=1.645$. Since $\left|z_{\text {obt }}\right|>1.645$, we reject $H_{0}$ and conclude that the amount of smoking in w omen appears to ha ve increased in recent years. The professor w as correct. b. $t_{\mathrm{obt}}=3.67$, and $t_{\text {crit }}=1.658$. Reject $H_{0}$. c. Same conclusion as in part a. d. $\hat{d}=0.26$. This is a medium effect, according to Cohen's criteria.
19. a. $t_{\text {obt }}=4.32$, and $t_{\text {crit }}$ with $7 \mathrm{df}= \pm 2.365$. Since $\left|t_{\mathrm{obt}}\right|>2.365$, we reject $\quad H_{0}$ and conclude that the drug affects short-term memory. It appears to improve it. b. $\hat{d}=1.53$. This is a lar ge effect, according to Cohen's criteria.
20. $t_{\text {obt }}=1.65$, and $t_{\text {crit }}=1.796$. Since $\left|t_{\text {obt }}\right|<1.796$, we retain $H_{0}$. We cannot conclude that middle-age men employed by the corporation have become fatter.
21. $t_{\mathrm{obt}}=0.98$, and $t_{\text {crit }}= \pm 2.262$. Since $\left|t_{\mathrm{obt}}\right|<2.262$, we retain $H_{0}$. From these data, we cannot conclude that the graduates of the local b usiness school get higher salaries for their first jobs than the national average.
22. a. 109.09-140.91
b. 103.14-146.86
23. b. $r=0.675$. c. Yes, reject $H_{0}$ since $r_{\text {crit }}= \pm 0.5760$.
24. a. $r=0.98$. b. Yes, reject $H_{0}$ since $r_{\text {crit }}= \pm 0.6319$.
25. a. $r_{\text {obt }}=0.630 \quad$ b. $r_{\text {crit }}= \pm 0.7067$. Retain $H_{0}$; correlation is not significant. No, $\rho$ may actually differ from 0 , and po wer may be too lo w to detect it. c. $r_{\text {crit }}= \pm 0.4438$. Reject $H_{0}$; correlation is significant. Power is greater with $N=20$.
26. $r_{\text {crit }}= \pm 0.5139$. Reject $H_{0}$; correlation is significant.

## S P S S

1. $\mathbf{t}=1.387$ and Sig. $(\mathbf{2}$-tailed) $=.208$. Since .208 $>0.05$, we conclude by retaining $H_{0}$. Note that the SPSS $t$ value (rounded to 2 decimal places) and the textbook $t_{\text {obt }} \mathrm{v}$ alue are the same. The conclusion reached in both cases is also the same.
2. a. $\mathbf{t}=1.649 \mathrm{and} \mathbf{S i g}$. (2-tailed) $/ 2=.064$. Since .064 $>0.05$, we conclude by retaining $H_{0}$. However, this result came v ery close to allo wing us to reject $H_{0}$ and the e xperiment might be $w$ orth repeating with increased $N . \quad$ b. $\mathbf{t}=2.802$ and Sig. (2-tailed)/2 $=.004$. Since $.004<0.05$, we conclude rejecting $H_{0}$ and affirming $H_{1}$. It appears that increasing $N$ increased power enough to allow rejection of $H_{0}$.

## -CHAPTER 14

15. a. The alternati ve hypothesis states that memory for pictures is superior to memory for w ords. $\mu_{1}>$ $\mu_{2}$. b. The null hypothesis states that memory for pictures is not superior to memory for w ords. $\mu_{1} \leq \mu_{2}$. c. $t_{\text {obt }}=1.86$ and $t_{\text {crit }}=1.761$. Since $\left|t_{\text {obt }}\right|>1.761$, you reject $H_{0}$ and conclude that memory for pictures is superior to memory for w ords. d. $\hat{d}=0.93$. This is a lar ge ef fect, according to Cohen's criteria.
16. a. $t_{\mathrm{obt}}=4.10$, and $t_{\text {crit }}= \pm 2.145$. Since $\left|t_{\mathrm{obt}}\right|>$ 2.145, you reject $H_{0}$ and conclude that ne wspaper advertising really does mak e a dif ference. It appears to increase cosmetics sales. b. $\hat{d}=1.06$. According to Cohen's criteria, this is a large effect.
17. a. $t_{\text {obt }}=4.09$, and $t_{\text {crit }}= \pm 2.306$. Since $\left|t_{\text {obt }}\right|>$ 2.306, you reject $H_{0}$ and conclude that biofeedback training reduces tension headaches. b. If the sampling distribution of $D$ is not normally distrib uted, you cannot use the $t$ test. However, you can use the sign test, because it does not assume an ything about the shape of the scores. By using the sign test, $p(0,1$, 8 , or 9 pluses) $=0.0392$. Since $0.0392<0.05$, you reject $H_{0}$, as before.
18. $t_{\text {obt }}=3.50$, and $t_{\text {crit }}= \pm 2.306$. Since $\left|t_{\text {obt }}\right|>2.306$, we reject $H_{0}$ and conclude that other factors, such as attention, have an effect on tension headaches. They appear to decrease them.
19. $t_{\text {obt }}=2.83$, and $t_{\text {crit }}= \pm 2.120$. Since $\left|t_{\text {obt }}\right|>2.120$, you reject $H_{0}$ and conclude that the decrease obtained
with biofeedback training cannot be attributed solely to other $f$ actors, such as attention. The biofeedback training itself has an ef fect on tension headaches. It appears to decrease them.
20. $t_{\text {obt }}=0.60$, and $t_{\text {crit }}= \pm 2.228$. Since $\left|t_{\text {obt }}\right|<2.228$, we retain $H_{0}$. Based on these data, we cannot conclude that hiring part-time w orkers instead of fulltime workers will affect productivity.
21. a. $t_{\text {obt }}=-2.83$, and $t_{\text {crit }}= \pm 2.131$. Since $\left|t_{\text {obt }}\right|>$ 2.131, you reject $H_{0}$ and conclude that the clinician w as right. Depression interferes with sleep. b. $\hat{d}=1.37$. Yes, this is a lar ge effect, according to Cohen's criteria.
22. $t_{\text {obt }}=2.11$ and $t_{\text {crit }}= \pm 2.201$. Since $\left|t_{\text {obt }}\right|<2.201$, you retain $H_{0}$. You cannot conclude that early e xposure to schooling affects IQ.
23. a. $t_{\text {obt }}=2.23$, and $t_{\text {crit }}= \pm 2.074$. Since $\left|t_{\text {obt }}\right|>$ 2.074, you reject $H_{0}$ and conclude that sleep has an effect on memory. It appears to improe it. b. $95 \%$ confidence interval $=0.13-3.70$. Reject $H_{0}$. Size of effect $=0.13-3.70$ more objects. c. $99 \%$ confidence interval $=-0.51-4.34$. We are $99 \%$ confident that the interval $-0.51-4.34$ contains the real ef fect. Since 0 is one of those values, we conclude by failing to reject $H_{0}$. We cannot affirm $H_{1}$. The results of the experiment are not significant at $\alpha=0.01$. Check it out for yourself, using the null-hypothesis approach and $\alpha=0.01$.
24. a. $t_{\text {obt }}=5.36$, and $t_{\text {crit }}= \pm 3.106$. Since $\left|t_{\text {obt }}\right|>$ 3.106, you reject $H_{0}$ and conclude that high levels of curiosity in childhood appear to ef fect IQ. It seems to increase it. b. $\hat{d}=1.55$. This is a large effect, according to Cohen's criteria.
25. $t_{\text {obt }}=2.02$, and $t_{\text {crit }}= \pm 2.160$. Since $\left|t_{\text {obt }}\right|<2.160$, you retain $H_{0}$ and conclude that the data do not allow the conclusion that women and men differ in recalling emotional e vents. Ho wever, you also note that $t_{\text {obt }}$ is very close to $t_{\text {crit }}$. With only 15 subjects, power is probably low and it may be premature to gi ve up on $H_{1}$.
26. $t_{\text {obt }}=3.28$, and $t_{\text {crit }}= \pm 2.101$. Since $\left|t_{\text {obt }}\right|>2.101$, you reject $H_{0}$ and conclude that w omen and men differ in recalling emotional e vents. Women appear to recall emotional e vents better than men. Increasing the po wer of the e xperiment allo wed $H_{0}$ to be rejected.
27. $t_{\text {obt }}=3.14$, and $t_{\text {crit }}= \pm 2.179$. Since $\left|t_{\text {obt }}\right|>2.179$, you reject $H_{0}$ and conclude that natural lighting affects student learning. It appears to improve it.

## S P S S

## Correlated Groups $\boldsymbol{t}$ test

1. $\mathbf{t}=2.110$ and Sig. (2-tailed) $=.059$. Since $.059>$ $0.05, H_{0}$ is retained. We cannot conclude that early exposure to schooling affects IQ. Note, the textbook and SPSS analysis are in agreement.
2. $\mathbf{t}=-5.363$ and Sig. (2-tailed) $=.000$. Since $.000<0.01$, we reject $H_{0}$ and conclude that high levels of curiosity in childhood appear to increase IQ. Note, the te $x$ tbook and SPSS analysis are in agreement.

## Independent Groups $\boldsymbol{t}$ test

1. $\mathbf{t}=2.225$ and Sig. $(\mathbf{2}$-tailed) $=.037$. Since $.037<$ 0.05 , we conclude by rejecting $H_{0}$. Sleep appears to facilitate memory consolidation. Again, the textbook and SPSS analysis are in agreement.

## CHAPTER 15

10. a. $F_{\text {crit }}=3.63$
b. $F_{\text {crit }}=2.86$
c. $F_{\text {crit }}=4.38$
11. $F_{\mathrm{obt}}=8.64$, and $t_{\mathrm{obt}}$ from Practice Problem $14.2=$ $-2.94 .8 .64=(-2.94)^{2}$. Therefore, $F=t^{2}$.
12. a. Source $S S$ df $M S \quad F_{\text {obt }}$

| Between groups | 1253.68 | 3 | 417.89 | 4.00 |
| :--- | ---: | ---: | ---: | ---: |
| Within groups | 3762.72 | 36 | 104.52 |  |
| Total | 5016.40 | 39 |  |  |

b. 4
c. 10
d. 2.86
e. Yes, the ef fect is significant.
20. a. and b.

| Source | $\boldsymbol{S S}$ | df | $\boldsymbol{M S}$ | $\boldsymbol{F}_{\text {obt }}$ |  |
| :--- | ---: | ---: | ---: | ---: | ---: |
| $\ldots \ldots \ldots \ldots \ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ |
| Between groups | 30.333 | 2 | 15.167 | 5.21 |  |
| Within groups | 43.667 | 15 | 2.911 |  |  |
| Total | 74.000 | 17 |  |  |  |

$F_{\text {crit }}=3.68$. Since $F_{\text {obt }}>3.68$, you reject $H_{0}$ and conclude that at least one of the cereals dif fers in sugar content.
c. Tukey HSD

| Comparison | $Q_{\text {obt }}$ | $Q_{\text {crit }}$ | Conclusion |
| :---: | :---: | :---: | :---: |
| Cereal $A$ and Cereal B | 3.83 | 3.67 | Reject $H_{0}$ |
| Cereal $A$ and Cereal C | 4.07 | 3.67 | Reject $H_{0}$ |
| Cereal B and Cereal C | 0.24 | 3.67 | Retain $H_{0}$ |

d. Schef fé

| Groups (Cereals) | $\underset{\text { (groups iand } j \text { ) }}{S S_{\text {between }}}$ | $\mathrm{df}_{\text {between }}$ from ANOVA | $\begin{gathered} \text { MS }_{\text {between }} \\ (\text { groups i and } j) \end{gathered}$ | $\begin{gathered} M S_{\text {within }} \text { from } \\ \text { ANOVA } \end{gathered}$ | $\boldsymbol{F}_{\text {Scheffe }}$ | $\begin{gathered} \boldsymbol{F}_{\text {crit }} \text { from } \\ \text { ANOVA } \end{gathered}$ | Conclusion |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $A$ and $B$ | 21.333 | 2 | 10.667 | 2.911 | 3.66 | 3.68 | Retain $H_{0}$ |
| $A$ and $C$ | 24.083 | 2 | 12.042 | 2.911 | 4.14 | 3.68 | Reject $H_{0}$ |
| $B$ and C | 0.083 | 2 | 0.042 | 2.911 | 0.01 | 3.68 | Retain $H_{0}$ |

22. 

| a. Source | SS | df | MS | $F_{\text {obt }}$ |
| :---: | :---: | :---: | :---: | :---: |
| Between groups | 108.333 | 3 | 36.111 | 5.40 |
| Within groups | 133.667 | 20 | 6.683 |  |
| Total | 242.000 | 23 |  |  |

$F_{\text {crit }}=3.10$. Since $F_{\text {obt }}>3.10$, we reject $H_{0}$ and conclude that age affects memory.
b. $\hat{\omega}^{2}=0.355$, accounting for $35.5 \%$ of the vriance.
c. $\eta^{2}=0.448$, accounting for $44.8 \%$ of the variance.
e. $t_{\text {obt }}=3.13$, and $t_{\text {crit }}= \pm 2.086$. Reject $H_{0}$ and conclude that the 60-year -old group is significantly different from the 30 -year-old group.
f. Schef fé

| Groups <br> (Years Old) | $S S_{\text {between (groups }}$ | $\begin{gathered} \mathrm{df}_{\text {between }} \text { from } \\ \text { ANOVA } \end{gathered}$ | $M S_{\text {between (groups }}$ | $\begin{gathered} M S_{\text {within }} \text { from } \\ \text { ANOVA } \end{gathered}$ | $\boldsymbol{F}_{\text {Scheffé }}$ | $F_{\text {crit }}$ from ANOVA | Conclusion |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 30-40 | 0.750 | 3 | 0.250 | 6.683 | 0.04 | 3.10 | Retain $H_{0}$ |
| 30-50 | 0.083 | 3 | 0.028 | 6.683 | 0.004 | 3.10 | Retain $H_{0}$ |
| 30-60 | 65.333 | 3 | 21.778 | 6.683 | 3.26 | 3.10 | Reject $H_{0}$ |
| 40-50 | 0.333 | 3 | 0.111 | 6.683 | 0.02 | 3.10 | Retain $H_{0}$ |
| 40-60 | 80.083 | 3 | 26.694 | 6.683 | 3.99 | 3.10 | Reject $H_{0}$ |
| 50-60 | 70.083 | 3 | 23.361 | 6.683 | 3.50 | 3.10 | Reject $H_{0}$ |

Reject $H_{0}$ for all comparisons involving the 60 -year-old group. This age group is significantly different from each of the other age groups. Retain $H_{0}$ for all other comparisons. It appears that memory begins to deteriorate somewhere between the ages of 50 and 60 .

| 23. a. Source | SS | df | MS | $F_{\text {obt }}$ |
| :---: | :---: | :---: | :---: | :---: |
| Between groups | 100.167 | 2 | 50.084 | 4.87 |
| Within groups | 92.500 | 9 | 10.278 |  |
| Total | 192.667 | 11 |  |  |

$F_{\text {crit }}=4.26$. Since $F_{\text {obt }}>4.26$, we reject $H_{0}$ and conclude that the batteries of at least one manuf acturer differ regarding useful life.
b. Tukey HSD

| Comparison | $Q_{\text {obt }}$ | $Q_{\text {crit }}$ | Conclusion |
| :---: | :---: | :---: | :---: |
| Battery A-B | 4.87 | 3.95 | Reject $H_{0}$ |
| Battery A-C | 5.04 | 3.95 | Reject $H_{0}$ |
| Battery B-C | 0.17 | 3.95 | Retain $H_{0}$ |

Reject $H_{0}$ for the comparisons between the batteries of manufacturer A and the other tw o manufacturers. Retain $H_{0}$ for the comparison between the batteries of manuf acturers B and C. The batteries of manufacturer A ha ve significantly longer life. On this basis, you recommend them o ver the batteries made by manufacturers B and C .
24. a.

| Source | SS | df | MS | $F_{\text {obt }}$ |
| :---: | :---: | :---: | :---: | :---: |
| Between groups | 221.6 | 3 | 73.867 | 22.77 |
| Within groups | 116.8 | 36 | 3.244 |  |
| Total | 338.4 | 39 |  |  |

$F_{\text {crit }}=2.86$. Since $F_{\text {obt }}>2.86$, we reject $H_{0}$ and conclude that hormone X affects sexual behavior.
b. $\hat{\omega}^{2}=0.620$, accounting for $62.0 \%$ of the ariance. c. $t_{\text {obt }}=7.20$, and $t_{\text {crit }}= \pm 2.029$. Reject $H_{0}$ and conclude that concentration 3 of hormone X significantly increases the number of matings.
d. Tukey HSD

| Comparison | $Q_{\text {obt }}$ | $Q_{\text {crit }}$ | Conclusion |
| :---: | :---: | :---: | :---: |
| Concentration 0-1 | 0.35 | 3.79 | Retain $H_{0}$ |
| Concentration 0-2 | 4.92 | 3.79 | Reject $H_{0}$ |
| Concentration 0-3 | 10.18 | 3.79 | Reject $H_{0}$ |
| Concentration 1-2 | 4.56 | 3.79 | Reject $H_{0}$ |
| Concentration 1-3 | 9.83 | 3.79 | Reject $H_{0}$ |
| Concentration 2-3 | 5.27 | 3.79 | Reject $H_{0}$ |

Reject $H_{0}$ for all comparisons e xcept between the placebo and concentration 1. It appears that increasing the concentration of hormone X increases the number of matings. The failure to find a significant effect for concentration 1 was probably due to low power to detect a difference for this low level of concentration. Alternatively, there may be a threshold that must be exceeded before the hormone becomes effective.
25. a. The treatments are equally ef fective; $\mu_{1}=\mu_{2}=$ $\mu_{3}=\mu_{4}$

| b. | $\boldsymbol{S} \boldsymbol{S}$ | df | $\boldsymbol{M S}$ | $\boldsymbol{F}_{\text {obt }}$ |  |
| :--- | ---: | ---: | ---: | ---: | ---: |
| $\ldots \ldots \ldots \ldots \ldots \ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ |
| Between groups | 762.88 | 3 | 254.29 | 15.92 |  |
| Within groups | 574.90 | 36 | 15.97 |  |  |
| Total | 1337.78 | 39 |  |  |  |

$F_{\text {obt }}=15.92, F_{\text {crit }}=2.86$; reject $H_{0}$, affirm $H_{1}$.
c. Tukey HSD

| Comparison | $Q_{\text {obt }}$ | $Q_{\text {crit }}$ | Conclusion |
| :---: | :---: | :---: | :---: |
| Placebo-Cognitive <br> Restructuring | 8.66 | 3.79 | Reject $H_{0}$ |
| Placebo-Assertiveness <br> Training | 5.38 | 3.79 | Reject $H_{0}$ |
| Placebo-Exercisel <br> Nutrition | 1.50 | 3.79 | Retain $H_{0}$ |
| Cognitive RestructuringAssertiveness Training | 3.48 | 3.79 | Retain $H_{0}$ |
| Cognitive RestructuringExercise/Nutrition | 7.36 | 3.79 | Reject $H_{0}$ |
| Assertiveness TrainingExercise/Nutrition | 3.88 | 3.79 | Reject $H_{0}$ |

Relative to the placebo, Cognitive Restructuring and Assertiveness Training were significantly more effective, whereas Exercise/Nutrition was not. Both Cognitive Restructuring and Assertiveness Training were significantly more effective than Exercise/Nutrition. There were no significant differences between Cognitive Restructuring and Assertiveness Training.
26. a

| Source | SS | df | MS | $F_{\text {obt }}$ |
| :---: | :---: | :---: | :---: | :---: |
| Between groups | 80.11 | 2 | 40.06 | 8.54 |
| Within groups | 70.33 | 15 | 4.69 |  |
| Total | 150.44 | 17 |  |  |

$F_{\text {obt }}=8.54, F_{\text {crit }}=3.68$, reject $H_{0}$ and conclude that acupuncture in combination with counseling af fects cocaine addiction. They appear to help reduce cocaine addiction.
b. $\hat{\omega}^{2}=0.46$
c. $\eta^{2}=0.53$

| Source | SS | df | MS | $F_{\text {obt }}$ |
| :---: | :---: | :---: | :---: | :---: |
| Between groups | 16.53 | 2 | 8.27 | 0.12 |
| Within groups | 795.20 | 12 | 66.27 |  |
| Total | 811.73 | 14 |  |  |

$F_{\text {obt }}=0.12, F_{\text {crit }}=3.88$, retain $H_{0}$ and conclude that the data do not support the hypothesis that an y of the tests are different in difficulty. Note, since $F_{\text {obt }}<$ 1.00, you could have concluded to retain $H_{0}$ without determining $F_{\text {crit }}$.

## S P S S

1. $\mathbf{F}=14.062$ and Sig. $=.001$. Since $.001<0.05$, our conclusion is to reject $H_{0}$. Sleep deprivation appears to affect sustained attention. Sure beats doing this by hand!!
2. $\mathbf{F}=2.178$ and Sig. $=.101$. Since $.101>0.05$, our conclusion is to retain $H_{0}$. We cannot conclude that there is a significant dif ference in acuity between any of the fore ground and background color combinations.

## ■CHAPTER 16

11. a. The different types of interv ening material ha ve the same ef fect on recall. $\mu_{a_{1}}=\mu_{a_{2}}$. The different amounts of repetition have the same effect on recall. $\mu_{b_{1}}=\mu_{b_{2}}=\mu_{b_{3}}$. There is no interaction between the number of repetitions and the type of interv ening material in their effects on recall. With any main effects remo ved, $\mu_{a_{1} b_{1}}=\mu_{a_{1} b_{2}}=\mu_{a_{1} b_{3}}=\mu_{a_{2} b_{1}}=$ $\mu_{a_{2} b_{2}}=\mu_{a_{2} b_{3}}$

| Source | SS | df | MS | $F_{\text {obt }}$ | $F_{\text {crit }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Rows <br> (intervening material) | 121.000 | 1 | 121.000 | 41.41 | 4.17 |
| Columns (number of repetitions) | 176.167 | 2 | 88.084 | 30.14 | 3.32 |
| Interaction | 35.166 | 2 | 17.583 | 6.02 | 3.32 |
| Within-cells | 87.667 | 30 | 2.922 |  |  |
| Total | 420.000 | 35 |  |  |  |

Since in all cases $F_{\text {obt }}>F_{\text {crit }}, H_{0}$ is rejected for both main effects and the interaction effect. From the pattern of cell means, it is apparent that (1) increasing the number of repetitions increases recall; (2) using nonsense syllable pairs for interv ening material decreases recall; and (3) there is an interaction such that the lower the number of repetitions, the greater the difference in effect between the two types of material.
13. a. For the concentrations administered, previous use of Drowson has no effect on its effectiveness. $\mu_{a_{1}}=$ $\mu_{a_{2}}$. There is no difference between the placebo and the minimum recommended dosage of Dro wson in their effects on insomnia. $\mu_{b_{1}}=\mu_{b_{2}}$. There is no interaction between the pre vious use of Dro wson and the effect on insomnia of the tw o concentrations of

Drowson. With any main ef fects removed, $\mu_{a_{1} b_{1}}=$ $\mu_{a_{1} b_{2}}=\mu_{a_{2} b_{1}}=\mu_{a_{2} b_{2}}$.

b. | Source | $\boldsymbol{S} \boldsymbol{S}$ | $\mathbf{d f}$ | $\boldsymbol{M S}$ | $\boldsymbol{F}_{\text {obt }}$ | $\boldsymbol{F}_{\text {crit }}$ |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| $\ldots \ldots \ldots \ldots \ldots$ | $\ldots \ldots \ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ |$)$.

Since $F_{\text {obt }}>F_{\text {crit }}$ for each comparison, $H_{0}$ is rejected for both main effects and the interaction effect. From the pattern of cell means, it is apparent that Drowson promotes faster sleep onset in subjects who have had no previous use of the drug. Ho wever, the ef fect, if any, is much lower in chronic users, indicating that a tolerance to Drowson develops with chronic use.

## SPSS

1. For the main effect of Previous Use, $\mathbf{F}=11.633$ and Sig. $=.002$. Since $.002<0.05$, we reject $H_{0}$. There is a significant main effect for Previous Use. For the main effect of Drowson Concentration, $\mathbf{F}=17.822$ and Sig. $=.000$. Since $.000<0.05$, we reject $H_{0}$. There is a significant main effect for Drowson Concentration. For the interaction between Previous Use and Drowson Concentration, $\mathbf{F}=8.607$ and Sig. $=$ .007. Since $.007<0.05$, we reject $H_{0}$. There is a significant interaction between Previous Use and Drowson Concentration.
2. For the main ef fect of Prior Usage, $\mathbf{F}=4.341$ and Sig. $=.022$. Since $.022<0.05$, we reject $H_{0}$. There is a significant main effect for Prior Usage. For the main effect of Marijuana Amount, $\mathbf{F}=16.896$ and Sig. $=.000$. Since $.000<0.05$, we reject $H_{0}$. There is a significant main ef fect for Marijuana Amount. For the interaction between Prior Use and Marijuana Amount, $\mathbf{F}=4.008$ and Sig. $=.029$. Since $.029<$ 0.05 , we reject $H_{0}$. There is a significant interaction between Prior Use and Marijuana Amount.

## ■CHAPTER 17

16. $\chi_{\text {obt }}^{2}=0.80$. Since $\chi_{\text {crit }}^{2}=3.841$ we retain $H_{0}$. These data do not support the hypothesis that the prevailing view is fat people are more jolly.
17. $\chi_{\text {obt }}^{2}=21.63$. Since $\chi_{\text {crit }}^{2}=3.841$, we reject $H_{0}$ and conclude that big-city and small-to wn dwellers differ in their helpfulness to strangers. Con verting the frequencies to proportions, we can see that the small-town dwellers were more helpful.
18. $\chi_{\text {obt }}^{2}=13.28$ and $\chi_{\text {crit }}^{2}=7.815$. Since $\chi_{\text {obt }}^{2}>7.815$, we reject $H_{0}$ and conclude that the wrappings dif fer in their effect on sales. The manager should choose wrapping C.
19. $H_{\text {obt }}=7.34$. Since $H_{\text {crit }}=5.991$, we reject $H_{0}$ and conclude that at least one of the occupations dif fers from at least one of the others.
20. $\chi_{\text {obt }}^{2}=3.00$. Since $\chi_{\text {crit }}^{2}=3.841$, we retain $H_{0}$. Based on these data, we cannot conclude that church attendance and educational level are related.
21. $\chi_{\text {obt }}^{2}=3.56$ and $\chi_{\text {crit }}^{2}=9.488$. Since $\chi_{\text {obt }}^{2}<9.488$, we retain $H_{0}$. Yes, the adv ertising is misleading because the data do not show a significant difference among brands.
22. $\chi_{\text {obt }}^{2}=12.73$ and $\chi_{\text {crit }}^{2}=5.991$. Since $\chi_{\text {obt }}^{2}>5.991$, we reject $H_{0}$ and conclude that there is a relationship between the amount of contact white house wives have with blacks and changes in their attitudes toward blacks. The contact in the inte grated housing projects appears to have had a positive effect on the attitude of the white housewives.
23. $H_{\text {obt }}=0.69$. Since $H_{\text {crit }}=9.210$, we must retain $H_{0}$. We cannot conclude that birth order af fects assertiveness.
24. $\chi_{\text {obt }}^{2}=29.57$ and $\chi_{\text {crit }}^{2}=9.488$. Since $\chi_{\text {obt }}^{2}>9.488$, we reject $H_{0}$. There is a relationship between gambling behavior and the different motives. Those high in po wer moti vation appear to tak e the high risks more often. Most of the subjects with high po wer motivation placed high-risk bets, whereas the majority of those high in achievement motivation opted for medium-risk bets and the majority of those high in affiliation motivation chose the low-risk bets. These results are consistent with the vie ws that (1) people with high po wer moti vation will tak e high risks to achieve the attention and status that accompan y such risk, (2) people high in achievement motivation will take medium risks to maximize the probability of having a sense of personal accomplishment, and (3) people with high affiliation motivation will take low risks to a void competition and maximize the sense of belongingness.
25. $T_{\text {obt }}=15$ and $T_{\text {crit }}=17$. Since $T_{\text {obt }}<17$, you reject $H_{0}$ and conclude that the film promotes more favorable attitudes toward major oil companies.
26. $T_{\text {obt }}=1$ and $T_{\text {crit }}=5$. Since $T_{\text {obt }}<5$, you reject $H_{0}$ and conclude that biofeedback to relax frontalis muscle affects tension headaches. It appears to decrease them.
27. $T_{\text {obt }}=14$ and $T_{\text {crit }}=3$. Since $T_{\text {obt }}>3$, you retain $H_{0}$. You cannot conclude that the pill af fects blood pressure.
28. a. The alternati ve hypothesis states that FSH increases the singing rate in captive male cotingas. b. The null hypothesis states that FSH does not increase the singing rate of captive male cotingas. c. $U_{\text {obt }}=15.5$ and $U_{\text {obt }}^{\prime}=64.5 . U_{\text {crit }}=20$. Since $U_{\text {obt }}<20$, you reject $H_{0}$ and conclude that FSH appears to increase the singing rate of male cotingas.
29. a. The alternative hypothesis states that right-handed and left-handed people differ in spatial ability.
b. The null hypothesis states that right-handed people and left-handed people are equal in spatial ability c. $U_{\text {obt }}=20.5$ and $U_{\text {obt }}^{\prime}=69.5$. $U_{\text {crit }}=20$. Since $U_{\text {obt }}$ $>20$, you retain $H_{0}$. You cannot conclude that righthanded and left-handed people differ in spatial ability.
30. a. The alternative hypothesis states that hypnosis is more effective than the standard treatment in reducing test anxiety.
b. The null hypothesis states that hypnosis is not more effective than the standard treatment in reducing test anxiety.
c. $U_{\text {obt }}=31$ and $U_{\text {obt }}^{\prime}=90 . U_{\text {crit }}=34$. Since $U_{\text {obt }}<34$, you reject $H_{0}$ and conclude that hypnosis is more effective than the standard treatment in reducing test anxiety.
31. $H_{\text {obt }}=10.12$ and $H_{\text {crit }}=5.991$. Reject $H_{0}$; affirm $H_{1}$. Sleep depri vation has an ef fect on the ability to maintain sustained attention.
32. $\chi_{\text {obt }}^{2}=6.454$ and $\chi_{\text {crit }}^{2}=3.841$. Reject $H_{0}$; affirm $H_{1}$. There is a relationship between cohabitation and divorce. There is a significantly higher proportion of divorced couples among those that cohabited before marriage than among those that did not cohabit before marriage.
33. $\chi_{\text {obt }}^{2}=19.82$. Since $\chi_{\text {crit }}^{2}=5.991$, you reject $H_{0}$ and conclude that there is a relationship between gender and attitude re garding government involvement in citizen af fairs. Men appear to $f$ avor a small role, whereas women seem to favor a large one.
34. $\chi_{\text {obt }}^{2}=0.51$. Since $\chi_{\text {crit }}^{2}=3.841$, retain $H_{0}$ and conclude that e ven though o verall, black patients received fewer angiograms than white patients, physician racial bias does not appear to have contributed to this phenomenon.
35. $\chi_{\text {obt }}^{2}=5.37$. Since $\chi_{\text {crit }}^{2}=3.841$, you reject $H_{0}$ and conclude that the number of single-father homes has changed. It appears to have increased.
36. $\chi_{\text {obt }}^{2}=8.333$. Since $\chi_{\text {crit }}^{2}=5.991$, reject $H_{0}$ and conclude that cigarette smoking af fects gender of offspring. It appears that when both parents smok e at least one pack of cigarettes a day, their of fspring are more likely to be girls.
37. $\chi_{\text {obt }}^{2}=80.00$. Since $\chi_{\text {crit }}^{2}=5.991$, reject $H_{0}$ and conclude that the surv ey does re veal a reliable prefer ence. Women undergraduates at the uni versity seem to prefer soccer.
38. a. $\chi_{\text {obt }}^{2}=79.23$. Since $\chi_{\text {crit }}^{2}=3.841$, reject $H_{0}$ and conclude that the September 11, 2001, attacks affected religious sentiment. They appeared to increase it.
b. $\chi_{\text {obt }}^{2}=0.69$. Since $\chi_{\text {crit }}^{2}=3.841$, retain $H_{0}$; the data do not support the hypothesis that increased religious sentiment was still evident 1 year after the attacks. It appears that religious sentiment has returned to preattack levels.

## ■ SPSS

1. Pearson Chi-Square $=17.325$ and Asymp. Sig. $\left(2\right.$-sided) $=.000$. Since $.000<0.05$, we reject $H_{0}$ and conclude that preference for desktops or laptops and age of computer user are not independent; the y appear to be related.
2. Pearson Chi-Square $=25.804$ and Asymp. Sig. (2-sided) $=.000$. Since $.000<0.05$, we reject $H_{0}$ and conclude that preference for beer type and gender are not independent; they appear to be related.

## ■ CHAPTER 18

11. a. The alternati ve hypothesis states that the four brands of scotch whisk ey are not equal in prefer ence among the scotch drink ers in Ne w York City. b. The null hypothesis states that the four brands of scotch whisk ey are equal in preference among the scotch drink ers in Ne w York City. c. $\chi_{\text {obt }}^{2}=$ 2.72 and $\chi_{\text {crit }}^{2}=7.815$, Since $\chi_{\text {obt }}^{2}<7.815$, retain $H_{0}$. You cannot conclude that the scotch drink ers
in New York City dif fer in their preference for the four brands of scotch whiskey.
12. a. The alternati ve hypothesis states that ACTH affects a voidance learning. $\mu_{1} \neq \mu_{2} \quad$ b. The null hypothesis states that ACTH has no ef fect on avoidance learning. $\mu_{1}=\mu_{2} \quad$ c. $t_{\mathrm{obt}}=-3.24$, $t_{\text {crit }}= \pm 2.878$. Since $\left|t_{\text {obt }}\right|>2.878$, reject $H_{0}$ and conclude that ACTH has an ef fect on a voidance learning. It appears to f acilitate avoidance learning. d. You may be making a Type I error . The null hypothesis may be true and it has been rejected.
e. These results apply to the 100 -day-old male rats living in the uni versity vivarium at the time the sample was selected. f. $\hat{d}=1.45$, large effect.
13. a. Exogenous thyroxin has no ef fect on acti vity. Therefore, $\mu_{1}=\mu_{2}=\mu_{3}=\mu_{4}$.

| b. Source | $\boldsymbol{S} \boldsymbol{S}$ | df | $\boldsymbol{M S}$ | $\boldsymbol{F}_{\text {obt }}$ |  |
| :--- | :---: | ---: | :---: | :---: | :---: |
| $\ldots \ldots \ldots \ldots \ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ |
| Between groups | 260.09 | 3 | 86.967 | 33.96 |  |
| Within groups | 92.2 | 36 | 2.561 |  |  |
| Total | 353.1 | 39 |  |  |  |

$F_{\text {crit }}=2.86$. Since $F_{\text {obt }}>2.86$, you reject $H_{0}$ and conclude that e xogenous thyroxin af fects acti vity level.
c. $\hat{\omega}^{2}=0.712$, accounting for $71.2 \%$ of the variability. d. $t_{\text {obt }}=8.94$, and $t_{\text {crit }}= \pm 2.029$. Reject $H_{0}$ and conclude that there is a significant dif ference between high amounts of e xogenous thyroxin and saline on activity level. Exogenous thyroxin appears to increase activity level.
e. Tukey HSD

| Comparison | $Q_{\mathrm{obt}}$ | $Q_{\text {crit }}$ | Conclusion |
| :---: | :---: | :---: | :---: |
| Group 1-Group 2 | $1.78$ | $3.79$ | $\text { Retain } H_{0}$ |
| Group 1-Group 3 | $8.10$ | $3.79$ | $\text { Reject } H_{0}$ |
| Group 1-Group 4 | $12.65$ | $3.79$ | $\text { Reject } H_{0}$ |
| Group 2-Group 3 | $6.32$ | $3.79$ | $\text { Reject } H_{0}$ |
| Group 2-Group 4 | $10.87$ | $3.79$ | $\text { Reject } H_{0}$ |
| Group 3-Goup 4 | 4.54 | 3.79 | Reject $H_{0}$ |

Reject $H_{0}$ for all comparisons except between groups 1 and 2. Increases in the amount of e xogenous
thyroxin produce significantly higher le vels of activity. The failure to find a significant difference between groups 1 and 2 is probably due to low power. Alternatively, there may be a threshold that must be e xceeded before e xogenous thyroxin becomes effective.
15. a. The alternati ve hypothesis states that dieting plus exercise is more ef fective in producing weight loss than dieting alone. b. The null hypothesis states that dieting pluse xercise is not more ef fective in producing weight loss than dieting alone.
c. Since it is not valid to use the $t$ test for correlated groups, the ne xt most sensitive test is the Wilcoxon signed ranks test. $T_{\text {obt }}=10.5$, and $T_{\text {crit }}=17$. Since $T_{\text {obt }}<17$, reject $H_{0}$ and conclude that dieting plus exercise is more ef fective than dieting alone in producing weight loss.
16. a. Sign test b. $p(8,9,10,11$, or 12 pluses $)=$ 0.1937. Since the obtained probability is greater than alpha, you retain $\quad H_{0}$. c. The W ilcoxon signed ranks test is more powerful than the sign test. d. Power $=0.3907$, beta $=0.6093$
17. a. The null hypothesis states that there is no relationship between gender and time-of-day prefer ence for ha ving intercourse. b. $\chi_{\text {obt }}^{2}=2.14$ and $\chi_{\text {crit }}^{2}=3.841$. Since $\chi_{\text {obt }}^{2}<3.841$, retain $H_{0}$. You cannot conclude that there is a relationship between gender and time-of-day preference for having intercourse.
18. a. The null hypothesis states that food depri vation (hunger) has no effect on the number of food-related objects reported. Therefore, $\mu_{1}=\mu_{2}=\mu_{3}$

| b. | Source | $\boldsymbol{S S}$ | df | $\boldsymbol{M S}$ | $\boldsymbol{F}_{\text {obt }}$ |
| :--- | :--- | ---: | ---: | ---: | ---: |
| $\ldots \ldots \ldots \ldots \ldots \ldots$ | $\ldots \ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ |
| Between groups | 256.083 | 2 | 128.042 | 11.85 |  |
| Within groups | 226.875 | 21 | 10.804 |  |  |
| Total | 482.958 | 23 |  |  |  |

$F_{\text {crit }}=3.47$. Since $F_{\text {obt }}>3.47$, reject $H_{0}$ and conclude that food deprivation has an effect on the number of food-related objects reported.
c. $\hat{\omega}^{2}=0.47$
d. $\eta^{2}=0.53$
e. Schef fé

| Groups | $S S_{\text {between (groups }}$ i and j) | $\begin{gathered} \mathbf{d f}_{\text {between }} \text { from } \\ \text { ANOVA } \end{gathered}$ | $M S_{\text {between }}$ <br> (groups i and j) | $\begin{gathered} M S_{\text {within }} \text { from } \\ \text { ANOVA } \end{gathered}$ | $\boldsymbol{F}_{\text {Scheffée }}$ | $\begin{gathered} F_{\text {crit }} \text { from } \\ \text { ANOVA } \end{gathered}$ | Conclusion |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 and 4hr | 60.062 | 2 | 30.031 | 10.084 | 2.78 | 3.47 | Retain $H_{0}$ |
| 1 and 12 hr | 256.000 | 2 | 128.000 | 10.084 | 11.85 | 3.47 | Reject $H_{0}$ |
| 4 and 12 hr | 68.062 | 2 | 34.031 | 10.084 | 3.15 | 3.47 | Retain $H_{0}$ |

19. a. $t_{\text {obt }}=10.78$, and $t_{\text {crit }}=2.500$. Since $\left|t_{\text {obt }}\right|>2.500$, reject $H_{0}$. Yes, the engineer is correct in her opinion. The new process results in significantly longer life for LCD TV's. $\quad$ b. $\hat{d}=2.20$, large effect.
20. a. The alternative hypothesis states that alcohol has an ef fect on aggressi veness, $\mu_{1} \neq \mu_{2}$. b. The null hypothesis states that alcohol has no ef fect on aggressiveness. $\mu_{1}=\mu_{2}$. c. $t_{\mathrm{obt}}=-3.93$, and $t_{\text {crit }}= \pm 2.131$. Since $\left|t_{\text {obt }}\right|>2.131$, reject $H_{0}$ and conclude that alcohol has an ef fect on aggressi veness. It appears to increase aggressiveness.
21. a. $r_{\text {obt }}=0.70$. b. $r_{\text {crit }}=0.5139$. Since $\left|r_{\text {obt }}\right|>$ 0.5139 , reject $H_{0}$. The correlation is significant. c. $r^{2}=0.48$.
d. Yes, although it is clear that there is still a lot of variability unaccounted for.
22. a. The alternati ve hypothesis states that smoking affects heart rate. $\mu_{\mathrm{D}} \neq 0$. b. The null hypothesis states that smoking has no ef fect on heart rate. $\mu_{D}=0$. c. $t_{\text {obt }}=-3.40$, and $t_{\text {crit }}= \pm 2.262$. Since $\left|t_{\text {obt }}\right|>2.262$, reject $H_{0}$ and conclude that smoking af fects heart rate. It appears to increase heart rate. d. $\hat{d}=1.08$, large effect.
23. a. The null hypothesis states that there is no relationship between the occupations and the course of action that is favored. $\quad$ b. $\chi_{\text {obt }}^{2}=13.79$ and $\chi_{\text {crit }}^{2}=$ 5.991. Since $\chi_{\text {obt }}^{2}>5.991$, reject $H_{0}$ and conclude that there is a relationship between the occupations and the course of action that is $f$ avored. From the proportions sho wn in the sample, $b$ usiness is in favor of letting the oil price rise, the homemak ers favor gasoline rationing, and labor is f airly e venly divided.
24. a. The null hypothesis states that men and w omen do not differ in logical reasoning ability. b. $U_{\text {obt }}$ $=25.5, U_{\text {obt }}^{\prime}=37.5$, and $U_{\text {crit }}=12$. Since $U_{\text {obt }}>12$, retain $H_{0}$. You cannot conclude that men and
women differ in logical reasoning ability c. You may be making a Type II error. The null hypothesis may be false and you retained it.
25. 24.58-33.42
26. a. The null hypothesis states that Hispanics are not underrepresented in high school teachers in the part of the country the researcher li ves. Therefore, the sample is a random sample from a population of high school teachers where the percentage of Hispanic teachers equals $22 \%$.
b. $\chi_{\mathrm{obt}}^{2}=12.59$ and $\chi_{\text {crit }}^{2}=3.841$. Since $\chi_{\text {obt }}^{2}>3.841$, reject $H_{0}$. It appears that high school teachers are under represented in the geographical locale studied.
27. $H_{\text {obt }}=1.46$. Since $H_{\text {crit }}=5.991$, we must retain $H_{0}$. We cannot conclude that physical science professors are more authoritarian than social science professors.
28. 

| Source | $\boldsymbol{S S}$ | df | $\boldsymbol{M S}$ | $\boldsymbol{F}_{\text {obt }}$ | $\boldsymbol{F}_{\text {crit }}$ |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| $\ldots \ldots \ldots \ldots \ldots$ | $\ldots \ldots$ | $\ldots$ | $\ldots \ldots$ | $\ldots$ | $\ldots$ | $\ldots$ |
| Rows (time) | 17.633 | 1 | 17.633 | $11.76^{*}$ | 4.26 |  |
| Columns | 28.800 | 2 | 14.400 | $9.60^{*}$ | 3.40 |  |
| (activity) |  |  |  |  |  |  |
| Interaction | 0.267 | 2 | 0.133 | 0.09 | 3.40 |  |
| Within-cells | 36.000 | 24 | 1.500 |  |  |  |
| Total | 82.700 | 29 |  |  |  |  |

[^49]
## Tables

Table A Areas Under the Normal Curve
Table B Binomial Distribution
Table C Critical Values of $U$ and $U^{\prime}$
Table D Critical Values of Student's $t$ Distribution
Table E Critical Values of Pearson $r$
Table F Critical Values of the F Distribution
Table G Critical Values of the Studentized Range (Q) Distribution
Table H Chi-Square ( $\chi^{2}$ ) Distribution
Table I Critical Values of $T$ for the Wilcoxon Signed Ranks Test
Table J Random Numbers
Acknowledgments


|  | Areas under the normal curve-cont'd |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $z$ | Area <br> Between Mean and $z$ | Area Beyond $z$ | $z$ | Area <br> Between Mean and $z$ | Area Beyond $z$ |
| Mean $z$ | A | B | C | A | B | C |
|  | $\begin{aligned} & 0.90 \\ & 0.91 \\ & 0.92 \\ & 0.93 \\ & 0.94 \end{aligned}$ | $\begin{aligned} & .3159 \\ & .3186 \\ & .3212 \\ & .3238 \\ & .3264 \end{aligned}$ | $\begin{aligned} & .1841 \\ & .1814 \\ & .1788 \\ & .1762 \\ & .1736 \end{aligned}$ | $\begin{aligned} & 1.35 \\ & 1.36 \\ & 1.37 \\ & 1.38 \\ & 1.39 \end{aligned}$ | $\begin{aligned} & .4115 \\ & .4131 \\ & .4147 \\ & .4162 \\ & .4177 \end{aligned}$ | $\begin{aligned} & .0885 \\ & .0869 \\ & .0853 \\ & .0838 \\ & .0823 \end{aligned}$ |
| Mean $z$ | 0.95 | . 3289 | . 1711 | 1.40 | . 4192 | . 0808 |
| Column A gives the positive | 0.96 | . 3315 | . 1685 | 1.41 | . 4207 | . 0793 |
| $z$ score. | 0.97 | . 3340 | . 1660 | 1.42 | . 4222 | . 0778 |
|  | 0.98 | . 3365 | . 1635 | 1.43 | . 4236 | . 0764 |
| Column $B$ gives the area between the mean and $z$. Since the curve | 0.99 | . 3389 | . 1611 | 1.44 | . 4251 | . 0749 |
| is symmetrical, areas for negative | 1.00 | . 3413 | . 1587 | 1.45 | . 4265 | . 0735 |
| $z$ scores are the same as for posi- | 1.01 | . 3438 | . 1562 | 1.46 | . 4279 | . 0721 |
| tive ones. | 1.02 | . 3461 | . 1539 | 1.47 | . 4292 | . 0708 |
| Column $C$ gives the area that is | 1.03 | . 3485 | . 1515 | 1.48 | . 4306 | . 0694 |
| beyond $z$. | 1.04 | . 3508 | . 1492 | 1.49 | . 4319 | . 0681 |
|  | 1.05 | . 3531 | . 1469 | 1.50 | . 4332 | . 0668 |
|  | 1.06 | . 3554 | . 1446 | 1.51 | . 4345 | . 0655 |
|  | 1.07 | . 3577 | . 1423 | 1.52 | . 4357 | . 0643 |
|  | 1.08 | . 3599 | . 1401 | 1.53 | . 4370 | . 0630 |
|  | 1.09 | . 3621 | . 1379 | 1.54 | . 4382 | . 0618 |
|  | 1.10 | . 3643 | . 1357 | 1.55 | . 4394 | . 0606 |
|  | 1.11 | . 3665 | . 1335 | 1.56 | . 4406 | . 0594 |
|  | 1.12 | . 3686 | . 1314 | 1.57 | . 4418 | . 0582 |
|  | 1.13 | . 3708 | . 1292 | 1.58 | . 4429 | . 0571 |
|  | 1.14 | . 3729 | . 1271 | 1.59 | . 4441 | . 0559 |
|  | 1.15 | . 3749 | . 1251 | 1.60 | . 4452 | . 0548 |
|  | 1.16 | . 3770 | . 1230 | 1.61 | . 4463 | . 0537 |
|  | 1.17 | . 3790 | . 1210 | 1.62 | . 4474 | . 0526 |
|  | 1.18 | . 3810 | . 1190 | 1.63 | . 4484 | . 0516 |
|  | 1.19 | . 3830 | . 1170 | 1.64 | . 4495 | . 0505 |
|  | 1.20 | . 3849 | . 1151 | 1.65 | . 4505 | . 0495 |
|  | 1.21 | . 3869 | . 1131 | 1.66 | . 4515 | . 0485 |
|  | 1.22 | . 3888 | . 1112 | 1.67 | . 4525 | . 0475 |
|  | 1.23 | . 3907 | . 1093 | 1.68 | . 4535 | . 0465 |
|  | 1.24 | . 3925 | . 1075 | 1.69 | . 4545 | . 0455 |
|  | 1.25 | . 3944 | . 1056 | 1.70 | . 4554 | . 0446 |
|  | 1.26 | . 3962 | . 1038 | 1.71 | . 4564 | . 0436 |
|  | 1.27 | . 3980 | . 1020 | 1.72 | . 4573 | . 0427 |
|  | 1.28 | . 3997 | . 1003 | 1.73 | . 4582 | . 0418 |
|  | 1.29 | . 4015 | . 0985 | 1.74 | . 4591 | . 0409 |
|  | 1.30 | . 4032 | . 0968 | 1.75 | . 4599 | . 0401 |
|  | 1.31 | . 4049 | . 0951 | 1.76 | . 4608 | . 0392 |
|  | 1.32 | . 4066 | . 0934 | 1.77 | . 4616 | . 0384 |
|  | 1.33 | . 4082 | . 0918 | 1.78 | . 4625 | . 0375 |
|  | 1.34 | . 4099 | . 0901 | 1.79 | . 4633 | . 0367 |



Column A gives the positive z score.

Column $B$ gives the area between
the mean and $z$. Since the curve
is symmetrical, areas for negative
$z$ scores are the same as for posi-
tive ones.
Column $C$ gives the area that is
beyond $z$.
table A Areas under the normal curve-cont'd

| $z$ A | Area Between Mean and $z$ B | $\begin{gathered} \text { Area } \\ \text { Beyond } \\ z \\ C \end{gathered}$ | $\begin{aligned} & z \\ & A \end{aligned}$ | Area Between Mean and $z$ B | Area Beyond $z$ $C$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1.80 | . 4641 | . 0359 | 2.25 | . 4878 | . 0122 |
| 1.81 | . 4649 | . 0351 | 2.26 | . 4881 | . 0119 |
| 1.82 | . 4656 | . 0344 | 2.27 | . 4884 | . 0116 |
| 1.83 | . 4664 | . 0336 | 2.28 | . 4887 | . 0113 |
| 1.84 | . 4671 | . 0329 | 2.29 | . 4890 | . 0110 |
| 1.85 | . 4678 | . 0322 | 2.30 | . 4893 | . 0107 |
| 1.86 | . 4686 | . 0314 | 2.31 | . 4896 | . 0104 |
| 1.87 | . 4693 | . 0307 | 2.32 | . 4898 | . 0102 |
| 1.88 | . 4699 | . 0301 | 2.33 | . 4901 | . 0099 |
| 1.89 | . 4706 | . 0294 | 2.34 | . 4904 | . 0096 |
| 1.90 | . 4713 | . 0287 | 2.35 | . 4906 | . 0094 |
| 1.91 | . 4719 | . 0281 | 2.36 | . 4909 | . 0091 |
| 1.92 | . 4726 | . 0274 | 2.37 | . 4911 | . 0089 |
| 1.93 | . 4732 | . 0268 | 2.38 | . 4913 | . 0087 |
| 1.94 | . 4738 | . 0262 | 2.39 | . 4916 | . 0084 |
| 1.95 | . 4744 | . 0256 | 2.40 | . 4918 | . 0082 |
| 1.96 | . 4750 | . 0250 | 2.41 | . 4920 | . 0080 |
| 1.97 | . 4756 | . 0244 | 2.42 | . 4922 | . 0078 |
| 1.98 | . 4761 | . 0239 | 2.43 | . 4925 | . 0075 |
| 1.99 | . 4767 | . 0233 | 2.44 | . 4927 | . 0073 |
| 2.00 | . 4772 | . 0228 | 2.45 | . 4929 | . 0071 |
| 2.01 | . 4778 | . 0222 | 2.46 | . 4931 | . 0069 |
| 2.02 | . 4783 | . 0217 | 2.47 | . 4932 | . 0068 |
| 2.03 | . 4788 | . 0212 | 2.48 | . 4934 | . 0066 |
| 2.04 | . 4793 | . 0207 | 2.49 | . 4936 | . 0064 |
| 2.05 | . 4798 | . 0202 | 2.50 | . 4938 | . 0062 |
| 2.06 | . 4803 | . 0197 | 2.51 | . 4940 | . 0060 |
| 2.07 | . 4808 | . 0192 | 2.52 | . 4941 | . 0059 |
| 2.08 | . 4812 | . 0188 | 2.53 | . 4943 | . 0057 |
| 2.09 | . 4817 | . 0183 | 2.54 | . 4945 | . 0055 |
| 2.10 | . 4821 | . 0179 | 2.55 | . 4946 | . 0054 |
| 2.11 | . 4826 | . 0174 | 2.56 | . 4948 | . 0052 |
| 2.12 | . 4830 | . 0170 | 2.57 | . 4949 | . 0051 |
| 2.13 | . 4834 | . 0166 | 2.58 | . 4951 | . 0049 |
| 2.14 | . 4838 | . 0162 | 2.59 | . 4952 | . 0048 |
| 2.15 | . 4842 | . 0158 | 2.60 | . 4953 | . 0047 |
| 2.16 | . 4846 | . 0154 | 2.61 | . 4955 | . 0045 |
| 2.17 | . 4850 | . 0150 | 2.62 | . 4956 | . 0044 |
| 2.18 | . 4854 | . 0146 | 2.63 | . 4957 | . 0043 |
| 2.19 | . 4857 | . 0143 | 2.64 | . 4959 | . 0041 |
| 2.20 | . 4861 | . 0139 | 2.65 | . 4960 | . 0040 |
| 2.21 | . 4864 | . 0136 | 2.66 | . 4961 | . 0039 |
| 2.22 | . 4868 | . 0132 | 2.67 | . 4962 | . 0038 |
| 2.23 | . 4871 | . 0129 | 2.68 | . 4963 | . 0037 |
| 2.24 | . 4875 | . 0125 | 2.69 | . 4964 | . 0036 |


|  | Areas under the normal curve-cont'd |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $z$ | Area <br> Between Mean and $z$ | Area Beyond | $z$ | Area <br> Between Mean and $z$ | Area Beyond |
| Mean $z$ | A | B | C | A | B | C |
|  | 2.70 | . 4965 | . 0035 | 3.00 | . 4987 | . 0013 |
|  | 2.71 | . 4966 | . 0034 | 3.01 | . 4987 | . 0013 |
|  | 2.72 | . 4967 | . 0033 | 3.02 | . 4987 | . 0013 |
|  | 2.73 | . 4968 | . 0032 | 3.03 | . 4988 | . 0012 |
| - C-> | 2.74 | . 4969 | . 0031 | 3.04 | . 4988 | . 0012 |
| Mean $z$ | 2.75 | . 4970 | . 0030 | 3.05 | . 4989 | . 0011 |
| Column $A$ gives the positive z score. | 2.76 | . 4971 | . 0029 | 3.06 | . 4989 | . 0011 |
|  | 2.77 | . 4972 | . 0028 | 3.07 | . 4989 | . 0011 |
| Column $B$ gives the area between the mean and $z$. Since the curve is symmetrical, areas for negative $z$ scores are the same as for positive ones. | 2.78 | . 4973 | . 0027 | 3.08 | . 4990 | . 0010 |
|  | 2.79 | . 4974 | . 0026 | 3.09 | . 4990 | . 0010 |
|  | 2.80 | . 4974 | . 0026 | 3.10 | . 4990 | . 0010 |
|  | 2.81 | . 4975 | . 0025 | 3.11 | . 4991 | . 0009 |
|  | 2.82 | . 4976 | . 0024 | 3.12 | . 4991 | . 0009 |
| Column $C$ gives the area that is beyond $z$. | 2.83 | . 4977 | . 0023 | 3.13 | . 4991 | . 0009 |
|  | 2.84 | . 4977 | . 0023 | 3.14 | . 4992 | . 0008 |
|  | 2.85 | . 4978 | . 0022 | 3.15 | . 4992 | . 0008 |
|  | 2.86 | . 4979 | . 0021 | 3.16 | . 4992 | . 0008 |
|  | 2.87 | . 4979 | . 0021 | 3.17 | . 4992 | . 0008 |
|  | 2.88 | . 4980 | . 0020 | 3.18 | . 4993 | . 0007 |
|  | 2.89 | . 4981 | . 0019 | 3.19 | . 4993 | . 0007 |
|  | 2.90 | . 4981 | . 0019 | 3.20 | . 4993 | . 0007 |
|  | 2.91 | . 4982 | . 0018 | 3.21 | . 4993 | . 0007 |
|  | 2.92 | . 4982 | . 0018 | 3.22 | . 4994 | . 0006 |
|  | 2.93 | . 4983 | . 0017 | 3.23 | . 4994 | . 0006 |
|  | 2.94 | . 4984 | . 0016 | 3.24 | . 4994 | . 0006 |
|  | 2.95 | . 4984 | . 0016 | 3.30 | . 4995 | . 0005 |
|  | 2.96 | . 4985 | . 0015 | 3.40 | . 4997 | . 0003 |
|  | 2.97 | . 4985 | . 0015 | 3.50 | . 4998 | . 0002 |
|  | 2.98 | . 4986 | . 0014 | 3.60 | . 4998 | . 0002 |
|  | 2.99 | . 4986 | . 0014 | 3.70 | . 4999 | . 0001 |

table B Binomial distribution

|  | No. of | $P$ or $Q$ |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $N$ | Events | . 05 | . 10 | . 15 | . 20 | . 25 | . 30 | . 35 | . 40 | . 45 | . 50 |
| 1 | 0 | . 9500 | . 9000 | . 8500 | . 8000 | . 7500 | . 7000 | . 6500 | . 6000 | . 5500 | . 5000 |
|  | 1 | . 0500 | . 1000 | . 1500 | . 2000 | . 2500 | . 3000 | . 3500 | . 4000 | . 4500 | . 5000 |
| 2 | 0 | . 9025 | . 8100 | . 7225 | . 6400 | . 5625 | . 4900 | . 4225 | . 3600 | . 3025 | . 2500 |
|  | 1 | . 0950 | . 1800 | . 2550 | . 3200 | . 3750 | . 4200 | . 4550 | . 4800 | . 4950 | . 5000 |
|  | 2 | . 0025 | . 0100 | . 0225 | . 0400 | . 0625 | . 0900 | . 1225 | . 1600 | . 2025 | . 2500 |
| 3 | 0 | . 8574 | . 7290 | . 6141 | . 5120 | . 4219 | . 3430 | . 2746 | . 2160 | . 1664 | . 1250 |
|  | 1 | . 1354 | . 2430 | . 3251 | . 3840 | . 4219 | . 4410 | . 4436 | . 4320 | . 4084 | . 3750 |
|  | 2 | . 0071 | . 0270 | . 0574 | . 0960 | . 1406 | . 1890 | . 2389 | . 2880 | . 3341 | . 3750 |
|  | 3 | . 0001 | . 0010 | . 0034 | . 0080 | . 0156 | . 0270 | . 0429 | . 0640 | . 0911 | . 1250 |
| 4 | 0 | . 8145 | . 6561 | . 5220 | . 4096 | . 3164 | . 2401 | . 1785 | . 1296 | . 0915 | . 0625 |
|  | 1 | . 1715 | . 2916 | . 3685 | . 4096 | . 4219 | . 4116 | . 3845 | . 3456 | . 2995 | . 2500 |
|  | 2 | . 0135 | . 0486 | . 0975 | . 1536 | . 2109 | . 2646 | . 3105 | . 3456 | . 3675 | . 3750 |
|  | 3 | . 0005 | . 0036 | . 0115 | . 0256 | . 0469 | . 0756 | . 1115 | . 1536 | . 2005 | . 2500 |
|  | 4 | . 0000 | . 0001 | . 0005 | . 0016 | . 0039 | . 0081 | . 0150 | . 0256 | . 0410 | . 0625 |
| 5 | 0 | . 7738 | . 5905 | . 4437 | . 3277 | . 2373 | . 1681 | . 1160 | . 0778 | . 0503 | . 0312 |
|  | 1 | . 2036 | . 3280 | . 3915 | . 4096 | . 3955 | . 3602 | . 3124 | . 2592 | . 2059 | . 1562 |
|  | 2 | . 0214 | . 0729 | . 1382 | . 2048 | . 2637 | . 3087 | . 3364 | . 3456 | . 3369 | . 3125 |
|  | 3 | . 0011 | . 0081 | . 0244 | . 0512 | . 0879 | . 1323 | . 1811 | . 2304 | . 2757 | . 3125 |
|  | 4 | . 0000 | . 0004 | . 0022 | . 0064 | . 0146 | . 0284 | . 0488 | . 0768 | . 1128 | . 1562 |
|  | 5 | . 0000 | . 0000 | . 0001 | . 0003 | . 0010 | . 0024 | . 0053 | . 0102 | . 0185 | . 0312 |
| 6 | 0 | . 7351 | . 5314 | . 3771 | . 2621 | . 1780 | . 1176 | . 0754 | . 0467 | . 0277 | . 0156 |
|  | 1 | . 2321 | . 3543 | . 3993 | . 3932 | . 3560 | . 3025 | . 2437 | . 1866 | . 1359 | . 0938 |
|  | 2 | . 0305 | . 0984 | . 1762 | . 2458 | . 2966 | . 3241 | . 3280 | . 3110 | . 2780 | . 2344 |
|  | 3 | . 0021 | . 0146 | . 0415 | . 0819 | . 1318 | . 1852 | . 2355 | . 2765 | . 3032 | . 3125 |
|  | 4 | . 0001 | . 0012 | . 0055 | . 0154 | . 0330 | . 0595 | . 0951 | . 1382 | . 1861 | . 2344 |
|  | 5 | . 0000 | . 0001 | . 0004 | . 0015 | . 0044 | . 0102 | . 0205 | . 0369 | . 0609 | . 0938 |
|  | 6 | . 0000 | . 0000 | . 0000 | . 0001 | . 0002 | . 0007 | . 0018 | . 0041 | . 0083 | . 0156 |
| 7 | 0 | . 6983 | . 4783 | . 3206 | . 2097 | . 1335 | . 0824 | . 0490 | . 0280 | . 0152 | . 0078 |
|  | 1 | . 2573 | . 3720 | . 3960 | . 3670 | . 3115 | . 2471 | . 1848 | . 1306 | . 0872 | . 0547 |
|  | 2 | . 0406 | . 1240 | . 2097 | . 2753 | . 3115 | . 3177 | . 2985 | . 2613 | . 2140 | . 1641 |
|  | 3 | . 0036 | . 0230 | . 0617 | . 1147 | . 1730 | . 2269 | . 2679 | . 2903 | . 2918 | . 2734 |
|  | 4 | . 0002 | . 0026 | . 0109 | . 0287 | . 0577 | . 0972 | . 1442 | . 1935 | . 2388 | . 2734 |
|  | 5 | . 0000 | . 0002 | . 0012 | . 0043 | . 0115 | . 0250 | . 0466 | . 0774 | . 1172 | . 1641 |
|  | 6 | . 0000 | . 0000 | . 0001 | . 0004 | . 0013 | . 0036 | . 0084 | . 0172 | . 0320 | . 0547 |
|  | 7 | . 0000 | . 0000 | . 0000 | . 0000 | . 0001 | . 0002 | . 0006 | . 0016 | . 0037 | . 0078 |
| 8 | 0 | . 6634 | . 4305 | . 2725 | . 1678 | . 1001 | . 0576 | . 0319 | . 0168 | . 0084 | . 0039 |
|  | 1 | . 2793 | . 3826 | . 3847 | . 3355 | . 2670 | . 1977 | . 1373 | . 0896 | . 0548 | . 0312 |
|  | 2 | . 0515 | . 1488 | . 2376 | . 2936 | . 3115 | . 2965 | . 2587 | . 2090 | . 1569 | . 1094 |
|  | 3 | . 0054 | . 0331 | . 0839 | . 1468 | . 2076 | . 2541 | . 2786 | . 2787 | . 2568 | . 2188 |
|  | 4 | . 0004 | . 0046 | . 0185 | . 0459 | . 0865 | . 1361 | . 1875 | . 2322 | . 2627 | . 2734 |
|  | 5 | . 0000 | . 0004 | . 0026 | . 0092 | . 0231 | . 0467 | . 0808 | . 1239 | . 1719 | . 2188 |
|  | 6 | . 0000 | . 0000 | . 0002 | . 0011 | . 0038 | . 0100 | . 0217 | . 0413 | . 0703 | . 1094 |
|  | 7 | . 0000 | . 0000 | . 0000 | . 0001 | . 0004 | . 0012 | . 0033 | . 0079 | . 0164 | . 0312 |
|  | 8 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0001 | . 0002 | . 0007 | . 0017 | . 0039 |

table B Binomial distribution-cont'd

|  | No. of | $P$ or $Q$ |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $N$ | Events | . 05 | . 10 | . 15 | . 20 | . 25 | . 30 | . 35 | . 40 | . 45 | . 50 |
| 9 | 0 | . 6302 | . 3874 | . 2316 | . 1342 | . 0751 | . 0404 | . 0277 | . 0101 | . 0046 | . 0020 |
|  | 1 | . 2985 | . 3874 | . 3679 | . 3020 | . 2253 | . 1556 | . 1004 | . 0605 | . 0339 | . 0176 |
|  | 2 | . 0629 | . 1722 | . 2597 | . 3020 | . 3003 | . 2668 | . 2162 | . 1612 | . 1110 | . 0703 |
|  | 3 | . 0077 | . 0446 | . 1069 | . 1762 | . 2336 | . 2668 | . 2716 | . 2508 | . 2119 | . 1641 |
|  | 4 | . 0006 | . 0074 | . 0283 | . 0661 | . 1168 | . 1715 | . 2194 | . 2508 | . 2600 | . 2461 |
|  | 5 | . 0000 | . 0008 | . 0050 | . 0165 | . 0389 | . 0735 | . 1181 | . 1672 | . 2128 | . 2461 |
|  | 6 | . 0000 | . 0001 | . 0006 | . 0028 | . 0087 | . 0210 | . 0424 | . 0743 | . 1160 | . 1641 |
|  | 7 | . 0000 | . 0000 | . 0000 | . 0003 | . 0012 | . 0039 | . 0098 | . 0212 | . 0407 | . 0703 |
|  | 8 | . 0000 | . 0000 | . 0000 | . 0000 | . 0001 | . 0004 | . 0013 | . 0035 | . 0083 | . 0176 |
|  | 9 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0001 | . 0003 | . 0008 | . 0020 |
| 10 | 0 | . 5987 | . 3487 | . 1969 | . 1074 | . 0563 | . 0282 | . 0135 | . 0060 | . 0025 | . 0010 |
|  | 1 | . 3151 | . 3874 | . 3474 | . 2684 | . 1877 | . 1211 | . 0725 | . 0403 | . 0207 | . 0098 |
|  | 2 | . 0746 | . 1937 | . 2759 | . 3020 | . 2816 | . 2335 | . 1757 | . 1209 | . 0763 | . 0439 |
|  | 3 | . 0105 | . 0574 | . 1298 | . 2013 | . 2503 | . 2668 | . 2522 | . 2150 | . 1665 | . 1172 |
|  | 4 | . 0010 | . 0112 | . 0401 | . 0881 | . 1460 | . 2001 | . 2377 | . 2508 | . 2384 | . 2051 |
|  | 5 | . 0001 | . 0015 | . 0085 | . 0264 | . 0584 | . 1029 | . 1536 | . 2007 | . 2340 | . 2461 |
|  | 6 | . 0000 | . 0001 | . 0012 | . 0055 | . 0162 | . 0368 | . 0689 | . 1115 | . 1596 | . 2051 |
|  | 7 | . 0000 | . 0000 | . 0001 | . 0008 | . 0031 | . 0090 | . 0212 | . 0425 | . 0746 | . 1172 |
|  | 8 | . 0000 | . 0000 | . 0000 | . 0001 | . 0004 | . 0014 | . 0043 | . 0106 | . 0229 | . 0439 |
|  | 9 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0001 | . 0005 | . 0016 | . 0042 | . 0098 |
|  | 10 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0001 | . 0003 | . 0010 |
| 11 | 0 | . 5688 | . 3138 | . 1673 | . 0859 | . 0422 | . 0198 | . 0088 | . 0036 | . 0014 | . 0005 |
|  | 1 | . 3293 | . 3835 | . 3248 | . 2362 | . 1549 | . 0932 | . 0518 | . 0266 | . 0125 | . 0054 |
|  | 2 | . 0867 | . 2131 | . 2866 | . 2953 | . 2581 | . 1998 | . 1395 | . 0887 | . 0513 | . 0269 |
|  | 3 | . 0137 | . 0710 | . 1517 | . 2215 | . 2581 | . 2568 | . 2254 | . 1774 | . 1259 | . 0806 |
|  | 4 | . 0014 | . 0158 | . 0536 | . 1107 | . 1721 | . 2201 | . 2428 | . 2365 | . 2060 | . 1611 |
|  | 5 | . 0001 | . 0025 | . 0132 | . 0388 | . 0803 | . 1231 | . 1830 | . 2207 | . 2360 | . 2256 |
|  | 6 | . 0000 | . 0003 | . 0023 | . 0097 | . 0268 | . 0566 | . 0985 | . 1471 | . 1931 | . 2256 |
|  | 7 | . 0000 | . 0000 | . 0003 | . 0017 | . 0064 | . 0173 | . 0379 | . 0701 | . 1128 | . 1611 |
|  | 8 | . 0000 | . 0000 | . 0000 | . 0002 | . 0011 | . 0037 | . 0102 | . 0234 | . 0462 | . 0806 |
|  | 9 | . 0000 | . 0000 | . 0000 | . 0000 | . 0001 | . 0005 | . 0018 | . 0052 | . 0126 | . 0269 |
|  | 10 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0002 | . 0007 | . 0021 | . 0054 |
|  | 11 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0002 | . 0005 |
| 12 | 0 | . 5404 | . 2824 | . 1422 | . 0687 | . 0317 | . 0138 | . 0057 | . 0022 | . 0008 | . 0002 |
|  | 1 | . 3413 | . 3766 | . 3012 | . 2062 | . 1267 | . 0712 | . 0368 | . 0174 | . 0075 | . 0029 |
|  | 2 | . 0988 | . 2301 | . 2924 | . 2835 | . 2323 | . 1678 | . 1088 | . 0639 | . 0339 | . 0161 |
|  | 3 | . 0173 | . 0852 | . 1720 | . 2362 | . 2581 | . 2397 | . 1954 | . 1419 | . 0923 | . 0537 |
|  | 4 | . 0021 | . 0213 | . 0683 | . 1329 | . 1936 | . 2311 | . 2367 | . 2128 | . 1700 | . 1208 |
|  | 5 | . 0002 | . 0038 | . 0193 | . 0532 | . 1032 | . 1585 | . 2039 | . 2270 | . 2225 | . 1934 |
|  | 6 | . 0000 | . 0005 | . 0040 | . 0155 | . 0401 | . 0792 | . 1281 | . 1766 | . 2124 | . 2256 |
|  | 7 | . 0000 | . 0000 | . 0006 | . 0033 | . 0115 | . 0291 | . 0591 | . 1009 | . 1489 | . 1934 |
|  | 8 | . 0000 | . 0000 | . 0001 | . 0005 | . 0024 | . 0078 | . 0199 | . 0420 | . 0762 | . 1208 |
|  | 9 | . 0000 | . 0000 | . 0000 | . 0001 | . 0004 | . 0015 | . 0048 | . 0125 | . 0277 | . 0537 |
|  | 10 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0002 | . 0008 | . 0025 | . 0068 | . 0161 |
|  | 11 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0001 | . 0003 | . 0010 | . 0029 |
|  | 12 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0001 | . 0002 |

table B Binomial distribution-cont'd

|  |  | $P$ or $Q$ |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $N$ | Events | . 05 | . 10 | . 15 | . 20 | . 25 | . 30 | . 35 | . 40 | . 45 | . 50 |
| 13 | 0 | . 5133 | . 2542 | . 1209 | . 0550 | . 0238 | . 0097 | . 0037 | . 0013 | . 0004 | . 0001 |
|  | 1 | . 3512 | . 3672 | . 2774 | . 1787 | . 1029 | . 0540 | . 0259 | . 0113 | . 0045 | . 0016 |
|  | 2 | . 1109 | . 2448 | . 2937 | . 2680 | . 2059 | . 1388 | . 0836 | . 0453 | . 0220 | . 0095 |
|  | 3 | . 0214 | . 0997 | . 1900 | . 2457 | . 2517 | . 2181 | . 1651 | . 1107 | . 0660 | . 0349 |
|  | 4 | . 0028 | . 0277 | . 0838 | . 1535 | . 2097 | . 2337 | . 2222 | . 1845 | . 1350 | . 0873 |
|  | 5 | . 0003 | . 0055 | . 0266 | . 0691 | . 1258 | . 1803 | . 2154 | . 2214 | . 1989 | . 1571 |
|  | 6 | . 0000 | . 0008 | . 0063 | . 0230 | . 0559 | . 1030 | . 1546 | . 1968 | . 2169 | . 2095 |
|  | 7 | . 0000 | . 0001 | . 0011 | . 0058 | . 0186 | . 0442 | . 0833 | . 1312 | . 1775 | . 2095 |
|  | 8 | . 0000 | . 0000 | . 0001 | . 0011 | . 0047 | . 0142 | . 0336 | . 0656 | . 1089 | . 1571 |
|  | 9 | . 0000 | . 0000 | . 0000 | . 0001 | . 0009 | . 0034 | . 0101 | . 0243 | . 0495 | . 0873 |
|  | 10 | . 0000 | . 0000 | . 0000 | . 0000 | . 0001 | . 0006 | . 0022 | . 0065 | . 0162 | . 0349 |
|  | 11 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0001 | . 0003 | . 0012 | . 0036 | . 0095 |
|  | 12 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0001 | . 0005 | . 0016 |
|  | 13 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0001 |
| 14 | 0 | . 4877 | . 2288 | . 1028 | . 0440 | . 0178 | . 0068 | . 0024 | . 0008 | . 0002 | . 0001 |
|  | 1 | . 3593 | . 3559 | . 2539 | . 1539 | . 0832 | . 0407 | . 0181 | . 0073 | . 0027 | . 0009 |
|  | 2 | . 1229 | . 2570 | . 2912 | . 2501 | . 1802 | . 1134 | . 0634 | . 0317 | . 0141 | . 0056 |
|  | 3 | . 0259 | . 1142 | . 2056 | . 2501 | . 2402 | . 1943 | . 1366 | . 0845 | . 0462 | . 0222 |
|  | 4 | . 0037 | . 0349 | . 0998 | . 1720 | . 2202 | . 2290 | . 2022 | . 1549 | . 1040 | . 0611 |
|  | 5 | . 0004 | . 0078 | . 0352 | . 0860 | . 1468 | . 1963 | . 2178 | . 2066 | . 1701 | . 1222 |
|  | 6 | . 0000 | . 0013 | . 0093 | . 0322 | . 0734 | . 1262 | . 1759 | . 2066 | . 2088 | . 1833 |
|  | 7 | . 0000 | . 0002 | . 0019 | . 0092 | . 0280 | . 0618 | . 1082 | . 1574 | . 1952 | . 2095 |
|  | 8 | . 0000 | . 0000 | . 0003 | . 0020 | . 0082 | . 0232 | . 0510 | . 0918 | . 1398 | . 1833 |
|  | 9 | . 0000 | . 0000 | . 0000 | . 0003 | . 0018 | . 0066 | . 0183 | . 0408 | . 0762 | . 1222 |
|  | 10 | . 0000 | . 0000 | . 0000 | . 0000 | . 0003 | . 0014 | . 0049 | . 0136 | . 0312 | . 0611 |
|  | 11 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0002 | . 0010 | . 0033 | . 0093 | . 0222 |
|  | 12 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0001 | . 0005 | . 0019 | . 0056 |
|  | 13 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0001 | . 0002 | . 0009 |
|  | 14 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0001 |
| 15 | 0 | . 4633 | . 2059 | . 0874 | . 0352 | . 0134 | . 0047 | . 0016 | . 0005 | . 0001 | . 0000 |
|  | 1 | . 3658 | . 3432 | . 2312 | . 1319 | . 0668 | . 0305 | . 0126 | . 0047 | . 0016 | . 0005 |
|  | 2 | . 1348 | . 2669 | . 2856 | . 2309 | . 1559 | . 0916 | . 0476 | . 0219 | . 0090 | . 0032 |
|  | 3 | . 0307 | . 1285 | . 2184 | . 2501 | . 2252 | . 1700 | . 1110 | . 0634 | . 0318 | . 0139 |
|  | 4 | . 0049 | . 0428 | . 1156 | . 1876 | . 2252 | . 2186 | . 1792 | . 1268 | . 0780 | . 0417 |
|  | 5 | . 0006 | . 0105 | . 0449 | . 1032 | . 1651 | . 2061 | . 2123 | . 1859 | . 1404 | . 0916 |
|  | 6 | . 0000 | . 0019 | . 0132 | . 0430 | . 0917 | . 1472 | . 1906 | . 2066 | . 1914 | . 1527 |
|  | 7 | . 0000 | . 0003 | . 0030 | . 0138 | . 0393 | . 0811 | . 1319 | . 1771 | . 2013 | . 1964 |
|  | 8 | . 0000 | . 0000 | . 0005 | . 0035 | . 0131 | . 0348 | . 0710 | . 1181 | . 1647 | . 1964 |
|  | 9 | . 0000 | . 0000 | . 0001 | . 0007 | . 0034 | . 0116 | . 0298 | . 0612 | . 1048 | . 1527 |
|  | 10 | . 0000 | . 0000 | . 0000 | . 0001 | . 0007 | . 0030 | . 0096 | . 0245 | . 0515 | . 0916 |
|  | 11 | . 0000 | . 0000 | . 0000 | . 0000 | . 0001 | . 0006 | . 0024 | . 0074 | . 0191 | . 0417 |
|  | 12 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0001 | . 0004 | . 0016 | . 0052 | . 0139 |
|  | 13 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0001 | . 0003 | . 0010 | . 0032 |
|  | 14 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0001 | . 0005 |
|  | 15 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 |

table B Binomial distribution-cont'd

|  | No. of | $P$ or $Q$ |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $N$ | Events | . 05 | . 10 | . 15 | . 20 | . 25 | . 30 | . 35 | . 40 | . 45 | . 50 |
| 16 | 0 | . 4401 | . 1853 | . 0743 | . 0281 | . 0100 | . 0033 | . 0010 | . 0003 | . 0001 | . 0000 |
|  | 1 | . 3706 | . 3294 | . 2097 | . 1126 | . 0535 | . 0228 | . 0087 | . 0030 | . 0009 | . 0002 |
|  | 2 | . 1463 | . 2745 | . 2775 | . 2111 | . 1336 | . 0732 | . 0353 | . 0150 | . 0056 | . 0018 |
|  | 3 | . 0359 | . 1423 | . 2285 | . 2463 | . 2079 | . 1465 | . 0888 | . 0468 | . 0215 | . 0085 |
|  | 4 | . 0061 | . 0514 | . 1311 | . 2001 | . 2252 | . 2040 | . 1553 | . 1014 | . 0572 | . 0278 |
|  | 5 | . 0008 | . 0137 | . 0555 | . 1201 | . 1802 | . 2099 | . 2008 | . 1623 | . 1123 | . 0667 |
|  | 6 | . 0001 | . 0028 | . 0180 | . 0550 | . 1101 | . 1649 | . 1982 | . 1983 | . 1684 | . 1222 |
|  | 7 | . 0000 | . 0004 | . 0045 | . 0197 | . 0524 | . 1010 | . 1524 | . 1889 | . 1969 | . 1746 |
|  | 8 | . 0000 | . 0001 | . 0009 | . 0055 | . 0197 | . 0487 | . 0923 | . 1417 | . 1812 | . 1964 |
|  | 9 | . 0000 | . 0000 | . 0001 | . 0012 | . 0058 | . 0185 | . 0442 | . 0840 | . 1318 | . 1746 |
|  | 10 | . 0000 | . 0000 | . 0000 | . 0002 | . 0014 | . 0056 | . 0167 | . 0392 | . 0755 | . 1222 |
|  | 11 | . 0000 | . 0000 | . 0000 | . 0000 | . 0002 | . 0013 | . 0049 | . 0142 | . 0337 | . 0667 |
|  | 12 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0002 | . 0011 | . 0040 | . 0115 | . 0278 |
|  | 13 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0002 | . 0008 | . 0029 | . 0085 |
|  | 14 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0001 | . 0005 | . 0018 |
|  | 15 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0001 | . 0002 |
|  | 16 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 |
| 17 | 0 | . 4181 | . 1668 | . 0631 | . 0225 | . 0075 | . 0023 | . 0007 | . 0002 | . 0000 | . 0000 |
|  | 1 | . 3741 | . 3150 | . 1893 | . 0957 | . 0426 | . 0169 | . 0060 | . 0019 | . 0005 | . 0001 |
|  | 2 | . 1575 | . 2800 | . 2673 | . 1914 | . 1136 | . 0581 | . 0260 | . 0102 | . 0035 | . 0010 |
|  | 3 | . 0415 | . 1556 | . 2359 | . 2393 | . 1893 | . 1245 | . 0701 | . 0341 | . 0144 | . 0052 |
|  | 4 | . 0076 | . 0605 | . 1457 | . 2093 | . 2209 | . 1868 | . 1320 | . 0796 | . 0411 | . 0182 |
|  | 5 | . 0010 | . 0175 | . 0668 | . 1361 | . 1914 | . 2081 | . 1849 | . 1379 | . 0875 | . 0472 |
|  | 6 | . 0001 | . 0039 | . 0236 | . 0680 | . 1276 | . 1784 | . 1991 | . 1839 | . 1432 | . 0944 |
|  | 7 | . 0000 | . 0007 | . 0065 | . 0267 | . 0668 | . 1201 | . 1685 | . 1927 | . 1841 | . 1484 |
|  | 8 | . 0000 | . 0001 | . 0014 | . 0084 | . 0279 | . 0644 | . 1143 | . 1606 | . 1883 | . 1855 |
|  | 9 | . 0000 | . 0000 | . 0003 | . 0021 | . 0093 | . 0276 | . 0611 | . 1070 | . 1540 | . 1855 |
|  | 10 | . 0000 | . 0000 | . 0000 | . 0004 | . 0025 | . 0095 | . 0263 | . 0571 | . 1008 | . 1484 |
|  | 11 | . 0000 | . 0000 | . 0000 | . 0001 | . 0005 | . 0026 | . 0090 | . 0242 | . 0525 | . 0944 |
|  | 12 | . 0000 | . 0000 | . 0000 | . 0000 | . 0001 | . 0006 | . 0024 | . 0081 | . 0215 | . 0472 |
|  | 13 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0001 | . 0005 | . 0021 | . 0068 | . 0182 |
|  | 14 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0001 | . 0004 | . 0016 | . 0052 |
|  | 15 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0001 | . 0003 | . 0010 |
|  | 16 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0001 |
|  | 17 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 |
| 18 | 0 | . 3972 | . 1501 | . 0536 | . 0180 | . 0056 | . 0016 | . 0004 | . 0001 | . 0000 | . 0000 |
|  | 1 | . 3763 | . 3002 | . 1704 | . 0811 | . 0338 | . 0126 | . 0042 | . 0012 | . 0003 | . 0001 |
|  | 2 | . 1683 | . 2835 | . 2556 | . 1723 | . 0958 | . 0458 | . 0190 | . 0069 | . 0022 | . 0006 |
|  | 3 | . 0473 | . 1680 | . 2406 | . 2297 | . 1704 | . 1046 | . 0547 | . 0246 | . 0095 | . 0031 |
|  | 4 | . 0093 | . 0070 | . 1592 | . 2153 | . 2130 | . 1681 | . 1104 | . 0614 | . 0291 | . 0117 |
|  | 5 | . 0014 | . 0218 | . 0787 | . 1507 | . 1988 | . 2017 | . 1664 | . 1146 | . 0666 | . 0327 |
|  | 6 | . 0002 | . 0052 | . 0310 | . 0816 | . 1436 | . 1873 | . 1941 | . 1655 | . 1181 | . 0708 |
|  | 7 | . 0000 | . 0010 | . 0091 | . 0350 | . 0820 | . 1376 | . 1792 | . 1892 | . 1657 | . 1214 |
|  | 8 | . 0000 | . 0002 | . 0022 | . 0120 | . 0376 | . 0811 | . 1327 | . 1734 | . 1864 | . 1669 |
|  | 9 | . 0000 | . 0000 | . 0004 | . 0033 | . 0139 | . 0386 | . 0794 | . 1284 | . 1694 | . 1855 |
|  | 10 | . 0000 | . 0000 | . 0001 | . 0008 | . 0042 | . 0149 | . 0385 | . 0771 | . 1248 | . 1669 |
|  | 11 | . 0000 | . 0000 | . 0000 | . 0001 | . 0010 | . 0046 | . 0151 | . 0374 | . 0742 | . 1214 |

table B Binomial distribution-cont'd

|  | No. of | $P$ or $Q$ |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $N$ | Events | . 05 | . 10 | . 15 | . 20 | . 25 | . 30 | . 35 | . 40 | . 45 | . 50 |
| 18 | 12 | . 0000 | . 0000 | . 0000 | . 0000 | . 0002 | . 0012 | . 0047 | . 0145 | . 0354 | . 0708 |
|  | 13 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0002 | . 0012 | . 0045 | . 0134 | . 0327 |
|  | 14 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0002 | . 0011 | . 0039 | . 0117 |
|  | 15 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0002 | . 0009 | . 0031 |
|  | 16 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0001 | . 0006 |
|  | 17 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0001 |
|  | 18 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 |
| 19 | 0 | . 3774 | . 1351 | . 0456 | . 0144 | . 0042 | . 0011 | . 0003 | . 0001 | . 0000 | . 0000 |
|  | 1 | . 3774 | . 2852 | . 1529 | . 0685 | . 0268 | . 0093 | . 0029 | . 0008 | . 0002 | . 0000 |
|  | 2 | . 1787 | . 2852 | . 2428 | . 1540 | . 0803 | . 0358 | . 0138 | . 0046 | . 0013 | . 0003 |
|  | 3 | . 0533 | . 1796 | . 2428 | . 2182 | . 1517 | . 0869 | . 0422 | . 0175 | . 0062 | . 0018 |
|  | 4 | . 0112 | . 0798 | . 1714 | . 2182 | . 2023 | . 1491 | . 0909 | . 0467 | . 0203 | . 0074 |
|  | 5 | . 0018 | . 0266 | . 0907 | . 1636 | . 2023 | . 1916 | . 1468 | . 0933 | . 0497 | . 0222 |
|  | 6 | . 0002 | . 0069 | . 0374 | . 0955 | . 1574 | . 1916 | . 1844 | . 1451 | . 0949 | . 0518 |
|  | 7 | . 0000 | . 0014 | . 0122 | . 0443 | . 0974 | . 1525 | . 1844 | . 1797 | . 1443 | . 0961 |
|  | 8 | . 0000 | . 0002 | . 0032 | . 0166 | . 0487 | . 0981 | . 1489 | . 1797 | . 1771 | . 1442 |
|  | 9 | . 0000 | . 0000 | . 0007 | . 0051 | . 0198 | . 0514 | . 0980 | . 1464 | . 1771 | . 1762 |
|  | 10 | . 0000 | . 0000 | . 0001 | . 0013 | . 0066 | . 0220 | . 0528 | . 0976 | . 1449 | . 1762 |
|  | 11 | . 0000 | . 0000 | . 0000 | . 0003 | . 0018 | . 0077 | . 0233 | . 0532 | . 0970 | . 1442 |
|  | 12 | . 0000 | . 0000 | . 0000 | . 0000 | . 0004 | . 0022 | . 0083 | . 0237 | . 0529 | . 0961 |
|  | 13 | . 0000 | . 0000 | . 0000 | . 0000 | . 0001 | . 0005 | . 0024 | . 0085 | . 0233 | . 0518 |
|  | 14 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0001 | . 0006 | . 0024 | . 0082 | . 0222 |
|  | 15 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0001 | . 0005 | . 0022 | . 0074 |
|  | 16 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0001 | . 0005 | . 0018 |
|  | 17 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0001 | . 0003 |
|  | 18 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 |
|  | 19 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 |
| 20 | 0 | . 3585 | . 1216 | . 0388 | . 0115 | . 0032 | . 0008 | . 0002 | . 0000 | . 0000 | . 0000 |
|  | 1 | . 3774 | . 2702 | . 1368 | . 0576 | . 0211 | . 0068 | . 0020 | . 0005 | . 0001 | . 0000 |
|  | 2 | . 1887 | . 2852 | . 2293 | . 1369 | . 0669 | . 0278 | . 0100 | . 0031 | . 0008 | . 0002 |
|  | 3 | . 0596 | . 1901 | . 2428 | . 2054 | . 1339 | . 0716 | . 0323 | . 0123 | . 0040 | . 0011 |
|  | 4 | . 0133 | . 0898 | . 1821 | . 2182 | . 1897 | . 1304 | . 0738 | . 0350 | . 0139 | . 0046 |
|  | 5 | . 0022 | . 0319 | . 1028 | . 1746 | . 2023 | . 1789 | . 1272 | . 0746 | . 0365 | . 0148 |
|  | 6 | . 0003 | . 0089 | . 0454 | . 1091 | . 1686 | . 1916 | . 1712 | . 1244 | . 0746 | . 0370 |
|  | 7 | . 0000 | . 0020 | . 0160 | . 0545 | . 1124 | . 1643 | . 1844 | . 1659 | . 1221 | . 0739 |
|  | 8 | . 0000 | . 0004 | . 0046 | . 0222 | . 0609 | . 1144 | . 1614 | . 1797 | . 1623 | . 1201 |
|  | 9 | . 0000 | . 0001 | . 0011 | . 0074 | . 0271 | . 0654 | . 1158 | . 1597 | . 1771 | . 1602 |
|  | 10 | . 0000 | . 0000 | . 0002 | . 0020 | . 0099 | . 0308 | . 0686 | . 1171 | . 1593 | . 1762 |
|  | 11 | . 0000 | . 0000 | . 0000 | . 0005 | . 0030 | . 0120 | . 0336 | . 0710 | . 1185 | . 1602 |
|  | 12 | . 0000 | . 0000 | . 0000 | . 0001 | . 0008 | . 0039 | . 0136 | . 0355 | . 0727 | . 1201 |
|  | 13 | . 0000 | . 0000 | . 0000 | . 0000 | . 0002 | . 0010 | . 0045 | . 0146 | . 0366 | . 0739 |
|  | 14 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0002 | . 0012 | . 0049 | . 0150 | . 0370 |
|  | 15 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0003 | . 0013 | . 0049 | . 0148 |
|  | 16 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0003 | . 0013 | . 0046 |
|  | 17 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0002 | . 0011 |
|  | 18 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0002 |
|  | 19 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 |
|  | 20 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 | . 0000 |

table C. 1 Critical values of $U$ and $U^{\prime}$ for a one-tailed test at $\alpha=0.005$ or a two-tailed test at $\alpha=0.01$
To be significant for any given $n_{1}$ and $n_{2}$ : $U_{\mathrm{obt}}$ must be equal to or less than the value shown in the table. $U_{\mathrm{obt}}^{\prime}$ must be equal to or greater than the value shown in the table.


Dashes in the body of the table indicate that no decision is possible at the stated level of significance.
table C. 2 Critical values of $U$ and $U^{\prime}$ for a one-tailed test at $\alpha=0.01$ or a two-tailed test at $\alpha=0.02$
To be significant for any given $n_{1}$ and $n_{2}$ : $U_{\text {obt }}$ must be equal to or less than the value shown in the table. $U_{\mathrm{obt}}^{\prime}$ must be equal to or greater than the value shown in the table.

| $n_{2}$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 2 | - | - | - | - | - | - | - | - | - | - | - | - | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
|  |  |  |  |  |  |  |  |  |  |  |  |  | $\underline{26}$ | 28 | 30 | 32 | 34 | 36 | 37 | $\underline{39}$ |
| 3 | - | - | - | - | - | - | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 4 | 4 | 4 | 5 |
|  |  |  |  |  |  |  | 21 | $\underline{24}$ | $\underline{26}$ | $\underline{29}$ | 32 | 34 | 37 | 40 | 42 | 45 | 47 | $\underline{50}$ | 52 | $\underline{55}$ |
| 4 | - | - | - | - | 0 | 1 | 1 | 2 | 3 | 3 | 4 | 5 | 5 | 6 | 7 | 7 | 8 | 9 | 9 | 10 |
|  |  |  |  |  | $\underline{20}$ | $\underline{23}$ | 27 | 30 | 33 | 37 | 40 | 43 | 47 | 50 | 53 | 57 | 60 | 63 | 67 | 70 |
| 5 | - | - | - | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
|  |  |  |  | $\underline{20}$ | $\underline{24}$ | $\underline{28}$ | 32 | 36 | 40 | 44 | 48 | $\underline{52}$ | $\underline{56}$ | $\underline{60}$ | 64 | 68 | $\underline{72}$ | 76 | 80 | $\underline{84}$ |
| 6 | - | - |  | 1 | 2 | 3 | 4 | 6 | 7 | 8 | 9 | 11 | 12 | 13 | 15 | 16 | 18 | 19 | 20 | 22 |
|  |  |  |  | $\underline{23}$ | $\underline{28}$ | $\underline{33}$ | 38 | 42 | 47 | $\underline{52}$ | 57 | $\underline{61}$ | 66 | 71 | 75 | 80 | $\underline{84}$ | $\underline{89}$ | 94 | $\underline{93}$ |
| 7 | - | - | 0 | 1 | 3 | 4 | 6 | 7 | 9 | 11 | 12 | 14 | 16 | 17 | 19 | 21 | 23 | 24 | 26 | 28 |
|  |  |  | $\underline{21}$ | 27 | 32 | 38 | 43 | 49 | 54 | $\underline{59}$ | 65 | 70 | 75 | 81 | 86 | 91 | 96 | 102 | 107 | 112 |
| 8 | - | - | 0 | 2 | 4 | 6 | 7 | 9 | 11 | 13 | 15 | 17 | 20 | 22 | 24 | 26 | 28 | 30 | 32 | 34 |
|  |  |  | $\underline{24}$ | 30 | $\underline{36}$ | $\underline{42}$ | 49 | 55 | $\underline{61}$ | $\underline{67}$ | 73 | $\underline{79}$ | $\underline{84}$ | $\underline{9}$ | $\underline{96}$ | $\underline{102}$ | $\underline{108}$ | 114 | $\underline{120}$ | $\underline{126}$ |
| 9 | - | - | 1 | 3 | 5 | 7 | 9 | 11 | 14 | 16 | 18 | 21 | 23 | 26 | 28 | 31 | 33 | 36 | 38 | 40 |
|  |  |  | $\underline{26}$ | 33 | 40 | 47 | 54 | 61 | 67 | 74 | 81 | 87 | $\underline{9}$ | 100 | 107 | $\underline{113}$ | 120 | 126 | 133 | 140 |
| 10 | - | - | 1 | 3 | 6 | 8 | 11 | 13 | 16 | 19 | 22 | 24 | 27 | 30 | 33 | 36 | 38 | 41 | 44 | 47 |
|  |  |  | $\underline{29}$ | 37 | 44 | 52 | $\underline{59}$ | 67 | 74 | 81 | 88 | 96 | 103 | 110 | 117 | 124 | 132 | 139 | 146 | $\underline{153}$ |
| 11 | - | - | 1 | 4 | 7 | 9 | 12 | 15 | 18 | 22 | 25 | 28 | 31 | 34 | 37 | 41 | 44 | 47 | 50 | 53 |
|  |  |  | $\underline{32}$ | 40 | 48 | $\underline{57}$ | $\underline{65}$ | 73 | $\underline{81}$ | $\underline{88}$ | $\underline{96}$ | 104 | 112 | $\underline{120}$ | 128 | 135 | 143 | 151 | 159 | $\underline{167}$ |
| 12 | - | - | 2 | 5 | 8 | 11 | 14 | 17 | 21 | 24 | 28 | 31 | 35 | 38 | 42 | 46 | 49 | 53 | 56 | 60 |
|  |  |  | 34 | 43 | 52 | $\underline{61}$ | 70 | 79 | 87 | $\underline{96}$ | $\underline{104}$ | 113 | $\underline{121}$ | 130 | 138 | 146 | 155 | 163 | 172 | 180 |
| 13 | - | 0 | 2 | 5 | 9 | 12 | 16 | 20 | 23 | 27 | 31 | 35 | 39 | 43 | 47 | 51 | 55 | 59 | 63 | 67 |
|  |  | $\underline{26}$ | 37 | 47 | $\underline{56}$ | $\underline{66}$ | $\underline{75}$ | 84 | $\underline{94}$ | $\underline{103}$ | $\underline{112}$ | $\underline{121}$ | 130 | 139 | 148 | 157 | $\underline{166}$ | 175 | 184 | 193 |
| 14 | - | 0 | 2 | 6 | 10 | 13 | 17 | 22 | 26 | 30 | 34 | 38 | 43 | 47 | 51 | 56 | 60 | 65 | 69 | 73 |
|  |  | $\underline{28}$ | 40 | $\underline{50}$ | $\underline{60}$ | 71 | $\underline{81}$ | $\underline{9}$ | 100 | $\underline{110}$ | $\underline{120}$ | 130 | $\underline{139}$ | 149 | 159 | 168 | 178 | 187 | 197 | $\underline{207}$ |
| 15 | - |  |  | 7 | 11 | 15 | 19 | 24 | 28 | 33 | 37 | 42 | 47 | 51 | 56 | 61 | 66 | 70 | 75 | 80 |
|  |  | 30 | 42 | $\underline{53}$ | 64 | 75 | 86 | 96 | 107 | 117 | 128 | 138 | 148 | 159 | 169 | 179 | 189 | 200 | $\underline{210}$ | $\underline{220}$ |
| 16 | - |  | 3 | 7 | 12 | 16 | 21 | 26 | 31 | 36 | 41 | 46 | 51 | 56 | 61 | 66 | 71 | 76 | 82 | 87 |
|  |  | $\underline{32}$ | 45 | $\underline{57}$ | $\underline{68}$ | $\underline{80}$ | $\underline{91}$ | 102 | 113 | $\underline{124}$ | 135 | 146 | 157 | $\underline{168}$ | 179 | 190 | $\underline{201}$ | $\underline{212}$ | $\underline{222}$ | $\underline{233}$ |
| 17 | - | 0 | 4 | 8 | 13 | 18 | 23 | 28 | 33 | 38 | 44 | 49 | 55 | 60 | 66 | 71 | 72 | 82 | 88 | 93 |
|  |  | $\underline{34}$ | 47 | 60 | $\underline{72}$ | $\underline{84}$ | $\underline{96}$ | 108 | 120 | 132 | 143 | 155 | 166 | 178 | 189 | $\underline{201}$ | $\underline{212}$ | 224 | $\underline{234}$ | $\underline{247}$ |
| 18 | - | 0 | 4 | 9 | 14 | 19 | 24 | 30 | 36 | 41 | 47 | 53 | 59 | 65 | 70 | 76 | 82 | 88 | 94 | 100 |
|  |  | $\underline{36}$ | 50 | $\underline{63}$ | 76 | $\underline{89}$ | $\underline{102}$ | 114 | 126 | 139 | 151 | 163 | $\underline{175}$ | 187 | $\underline{200}$ | $\underline{212}$ | 224 | 236 | $\underline{248}$ | $\underline{260}$ |
| 19 | - |  | 4 | 9 | 15 | 20 | 26 | 32 | 38 | 44 | 50 | 56 | 63 | 69 | 75 | 82 | 88 | 94 | 101 | 107 |
|  |  | $\underline{37}$ | $\underline{53}$ | 67 | $\underline{80}$ | $\underline{94}$ | 107 | $\underline{120}$ | 133 | 146 | $\underline{159}$ | 172 | $\underline{184}$ | 197 | $\underline{210}$ | $\underline{222}$ | $\underline{235}$ | $\underline{248}$ | $\underline{260}$ | $\underline{273}$ |
| 20 | - | 1 | 5 | 10 | 16 | 22 | 28 | 34 | 40 | 47 | 53 | 60 | 67 | 73 | 80 | 87 | 93 | 100 | 107 | 114 |
|  |  | $\underline{39}$ | $\underline{55}$ | 70 | 84 | $\underline{98}$ | 112 | 126 | 140 | 153 | 167 | 180 | 193 | 207 | 220 | 233 | 247 | 260 | 273 | 286 |

[^50]table C. 3 Critical values of $U$ and $U^{\prime}$ for a one-tailed test at $\alpha=0.025$ or a two-tailed test at $\alpha=0.05$
To be significant for any given $n_{1}$ and $n_{2}$ : $U_{\text {obt }}$ must be equal to or less than the value shown in the table. $U_{\mathrm{obt}}^{\prime}$ must be equal to or greater than the value shown in the table.

| $n_{2} n_{1}$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 2 | - | - | - | - | - | - | - | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 |
|  |  |  |  |  |  |  |  | 16 | 18 | $\underline{20}$ | $\underline{22}$ | $\underline{23}$ | $\underline{25}$ | 27 | $\underline{29}$ | 31 | 32 | 34 | 36 | 38 |
| 3 | - | - | - | - | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 5 | 5 | 6 | 6 | 7 | 7 | 8 |
|  |  |  |  |  | 15 | 17 | $\underline{20}$ | 22 | $\underline{25}$ | 27 | 30 | 32 | 35 | 37 | 40 | 42 | 45 | 47 | 50 | 52 |
| 4 | - | - | - | 0 | 1 | 2 | 3 | 4 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 11 | 12 | 13 | 13 |
|  |  |  |  | 16 | $\underline{19}$ | $\underline{22}$ | $\underline{25}$ | $\underline{28}$ | 32 | 35 | 38 | 41 | 44 | 47 | $\underline{50}$ | $\underline{53}$ | $\underline{57}$ | $\underline{60}$ | $\underline{63}$ | $\underline{67}$ |
| 5 | - | - | 0 | 1 | 2 | 3 | 5 | 6 | 7 | 8 | 9 | 11 | 12 | 13 | 14 | 15 | 17 | 18 | 19 | 20 |
|  |  |  | 15 | 19 | $\underline{23}$ | $\underline{27}$ | 30 | 34 | 38 | 42 | 46 | 49 | $\underline{53}$ | $\underline{57}$ | 61 | 65 | 68 | 72 | 76 | 80 |
| 6 | - | - | 1 | 2 | 3 | 5 | 6 | 8 | 10 | 11 | 13 | 14 | 16 | 17 | 19 | 21 | 22 | 24 | 25 | 27 |
|  |  |  | 17 | 22 | $\underline{27}$ | 31 | 36 | 40 | 44 | 49 | 53 | 58 | 62 | 67 | 71 | 75 | 80 | 84 | 89 | $\underline{93}$ |
| 7 | - | - | 1 | 3 | 5 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 22 | 24 | 26 | 28 | 30 | 32 | 34 |
|  |  |  | $\underline{20}$ | $\underline{25}$ | 30 | 36 | 41 | 46 | 51 | $\underline{56}$ | 61 | $\underline{66}$ | 71 | 76 | $\underline{81}$ | 86 | $\underline{91}$ | $\underline{96}$ | 101 | $\underline{106}$ |
| 8 | - | 0 | 2 | 4 | 6 | 8 | 10 | 13 | 15 | 17 | 19 | 22 | 24 | 26 | 29 | 31 | 34 | 36 | 38 | 41 |
|  |  | 16 | $\underline{22}$ | 28 | 34 | 40 | 46 | $\underline{51}$ | 57 | $\underline{63}$ | $\underline{69}$ | 74 | 78 | 86 | $\underline{1}$ | 27 | 102 | 108 | 111 | 119 |
| 9 | - | 0 | 2 | 4 | 7 | 10 | 12 | 15 | 17 | 20 | 23 | 26 | 28 | 31 | 34 | 37 | 39 | 42 | 45 | 48 |
|  |  | 18 | $\underline{25}$ | 32 | 38 | 44 | 51 | 57 | 64 | 70 | 76 | $\underline{82}$ | $\underline{89}$ | $\underline{95}$ | 101 | 107 | 114 | 120 | 126 | 132 |
| 10 | - | 0 | 3 | 5 | 8 | 11 | 14 | 17 | 20 | 23 | 26 | 29 | 33 | 36 | 39 | 42 | 45 | 48 | 52 | 55 |
|  |  | $\underline{20}$ | $\underline{27}$ | $\underline{35}$ | 42 | $\underline{49}$ | $\underline{56}$ | $\underline{63}$ | $\underline{70}$ | 77 | $\underline{84}$ | $\underline{91}$ | $\underline{97}$ | 104 | 111 | 118 | $\underline{125}$ | 132 | 138 | $\underline{145}$ |
| 11 | - | 0 | 3 | 6 | 9 | 13 | 16 | 19 | 23 | 26 | 30 | 33 | 37 | 40 | 44 | 47 | 51 | 55 | 58 | 62 |
|  |  | $\underline{22}$ | $\underline{30}$ | $\underline{38}$ | 46 | $\underline{53}$ | $\underline{61}$ | $\underline{69}$ | 76 | $\underline{84}$ | $\underline{91}$ | $\underline{99}$ | $\underline{106}$ | 114 | 121 | 129 | 136 | 143 | 151 | 158 |
| 12 | - | 1 | 4 | 7 | 11 | 14 | 18 | 22 | 26 | 29 | 33 | 37 | 41 | 45 | 49 | 53 | 57 | 61 | 65 | 69 |
|  |  | $\underline{23}$ | 32 | 41 | $\underline{49}$ | $\underline{58}$ | 58 | 74 | 82 | $\underline{91}$ | $\underline{9}$ | 107 | 115 | 123 | 131 | 139 | 147 | 155 | 163 | 171 |
| 13 | - | 1 | 4 | 8 | 12 | 16 | 20 | 24 | 28 | 33 | 37 | 41 | 45 | 50 | 54 | 59 | 63 | 67 | 72 | 76 |
|  |  | $\underline{25}$ | 35 | 44 | $\underline{53}$ | $\underline{62}$ | 71 | 80 | $\underline{89}$ | $\underline{97}$ | 106 | $\underline{115}$ | 124 | 132 | 141 | 149 | 158 | 167 | $\underline{175}$ | 184 |
| 14 | - | 1 | 5 | 9 | 13 | 17 | 22 | 26 | 31 | 36 | 40 | 45 | 50 | 55 | 59 | 64 | 67 | 74 | 78 | 83 |
|  |  | 27 | 37 | 47 | 51 | 67 | 76 | 86 | 95 | 104 | 114 | 123 | 132 | 141 | 151 | 160 | 171 | 178 | 188 | 197 |
| 15 | - | 1 | 5 | 10 | 14 | 19 | 24 | 29 | 34 | 39 | 44 | 49 | 54 | 59 | 64 | 70 | 75 | 80 | 85 | 90 |
|  |  | $\underline{29}$ | 40 | 50 | 61 | 71 | 81 | 91 | 101 | 111 | 121 | 131 | 141 | 151 | 161 | 170 | 180 | 190 | 200 | $\underline{210}$ |
| 16 | - | 1 | 6 | 11 | 15 | 21 | 26 | 31 | 37 | 42 | 47 | 53 | 59 | 64 | 70 | 75 | 81 | 86 | 92 | 98 |
|  |  | 31 | 42 | $\underline{53}$ | $\underline{65}$ | 75 | 86 | $\underline{97}$ | 107 | 118 | 129 | 139 | 149 | 160 | 170 | 181 | 191 | $\underline{202}$ | $\underline{212}$ | 222 |
| 17 | - |  |  | 11 | 17 | 22 | 28 | 34 | 39 | 45 | 51 | 57 | 63 | 67 | 75 | 81 | 87 | 93 | 99 | 105 |
|  |  | 32 | 45 | 57 | 68 | 80 | $\underline{91}$ | 102 | 114 | 125 | 136 | 147 | 158 | 171 | 180 | 191 | 202 | 213 | 224 | 235 |
| 18 | - |  | 7 | 12 | 18 | 24 | 30 | 36 | 42 | 48 | 55 | 61 | 67 | 74 | 80 | 86 | 93 | 99 | 106 | 112 |
|  |  | 34 | 47 | 60 | 72 | 84 | $\underline{96}$ | 108 | 120 | 132 | 143 | 155 | 167 | 168 | 190 | $\underline{202}$ | $\underline{213}$ | $\underline{225}$ | $\underline{236}$ | $\underline{248}$ |
| 19 | - | 2 | 7 | 13 | 19 | 25 | 32 | 38 | 45 | 52 | 58 | 65 | 72 | 78 | 85 | 92 | 99 | 106 | 113 | 119 |
|  |  | 36 | $\underline{50}$ | $\underline{63}$ | 76 | $\underline{89}$ | 101 | 114 | 126 | $\underline{138}$ | $\underline{151}$ | 163 | 175 | 188 | $\underline{200}$ | $\underline{212}$ | $\underline{224}$ | $\underline{236}$ | $\underline{248}$ | $\underline{261}$ |
| 20 | - | 2 | 8 | 13 | 20 | 27 | 34 | 41 | 48 | 55 | 62 | 69 | 76 | 83 | 90 | 98 | 105 | 112 | 119 | 127 |
|  |  | 38 | 52 | 67 | 80 | 93 | 106 | 119 | 132 | 145 | 158 | 171 | 184 | 197 | 210 | 222 | 235 | 248 | 261 | 273 |

[^51]table C. 4 Critical values of $U$ and $U^{\prime}$ for a one-tailed test at $\alpha=0.05$ or a two-tailed test at $\alpha=0.10$
To be significant for any given $n_{1}$ and $n_{2}$ : $U_{\text {obt }}$ must be equal to or less than the value shown in the table. $U_{\text {obt }}^{\prime}$ must be equal to or greater than the value shown in the table.

| $\boldsymbol{n}_{2}$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | - |  | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | $\begin{array}{r}0 \\ 19 \\ \hline\end{array}$ | $\begin{array}{r}0 \\ \underline{20} \\ \hline\end{array}$ |
| 2 | - | - | - | - | $\begin{array}{r} 0 \\ 10 \end{array}$ | 0 12 | $\begin{array}{r} 0 \\ 14 \\ \hline \end{array}$ | $\begin{array}{r} 1 \\ 15 \end{array}$ | $\begin{array}{r} 1 \\ 17 \end{array}$ | $\begin{array}{r} 1 \\ 19 \\ \hline \end{array}$ | $\begin{array}{r} 1 \\ 21 \end{array}$ | 2 22 | 2 24 | 2 26 | $\begin{array}{r}3 \\ 27 \\ \hline\end{array}$ | 3 29 | $\begin{array}{r}3 \\ 31 \\ \hline\end{array}$ | 4 32 | 4 34 | $\begin{array}{r}4 \\ 36 \\ \hline\end{array}$ |
| 3 | - | - | 0 9 | 12 | 14 | 2 16 | $\begin{array}{r}2 \\ 19 \\ \hline\end{array}$ | 3 21 | $\begin{array}{r}3 \\ 24 \\ \hline\end{array}$ | $\begin{array}{r}4 \\ 26 \\ \hline\end{array}$ | $\begin{array}{r}5 \\ 28 \\ \hline\end{array}$ | 5 31 | $\begin{array}{r}6 \\ 33 \\ \hline\end{array}$ | $\begin{array}{r}7 \\ 35 \\ \hline\end{array}$ | $\begin{array}{r}7 \\ 38 \\ \hline\end{array}$ | $\begin{array}{r}8 \\ 40 \\ \hline\end{array}$ | $\begin{array}{r}9 \\ 42 \\ \hline\end{array}$ | $\begin{array}{r}9 \\ 45 \\ \hline\end{array}$ | 10 <br> 47 | 11 <br> 49 |
| 4 | - | - | $\begin{array}{r} 0 \\ \underline{12} \\ \hline \end{array}$ | $\underline{15}$ | $\begin{array}{r}2 \\ 18 \\ \hline\end{array}$ | $\begin{array}{r}3 \\ 21 \\ \hline\end{array}$ | $\begin{array}{r} 4 \\ 24 \\ \hline \end{array}$ | $\begin{array}{r} 5 \\ 27 \\ \hline \end{array}$ | $\begin{array}{r} 6 \\ \underline{30} \\ \hline \end{array}$ | $\begin{array}{r} 7 \\ \underline{36} \\ \hline \end{array}$ | $\begin{array}{r} 8 \\ \underline{36} \\ \hline \end{array}$ | $\begin{array}{r}9 \\ \hline 9 \\ \hline\end{array}$ | 10 42 | $\begin{aligned} & 11 \\ & 45 \\ & \hline \end{aligned}$ | $\begin{aligned} & 12 \\ & 48 \\ & \hline \end{aligned}$ | $\begin{aligned} & 14 \\ & \underline{50} \\ & \hline \end{aligned}$ | $\begin{aligned} & 15 \\ & \underline{53} \\ & \hline \end{aligned}$ | $\begin{aligned} & 16 \\ & \underline{56} \\ & \hline \end{aligned}$ | $\begin{aligned} & 17 \\ & \underline{59} \\ & \hline \end{aligned}$ | $\begin{array}{r}18 \\ \underline{62} \\ \hline\end{array}$ |
| 5 | - | $\begin{array}{r} 0 \\ 10 \\ \hline \end{array}$ | $\underline{14}$ | $\begin{array}{r}2 \\ 18 \\ \hline\end{array}$ | 4 21 | $\begin{array}{r}5 \\ 25 \\ \hline\end{array}$ | $\begin{array}{r} 6 \\ 29 \\ \hline \end{array}$ | $\begin{array}{r} 8 \\ 32 \\ \hline \end{array}$ | $\begin{array}{r} 9 \\ \underline{36} \\ \hline \end{array}$ | $\begin{array}{r} 11 \\ \underline{39} \\ \hline \end{array}$ | $\begin{aligned} & 12 \\ & 43 \\ & \hline \end{aligned}$ | 13 47 | $\begin{array}{r} 15 \\ 50 \\ \hline \end{array}$ | $\begin{array}{r} 16 \\ 54 \\ \hline \end{array}$ | $\begin{aligned} & 18 \\ & 57 \\ & \hline \end{aligned}$ | $\begin{array}{r} 19 \\ 61 \end{array}$ | $\begin{aligned} & 20 \\ & \underline{65} \end{aligned}$ | $\begin{aligned} & 22 \\ & \underline{68} \\ & \hline \end{aligned}$ | $\begin{aligned} & 23 \\ & 72 \\ & \hline \end{aligned}$ | 25 $\underline{75}$ |
| 6 | - | $\begin{array}{r} 0 \\ \underline{12} \\ \hline \end{array}$ | 16 | $\begin{array}{r}3 \\ 21 \\ \hline\end{array}$ | $\underline{25}$ | $\begin{array}{r}7 \\ 29 \\ \hline\end{array}$ | $\begin{array}{r}8 \\ \hline 34 \\ \hline\end{array}$ | $\begin{aligned} & 10 \\ & \underline{38} \\ & \hline \end{aligned}$ | $\begin{array}{r} 12 \\ 42 \\ \hline \end{array}$ | $\begin{aligned} & 14 \\ & 46 \\ & \hline \end{aligned}$ | $\begin{aligned} & 16 \\ & \underline{50} \\ & \hline \end{aligned}$ | $\begin{array}{r}17 \\ \underline{55} \\ \hline\end{array}$ | $\begin{array}{r}19 \\ \underline{59} \\ \hline\end{array}$ | 21 $\underline{63}$ | 23 $\underline{67}$ | 25 $\underline{76}$ | $\begin{aligned} & 26 \\ & 71 \\ & \hline \end{aligned}$ | $\begin{aligned} & 28 \\ & \underline{80} \end{aligned}$ | $\begin{aligned} & 30 \\ & \underline{84} \\ & \hline \end{aligned}$ | 32 $\underline{88}$ |
| 7 | - | $\begin{array}{r} 0 \\ \underline{14} \\ \hline \end{array}$ | $\begin{array}{r} 2 \\ 19 \\ \hline \end{array}$ | $\begin{array}{r} 4 \\ \underline{24} \\ \hline \end{array}$ | $\begin{array}{r}6 \\ 29 \\ \hline\end{array}$ | $\begin{array}{r}8 \\ 34 \\ \hline\end{array}$ | $\begin{aligned} & 11 \\ & 38 \end{aligned}$ | $\begin{aligned} & 13 \\ & 43 \\ & \hline \end{aligned}$ | $\begin{aligned} & 15 \\ & 48 \\ & \hline \end{aligned}$ | $\begin{aligned} & 17 \\ & \underline{53} \\ & \hline \end{aligned}$ | $\begin{array}{r} 19 \\ \underline{58} \\ \hline \end{array}$ | 21 $\underline{63}$ | 24 $\underline{67}$ |  | $\begin{aligned} & 28 \\ & 77 \\ & \hline \end{aligned}$ | $\begin{aligned} & 30 \\ & \underline{82} \end{aligned}$ | $\begin{aligned} & 33 \\ & \underline{86} \\ & \hline \end{aligned}$ | $\begin{aligned} & 35 \\ & \underline{91} \\ & \hline \end{aligned}$ | $\begin{array}{r} 37 \\ \underline{96} \\ \hline \end{array}$ | $\begin{array}{r} 39 \\ 101 \\ \hline \end{array}$ |
| 8 | - | $\underline{15}$ | 3 21 | $\begin{array}{r}5 \\ 27 \\ \hline\end{array}$ | $\begin{array}{r}8 \\ 32 \\ \hline\end{array}$ | 10 38 | $\begin{array}{r}13 \\ 43 \\ \hline\end{array}$ | $\begin{aligned} & 15 \\ & 49 \\ & \hline \end{aligned}$ | $\begin{array}{r} 18 \\ \underline{54} \\ \hline \end{array}$ | $\begin{aligned} & 20 \\ & \underline{60} \\ & \hline \end{aligned}$ | $\begin{aligned} & 23 \\ & 65 \\ & \hline \end{aligned}$ | 26 <br> 70 | 28 76 | 31 <br> 81 | 33 <br> 87 | $\begin{aligned} & 36 \\ & 97 \\ & \hline \end{aligned}$ | $\begin{aligned} & 39 \\ & 97 \\ & \hline \end{aligned}$ | $\begin{array}{r} 41 \\ 103 \\ \hline \end{array}$ | $\begin{array}{r} 44 \\ 108 \\ \hline \end{array}$ | $\begin{array}{r} 47 \\ 113 \\ \hline \end{array}$ |
| 9 | - | $\underline{17}$ | $\begin{array}{r}3 \\ \underline{24} \\ \hline\end{array}$ | $\underline{30}$ | $\underline{36}$ | 12 42 | $15$ | $\begin{array}{r} 18 \\ \underline{54} \\ \hline \end{array}$ | $\begin{aligned} & 21 \\ & \underline{60} \end{aligned}$ | $\begin{aligned} & 24 \\ & \underline{66} \end{aligned}$ | $\begin{aligned} & 27 \\ & \underline{72} \\ & \hline \end{aligned}$ | 30 <br> 78 |  |  |  | $\begin{array}{r} 42 \\ 102 \\ \hline \end{array}$ | $\begin{array}{r} 45 \\ 108 \\ \hline \end{array}$ | $\begin{array}{r} 48 \\ 114 \\ \hline \end{array}$ | $\begin{array}{r} 51 \\ 120 \\ \hline \end{array}$ | $\begin{array}{r} 54 \\ 126 \\ \hline \end{array}$ |
| 10 | - | $\underline{19}$ | $\begin{array}{r}4 \\ \underline{26} \\ \hline\end{array}$ | $\begin{array}{r}7 \\ 33 \\ \hline\end{array}$ | 11 $\underline{39}$ | 14 46 | $\begin{array}{r}17 \\ 53 \\ \hline\end{array}$ | $\begin{aligned} & 20 \\ & \underline{60} \end{aligned}$ | $\begin{aligned} & 24 \\ & \underline{66} \end{aligned}$ | $\begin{aligned} & 27 \\ & 73 \\ & \hline \end{aligned}$ | $\begin{aligned} & 31 \\ & 79 \\ & \hline \end{aligned}$ | 34 $\underline{86}$ | 37 $\underline{93}$ | 41 99 | $\begin{array}{r} 44 \\ 106 \\ \hline \end{array}$ | $\begin{array}{r} 48 \\ 112 \\ \hline \end{array}$ | $\begin{array}{r} 51 \\ 119 \\ \hline \end{array}$ | $\begin{array}{r} 55 \\ 125 \\ \hline \end{array}$ | $\begin{array}{r} 58 \\ 132 \\ \hline \end{array}$ | $\begin{array}{r} 62 \\ 138 \\ \hline \end{array}$ |
| 11 | - | $\underline{21}$ | $\begin{array}{r}5 \\ 28 \\ \hline\end{array}$ | $\begin{array}{r}8 \\ 36 \\ \hline\end{array}$ | 12 43 | $\begin{array}{r}16 \\ 50 \\ \hline\end{array}$ | $\begin{array}{r}19 \\ 58 \\ \hline\end{array}$ | $\begin{aligned} & 23 \\ & 65 \\ & \hline \end{aligned}$ | $\begin{aligned} & 27 \\ & 72 \\ & \hline \end{aligned}$ | $\begin{aligned} & 31 \\ & 79 \\ & \hline \end{aligned}$ | $\begin{array}{r} 34 \\ 87 \\ \hline \end{array}$ | 38 94 | $\begin{array}{r} 42 \\ 101 \\ \hline \end{array}$ | $\begin{array}{r} 46 \\ 108 \\ \hline \end{array}$ | $\begin{array}{r} 50 \\ 115 \\ \hline \end{array}$ | $\begin{array}{r} 54 \\ 122 \\ \hline \end{array}$ | $\begin{array}{r} 57 \\ 130 \\ \hline \end{array}$ | $\begin{array}{r} 61 \\ 137 \\ \hline \end{array}$ | $\begin{array}{r} 65 \\ 144 \\ \hline \end{array}$ | $\begin{array}{r} 69 \\ 151 \\ \hline \end{array}$ |
| 12 | - | $\begin{array}{r} 2 \\ \underline{22} \\ \hline \end{array}$ | $\begin{array}{r} 5 \\ 31 \\ \hline \end{array}$ | $\begin{array}{r}9 \\ 39 \\ \hline\end{array}$ | 13 47 | 17 $\underline{35}$ | $\begin{aligned} & 21 \\ & 63 \end{aligned}$ | $\begin{aligned} & 26 \\ & \underline{70} \\ & \hline \end{aligned}$ | $\begin{aligned} & 30 \\ & 78 \\ & \hline \end{aligned}$ | $\begin{array}{r} 34 \\ \underline{94} \\ \hline \end{array}$ | $\begin{aligned} & 38 \\ & \underline{94} \\ & \hline \end{aligned}$ | $\begin{array}{r} 42 \\ 102 \\ \hline \end{array}$ | $\begin{array}{r} 47 \\ 109 \\ \hline \end{array}$ | $\begin{array}{r} 51 \\ 117 \\ \hline \end{array}$ | $\begin{array}{r}55 \\ 125 \\ \hline\end{array}$ | $\begin{array}{r} 60 \\ 132 \\ \hline \end{array}$ | $\begin{array}{r} 64 \\ 140 \\ \hline \end{array}$ | $\begin{array}{r} 68 \\ 148 \\ \hline \end{array}$ | $\begin{array}{r} 72 \\ 156 \\ \hline \end{array}$ | $\begin{array}{r} 77 \\ 163 \\ \hline \end{array}$ |
| 13 | - | $\begin{array}{r}2 \\ \underline{24} \\ \hline\end{array}$ | $\begin{array}{r}6 \\ \underline{33} \\ \hline\end{array}$ | 10 42 | $\begin{array}{r}15 \\ \underline{50} \\ \hline\end{array}$ | $\begin{array}{r}19 \\ 59 \\ \hline\end{array}$ | 24 67 | 28 76 | $\begin{array}{r}33 \\ \underline{84} \\ \hline\end{array}$ | 37 $\underline{93}$ | $\begin{array}{r} 42 \\ 101 \\ \hline \end{array}$ | $\begin{array}{r}47 \\ 109 \\ \hline\end{array}$ | $\begin{array}{r}51 \\ 118 \\ \hline\end{array}$ | $\begin{array}{r}56 \\ 126 \\ \hline\end{array}$ | $\begin{array}{r}61 \\ 134 \\ \hline\end{array}$ | $\begin{array}{r}65 \\ 143 \\ \hline\end{array}$ | $\begin{array}{r}70 \\ 151 \\ \hline\end{array}$ | $\begin{array}{r}75 \\ 159 \\ \hline\end{array}$ | $\begin{array}{r} 80 \\ 167 \\ \hline \end{array}$ | $\begin{array}{r}84 \\ 176 \\ \hline\end{array}$ |
| 14 | - | $\begin{array}{r} 2 \\ 26 \\ \hline \end{array}$ | $\begin{array}{r}7 \\ 35 \\ \hline\end{array}$ | 11 45 | $\begin{array}{r}16 \\ \underline{54} \\ \hline\end{array}$ | 21 63 | $\begin{aligned} & 26 \\ & 72 \\ & \hline \end{aligned}$ | $\begin{aligned} & 31 \\ & 81 \\ & \hline \end{aligned}$ | $\begin{aligned} & 36 \\ & 90 \\ & \hline \end{aligned}$ | $\begin{array}{r} 41 \\ 99 \\ \hline \end{array}$ | $\begin{array}{r} 46 \\ 108 \\ \hline \end{array}$ | $\begin{array}{r} 51 \\ 117 \\ \hline \end{array}$ | $\begin{array}{r} 56 \\ 126 \\ \hline \end{array}$ | $\begin{array}{r} 61 \\ 135 \\ \hline \end{array}$ | $\begin{array}{r} 66 \\ 144 \\ \hline \end{array}$ | $\begin{array}{r} 71 \\ 153 \\ \hline \end{array}$ | $\begin{array}{r} 77 \\ 161 \\ \hline \end{array}$ | $\begin{array}{r} 82 \\ 170 \\ \hline \end{array}$ | $\begin{array}{r} 87 \\ 179 \\ \hline \end{array}$ | $\begin{array}{r}92 \\ 188 \\ \hline\end{array}$ |
| 15 | - | $\begin{array}{r} 3 \\ 27 \\ \hline \end{array}$ | $\begin{array}{r}7 \\ 38 \\ \hline\end{array}$ | 12 $\underline{48}$ | 18 $\underline{57}$ | 23 $\underline{67}$ | 28 <br> 77 | 33 <br> 87 | 39 $\underline{96}$ | $\begin{array}{r} 44 \\ 106 \\ \hline \end{array}$ | $\begin{array}{r} 50 \\ 115 \\ \hline \end{array}$ | $\begin{array}{r}55 \\ 125 \\ \hline\end{array}$ | $\begin{array}{r}61 \\ 134 \\ \hline\end{array}$ | $\begin{array}{r}66 \\ 144 \\ \hline\end{array}$ | $\begin{array}{r}72 \\ 153 \\ \hline\end{array}$ | $\begin{array}{r}77 \\ 163 \\ \hline\end{array}$ | $\begin{array}{r} 83 \\ 172 \\ \hline \end{array}$ | $\begin{array}{r} 88 \\ 182 \\ \hline \end{array}$ | $\begin{array}{r} 94 \\ \underline{191} \\ \hline \end{array}$ | $\begin{aligned} & 100 \\ & \underline{200} \\ & \hline \end{aligned}$ |
| 16 | - | $\begin{array}{r} 3 \\ 29 \\ \hline \end{array}$ | $\begin{array}{r}8 \\ 40 \\ \hline\end{array}$ | $\begin{array}{r}14 \\ \underline{50} \\ \hline\end{array}$ | 19 $\underline{61}$ | 25 71 | 30 <br> 82 | 36 92 | $\begin{array}{r} 42 \\ 102 \\ \hline \end{array}$ | $\begin{array}{r} 48 \\ 112 \\ \hline \end{array}$ | $\begin{array}{r} 54 \\ 122 \\ \hline \end{array}$ | $\begin{array}{r}60 \\ 132 \\ \hline\end{array}$ | $\begin{array}{r}65 \\ 143 \\ \hline\end{array}$ | $\begin{array}{r}71 \\ 153 \\ \hline\end{array}$ | $\begin{array}{r}77 \\ 163 \\ \hline\end{array}$ | $\begin{array}{r}83 \\ 173 \\ \hline\end{array}$ | $\begin{array}{r}89 \\ 183 \\ \hline\end{array}$ | $\begin{array}{r}95 \\ 193 \\ \hline\end{array}$ | 101 203 | 107 $\underline{213}$ |
| 17 | - | $\begin{array}{r} 3 \\ 31 \\ \hline \end{array}$ | $\begin{array}{r}9 \\ 42 \\ \hline\end{array}$ | 15 $\underline{53}$ | 20 $\underline{65}$ | 26 76 | $\begin{aligned} & 33 \\ & \underline{97} \end{aligned}$ | $\begin{aligned} & 39 \\ & \underline{97} \\ & \hline \end{aligned}$ | $\begin{array}{r} 45 \\ 108 \\ \hline \end{array}$ | $\begin{array}{r} 51 \\ 119 \\ \hline \end{array}$ | $\begin{array}{r} 57 \\ 130 \\ \hline \end{array}$ | $\begin{array}{r}64 \\ 140 \\ \hline\end{array}$ | $\begin{array}{r}70 \\ 151 \\ \hline\end{array}$ | $\begin{array}{r}77 \\ 161 \\ \hline\end{array}$ | $\begin{array}{r} 83 \\ 172 \\ \hline \end{array}$ | $\begin{array}{r} 89 \\ 183 \\ \hline \end{array}$ | $\begin{array}{r}96 \\ 193 \\ \hline\end{array}$ | $\begin{array}{r} 102 \\ \underline{204} \\ \hline \end{array}$ | $\begin{array}{r} 109 \\ 214 \\ \hline \end{array}$ | $\begin{aligned} & 115 \\ & 225 \\ & \hline \end{aligned}$ |
| 18 | - | $\begin{array}{r}4 \\ 32 \\ \hline\end{array}$ | $\begin{array}{r}9 \\ 45 \\ \hline\end{array}$ | 16 $\underline{56}$ | 22 $\underline{68}$ | 28 <br> 80 | 35 $\underline{91}$ | $\begin{array}{r}41 \\ 103 \\ \hline\end{array}$ | $\begin{array}{r} 48 \\ 114 \\ \hline \end{array}$ | $\begin{array}{r}55 \\ 123 \\ \hline\end{array}$ | $\begin{array}{r}61 \\ 137 \\ \hline\end{array}$ | $\begin{array}{r}68 \\ 148 \\ \hline\end{array}$ | $\begin{array}{r}75 \\ 159 \\ \hline\end{array}$ | $\begin{array}{r}82 \\ 170 \\ \hline\end{array}$ | $\begin{array}{r}88 \\ 182 \\ \hline\end{array}$ | $\begin{array}{r}95 \\ 193 \\ \hline\end{array}$ | $\begin{aligned} & 102 \\ & 204 \\ & \hline \end{aligned}$ | $\begin{array}{r}109 \\ \underline{215} \\ \hline\end{array}$ | $\begin{array}{r} 116 \\ \underline{226} \\ \hline \end{array}$ | $\begin{aligned} & 123 \\ & 237 \\ & \hline \end{aligned}$ |
| 19 | $\begin{array}{r} 0 \\ 19 \\ \hline \end{array}$ | $\begin{array}{r}4 \\ 34 \\ \hline\end{array}$ | 10 47 | $\begin{array}{r}17 \\ 59 \\ \hline\end{array}$ | 23 <br> 72 | $\begin{array}{r} 30 \\ 84 \\ \hline \end{array}$ | $\begin{aligned} & 37 \\ & \underline{96} \end{aligned}$ | $\begin{array}{r} 44 \\ 108 \\ \hline \end{array}$ | $\begin{array}{r} 51 \\ 120 \\ \hline \end{array}$ | $\begin{array}{r} 58 \\ 132 \\ \hline \end{array}$ | $\begin{array}{r} 65 \\ 144 \\ \hline \end{array}$ | $\begin{array}{r}72 \\ 156 \\ \hline\end{array}$ | $\begin{array}{r}80 \\ 167 \\ \hline\end{array}$ | $\begin{array}{r}87 \\ 179 \\ \hline\end{array}$ | $\begin{array}{r}94 \\ 191 \\ \hline\end{array}$ | $\begin{aligned} & 101 \\ & \underline{203} \\ & \hline \end{aligned}$ | $\begin{aligned} & 109 \\ & 214 \\ & \hline \end{aligned}$ | $\begin{array}{r} 116 \\ 226 \\ \hline \end{array}$ | $\begin{array}{r} 123 \\ 238 \\ \hline \end{array}$ | 130 <br> 250 |
| 20 | $\begin{array}{r} 0 \\ 20 \\ \hline \end{array}$ | $\begin{array}{r}4 \\ 36 \\ \hline\end{array}$ | 11 49 | $\begin{array}{r}18 \\ \underline{62} \\ \hline\end{array}$ | 25 $\underline{75}$ | 32 <br> 88 | $\begin{array}{r} 39 \\ 101 \\ \hline \end{array}$ | $\begin{array}{r} 47 \\ 113 \\ \hline \end{array}$ | $\begin{array}{r} 54 \\ 126 \\ \hline \end{array}$ | $\begin{array}{r} 62 \\ 138 \\ \hline \end{array}$ | $\begin{array}{r} 69 \\ 151 \\ \hline \end{array}$ | $\begin{array}{r}77 \\ 163 \\ \hline\end{array}$ | $\begin{array}{r}84 \\ 176 \\ \hline\end{array}$ | $\begin{array}{r}92 \\ 188 \\ \hline\end{array}$ | $\begin{array}{r}100 \\ 200 \\ \hline\end{array}$ | 107 $\underline{213}$ | $\begin{array}{r}115 \\ 225 \\ \hline\end{array}$ | 123 237 | $\begin{array}{r} 130 \\ 250 \\ \hline \end{array}$ | 138 <br> 262 |

[^52]table D Critical values of Student's $t$ distribution
The values listed in the table are the critical values of thor the specified degrees of freedom (left column) and the alpha level (column heading). For two-tailed alpha levels, $t_{\text {crit }}$ is both + and - . To be significant, $\left|t_{\text {obt }}\right| \geq\left|t_{\text {crit }}\right|$.

| $d f$ | Level of Significance for One-Tailed Test, $\alpha_{1 \text { tail }}$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | . 10 | . 05 | . 025 | . 01 | . 005 | . 0005 |
|  | Level of Significance for Two-Tailed Test, $\alpha_{2}$ tail |  |  |  |  |  |
|  | . 20 | . 10 | . 05 | . 02 | . 01 | . 001 |
| 1 | 3.078 | 6.314 | 12.706 | 31.821 | 63.657 | 636.619 |
| 2 | 1.886 | 2.920 | 4.303 | 6.965 | 9.925 | 31.598 |
| 3 | 1.638 | 2.353 | 3.182 | 4.541 | 5.841 | 12.941 |
| 4 | 1.533 | 2.132 | 2.776 | 3.747 | 4.604 | 8.610 |
| 5 | 1.476 | 2.015 | 2.571 | 3.365 | 4.032 | 6.859 |
| 6 | 1.440 | 1.943 | 2.447 | 3.143 | 3.707 | 5.959 |
| 7 | 1.415 | 1.895 | 2.365 | 2.998 | 3.499 | 5.405 |
| 8 | 1.397 | 1.860 | 2.306 | 2.986 | 3.355 | 5.041 |
| 9 | 1.383 | 1.833 | 2.262 | 2.821 | 3.250 | 4.781 |
| 10 | 1.372 | 1.812 | 2.228 | 2.764 | 3.169 | 4.587 |
| 11 | 1.363 | 1.796 | 2.201 | 2.718 | 3.106 | 4.437 |
| 12 | 1.356 | 1.782 | 2.179 | 2.681 | 3.055 | 4.318 |
| 13 | 1.350 | 1.771 | 2.160 | 2.650 | 3.012 | 4.221 |
| 14 | 1.345 | 1.761 | 2.145 | 2.624 | 2.977 | 4.140 |
| 15 | 1.341 | 1.753 | 2.131 | 2.602 | 2.947 | 4.073 |
| 16 | 1.337 | 1.746 | 2.120 | 2.583 | 2.921 | 4.015 |
| 17 | 1.333 | 1.740 | 2.110 | 2.567 | 2.898 | 3.965 |
| 18 | 1.330 | 1.734 | 2.101 | 2.552 | 2.878 | 3.922 |
| 19 | 1.328 | 1.729 | 2.093 | 2.539 | 2.861 | 3.883 |
| 20 | 1.325 | 1.725 | 2.086 | 2.528 | 2.845 | 3.850 |
|  | 1.323 | $1.721$ | 2.080 | 2.518 | 2.831 | 3.819 |
| 22 | 1.321 | $1.717$ | 2.074 | 2.508 | 2.819 | 3.792 |
| 23 | 1.319 | 1.714 | 2.069 | 2.500 | 2.807 | 3.767 |
| 24 | 1.318 | $1.711$ | 2.064 | 2.492 | 2.797 | 3.745 |
| 25 | 1.316 | 1.708 | 2.060 | 2.485 | 2.787 | 3.725 |
| 26 | 1.315 | 1.706 | 2.056 | 2.479 | 2.779 | 3.707 |
| 27 | 1.314 | 1.703 | 2.052 | 2.473 | 2.771 | 3.690 |
| 28 | 1.313 | 1.701 | 2.048 | 2.467 | 2.763 | 3.674 |
| 29 | 1.311 | 1.699 | 2.045 | 2.462 | 2.756 | 3.659 |
| 30 | 1.310 | 1.697 | 2.042 | 2.457 | 2.750 | 3.646 |
| 40 | 1.303 | 1.684 | 2.021 | 2.423 | 2.704 | 3.551 |
| 60 | 1.296 | 1.671 | 2.000 | 2.390 | 2.660 | 3.460 |
| 120 | 1.289 | 1.658 | 1.980 | 2.358 | 2.617 | 3.373 |
| $\infty$ | 1.282 | 1.645 | 1.960 | 2.326 | 2.576 | 3.291 |

table E Critical values of Pearson $r$
The values listed in the table are the critical values of $r$ for the specified degrees of freedom (left column) and the alpha level (column heading). For two-tailed alpha levels, $r_{\text {crit }}$ is both + and -. To be significant, $\left|r_{\text {obt }}\right| \geq\left|r_{\text {crit }}\right|$.

| $d f=N-2$ | Level of Significance for One-Tailed Test, $\alpha_{1}$ tail |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | . 05 | . 025 | . 01 | . 005 | . 0005 |
|  | Level of Significance for Two-Tailed Test, $\alpha_{2}$ tail |  |  |  |  |
|  | . 10 | . 05 | . 02 | . 01 | . 001 |
| 1 | . 9877 | . 9969 | . 9995 | . 9999 | 1.0000 |
| 2 | . 9000 | . 9500 | . 9800 | . 9900 | . 9990 |
| 3 | . 8054 | . 8783 | . 9343 | . 9587 | . 9912 |
| 4 | . 7293 | . 8114 | . 8822 | . 9172 | . 9741 |
| 5 | . 6694 | . 7545 | . 8329 | . 8745 | . 9507 |
| 6 | . 6215 | . 7067 | . 7887 | . 8343 | . 9249 |
| 7 | . 5822 | . 6664 | . 7498 | . 7977 | . 8982 |
| 8 | . 5494 | . 6319 | . 7155 | . 7646 | . 8721 |
| 9 | . 5214 | . 6021 | . 6851 | . 7348 | . 8471 |
| 10 | . 4973 | . 5760 | . 6581 | . 7079 | . 8233 |
| 11 | . 4762 | . 5529 | . 6339 | . 6835 | . 8010 |
| 12 | . 4575 | . 5324 | . 6120 | . 6614 | . 7800 |
| 13 | . 4409 | . 5139 | . 5923 | . 6411 | . 7603 |
| 14 | . 4259 | . 4973 | . 5742 | . 6226 | . 7420 |
| 15 | . 4124 | . 4821 | . 5577 | . 6055 | . 7246 |
| 16 | . 4000 | . 4683 | . 5425 | . 5897 | . 7084 |
| 17 | . 3887 | . 4555 | . 5285 | . 5751 | . 6932 |
| 18 | . 3783 | . 4438 | . 5155 | . 5614 | . 6787 |
| 19 | . 3687 | . 4329 | . 5034 | . 5487 | . 6652 |
| 20 | . 3598 | . 4227 | . 4921 | . 5368 | . 6524 |
| 25 | . 3233 | . 3809 | . 4451 | . 4869 | . 5974 |
| 30 | . 2960 | . 3494 | . 4093 | . 4487 | . 5541 |
| 35 | . 2746 | . 3246 | . 3810 | . 4182 | . 5189 |
| 40 | . 2573 | . 3044 | . 3578 | . 3932 | . 4896 |
| 45 | . 2428 | . 2875 | . 3384 | . 3721 | . 4648 |
| 50 | . 2306 | . 2732 | . 3218 | . 3541 | . 4433 |
| 60 | . 2108 | . 2500 | . 2948 | . 3248 | . 4078 |
| 70 | . 1954 | . 2319 | . 2737 | . 3017 | . 3799 |
| 80 | . 1829 | . 2172 | . 2565 | . 2830 | . 3568 |
| 90 | . 1726 | . 2050 | . 2422 | . 2673 | . 3375 |
| 100 | . 1638 | . 1946 | . 2301 | . 2540 | . 3211 |

table $\mathbf{F}$ Critical values of the $F$ distribution for $\alpha=0.05$ (Roman type) and $\alpha=0.01$ (boldface type)
The values listed in the table are the critical values of $F$ for the degrees of freedom of the numerator of the $F$ ratio (column headings) and the degrees of freedom of the denominator of the $F$ ratio (row headings). To be significant, $F_{\text {obt }} \geq F_{\text {crit }}$.


|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |  |  | 14 | $16 \quad 20$ | 24 | 30 | 50 | 075 | 100200 |  |  |
|  | $\begin{gathered} 161,62 \\ 4,62 \end{gathered}$ |  | ${ }_{5}^{216}$ | ${ }_{5}^{5,255}$ | ${ }_{5}^{5,764}$ | cist |  | ${ }_{5}^{5.581}$ | ${ }_{6,42}^{241}$ | ${ }_{6}^{24}$ | 208 | ${ }_{\text {2, }}^{24} \mathbf{2 4 6}$ | (2, ${ }_{6}^{24}$ | c,164 0.248 |  |  | 6,286 6,38 | (302 6.33 |  |  |  |
|  | $\xrightarrow{1851}$ | 19,00 | (19,16, | (1925 | 9030 | ${ }^{9} 933$ | ${ }_{093}$ | 9, 1937 | ${ }_{\substack{19388 \\ 9938}}$ | 9940 | 99.4 | , | 9943 |  | 99, | 9,4 | cole |  | , 1,94 |  |  |
| ${ }^{3}$ | $\begin{aligned} & 1.13 \\ & 34.12 \end{aligned}$ | $\xrightarrow{90.55}$ | (228 |  |  |  | 约888 | 8, 8 | 8.81 <br> 2734 <br> 18 |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 5 | 21.20 | 18.00 |  |  |  |  | ${ }_{4}^{699}$ | 14.50 |  | ${ }_{\text {14,44 }}^{595}$ | ${ }_{4} 578$ |  |  | 5.15 |  |  |  |  |  |  |  |
|  | 16.26 | 13.27 | 206 | 11.39 |  | 10.67 | 10.45 |  |  | 10.05 | 9.96 | 9,89 | 9.77 | 9.68 |  | 238 | 9.29 |  | 20 |  |  |
|  | ${ }_{\substack{13,99}}^{13,4}$ | (1.14 | ${ }_{\text {c.78 }}^{\substack{476}}$ | ${ }_{\substack{4.53}}^{\text {9,15 }}$ | ${ }_{8.59}^{439}$ | $\xrightarrow[\substack{4.28 \\ 8.47}]{4 .}$ | ${ }_{8.26}^{42}$ | ${ }_{8.15}^{4.15}$ | ${ }_{\substack{4,108 \\ 7}}^{\text {¢ }}$ | ${ }_{7}^{4.85}$ | ${ }_{7}^{4.03}$ | ${ }_{\substack{4 \\ 720}}^{4.8}$ | ${ }_{\text {l }}^{\substack{3,60}}$ | 3.82 <br> 7.52 <br> 1.38 | ${ }_{\substack{3.84 \\ 7.3}}^{\substack{\text { d }}}$ | ${ }_{\substack{3.81 \\ 723}}^{\substack{\text { a }}}$ |  |  |  |  |  |
|  | 5.59 <br> 1225 <br> 15 | 9.55 | 8.45 | ${ }_{7} 78$ | 7.46 | 1.19 | 7.00 | ${ }_{6.84}$ | ${ }_{6}^{3.68}$ | ${ }_{6}^{3.68}$ | ${ }_{\substack{3.60 \\ 6.54}}$ | ${ }_{\text {c. }}^{\substack{3,7}}$ | 6.35 | ${ }_{3}^{3.49} 6.3{ }^{3.45}$ | 6.07 | ${ }_{\substack{3.388 \\ 5.98}}^{\substack{\text { a }}}$ | ${ }_{\substack{3.34 \\ 590}}^{\substack{3.8 \\ 5.88}}$ | 32 <br> 85 <br> 58,78 <br> 8. | ${ }_{5}^{328} 5$ | 5.67 |  |
| 8 | ${ }_{\substack{532 \\ 1126}}^{1}$ | 8.65 | ${ }_{7} / 5$ | 7.01 | ${ }_{6.63}$ | ${ }_{6}^{5.37}$ | ${ }_{6} .19$ | ${ }_{6.03}^{3.4}$ | ${ }_{5,91}$ | ${ }_{5.5}^{5.5}$ | ${ }_{5,7}^{3,7}$ |  | 5.56 | ${ }_{5.48}^{352,4}$ | 5.28 | ${ }_{\substack{308 \\ 520}}^{\text {coid }}$ |  | cos | ${ }_{4.96}^{2089}$ | 4.88 |  |
|  | 5.12 10.50 10.0 | 8.02 | 3.86 <br> 69 <br> .9 | ${ }_{\substack{3,68 \\ 6.42}}$ |  | S.s0 | 5.62 | 5.47 | cin |  | cinc |  | (is |  | ${ }_{\substack{2.90 \\ 4,73}}$ | 4.4 | c.288 | ${ }_{4,45}^{24}$ |  | 4.35 |  |
|  | $\begin{array}{r} \mathbf{1 0 . 5 6} \\ 4.96 \\ \mathbf{1 0 . 0 4} \end{array}$ | 8.02 | 69 | cinc | 6.06 |  | 5.02 | cois | 5.35 <br> 3.02 <br> 109 | ¢ 2.29 | - | 29.1 <br> 4.7 <br> 1 | 2.86 <br> 4.40 |  | 2.7 <br> 4.3 <br> 2 | -4, 270 |  | 64 4126 4.05 4.05 |  | cis |  |
|  | 10.04 | 7.36 |  | 3,9 |  |  |  |  | 4.95 | 4.s5 | ${ }_{\text {cki }}^{28}$ | , | 4.0 | 2720 <br> 4.21 <br> 4.150 <br> 4.1 |  | (12. 25 |  | coll |  |  |  |
|  |  | 7.20 |  | ${ }_{\substack{326 \\ 54}}^{\substack{\text { ar }}}$ |  |  |  |  |  |  | 2722 |  | 2. 2.05 | 2.20 |  | ${ }_{\substack{246 \\ 3.0}}$ | cen | (100 | (1354, |  |  |
|  |  |  |  |  |  |  |  |  | -272 | 2. 2.10 | 2. 2.0 | 4.6 | , |  |  |  | ${ }^{\text {and }}$ |  | (207 |  |  |
|  |  |  |  | 520 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |


table F Critical values of the $F$ distribution for $\alpha=0.05$ (Roman type) and $\alpha=0.01$ (boldface type) -cont'd
) and the degrees of freedom of the denominator of the $F$ ratio (row headings). To be significant, $F_{\text {obt }} \geq F_{\text {crit }}$.

| Freedom: |  |  |  |  |  |  |  |  |  | Degr | S | reed | : | mer |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Denominator | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 14 | 16 | 20 | 24 | 30 | 40 | 50 | 75 | 100 | 200 | 500 | $\infty$ |
| 40 | 4.08 | 3.23 | 2.84 | 2.61 | 2.45 | 2.34 | 2.25 | 2.18 | 2.12 | 2.07 | 2.04 | 2.00 | 1.95 | 1.90 | 1.84 | 1.79 | 1.74 | 1.69 | 1.66 | 1.61 | 1.59 | 1.55 | 1.53 | 1.51 |
|  | 7.31 | 5.18 | 4.31 | 3.83 | 3.51 | 3.29 | 3.12 | 2.99 | 2.88 | 2.80 | 2.73 | 2.66 | 2.56 | 2.49 | 2.37 | 2.29 | 2.20 | 2.11 | 2.05 | 1.97 | 1.94 | 1.88 | 1.84 | 1.81 |
| 42 | 4.07 | 3.22 | 2.83 | 2.59 | 2.44 | 2.32 | 2.24 | 2.17 | 2.11 | 2.06 | 2.02 | 1.99 | 1.94 | 1.89 | 1.82 | 1.78 | 1.73 | 1.68 | 1.64 | 1.60 | 1.57 | 1.54 | 1.51 | 1.49 |
|  | 7.27 | 5.15 | 4.29 | 3.80 | 3.49 | 3.26 | 3.10 | 2.96 | 2.86 | 2.77 | 2.70 | 2.64 | 2.54 | 2.46 | 2.35 | 2.26 | 2.17 | 2.08 | 2.02 | 1.94 | 1.91 | 1.85 | 1.80 | 1.78 |
| 44 | 4.06 | 3.21 | 2.82 | 2.58 | 2.43 | 2.31 | 2.23 | 2.16 | 2.10 | 2.05 | 2.01 | 1.98 | 1.92 | 1.88 | 1.81 | 1.76 | 1.72 | 1.66 | 1.63 | 1.58 | 1.56 | 1.52 | 1.50 | 1.48 |
|  | 7.24 | 5.12 | 4.26 | 3.78 | 3.46 | 3.24 | 3.07 | 2.94 | 2.84 | 2.75 | 2.68 | 2.62 | 2.52 | 2.44 | 2.32 | 2.24 | 2.15 | 2.06 | 2.00 | 1.92 | 1.88 | 1.82 | 1.78 | 1.75 |
| 46 | 4.05 | 3.20 | 2.81 | 2.57 | 2.42 | 2.30 | 2.22 | 2.14 | 2.09 | 2.04 | 2.00 | 1.97 | 1.91 | 1.87 | 1.80 | 1.75 | 1.71 | 1.65 | 1.62 | 1.57 | 1.54 | 1.51 | 1.48 | 1.46 |
|  | 7.21 | 5.10 | 4.24 | 3.76 | 3.44 | 3.22 | 3.05 | 2.92 | 2.82 | 2.73 | 2.66 | 2.60 | 2.50 | 2.42 | 2.30 | 2.22 | 2.13 | 2.04 | 1.98 | 1.90 | 1.86 | 1.80 | 1.76 | 1.72 |
| 48 | 4.04 | 3.19 | 2.80 | 2.56 | 2.41 | 2.30 | 2.21 | 2.14 | 2.08 | 2.03 | 1.99 | 1.96 | 1.90 | 1.86 | 1.79 | 1.74 | 1.70 | 1.64 | 1.61 | 1.56 | 1.53 | 1.50 | 1.47 | 1.45 |
|  | 7.19 | 5.08 | 4.22 | 3.74 | 3.42 | 3.20 | 3.04 | 2.90 | 2.80 | 2.71 | 2.64 | 2.58 | 2.48 | 2.40 | 2.28 | 2.20 | 2.11 | 2.02 | 1.96 | 1.88 | 1.84 | 1.78 | 1.73 | 1.70 |
| 50 | 4.03 | 3.18 | 2.79 | 2.56 | 2.40 | 2.29 | 2.20 | 2.13 | 2.07 | 2.02 | 1.98 | 1.95 | 1.90 | 1.85 | 1.78 | 1.74 | 1.69 | 1.63 | 1.60 | 1.55 | 1.52 | 1.48 | 1.46 | 1.44 |
|  | 7.17 | 5.06 | 4.20 | 3.72 | 3.41 | 3.18 | 3.02 | 2.88 | 2.78 | 2.70 | 2.62 | 2.56 | 2.46 | 2.39 | 2.26 | 2.18 | 2.10 | 2.00 | 1.94 | 1.86 | 1.82 | 1.76 | 1.71 | 1.68 |
| 55 | 4.02 | 3.17 | 2.78 | 2.54 | 2.38 | 2.27 | 2.18 | 2.11 | 2.05 | 2.00 | 1.97 | 1.93 | 1.88 | 1.83 | 1.76 | 1.72 | 1.67 | 1.61 | 1.58 | 1.52 | 1.50 | 1.46 | 1.43 | 1.41 |
|  | 7.12 | 5.01 | 4.16 | 3.68 | 3.37 | 3.15 | 2.98 | 2.85 | 2.75 | 2.66 | 2.59 | 2.53 | 2.43 | 2.35 | 2.23 | 2.15 | 2.06 | 1.96 | 1.90 | 1.82 | 1.78 | 1.71 | 1.66 | 1.64 |
| 60 | 4.00 | 3.15 | 2.76 | 2.52 | 2.37 | 2.25 | 2.17 | 2.10 | 2.04 | 1.99 | 1.95 | 1.92 | 1.86 | 1.81 | 1.75 | 1.70 | 1.65 | 1.59 | 1.56 | 1.50 | 1.48 | 1.44 | 1.41 | 1.39 |
|  | 7.08 | 4.98 | 4.13 | 3.65 | 3.34 | 3.12 | 2.95 | 2.82 | 2.72 | 2.63 | 2.56 | 2.50 | 2.40 | 2.32 | 2.20 | 2.12 | 2.03 | 1.93 | 1.87 | 1.79 | 1.74 | 1.68 | 1.63 | 1.60 |
| 65 | 3.99 | 3.14 | 2.75 | 2.51 | 2.36 | 2.24 | 2.15 | 2.08 | 2.02 | 1.98 | 1.94 | 1.90 | 1.85 | 1.80 | 1.73 | 1.68 | 1.63 | 1.57 | 1.54 | 1.49 | 1.46 | 1.42 | 1.39 | 1.37 |
|  | 7.04 | 4.95 | 4.10 | 3.62 | 3.31 | 3.09 | 2.93 | 2.79 | 2.70 | 2.61 | 2.54 | 2.47 | 2.37 | 2.30 | 2.18 | 2.09 | 2.00 | 1.90 | 1.84 | 1.76 | 1.71 | 1.64 | 1.60 | 1.56 |
| 70 | 3.98 | 3.13 | 2.74 | 2.50 | 2.35 | 2.23 | 2.14 | 2.07 | 2.01 | 1.97 | 1.93 | 1.89 | 1.84 | 1.79 | 1.72 | 1.67 | 1.62 | 1.56 | 1.53 | 1.47 | 1.45 | 1.40 | 1.37 | 1.35 |
|  | 7.01 | 4.92 | 4.08 | 3.60 | 3.29 | 3.07 | 2.91 | 2.77 | 2.67 | 2.59 | 2.51 | 2.45 | 2.35 | 2.28 | 2.15 | 2.07 | 1.98 | 1.88 | 1.82 | 1.74 | 1.69 | 1.62 | 1.56 | 1.53 |
| 80 | 3.96 | 3.11 | 2.72 | 2.48 | 2.33 | 2.21 | 2.12 | 2.05 | 1.99 | 1.95 | 1.91 | 1.88 | 1.82 | 1.77 | 1.70 | 1.65 | 1.60 | 1.54 | 1.51 | 1.45 | 1.42 | 1.38 | 1.35 | 1.32 |
|  | 6.96 | 4.88 | 4.04 | 3.56 | 3.25 | 3.04 | 2.87 | 2.74 | 2.64 | 2.55 | 2.48 | 2.41 | 2.32 | 2.24 | 2.11 | 2.03 | 1.94 | 1.84 | 1.78 | 1.70 | 1.65 | 1.57 | 1.52 | 1.49 |
| 100 | 3.94 | 3.09 | 2.70 | 2.46 | 2.30 | 2.19 | 2.10 | 2.03 | 1.97 | 1.92 | 1.88 | 1.85 | 1.79 | 1.75 | 1.68 | 1.63 | 1.57 | 1.51 | 1.48 | 1.42 | 1.39 | 1.34 | 1.30 | 1.28 |
|  | 6.90 | 4.82 | 3.98 | 3.51 | 3.20 | 2.99 | 2.82 | 2.69 | 2.59 | 2.51 | 2.43 | 2.36 | 2.26 | 2.19 | 2.06 | 1.98 | 1.89 | 1.79 | 1.73 | 1.64 | 1.59 | 1.51 | 1.46 | 1.43 |
| 125 | 3.92 | 3.07 | 2.68 | 2.44 | 2.29 | 2.17 | 2.08 | 2.01 | 1.95 | 1.90 | 1.86 | 1.83 | 1.77 | 1.72 | 1.65 | 1.60 | 1.55 | 1.49 | 1.45 | 1.39 | 1.36 | 1.31 | 1.27 | 1.25 |
|  | $6.84$ | 4.78 | 3.94 | 3.47 | 3.17 | 2.95 | 2.79 | 2.65 | 2.56 | 2.47 | 2.40 | 2.33 | 2.23 | 2.15 | 2.03 | 1.94 | 1.85 | 1.75 | 1.68 | 1.59 | 1.54 | 1.46 | 1.40 | 1.37 |
| 150 | 3.91 | 3.06 | 2.67 | 2.43 | 2.27 | 2.16 | 2.07 | 2.00 | 1.94 | 1.89 | 1.85 | 1.82 | 1.76 | 1.71 | 1.64 | 1.59 | 1.54 | 1.47 | 1.44 | 1.37 | 1.34 | 1.29 | 1.25 | 1.22 |
|  | 6.81 | 4.75 | 3.91 | 3.44 | 3.14 | 2.92 | 2.76 | 2.62 | 2.53 | 2.44 | 2.37 | 2.30 | 2.20 | 2.12 | 2.00 | 1.91 | 1.83 | 1.72 | 1.66 | 1.56 | 1.51 | 1.43 | 1.37 | 1.33 |
| 200 | 3.89 | 3.04 | 2.65 | 2.41 | 2.26 | 2.14 | 2.05 | 1.98 | 1.92 | 1.87 | 1.83 | 1.80 | 1.74 | 1.69 | 1.62 | 1.57 | 1.52 | 1.45 | 1.42 | 1.35 | 1.32 | 1.26 | 1.22 | 1.19 |
|  | 6.76 | 4.71 | 3.88 | 3.41 | 3.11 | 2.90 | 2.73 | 2.60 | 2.50 | 2.41 | 2.34 | 2.28 | 2.17 | 2.09 | 1.97 | 1.88 | 1.79 | 1.69 | 1.62 | 1.53 | 1.48 | 1.39 | 1.33 | 1.28 |
| 400 | 3.86 | 3.02 | 2.62 | 2.39 | 2.23 | 2.12 | 2.03 | 1.96 | 1.90 | 1.85 | 1.81 | 1.78 | 1.72 | 1.67 | 1.60 | 1.54 | 1.49 | 1.42 | 1.38 | 1.32 | 1.28 | 1.22 | 1.16 | 1.13 |
|  | 6.70 | 4.66 | 3.83 | 3.36 | 3.06 | 2.85 | 2.69 | 2.55 | 2.46 | 2.37 | 2.29 | 2.23 | 2.12 | 2.04 | 1.92 | 1.84 | 1.74 | 1.64 | 1.57 | 1.47 | 1.42 | 1.32 | 1.24 | 1.19 |
| 1000 | 3.85 | 3.00 | 2.61 | 2.38 | 2.22 | 2.10 | 2.02 | 1.95 | 1.89 | 1.84 | 1.80 | 1.76 | 1.70 | 1.65 | 1.58 | 1.53 | 1.47 | 1.41 | 1.36 | 1.30 | 1.26 | 1.19 | 1.13 | 1.08 |
|  | 6.66 | 4.62 | 3.80 | 3.34 | 3.04 | 2.82 | 2.66 | 2.53 | 2.43 | 2.34 | 2.26 | 2.20 | 2.09 | 2.01 | 1.89 | 1.81 | 1.71 | 1.61 | 1.54 | 1.44 | 1.38 | 1.28 | 1.19 | 1.11 |
| $\infty$ | 3.84 | 2.99 | 2.60 | 2.37 | 2.21 | 2.09 | 2.01 | 1.94 | 1.88 | 1.83 | 1.79 | 1.75 | 1.69 | 1.64 | 1.57 | 1.52 | 1.46 | 1.40 | 1.35 | 1.28 | 1.24 | 1.17 | 1.11 | 1.00 |
|  | 6.64 | 4.60 | 3.78 | 3.32 | 3.02 | 2.80 | 2.64 | 2.51 | 2.41 | 2.32 | 2.24 | 2.18 | 2.07 | 1.99 | 1.87 | 1.79 | 1.69 | 1.59 | 1.52 | 1.41 | 1.36 | 1.25 | 1.15 | 1.00 |

table $G$ Critical values of the studentized range $(Q)$ distribution
The values listed in the table are the critical values of $Q$ for $\alpha=0.05$ and 0.01 , as a function of degrees of freedom of $M S_{\text {within }}$ and $k$ (the number of means). To be significant, $Q_{\mathrm{obt}} \geq Q_{\text {crit }}$.

|  |  | $k$ (Number of Means) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} M S_{\text {within }} \\ \quad d f \end{gathered}$ | $\alpha$ | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| 5 | $\begin{aligned} & .05 \\ & .01 \end{aligned}$ | $\begin{aligned} & 3.64 \\ & 5.70 \end{aligned}$ | $\begin{aligned} & 4.60 \\ & 6.98 \end{aligned}$ | $\begin{aligned} & 5.22 \\ & 7.80 \end{aligned}$ | $\begin{aligned} & 5.67 \\ & 8.42 \end{aligned}$ | $\begin{aligned} & 6.03 \\ & 8.91 \end{aligned}$ | $\begin{aligned} & 6.33 \\ & 9.32 \end{aligned}$ | $\begin{aligned} & 6.58 \\ & 9.67 \end{aligned}$ | $\begin{aligned} & 6.80 \\ & 9.97 \end{aligned}$ | $\begin{array}{r} 6.99 \\ 10.24 \end{array}$ | $\begin{array}{r} 7.17 \\ 10.48 \end{array}$ |
| 6 | $\begin{aligned} & .05 \\ & .01 \end{aligned}$ | $\begin{aligned} & 3.46 \\ & 5.24 \end{aligned}$ | $\begin{aligned} & 4.34 \\ & 6.33 \end{aligned}$ | $\begin{aligned} & 4.90 \\ & 7.03 \end{aligned}$ | $\begin{aligned} & 5.30 \\ & 7.56 \end{aligned}$ | $\begin{aligned} & 5.63 \\ & 7.97 \end{aligned}$ | $\begin{aligned} & 5.90 \\ & 8.32 \end{aligned}$ | $\begin{aligned} & 6.12 \\ & 8.61 \end{aligned}$ | $\begin{aligned} & 6.32 \\ & 8.87 \end{aligned}$ | $\begin{aligned} & 6.49 \\ & 9.10 \end{aligned}$ | $\begin{aligned} & 6.65 \\ & 9.30 \end{aligned}$ |
| 7 | $\begin{aligned} & .05 \\ & .01 \end{aligned}$ | $3.34$ | $\begin{aligned} & 4.16 \\ & 5.92 \end{aligned}$ | $\begin{aligned} & 4.68 \\ & 6.54 \end{aligned}$ | $\begin{aligned} & 5.06 \\ & 7.01 \end{aligned}$ | $\begin{aligned} & 5.36 \\ & 7.37 \end{aligned}$ | $\begin{aligned} & 5.61 \\ & 7.68 \end{aligned}$ | $\begin{aligned} & 5.82 \\ & 7.94 \end{aligned}$ | $\begin{aligned} & 6.00 \\ & 8.17 \end{aligned}$ | $\begin{aligned} & 6.16 \\ & 8.37 \end{aligned}$ | $\begin{aligned} & 6.30 \\ & 8.55 \end{aligned}$ |
| 8 | $\begin{aligned} & .05 \\ & .01 \end{aligned}$ | $\begin{aligned} & 3.26 \\ & 4.75 \end{aligned}$ | $\begin{gathered} 4.04 \\ 5.64 \end{gathered}$ | $\begin{aligned} & 4.53 \\ & 6.20 \end{aligned}$ | $\begin{aligned} & 4.89 \\ & 6.62 \end{aligned}$ | $\begin{aligned} & 5.17 \\ & 6.96 \end{aligned}$ | $\begin{aligned} & 5.40 \\ & 7.24 \end{aligned}$ | $\begin{aligned} & 5.60 \\ & 7.47 \end{aligned}$ | $\begin{aligned} & 5.77 \\ & 7.68 \end{aligned}$ | $\begin{aligned} & 5.92 \\ & 7.86 \end{aligned}$ | $\begin{aligned} & 6.05 \\ & 8.03 \end{aligned}$ |
| 9 | $\begin{aligned} & .05 \\ & .01 \end{aligned}$ | $\begin{aligned} & 3.20 \\ & 4.60 \end{aligned}$ | $\begin{aligned} & 3.95 \\ & 5.43 \end{aligned}$ | $\begin{aligned} & 4.41 \\ & 5.96 \end{aligned}$ |  | $\begin{aligned} & 5.02 \\ & 6.66 \end{aligned}$ | $\begin{aligned} & 5.24 \\ & 6.91 \end{aligned}$ | $\begin{aligned} & 5.43 \\ & 7.13 \end{aligned}$ | $\begin{aligned} & 5.59 \\ & 7.33 \end{aligned}$ | $\begin{aligned} & 5.74 \\ & 7.49 \end{aligned}$ | $\begin{aligned} & 5.87 \\ & 7.65 \end{aligned}$ |
| 10 | $\begin{aligned} & .05 \\ & .01 \end{aligned}$ | $\begin{aligned} & 3.15 \\ & 4.48 \end{aligned}$ | $\begin{aligned} & 3.88 \\ & 5.27 \end{aligned}$ | $\begin{aligned} & 4.33 \\ & 5.77 \end{aligned}$ | $\begin{aligned} & 4.65 \\ & 6.14 \end{aligned}$ | $\begin{aligned} & 4.91 \\ & 6.43 \end{aligned}$ | $\begin{aligned} & 5.12 \\ & 6.67 \end{aligned}$ | $\begin{aligned} & 5.30 \\ & 6.87 \end{aligned}$ | $\begin{aligned} & 5.46 \\ & 7.05 \end{aligned}$ | $\begin{aligned} & 5.60 \\ & 7.21 \end{aligned}$ | $\begin{aligned} & 5.72 \\ & 7.36 \end{aligned}$ |
| 11 | $\begin{aligned} & .05 \\ & .01 \end{aligned}$ | $\begin{aligned} & 3.11 \\ & 4.39 \end{aligned}$ | $\begin{aligned} & 3.82 \\ & 5.15 \end{aligned}$ | $\begin{aligned} & 4.26 \\ & 5.62 \end{aligned}$ | $\begin{aligned} & 4.57 \\ & 5.97 \end{aligned}$ | $\begin{aligned} & 4.82 \\ & 6.25 \end{aligned}$ | $\begin{aligned} & 5.03 \\ & 6.48 \end{aligned}$ | $\begin{aligned} & 5.20 \\ & 6.67 \end{aligned}$ | $\begin{aligned} & 5.35 \\ & 6.84 \end{aligned}$ | $\begin{aligned} & 5.49 \\ & 6.99 \end{aligned}$ | $\begin{aligned} & 5.61 \\ & 7.13 \end{aligned}$ |
| 12 | $\begin{aligned} & .05 \\ & .01 \end{aligned}$ | $\begin{aligned} & 3.08 \\ & 4.32 \end{aligned}$ | $\begin{aligned} & 3.77 \\ & 5.05 \end{aligned}$ | $\begin{gathered} 4.20 \\ 5.50 \end{gathered}$ |  | $\begin{aligned} & 4.75 \\ & 6.10 \end{aligned}$ | $\begin{aligned} & 4.95 \\ & 6.32 \end{aligned}$ | $\begin{aligned} & 5.12 \\ & 6.51 \end{aligned}$ | $\begin{aligned} & 5.27 \\ & 6.67 \end{aligned}$ | $\begin{aligned} & 5.39 \\ & 6.81 \end{aligned}$ | $\begin{aligned} & 5.51 \\ & 6.94 \end{aligned}$ |
| 13 | $\begin{aligned} & .05 \\ & .01 \end{aligned}$ | $\begin{aligned} & 3.06 \\ & 4.26 \end{aligned}$ | $\begin{aligned} & 3.73 \\ & 4.96 \end{aligned}$ | $\begin{aligned} & 4.15 \\ & 5.40 \end{aligned}$ | $4.45$ | $\begin{aligned} & 4.69 \\ & 5.98 \end{aligned}$ | $\begin{aligned} & 4.88 \\ & 6.19 \end{aligned}$ | $5.05$ | $\begin{aligned} & 5.19 \\ & 6.53 \end{aligned}$ | $\begin{aligned} & 5.32 \\ & 6.67 \end{aligned}$ | $5.43$ |
| 14 | $\begin{aligned} & .05 \\ & .01 \end{aligned}$ | $\begin{aligned} & 3.03 \\ & 4.21 \end{aligned}$ | $\begin{aligned} & 3.70 \\ & 4.89 \end{aligned}$ | $\begin{aligned} & 4.11 \\ & 5.32 \end{aligned}$ |  | $\begin{aligned} & 4.64 \\ & 5.88 \end{aligned}$ | $\begin{aligned} & 4.83 \\ & 6.08 \end{aligned}$ | $\begin{aligned} & 4.99 \\ & 6.26 \end{aligned}$ | $\begin{aligned} & 5.13 \\ & 6.41 \end{aligned}$ | $\begin{aligned} & 5.25 \\ & 6.54 \end{aligned}$ | $\begin{aligned} & 5.36 \\ & 6.66 \end{aligned}$ |
| 15 | $\begin{aligned} & .05 \\ & .01 \end{aligned}$ | $\begin{aligned} & 3.01 \\ & 4.17 \end{aligned}$ | $\begin{aligned} & 3.67 \\ & 4.84 \end{aligned}$ | $\begin{array}{r} 4.08 \\ 5.25 \end{array}$ | $\begin{gathered} 4.37 \\ 5.56 \end{gathered}$ | $\begin{gathered} 4.59 \\ 5.80 \end{gathered}$ | $\begin{aligned} & 4.78 \\ & 5.99 \end{aligned}$ | $\begin{aligned} & 4.94 \\ & 6.16 \end{aligned}$ | $\begin{aligned} & 5.08 \\ & 6.31 \end{aligned}$ | $\begin{aligned} & 5.20 \\ & 6.44 \end{aligned}$ | $\begin{aligned} & 5.31 \\ & 6.55 \end{aligned}$ |
| 16 | $\begin{aligned} & .05 \\ & .01 \end{aligned}$ | $\begin{aligned} & 3.00 \\ & 4.13 \end{aligned}$ | $\begin{aligned} & 3.65 \\ & 4.79 \end{aligned}$ | $\begin{array}{r} 4.05 \\ 5.19 \end{array}$ | $\begin{gathered} 4.33 \\ 5.49 \end{gathered}$ | $\begin{array}{r} 4.56 \\ 5.72 \end{array}$ | $\begin{aligned} & 4.74 \\ & 5.92 \end{aligned}$ | $\begin{aligned} & 4.90 \\ & 6.08 \end{aligned}$ | $\begin{aligned} & 5.03 \\ & 6.22 \end{aligned}$ | $\begin{aligned} & 5.15 \\ & 6.35 \end{aligned}$ | $\begin{aligned} & 5.26 \\ & 6.46 \end{aligned}$ |
| 17 | $\begin{aligned} & .05 \\ & .01 \end{aligned}$ | $\begin{aligned} & 2.98 \\ & 4.10 \end{aligned}$ | $\begin{aligned} & 3.63 \\ & 4.74 \end{aligned}$ | $\begin{aligned} & 4.02 \\ & 5.14 \end{aligned}$ | $\begin{aligned} & 4.30 \\ & 5.43 \end{aligned}$ | $\begin{aligned} & 4.52 \\ & 5.66 \end{aligned}$ | $\begin{aligned} & 4.70 \\ & 5.85 \end{aligned}$ | $\begin{aligned} & 4.86 \\ & 6.01 \end{aligned}$ | $\begin{aligned} & 4.99 \\ & 6.15 \end{aligned}$ | $\begin{aligned} & 5.11 \\ & 6.27 \end{aligned}$ | $\begin{aligned} & 5.21 \\ & 6.38 \end{aligned}$ |
| 18 | $\begin{aligned} & .05 \\ & .01 \end{aligned}$ | $\begin{aligned} & 2.97 \\ & 4.07 \end{aligned}$ | $\begin{aligned} & 3.61 \\ & 4.70 \end{aligned}$ | $\begin{aligned} & 4.00 \\ & 5.09 \end{aligned}$ | $\begin{aligned} & 4.28 \\ & 5.38 \end{aligned}$ | $\begin{aligned} & 4.49 \\ & 5.60 \end{aligned}$ | $\begin{aligned} & 4.67 \\ & 5.79 \end{aligned}$ | $\begin{aligned} & 4.82 \\ & 5.94 \end{aligned}$ | $\begin{aligned} & 4.96 \\ & 6.08 \end{aligned}$ | $\begin{aligned} & 5.07 \\ & 6.20 \end{aligned}$ |  |
| 19 | $\begin{aligned} & .05 \\ & .01 \end{aligned}$ | $\begin{aligned} & 2.96 \\ & 4.05 \end{aligned}$ | $\begin{aligned} & 3.59 \\ & 4.67 \end{aligned}$ | $\begin{aligned} & 3.98 \\ & 5.05 \end{aligned}$ | $\begin{aligned} & 4.25 \\ & 5.33 \end{aligned}$ | $\begin{aligned} & 4.47 \\ & 5.55 \end{aligned}$ | $\begin{aligned} & 4.65 \\ & 5.73 \end{aligned}$ | $\begin{aligned} & 4.79 \\ & 4.89 \end{aligned}$ | $\begin{aligned} & 4.92 \\ & 6.02 \end{aligned}$ | $\begin{aligned} & 5.04 \\ & 6.14 \end{aligned}$ | 5.14 6.25 |
| 20 | $\begin{aligned} & .05 \\ & .01 \end{aligned}$ | $\begin{aligned} & 2.95 \\ & 4.02 \end{aligned}$ | $\begin{aligned} & 3.58 \\ & 4.64 \end{aligned}$ | $\begin{aligned} & 3.96 \\ & 5.02 \end{aligned}$ | $\begin{aligned} & 4.23 \\ & 5.29 \end{aligned}$ | $\begin{aligned} & 4.45 \\ & 5.51 \end{aligned}$ | $\begin{aligned} & 4.62 \\ & 5.69 \end{aligned}$ | $\begin{aligned} & 4.77 \\ & 5.84 \end{aligned}$ | $\begin{aligned} & 4.90 \\ & 5.97 \end{aligned}$ | $\begin{aligned} & 5.01 \\ & 6.09 \end{aligned}$ |  |
| 24 | $\begin{aligned} & .05 \\ & .01 \end{aligned}$ | $\begin{aligned} & 2.92 \\ & 3.96 \end{aligned}$ | $\begin{aligned} & 3.53 \\ & 4.55 \end{aligned}$ | $\begin{aligned} & 3.90 \\ & 4.91 \end{aligned}$ | $\begin{aligned} & 4.17 \\ & 5.17 \end{aligned}$ | $\begin{aligned} & 4.37 \\ & 5.37 \end{aligned}$ | $\begin{gathered} 4.54 \\ 5.54 \end{gathered}$ | $\begin{aligned} & 4.68 \\ & 5.69 \end{aligned}$ | $\begin{aligned} & 4.81 \\ & 5.81 \end{aligned}$ | $\begin{aligned} & 4.92 \\ & 5.92 \end{aligned}$ | $\begin{aligned} & 5.01 \\ & 6.02 \end{aligned}$ |
| 30 | $\begin{aligned} & .05 \\ & .01 \end{aligned}$ | $\begin{aligned} & 2.89 \\ & 3.89 \end{aligned}$ | $\begin{aligned} & 3.49 \\ & 4.45 \end{aligned}$ | $\begin{aligned} & 3.85 \\ & 4.80 \end{aligned}$ | $\begin{aligned} & 4.10 \\ & 5.05 \end{aligned}$ | $\begin{gathered} 4.30 \\ 5.24 \end{gathered}$ | $\begin{aligned} & 4.46 \\ & 5.40 \end{aligned}$ | $\begin{aligned} & 4.60 \\ & 5.54 \end{aligned}$ | $\begin{aligned} & 4.72 \\ & 5.65 \end{aligned}$ | $\begin{aligned} & 4.82 \\ & 5.76 \end{aligned}$ | 4.92 5.85 |
| 40 | $\begin{aligned} & .05 \\ & .01 \end{aligned}$ | $\begin{aligned} & 2.86 \\ & 3.82 \end{aligned}$ | $\begin{aligned} & 3.44 \\ & 4.37 \end{aligned}$ | $\begin{aligned} & 3.79 \\ & 4.70 \end{aligned}$ | $\begin{aligned} & 4.04 \\ & 4.93 \end{aligned}$ | $\begin{gathered} 4.23 \\ 5.11 \end{gathered}$ | $\begin{aligned} & 4.39 \\ & 5.26 \end{aligned}$ | 4.52 5.39 | $\begin{gathered} 4.63 \\ 5.50 \end{gathered}$ | $\begin{aligned} & 4.73 \\ & 5.60 \end{aligned}$ | 4.82 5.69 |
| 60 | $\begin{aligned} & .05 \\ & .01 \end{aligned}$ | $\begin{aligned} & 2.83 \\ & 3.76 \end{aligned}$ | $\begin{aligned} & 3.40 \\ & 4.28 \end{aligned}$ | $\begin{aligned} & 3.74 \\ & 4.59 \end{aligned}$ | $\begin{aligned} & 3.98 \\ & 4.82 \end{aligned}$ | $\begin{aligned} & 4.16 \\ & 4.99 \end{aligned}$ | $\begin{aligned} & 4.31 \\ & 5.13 \end{aligned}$ | $4.44$ | $\begin{aligned} & 4.55 \\ & 5.36 \end{aligned}$ | $\begin{aligned} & 4.65 \\ & 5.45 \end{aligned}$ |  |
| 120 | $\begin{aligned} & .05 \\ & .01 \end{aligned}$ | $\begin{aligned} & 2.80 \\ & 3.70 \end{aligned}$ | $\begin{aligned} & 3.36 \\ & 4.20 \end{aligned}$ | $\begin{aligned} & 3.68 \\ & 4.50 \end{aligned}$ | $\begin{aligned} & 3.92 \\ & 4.71 \end{aligned}$ | $\begin{aligned} & 4.10 \\ & 4.87 \end{aligned}$ | $\begin{gathered} 4.24 \\ 5.01 \end{gathered}$ | $\begin{aligned} & 4.36 \\ & 5.12 \end{aligned}$ |  |  | 4.64 5.37 |
| $\infty$ | $\begin{aligned} & .05 \\ & .01 \end{aligned}$ | $\begin{aligned} & 2.77 \\ & 3.64 \end{aligned}$ | $\begin{aligned} & 3.31 \\ & 4.12 \end{aligned}$ | $\begin{aligned} & 3.63 \\ & 4.40 \end{aligned}$ | $\begin{aligned} & 3.86 \\ & 4.60 \end{aligned}$ | $\begin{aligned} & 4.03 \\ & 4.76 \end{aligned}$ | $\begin{aligned} & 4.17 \\ & 4.88 \end{aligned}$ | $\begin{aligned} & 4.29 \\ & 4.99 \end{aligned}$ | $\begin{aligned} & 4.39 \\ & 5.08 \end{aligned}$ | $\begin{aligned} & 4.47 \\ & 5.16 \end{aligned}$ | $\begin{aligned} & 4.55 \\ & 5.23 \end{aligned}$ |


table I Critical values of $T$ for Wilcoxon signed ranks test
The values listed in the table are the critical values of $T$ for the specified $N$ (left column) and alpha level (column heading). To be significant, $T_{\text {obt }} \leq T_{\text {crit }}$.

| $N$ | Level of Significance for One-Tailed Test |  |  |  | $N$ | Level of Significance for One-Tailed Test |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | . 05 | . 025 | . 01 | . 005 |  | . 05 | . 025 | . 01 | . 005 |
|  | Level of Significance for Two-Tailed Test |  |  |  |  | Level of Significance for Two-Tailed Test |  |  |  |
|  | . 10 | . 05 | . 02 | . 01 |  | . 10 | . 05 | . 02 | . 01 |
|  | 50 | - | - |  | 28 | 130 | 116 | 101 | 91 |
|  | 62 | 0 | - | - | 29 | 140 | 126 | 110 | 100 |
|  | 73 | 2 | 0 | - | 30 | 151 | 137 | 120 | 109 |
|  | 85 | 3 | 1 | 0 | 31 | 163 | 147 | 130 | 118 |
|  | 98 | 5 | 3 | 1 | 32 | 175 | 159 | 140 | 128 |
| 10 | 10 | 8 | 5 | 3 | 33 | 187 | 170 | 151 | 138 |
| 11 | 13 | 10 | 7 | 5 | 34 | 200 | 182 | 162 | 148 |
| 12 | 17 | 13 | 9 | 7 | 35 | 213 | 195 | 173 | 159 |
| 13 | 21 | 17 | 12 | 9 | 36 | 227 | 208 | 185 | 171 |
| 14 | 25 | 21 | 15 | 12 | 37 | 241 | 221 | 198 | 182 |
| 15 | 30 | 25 | 19 | 15 | 38 | 256 | 235 | 211 | 194 |
| 16 | 35 | 29 | 23 | 19 | 39 | 271 | 249 | 224 | 207 |
| 17 | 41 | 34 | 27 | 23 | 40 | 286 | 264 | 238 | 220 |
| 18 | 47 | 40 | 32 | 27 | 41 | 302 | 279 | 252 | 233 |
| 19 | 53 | 46 | 37 | 32 | 42 | 319 | 294 | 266 | 247 |
| 20 | 60 | 52 | 43 | 37 | 43 | 336 | 310 | 281 | 261 |
| 21 | 67 | 58 | 49 | 42 | 44 | 353 | 327 | 296 | 276 |
| 22 | 75 | 65 | 55 | 48 | 45 | 371 | 343 | 312 | 291 |
| 23 | 83 | 73 | 62 | 54 | 46 | 389 | 361 | 328 | 307 |
| 24 | 91 | 81 | 69 | 61 | 47 | 407 | 378 | 345 | 322 |
| 25 | 100 | 89 | 76 | 68 | 48 | 426 | 396 | 362 | 339 |
| 26 | 110 | 98 | 84 | 75 | 49 | 446 | 415 | 379 | 355 |
| 27 | 119 | 107 | 92 | 83 | 50 | 466 | 434 | 397 | 373 |

table J Random numbers

|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 32942 | 95416 | 42339 | 59045 | 26693 | 49057 | 87496 | 20624 | 14819 |
| 2 | 07410 | 99859 | 83828 | 21409 | 29094 | 65114 | 36701 | 25762 | 12827 |
| 3 | 59981 | 68155 | 45673 | 76210 | 5821945738 |  | 29550 | 24736 | 09574 |
| 4 | 46251 | 25437 | 69654 | 99716 | 11563 | 08803 | 86027 | 51867 | 12116 |
| 5 | 65558 | 51904 | 93123 | 27887 | 53138 | 21488 | 09095 | 78777 | 71240 |
| 6 | 99187 | 19258 | 86421 | 16401 | 19397 | 83297 | 40111 | 49326 | 81686 |
| 7 | 35641 | 00301 | 16096 | 34775 | 21562 | 97983 | 45040 | 19200 | 16383 |
| 8 | 14031 | 00936 | 81518 | 48440 | 02218 | 04756 | 19506 | 60695 | 88494 |
| 9 | 60677 | 15076 | 92554 | 26042 | 23472 | 69869 | 62877 | 19584 | 39576 |
| 10 | 66314 | 05212 | 67859 | 89356 | 20056 | 30648 | 87349 | 20389 | 53805 |
| 11 | 20416 | 87410 | 75646 | 64176 | 82752 | 63606 | 37011 | 57346 | 69512 |
| 12 | 28701 | 56992 | 70423 | 62415 | 40807 | 98086 | 58850 | 28968 | 45297 |
| 13 | 74579 | 33844 | 33426 | 07570 | 00728 | 07079 | 19322 | 56325 | 84819 |
| 14 | 62615 | 52342 | 82968 | 75540 | 80045 | 53069 | 20665 | 21282 | 07768 |
| 15 | 93945 | 06293 | 22879 | 08161 | 01442 | 75071 | 21427 | 94842 | 26210 |
| 16 | 75689 | 76131 | 96837 | 67450 | 44511 | 50424 | 82848 | 41975 | 71663 |
| 17 | 02921 | 16919 | 35424 | 93209 | 52133 | 87327 | 95897 | 65171 | 20376 |
| 18 | 14295 | 34969 | 14216 | 03191 | 61647 | 30296 | 66667 | 10101 | 63203 |
| 19 | 05303 | 91109 | 82403 | 40312 | 62191 | 67023 | 90073 | 83205 | 71344 |
| 20 | 57071 | 90357 | 12901 | 08899 | 91039 | 67251 | 28701 | 03846 | 94589 |
| 21 | 78471 | 57741 | 13599 | 84390 | 32146 | 00871 | 09354 | 22745 | 65806 |
| 22 | 89242 | 79337 | 59293 | 47481 | 07740 | 43345 | 25716 | 70020 | 54005 |
| 23 | 14955 | 59592 | 97035 | 80430 | 87220 | 06392 | 79028 | 57123 | 52872 |
| 24 | 42446 | 41880 | 37415 | 47472 | 04513 | 49494 | 08860 | 08038 | 43624 |
| 25 | 18534 | 22346 | 54556 | 17558 | 73689 | 14894 | 05030 | 19561 | 56517 |
| 26 | 39284 | 33737 | 42512 | 86411 | 23753 | 29690 | 26096 | 81361 | 93099 |
| 27 | 33922 | 37329 | 89911 | 55876 | 28379 | 81031 | 22058 | 21487 | 54613 |
| 28 | 78355 | 54013 | 50774 | 30666 | 61205 | 42574 | 47773 | 36027 | 27174 |
| 29 | 08845 | 99145 | 94316 | 88974 | 29828 | 97069 | 90327 | 61842 | 29604 |
| 30 | 01769 | 71825 | 55957 | 98271 | 02784 | 66731 | 40311 | 88495 | 18821 |
| 31 | 17639 | 38284 | 59478 | 90409 | 21997 | 56199 | 30068 | 82800 | 69692 |
| 32 | 05851 | 58653 | 99949 | 63505 | 40409 | 85551 | 90729 | 64938 | 52403 |
| 33 | 42396 | 40112 | 11469 | 03476 | 03328 | 84238 | 26570 | 51790 | 42122 |
| 34 | 13318 | 14192 | 98167 | 75631 | 74141 | 22369 | 36757 | 89117 | 54998 |
| 35 | 60571 | 54786 | 26281 | 01855 | 30706 | 66578 | 32019 | 65884 | 58485 |
| 36 | 09531 | 81853 | 59334 | 70929 | 03544 | 18510 | 89541 | 13555 | 21168 |
| 37 | 72865 | 16829 | 86542 | 00396 | 20363 | 13010 | 69645 | 49608 | 54738 |
| 38 | 56324 | 31093 | 77924 | 28622 | 83543 | 28912 | 15059 | 80192 | 83964 |
| 39 | 78192 | 21626 | 91399 | 07235 | 07104 | 73652 | 64425 | 85149 | 75409 |
| 40 | 64666 | 34767 | 97298 | 92708 | 01994 | 53188 | 78476 | 07804 | 62404 |
| 41 | 82201 | 75694 | 02808 | 65983 | 74373 | 66693 | 13094 | 74183 | 73020 |
| 42 | 15360 | 73776 | 40914 | 85190 | 54278 | 99054 | 62944 | 47351 | 89098 |
| 43 | 68142 | 67957 | 70896 | 37983 | 20487 | 95350 | 16371 | 03426 | 13895 |
| 44 | 19138 | 31200 | 30616 | 14639 | 44406 | 44236 | 57360 | 81644 | 94761 |
| 45 | 28155 | 03521 | 36415 | 78452 | 92359 | 81091 | 56513 | 88321 | 97910 |
| 46 | 87971 | 29031 | 51780 | 27376 | 81056 | 86155 | 55488 | 50590 | 74514 |
| 47 | 58147 | 68841 | 53625 | 02059 | 75223 | 16783 | 19272 | 61994 | 71090 |
| 48 | 18875 | 52809 | 70594 | 41649 | 32935 | 26430 | 82096 | 01605 | 65846 |
| 49 | 75109 | 56474 | 74111 | 31966 | 29969 | 70093 | 98901 | 84550 | 25769 |
| 50 | 35983 | 03742 | 76822 | 12073 | 59463 | 84420 | 15868 | 99505 | 11426 |

table J Random numbers-cont'd

|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 51 | 12651 | 61646 | 11769 | 75109 | 86996 | 97669 | 25757 | 32535 | 07122 |
| 52 | 81769 | 74436 | 02630 | 72310 | 45049 | 18029 | 07469 | 42341 | 98173 |
| 53 | 36737 | 98863 | 77240 | 76251 | 00654 | 64688 | 09343 | 70278 | 67331 |
| 54 | 82861 | 54371 | 76610 | 94934 | 72748 | 44124 | 05610 | 53750 | 95938 |
| 55 | 21325 | 15732 | 24127 | 37431 | 09723 | 63529 | 73977 | 95218 | 96074 |
| 56 | 74146 | 47887 | 62463 | 23045 | 41490 | 07954 | 22597 | 60012 | 98866 |
| 57 | 90759 | 64410 | 54179 | 66075 | 61051 | 75385 | 51378 | 08360 | 95946 |
| 58 | 55683 | 98078 | 02238 | 91540 | 21219 | 17720 | 87817 | 41705 | 95785 |
| 59 | 79686 | 17969 | 76061 | 83748 | 55920 | 83612 | 41540 | 86492 | 06447 |
| 60 | 70333 | 00201 | 86201 | 69716 | 78185 | 62154 | 77930 | 67663 | 29529 |
| 61 | 14042 | 53536 | 07779 | 04157 | 41172 | 36473 | 42123 | 43929 | 50533 |
| 62 | 59911 | 08256 | 06596 | 48416 | 69770 | 68797 | 56080 | 14223 | 59199 |
| 63 | 62368 | 62623 | 62742 | 14891 | 39247 | 52242 | 98832 | 69533 | 91174 |
| 64 | 57529 | 97751 | 54976 | 48957 | 74599 | 08759 | 78494 | 52785 | 68526 |
| 65 | 15469 | 90574 | 78033 | 66885 | 13936 | 42117 | 71831 | 22961 | 94225 |
| 66 | 18625 | 23674 | 53850 | 32827 | 81647 | 80820 | 00420 | 63555 | 74489 |
| 67 | 74626 | 68394 | 88562 | 70745 | 23701 | 45630 | 65891 | 58220 | 35442 |
| 68 | 11119 | 16519 | 27384 | 90199 | 79210 | 76965 | 99546 | 30323 | 31664 |
| 69 | 41101 | 17336 | 48951 | 53674 | 17880 | 45260 | 08575 | 49321 | 36191 |
| 70 | 32123 | 91576 | 84221 | 78902 | 82010 | 30847 | 62329 | 63898 | 23268 |
| 71 | 26091 | 68409 | 69704 | 82267 | 14751 | 13151 | 93115 | 01437 | 56945 |
| 72 | 67680 | 79790 | 48462 | 59278 | 44185 | 29616 | 76531 | 19589 | 83139 |
| 73 | 15184 | 19260 | 14073 | 07026 | 25264 | 08388 | 27182 | 22557 | 61501 |
| 74 | 58010 | 45039 | 57181 | 10238 | 36874 | 28546 | 37444 | 80824 | 63981 |
| 75 | 56425 | 53996 | 86245 | 32623 | 78858 | 08143 | 60377 | 42925 | 42815 |
| 76 | 82630 | 84066 | 13592 | 60642 | 17904 | 99718 | 63432 | 88642 | 37858 |
| 77 | 14927 | 40909 | 23900 | 48761 | 44860 | 92467 | 31742 | 87142 | 03607 |
| 78 | 23740 | 22505 | 07489 | 85986 | 74420 | 21744 | 97711 | 36648 | 35620 |
| 79 | 32990 | 97446 | 03711 | 63824 | 07953 | 85965 | 87089 | 11687 | 92414 |
| 80 | 05310 | 24058 | 91946 | 78437 | 34365 | 82469 | 12430 | 84754 | 19354 |
| 81 | 21839 | 39937 | 27534 | 88913 | 49055 | 19218 | 47712 | 67677 | 51889 |
| 82 | 08833 | 42549 | 93981 | 94051 | 28382 | 83725 | 72643 | 64233 | 97252 |
| 83 | 58336 | 11139 | 47479 | 00931 | 91560 | 95372 | 97642 | 33856 | 54825 |
| 84 | 62032 | 91144 | 75478 | 47431 | 52726 | 30289 | 42411 | 91886 | 51818 |
| 85 | 45171 | 30557 | 53116 | 04118 | 58301 | 24375 | 65609 | 85810 | 18620 |
| 86 | 91611 | 62656 | 60128 | 35609 | 63698 | 78356 | 50682 | 22505 | 01692 |
| 87 | 55472 | 63819 | 86314 | 49174 | 93582 | 73604 | 78614 | 78849 | 23096 |
| 88 | 18573 | 09729 | 74091 | 53994 | 10970 | 86557 | 65661 | 41854 | 26037 |
| 89 | 60866 | 02955 | 90288 | 82136 | 83644 | 94455 | 06560 | 78029 | 98768 |
| 90 | 45043 | 55608 | 82767 | 60890 | 74646 | 79485 | 13619 | 98868 | 40857 |
| 91 | 17831 | 09737 | 79473 | 75945 | 28394 | 79334 | 70577 | 38048 | 03607 |
| 92 | 40137 | 03981 | 07585 | 18128 | 11178 | 32601 | 27994 | 05641 | 22600 |
| 93 | 77776 | 31343 | 14576 | 97706 | 16039 | 47517 | 43300 | 59080 | 80392 |
| 94 | 69605 | 44104 | 40103 | 95635 | 05635 | 81673 | 68657 | 09559 | 23510 |
| 95 | 19916 | 52934 | 26499 | 09821 | 87331 | 80993 | 61299 | 36979 | 73599 |
| 96 | 02606 | 58552 | 07678 | 56619 | 65325 | 30705 | 99582 | 53390 | 46357 |
| 97 | 65183 | 73160 | 87131 | 35530 | 47946 | 09854 | 18080 | 02321 | 05809 |
| 98 | 10740 | 98914 | 44916 | 11322 | 89717 | 88189 | 30143 | 52687 | 19420 |
| 99 | 98642 | 89822 | 71691 | 51573 | 83666 | 61642 | 46683 | 33761 | 47542 |
| 100 | 60139 | 25601 | 93663 | 25547 | 02654 | 94829 | 48672 | 28736 | 84994 |

## ACKNOWLEDGMENTS

The tables contained in this appendix have been adapted with permission from the following sources:

Table A R. Clarke, A. Coladarch, and J. Caffrey, Statistical Reasoning and Procedures, Charles E. Merrill Publishers, Columbus, Ohio, 1965, Appendix 2.
Table B R. S. Burington and D. C. May, Handbook of Probability and Statistics with Tables, 2nd ed., McGraw-Hill Book Company, New York, 1970.
Table C H. B. Mann and D. R. Whitney, "On a Test of Whether One of Two Random Variables Is Stochastically Lar ger Than the Other," Annals of Mathematical Statistics, 18 (1947), 50-60, and D. Auble, "Extended Tables for the Mann-Whitney Statistic," Bulletin of the Institute of Educational Resear ch at Indiana University, 1, No. 2 (1953), as used in Run yon and Haber, Fundamentals of Behavior al Statistics, 3rd ed., Addison-Wesley Publishing Compan y, Inc., Reading, Mass., 1976.
Table D Fisher and Yates, Statistical Tables for Biolo gical, Agricultural, and Medical Resear ch, Longman Group Ltd., London (pre viously published by Oliver \& Boyd Ltd., Edinburgh), 1974, Table III.
Table E Fisher and Yates, Statistical Tables for Biolo gical, Agricultural, and Medical Resear ch, Longman Group Ltd., London (pre viously published by Oliver \& Boyd Ltd., Edinburgh), 1974, Table VII.
Table F G. W. Snedecor, Statistical Methods, 5th ed., Io wa State Uni versity Press, Ames, 1956.
Table G E. S. Pearson and H. O. Hartle y, eds., Biometrika Tables for Statisticians, Vol. 1, 3rd ed., Cambridge University Press, New York, 1966, Table 29.
Table H Fisher and Yates, Statistical Tables for Biolo gical, Agricultural, and Medical Resear ch, Longman Group Ltd., London (pre viously published by Oliver \& Boyd Ltd., Edinburgh), 1974, Table IV.
Table I F. Wilcoxon, S. Katte, and R. A. Wilcox, Critical Values and Probability Levels for the Wilcoxon Rank Sum Test and the Wilcoxon Signed Ranks Test, American Cyanamid Co., New York, 1963, and F. Wilcoxon and R. A. Wilcox, Some Rapid Approximate Statistical Pr ocedures, Lederle Laboratories, Ne w York, 1964, as used in Run yon and Haber, Fundamentals of Behavioral Statistics, 3rd ed., Addison-Wesley Publishing Company, Inc., Reading, Mass., 1976.
Table J RAND Corporation, A Million Random Digits, Free Press of Glencoe, Glencoe, Ill., 1955.

## Introduction to SPSS

Introduction The Statistical Package for the Social Sciences is us ually referred to as SPSS. SPSS is a s tatistical software package that r uns on P Cs a nd Macs. It is widely used within psychology and is available in colleges and universities throughout the United States. This material is written for SPSS, an IBM company, Windows Version 19.

Your textbook contains one or two SPSS illustrative examples and at least two additional problems at the end of each relevant chapter, placed just before the Notes section. The illustrative examples provide detailed instruction on how to a nalyze the data that is appropr iate for the chapter. The additional problems are intended to give you practice with what you have just learned.

Before moving ahead to analyze data using SPSS, it is useful to consider some general features that you will probably use, regardless of the data you are analyzing. If you have a ques tion concerning so mething I ha ve not covered, it is a lso worth consulting the SPSS Help function that SPSS offers located on the menu bar at the top right of the windows it displays. If it turns out that you want to learn about SPSS in more detail than I have presented here, I recommend reading L. A. Kirkpatrick and B. C. Feeney, A Simple Guide to SPSS for Windows for Version 18, Wadsworth/Cengage, Belmont, CA, 2011.

Basic Steps in Entering and Analyzing Data Using SPSS makes data analysis very easy. All that you need to do is:

1. Enter the data into SPSS. The two most common methods are to enter the data by typing it directly into the SPSS Data Editor (I will discuss the SPSS Data Editor in a moment), or to open a sa ved SPSS data file residing on your computer into the Data Editor . Since it is highly unlik ely that you ha ve any saved data files residing on your computer for the e xamples in our te xtbook, I have assumed that you will be entering the data by typing it into the Data Editor
2. Select a procedure. Select a procedure (doing a statistical analysis or producing a graph), from the menu bar or tool bar at the top of the Data Editor.
3. Interact with one or more dialog box(es). Selecting a procedure produces one of more dialog boxes. Input from you to the dialog box(es) gives SPSS the information it needs to carry out the procedure you requested.
4. Give SPSS the OK command to run the procedure and output the results. Once the information is entered in the dialog box(es), clicking the OK button located on the appropriate dialog box gi ves SPSS the go-ahead and causes the procedure to be carried out. The results are then displayed in a windo w called the Viewer (more about the Viewer in a moment).

SPSS Windows SPSS has several windows it can present. We will discuss two of them, the Data Editor Window, and the Viewer Window. The Data Editor window displays the Data Editor. The Viewer window displays the output resulting from procedures usually initiated from the Data Editor. You can move from one to the other by clicking Window on the menu bar at the top of either window and then clicking either

SPSS Data Editor or ___SPSS Viewer as appropriate. (The "___" indicates variable material that p recedes SPSS Data Editor or SPSS Viewer depending on several factors, like the name of the file, how many different data sets you have analyzed in a session, etc.

SPSS Data Editor When you first open SPSS, you will see the Data Editor displayed, or a smaller screen, asking, "What would you like to do?" If you encounter the small screen, y ou can switch to $t$ he Data Editor by clicking Type in data, a nd then clicking OK. Clicking the $\mathbf{X}$ button in the upper right corner of the small screen will also put you in the Data Editor.

The Data Editor is a large table of rows and columns (similar to an Excel spreadsheet) where y ou en ter, e dit, sa ve, a nalyze/graph, a nd pr int the data. The res ults of analyzing or graphing the data are output from the Data Editor to the Viewer. The Data Editor is presented when you first open SPSS because the first thing you will do is enter the data and specify variable information, such as the variable name. Once the data are entered, analysis or graphing can be carried out and the results sent to the Viewer for your consideration.

The Data Editor has two possible views, the Data View and the Variable View. Let's discuss the Data View first.

Data View Figure E. 1 shows the Data Editor displaying the Data View. The Data View is co mposed of a data table, a men u bar and a to ol bar for performing various procedures and for getting help if desired. The tool bar is located under the menu bar; it allows procedures to be selected by clicking icons instead of using menus. Our discussion will proceed via menus rather than using the tool bar. When you open SPSS or obtain a new data table, the Data Editor table will be blank as shown in Figure E.1.

| (t) Untitled1 [DataSet0] - IBM SPSS Statistics Data Editor |  |  |  |  |  |  |  |  |  |  |  | - 回\| |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| File Edit View Data Transform Analyze Graphs Utiities Add-ons Window Help |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1: |  |  |  |  |  |  |  |  |  |  | Visible: 0 of 0 Variables |  |  |
|  | var | va | var |  |
| 1 |  |  |  |  |  |  |  |  |  |  |  |  | 4 |
| 2 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 5 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 6 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 7 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 9 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 11 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 12 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 13 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 14 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 15 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 16 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 17 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 18 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 19 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 20 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 21 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 22 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 23 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 24 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 25 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 26 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 27 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 28 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 29 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 30 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 31 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 32 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 33 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 34 |  |  |  |  |  |  |  |  |  |  | ${ }_{\text {IT }}{ }^{-1}$ |  |  |
|  | 1 |  |  |  |  |  |  |  |  |  |  |  |  |
| Data View | Variable View |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | SPS | stics | ssor |  |  |  |

Figure E. 1 Data Editor-Data View at start-up.

Figure E. 2 shows the Data View of an untitled Data Editor in which I have entered the scores of $\mathbf{1 0}, \mathbf{1 2}, \mathbf{1 5}, \mathbf{2 3}, \mathbf{1 8}, \mathbf{3 1}, \mathbf{4 0}, \mathbf{1 6}, \mathbf{2 8}$, and 36 for a variable named $\mathbf{X}$, and $\mathbf{7 , 9}$, $4,14,21,15,10,13,18$, and 5 for the variable named Y. SPSS automatically adds the .00 after each score. You will get plenty of practice entering scores if you actually use SPSS as you work through the SPSS illustrative examples and problems contained in the textbook.


Figure E. 2 The Data View showing two variables, $\boldsymbol{X}$ and $\boldsymbol{Y}$, and the scores for each variable

From Figure E.2, you can see that the Data Editor-Data View displays a table where each column pertains to a variable. In columns that contain data, each column displays a variable name that is specific to the column, and the scores for that variable. At the top of the screen, there is a men u bar that permits data en try, obtaining new (blank) Dat a E ditor screens, editing, saving and printing, procedure selection (analyzing the data, graphing the data, etc), and getting help should you have questions. We will discuss some of these functions here, and the rest as appropriate in the textbook chapters, in conjunction with data from specific experiments or problems. I hope you will like and be excited by how easily, quickly, accurately and esthetically you can accomplish these functions using SPSS.

Variable View The Variable View of the Data Editor is shown in Figure E.3. It is obtained by clicking the Variable View tab at the bottom left of the Data View. Conversely, clicking the Data View tab when the screen is displaying the Variable View will produce the Data View. Like the Data View, the Variable View displays a table; only in this table each row represents a variable, giving its name and other important information about the variable. When you open SPSS or obtain a new data table, the table presented in the Variable View is blank. The default heading for each column is VAR. When you enter data into the Data Editor, SPSS gives the data a variable name, changing VAR to the new variable name. If the data are entered in the first column, the new column heading name is VAR00001. If the data are entered in the second column, the new heading is VAR00002, and so forth. You can also give the variables names of your own choosing. Generally, I believe it is better to name the variables yourself, because it avoids confusion when interacting with dialog boxes and when interpreting the results of an analysis. In the table displayed in Figure E.3, I have entered the names $\mathbf{X}$, and $\mathbf{Y}$. The other table entries are the default entries that SPSS gives to each numeric variable when it is entered into the table.

| ＊＊Untitled1［DataSet0］－IBM SPSS Statistics Data Editor |  |  |  |  |  |  |  |  | － $\mathrm{V}^{\text {回 }} \mathrm{X}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  | Name | Type | Width | Decimals | Label | Values | Missing | Columns | Align |  |
| 1 | X | Numeric | 8 | 2 |  | None | None | 8 | 邫 Right | （6） |
| 2 | Y | Numeric | 8 | 2 |  | None | None | 8 | 三邫 Right | ， |
| 3 |  |  |  |  |  |  |  |  |  |  |
| 4 |  |  |  |  |  |  |  |  |  |  |
| 5 |  |  |  |  |  |  |  |  |  |  |
| 6 |  |  |  |  |  |  |  |  |  |  |
| 7 |  |  |  |  |  |  |  |  |  |  |
| 8 |  |  |  |  |  |  |  |  |  |  |
| 9 |  |  |  |  |  |  |  |  |  |  |
| 10 |  |  |  |  |  |  |  |  |  |  |
| 11 |  |  |  |  |  |  |  |  |  |  |
| 12 |  |  |  |  |  |  |  |  |  |  |
| 13 |  |  |  |  |  |  |  |  |  |  |
| 14 |  |  |  |  |  |  |  |  |  |  |
| 15 |  |  |  |  |  |  |  |  |  |  |
| 16 |  |  |  |  |  |  |  |  |  |  |
| 17 |  |  |  |  |  |  |  |  |  |  |
| 18 |  |  |  |  |  |  |  |  |  |  |
| 19 |  |  |  |  |  |  |  |  |  |  |
| 20 |  |  |  |  |  |  |  |  |  |  |
| 21 |  |  |  |  |  |  |  |  |  |  |
| 22 |  |  |  |  |  |  |  |  |  |  |
| 23 |  |  |  |  |  |  |  |  |  |  |
| 24 |  |  |  |  |  |  |  |  |  |  |
| 25 |  |  |  |  |  |  |  |  |  |  |
| 26 |  |  |  |  |  |  |  |  |  |  |
| 27 |  |  |  |  |  |  |  |  |  |  |
| 28 |  |  |  |  |  |  |  |  |  |  |
| 29 |  |  |  |  |  |  |  |  |  |  |
| 30 |  |  |  |  |  |  |  |  |  |  |
| 31 |  |  |  |  |  |  |  |  |  |  |
| 32 |  |  |  |  |  |  |  |  |  |  |
| 33 |  |  |  |  |  |  |  |  |  |  |
| 34 |  |  |  |  |  |  |  |  |  |  |
| 35 |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
| Data View Variable View |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  | IBM SPS | Statistics Pro | or is ready |  |  |

Figure E． 3 Data Editor－Variable View showing the names of two variables， $\boldsymbol{X}$ and $\boldsymbol{Y}$ ，along with other information concerning each variable．

Entering Data by Typing Directly into the Data Editor Data are entered via the Data Editor－Data V iew．Let＇s a ssume that you have the following IQ scores that you desire to enter．

$$
\text { IQ: } 100,105,118,120,123 .
$$

I will assume SPSS is r unning and that a b lank Data Editor－Data View screen is displayed，as shown in Figure E．1．If you have just opened SPSS and encounter the small screen mentioned above on p．616，you can switch to the Data Editor－Data View by clicking Type in data，then pressing $\mathbf{O K}$ ，or by Clicking the $\mathbf{X}$ button in the upper right cor ner of the screen．A ssuming a b lank Data Editor－Data View is displayed，the cell located at row 1 of the first column of the Data View table should be highlighted． If not，clicking the cell will highlight it．I w ill a ssume the cell is $h$ ighlighted in the ensuing discussion．

Next, let's see how to enter the data into the Data Editor

1. Type 100 in the highlighted cell, then press Enter.
2. Type 105; then press Enter.
3. Type 118; then press Enter.
4. Type 120; then press Enter.
5. Type 123; then press Enter.

The value $\mathbf{1 0 0 . 0 0}$ is entered in the first cell of the first column. SPSS automatically gives the variable the name VAR00001, because the score is located in the first column, and the cursor moves down one cell. The SPSS default for numeric variables is 2 decimal places; so when the score of 100 was entered, SPSS automatically added .00 to the score of 100, resulting in the value 100.00. To correct a score that was entered incorrectly, move the cursor to the cell containing the incorrect score, and type in the correct value.

The value of $\mathbf{1 0 5 . 0 0}$ is entered in the cell directly under $\mathbf{1 0 0 . 0 0}$.
The value of $\mathbf{1 1 8 . 0 0}$ is entered in the cell directly under 105.00.

The value of $\mathbf{1 2 0 . 0 0}$ is entered in the cell directly under 118.00.

The value of $\mathbf{1 2 3 . 0 0}$ is entered cell directly under 120.00.

Figure E. 4 shows the Data Editor after the scores have been entered.


Figure E. 4 Five scores entered into the Data Editor

Let＇s now see how to assign our own name by changing VAR00001 to IQ．To do so：

1．Click Variable View，next to Data View in the lower left corner of the screen．

2．Type IQ in the highlighted cell；then press Enter．

This causes the Data Editor－Variable View to be displayed，with the cell containing the name VAR00001 highlighted．

IQ is entered as the variable name，replacing VAR00001．

Note that when you change the name of a variable in the Variable View screen，that name change is carried through in the Data View table as well．Figure E． 5 shows the Data View．

| te＊Untitled3［DataSet2］－IBM SPSS Statistics Data Editor |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| File Edit View Data |  | Iransform | Analyze | Graphs | $\underline{\text { Utilities }}$ |  |
|  |  |  | 菏 |  | 䂙 | 䇻 |
| 6 ：IQ |  |  |  |  |  |  |
|  | IQ | var | var | var | var |  |
| 1 | 100.00 |  |  |  |  |  |
| 2 | 105.00 |  |  |  |  |  |
| 3 | 118.00 |  |  |  |  |  |
| 4 | 120.00 |  |  |  |  |  |
| 5 | 123.00 |  |  |  |  |  |
| 6 |  |  |  |  |  |  |
| 7 |  |  |  |  |  |  |

Figure E． 5 Data View showing the scores with IQ as the variable name．

Saving Data Files It is a good idea when you have finished entering the data and naming the variable to save the data file．This is because any changes to data files made in a session，including initial data input，only last as long as the session，unless you save the file．Let＇s assume you have just entered the IQ data，and named the variable，IQ，and are in the Data View．Next，you want to save the file．You decide to name the file IQexp． To save this file on your computer with the name IQexp，

1．Click File on the menu bar at the top of the screen．

2．Click Save on the drop－down menu．

This produces a drop－down menu．

This produces the Save Data As dialog box shown below，with the cursor located in the File name：box．Note that the folders and files that are displayed in the large box contain material already saved and can vary widely from computer to computer．

The Look in: box at the top shows the directory in which the file will be saved. You can browse to another directory if you choose.


SPSS saves the file, adding the extension .sav. You are then returned to the Data View with the name of the data file, IQexp. sav, entered in the title bar at the top left of the screen.

Obtaining a New (Blank) Data Editor When you have finished analyzing the data for one problem or experiment, and you want to move on to another problem, it will be necessary for you to enter the data of the new problem. If the Data Editor already contains a data file and you are going to type the new data directly into the Data Editor, it is useful to obtain first a new or blank Data Editor into which you can enter the new data. To illustrate how to do this, we will assume that you are in the Data Editor, displaying the Data View, and you have the scores from a saved data file currently entered in the data table. To obtain a new (blank) Data Editor,

1. Click File, then select New; then click on Data.

SPSS displays a new Data Editor. Since this is a new Data Editor, the table is blank.

Analyzing Data Before presenting a specific example, it is worthwhile to discuss a general procedure that SPSS uses to analyze data. For any data set, you must tell SPSS the name of the variable you want a nalyzed. SPSS accomplishes this by displaying a dialog box. W hen you tell SPSS that you want a pa rticular procedure done, such as computing the mean of a set of scores currently entered in the Data Editor, SPSS will display the appropriate dialog box to tell it the name of the variable to be analyzed. In our examples so far, there has been only one variable. However, often the Data Editor contains more than one variable. Whichever is the case for a specific data set, the dialog box will list all of the variables contained in the Data Editor for that set in a large box on the left. You must then move the variable(s) that you want analyzed into the designated blank box, which is usually on the right. This is accomplished by clicking the variable(s) and then clicking the arrow that is located next to the designated box. When this is
done, the variable(s) moves from the box on the left into the designated box. Please note, SPSS only analyzes variables that are contained in the designated box.

Let's now do a n example to illustrate how SPSS a nalyzes data. You will see the above general procedure at w ork in this example. A ssume that you want to co mpute the mean, standard deviation, and range of the IQ data shown in Figure E.5, and that these data are currently entered into the Data Editor. To compute the mean, standard deviation and range of the IQ scores,

1. Click Analyze on the menu bar at the top of the screen; then select Descriptive Statistics; then; click Descriptives....
2. Click the arrow in the middle of the dialog box.
3. Click Options... at the top right of the dialog box.

This produces the Descriptives dialog box, shown below, that SPSS uses to do descriptive statistics. It also is the dialog box in which you tell SPSS the name of the variable(s) you want analyzed. Notice that IQ is located and highlighted in the large box on the left.


This moves IQ from the large box on the left into the designated Variable(s): box on the right, telling SPSS that you want to analyze the IQ scores.

This produces the Descriptives: Options dialog box shown below. This dialog box allows you to tell SPSS which statistics you want to compute. Checked boxes indicate the default statistics that SPSS computes.

4. Click Minimum and Maximum; then click Range.

This removes the default checked entries for Minimum and Maximum, and produces a check in the Range box. Since the Mean and Std. deviation boxes were already checked, the boxes for Mean, Std. deviation, and Range should now be the only checked boxes. SPSS will compute these statistics when given the OK command from the Descriptions dialog box.

This returns you to the Descriptions dialog box where you can give the OK command.

SPSS then analyzes the data and displays the results shown below.

## Analysis Results

The results are displayed in the SPSS Viewer window as shown in E. 6 below. From the Descriptive Statistics table, we note that Range $=23.00$, Mean $=113.2000$, and Std. Deviation $=$ 10.08464. The Descriptive Statistics table also shows that $N=5$.


Figure E. 6 SPSS Viewer showing the results of the analysis.
Exiting from SPSS There are several ways to exit from SPSS. One way is to click on File on the menu bar of either the Data Editor or Viewer. Then click Exit on the dropdown menu. Another way is to click the $\times$ (close) button in the upper right corner of either screen. If this is the last Data Editor window, SPSS will display the following screen


If you click Yes, and the data have been saved, SPSS will close. If you haven't saved your work (data, analyses, graphs, or output) you will be prompted about whether you want to sa ve it. A nswer the dialog box(es) as appropriate. A fter doing so, SPSS will close. If you have saved your work before exiting, when you click Exit or click the $\times$ button, SPSS will immediately close.

## GLOSSARY

Alpha level A probability le vel set by an in vestigator at the beginning of an experiment to limit the probability of making a Type I error. (p. 252,255)
A posteriori comparisons Comparisons that are not planned before doing the e xperiment. They usually arise after the experimenter sees the data and chooses groups with mean $v$ alues that are $f$ ar apart, or else they arise from doing all the possible comparisons with no theoretical a priori basis. (p. 423)
A posteriori probability Probability determined after the f act, after some data ha ve been collected. In equation form,

$$
p(A)=\frac{\text { Number of times } A \text { has occurred }}{\text { Total number of occurrences }}
$$

## (p. 194)

A priori comparisons Comparisons that are planned in advance of the e xperiment. They often arise from predictions that are based on theory and prior research. (p. 422)
A priori probability Probability determined without collecting any data; deduced from reason alone. In equation form,
$p(A)=\frac{\text { Number of events classifiable as } A}{\text { Total number of possible events }}$
(p. 193)

Addition rule Gives the probability of occurrence of one of several events. If there are only two events, A and B, the addition rule gi ves the probability of occur rence of A or B. In equation form,

$$
p(A \text { or } B)=p(A)+p(B)-p(A \text { and } B)
$$

(p. 196)

Alternative hypothesis Symbolized by $H_{1}$. The hypothesis that claims the dif ferences in results between conditions is due to the independent variable. (p. 252)

Analysis of variance Abbre viated ANOVA. Statistical technique used to analyze multigroup experiments. Uses the $F$ test as the basis of the analysis(es). (p. 405)

Arithmetic mean The sum of the scores di vided by the number of scores. In equation form,

$$
\begin{aligned}
& \bar{X}= \frac{\sum X_{i}}{N}= \\
& \text { or } \quad \begin{aligned}
& \frac{X_{1}+X_{2}+X_{3}+\cdots+X_{N}}{N} \\
& \text { mean of a sample } \\
& N=\frac{\sum X_{i}+X_{2}+X_{3}+\cdots+X_{N}}{N} \\
& \text { mean of a population set of scores }
\end{aligned}
\end{aligned}
$$

where $X$

$$
\begin{aligned}
1, \ldots, X_{N}= & \text { raw scores } \\
\bar{X}(\text { read "X bar") }= & \text { mean of a } \\
& \text { sample set of } \\
& \text { scores } \\
\mu(\text { read "mew") }= & \text { mean of a popu- } \\
& \text { lation set of } \\
& \text { scores } \\
\Sigma(\text { read "sigma" })= & \text { summation sign } \\
N= & \text { number of scores }
\end{aligned}
$$

## (p. 80)

Asymptotic Approaching a gi ven v alue as a function extends to infinity. For the normal curv e, it refers to how the $Y$ value of the normal curv e approaches 0 (the $X$ axis) as $X$ extends to + and - infinity. $Y$ gets closer and closer to 0 , but never quite reaches it. (p. 103).
Bar graph Graph of nominal or ordinal data, where a bar is drawn for each category and the height of the bar represents the frequency or number of members of that category. (p.63)
Bell-shaped curve Frequency graph named "bellshaped" because it looks like a bell. (p. 67)
Beta The probability of making a Type II error (p.255)

Between-groups degrees of freedom Symbolized by $\mathrm{df}_{\text {between. }}$. Statistic computed in the one-w ay ANOVA. The denominator for the between-groups v ariance estimate, $M S_{\text {between }}$ ( $p$. 409)
Between-groups sum of squares Symbolized by $S S_{\text {between. }}$. Statistic computed in the one-way ANOVA. The numerator of the equation for the betweengroups variance estimate, $M S_{\text {between. }}$. $p .406,409$ )
Between-groups variance estimate Symbolized by $M S_{\text {berween }}$. Statistic computed in the one-way ANOVA. Estimate of the null-hypothesis population v ariance that is based on the v ariability between the groups. (p. 406, 408)

Biased coins Coins for which $p$ (head) $\neq p($ tail $)$ for any coin when flipped. Expressed in terms of $P$ and $Q$, $P \neq Q \neq 0.50$. (p.200)
Binomial distribution A probability distrib ution that results when five preconditions are met: (1) There is a series of $N$ trials; (2) on each trial there are only two possible outcomes; (3) on each trial, the tw o possible outcomes are mutually e xclusive; (4) there is independence between the outcomes of each trial; and (5) the probability of each possible outcome on any trial stays the same from trial to trial. The binomial distribution gives each possible outcome of the $N$ trials and the probability of getting each of these outcomes. (p. 226)
Binomial expansion Mathematical e xpression used to generate the binomial distribution. The expression is given by $(P+Q)^{N}$. $(p .229)$
Binomial table Table that contains binomial distribution probabilities for many values of $N$ and $P .(p .230)$
Biserial coefficient A correlation coefficient, symbolized by $r_{b}$. It is used when one of the $v$ ariables is at least of interv al scaling and the other is dichotomous. (p. 140)
Central tendency The average, middle, or most frequent value of a set of scores. (p. 80)
Chi-square Nonparametric inference test that is used with nominal scaling. Statistic computed is $\chi^{2} \cdot(p .484)$
Coefficient of determination Symbolized by $r^{2}$. Tells us the proportion of the total v ariability that is accounted for by $X$. (p. 139)
Cohen's $\boldsymbol{d}$ Statistic, associated with J. Cohen, that is used to measure the size of effect. (p. 339)
Column degrees of freedom Symbolized by $\mathrm{df}_{\text {columns }}$. Statistic computed in tw o-way ANOVA. The denominator of the equation for computing the column variance estimate, $M S_{\text {columns. }}$ (p. 454)
Column sum of squares Symbolized by $S S_{\text {columns. }}$ Statistic computed in two-way ANOVA. The numerator
of the equation for computing the column v ariance estimate, $M S_{\text {columns }}$. (p.454)
Column variance estimate Symbolized by $M S_{\text {columns }}$. Statistic computed in two-way ANOVA. Estimate of the null-hypothesis population variance that is based on the between columns variability. (p. 449, 454)
Confidence interval A range of v alues that probably contains the population value. (p. 341)
Confidence limits The values that state the boundaries of the confidence interval. (p. 341)
Confidence-interval approach Alternative approach to null-hypothesis approach. Uses confidence intervals as a method that allows conclusions with regard both to whether there is a real effect and to the size of the effect. (p. 382)
Constant A quantity whose value doesn't change. $\operatorname{Pi}(\pi)$ is an example; it has a value that never changes. The value of Pi to 5 decimal place accurac y is 3.14159 . (p. 6)

Contingency table A tw o-way table sho wing the contingency between two variables where the v ariables have been classified into mutually e xclusive categories and the cell entries are frequencies. (p. 489)

Continuous variable A variable that theoretically can have an infinite number of values between adjacent units on the scale. (p.35)
Correct decision Rejecting $H_{0}$ when $H_{0}$ is false; retaining $H_{0}$ when $H_{0}$ is true. (p.255)
Correlated groups design There are paired scores in the conditions, and the dif ferences between paired scores are analyzed. (p. 251)
Correlation The association or relationship between two variables. It focuses on the direction and degree of the relationship. (p. 130)
Correlation coefficient A quantitative expression of the magnitude and direction of a relationship. (p. 130)
Critical region Short for "critical region for rejection of the null hypothesis." Region that contains values of the statistic that allo w rejection of the null hypothesis. (p. 312)
Critical region for rejection of the null hypothesis The area under the curv e that contains all the v alues of the statistic that allo w rejection of the null hypothesis. (p. 312)
Critical value of a statistic The value of the statistic that bounds the critical region. (p. 312)
Critical value of $\boldsymbol{F}$ Symbolized $F_{\text {crit }}$. The value of $F$ that bounds the critical region. (p. 403)
Critical value of $r$ Symbolized by $r_{\text {crit }}$. The value of $r$ that bounds the critical region. (p.347)

Critical value of $t$ Symbolized by $t_{\text {crit }}$. The value of $t$ that bounds the critical region. (p. 332)
Critical value of $\bar{X}$ Symbolized by $\bar{X}_{\text {crit }}$. The value of $\bar{X}$ that bounds the critical region. ( $p .318$ )
Critical value of $z$ Symbolized by $z_{\text {crit }}$. The value of $z$ that bounds the critical region. (p. 312)
Cumulative frequency distribution The number of scores that f all below the upper real limit of each interval. (p. 54)
Cumulative percentage distribution The percentage of scores that f all below the upper real limit of each interval. (p. 54)
Curvilinear relationship The relationship between two variables is curv ed, rather than linear. In this case, a curved line fits the data better than a straight line. (p. 127)

Data The measurements that are made on the subjects of an experiment. ( $p .7$ )
Degree of separation Used in conjunction with the Mann-Whitney $U$ test. Refers to the lack of o verlap between the sample scores of the tw o groups. (p. 502)

Degrees of freedom (df) The number of scores that are free to vary in calculating a statistic. (p.330,371)
Dependent variable The variable in an experiment that an investigator measures to determine the ef fect of the independent variable. ( $p .7$ )
Descriptive statistics Techniques that are used to describe or characterize the obtained sample data. (p.10)
Deviation score The distance of the raw score from the mean of its distribution. (p. 89)
Direct relationship As $X$ increases, $Y$ increases. As $X$ decreases, $Y$ decreases. The slope of the relationship is positive. Higher v alues of $X$ are associated with higher values of $Y$. Lower values of $X$ are associated with lower values of $Y$. Also called a positive relationship. (p. 127)
Directional hypothesis An hypothesis that specifies the direction of the effect of the independent variable on the dependent variable. (p.252)
Discrete variable A v ariable for which no v alues are possible between adjacent units on the scale. (p.35)
Dispersion The spread of a set of scores. (p. 89)
Estimated standard error of the difference between sample means Symbolized by $s_{\bar{X}_{1}}-\bar{X}_{2}$. Estimate of $\sigma_{\bar{X}_{1}-\bar{X}_{2}} \cdot($ p. 370)
Eta squared Biased estimate of the size of ef fect of the independent variable. (p. 420)
Exhaustive set of events A set that includes all of the possible events. (p. 200)

Expected frequency Symbolized by $f_{e}$. Statistic computed for the chi-square test. The expected frequency under the assumption sampling is random from the null-hypothesis population. (p.485)
Exploratory data analysis A recently de veloped technique that employs easily constructed diagrams that are useful in summarizing and describing sample data. (p. 67)
$\boldsymbol{F}$ test Inference test based on the ratio of tw o independent estimates of the same population v ariance, $\sigma^{2}$. Used in conjunction with the analysis of v ariance. (p. 402)

Factorial experiment An e xperiment in which the effects of tw o or more f actors are assessed and the treatments used are combinations of the levels of the factors. (p. 446)
Fail to reject null hypothesis Conclusion when analyzing the data of an e xperiment that retains the null hypothesis as a reasonable e xplanation of the data. (p. 253)

Fair coins Coins for which, when flipped, $p$ (head) $=$ $p$ (tail) for any coin. Expressed in terms of $P$ and $Q$, $P=Q=0.50$. (p.200).
Frequency distribution A listing of score $v$ alues and their frequency of occurrence. (p. 48)
Frequency polygon Graph that is used with interv al or ratio data. Identical to a histogram, e xcept that instead of using bars, the midpoints of each inter val are plotted and joined together with straight lines, and the lines e xtended to meet the horizontal axis at the midpoint of the interv als that are immediately be yond the lo west and highest inter vals. (p. 64)
Grand mean Symbolized $\bar{X}_{\mathrm{G}}$. Statistic computed in one-way and two-way ANOVA. The overall mean of all the scores combined. (p. 408)
Histogram Similar to a bar graph, e xcept that it is used with interval or ratio data. Class intervals are plotted on the horizontal axis, a bar is drawn over each class interval such that each class bar be gins and ends at the real limits of the interval. The height of each bar corresponds to the frequency of the interval and the vertical bars touch each other rather than spaced apart as with the bar graph. (p. 63)
Homogeneity of variance Assumption underlying the independent groups $t$ test and ANOVA. If there are $k$ groups, the assumption is that the variances of the populations from which the $k$ samples are dra wn, are equal. In equation form, $\sigma_{1}{ }^{2}=\sigma_{2}{ }^{2}=\cdots=\sigma_{k}{ }^{2}$. (p. 375)

Homoscedasticity Assumption used in conjunction with the standard error of estimate. The assumption is that the variability of $Y$ remains constant for all values of $X$. (p. 170)
Imperfect relationship A positive or ne gative relationship for which all of the points do not $f$ all on the line. (p. 128)
Importance of an effect A real effect that in addition to being statistically significant, is of practical or theoretical importance. (p. 265)
Independence of two events The occurrence of one event has no effect on the probability of occurrence of the other. (p. 201)
Independent groups design Involves experiments using two or more conditions. Each condition emplo ys a different level of the independent variable. The most basic experiment has tw o conditions. Subjects are randomly selected from the subject population and then randomly assigned to the two conditions. Since subjects are randomly assigned to the conditions, there is no basis for pairing of scores between conditions. Rather, a statistic is computed for the scores of each group separately, and the tw o group statistics are compared to determine if chance alone is a reasonable explanation of the data. (p. 366)
Independent variable The v ariable in an e xperiment that is systematically manipulated by an in vestigator. (p. 6)
Inferential statistics Techniques that use the obtained sample data to infer to populations. (p. 10)
Interaction degrees of freedom Symbolized by $\mathrm{df}_{\text {interaction }}$. Statistic computed in tw o-way ANOVA. The denominator of the equation for computing the interaction variance estimate, $M S_{\text {interaction. }}$ (p. 455)
Interaction effect The result observ ed when the ef fect of one factor is not the same at all levels of the other factor. (p. 447)
Interaction sum of squares Symbolized by $S S_{\text {interaction }}$. Statistic computed in two-way ANOVA. The numerator of the equation for computing the interaction variance estimate, $M S_{\text {interaction. }}$ (p.455)
Interaction variance estimate Symbolized by $M S_{\text {interaction }}$. Statistic computed in two-way ANOVA. Estimate of the null-hypothesis population variance that is based on the variability of the cell means. (p.449, 455)
Interval scale A measuring scale that possesses the properties of magnitude and equal interval between adjacent units on the scale, $b$ ut doesn't have an absolute zero point. Celsius scale of temperature measurement is a good example of an interval scale. (p.32)

Inverse relationship As $X$ increases, $Y$ decreases; as $X$ decreases, $Y$ increases. The slope of the relationship is negative. Higher v alues of $X$ are associated with lower values of $Y$. Lower values of $X$ are associated with higher values of $Y$. Also called a negative relationship. (p. 127)
$J$-shaped curve Frequency graph named $J$-shaped because it has the shape of the letter "J." ( $p$. 67)
Kruskal-Wallis test Nonparametric inference test used as a substitute for the parametric, one-way, independent groups ANOVA when the assumptions of that test are seriously violated. Statistic computed is $H$. (p. 507)

Least-squares regression line The prediction line that minimizes the total error of prediction according to the least-squares criterion of $\quad \Sigma\left(Y-Y^{\prime}\right)^{2}$. (p. 161)

Linear relationship A relationship between tw ovariables that can be most accurately represented by a straight line. (p. 124)
Main effect The ef fect of f actor $A$ (a veraged o ver the levels of f actor $B$ ) and the ef fect of f actor $B$ (averaged over the levels of factor $A$ ). (p. 447)
Mann-Whitney $\boldsymbol{U}$ test Nonparametric inference test used as a substitute for the independent groups $t$ test when the assumptions of that test are seriously violated. Statistics computed are $U$ and $U^{\prime}$. (p. 501)

Marginals Used in conjunction with contingency tables. Marginals are the ro w and column totals lying outside the contingency table. (p. 491)
Mean of the population of difference scores Symbolized by $\mu_{D}$. Mean of a hypothetical population of difference scores from which the sample dif ference scores are assumed to ha ve been dra wn. If the independent v ariable has no ef fect, then $\mu_{D}=0$. (p. 360)

Mean of the sampling distribution of the difference between sample means Symbolized by $\mu_{\bar{X}_{1}-\bar{X}_{2}}$. Mean of the complete population distrib ution of $\left(\bar{X}_{1}-\bar{X}_{2}\right)$ scores. (p. 368)
Mean of the sampling distribution of the mean Symbolized by $\mu_{\bar{X}}$. This is the mean of the full set of sample means. Also called the standard error of the mean. (p. 305)
Median (Mdn) The scale value below which $50 \%$ of the scores fall. (p.85)
Method of authority Something is considered true because of tradition or because some person of distinction says it is true. (p. 4)

Method of intuition Sudden insight, or clarifying idea that springs into consciousness, all at once as a whole. (p. 5)
Method of rationalism Uses reason alone to arri ve at knowledge. It assumes that if the premises are sound and the reasoning is carried out correctly according to the rules of logic, then the conclusions will yield truth. (p. 4)
Mode The most frequent score in the distrib ution. (p. 87)

Multiple coefficient of determination Symbolized by $R^{2}$. Gives the proportion of the total v ariance in $Y$ accounted for by the multiple $\quad X$ v ariables. Also called squared multiple correlation. (p. 176)
Multiple regression Technique used for predicting $Y$ from multiple associated $X$ variables. (p. 174)
Multiplication rule Gives the probability of joint or successive occurrence of se veral events. If there are only two e vents, the multiplication rule gi ves the probability of occurrence of A and B. In equation form,

$$
p(A \text { and } B)=p(A) p(B \mid A)
$$

(p. 201)

Mutually exclusive events Two events that cannot occur together; that is, the occurrence of one precludes the occurrence of the other. (p. 196)
Naturalistic observation research A type of obser vational study in which the subjects of interest are observed in their natural setting. A goal of this research is to obtain an accurate description of behaviors of interest occurring in the natural setting. (p. 9)

Negative relationship An inverse relationship between two variables. (p. 127)
Negatively skewed curve A curve on which most of the scores occur at the higher v alues, and the curve tails of f to ward the lo wer end of the horizontal axis. (p. 65)
Nominal scale The scale is composed of categories, and the object is "measured" by determining to which category the object belongs. The cate gories comprise the units of the scale. An example would be brands of computers; the units would be Apple, Dell, HP, etc. (p. 31)
Nondirectional hypothesis An hypothesis that doesn' t specify the direction of the effect of the independent variable on the dependent variable. (p. 252)
Normal approximation Technique used to solv e binomial problems when $N>20$. (p.239)

Normal curve A symmetrical, bell-shaped curv e with mean, median, and mode equal to each other , and specified kurtosis. Kurtosis refers to the sharpness or flatness of a curve as it reaches its peak. In equation form, the normal curve equals

$$
Y=\frac{N}{\sqrt{2 \pi \sigma}} e^{-(X-\mu)^{2} / 2 \sigma^{2}}
$$

where $e=$ a constant of 2.7183
$\pi=$ a constant of 3.1416
(p. 103)

Null hypothesis Symbolized by $H_{0}$. Logical counterpart to the alternati ve hypothesis. It either specifies that there is no effect, or that there is a real ef fect in the direction opposite to that specified by the alternative hypothesis. (p. 252)
Null-hypothesis approach Main approach used in this textbook for analyzing data to determine if the independent variable has a real ef fect. In this approach, we assume that chance alone is responsible for the difference between the scores in each group, calculate the obtained probability , and determine if the obtained probability is lo w enough to rule out chance as a reasonable e xplanation of the score differences between groups. (p. 382)
Null-hypothesis population An actual or theoretical set of population scores that w ould result if the experiment were done on the entire population and the independent variable had no effect; it is used to test the validity of the null hypothesis. (p. 300)
Number of $\boldsymbol{P}$ events A $P$ event is one of the two possible outcomes of any trial. The number of $P$ events is the number of such outcomes. (p. 229)
Number of $Q$ events A $Q$ event is one of the tw o possible outcomes of any trial. The number of $Q$ events is the number of such outcomes. (p. 229)
Observational studies A type of research in which no variables are acti vely manipulated. The researcher observes and records the data of interest. (p. 9)
Observed frequency Symbolized by $f_{o}$. Statistic computed for the chi-square test. Observed frequency in the sample. (p. 485)
Omega squared Symbolized $\hat{\omega}^{2}$. Unbiased estimate of the size of the effect of the independent variable. (p.419)
One-tailed probability Probability that results when all of the outcomes being evaluated are under one tail of the distribution. (p.259)
One-way ANOVA, independent groups design Statistical technique used to analyze multigroup experiments
in which the e xperimental design is an independent groups design and only one independent v ariable is studied. (p. 405)
Ordinal scale This is a rank-ordered scale in which the objects being measured are rank-ordered according to whether the y possess more, less, or the same amount of the variable being measured. An example is ranking Division I NCAA colle ge football teams according to which colle ge or uni versity football team is considered the best, the ne xt best, the ne xt next best, and so on. (p. 32)
Overall mean Sometimes called weighted mean. The average $v$ alue of se veral sets or groups of scores. It takes into account the number of scores in each group and in effect, weights the mean of each group by the number of scores in the group. In equation form,

$$
\bar{X}_{\text {overall }}=\frac{n_{1} \bar{X}_{1}+n_{2} \bar{X}_{2}+\cdots+n_{k} \bar{X}_{k}}{n_{1}+n_{2}+\cdots+n_{k}}
$$

(p. 83)

Parameter A number calculated on population data that quantifies a characteristic of the population. (p. 7)

Parameter estimation research A type of observational study in which the goal is to determine a characteristic of a population. An e xample might be the mean age of all psychology majors at your unversity. (p. 9)

Pearson $r$ A measure of the extent to which paired scores occupy the same or opposite positions within their own distributions. (p. 131)
Percentile The value on the measurement scale belo w which a specified percentage of the scores in the distribution falls. (p.56)
Percentile point See Percentile.
Percentile rank (of a score) The percentage of scores with v alues lo wer than the score in question (p. 59)

Perfect relationship A positi ve or ne gative relationship for which all of the points f all on the line. (p. 128)

Phi coefficient A correlation coefficient, symbolized by $\phi$. Used when each of the variables is dichotomous. (p. 140)

Planned comparisons See a posteriori comparisons.
Population The complete set of indi viduals, objects, or scores that an in vestigator is interested in studying. (p. 6)

Positive relationship A direct relationship between two variables. (p. 127)
Positively skewed curve A curv e on which most of the scores occur at the lo wer values, and the curv e tails of $f$ to ward the higher end of the horizontal axis. (p. 65)
Post hoc comparisons See a posteriori comparisons.
Power The probability that the results of an e xperiment will allo w rejection of the null hypothesis if the independent variable has a real effect. (p. 278)
Probability Expressed as a fraction or decimal number, probability is fundamentally a proportion; it gi ves the chances that an e vent will or will not occur (p. 193)

Probability of occurrence of $\boldsymbol{A}$ or $\boldsymbol{B}$ The probability of occurrence of $A$ plus the probability of occurrence of $B$ minus the probability of occurrence of both $A$ and $B$. (p. 196)
Probability of occurrence of both $\boldsymbol{A}$ and $\boldsymbol{B}$ The probability of occurrence of $A$ times the probability of occurrence of $B$ given that $A$ has occurred. (p. 201)
$Q_{\text {crit }}$ The v alue of $Q$ that bounds the critical re gion. (p. 424)
$Q_{\text {obt }}$ The obtained value of $Q .(p .424)$
Random sample A sample selected from the population by a process that ensures that (1) each possible sample of a gi ven size has an equal chance of being selected and (2) all the members of the population have an equal chance of being selected into the sample. (p. 190)
Range The dif ference between the highest and lo west scores in the distribution. (p. 89)
Ratio scale A measuring scale that possesses the properties of magnitude, equal interv als between adjacent units on the scale, and also possesses an absolute zero point. The K elvin scale of temperature measurement is an example of a ratio scale. (p. 33)
Real effect An ef fect of the independent $v$ ariable that produces a change in the dependent variable. (p. 278)
Real limits of a continuous variable Those values that are abo ve and belo $w$ the recorded $v$ alue by onehalf of the smallest measuring unit of the scale. (p. 36)

Regression A topic that considers using the relationship between tw o or more v ariables for prediction. (p. 160)

Regression constant The $a_{\mathrm{Y}}$ and $b_{\mathrm{Y}}$ terms in the equation, $Y^{\prime}=b_{\mathrm{Y}} X+a_{\mathrm{Y}}(p .162)$
Regression line A best fitting line used for prediction. (p. 160)

Regression of $\boldsymbol{Y}$ on $\boldsymbol{X}$ Technique used to deri ve the regression line for predicting $Y$ given $X$. (p. 162)
Reject null hypothesis Conclusion when analyzing the data of an experiment that rejects the null hypothesis as a reasonable explanation of the data. ( $p .254$ )
Relative frequency distribution The proportion of the total number of scores that occur in each interv al. (p. 54)

Repeated measures design A form of the correlated groups design. There are paired scores in the conditions, and the differences between paired scores are analyzed. (p. 251)
Replicated measures design Same as the repeated measures design. There are paired scores in the conditions, and the dif ferences between paired scores are analyzed. (p.251)
Retain null hypothesis Same as $f$ ail to reject null hypothesis. Conclusion when analyzing the data of an experiment that fails to reject the null hypothesis as a reasonable explanation of the data. ( $p .252$ )
Row degrees of freedom Symbolized by df rows. Statistic computed in two-way ANOVA. Degrees of freedom in forming the ro w variance estimate, $M S_{\text {rows }}$. (p. 452)

Row sum of squares Symbolized by $S S_{\text {rows }}$. Statistic computed in two-way ANOVA. The numerator of the equation for computing the ro w variance estimate, $M S_{\text {rows. }}$ (p. 452)
Row variance estimate Symbolized by $M S_{\text {rows }}$. Estimate of the null-hypothesis population v ariance that is based on the between rows variability. (p. 449, 452)
Sample A subset of the population. (p. 6)
Sampling distribution of a statistic A listing of (1) all the values that the statistic can take and (2) the probability of getting each $v$ alue under the assumption that it results from chance alone, or if sampling is random from the null-hypothesis population.(p. 299)
Sampling distribution of $\boldsymbol{F}$ Gives all the possible $F$ values along with the $p(F)$ for each value, assuming sampling is random from the population( $p .402$ )
Sampling distribution of $t$ A probability distribution of the $t$ values that would occur if all possible different samples of a fixed size $N$ were drawn from the nullhypothesis population. It gi ves (1) all the possible different $t$ values for samples of size $N$ and (2) the probability of getting each value if sampling is random from the null-hypothesis population. ( $p .329$ )
Sampling distribution of the difference between sample means Hypothetical population distrib ution of ( $\bar{X}_{1}-\bar{X}_{2}$ ) scores obtained from taking all possible samples of size $n_{1}$ and $n_{2}$ from populations
of means $\mu_{1}$ and $\mu_{2}$, and standard deviations $\sigma_{1}$ and $\sigma_{2}$. $(p .368$ )
Sampling distribution of the mean A listing of all the values the mean can take, along with the probability of getting each value if sampling is random from the null-hypothesis population. (p. 303)
Sampling with replacement A method of sampling in which each member of the population selected for the sample is returned to the population before the next member is selected. ( $p$. 193)
Sampling without replacement A method of sampling in which the members of the sample are not returned to the population before selecting subsequent members. (p. 193)
Scatter plot A graph of paired $X$ and $Y$ values. (p. 124)
Scientific method The scientist has a hypothesis about some feature of realty that he or she wishes to test. An objective, observational study or e xperiment is carried out. The data is analyzed statistically, and conclusions are drawn either supporting or rejecting the hypothesis. (p. 6)
Scheffé test Post hoc, multiple comparisons test for doing all possible post hoc comparisons, not just pair-wise mean comparisons. The most conservative of all the possible post hoc tests. (p. 425)
Sign test Statistical inference test, appropriate for the repeated measures or correlated groups design, involving only two groups, that ignores the magnitude of the dif ference scores and considers only their direction or sign. (p. 250)
Significant The result of an e xperiment that is statistically reliable. (p.253, 265)
Simple randomized-group design See one-way ANOVA, independent groups design. (p. 406)
Single factor experiment, independent groups design See one-w ay ANOVA, independent groups design. (p. 406)

Size of effect Magnitude of the real ef fect of the independent variable on the dependent v ariable. (p. 265, 363, 376)
Skewed curve A curve whose two sides do not coincide if the curve is folded in half; that is, a curv e that is not symmetrical. (p. 65)
Slope Rate of change. For a straight line,

$$
\text { Slope }=\frac{\Delta Y}{\Delta X}=\frac{Y_{2}-Y_{1}}{X_{2}-X_{1}}
$$

(p. 125)

Spearman rho A correlation coefficient, symbolized by $r_{\mathrm{s}}$. Used when one or both of the variables are of ordinal scaling. (p. 141)

Standard deviation A measure of $v$ ariability that gives the a verage de viation of a set of scores about the mean. In equation form,

$$
\left.\left.\begin{array}{rl}
\sigma & =\sqrt{\frac{\sum(X-\mu)^{2}}{N}}
\end{array} \begin{array}{l}
\text { standard deviation of a } \\
\text { population set of scores }
\end{array}\right] \begin{array}{ll}
s & =\sqrt{\frac{\sum(X-\bar{X})^{2}}{N-1}} \\
\text { standard deviation of a } \\
\text { sample set of scores }
\end{array}\right]
$$

Standard deviation of the sampling distribution of the difference between sample means Symbolized by $\sigma_{\bar{X}_{1}-\bar{X}_{2}}$. Standard deviation of the complete population distribution of ( $\bar{X}_{1}-\bar{X}_{2}$ ) scores. (p. 368)
Standard error of estimate Symbolized by $s_{Y \mid X}$. Gives us a measure of the a verage deviation of prediction errors about the regression line. (p. 169)
Standard error of the mean Symbolized by $\mu_{\bar{X}}$. The mean of the sampling distrib ution of the mean. (p.305)

Standard score See $z$ score. (p. 105)
State of reality T ruth regarding $H_{0}$ and $H_{1}$. (p. 255)
Statistic A number calculated on sample data that quantifies a characteristic of the sample. ( $p .7$ )
Statistical Package for the Social Sciences Abbreviated SPSS. Statistical software package widely used in the social sciences. (p. 11)
Stem-and-leaf diagram An alternative to the histogram, which is used in exploratory data analysis. A picture is shown of each score divided into a stem and leaf, separated by a vertical line. The leaf for each score is usually the last digit, and the stem is the remaining digits. Occasionally, the leaf is the last two digits depending on the range of the scores. The stem is placed to the left of the $v$ ertical line, and the leaf to the right of the line. Stems are placed v ertically down the page, and leafs are placed in order horizontally across the page. (p. 67)
Sum of squares The sum of $(X-\mu)^{2}$ or $(X-\bar{X})^{2}$ is called the sum of squares. It is symbolized by $S S_{\text {pop }}$ for population data or just $S S$ for sample data. In equation form,

$$
\begin{gather*}
S S_{\mathrm{pop}}=\Sigma(X-\mu)^{2}=\Sigma X^{2}-\frac{(\Sigma X)^{2}}{N} \\
\text { sum of squares for population data } \\
S S=\Sigma(X-\bar{X})^{2}=\Sigma X^{2}-\frac{(\Sigma X)^{2}}{N} \\
\text { sum of squares for sample data } \tag{p.91,92}
\end{gather*}
$$

Summation Operation very often performed in statistics in which all or parts of a set (or sets) of scores are added. (p. 27)
Symmetrical curve A curve whose two sides coincide if the curve is folded in half. (p.65)
$\boldsymbol{t}$ test for correlated groups Inference test using Student's $t$ statistic. Emplo yed with correlated groups, replicated measures, and repeated measures designs. (p. 358)
$\boldsymbol{t}$ test for independent groups Inference test using Student's $t$ statistic. Employed with independent groups design. (p. 366, 370)
$\boldsymbol{t}$ test for single samples Inference test using Student's $t$ statistic. Employed with single sample design.(p.328)
Total sum of squares Symbolized by $S S_{\text {total }}$. Statistic computed in the analysis of $v$ ariance. The variability of all the scores about the grand mean. (p. 406, 414)

True experiment In a true e xperiment, an independent variable is manipulated and its ef fect on some dependent $v$ ariable is studied. Has the potential to determine causality. (p. 9)
Tukey HSD test Post hoc, multiple comparisons test that makes all possible pairwise comparisons among the sample means. (p. 424)
Two-tailed probability Probability that results when the outcomes being evaluated are under both tails of the distribution. (p.258)
Two-way analysis of variance Statistical technique for assessing the ef fects of tw o variables that are manipulated in one experiment. ( $p .446,450$ )
Type I error A decision to reject the null hypothesis when the null hypothesis is true. ( $p .254$ )
Type II error A decision to retain the null hypothesis when the null hypothesis is false. (p.254)
U-shaped curve Frequency graph named $U$-shaped because it has the shape of the letter "U." (p.67)
Variability Refers to the spread of a set of scores. (p. 80)

Variability accounted for by $X$ The change in $Y$ that is explained by the change in $X$. Used in measuring the strength of a relationship. (p. 138)
Variable Any property or characteristic of some e vent, object, or person that may ha ve different values at different times depending on the conditions. (p.6)
Variance The standard de viation squared. In equation form,
$\sigma^{2}=\frac{\sum(X-\mu)^{2}}{N} \quad \begin{aligned} & \text { variance of a population set } \\ & \text { of scores }\end{aligned}$

$$
s^{2}=\frac{\Sigma(X-\bar{X})^{2}}{N-1} \quad \begin{aligned}
& \text { variance of a sample set of } \\
& \text { scores }
\end{aligned}
$$

(p. 95)

Weighted mean See overall mean
Weighted variance estimate Symbolized $s_{\mathrm{w}}{ }^{2}$. Used in the $t$ test for independent groups to estimate the population variance. (p.370)
Wilcoxon matched-pairs signed ranks test Nonparametric inference test used as a substitute for the correlated groups $t$ test when the assumptions of that test are seriously violated. Statistic computed is $T$. (p. 498)

Within-cells degrees of freedom Symbolized by $\mathrm{df}_{\text {within-cells }}$. Statistic computed in tw o-way ANOVA. The denominator of the equation for computing the within-cells variance estimate, $M S_{\text {within-cells. }}$. $p .451$ )
Within-cells sum of squares Symbolized by $S S_{\text {within-cells }}$. Statistic computed in two-way ANOVA. The numerator of the equation for computing the within-cells variance estimate, $M S_{\text {within-cells. }}$ (p.451)
Within-cells variance estimate Symbolized by $M S_{\text {within-cells. }}$ Statistic computed in two-way ANOVA. Estimate of the null-hypothesis population v ariance that is based on the within-cells v ariability. (p. 449, 451)

Within-groups degrees of freedom Symbolized by $\mathrm{df}_{\text {within }}$. Statistic computed in the one-w ay ANOVA. The denominator of the equation for computing the within-groups variance estimate, $M S_{\text {within }}$. $(p .407$ )
Within-groups sum of squares Symbolized by $S S_{\text {within }}$. Statistic computed in the one-w ay ANOVA. The total of the sum of squares for each group. (p. 406, 407)

Within-groups variance estimate Symbolized by $M S_{\text {within }}$. Statistic computed in the one-way ANOVA. Estimate of the null-hypothesis population v ariance that is based on the within groups v ariability. (p. 406)
$X$ axis The horizontal axis of a graph. (p. 61)
$Y$ axis The vertical axis of a graph. (p. 61)
$Y$ intercept The $Y$ value of a function where the function intersects the $Y$ axis. For the linear relationship $Y=b X+a, a$ is the $Y$ intercept. (p. 125)
$z$ score A transformed score that designates ho w many standard deviation units the corresponding raw score is above or below the mean. (p. 105)
$z$ test for single samples Inference test using the $z$ statistic. Emplo yed with single sample designs. Also called the Normal Deviate test. (p. 303)

## $A$ by $B$ interaction, 449

A posteriori (post hoc) comparisons, 423-428, 432-433
Scheffé test, 425-432
Tukey's HSD test, 424-425
A posteriori probability, 194, 195
A priori (planned) comparisons, 422-423, 432-433
A priori probability, 193, 194
Accuracy (correction for continuity procedure), 241n
Addition rule
definition of, 196
equation for, 196
with exhaustive and mutually exclusive events, 200
with more than two mutually exclusive events, 201
multiplication rule used with, 201-202
with mutually exclusive events, 196-200
Alpha level, 253, 256, 529
definition of, 256, 492
and one- or two-tailed probability, 259-260
power and, 286, 321-322
Type I error and. See Type I error
Alternative hypothesis $\left(H_{1}\right), 252,528$
definition of, 252, 502
directional hypothesis, 252, 257-259
nondirectional hypothesis, 252, 257-259
Analysis of variance (ANOVA)
defined, 405
$F$ test, 405
one-way. See One-way ANOVA
two-way. See Two-way ANOVA
uses, 404-405
Analyzing data (procedure), 299
Analyzing nominal data, 541-542
Arithmetic mean
calculation of, 80-81
definition of, 81
overall mean, 83-84
of population set of scores, 81
properties of, 82-83
of sample, 81
sampling variation and, 83 sum of deviations about the mean, 82
sum of squared deviations of all scores
about their mean, 83
symbols for, 81
Asymptotic curve, 103
Authority, 4
Average. See Arithmetic mean

Bar graph, 63
Beer preference experiment, 484-487
Bell-shaped curve, 66
Beta
definition of, 255
power and, 285
Between-groups degrees of freedom

$$
\left(\mathrm{df}_{\text {between }}\right), 409
$$

Between-groups sum of squares
$\left(S S_{\text {between }}\right), 406,409$
Between-groups variance estimate
( $M S_{\text {between }}$ ), 408-409
Bimodal distribution, 88
Binomial distribution
binomial expansion, 229-230
binomial table, 230-232
defined, 226
generation of, from binomial expansion, 229-230
normal approximation approach, 239-244
required conditions, 226
Binomial expansion, 229-230
equation for, 247 n
Binomial table, 230-232
Biserial correlation coefficient $\left(r_{\mathrm{b}}\right), 140$
Brain stimulation experiment data analysis, 360-362
size of effect, 364-365
statement of problem, 358-359
Causality, 123, 144-145
Celsius temperature scale, 34
Central limit theorem, 305
Central tendency. See Measures of central tendency

Chi-square test, 484-497
computation of, $\chi^{2}{ }_{\text {obt }}, 485,490-492$
assumptions, 497
beer preference experiment, 484-487
overview, 542
political affiliation experiment, 489-493
SPSS, 522-525
test for independence, 488-493
Coefficient of determination $\left(r^{2}\right), 139$
Cohen's criteria $\left(\omega^{2} / \eta^{2}\right), 419$
Cohen's $d$
$t$ test (correlated groups), 363-365
$t$ test (independent groups), 376-377
$t$ test (single sample), 339
Column degrees of freedom ( $\mathrm{df}_{\text {columns }}$ ), 454
Column sum of squares ( $S S_{\text {columns }}$ ), 454
Column variance estimate

$$
\left(M S_{\text {columns }}\right), 453-454
$$

Computer software. See SPSS
Confidence interval, 341-344
Confidence interval approach, 382-385
Confidence limits, 341
Contingency table, 489
Continuous variable, 35,36
Control condition, 358, 366
Correlated groups design, 250, 358, 532-533
Correlated groups $t$ test. See $t$ test (correlated groups)
Correlation
and causality, 123, 144-145
correlation coefficient. See Correlation coefficient
and direction and degree of relationship, 131
extreme scores, 144
range, 143
regression, compared, 123, 160
relationship, 130
SPSS, 155-157
test-retest reliability, 123
Correlation coefficient
biserial, 140
defined, 130
eta, 140

Page numbers followed by " $n$ " refer to notes at the bottom of the page or at the end of the chapter.

Correlation coefficient (continued)
measuring scale, 140
Pearson $r$. See Pearson $r$
phi coefficient, 140
shape of relationship, 140
sign, 130
Spearman rho $\left(r_{\mathrm{s}}\right)$, 141-142
SPSS, 155-157
Correlational research, 9
Critical region, 312, 313, 529
Critical value
$\chi^{2}, 610$
defined, 312
F, 413
H, 511
Q, 425
r, 347
statistic, 312
t, 332
$\bar{X}, 317-323$
z, 312
Cumulative frequency distribution, 54, 55
Cumulative percentage curve, 64-65, 66
Cumulative percentage distribution, 54,55
Curvilinear relationship, 125
Data, 7
Data analysis (procedure), 299
Degree of separation, 502-503
Degrees of freedom (df)
between-groups, 409
$\chi^{2}, 486-487,525$
column, 454
defined, 330
$F$ distribution, 402
interaction, 455
row, 453
$t$ test (independent groups), 371
$t$ test (single sample), 330-331
total, 417
within-cells, 452
within-groups, 407
Dependent events, 207
Dependent variable (DV), 7
Descriptive statistics, 10, 23, 190
Deviation score
calculation method, 90-92
defined, 90
df. See Degrees of freedom (df)
$\mathrm{df}_{\text {between }}, 409$
$\mathrm{df}_{\text {columns }}, 454$
$\mathrm{df}_{\text {interaction }}, 455$
$\mathrm{df}_{\text {totala }}, 417$
$\mathrm{df}_{\text {within }}, 407$
$\mathrm{df}_{\text {within-cells }}, 452$
Diet and intellectual development experiment, 501-504
Direct relationship, 127
Directional hypothesis, 252, 259, 260

Discrete variable, 35,36
Dispersion, 89. See also Measures of variability
Distribution
bimodal, 88
binomial. See Binomial distribution
cumulative frequency, 54, 55
F, 402-403
frequency. See Frequency distribution
frequency polygon, 64
Q, 424
relative frequency, 54,55
sampling, 299-302, 528
studentized range, 424
$t, 331-332$
unimodal, 88
z, 330
Distribution-free tests, 483. See also Nonparametric tests

Early speaking experiment, 329, 333-334, 340
"Effect of exercise on sleep" experiment, 456-462
Effect size. See Size of effect
Error
standard error of estimate, 169-170
standard error of the mean, 304
Type I. See Type I error
Type II. See Type II error
Eta squared ( $\eta^{2}$ ), 420
Everyday life. See What Is the Truth? boxes
Exhaustive set of events, 200
Expected frequency, 485
Experiment, 249
Experimental condition, 358, 366
Experimental group, 366
Explained variability, 139
Exploratory data analysis, 67
$F_{\text {crit }}, 413$
$F_{\text {obt }}$
defined, 402
one-way ANOVA, 409, 415
two-way ANOVA, 456
$F_{\text {Scheffe }}$, 426-428, 538-539
$F$ distribution, 402-403
$F$ ratio
one-way ANOVA, 409-410
two-way ANOVA, 456
$F$ test, 402-404
Factorial experiment, 446. See also Two-way ANOVA
Fail to reject null hypothesis, 253
Fair (unbiased) coin, 200
Fisher, R. A., 402
Fixed effects design, 447
Frequency, 103n

Frequency distribution, 47-78
bar graph, 63
constructing distribution of grouped scores, 51-54
cumulative, 54,55
cumulative percentage curve, 64-65, 66
cumulative percentage distribution,

$$
54,55
$$

defined, 48
frequency polygon, 64
graphs, 63-67
grouping scores, 49-50
histogram, 63, 64
interval width, 49, 50
percentile point, 55-59
percentile rank, 59-61
purpose, 48
relative, 54,55
shape of frequency curves, 65-67
SPSS, 73-77
stem and leaf diagram, 67-68
Frequency polygon, 64
GENESYS system, 218
Gosset, W. S., 328
Grand mean, 408
Graphs
facts/principles, 61-63
frequency distribution, 63-67
scatter plot, 124
$H_{0}, 252,528$
$H_{1}, 252,528$
Histogram, 63, 64
Homogeneity of variance, 376, 418
Homoscedasticity, 170
Hormone X experiment
independent groups $t$ test, 372-373
statement of problem, 367-368
$z$ test, 369-370
HSD test, 424-425, 432-433, 538
Hypothesis testing, 190, 248-276
alpha level, 253, 256
alternative hypothesis $\left(H_{1}\right), 252$
binomial distribution, 253, 272
confidence interval approach, 382-384
decision rule and alpha, 252-253, 255-257, 529
directional hypothesis, 252, 259, 260
failure to reject $H_{0}, 253,287$
"marijuana and AIDS" experiment, 249-250, 253-254
nondirectional hypothesis, 252, 258
null hypothesis $\left(H_{0}\right)$, 252
one-tailed probability, 259, 260
overview, 271-272, 529-530
reject $H_{0}, 252$
repeated measures design, 251
retain $H_{0}, 253$

Hypothesis testing (continued)
significant, 253, 265
size of effect, 265-266
two-step process, 299, 357
two-tailed probability, 258-260
Type I error, 254, 255
Type II error, 254, 255, 285
Imperfect relationship, 128
Independent events, 201
definition of, 201
Independent groups design, 534-535
$H_{0} / H_{1}, 367$
One way ANOVA. See One way ANOVA overview, 366
Two way ANOVA. See Two way ANOVA
$t$ test. See $t$ test (independent groups)
$z$ test. See $z$ test
Independent replication, 257
Independent-Samples $t$ Test, 397
Independent variable (IV), 6-7
Inferential statistics, 10, 187, 190. See also Review of inferential statistics
Interaction degrees of freedom

$$
\left(\mathrm{df}_{\text {interaction }}\right), 455
$$

Interaction effect, 447
Interaction sum of squares $\left(S S_{\text {interaction }}\right), 455$
Interaction variance estimate

$$
\left(M S_{\text {interaction }}\right), 455
$$

Interval estimate, 341
Interval scale, 32-33
Intuition, 5
Inverse relationship, 127
J-shaped curve, 66
Kelvin temperature scale, 33, 34
Knowing, methods of authority, 4
intuition, 5
rationalism, 4-5
scientific method, 6
Kruskal-Wallis test, 507-511, 539
Lateral hypothalamus experiment. See Brain stimulation experiment
Least-squares regression line, 160-162
definition of, 161
equation for, 161
Linear regression, 159-186
considerations in using linear regression for prediction, 172
constructing least-squares regression line, 162-169
definitions, 160
equation for least-squares regression line, 161-162
homoscedasticity assumption, 170
least-squares regression line, 160-162

Pearson $r$, 172-174
regression constants, 162
regression of $Y$ on $X, 162-169$
required conditions, 172
SPSS, 182-185
standard error of estimate, 169-170
Linear relationship, 124
Literary Digest presidential poll (1936), 191

Lower real limit, 37
Main effect, 447
Mann-Whitney $U$ test, 501-507, 535
Marginals, 491
"Marijuana and appetite" experiment, 249-250, 253-254
Mathematical notation, 26-27
Mean
arithmetic, 80-83
calculate, 81
definition, 81
equation, 81
grand, 408
overall, 83-84
population mean, 81
properties, 82-83
symbols, 81
Mean of the sampling distribution of the difference between sample means, 368
Mean of the sampling distribution of the mean, 305
Measurement scales
behavioral sciences, and, 35
interval scale, 32-33
nominal scale, 31-32
ordinal scale, 32
ratio scale, 33-34
Measures of central tendency
arithmetic mean, 80-83
median, 85-87
mode, 87-88
overall mean, 83-84
SPSS, 99-101
symmetry/skew, 88
Measures of variability
range, 89
SPSS, 99-101
standard deviation, 89-95. See also
Standard deviation
variance, 95
Median, 85-87
calculate, grouped scores, 85
calculate, raw scores, 86
definition, 85
properties, 87
Mode, 87-88
calculation of, 87
definition, 87
$M S_{\text {between }}, 408-409$
$M S_{\text {columns }}, 453-454$
$M S_{\text {interaction }}, 455$
$M S_{\text {rows }}, 452-453$
$M S_{\text {within }}, 406-408$
$M S_{\text {within-cells }}, 451-452$
Multigroup experiments, 536-541
Multiple coefficient of determination $\left(R^{2}\right), 176$
Multiple regression, 174-178
Multiplication rule
dependent events, 207-211 equation for, 207
independent events, 201-207 equation for, 202
mutually exclusive events, 201 equation for, 201
$\mu_{\text {null }}, 318$
$\mu_{\text {real }}, 318$
Mutually exclusive events, 196, 201
Naturalistic observation research, 9
Negative relationship, 127
Negatively skewed curve, 65, 66
$95 \%$ confidence interval
defined, 341
$\mu_{1}-\mu_{2}, 382-384$
$99 \%$ confidence interval, 385
Nominal data, 541-542
Nominal scale, 31-32
Nondirectional hypothesis, 252, 258
Nonparametric tests
chi-square test. See Chi-square test
Kruskal-Wallis test, 507-511, 539
Mann-Whitney $U$ test, 501-507, 535
other tests, 484
parametric tests, compared, 483
sign test, 533
when used, 483-484
Wilcoxon signed ranks test, 498-501, 533
Normal approximation approach, 239-244
Normal curve
area under, 104-105
equation, 103
importance, 103
inflection points, 103, 104
Normal deviate (z) test. See $z$ test
Null hypothesis $\left(H_{0}\right), 252,528$
Null-hypothesis approach, 382
Null-hypothesis population, 300, 528
Objective verification, 249
Observational studies, 9
Observed frequency, 485
Omega squared ( $\hat{\omega}^{2}$ ), 419, 420
One-Sample $t$ Test, 352-354
One-tailed probability, 259, 260

One-way ANOVA, 404-421
alternative hypothesis, 405
assumptions, 406, 418
eta squared $\left(\eta^{2}\right), 420$
$F$ ratio, 409-410
$M S_{\text {between }}$, 408-409
$\mathrm{MS}_{\text {within }}, 406-408$
multiple comparisons, 421-428
null hypothesis, 405
omega squared $\left(\hat{\omega}^{2}\right), 419,420$
other names, 405
overview, 406, 536-538
planned comparisons, 422-423, 432-433
post hoc comparisons, 423-428, 432-433
power, 420-421
robust test, as, 418
Scheffé test, 425-428, 432-433
size of effect, 419-420
SPSS, 440-443
stress experiment. See Stress experiment $t$ test, 418
Tukey's HSD test, 424-425, 432-433
underlying logic, 414-415
Order of mathematical operations, 29-30
Ordinal scale, 32
Overall mean, 83-84
calculate, 84
equation, 74
Overview/synopsis. See Review of inferential statistics
$P_{\text {null }}, 279$
$P_{\text {real }}, 279-280$
Paired-Samples $t$ Test, 394
Parameter, 7
Parameter estimation research, 9, 190
Parametric tests, 483
Pearson Chi-Square, 525
Pearson r, 131-139
calculation of, 133-135
defined, 132
linear regression, 172-174
testing significance ( $t$ test), 346-347, 531-532
variability accounted for by $X, 137-139$
Percentile, 55, 56
Percentile point, 55-59
Percentile rank, 59-61
Perfect relationship, 128
Phi coefficient, 140
Planned comparisons, 422-423, 432-433
Point estimate, 341
Political affiliation experiment, 489-493
Population
definition of, 6
deviation scores for, 89-90
mean of population set of scores, 80-82
standard deviation of, 89
variance of, 95

Positive relationship, 127
Positively skewed curve, 65, 66
Post hoc comparisons, 423-428, 432-433
Power, 277-297, 529
alpha level, and, 286, 321-322
beta, and, 285, 322
calculation of, 288
defined, 278, 529
facts/principles, 286, 316-317
$N$, and, 281-284, 317-321, 421
nonsignificant results, 287-288
one-way ANOVA, 420-421
$P_{\text {null }}, 279$
$P_{\text {real }}, 279-280$
range of values, 278
sample variability, 421
$t$ test, 378-379
uses, 295
$z$ test, 316-323
Prediction, 160. See also Regression
Probability, 193-216
addition rule, 196-201
continuous variables, and, 213-216
multiplication and addition rules, 211-213
multiplication rule, 201-211
a posteriori, 194, 195
a priori, 193, 194
Probability of occurrence of $A$ or $B, 194,195$
Probability of occurrence of both $A$ and $B, 201$
Programming language. See SPSS
$Q_{\text {crit }}, 425$
$Q_{\text {obt }}, 424,425$
$Q$ distribution, 424
r. See Pearson $r$
$r_{\mathrm{b}}, 140$
$r_{\mathrm{s}}, 141-142$
$R^{2}, 176$
$r^{2}, 139$
Random sample, 190
Random sampling
definition of, 9-10, 190
reasons for, 191
sampling with replacement, 191, 193, 202
sampling without replacement, 193
table of random numbers for, 612-613
Range
calculate, 89
definition, 89
Ranking tied scores, 504-505
Ratio scale, 33-34
Rationalism, 4-5
Raw scores method, 92-93
Reaction-time experiment, 379
Reaction-time scores, 306n
Reading proficiency experiment, 302-303, 309-311

Real effect
defined, 278
one-way ANOVA, 421
power, 281-284
$z$ test, 322-323
Real limits (continuous variable), 37
Real-world examples. See What Is the Truth? boxes
Rectangular curve, 66
Regression
correlation, compared, 160
defined, 160
linear. See Linear regression
multiple, 174-178
Regression constants, 162
Regression line, 160
Regression of $Y$ on $X, 162-169$
Reject null hypothesis, 252
Relationship, 123
curvilinear, 125
degree, 130
direct, 127
direction, 130
imperfect, 128
inverse, 127
linear, 124
negative, 127
perfect, 128
positive, 127
Relative frequency distribution, 54, 55
Repeated measures design, 251, 366
Replicated measures design, 251, 366
Replication, 257
Retain null hypothesis, 253
Review of inferential statistics, 527-550
analyzing nominal data, 541-542
chi-square test, 542
choosing the appropriate test, 542-544
correlated groups design, 532-533
decision flowchart, 543
definitions, 528-529
hypothesis testing, 529-530
independent groups design, 534-535
Kruskal-Wallis test, 539
Mann-Whitney $U$ test, 535
multigroup experiments, 536-541
one-way ANOVA, 536-538
Scheffé test, 538-539
sign test, 533
single sample designs, 530-532
$t$ test (correlated groups), 532
$t$ test (independent groups), 534-535
$t$ test (single sample), 531-532
Tukey's HSD test, 538
two-way ANOVA, 539-541
Wilcoxon signed ranks test, 533
$z$ test, 530-531
Robust test, 483
Rounding, 38
Row degrees of freedom ( $\mathrm{df}_{\text {rows }}$ ), 453

Row sum of squares $\left(S S_{\text {rows }}\right), 452-453$
Row variance estimate $\left(M S_{\text {rows }}\right), 452-453$

Sample, 6
Sampling distribution, 299-302, 528
Sampling distribution of $F, 402$
Sampling distribution of $Q, 424$
Sampling distribution of $t, 329-330$
Sampling distribution of the difference between sample means, 368-369
Sampling distribution of the mean characteristics, 303-305
defined, 303
empirical approach, 303
illustrative example, 306-309
mean, 305
shape, 305-306
Sampling with replacement, 193
Sampling without replacement, 193
Scales of measurement. See
Measurement scales
Scatter plot, 124
Scheffé test, 425-428, 432-433, 538-539
Scientific method, 6
Score transformation, 106
$\Sigma X^{2}, 27-29,44-45$
$(\Sigma X)^{2}, 29$
Sign test, 248-265, 365, 533
compared with $t$ test (correlated groups), 365
correlated groups design and, 251, 358
description of, 250-251,533
for hypothesis testing, 250-266, 299, 533
summary of, 271-272, 533
Significant, 253, 265
Significant figures, 37
Simple-randomized-group design. See One-way ANOVA
Single factor experiment. See One-way ANOVA
Single sample designs, 530-532
Single sample $t$ test. See $t$ test (single sample)
Size of effect
coefficient of determination $\left(r^{2}\right), 139$
Cohen's $d$ statistic, 339-340, 363-364, 376-377
hypothesis testing, 265-266
one-way ANOVA, 419-420
power and size of real effect, 280-285, 322-323, 378-379, 420-421
$t$ test (correlated groups), 363-365
$t$ test (independent groups), 376-377
$t$ test (single sample), 339-340
Skewed curve, 65, 66
Slope, 125, 127
Software. See SPSS
Spearman rho $\left(r_{\mathrm{s}}\right), 141-142$
SPSS, 11
chi-square test, 522-525
correlation/correlation coefficient, 155-157
frequency distribution, 73-77
linear regression, 182-185
measures of central tendency and variability, 99-101
one-way ANOVA, 440-443
summation, 40-44
$t$ test (correlated groups), 392-394
$t$ test (independent groups), 395-397
$t$ test (single sample), 352-354
two-way ANOVA, 475-479
$z$ score, 119-121
Squared multiple coefficient $\left(R^{2}\right), 176$
$S S_{\text {between }}, 406,409$
$S S_{\text {columns }}, 454$
$S S_{\text {interaction }}, 455$
$S S_{\text {rows }}, 452-453$
$S S_{\text {total }}, 406,414$
$S S_{\text {within }}, 406-408$
$S S_{\text {within-cells }}, 451-452$
Standard deviation, 89-95
calculate (deviation method), 90-92
calculate (raw scores method), 92-93
population data, 91
properties, 93
sample data, 91
symbols, 91
Standard deviation of the sampling distribution of the difference between sample means, 368
Standard error of estimate, 169-170
Standard error of the mean, 304
Standard score. See z score
State of reality, 255
Statistic, 7
Statistical Package for the Social Services. See SPSS
Statistically significant, 265
Stem and leaf diagram, 67-68
Stress experiment
eta squared $\left(\eta^{2}\right), 420$
omega squared ( $\hat{\omega}^{2}$ ), 420
statement of problem, 410
step-by-step solution, 411-414
Studentized range distribution, 424
Student's $t$ test
correlated groups. See $t$ test (correlated groups)
independent groups. See $t$ test (independent groups)
single sample. See $t$ test (single sample)
Sum of cross products, 135
Sum of squares (SS)
sample data, 91
population data $\left(S S_{\text {pop }}\right)$, 91
Summation, 27-29, 44-45
Symmetrical curve, 65, 66
Synopsis/overview. See Review of inferential statistics
$t_{\text {obt }}, 378,422$
equations for, $328,334,359,371,373$
$t$ distribution, 331-332
$t$ test (correlated groups), 358-366
assumptions, 366
brain stimulation experiment. See Brain stimulation experiment
Cohen's $d$, 363-365
equations for $t_{\text {obt }}, 359,532$
independent groups design, compared, 379-382
overview, 385, 532
power, 378-379
sign test, compared, 365
single sample $t$ test, compared, 359-360
size of effect, 363-365
SPSS, 392-394
$t$ test (independent groups), 370-382
assumptions, 366
ANOVA, 418
assumptions, 375-376
Cohen's $d, 376-377$
correlated groups design, compared, 379-382
df, 371
equations for, 371,534
hormone X experiment, 372-373
overview, 385-386, 534-535
planned comparisons, 422-423, 432
power, 378-379
robust test, as, 376
size of effect, 376-377
SPSS, 395-397
$t_{\text {obt }}, 373-374$
violation of assumptions, 376
$z$ test, compared, 370-371
$t$ test (single sample), 327-355
assumptions, 366
confidence interval, 341-344
degrees of freedom, 330-331
early speaking experiment, 329 , 333-334, 340
equations for, $328,334,531$
limitation, 357
overview, 531
Pearson $r$, 346-347, 531-532
power, 358-359
sampling distribution, 329-330
size of effect, 339-340
SPSS, 352-354
$t_{\mathrm{ob}}, 334$
$t$ distribution, 331-332
when appropriate, 338
$z$ test, compared, 328, 332
Table of random numbers, 192
Tail of distribution, evaluation of, 257-259
Test for independence, 488-493
Test-retest reliability, 123
Testing hypotheses. See Hypothesis testing
Thalamus and pain perception experiment, 377-378, 404
Tied ranks, 504-505

Total variability $\left(S S_{\text {total }}\right), 406,414$
True experiments, 9
Tukey, John, 67
Tukey's HSD test, 424-425, 432-433, 538
Two-condition experiment, 357-358
Two-group study, 404
Two-tailed probability, 258-260
Two-way ANOVA, 445-481
assumptions, 472
defined, 446
"effect of exercise on sleep"
experiment, 456-462
$F$ ratio, 456
interaction effect, 447
main effect, 447
$M S_{\text {columns }}, 453-454$
$\mathrm{MS}_{\text {interaction }}, 455$
$M S_{\text {rows }}$, 452-453
$\mathrm{MS}_{\text {within-cells, }}$ 451-452
multiple comparisons, 471
notation/general layout, 451
overview, 450, 539-541
robust test, 472
SPSS, 475-479
Type I error
alpha level, 255
ANOVA, 405
defined, 254
multiple $t$ tests, 404-405
planned comparisons, 422
post hoc comparisons, 423
Scheffé test, 425
Tukey's HSD test, 424
Type II error
beta, and, 255,285
defined, 254
power, and, 285
U-shaped curve, 66
Uniform curve, 66

Unimodal distribution, 88
Upper real limit, 37
Variability, 80, 379. See also Measures of variability
Variability accounted for by $X, 138,139$
Variable, 6
continuous, 35, 36
defined, 6
dependent, 7
discrete, 35, 36
independent, 6-7
Variance
calculation of, 95
definition of, 95
Weight reduction experiment, 507-509
Weighted mean, 84
What Is the Truth? boxes
Anacin-3, 13
depressed women live longer, 268
Excedrin, 269
golf balls, 433-434
good principal/good school, 146
heart attack medicine, 293-294
money/happiness, 147-148
Neanderthals, 14
not guilty plea/coincidence, 216-217
Pepsi Challenge taste test, 266-267
polling, 218-220
Puget Power rate increases, 69
secretin/autism, 270-271
sperm count decline, 217-218
subliminal message/thinness, 12
urban legend, 15-16
use/abuse of research, 512-513
Wilcoxon signed ranks test, 498-501, 533
Wildlife conservation experiment, 498-499
Within-cells degrees of freedom

$$
\left(\mathrm{df}_{\text {within-cells }}\right), 452
$$

Within-cells sum of squares

$$
\left(S S_{\text {within-cells }}, 451-452\right.
$$

Within-cells variance estimate ( $M S_{\text {within-cells }}$ ), 451-452
Within-groups degrees of freedom

$$
\left(\mathrm{df}_{\text {wihhin }}\right), 407
$$

Within-groups sum of squares $\left(S S_{\text {within }}\right)$, 406-408
Within-groups variance estimate $\left(M S_{\text {within }}\right)$, 406-408
$X$ axis (abscissa), 61
$Y$ axis (ordinate), 61
$Y$ intercept, 125
$z_{\text {crit }} 312$
$z_{\text {ob, }}, 311$
$z$ distribution, 330
$z$ score, 105-116
characteristics, 108-109
defined, 106
equation, 106
finding the area, given the raw score, 109
finding the raw score, given the area, 114
SPSS, 119-121
uses, 106, 107
$z$ test, 302-323
alternative solution, 311-314
independent groups, 367-370
mathematical assumption, 316
overview, 530-531
power, and, 316-323
reading proficiency experiment, 302-303, 309-311
required conditions, 316
$t$ test, compared, 328, 332

## Symbols

Listed below are the symbols we have used in this textbook. The meaning of each symbol is given to the right of the symbol. The last column gives the page number where the symbol first appears.

| Symbol | Meaning | Symbol First Occurs on Page: |
| :---: | :---: | :---: |
| $\alpha$ | threshold probability level for rejecting $H_{0}$ | 252 |
|  | the probability of a Type I error | 255 |
| $\beta$ | probability of a Type II error | 255 |
| $\chi^{2}$ | chi-square | 484 |
| $\phi$ | correlation coefficient for dichotomous variables | 140 |
| $\eta$ | curvilinear correlation coefficient | 140 |
| $\eta^{2}$ | estimate of size of effect | 420 |
| $\mu$ | mean of a population | 81 |
| $\mu_{D}$ | mean of the population of difference scores | 359 |
| $\mu_{\text {null }}$ | mean of the null-hypothesis population | 318 |
| $\mu_{\text {real }}$ | mean of population when there is a real effect | 318 |
| $\mu_{\bar{X}}$ | mean of the sampling distribution of the mean | 305 |
| $\mu_{\bar{X}_{1}-\bar{X}_{2}}$ | mean of the sampling distribution of the difference between sample means | 368 |
| $\rho$ | population linear correlation coefficient | 346 |
| $\Sigma$ | the sum of | 27 |
| $\sigma$ | standard deviation of a population | 91 |
| $\sigma^{2}$ | variance of a population | 95 |
| $\sigma_{\bar{X}}$ | standard deviation of the sampling distribution of the mean; standard error of the mean | 305 |
| $\sigma_{\bar{X}}{ }^{2}$ | variance of the sampling distribution of the mean | 305 |
| $\sigma_{\bar{X}_{1}-\bar{X}_{2}}$ | standard deviation of the sampling distribution of the difference between sample means; standard error of the difference beween sample means | 368 |
| $\hat{\omega}^{2}$ | estimate of size of effect | 419 |
| $a_{Y}$ | $Y$-axis intercept for minimizing errors in predicting $Y$ | 162 |
| $b_{Y}$ | slope of the line for minimizing errors in predicting $Y$ given $X$ | 162 |


| Symbol | Meaning | Symbol First Occurs on Page: |
| :---: | :---: | :---: |
| c | number of columns in a contingency table number of columns in a two-way ANOVA data table | $\begin{aligned} & 492 \\ & 452 \end{aligned}$ |
| $\operatorname{cum} f$ | cumulative frequency | 55 |
| $\operatorname{cum} f_{L}$ | frequency of scores below the lower real limit of the interval containing the percentile point | 57 |
| $\operatorname{cum} f_{P}$ | frequency of scores below the percentile point | 57 |
| cum \% | cumulative percentage | 55 |
| $d$ | size of effect | 339 |
| $\hat{d}$ | estimated size of effect | 340 |
| D | difference between paired scores | 360 |
| $\bar{D}_{\text {obt }}$ | mean of the sample difference scores | 360 |
| df | degrees of freedom | 330 |
| $\mathrm{df}_{\text {belween }}$ | between-group degrees of freedom | 409 |
| $\mathrm{df}_{\text {columns }}$ | column degrees of freedom | 454 |
| $\mathrm{df}_{\text {interaction }}$ | interaction degrees of freedom | 455 |
| $\mathrm{df}_{\text {rows }}$ | row degrees of freedom | 453 |
| $\mathrm{df}_{\text {within }}$ | within-groups degrees of freedom | 407 |
| $\mathrm{df}_{\text {within-cells }}$ | within-cells degrees of freedom | 452 |
| $F$ | ratio of two variance estimates | 402 |
| $F_{\text {crit }}$ | critical value of $f$ | 403 |
| $F_{\text {obt }}$ | statistic computed in one-way ANOVA statistic computed in two-way ANOVA | 402 449 |
| $F_{\text {Scheffée }}$ | statistic computed in Scheffé test | 426 |
| $f$ | frequency | 48 |
| $f_{e}$ | expected frequency | 485 |
| $f_{i}$ | frequency of the interval containing the percentile point | 58 |
| $f_{o}$ | observed frequency | 485 |
| $H_{0}$ | null hypothesis | 252 |
| $H_{1}$ | alternative hypothesis | 252 |
| $\mathrm{H}_{\text {obt }}$ | statistic calculated with Kruskal-Wallis | 508 |
| i | width of the interval | 51 |
| $k$ | number of groups or means | 407 |
| Mdn | median | 85 |
| $M S_{\text {berveen }}$ | between-groups variance estimate | 409 |
| $M S_{\text {between (groups iand } j \text { ) }}$ | between-groups variance estimate, Scheffé test | 426 |
| $M S_{\text {columns }}$ | column variance estimate | 449 |
| $M S_{\text {rows }}$ | row variance estimate | 449 |
| $M S_{\text {interaction }}$ | interaction variance estimate | 449 |


| Symbol | Meaning | Symbol First Occurs on Page: |
| :---: | :---: | :---: |
| $M S_{\text {within }}$ | within-groups variance estimate | 406 |
| $M S_{\text {within-cells }}$ | within-cells variance estimate | 449 |
| $N$ | total number of scores number of paired scores | $\begin{array}{r} 27 \\ 163 \end{array}$ |
| $n_{k}$ | number of scores in the $k$ th or last group | 84 |
| $P$ | in a two-event situation, the probability of one of the events | 200 |
| $p$ | probability | 194 |
| $p(A)$ | probability of event $A$ | 193 |
| $p(B \mid A)$ | probability of $B$, given $A$ has occurred | 201 |
| $P_{\text {null }}$ | the proportion of pluses in the population if the independent variable has no effect | 279 |
| $P_{\text {real }}$ | the proportion of pluses in the population if the independent variable has a real effect | 279 |
| $Q$ | in a two-event situation, the probability of one of the events Studentized range statistic | $\begin{aligned} & 201 \\ & 424 \end{aligned}$ |
| $Q_{\text {crit }}$ | the critical value of $Q$ | 424 |
| $Q_{\text {obt }}$ | statistic computed in the Tukey HSD test | 424 |
| $r$ | Pearson product moment correlation coefficient number of rows in a contingency table number of rows in a two-way ANOVA data table | $\begin{aligned} & 130 \\ & 492 \\ & 452 \end{aligned}$ |
| $r^{2}$ | coefficient of determination | 139 |
| $R^{2}$ | multiple coefficient of determination squared multiple correlation | $\begin{aligned} & 176 \\ & 176 \end{aligned}$ |
| $r_{b}$ | biserial correlation coefficient | 140 |
| $r_{s}$ | Spearman rank order correlation coefficient, rho | 140 |
| $s$ | standard deviation of a sample estimate of a population standard deviation | $\begin{aligned} & 91 \\ & 91 \end{aligned}$ |
| $s_{D}$ | standard deviation of sample difference scores | 360 |
| $s_{X}$ | standard deviation of the $X$ variable | 173 |
| $s_{Y}$ | standard deviation of the $Y$ variable | 173 |
| $s_{Y \mid X}$ | standard error of estimate when predicting $Y$ given $X$ | 170 |
| $s_{\bar{X}}$ | estimated standard error of the mean | 328 |
| $s_{\bar{X}_{1}-\bar{X}_{2}}$ | estimated standard error of the difference between sample means | 370 |
| $s^{2}$ | variance of a sample | 95 |
| $s_{W}{ }^{2}$ | weighted estimate of the population variance | 370 |
| SS | sum of squares of a sample | 91 |
| $S S_{\text {between }}$ | between-groups sum of squares | 406 |
| $S S_{\text {between (groups i and } j \text { ) }}$ | between-groups sum of squares, Scheffé test | 426 |
| $S S_{\text {columns }}$ | column sum of squares | $450$ <br> (Continued) |


| Symbol | Meaning | Symbol First Occurs on Page: |
| :---: | :---: | :---: |
| $S S_{D}$ | sum of squares of sample difference scores | 360 |
| $S S_{\text {pop }}$ | sum of squares of a population | 91 |
| $S S_{\text {rows }}$ | row sum of squares | 450 |
| $S S_{\text {interaction }}$ | interaction sum of squares | 450 |
| $S S_{\text {total }}$ | total sum of squares | 406 |
| $S S_{\text {within }}$ | within-groups sum of squares | 406 |
| $S S_{\text {within-cells }}$ | within-cells sum of squares | 450 |
| $S S_{X}$ | sum of squares of the $X$ variable | 163 |
| $T$ | lower sum of the ranks | 498 |
| $t$ | Student's statistic | 328 |
| $t_{\text {crit }}$ | critical value of $t$ | 332 |
| $t_{\text {obt }}$ | statistic computed in Student's $t$ test | 328 |
| $U, U^{\prime}$ | statistics computed in the Mann-Whitney $U$ test | 502 |
| $X$ | raw scores | $27$ |
|  | a variable | 27 |
| $X_{i}$ | $i$ th raw score | 27 |
| $X_{L}$ | value of the lower real limit of the interval containing the score $X$ | 58 |
| $\bar{X}$ | mean of a sample set of raw scores | 81 |
| $\bar{X}_{\text {overall }}$ | overall mean of several groups | 84 |
| Y | raw scores | 27 |
|  | a variable | 27 |
| $Y^{\prime}$ | predicted $Y$ value | 162 |
| $Y_{i}$ | $i$ th raw score | 137 |
| $\bar{Y}$ | mean of a sample set of raw scores | 163 |
| $z$ | number of standard deviation units a score deviates from the mean standard score | 109 109 |
| $z_{\text {obt }}$ | statistic calculated for the $z$ test | 310 |


[^0]:    *W. I. B. Beveridge, The Art of Scientific Investigation, Vintage Books/Random House, New York, 1957, pp. 94-95.
    $\dagger$ Ibid., p. 92.

[^1]:    *We recognize that the topic of cause and effect has engendered much philosophical debate. However, we cannot consider the intricacies of this topic here. When we use the term cause, we mean it in the commonsense way it is used by non-philosophers. That is, when we say that $A$ caused $B$, we mean that a change in $A$ produced a change in $B$ with all other variables appropriately controlled.

[^2]:    *See Note 2.1 at the end of this chapter for additional summation rules, if desired.

[^3]:    *The interested reader should consult N. H. Anderson, "Scales and Statistics: Parametric and Nonparametric," Psychological Bulletin, 58 (1961), 305-316; F. M. Lord, "On the Statistical Treatment of Football Numbers," American Psychologist, 8 (1953), 750-751; W. L. Hays, Statistics for the Social Sciences, 2nd ed., Holt, Rinehart and Winston, New York, 1973, pp. 87-90; S. Siegel, Nonparametric Statistics for the Behavioral Sciences, McGraw-Hill, New York, 1956, pp. 18-20; and S. S. Stevens, "Mathematics, Measurement, and Psychophysics," in Handbook of Experimental Psychology, S. S. Stevens, ed., Wiley, New York, 1951, pp. 23-30.

[^4]:    *The labeling of $Y$ as "frequency" is a slight simplification. I believe this simplification aids considerably in understanding and applying the material that follows. Strictly speaking, it is the area under the curve, between any two $X$ values, that is properly referred to as "frequency." For a discussion of this point, see E. Minium and B. King, Statistical Reasoning in Psychology and Education, 4th ed., John Wiley and Sons, New York, 2008, p. 119.

[^5]:    *The details on how to construct this line will be discussed in Chapter 7.

[^6]:    *As will be pointed out later in the chapter, it is legitimate to calculate Pearson $r$ only where the data are of interval or ratio scaling. Therefore, to calculate Pearson $r$ for this problem, we must assume the data are at least of interval scaling.

[^7]:    *Viewed in this manner, if IQ is a causal factor, then $r^{2}$ is a measure of the size of the IQ effect.

[^8]:    *We divide by $N-2$ because calculation of the standard error of estimate involves fitting the data to a straight line. To do so requires estimation of two parameters, slope and intercept, leaving the deviations about the line with $N-2$ degrees of freedom. We shall discuss degrees of freedom in Chapter 13.

[^9]:    *See Note 8.1, p. 223.

[^10]:    *Of course, in real experiments, the number of elements in the population is much greater than 10 . We are using 10 in the first example to help you understand how to use the table.

[^11]:    *For the uninitiated, a deck of ordinary playing cards is composed of 52 cards, 4 suits (spades, hearts, diamonds, and clubs), and 13 cards in each suit (Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, and King).

[^12]:    *There is a correction for continuity procedure available that increases accuracy. However, for the intended readers of this textbook, it introduces unnecessary complexity and so it has not been included. For a discussion of this correction, see D. S. Moore and G. P. McCabe, Introduction to the Practice of Statistics, W. H. Freeman and Company, New York, 1989, pp. 402-403.

[^13]:    *See Note 10.1.

[^14]:    *Throughout this chapter and the next, whenever using the sign test, we shall always let $P=$ the probability of a plus with any subject. This is arbitrary; we could have chosen $Q$. However, using the same letter ( $P$ or $Q$ ) to designate the probability of a plus for all problems does avoid unnecessary confusion.

[^15]:    *This is really a simplification made here for clarity. In actual practice, we evaluate the probability of getting the obtained result or any more extreme. The point is discussed in detail later in this chapter in the section titled "Evaluating the Tail of the Distribution."

[^16]:    *The reader should note that, even though there are minuses in the population, we assume that the effect of marijuana is the same on all subjects (namely, it increases appetite in all subjects). The minuses are assumed to have occurred due to randomly occurring variables that decrease appetite.

[^17]:    *Sample outcomes that would result in rejecting $H_{0}$. $\dagger$ See Note 11.1.

[^18]:    *Following Cohen (1988), we have divided the size of effect range into the following three intervals: for a large effect $P_{\text {real }}=0.00-0.25$ or $0.75-1.00$; a medium effect, $P_{\text {real }}=0.26-0.35$ or $0.65-0.74$; and a small effect, $P_{\text {real }}=0.36-0.49$ or 0.51-0.64. For reference, see footnote in Chapter 13, p. 339.

[^19]:    *There are some notable exceptions to this rule, such as reaction-time scores.

[^20]:    *Many authors would limit the use of the $z$ test to data that are of interval or ratio scaling. Please see the footnote in Chapter 2, p. 35, for references discussing this point.

[^21]:    *As df approaches infinity, the $t$ distribution approaches the normal curve.

[^22]:    *The derivation is presented in Note 13.1.

[^23]:    *Many authors would limit the use of the $t$ test to data that are of interval or ratio scaling. Please see the footnote in Chapter 2, p. 35, for references discussing this point.

[^24]:    *J. Cohen, Statistical Power Analysis for the Behavioral Sciences, 2nd ed., Lawrence Erlbaum Associates, Hillsdale, NJ, 1988.

[^25]:    *See Note 13.2 for the intermediate steps in this derivation.

[^26]:    *See Note 14.1.

[^27]:    *See Note 14.2.

[^28]:    *For reference, see footnote in Chapter 13, p. 339.

[^29]:    *See Chapter 13 footnote on p. 340 for a reference discussing some cautions in using Cohen's criteria.

[^30]:    *Many authors limit the use of the $t$ test to data that are of interval or ratio scaling. Please see the footnote in Chapter 2, p. 35, for references discussing this point.

[^31]:    *In this case, there would be two null-hypothesis populations: one with a mean $\mu_{1}$ and a standard deviation of $\sigma_{1}$ and the other with a mean $\mu_{2}$ and a st andard deviation $\sigma_{2}$. However, since $\mu_{1}=\mu_{2}$ and $\sigma_{1}=\sigma_{2}$, the populations would be identical.

[^32]:    *See Note 14.3.

[^33]:    *There are many inference tests to determine whether the data meet homogeneity of variance assumptions. However, this topic is beyond the scope of this textbook. See R. E. Kirk, Experimental Design, 3rd ed., Brooks/Cole, Pacific Grove, CA, 1995, pp. 100-103. Some statisticians also require that the data be of interval or ratio scaling to use the $z$ test, Student's $t$ test, and the analysis of variance (covered in Chapter 15). For a discussion of this point, see the references contained in the Chapter 2 footnote on p. 35. $\dagger$ For a review of this topic, see C. A. Boneau, "The Effects of Violations of Assumptions Underlying the $t$ Test," Psychological Bulletin, 57 (1960), 49-64.

[^34]:    *See Chapter 13 footnote, p. 339 for reference.

[^35]:    *See Chapter 13 footnote on p. 339 for a reference discussing some cautions in using Cohen's criteria.

[^36]:    *Of course you can't do this with actual data. Once the data have been collected according to a particular experimental design, you must use inference tests appropriate to that design.

[^37]:    *See Note 14.4 for a direct comparison between the two $t$ equations that involves Pearson $r$.

[^38]:    *The use of ANOVA with repeated measures designs is covered in D. C. Howell, Statistical Methods for Psychology, Wadsworth/Cengage Learning, 2010, p. 461-513.

[^39]:    *See Chapter 14 footnote $\left(^{*}\right.$ ) on p. 376. Some statisticians would also limit the use of ANOVA to data that are interval or ratio in scaling. For a discussion of this point, see the references in the Chapter 2 footnote on p. 35.
    ${ }^{\dagger}$ For an extended discussion of these points, see G. V. Glass, P. D. Peckham, and J. R. Sanders, "Consequences of Failure to Meet the Assumptions Underlying the Use of Analysis of Variance and Covariance," Review of Educational Research, 42 (1972), 237-288.

[^40]:    * See Chapter 13 footnote on p. 340 for a reference discussing some cautions in using Cohen's criteria.

[^41]:    $* F_{\text {crit }}$ from ANOVA $=3.88$. Therefore, reject $H_{0}$.

[^42]:    *Of course, you can't really be sure if the interaction is significant without doing a statistical analysis.

[^43]:    *The interested reader should consult B. J. Winer et al., Statistical Principles in Experimental Design, 3rd ed., McGraw-Hill, New York, 1991.

[^44]:    *Some statisticians also require the data to be interval or ratio in scaling. For a d iscussion of this point, see the footnoted references in Chapter 2, p. 35.

[^45]:    *T_Day*Exercise means T_Day by Exercise

[^46]:    *Although we cover several nonp arametric tests, there are many more. The interested reader should consult S. Siegel and N. Castellan, Jr., Nonparametric Statistics for the Behavioral Sciences, McGraw-Hill, New York, 1988, or W. Daniel, Applied Nonparametric Statistics, 2nd ed., PWS-Kent, Boston, 1990.

[^47]:    *This test is discussed in S. Siegel and N. Castellan, Jr., Nonparametric Statistics for the Behavioral Sciences, 2nd ed., McGraw-Hill, New York, 1988, pp. 103-111. It is also discussed in W. Daniel, Applied Nonparametric Statistics, 2nd ed., PWS-Kent, Boston, 1990, pp. 150-162.

[^48]:    *To analyze data with fewer than five scores in a sample, see S. Siegel and N. Castellan, Jr., Nonparametric Statistics for the Behavioral Sciences, 2nd ed., McGraw-Hill, New York, 1988, pp. 206-212.

[^49]:    *Since $F_{\text {obt }}>F_{\text {crit }}$ f or the rows a nd columns ef fects, we reject $H_{0}$ for the main ef fects. We must retain $H_{0}$ for the interaction ef fect. It a ppears that performance is a ffected differently by at least one of the activity conditions and by the time of day when it is conducted. It appears that napping and afternoon produce superior performance.

[^50]:    Dashes in the body of the table indicate that no decision is possible at the stated level of significance.

[^51]:    Dashes in the body of the table indicate that no decision is possible at the stated level of significance.

[^52]:    Dashes in the body of the table indicate that no decision is possible at the stated level of significance.

