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Series Editor’s Note

 
 
 
 
 
 
 
 
What a partnership: Darlington and Hayes. Richard Darlington is an icon 
of regression and linear modeling. His contributions to understanding the 
general linear model have educated social and behavioral science research-
ers for nearly half a century. Andrew Hayes is an icon of applied regression 
techniques, particularly in the context of mediation and moderation. His 
contributions to conditional process modeling have shaped how we think 
about and test processes of mediation and moderation. Bringing these two 
icons together in collaboration gives us a work that any researcher should 
use to learn and understand all aspects of linear modeling. The didactic 
elements are thorough, conversational, and highly accessible. You’ll enjoy 
Regression Analysis and Linear Models, not as a statistics book but rather as 
a Hitchhiker’s Guide to the world of linear modeling. Linear modeling is 
the bedrock material you need to know in order to grow into the more 
advanced procedures, such as multilevel regression, structural equation 
modeling, longitudinal modeling, and the like. The combination of clarity, 
easy-to-digest “bite-sized” chapters, and comprehensive breadth of cover-
age is just wonderful. And the software coverage is equally comprehensive, 
with examples in SAS, STATA, and SPSS (and some nice exposure to R)—
giving every discipline’s dominant software platform a thorough coverage. 
In addition to the software coverage, the various examples that are used 
span many disciplines and offer an engaging panorama of research ques-
tions and topics to stimulate the intellectually curious (a remedy for “aca-
demic attention deficit disorder”).

This book is not just about linear regression as a technique, but also 
about research practice and the origins of scientific knowledge. The 
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thoughtful discussion of statistical control versus experimental control, for 
example, provides the basis to understand when causal conclusions are suf-
ficiently implicated. As such, policy and practice can, in fact, rely on well-
crafted nonexperimental analyses. Practical guidance is also a hallmark 
of this work, from detecting and managing irregularities, to collinearity 
issues, to probing interactions, and so on. I particularly appreciate that they 
take linear modeling all the way up through path analysis, an essential 
starting point for many advanced latent variable modeling procedures.

This book will be well worn, dog-eared, highlighted, shared, re-read, 
and simply cherished. It will now be required reading for all of my first-
year students and a recommended primer for all of my courses. And if you 
are planning to come to one of my Stats Camp courses, brush up by review-
ing Darlington and Hayes.

As always, “Enjoy!” Oh, and to paraphrase the catch phrase from the 
Hitchhiker’s Guide to the Galaxy: “Don’t forget your Darlington and Hayes.”

TODD D. LITTLE 
Kicking off my Stats Camp 
in Albuquerque, New Mexico
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Preface

 
 
 
 
 
 
 
 
Linear regression analysis is by far the most popular analytical method in 
the social and behavioral sciences, not to mention other fields like medi-
cine and public health. Everyone is exposed to regression analysis in some 
form early on who undertakes scientific training, although sometimes that 
exposure takes a disguised form. Even the most basic statistical proce-
dures taught to students in the sciences—the t-test and analysis of variance 
(ANOVA), for instance—are really just forms of regression analysis. After 
mastering these topics, students are often introduced to multiple regression 
analysis as if it is something new and designed for a wholly different type 
of problem than what they were exposed to in their first course. This book 
shows how regression analysis, ANOVA, and the independent groups t-test 
are one and the same. But we go far beyond drawing the parallels between 
these methods, knowing that in order for you to advance your own study 
in more advanced statistical methods, you need a solid background in the 
fundamentals of linear modeling. This book attempts to give you that back-
ground, while facilitating your understanding using a conversational writ-
ing tone, minimizing the mathematics as much as possible, and focusing 
on application and implementation using statistical software.

Although our intention was to deliver an introductory treatment of 
regression analysis theory and application, we think even the seasoned 
researcher and user of regression analysis will find him- or herself learn-
ing something new in each chapter. Indeed, with repeated readings of this 
book we predict you will come to appreciate the glory of linear modeling 
just as we have, and maybe even develop the kind of passion for the topic 
that we developed and hope we have successfully conveyed to you.
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Regression analysis is conducted with computer software, and you 
have many good programs to choose from. We emphasize three commer-
cial packages that are heavily used in the social and behavioral sciences: 
IBM SPSS Statistics (referred to throughout the book simply as “SPSS”), 
SAS, and STATA. A fourth program, R, is given some treatment in one of the 
appendices. But this book is about the concepts and application of regres-
sion analysis and is not written as a how-to guide to using your software. 
We assume that you already have at least some exposure to one of these 
programs, some working experience entering and manipulating data, and 
perhaps a book on your program available or a local expert to guide you 
as needed. That said, we do provide relevant commands for each of these 
programs for the key analyses and uses of regression analysis presented 
in these pages, using different fonts and shades of gray to most clearly dis-
tinguish them from each other. Your program’s reference manual or user’s 
guide, or your course instructor, can help you fine-tune and tailor the com-
mands we provide to extract other information from the analysis that you 
may need one day.

In this rest of this preface, we provide a nonexhaustive summary of the 
contents of the book, chapter by chapter, to give you a sense of what you 
can expect to learn about in the pages that follow.

Overview of the Book

Chapter 1 introduces the book by focusing on the concept of “accounting 
for something” when interpreting research results, and how a failure to 
account for various explanations for an association between two variables 
renders that association ambiguous in meaning and interpretation. Two 
examples are offered in this first chapter, where the relationship between 
two variables changes after accounting for the relationship between these 
two variables and a third—a covariate. These examples are used to intro-
duce the concept of statistical control, which is a major theme of the book. 
We discuss how the linear model, as a general analytic framework, can be 
used to account for covariates in a flexible, versatile manner for many types 
of data problems that a researcher confronts.

Chapters 2 and 3 are perhaps the core of the book, and everything that 
follows builds on the material in these two chapters. Chapter 2 introduces 
the concept of a conditional mean and how the ordinary least squares crite-
rion used in regression analysis for defining the best-fitting model yields a 
model of conditional means by minimizing the sum of the squared resid-
uals. After illustrating some simple computations, which are then repli-
cated using regression routines in SPSS, SAS, and STATA, distinctions are 
drawn between the correlation coefficient and the regression coefficient as 
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related measures of association sensitive to different things (such as scale 
of measurement and restriction in range). Because the residual plays such 
an important role in the derivation of measures of partial association in the 
next chapter, considerable attention is paid in Chapter 2 to the properties of 
residuals and how residuals are interpreted.

Chapter 3 lays the foundation for an understanding of statistical con-
trol by illustrating again (as in Chapter 1, but this time using all continuous 
variables) how a failure to account for covariates can lead to misleading 
results about the true relationship between an independent and dependent 
variable. Using this example, the partialing process is described, focusing 
on how the residuals in a regression analysis can be thought of as a new 
measure—a variable that has been cleansed of its relationships with the 
other variables in the model. We show how the partial regression coeffi-
cient as well as other measures of partial association, such as the partial 
and semipartial correlation, can be thought of as measures of association 
between residuals. After showing how these measures are constructed and 
interpreted without using multiple regression, we illustrate how multiple 
regression analysis yields these measures without the hassle of having to 
generate residuals yourself. Considerable attention is given in this chap-
ter to the meaning and interpretation of various measures of partial asso-
ciation, including the sometimes confusing difference between the semi-
partial and partial correlation. Venn diagrams are introduced at this stage 
as useful heuristics for thinking about shared and partial association and 
keeping straight the distinction between semipartial and partial correla-
tion.

In many books, you find the topic of statistical inference addressed 
first in the simple regression model, before additional regressors and mea-
sures of partial association are introduced. With this approach, much of the 
same material gets repeated when models with more than one predictor 
are illustrated later. Our approach in this book is different and manifested 
in Chapter 4. Rather than discussing inference in the single and multiple 
regressor case as separate inferential problems in Chapters 2 and 3, we 
introduce inference in Chapter 4 more generally for any model regardless 
of the number of variables in the model. There are at least two advantages 
to this approach of waiting until a bit later in the book to discuss infer-
ence. First, it allows us to emphasize the mechanics and theory of regres-
sion analysis in the first few chapters while staying purely in the realm 
of description of association between variables with or without statistical 
control. Only after these concepts have been introduced and the reader has 
developed some comfort with the ideas of regression analysis do we then 
add the burden that can go with the abstraction of generalization, popula-
tions, degrees of freedom, tolerance and collinearity, and so forth. Second, 
with this approach, we need to cover the theory and mechanics of inference 
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only once, noting that a model with only a single regressor is just a special 
case of the more general theory and mathematics of statistical inference in 
regression analysis.

We return to the uses and theory of multiple regression in Chapter 
5, first by showing that a dichotomous regressor can be used in a model 
and that, when used alone, the result is a model equivalent to the inde-
pendent groups t-test with which readers are likely familiar. But unlike 
the independent groups t-test, additional variables are easily added to a 
regression model when the goal is to compare groups when holding one or 
more covariates constant (variables that can be dichotomous or numerical 
in any combination). We also discuss the phenomenon of regression to the 
mean, how regression analysis handles it, and the advantages of regression 
analysis using pretest measurements rather than difference scores when a 
variable is measured more than once and interest is in change over time. 
Also addressed in this chapter are measures and inference about partial 
association for sets of variables. This topic is particularly important later in 
the book, where an understanding of variable sets is critical to understand-
ing how to form inferences about the effect of multicategorical variables on 
a dependent variable as well as testing interaction between regressors.

In Chapter 6 we take a step away from the mechanics of regression 
analysis to address the general topic of cause and effect. Experimentation 
is seen by most researchers as the gold-standard design for research moti-
vated by a desire to establish cause–effect relationships. But fans of experi-
mentation don’t always appreciate the limitations of the randomized exper-
iment or the strengths of statistical control as an alternative. Ultimately, 
experimentation and statistical control have their own sets of strengths 
and weaknesses. We take the position in this chapter that statistical control 
through regression analysis and randomized experimentation complement 
each other rather than compete. Although data analysis can only go so far 
in establishing cause–effect, statistical control through regression analysis 
and the randomized experiment can be used in tandem to strengthen the 
claims that one can make about cause–effect from a data analysis. But when 
random assignment is not possible or the data are already collected using 
a different design, regression analysis gives a means for the researcher to 
entertain and rule out at least some explanations for an association that 
compete with a cause–effect interpretation.

Emphasis in the first six chapters is on the regression coefficient and 
its derivatives. Chapter 7 is dedicated to the use of regression analysis as 
a prediction system, where focus is less on the regression coefficients and 
more on the multiple correlation R and how accurately a model generates 
estimates of the dependent variable in currently available or future data. 
Though no doubt this use of regression analysis is less common, an under-
standing of the subtle and sometimes complex issues that come up when 
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using regression analysis to make predictions is important. In this chap-
ter we make the distinction between how well a sample model predicts 
the dependent variable in the sample, how well the “population model” 
predicts the dependent variable in the population, and how well a sam-
ple model predicts the dependent variable in the population. The latter is 
quantified with shrunken R, and we discuss some ways of estimating it. We 
also address mechanical methods of model construction, best known as 
stepwise regression, including the pitfalls of relinquishing control of model 
construction to an algorithm. Even if you don’t anticipate using regression 
analysis as a prediction system, the section in this chapter on predictor 
variable configurations is worth reading, because complementarity, redun-
dancy, and suppression are phenomena that, though introduced here in the 
context of prediction, do have relevance when using regression for causal 
analysis as well.

Chapter 8 is on the topic of variable importance. Researchers have an 
understandable impulse to want to describe relationships in terms that 
convey in one way or another the size of the effect they have quantified. It 
is tempting to rely on rules of thumb circulating in the empirical literature 
and statistics books for what constitutes a small versus a big effect using 
concepts such as the proportion of variance that an independent variable 
explains in the dependent variable. But establishing the size of a variable’s 
effect or its importance is far more complex than this. For example, small 
effects can be important, and big effects for variables that can’t be manipu-
lated or changed have limited applied value. Furthermore, as discussed in 
this chapter, there is reason to be skeptical of the use of squared measures 
of correlations, which researchers often use, as measures of effect size. In 
this chapter we describe various quantitative, value-free measures of effect 
size, including our attraction to the semipartial correlation relative to com-
petitors such as the standardized regression coefficient. We also provide an 
overview of dominance analysis as an approach to ordering the contribu-
tion of variables in explaining variation in the dependent variable.

In Chapters 9 and 10 we address how to include multicategorical vari-
ables in a regression analysis. Chapter 9 focuses on the most common 
means of including a categorical variable with three or more categories 
in a regression model through the use of indicator or dummy coding. An 
important take-home message from this chapter is that regression analy-
sis can duplicate anything that can be done with a traditional single-factor 
one-way ANOVA or ANCOVA. With the principles of interpretation of 
regression coefficients and inference mastered, the reader will expand his 
or her understanding in Chapter 10, where we cover other systems for 
coding groups, including Helmert, effect, and sequential coding. In both 
of these chapters we also discuss contrasts between means either with 
or without control, including pairwise comparisons between means and 
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more complex contrasts that can be represented as a linear combination 
of means.

In the classroom, we have found that after covering multicategorical 
regressors, students invariably bring up the so-called multiple test problem, 
because students who have been exposed to ANOVA prior to taking a 
regression course often learn about Type I error inflation in the context of 
comparing three or more means. So Chapter 11 discusses the multiple test 
problem, and we offer our perspective on it. We emphasize that the problem 
of multiple testing surfaces any time one conducts more than one hypoth-
esis test, whether that is done in the context of comparing means or when 
using any linear model that is the topic of this book. Rather than describing 
a litany of approaches invented for pairwise comparisons between means, 
we focus almost exclusively on the Bonferroni method (and a few variants) 
as a simple, easy-to-use, and flexible approach. Although this method is 
conservative, we take the position that its advantages outweigh its conser-
vatism most of the time. We also offer our own philosophy of the multiple 
test problem and discuss how one has to be thoughtful rather than mindless 
when deciding when and how to compensate for multiple hypothesis tests 
in the inference process. This includes contemplating such things as the 
logical independence of the hypotheses, how well established the research 
area is, and the interest value of various hypotheses being conducted.

By the time you get to Chapter 12, the versatility of linear regression 
analysis will be readily apparent. By the end of Chapter 12 on nonlinearity, 
any remaining doubters will be convinced. We show in this chapter how 
linear regression analysis can be used to model nonlinear relationships. We 
start with polynomial regression, which largely serves as a reminder to the 
reader what he or she probably learned in secondary school about func-
tions. But once these old lessons are combined with the idea of minimizing 
residuals through the least squares criterion, it seems almost obvious that 
linear regression analysis can and should be able to model curves. We then 
describe linear spline regression, which is a means of connecting straight 
lines at joints so as to approximate complex curves that aren’t always cap-
tured well by polynomials. With the principles of linear spline regression 
covered, we then merge polynomial and spline regression into polynomial 
spline regression, which allows the analyst to model very complex curvi-
linear relationships without ever leaving the comfort of a linear regression 
analysis program. Finally, it is in this chapter that we discuss various trans-
formations, which have a variety of uses in regression analysis including 
making nonlinear relationships more linear, which can have its advantages 
in some circumstances.

Up to this point in the book, one variable’s effect on a dependent vari-
able, as expressed by a measure of partial association such as the partial 
regression coefficient, is fixed to be independent of any other regressor. 
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This changes in Chapters 13 and 14, where we discuss interaction, also called 
moderation. Chapter 13 introduces the fundamentals by illustrating the flex-
ibility that can be added to a regression model by including a cross- product 
of two variables in a model. Doing so allows one variable’s effect—the focal 
predictor—to be a linear function of a second variable—the moderator. We 
show how this approach can be used with focal predictors and moderators 
that are numerical, dichotomous, or multicategorical in any combination. 
In Chapter 14 we formalize the linear nature of the relationship between 
focal predictor and moderator and how a function can be constructed, 
allowing you to estimate one variable’s effect on the dependent variable, 
knowing the value of the moderator. We also address the exercise of probing 
an interaction and discuss a variety of approaches, including the appealing 
but less widely known Johnson–Neyman technique. We end this section by 
discussing various complications and myths in the study and analysis of 
interactions, including how nonlinearity and interaction can masquerade 
as each other, and why a valid test for interaction does not require that 
variables be centered before a cross- product term is computed, although 
centering may improve the interpretation of the coefficients of the linear 
terms in the cross- product.

Moderation is easily confused with mediation, the topic of Chapter 15. 
Whereas moderation focuses on estimating and understanding the bound-
ary conditions or contingencies of an effect—when an effect exists and 
when it is large versus small—mediation addresses the question how an 
effect operates. Using regression analysis, we illustrate how one variable’s 
effect in a regression model can be partitioned into direct and indirect com-
ponents. The indirect effect of a variable quantifies the result of a causal 
chain of events in which an independent variable is presumed to affect an 
intermediate mediator variable, which in turn affects the dependent vari-
able. We describe the regression algebra of path analysis first in a simple 
model with only a single mediator before extending it to more complex 
models involving more than one mediator. After discussing inference 
about direct and indirect effects, we dedicate considerable space to various 
controversies and extensions of mediation analysis, including cause–effect, 
models with multicategorical independent variables, nonlinear effects, and 
combining moderation and mediation analysis.

Under the topic of “irregularities,” Chapter 16 is dedicated to regres-
sion diagnostics and testing regression assumptions. Some may feel 
these important topics are placed later in the sequence of chapters than 
they should be, but our decision was deliberate. We feel it is important to 
focus on the general concepts, uses, and remarkable flexibility of regres-
sion analysis before worrying about the things that can go wrong. In this 
chapter we describe various diagnostic statistics—measures of leverage, dis-
tance, and influence—that analysts can use to find problems in their data 
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or analysis (such as clerical errors in data entry) and identify cases that 
might be causing distortions or other difficulties in the analysis, whether 
they take the form of violating assumptions or producing results that are 
markedly different than they would be if the case were excluded from the 
analysis entirely. We also describe the assumptions of regression analysis 
more formally than we have elsewhere and offer some approaches to test-
ing the assumptions, as well as alternative methods one can employ if one 
is worried about the effects of assumption violations.

Chapters 17 and 18 close the book by addressing various additional 
complexities and problems not addressed in Chapter 16, as well as numer-
ous extensions of linear regression analysis. Chapter 17 focuses on power 
and precision of estimation. Though we do not dedicate space to how to 
conduct a power analysis (whole books on this topic exist, as does software 
to do the computations), we do dissect the formula for the standard error of 
a regression coefficient and describe the factors that influence its size. This 
shows the reader how to increase power when necessary. Also in Chapter 
17 is the topic of measurement error and the effects it has on power and the 
validity of a hypothesis test, as well as a discussion of other miscellaneous 
problems such as missing data, collinearity and singularity, and rounding 
error. Chapter 18 closes the book with an introduction to logistic regression, 
which is the natural next step in one’s learning about linear models. After 
this brief introduction to modeling dichotomous dependent variables, we 
point the reader to resources where one can learn about other extensions to 
the linear model, such as models of ordinal or count dependent variables, 
time series and survival analysis, structural equation modeling, and mul-
tilevel modeling.

Appendices aren’t usually much worth discussing in the precis of a 
book such as this, but other than Appendix C, which contains various 
obligatory statistical tables, a few of ours are worthy of mention. Although 
all the analyses can be described in this book with regression analysis and 
in a few cases perhaps a bit of hand computation, Appendix A describes 
and documents the RLM macro for SPSS and SAS written for this book and 
referenced in a few places elsewhere in the book that makes some of the 
analyses considerably easier. RLM is not intended to replace your preferred 
program’s regression routine, though it can do many ordinary regression 
functions. But RLM has some features not found in software off the shelf 
that facilitates some of the computations required for estimating and prob-
ing interactions, implementing the Johnson–Neyman technique, domi-
nance analysis, linear spline regression, and the Bonferroni correction to 
the largest t-residual for testing regression assumptions, among a few other 
things. RLM can be downloaded from this book’s web page at www.afhayes.
com. Appendix B is for more advanced readers who are interested in the 
matrix algebra behind basic regression computations. Finally, Appendix D 
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addresses regression analysis with R, a freely available open- source com-
puting platform that has been growing in popularity. Though this quick 
introduction will not make you an expert on regression analysis with R, it 
should get you started and position you for additional reading about R on 
your own.

To the Instructor

Instructors will find that our precis above combined with the Contents pro-
vides a thorough overview of the topics we cover in this book. But we high-
light some of its strengths and unique features below:

• Repeated references to syntax for regression analysis in three statisti-
cal packages: SPSS, SAS, and STATA. Introduction of the R statistical 
language for regression analysis in an appendix.

• Introduction of regression through the concept of statistical control 
of covariates, including discussions of the relative advantages of sta-
tistical and experimental control in section 1.1 and Chapter 6.

• Differences between simple regression and correlation coefficients in 
their uses and properties; see section 2.3.

• When to use partial, semipartial, and simple correlations, or stan-
dardized and unstandardized regression coefficients; see sections 
3.3 and 3.4.

• Is collinearity really a serious problem? See section 4.7.1.
• Truly understanding regression to the mean; see section 5.2.
• Using regression for prediction. Why the familiar “adjusted” mul-

tiple correlation overestimates the accuracy of a sample regression 
equation; see section 7.2.

• When should a mechanical regression prediction replace expert judg-
ment in making decisions about real people? See sections 7.1 and 7.5.

• Assessing the relative importance of the variables in a model; see 
Chapter 8.

• Should correlations be squared when assessing relative importance? 
See section 8.2.

• Sequential, Helmert, and effect coding for multicategorical variables; 
see Chapter 10.

• A different view of the multiple test problem. Why should we correct 
for some tests, but not correct for all tests in the entire history of sci-
ence? See Chapter 11.

• Fitting curves with polynomial, spline, and polynomial spline regres-
sion; see Chapter 12.

• Advanced techniques for probing interactions; see Chapter 14.
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List of Symbols and Abbreviations

Symbol

b0

bj

b̃j

B
cj

Cov
D1, D2 . . .
DB(bj)
d f
E
e
ei

dei

F
g
hi

J1, J2 . . .
k
LL
ln
MD
MS
N
nj

p
PEi

PR
PR(B.A)
prj

R
R(A)
R(AB)
RS
rXY

relj

Meaning

regression constant
partial regression coefficient for regressor j
standardized partial regression coefficient for regressor j
number of hypothesis tests conducted
contrast coefficient for group j
covariance
codes used in the representation of a multicategorical regressor
df beta for regressor j
degrees of freedom
expected value
residual
residual for case i
case i’s residual when it is excluded from the model
F-ratio used in hypothesis testing
number of groups
leverage for case i
artificial variables created in spline regression
number of regressors
log likelihood
natural logarithm
Mahalanobis distance
mean square
sample size
sample size of group j
observed sig ificance or p-value
probability of an event for case i
partial multiple correlation
partial correlation for set B controlling for set A
partial correlation for regressor j
multiple correlation
R with regressors in set A
R with regressors in set A and B
shrunken R
Pearson correlation coefficient
reliability of regressor j
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Symbol

sX

sY

sY.X

SE
SR
SR(B.A)
srj

stri

SS
T

t
tri

tj

Tolj

Var
Var(Y.X)
VIFj

X
X
Xj

X1.2

x
Y
Y
y
Y.1
Zf

ZX

ZY

Y
Ŷ
α
αFW

ΔR2

ˆ
Π

Σ

θX

.

Meaning

standard deviation of X
standard deviation of Y
standard error of estimate
standard error
semipartial correlation for a set
semipartial correlation for set B controlling for set A
semipartial correlation for regressor j
standardized residual for case i
sum of squares
as a prefix, the true or population value of the quantity
t statistic used in hypothesis testing
studentized residual for case i
t statistic for regressor j
tolerance for regressor j
variance
variance of the residuals
variance inflation factor for regressor j
a regressor
mean of X
regressor j
portion of X1 independent of X2

deviation from the mean of X
usually the dependent variable
mean of Y
deviation from the mean of Y
portion of Y independent of X1

Fisher’s Z
standardized value of X
standardized value of Y
mean of Y
estimate or fitted value of Y from a model
chosen significance level for a hypothesis test
familywise Type I error rate
change in R2

estimated value
multiplication
summation
conditional effect of X
“controlling for”; for example, rXY.C is rXY controlling for C
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1
Statistical Control and Linear Models

Researchers routinely ask questions about the relationship between an
independent variable and a dependent variable in a research study. In
experimental studies, relationships observed between a manipulated in-
dependent variable and a measured dependent variable are fairly easy
to interpret. But in many studies, experimental control in the form of
random assignment is not possible. Absent experimental or some form
of procedural control, relationships between variables can be difficult to
interpret but can be made more interpretable through statistical control.
After discussing the need for statistical control, this chapter overviews
the linear model—widely used throughout the social sciences, health
and medical fields, business and marketing, and countless other disci-
plines. Linear modeling has many uses, among them being a means of
implementing statistical control.

1.1 Statistical Control

1.1.1 The Need for Control

If you have ever described a piece of research to a friend, it was probably
not very long before you were asked a question like “But did the researchers
account for this?” If the research found a difference between the average
salaries of men and women in a particular industry, did it account for dif-
ferences in years of employment? If the research found differences among
several ethnic groups in attitudes toward social welfare spending, did it
account for income differences among the groups? If the research found
that males who hold relatively higher-status jobs are seen as less physically
attractive by females than are males in lower-status jobs, did it account for
age differences among men who differ in status?

All these studies concern the relationship between an independent vari-
able and a dependent variable. The study on salary differences concerns the

1



2 Regression Analysis and Linear Models

relationship between the independent variable of sex and the dependent
variable of salary. The study on welfare spending concerns the relationship
between the independent variable of ethnicity and the dependent variable
of attitude. The study on perceived male attractiveness concerns the re-
lationship between the independent variable of status and the dependent
variable of perceived attractiveness. In each case, there is a need to account
for, in some way, a third variable; this third variable is called a covariate.
The covariates for the three studies are, respectively, years of employment,
income, and age.

Suppose you wanted to study these three relationships without worry-
ing about covariates. You may be familiar with three very different statis-
tical methods for analyzing these three problems. You may have studied
the t-test for testing questions like the sex difference in salaries, analysis of
variance (also known as “ANOVA”) for questions like the difference in av-
erage attitude among several ethnic groups, and the Pearson or rank-order
correlation for questions like the relationship between status and perceived
attractiveness. These three methods are all similar in that they can all be
used to test the relationship between an independent variable and a de-
pendent variable; they differ primarily in the type of independent variable
used. For sex differences in salary you could use the t-test because the in-
dependent variable—sex—is dichotomous; there are two categories—male
and female. In the example on welfare spending, you could use analysis of
variance because the independent variable of ethnicity is multicategorical,
since there are several categories rather than just two—the various ethnic
groups in the study. You could use a correlation coefficient for the example
about perceived attractiveness because status is numerical—a more or less
continuous dimension from high status to low status. But for our purposes,
the differences among these three variable types are relatively minor. You
should begin thinking of problems like these as basically similar, as this
book presents the linear model as a single method that can be applied to
all of these problems and many others with fairly minor variations in the
method.

1.1.2 Five Methods of Control

The layperson’s notion of “accounting for” something in a study is a collo-
quial expression for what scientists refer to as controlling for that something.
Suppose you want to know whether driver training courses help students
pass driving tests. One problem is that the students who take a driver
training course may differ in some way before taking the course from those
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who do not take the course. If that thing they differ on is related to test
performance, then any differences in test performance may be due to that
thing rather than the training course itself. This needs to be accounted for
or “controlled” in some fashion in order to determine whether the course
helps students pass the test. Or perhaps in a particular town, some testers
may be easier than others. The driving schools may know which testers
are easiest and encourage their students to take their tests when they know
those testers are on duty. So the standards being used to evaluate a student
driver during the test may be systematically different for students who take
the driver training course relative to those who do not. This also needs to
be controlled in some fashion.

You might control the problem caused by preexisting difference between
those who do and do not take the course by using a list of applicants for
driving courses, randomly choosing which of the applicants is allowed to
take the course, and using the rejected applicants as the control group. That
way you know that students are likely to be equal on all things that might be
related to performance on the test before the course begins. This is random
assignment on the independent variable. Or, if you find that more women take
the course than men, you might construct a sample that is half female and
half male for both the trained and untrained groups by discarding some of
the women in the available data. This is control by exclusion of cases.

You might control the problem of differential testing standards by train-
ing testers to make them apply uniform evaluation standards; that would
be manipulation of covariates. Or you might control that problem by ran-
domly altering the schedule different testers work, so that nobody would
know which testers are on duty at a particular moment. That would not
be random assignment on the independent variable, since you have not
determined which applicants take the course; rather, it would be other types
of randomization. This includes randomly assigning which of two or more
forms of the dependent variable you use, choosing stimuli from a pop-
ulation of stimuli (e.g., in a psycholinguistics study, all common English
adjectives), and manipulating the order of presentation of stimuli.

All these methods except exclusion of cases are types of experimental
control since they all require you to manipulate the situation in some way
rather than merely observe it. But these methods are often impractical
or impossible. For instance, you might not be allowed to decide which
students take the driving course or to train testers or alter their schedules.
Or, if a covariate is worker seniority, as in one of our earlier examples,
you cannot manipulate the covariate by telling workers how long to keep
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their jobs. In the same example, the independent variable is sex, and you
cannot randomly decide that a particular worker will be male or female
the way you can decide whether the worker will be in the experimental
or control condition of an experiment. Even when experimental control is
possible, the very exertion of control often intrudes the investigator into
the situation in a way that disturbs participants or alters results; ethologists
and anthropologists are especially sensitive to such issues. Experimental
control may be difficult even in laboratory studies on animals. Researchers
may not be able to control how long a rat looks at a stimulus, but they are
able to measure looking time.

Control by exclusion of cases avoids these difficulties, because you are
manipulating data rather than participants. But this method lowers sample
size, and thus lowers the precision of estimates and the power of hypothesis
tests.

A fifth method of controlling covariates—statistical control—is one of
the main topics of this book. It avoids the disadvantages of the previous
four methods. No manipulation of participants or conditions is required,
and no data are excluded. Several terms mean the same thing: to control a
covariate statistically means the same as to adjust for it or to correct for it, or
to hold constant or to partial out the covariate.

Statistical control has limitations. Scientists may disagree on what vari-
ables need to be controlled—an investigator who has controlled age, in-
come, and ethnicity may be criticized for failing to control education and
family size. And because covariates must be measured to be controlled,
they will be controlled inaccurately if they are measured inaccurately. We
return to these and other problems in Chapters 6 and 17. But because con-
trol of some covariates is almost always needed, and because the other four
methods of control are so limited, statistical control is widely recognized
as one of the most important statistical tools in the empiricist’s toolbox.

1.1.3 Examples of Statistical Control

The nature of statistical control can be illustrated by a simple fictitious
example, though the precise methods used in this example are not those
we emphasize later. In Holly City, 130 children attended a city-subsidized
preschool program and 130 others did not. Later, all 260 children took a
“school readiness test” on entering first grade. Of the 130 preschool chil-
dren, only 60 scored above the median on the test; of the other 130 children,
70 scored above the median. In other words, the preschool children scored
worse on the test than the others. These results are shown in the “Total”
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TABLE 1.1. Test Scores, Socioeconomic Status, and Preschool Attendance in Holly City

Raw frequencies

Middle-class Working-class Total

A B Total A B Total A B Total

Preschool 30 10 40 30 60 90 60 70 130
Other 60 30 90 10 30 40 70 60 130

TABLE 1.2. Socioeconomic Status and Preschool Attendance in Holly City

Percentage scoring above the median

Middle-class Working-class Total

Preschool 75 33 46
Other 67 25 54

section of Table 1.1; A and B refer to scoring above and below the test
median, respectively.

But when the children are divided into “middle-class” and “working-
class,” the results are as shown on the left and center of Table 1.1. We see
that of the 40 middle-class children attending preschool, 30, or 75%, scored
above the median. There were 90 middle-class children not attending
preschool, and 60, or 67%, of them scored above the median. These values
of 75 and 67% are shown on the left in Table 1.2. Similar calculations
based on the working-class and total tables yield the other figures in Table
1.2. This table shows clearly that within each level of socioeconomic status
(SES), the preschool children outperform the other children, even though
they appear to do worse when you ignore socioeconomic status (SES). We
have held constant or controlled or partialed out the covariate of SES.

When we perform a similar analysis for nearby Ivy City, we find the
results in Table 1.3. When we inspect the total percentages, preschool
appears to have a positive effect. But when we look within each SES
group, no effect is found. Thus, the “total” tables overstate the effect of
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preschool in Ivy City and understate it in Holly City. In these examples the
independent variable is preschool attendance and the dependent variable is
test score. In Holly City, we found a negative simple relationship between
these two variables (those attending preschool scored lower on the test) but
a positive partial relationship (a term more formally defined later) when SES
was controlled. In Ivy City, we found a positive simple relationship but no
partial relationship.

By examining the data more carefully, we can see what caused these
paradoxical results, known as Simpson’s paradox (for a discussion of this and
related phenomena, see Tu, Gunnel, & Gilthorpe, 2008). In Holly City, the
130 children attending preschool included 90 working-class children and
40 middle-class children, so 69% of the preschool attenders were working-
class. But the 130 nonpreschool children included 90 middle-class children
and 40 working-class children, so this group was only 31% working-class.
Thus, the test scores of the preschool group were lowered by the dispropor-
tionate number of working-class children in that group. This might have
occurred if city-subsidized preschool programs had been established pri-
marily in poorer neighborhoods. But in Ivy City this difference was in the
opposite direction: The preschool group was 75% middle-class, while the
nonpreschool group was only 25% middle-class; thus, the test scores of the
preschool group were raised by the disproportionate number of middle-
class children. This might have occurred if parents had to pay for their
children to attend preschool. In both cities the effects of preschool were
seen more clearly by controlling for or holding constant SES.

All three variables in this example were dichotomous—they had just
two levels each. The independent variable of preschool attendance had
two levels we called “preschool” and “other.” The dependent variable of
test score was dichotomized into those above and below the median. The
covariate of SES was also dichotomized. Such dichotomization is rarely
if ever something you would want do in practice (as discussed later in
section 5.1.6). Fortunately, with the methods described in this book, such
categorization is not necessary. Any or all of the variables in this problem
could have been numerically scaled. Test scores might have ranged from 0
to 100, and SES might have been measured on a scale with very many points
on a continuum. Even preschool attendance might have been numerical,
such as if we measured the exact number of days each child had attended
preschool. Changing some or all variables from dichotomous to numerical
would change the details of the analysis, but in its underlying logic the
problem would remain the same.
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TABLE 1.3. Socioeconomic Status and Preschool Attendance in Ivy City

Raw frequencies

Middle-class Working-class Total

A B Total A B Total A B Total

Preschool 90 30 120 10 30 40 100 60 160
Other 30 10 40 30 90 120 60 100 100

Percentage scoring above the median

Middle-class Working-class Total

Preschool 75 25 62
Other 75 25 38

Consider now a problem in which the dependent variable is numerical.
At Swamp College, the dean calculated that among professors and other
instructional staff under 30 years of age, the average salary among males
was $81,000 and the average salary among females was only $69,000. To
see whether this difference might be attributed to different proportions of
men and women who have completed the Ph.D., the dean made up the
table given here as Table 1.4.

If the dean had hoped that different rates of completion of the Ph.D.
would explain the $12,000 difference between men and women in average
salary, that hope was frustrated. We see that men had completed the Ph.D.
less often than women: 10 of 40 men, versus 15 of 30 women. The first
column of the table shows that among instructors with a Ph.D., the mean
difference in salaries between men and women is $15,000. The second
column shows the same difference of $15,000 among instructors with no
Ph.D. Therefore, in this artificial example, controlling for completion of the
Ph.D. does not lower the difference between the mean salaries of men and
women, but rather raises it from $12,000 to $15,000.

This example differs from the preschool example in its mechanical de-
tails; we are dealing with means rather than frequencies and proportions.
But the underlying logic is the same. In the present case, the indepen-
dent variable is sex, the dependent variable is salary, and the covariate is
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TABLE 1.4. Average Salaries at Swamp College

Ph.D. completed

Yes No Total

Men $90,000 $78,000 $81,000
n = 10 n = 30 n = 40

Women $75,000 $63,000 $69,000
n = 15 n = 15 n = 30

educational level. Again, the partial relationship differs from the simple re-
lationship, though this time both the simple and partial relationships have
the same sign, meaning that men make more than women, with or without
controlling for education.

1.2 An Overview of Linear Models

The examples presented in section 1.1.3 are so simple that you may be won-
dering why a whole book is needed to discuss statistical control. But when
the covariate is numerical, it may be that no two participants in a study
have the same measurement on the covariate and so we cannot construct
tables like those in the two earlier examples. And we may want to control
many covariates at once; the dean might want to simultaneously control
teaching ratings and other covariates as well as completion of the Ph.D.
Also, we need methods for inference about partial relationships such as
hypothesis testing procedures and confidence intervals. Linear modeling,
the topic of this book, offers a means of accomplishing all of these things
and many others.

This book presents the fundamentals of linear modeling in the form of
linear regression analysis. A linear regression analysis yields a mathematical
equation—a linear model—that estimates a dependent variable Y from a set
of predictor variables or regressors X. Such a linear model in its most general
form looks like

Y = b0 + b1X1 + b2X2 + · · · + bkXk + e (1.1)
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Each regressor in a linear model is given a numerical weight—the b next
to each X in equation 1.1—called its regression coefficient, regression slope,
or simply its regression weight that determines how much the equation
uses values on that variable to produce an estimate of Y. These regression
weights are derived by an algorithm that produces a mathematical equation
or model for Y that best fits the data, using some kind of criterion for defining
“best.” In this book, we focus on linear modeling using the least squares
criterion.

Linear modeling has many uses, among them being the process of statis-
tical control introduced conceptually in the prior section. Linear modeling
is widely used throughout the behavioral sciences, medical research and
public health, business and marketing, and countless other fields. It is safe
to say that one really cannot progress far in one’s development as a scien-
tist without a solid understanding of linear modeling. Most universities
offer at least one and typically several courses on linear regression analysis.
Indeed, it is so important that many if not most academic departments
whose faculty use the scientific method regularly offer their own version
of a course on linear modeling in one form or another.

The basic linear model method imposes six requirements:

1. As in any statistical analysis, there must be a set of “participants,”
“cases,” or “units.” In most every example and application in this
book, the data come from people, so we use the term “participant”
frequently. But case, unit, and participant can be thought of as syn-
onymous and we use all three of these terms.

2. Each of these participants must have values or measurements on
two or more variables, each of which is numerical, dichotomous, or
multicategorical. Thus, the raw data for the analysis form a rectan-
gular data matrix with participants in the rows and variables in the
columns.

3. Each variable must be represented by a single column of numbers.
For instance, the dichotomy of sex can be represented by letting the
number 1 represent male and 0 represent female, so that the sexes
of 100 people could be represented by a column of 100 numbers,
each 0 or 1. A multicategorical variable with, say, five categories
can be represented by a column of numbers, each 1, 2, 3, 4, or 5.
For both dichotomous and multicategorical variables, the numbers
representing categories are mere codes and are arbitrary. They carry
no meaning about quantity and can be exchanged with any other set
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of numbers without changing the results of the analysis so long as
proper coding methods are used. And of course a numerical variable
such as age can be represented by a column of ages.

4. Each analysis must have just one dependent variable, though it may
have several independent variables and several covariates.

5. The dependent variable must be numerical. A numerical variable
is something like age or income with interval properties, such that
values can be meaningfully averaged.

6. Statistical inference from linear models often requires several addi-
tional assumptions that are described elsewhere in this book, such as
in section 4.1.2 and Chapter 16.

Within these conditions, linear models are flexible in many ways:

1. A variable might be a natural property of a participant, such as age
or sex, or might be a property manipulated in an experiment, such
as which of two or more experimental conditions into which the
participant is placed through a random assignment procedure. Ma-
nipulated variables are typically categorical but may be numerical,
such as the number of hours of practice at a task participants are given
or the number of acts of violence on television a person is exposed to
during an experiment.

2. You may choose to conduct a series of analyses from the same rect-
angular data matrix, and the same variable might be a dependent
variable in one analysis and an independent variable or covariate in
another. For instance, if the matrix includes the variables age, sex,
years of education, and salary, one analysis may examine years of ed-
ucation as a function of age and sex, while another analysis examines
salary as a function of age, sex, and education.

3. As explained more fully in section 3.1.2, the distinction between inde-
pendent variables and covariates may be fuzzy since linear modeling
programs make no distinction between the two. The program com-
putes a measure of the relationship between the dependent variable
and every other variable in the analysis while controlling statisti-
cally for all remaining variables, including both covariates and other
independent variables. Independent variables are those whose re-
lationship to the dependent variable you wish to discuss or are the
focus of your study, while covariates are other variables you wish to
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control or otherwise include in the model for some other purpose.
Thus, the distinction between the two determines how you describe
the results of the analysis but is not used in writing the computer
commands that specify the analysis or the underlying mathematics.

4. Each independent variable or covariate may be dichotomous, multi-
categorical, or numerical. All three variable types may occur in the
same problem. For instance, if we studied salary in a professional firm
as a function of sex, ethnicity, and age while controlling for seniority,
citizenship (American or not), and type of college degree (business,
arts, engineering, etc.), we would have one independent variable and
one covariate from each of the three scale types.

5. The independent variables and covariates may all be intercorrelated,
as they are likely to be in all these examples. In fact, the need to
control a covariate typically arises because it correlates with one or
more independent variables or the dependent variable or both.

6. In addition to correlating with each other, the independent variables
and covariates may interact in affecting the dependent variable. For
instance, age or sex might have a larger or smaller effect on salary
for American citizens than for noncitizens. Interaction is explained
in detail in Chapters 13 and 14.

7. Despite the names “linear regression” and “linear model,” these
methods can easily be extended to a great variety of problems in-
volving curvilinear relations between variables. For example, phys-
ical strength is curvilinearly related to age, peaking in the 20s. But
a linear model could be used to study the relationship between age
and strength or even to estimate the age at which strength peaks. We
discuss how in Chapter 12.

8. The assumptions required for statistical inference are not extremely
limiting. There are a number of ways around the limits imposed by
those assumptions.

There are many statistical methods that are just linear models in disguise, or
closely related to linear regression analysis. For example, ANOVA, which
you may already be familiar with, can be thought of as a particular subset
of linear models designed early in the 20th century, well before comput-
ers were around. Mostly this meant using only categorical independent
variables, no covariates, and equal cell frequencies if there were two or
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more independent variables. When a problem does meet the narrow re-
quirements of ANOVA, linear models and analysis of variance give the
same answers. Thus, ANOVA is just a special subset of the linear model
method. As shown in various locations throughout this book, ANOVA,
t-tests on differences between means, tests on Pearson correlations—things
you likely have already been exposed to—can all be thought of as special
simple cases of the general linear model, and can all be executed with a
program that can estimate a linear model.

Logistic regression, probit regression, and multilevel modeling are close
relatives of linear regression analysis. In logistic and probit regression, the
dependent variable can be dichotomous or ordinal, such as whether a
person succeeds or fails at a task, acts or does not act in a particular way
in some situation, or dislikes, feels neutral, or likes a stimulus. Multilevel
modeling is used when the data exhibit a “nested” structure, such as when
different subsets of the participants in a study share something such as the
neighborhood or housing development they live in or the building in a city
they work in. But you cannot fruitfully study these methods until you have
mastered linear models, since a great many concepts used in these methods
are introduced in connection with linear models.

1.2.1 What You Should Know Already

This book assumes a working familiarity with the concepts of means and
standard deviations, correlation coefficients, distributions, samples and
populations, random sampling, sampling distributions, standardized vari-
ables, null hypotheses, standard errors, statistical significance, power, con-
fidence intervals, one-tailed and two-tailed tests, summation, subscripts,
and similar basic statistical terms and concepts. It refers occasionally to
basic statistical methods including t-tests, ANOVA, and factorial analysis
of variance. It is not assumed that you remember the mechanics of these
methods in detail, but some sections of this book will be easier if you
understand the uses of these methods.

1.2.2 Statistical Software for Linear Modeling and Statistical
Control

In most research applications, statistical control is undertaken not by look-
ing at simple association in subsets of the data, as in the two examples
presented earlier, but through mathematical equating or partialing. This pro-
cess is conducted automatically through linear regression analysis and will
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be described starting in Chapter 3. Suffice it to say now that statistical
control is usually accomplished by computer software. Only the simplest
linear models are practical without the aid of a computer.

Fortunately, most statistical packages that researchers have access to in
one way or another include routines that conduct linear regression analysis.
There are many statistical packages that can conduct regression analysis;
examples include SPSS, SAS, SYSTAT, Minitab, and STATA, and most are
available for Windows and MacOS. These are all commercial programs and
can be quite expensive. Fortunately most universities purchase licenses for
one or more of these programs that provide free or low-cost access to
its faculty, staff, and students. Over the last decade, a freely available
statistical language and program called R has become quite popular. It also
has procedures built in that conduct the kind of analyses described in this
book. R can be downloaded at no charge from www.r-project.org.

This book is about the principles of linear modeling, not about using
software that implements the methods we describe. These principles are
not software specific. We assume you already have some working familiar-
ity with at least one statistics program capable of doing the types of analyses
described in this book. In many chapters we include code for SPSS, SAS,
or STATA that generates output pertinent to the analyses described. In
Appendix B we offer a brief primer on the use of R for linear regression
analysis. We chose to emphasize SPSS, SAS, and STATA because these pro-
grams are arguably most readily available and widely used by researchers
in the social sciences, medical and health fields, business and marketing,
and elsewhere. But you will not become an expert on the use of any of these
programs by reading this book. It is no substitute for the documentation,
a book dedicated to specific software packages, or a local expert who can
guide you on its use.

SAS and R require the user to write syntax or code instructing the soft-
ware which analysis is desired, which variables are playing the roles of
independent and dependent variable, what options to produce in output,
and so forth. SPSS is often chosen by beginners or adopted by instructors
of introductory statistics classes because it has a friendly menu-based inter-
face that allows the user to select various analyses and options by pointing
and clicking on the screen rather than by typing instructions. STATA has
a similar interface, though most users instruct STATA using code. For
consistency, and because we believe that ultimately researchers need to be
familiar with how to write code for their chosen program, we offer SPSS
syntax rather than point-and-click instructions. Consult a local SPSS expert
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for guidance on how to type in and execute syntax in SPSS if you are not
already familiar with this.

A convention we follow in this book is to use different text colors and
background for code corresponding to different programs. For SPSS code,
we use white text in a black box. For example, SPSS code to produce a
scatterplot, such as the one found in the beginning of Chapter 2, would
appear in this book as

graph/scatterplot plays with points.

For SAS, the code will be set in black text in a white box. Thus, the
corresponding SAS code to produce this scatterplot would look like

proc sgscatter data=golf;plot points*plays;run;

STATA code will appear as white text in a gray box. So corresponding
STATA code would would appear as

twoway (scatter points plays)

Data files we use are archived on the web page for this book at
www.afhayes.com in the native data file formats of SPSS and STATA as well
as text files, along with code to produce corresponding data files in SAS.
Throughout this book, when we provide computer instructions, we assume
you already have a data file available for analysis and know how to open or
generate data files in your chosen software. Therefore, we do not provide
code or instructions for how to do so. We refer to data files by name using
CAPITAL letters. Variables in those data files we refer to in the text using
an italicized courier font. When we otherwise refer to computer code
within the body of the text of this book rather than set in boxes as described
above, we use the boldface courier font.

1.2.3 About Formulas

If you glance through this book, you will see many algebraic formulas.
If formulas frighten you, relax. You can master the material in this book
without memorizing any formulas. Most of the formulas in this book, or
variations closely related to these formulas, are applied by computer pro-
grams. They are provided here merely so you will know what the program
is doing. Many other formulas are for relatively uncommon problems. Still
other formulas are so simple that they merely express concepts you can
easily put into words. For instance, in Chapter 2 we define a deviation
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score xi as the difference between a raw score Xi and the sample mean X,
and another formula defines a variance Var(X) as the mean of the squared
deviation scores. In this book there are only a few formulas that you can
expect to ever have to actually apply to your own data by hand, without the
assistance of a computer. That said, understanding the formulas is some-
times a good way of learning what the formulas represent conceptually as
well as mathematically.

1.2.4 On Symbolic Representations

If you were to lay three or four statistical methods books side by side and
open to chapters on a common topic, you would find a considerable lack
of consistency in the symbols the authors use to refer to the same concepts.
Although there would be some overlap—for instance, the use of the Greek
letter mu (μ) to refer to a population mean and the Roman letter r as a
reference to a correlation coefficient are both nearly universal—it would
be hard to generalize your learning from one book to another if you relied
entirely on symbolic representations of ideas used by one author. And two
people who learn statistics from different books, who are taught by dif-
ferent instructors who use particular (and perhaps idiosyncratic) symbols
to communicate ideas, or who come from different fields may appear to
both outsiders and insiders to be speaking different languages even when
talking about the same thing.

The Greek letter “beta” (β) and Roman letter b or B are examples. Some
use β to refer to a population regression weight, whereas others use this
symbol to refer to a sample regression weight. Still others might use β
when talking about a standardized regression weight. SPSS labels some
regression coefficients in its output with the word “beta” and others with
B, and it is not uncommon to hear people talk about the “beta weights” or
simply the “betas” in a regression model. You might be asked by someone
if you aren’t clear in a presentation whether you are presenting “bees or
betas” from your model. The questioner may be asking whether you are
reporting standardized or unstandardized regression coefficients, though
others in the audience may not understand the meaning of this question
as phrased if they were trained elsewhere or used a different book. Others
restrict the use of Roman letters such as b or B to refer to estimates from a
sample and reserve Greek symbols for parameters. But not all Greek letters
refer to parameters in scientific discourse. For instance, people commonly
report Cronbach’s α calculated in a sample of participants who filled out
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some kind of measurement instrument used to measure personality or
attitude.

Ultimately, symbols are arbitrary. We can use whatever symbols we
want to communicate ideas so long as we communicate what those symbols
refer to when using them for the first time. Because there are relatively few
conventions in the literature and books on linear modeling, we do not
attempt to follow any of them. We introduce various symbols we use along
the way—symbols that may at times be idiosyncratic to this book—but we
always communicate what those symbols refer to unless there is a very
strong convention in existence. As a reader, your job is to avoid assuming
that one symbol that we use has the same meaning as this symbol when
used by others. Such an assumption will inevitably result in confusion in
your mind at some point.

1.3 Chapter Summary

Association between two variables X and Y can be difficult to interpret or
obscured when a third variable Z is related to both X and Y. Researchers
have a variety of procedural tricks they can employ to deal with such cir-
cumstances either prior to or following data collection, such as random
assignment to X or other forms of randomization, case deletion, and main-
taining strict control over various aspects of the research design and its
administration. When none of these are possible, as is often the case, sta-
tistical control is an option and can render relationships easier to interpret
and less susceptible to competing explanations. Linear modeling is one of
the more frequently used procedures for statistical control by behavioral
scientists, business and marketing researchers, investigators in health and
medical fields, and many other disciplines. This book introduces the lin-
ear model in the form of linear regression analysis not only as a means of
implementation of statistical control but also as a general and flexible tool
that can be used for a variety of data-analytic tasks.



2
The Simple Regression Model

In this chapter we describe some of the key principles and ideas behind
linear modeling in the form of linear regression analysis. We introduce
the simple linear regression model as a means of estimating one vari-
able Y from another variable X given information about the association
between X and Y. Linear regression using the least squares criterion,
or ordinary least squares regression, operates by figuring out how to
weight X in an equation or model of Y so as to minimize the sum of
the squared residuals. Residuals represent the difference between a
model’s estimate of Y and the actual values of Y observed in a data set.
Because an understanding of the residuals from a regression model is
so important to grasping the concept of statistical control, we devote an
entire section to describing some of the algebraic properties of residuals
as well as the process of residual analysis.

2.1 Scatterplots and Conditional Distributions

2.1.1 Scatterplots

Suppose as part of an organizational program to promote office morale, you
and 22 of your office mates attend a retreat that involves playing miniature
golf together. Upon questioning, you find that a few have never played
before but most have, and some have played as many as six times before.
In this golfing establishment, players are awarded points that can be used
toward a discount next time based on their score at the end of a round of
golf. This evening all members of your group win from 2 to 6 points.

You decide to examine the relationship between the number of points
won and the number of times a player has played before. You start by
numbering the people in your group (including yourself) from 1 to 23
and then recording for each player the number of previous plays and the
number of points won. In Table 2.1, the identification numbers you assign

17
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TABLE 2.1. Golfing Score and Prior Plays

ID X Y

1 0 2
2 0 3
3 1 2
4 1 3
5 1 4
6 2 2
7 2 3
8 2 4
9 2 5

10 3 2
11 3 3
12 3 4
13 3 5
14 3 6
15 4 3
16 4 4
17 4 5
18 4 6
19 5 4
20 5 5
21 5 6
22 6 5
23 6 6

are shown in the first column labeled ID. The number of previous plays is
shown in the column labeled X, and the number of points each player won
is shown in the column labeled Y.

Figure 2.1 is a scatterplot showing the pairs of X and Y in two-
dimensional space for all 23 people in your group. The two dots on the
far right of the figure represent the people with ID numbers 22 and 23.
They have both played six times before (X = 6) and they score Y = 5, and
Y = 6 points, respectively. The remaining 21 dots in the scatterplot are
interpreted similarly.

2.1.2 A Line through Conditional Means

There are three people in Table 2.1 who reported having played miniature
golf just once (X = 1) yet received 2, 3, or 4 points (Y). These three values of
Y represent the distribution of Y of the three people who meet the condition



The Simple Regression Model 19

0 1 2 3 4 5 6

0
1

2
3

4
5

6
7

X = number of previous plays

Y
 =

 p
o
in

ts
 w

o
n

FIGURE 2.1. A simple scatterplot.

X = 1. As such, it is a conditional distribution. The mean of these three Y
values is 3. We say that 3 is the conditional mean of Y when X = 1. This
conditional mean is represented by the open circle over X = 1 toward the
left side of Figure 2.2. The four people who reported playing twice (X = 2)
have Y values of 2, 3, 4, and 5. The mean of these four values of Y is 3.5,
so that is the conditional mean of Y when X = 2. This conditional mean
is represented in Figure 2.2 by the open circle over X = 2. The conditional
means at X = 3, X = 4, X = 5, and X = 6 are also shown as open circles. The
overall mean of all 23 Y scores is called the marginal mean or grand mean of
Y; in these data, the marginal mean (Y) is 4.

In this example, all seven conditional means fall in a straight line. This
line appears in Figures 2.1 and 2.2. This situation is called linearity. The
number of units the line rises for each unit of X is called the slope of the
line. The slope of the line equals the gain in Y associated with each 1-unit
gain in X. As can be seen in the figures, the line rises one-half of a unit
for each unit increase in X: the line is at Y = 3 when X = 1, is at Y = 3.5
when X = 2, is at Y = 4 when X = 3, and so on. Therefore, the slope of this
line is 0.5. So we can say that each extra previous play is associated with a
half-point average rise in points won. This answers our question about the
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FIGURE 2.2. A line through conditional means.

relationship between points won and number of plays; each extra previous
play is associated with an extra half a point won.

If the line sloped down from the upper left to the lower right, we would
say that its slope was negative; if a line fell 2 units for each unit increase in
X, we would say that its slope was −2. For instance, we might find a line
with a negative slope if we plotted points won not against previous plays,
but instead against the number of alcoholic drinks before playing.

In this example, the Y-value at which the line touches the Y-axis is
called its Y-intercept or, more simply, just the line’s intercept. In Figure 2.2,
the line’s Y-intercept is 2.5. More formally, the Y-intercept is the value of Y
when X = 0. In Figure 2.2, the Y-axis is shown at X = 0, so the Y-intercept
of 2.5 is indeed the point on the Y-axis at which the line crosses. In some
visual depictions of association, such as when the Y-axis projects upward
at a point on the X-axis that is different from zero, the Y-intercept may not
correspond visually to the point at which the line crosses the Y-axis.

Like any straight line, this line can be represented by an algebraic equa-
tion. In many if not most elementary algebra textbooks, a straight line is
represented by the equation Y = b +mX. Here we use X and Y in the same
way, but instead of b and m we use b0 and b1, respectively. So in this book,
the equation is written as Y = b0 + b1X, where b0 is the Y-intercept and b1 is
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the slope of the line. In this example, b0 = 2.5 and b1 = 0.5 and so the line’s
equation is Y = 2.5 + 0.5X.

We can use the line or its equation to estimate new conditional means.
For instance, if we extended the line to the right we would see that when
X = 7, the line has a Y-value of 6. This means that 6 is the estimated
conditional mean of Y when X = 7. You can find the same value from the
line’s equation by substituting X = 7 into the equation Y = 2.5 + 0.5X. We
then have Y = 2.5 + 0.5 × 7 = 2.5 + 3.5 = 6. Or when X = 8, the estimated
conditional mean is Y = 2.5 + 0.5 × 8 = 2.5 + 4 = 6.5. The conditional mean
found this way is also the Y-value we estimate for any new player with
a particular value of X. For instance, if someone played 7 times before,
we estimate this this player will win 6 points. An estimated value of Y
is denoted by Ŷ, pronounced “hat Y” or “Y hat.” A “hat” over any value
means an estimate of that value, so Ŷ is an estimate of Y.

2.1.3 Errors of Estimate

How accurately can we estimate the Y-values (points won) from X (the
number of previous times playing miniature golf)? Table 2.2 shows the
Ŷ-value for each of the 23 people, as found from the regression equation or
the regression line. The column labeled e shows Y−Ŷ, the residual or error in
estimate for each person. These errors average 0 and always will using the
methods described in this book, so the average error is not a good estimate
of our accuracy. Intuitively, you would think that a measure of accuracy
should not be zero (suggesting no inaccuracy) except in the circumstance
where Y = Ŷ for every person in the data. The sum of squared errors, also
called the sum of squared residuals or SSresidual, is a measure of accuracy with
this property. Formally,

SSresidual =

N∑
i=1

(Yi − Ŷi)2 =

N∑
i=1

e2
i (2.1)

where Yi is case i’s actual value of Y (number of points earned), Ŷi is what
the equation estimates case i’s Y value to be given information about case
i’s value of X (number of previous plays), and N is the sample size (23 in
this example). The column labeled e2 in Table 2.2 shows the squared errors
for each player; its sum is 25, so the sum of squared errors or SSresidual equals
25.

If linearity holds, as it does in this example, it can be shown that the
line through the conditional means has a smaller sum of squared residuals
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TABLE 2.2. Estimates and Residuals

ID X Y Ŷ e e2

1 0 2 2.5 −0.5 0.25
2 0 3 2.5 0.5 0.25
3 1 2 3.0 −1.0 1.00
4 1 3 3.0 0.0 0.00
5 1 4 3.0 1.0 1.00
6 2 2 3.5 −1.5 2.25
7 2 3 3.5 −0.5 0.25
8 2 4 3.5 0.5 0.25
9 2 5 3.5 1.5 2.25

10 3 2 4.0 −2.0 4.00
11 3 3 4.0 −1.0 0.00
12 3 4 4.0 0.0 0.00
13 3 5 4.0 1.0 1.00
14 3 6 4.0 2.0 4.00
15 4 3 4.5 −1.5 2.25
16 4 4 4.5 −0.5 0.25
17 4 5 4.5 0.5 0.25
18 4 6 4.5 1.5 2.25
19 5 4 5.0 −1.0 1.00
20 5 5 5.0 0.0 0.00
21 5 6 5.0 1.0 1.00
22 6 5 5.5 −0.5 0.25
23 6 6 5.5 0.5 0.25

Sum 69 92 92.0 0.0 25.00
Mean 3 4 4.0 0.0 1.09

than any other possible line that can be drawn through this scatterplot. For
instance, Figure 2.3 shows an alternative line through the scatterplot. This
line has equation Y = 1X + 1. The squared residuals and their sum are

1+4+0+1+4+1+0+1+4+4+1+0+1+4+4+1+0+1+4+1+0+1+4 = 42

This is considerably larger than the sum of 25 corresponding to the regres-
sion line defined as Y = 2.5 + 0.5X. As stated, no equation of the form
Y = b0 + b1X will produce a smaller sum of squared residuals when ap-
plied to these data. As such, Y = 2.5 + 0.5X is the “best” equation for the
relationship, conditioned on the assumption that the relationship is linear.
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FIGURE 2.3. An alternative line with a larger sum of squared errors.

2.2 The Simple Regression Model

2.2.1 The Regression Line

Ordinarily, the data set we work with is a sample from a larger population.
Because of random fluctuations from sample to sample, exact linearity
(conditional means falling exactly in a straight line) hardly ever holds,
though we often assume that it holds for the larger population. In fact,
in a sample there may not even be any two people with exactly the same
measurements on X, so the very concept of conditional means may have
little or no meaning for the sample. Therefore, we need a way to derive
a line and its equation that does not rely on sample values of conditional
means.

The solution to this problem relies on the fact that the sum of squared
residuals constructed from equation 2.1 is defined even when no two cases
in the data have the same value of X. There is always one straight line that
has a smaller SSresidual than any other straight line. That line is called the
regression line, and its equation called the regression equation. The regression
equation consists of the regression constant b0, also called the Y-intercept,
and the regression coefficient b1, which is the slope of the line. Because the
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derivation of the regression equation is based on minimizing the sum of
the squared residuals, this method is called ordinary least squares regression
or just OLS regression.

2.2.2 Variance, Covariance, and Correlation

Regression lines can be computed from covariances. Covariances are not
usually interpreted, but they are useful for computing both regression
coefficients and correlations. Define xi—a deviation score—as

xi = Xi − X

meaning that xi is the deviation of person i’s X measurement from the mean
of X. A comparable deviation score, yi, equals Yi − Y, or the deviation of
person i’s Y measurement from the mean of Y. The product xiyi is the
cross-product for person i. The cross-product is positive if person i is above
the mean on both X and Y, or below on both. The cross-product is negative
if person i is above the mean on one variable and below the mean on the
other. The covariance between X and Y is the mean of the cross-products.
We denote it Cov(XY). Thus,

Cov(XY) =
∑N

i=1(xiyi)
N

(2.2)

where N is the sample size. An alternative formula uses the original values
of X and Y rather than deviation scores:

Cov(XY) =
N

∑N
i=1(XiYi) − (

∑N
i=1 Xi)(

∑N
i=1 Yi)

N2

The covariance of any variable with itself is the variable’s variance. The
variance of X we denote by Var(X). We have

Var(X) =
∑N

i=1(xixi)
N

=

N∑
i=1

x2
i

N
(2.3)

or in terms of original values of X rather than deviation scores:

Var(XY) =
N

∑N
i=1 X2

i − (
∑N

i=1 Xi)2

N2
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Like the covariance, the variance is not usually interpreted. But the
variance is the square of an inherently interpretable statistic called the
standard deviation. It is the square root of the variance:

sX =
√

Var(X)

The standard deviation is a widely used measure of a distribution’s vari-
ability or spread. As its name implies, the standard deviation is the “stan-
dard” measure of spread, because theorists have shown that in normal
distributions it is less susceptible than other measures of spread to random
fluctuation from sample to sample.

The Pearson correlation coefficient, or simply the correlation, between X
and Y is defined as

rXY =
Cov(XY)

sXsY
(2.4)

The correlation measures the strength of the association between X and Y;
there is perfect linear association between X and Y if rXY = 1 or rXY = −1,
whereas rXY = 0 if X and Y are linearly independent. The sign of r conveys
the direction of association. If rXY is positive, that means cases above the
mean on X tend to be above the mean on Y, and cases below the mean on
X tend to be below the mean on Y. If rXY is negative, then cases above the
mean on one variable tend to be below the mean on the other.

Since a variance is a type of covariance and a standard deviation is the
square root of a variance, equation 2.4 shows that a correlation is deter-
mined entirely by covariances.

2.2.3 Finding the Regression Line

Covariances also define the regression coefficient b1. The formula is

b1 =
Cov(XY)
Var(X)

(2.5)

An alternative formula is
b1 = rXY

sY

sX
(2.6)

We can call equation 2.5 the computing formula and equation 2.6 the def-
initional formula. Equation 2.6 shows more clearly how b1 relates to the
familiar concepts of correlation and standard deviations, while equation
2.5 allows us to compute b1 without taking any square roots.
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If we multiply the numerator and denominator of equation 2.5 each
by N, they become

∑N
i=1 xiyi and

∑N
i=1 x2

i , respectively. Thus, an alternative
computing formula is

b1 =

∑N
i=1 xiyi∑N
i=1 x2

i

(2.7)

Once b1 has been found, we can find the intercept b0 by the formula

b0 = Y − b1X (2.8)

Then the equation for the regression line is

Y = b0 + b1X (2.9)

The estimated conditional mean for any value of X is found by substituting
that value of X into equation 2.9. This equation also gives us the estimated
Y for any person with that value of X. Since the symbol ˆ denotes “estimate
of,” equation 2.9 can be written

Ŷ = b0 + b1X (2.10)

which means that b0 + b1X yields an estimate of Y. Equation 2.10 is also
called the model of Y since its purpose is to simulate or model Y as accurately
as possible. The regression line found this way always passes through the
location on a scatterplot with coordinates X and Y.

For the data set used to construct the regression line, the line has a
smaller sum of squared residuals than any other straight line one could
construct. And if the sample was a random sample from a population in
which linearity holds, then the slope of the regression line is an unbiased
estimate of the slope of the population regression line, and any value of
Ŷ = b0 + b1X is an unbiased estimate of the conditional mean for the value
of X employed.

2.2.4 Example Computations

The formulas introduced in sections 2.2.2 and 2.2.3 are illustrated for the
data set of 23 cases used in the miniature golf example (Table 2.1). Comput-
ers are ordinarily used to conduct the computations in regression analysis.
We do this here only to illustrate the mathematics behind the computation
of the regression coefficient and intercept in a regression analysis, not to
give you a skill you will actually ever have to use or even want to use.
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The means of X and Y are X = 3 and Y = 4. Thus, for person 1, the
deviation scores are

x1 = 0 − 3 = −3

y1 = 2 − 4 = −2

For person 1, we calculate

x2
1 = (−3)2 = 9

y2
1 = (−2)2 = 4

x1y1 = (−3) × (−2) = 6

The entire set of raw scores, deviation scores, squares, and cross-products
is shown in Table 2.3. Thus, Var(X) = 2.96, Var(Y) = 1.83, Cov(XY) = 1.48,
and rXY = 1.48/

√
2.96 × 1.83 = 0.64. Also, b1 = 34/68 = 0.5 (from equation

2.7) and b0 = 4 − (34/68) × 3 = 2.5 (from equation 2.8).
Using the formulas above to estimate the conditional mean of Y at X = 5,

for example, we have 2.5 + 0.5 × 5 = 5. This is also the estimate Y for any
new person we might meet at the miniature golf course who had played
five times before. Person 21 in the group has this value of X; for person 21,
X = 5 and Y = 6. Thus, person 21’s residual is e21 = Y − Ŷ = 6 − 5 = 1. This
person received one point more than the regression model predicts given
that he or she has played five times before.

It is also worth pointing out that the manual computations carried
out here and throughout this book will not always correspond to output
generated by statistical analysis software. Computers do computations
to much higher precision than we do by hand. Rounding error in hand
computations is generated by carrying mathematical operations only to the
second or third decimal place. Furthermore, we used N as the denominator
in equations 2.2 and 2.3 because we are merely describing the data, whereas
computer software will typically use N − 1 assuming you are interested
in inference to a population. As a result, if you calculated the variances of
X and Y as well as their covariance, your software would probably show
Var(X) = 3.09, Var(Y) = 1.91, Cov(XY) = 1.55.

Some textbooks define the covariance and variance using the N − 1
formula to eliminate the discrepancy between presented formulas and sta-
tistical software results, while others use N in the denominator as we do.
When N is large, the difference is negligible, but in smaller samples the dif-
ference in the denominator will produce noticeable discrepancies. The N−1
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TABLE 2.3. Regression Computations

Person X Y x y x2 y2 xy

1 0 2 −3 −2 9.00 4.00 6.00
2 0 3 −3 −1 9.00 1.00 3.00
3 1 2 −2 −2 4.00 4.00 4.00
4 1 3 −2 −1 4.00 1.00 2.00
5 1 4 −2 0 4.00 0.00 0.00
6 2 2 −1 −2 1.00 4.00 2.00
7 2 3 −1 −1 1.00 1.00 1.00
8 2 4 −1 0 1.00 0.00 0.00
9 2 5 −1 1 1.00 1.00 −1.00

10 3 2 0 −2 0.00 4.00 0.00
11 3 3 0 −1 0.00 1.00 0.00
12 3 4 0 0 0.00 0.00 0.00
13 3 5 0 1 0.00 1.00 0.00
14 3 6 0 2 0.00 4.00 0.00
15 4 3 1 −1 1.00 1.00 −1.00
16 4 4 1 0 1.00 0.00 1.00
17 4 5 1 1 1.00 1.00 1.00
18 4 6 1 2 1.00 4.00 2.00
19 5 4 2 0 4.00 0.00 0.00
20 5 5 2 1 4.00 1.00 2.00
21 5 6 2 2 4.00 4.00 4.00
22 6 5 3 1 9.00 1.00 3.00
23 6 6 3 2 9.00 4.00 6.00

Sum 69 92 0 0 68.00 42.00 34.00
Mean 3 4 0 0 2.96 1.83 1.48

definition actually makes Var(X) a somewhat better estimator of the pop-
ulation variance, but this advantage is unimportant in regression analysis
because the most important variance in regression is the residual variance,
and a separate formula yields an unbiased estimator of it. We discuss the
bias of an estimator in section 4.1.3. Take comfort that the use of N rather
than N − 1 in these computations will produce the very same values of
correlations, regression coefficients, or other regression computations that
matter most.

2.2.5 Linear Regression Analysis by Computer

Reseachers use computers for the vast majority of data analysis tasks, and
regression analysis is no exception. In this section we provide code for
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SPSS, SAS, and STATA to generate the linear regression equation for the
miniature golfing example. The data displayed in Table 2.1 can be found
at www.afhayes.com in a file named GOLF. In this data set and analysis, the
independent variable X is named plays and the dependent variable Y is
named points.

The SPSS code that produces output for a linear regression estimating
points earned from number of plays is

regression/dep=points/method=enter plays.

The corresponding SAS code is

proc reg data=golf;model points=plays;run;

and in STATA, try

regress points plays

The output generated by each set of commands can be found in Figure
2.4. Although each program formats its output differently, the outputs
overlap considerably in the information they contain. Most of what is
found in these outputs has not been discussed or even defined in this
book thus far, but by the time you finish this book, you should be able to
understand everything you see in these outputs.

All three outputs contain estimates of the regression constant b0 = 2.5
and the regression coefficient b1 = 0.5 (see the dashed boxes) that define the
regression equation in the columns labeled “Unstandardized Coefficients”
(SPSS), “Parameter Estimates” (SAS), or “Coef.” (STATA). They also all
show the sum of the squared residuals,

∑
e2

i = 25, as calculated by hand in
section 2.1.3. But they differ in how they label it. Whereas SPSS and STATA
list it as the residual sum of squares, SAS calls it the error sum of squares.

Such discrepancies in how different programs format and label output
are the norm rather than the exception. Don’t let these discrepancies bother
you too much. Most likely you will have a single preferred data analysis
program that you rely on for the majority of the analyses that you do
over much of your career. The principles we have discussed thus far and
henceforth apply regardless of which statistical program you are using.
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                               Analysis of Variance

                                   Sum of           Mean

Source                   DF        Squares         Square    F Value    Pr > F

Model                     1       17.00000       17.00000      14.28    0.0011

Error                    21       25.00000        1.19048

Corrected Total          22       42.00000

              Root MSE              1.09109    R-Square     0.4048

              Dependent Mean        4.00000    Adj R-Sq     0.3764

              Coeff Var            27.27724

                              Parameter Estimates

                           Parameter       Standard

      Variable     DF       Estimate          Error    t Value    Pr > |t|

      Intercept     1        2.50000        0.45752       5.46      <.0001

      plays         1        0.50000        0.13231       3.78      0.0011

      Source |       SS       df       MS              Number of obs =      23

-------------+------------------------------           F(  1,    21) =   14.28

       Model |          17     1          17           Prob > F      =  0.0011

    Residual |          25    21  1.19047619           R-squared     =  0.4048

-------------+------------------------------           Adj R-squared =  0.3764

       Total |          42    22  1.90909091           Root MSE      =  1.0911

------------------------------------------------------------------------------

      points |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

       plays |         .5    .132314     3.78   0.001     .2248379    .7751621

       _cons |        2.5   .4575182     5.46   0.000     1.548539    3.451461

------------------------------------------------------------------------------

A

B

C SSresidual

SSresidual

SSresidual

Model Summary

Model R R Square
Adjusted R 

Square
Std. Error of the 

Estimate

1 .636a .405 .376 1.091

Predictors: (Constant), playsa. 

ANOVAa

Model
Sum of 
Squares df Mean Square F Sig.

1 Regression

Residual

Total

17.000 1 17.000 14.280 .001b

25.000 21 1.190

42.000 22

Dependent Variable: pointsa. 

Predictors: (Constant), playsb. 

Coefficientsa

Model

Unstandardized Coefficients
Standardized 
Coefficients

t Sig.B Std. Error Beta

1 (Constant)

plays

2.500 .458 5.464 .000

.500 .132 .636 3.779 .001

Dependent Variable: pointsa. 

FIGURE 2.4. Regression analysis output from SPSS (A), SAS (B), and STATA (C). The
regression intercept b0 and coefficient b1 are found in the sections highlighted by a dashed
box.
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2.3 The Regression Coefficient versus the
Correlation Coefficient

Both rXY and b1 are measures of the relationship between X and Y; they are
related by the formula b1 = rXY(sY/sX). As sX and sY are always positive,
b1 and rXY always have the same sign. Therefore, the two measures always
agree on whether the relationship between X and Y is positive, negative,
or zero.

The last statement applies to both samples and populations. Therefore,
the hypothesis that a correlation is zero in the population is equivalent to
the hypothesis that the corresponding regression coefficient is zero in the
population. We will see later when discussing statistical inference that there
is a t-test for testing the significance of rXY, and a very different-appearing t-
test for testing the significance of b1. But in fact the two tests are equivalent,
because in any one sample, both tests always give exactly the same value
of t. Thus, both the null hypotheses and the tests are equivalent.

But b1 and rXY measure very different properties of a relationship. For
example, it has been estimated that every cigarette smoked lowers one’s
life expectancy by about 11 minutes (Shaw, Mitchell, & Dorling, 2000). If
this were derived from a linear regression analysis (with lifespan measured
in minutes!), we would have b1 = −11. Or suppose we studied the relation
between hours of study for a test and number of points scored on the
test. If we found b1 = 6, it would mean that each extra hour of study is
associated with a 6-point increase in test score. Statements like these convey
information wholly lacking from statements like “The correlation between
study time and test scores was +0.4,” or “The correlation between smoking
and lifespan is −0.2.” The value of b1 is the increase in Ŷ associated with
each 1-point increase in X.

How, then, do b1 and rXY differ? In terms of their formulas, they differ
in primarily just one way; in terms of their properties, they differ in three
major ways; and in terms of their uses, they differ in four major ways. We
examine all of these differences in this section.

In terms of their formulas, rXY is a standardized b1. That is, if for each case
in the data, we replaced their Xi and Yi scores by their standardized values

ZXi =
Xi − X

sX

ZYi =
Yi − Y

sY
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and then predicted ZY from ZX using linear regression, the regression co-
efficient for ZX, b1, would be rXY. Another way of thinking about this is to
recognize that when X and Y are standardized, sX and sY both equal 1. Re-
calling from section 2.2.3 that b1 = rXY(sY/sX), this means that b1 = rXY when
X and Y are standardized. But the correlation between X and Y following
standardization would be the same as rXY without standardization.

2.3.1 Properties of the Regression and Correlation Coefficients

The first difference in the properties of rXY and b1 is that b1, but not rXY, is
influenced by the units used to measure X and Y, so that b1 is scale-bound but
rXY is scale-free. For instance, suppose we have a regression line estimating a
child’s weight from his or her age, and we switch from measuring weight in
pounds to ounces. The switch will not change rXY but it will multiply sY by
16, since there are 16 ounces in a pound. The formula b1 = rXY(sY/sX) shows
us that b1 is then also multiplied by 16. Also, if we switch from measuring
ages in months to measuring them in years, sX will be divided by 12, which
will result in multiplying b1 by 12. It is mathematically equivalent to say
that children gain weight at an average rate of 0.2 pounds per month or 2.4
pounds per year, or 38.4 ounces per year, or 3.2 ounces per month, even
though four different numbers are used to express the fact. Any of these
four numbers could be the b1 computed for the same set of children. But
only one value of rXY would be found.

The second difference in the properties of rXY and b1 is that rXY, but not
b1, increases in absolute value with the range of the variables measured. For
instance, suppose X is income, Y is amount saved annually for retirement,
and there is a linear relationship between X and Y. If investigators A and
B each study the relationship between X and Y but investigator A studies
the entire nation while investigator B studies only one wealthy suburb of a
particular city, then it may well be that both find the same value of b1, but
investigator A is likely to find that rXY is much closer to 1 (in absolute value)
than does investigator B, because X ranges more widely in investigator A’s
study.

Figure 2.5 illustrates this point. Figure 2.5, panel B, consists of the first
three columns from Figure 2.5, panel A. In both parts, the diagonal lines
pass through all conditional means, so we know without calculation that
they are the regression lines. The regression line has the same slope in
panels A and B. The mean of the squared residuals is also about the same
in panel A as in panel B. But the positive correlation is clearly visible in
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FIGURE 2.5. How range restriction affects rXY without affecting b1.

panel A but hardly noticeable in panel B; the values of rXY in panels A and
B are 0.54 and 0.16, respectively.

These figures relate to the formula b1 = rXY(sY/sX), but we can see the
relation most easily by rewriting the formula as rXY = b1(sX/sY). The values
of b1 are equal in both panels of Figure 2.5. The value of sY is slightly larger
in panel A than in panel B (2.90 vs. 2.43), which would tend to make rXY

smaller in panel A. But sX is much larger in panel A (3.15 vs. 0.80), which
makes rXY, on the net, substantially larger in panel A than in panel B.

The third difference in the properties of rXY and b1 is that when Y is
affected by other variables uncorrelated with X, rXY is reduced but b1 is not
affected. rXY is really a measure of the importance of the XY relationship
relative to other factors affecting Y, whereas b1 in a sense measures the
absolute size of the relationship, ignoring other factors. For instance, if a
nation had a safety campaign that greatly lowered the rate of accidental
death, it would presumably not affect the regression coefficient mentioned
earlier of an 11-minute reduction in life expectancy per cigarette. But the
drop in accidental deaths would raise the correlation between smoking and
lifespan (i.e., make the correlation more negative), because it would raise
the importance of smoking relative to other factors affecting lifespan.
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Rephrased more formally in terms of rXY = b1(sX/sY), where X is smok-
ing and Y is lifespan, lowering the importance of accidental deaths would
leave b1 and sX unchanged but would lower sY, thereby raising rXY.

2.3.2 Uses of the Regression and Correlation Coefficients

We can summarize the difference in the uses of rXY and b1 by saying that
b1 is a better measure of X’s effect on Y, especially in experiments, while
rXY is a better measure of predictive power, relative importance, and statistical
significance. The phrase “better measure” is chosen carefully to avoid the
implication that b1 and rXY are always good measures of these qualities.
But when we find statistically that every cigarette smoked is associated
with a 11-minute decrease in lifespan, that is a useful way of describing a
relationship that may be causal.

When X is manipulated in an experiment, its range is a property of
the experiment rather than a property of the natural world. For instance,
suppose we correlate hours of exercise (X) with later physical fitness (Y).
If an experimenter decides that participants in an experiment will exercise
for 1, 3, or 5 hours, the range of 5 − 1 = 4 hours has nothing to do with
the range of hours of exercise that people would choose for themselves.
Since rXY is affected by range, the value we find from experimental data
tells us nothing about the correlation we would find in nonexperimental
data or in data from an experiment with a different range. But we would
expect to find approximately the same value of b1 in all these cases since b1

is unaffected by range restriction.
But if we want to predict a person’s grades in college from his or her

grades in high school, or a worker’s productivity from his or her score on
an employment test, then rXY measures the predictive power of X, meaning
how accurately it estimates or predicts Y. If we wished to select the test
with the greatest predictive power, we would select the test with the largest
correlation with productivity. A test that happens to have a small standard
deviation sX might have a very high value of b1, because of the formula
b1 = rXY(sY/sX). But this would tell you nothing about how accurately X
predicts Y except in the special case where b1 = 0, meaning that X predicts
Y with no accuracy whatsoever.

And rXY is more closely related to statistical significance than b1 is. In
particular, with the proper assumptions, once you know rXY, to test its
statistical significance the only other information you need is the sample
size N. Thus, with sample size fixed, the larger of the two correlations will
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have a smaller p-value when testing the null hypothesis that the population
correlation equals zero. This is not true of b1.

2.4 Residuals

2.4.1 The Three Components of Y

After we have regressed Y on X (i.e., estimated Y from X in a regression
analysis), we can partition each person’s Y measurement Yi into three
components. Consider the equation

Yi = Y + (Ŷi − Y) + (Yi − Ŷi) (2.11)

This is a simple algebraic identity; if you remove the parentheses and cancel
values on the right, you find that the equation reduces to Yi = Yi.

The first of the three components, Y, is constant for all people in the
sample. Because Ŷi is computed from Xi, the second component (Ŷi − Y)
correlates perfectly with X and is called the component of Y explained by
X. The remaining component (Yi − Ŷi) is the unexplained or independent or
residual portion of Y. Thus, if John’s grade-point average (GPA) in school
is 0.8 units above the mean and we predict from his SES that it would be
0.3 units above the mean, then John’s SES explains 0.3 of his 0.8 units of
deviation, and the other 0.5 is unexplained by SES.

The unexplained portion is the residual ei in the regression of Y on X;
in section 2.1.3 we defined ei = Yi − Ŷi. The explained and unexplained
components are sometimes called the model and error components of Y.
Thus, equation 2.11 can be rewritten as

Y = Y + explained component + unexplained component

or as
Y = Y +model component + error component

For instance, in the miniature golf example, the regression equation is
Y = 2.5 + 0.5X. Furthermore, Y = 4, Y21 = 6, and recall that Ŷ21 = 5. Thus,
for person 21 the residual or error component is Y21 − Ŷ21 = 6 − 5 = 1
and the model component is Ŷ21 − Y = 5 − 4 = 1. Indeed, observe that
Y21 = Y +model + error = 4 + 1 + 1 = 6.

The properties and uses of these three components will become clear
gradually. The rest of this section considers one of the three components—
the residual component.
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2.4.2 Algebraic Properties of Residuals

Residuals have three important algebraic properties that are always true in
any sample or population:

1. The mean of the residuals is exactly zero.

2. The residuals have exactly zero correlation with X. There is no ten-
dency for the residuals to be more positive or more negative as X
increases. The model component of Y is completely determined by X
and correlates perfectly with X, so the residuals have zero correlation
with the model component.

3. The variance of the residuals, denoted in this book as Var(Y.X), is

Var(Y.X) = Var(Y)(1 − r2
XY)

which can be written as

Var(Y.X)
Var(Y)

= 1 − r2
XY (2.12)

The left side of this equation is the variance of the residuals expressed
as a proportion of the total variance of Y. We can call this the propor-
tion of variance in Y not explained by X. The proportion explained
is then 1 minus this unexplained portion, or r2

XY. Therefore, we often
speak of r2

XY as the proportion of the variance of Y that is explained
by X.

In the miniature golfing example, Var(Y) = 1.83 (from Table 2.3), Var(Y.X) =
1.09 (from Table 2.2), and rXY = 0.64 (from section 2.2.4). Thus, using
equation 2.12,

1.09
1.83

= 1 − 0.642

As mentioned earlier, we often assume that linearity holds in the pop-
ulation from which our sample is drawn. Other assumptions about the
population, notably homoscedasticity and conditional normality, are dis-
cussed in section 4.1.2 and Chapter 16. However, the above three properties
of residuals are strictly algebraic and do not depend at all on these or other
assumptions.
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2.4.3 Residuals as Y Adjusted for Differences in X

When we predict Y from X, we can think of the residuals in the regression
as measurements on a new variable, which we can call Y adjusted for X or
Y corrected for X. For instance, if Teresa’s residual is 3 and Jason’s is 2, then
Teresa is 3 units higher on Y than we would have expected from her score
on X, while Jason is only 2 units higher. Teresa is then higher than Jason on
Y in relation to what we would have predicted from their scores on X. In
other words, Teresa is higher than Jason on Y after adjusting or correcting
for differences in their scores on X.

This use of regression residuals capitalizes on the fact that residuals
have zero correlation with X. Thus, there is no tendency for a person’s
residual to be high just because that person scores high or low on X.

Residuals are important for understanding partial relationship, which
we discuss starting in Chapter 3, but they have uses in their own right. For
instance, consider the problem that organizers have when planning a 5-
kilometer race for amateurs. If all entrants compete against each other, then
the older runners have little chance of winning. But if a separate division
is made for runners over 40, then runners in their 50s or older are still
discriminated against. This problem could be solved by fitting a regression
line predicting the running times from the runners’ ages. The runner with
the most negative residual (the shortest time adjusting for age differences)
could be declared the winner. The disadvantage of this procedure is that
no winner could be declared until all runners had completed the race, but
it should help you to understand the uses and meaning of residuals. When
yachts of different sizes race against each other, a procedure like this is
sometimes used since larger boats go faster. The winning boat is the one
that does best relative to its own predicted speed given its size. Regression
can be used to derive the necessary formula for predicting speed from size.

2.4.4 Residual Analysis

We can define residual analysis as the process of selecting cases with highest
and/or lowest residuals for scrutiny, in the hope that these will suggest
insights into the factors affecting Y. We often engage in a kind of intu-
itive residual analysis when thinking about the accomplishments of others.
For instance, we are often impressed by people who have achieved great
success in spite of coming from poor family or economic conditions or hav-
ing experienced a hard childhood. Similarly, we often wonder what went
wrong when we learn about the mediocre accomplishments or legal trou-
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FIGURE 2.6. Percentage population growth in the United States for each decade of its
history, with the regression line. (Source: U.S. Census Bureau).

bles of the children of highly successful parents who were able to provide
unlimited resources to their offspring. Such people are noteworthy because
they deviate in some way from expectation based on what we know about
the causes of success and achievement.

As a more concrete example, investigators have selected the schools
whose average student achievement is highest relative to the socioeconomic
level of the school’s neighborhood for further scrutiny to figure out what
makes students in that school succeed. Studying those schools has then
led to important insights about the factors producing successful schools—
notably, for example, that the personality and determination of the principal
make a surprising difference (Edmonds, 1986).

Figure 2.6 illustrates another example of residual analysis. This figure
shows the percentage growth in the population of the United States for
each decade of American history since the first population census in 1790.
If we regress population growth (Y) on decade (X) (i.e., predict Y from X),
we get the line shown. The negative regression slope indicates that the rate
of population growth has slowed considerably since 1790. The line slopes
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FIGURE 2.7. A violation of linearity.

down because we have plotted percentage increase in the population; if we
had plotted absolute increase, the line would slope up.

An examination of this plot shows the five largest residuals to be for the
decades following 1840, 1850, 1910, 1930, and 1950. Each of these is tied to
an important event in history. The decade of the 1840s witnessed the great
potato famine, which drove millions to America. The 1850s was a decade
of political repression in Europe, which also drove large numbers to the
United States. In the second decade of the 20th century, immigration was
slowed by World War I, producing a negative residual. The 1930s saw the
Great Depression, which lowered birthrates. And the 1950s saw the baby
boom. The largest of these residuals was for the 1930s. This indicates that
after correcting for the gradual slowing of the rate of population growth,
the single most important event to affect population growth in the United
States was the Great Depression.

Residual analysis is most meaningful if we can assume linearity and
also that conditional distributions are identical except for means. Figure
2.7 illustrates a violation of linearity. In it, person A has a much larger
positive residual than person B relative to the straight regression line that
does not adequately describe the nonlinear association between X and
Y. Thus, person A seems more extreme than person B. But person B is



40 Regression Analysis and Linear Models

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

X

Y B

A

FIGURE 2.8. A violation of homoscedasticity (equality of conditional variances).

substantially farther above the true curved line than person A is. That
is, person B is more extreme than person A with respect to the nonlinear
model that more accurately captures the association between X and Y.

Figure 2.8 was generated by a computer program that made the con-
ditional standard deviation of Y related to X, a phenomenon known as
heteroscedasticity. In this example, person A is over twice as far above the
regression line as person B. But when we correct properly for the different
conditional standard deviations of Y, person B is farther above the regres-
sion line than person A. So the residual for person A is not especially large
relative to person B when you account for differences in the variance in
Y at different values of X. Thus, residual analysis is of limited value if
we improperly assume linearity and equality of conditional variances, or
homoscedasticity. But these assumptions sometimes are met or are not so
severely violated that the validity of the analysis is brought into question,
so residual analysis is an important tool in its own right. It is also the basis
for understanding the concept of partial relationship, which is the funda-
mental tool of statistical control. The quantification and interpretation of
measures of partial association is the topic of the next chapter.
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2.5 Chapter Summary

This chapter has introduced some of the fundamental principles and con-
cepts of linear regression, such as scatterplots, the regression equation,
the intercept and slope of a regression line, regression residuals, the least
squares criterion, residual analysis, and differences in the interpretation
and use of Pearson’s coefficient of correlation relative to the regression co-
efficient as a measure of association and effect. With these fundamentals
mastered, you are prepared to develop an understanding and appreciation
of one of the most important concepts in linear regression analysis and
statistical control—partial association. This is the topic of the next chapter.





3
Partial Relationship and the Multiple
Regression Model

This chapter extends the fundamentals of linear regression analysis in-
troduced in Chapter 2 to models with more than one predictor variable.
Measures of multivariate and partial association are derived and de-
scribed, including the unstandardized and standardized partial regres-
sion weight, the partial correlation, and the semipartial correlation. We
outline the process of statistical control through the partialing process
and show how measures of partial association are based on the resid-
uals from a regression analysis. We outline the differences between
measures of partial association both in terms of computation and inter-
pretation.

3.1 Regression Analysis with More Than One
Predictor Variable

3.1.1 An Example

In section 1.1.3 we gave some examples of statistical control in which an in-
dependent variable and a covariate are both dichotomous. Those examples
concerned the effects of preschool programs, and the difference between
the salaries of male and female instructors at Swamp College. This sec-
tion gives a similar example in which the independent variable, dependent
variable, and covariate are all numerical. This case is much more complex,
so we devote all of this chapter to this one example.

Suppose you conducted a study examining the relationship between
food consumption and weight loss among people enrolled in a month-long
healthy living class. The data from 10 participants can be found in Table 3.1,
where X1 is average weekly hours of exercise, X2 is average daily food con-

43
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TABLE 3.1. Exercise, Food Intake, and Weight Loss

Average daily food intake Average weekly
Exercise frequency (100s of calories weight loss

(average weekly hours) above recommended) (100s of grams)

ID X1 X2 Y

1 0 2 6
2 0 4 2
3 0 6 4
4 2 2 8
5 2 4 9
6 2 6 8
7 2 8 5
8 4 4 11
9 4 6 13

10 4 8 9

Mean 2 5 7.5

sumption (in 100s of calories above the recommended minimum of 1,000
calories required to maintain good health), and Y is average weight loss in
hundreds of grams per week. The data file is available at www.afhayes.com
and is named EXERCISE. In these data, Pearson’s correlation between ex-
ercise frequency and weight loss is positive, as you would expect it to be:
rX1Y = 0.864. Those who exercised relatively more during the month-long
class lost relatively more weight.

Pearson’s correlation between daily food consumption and weight loss
is also positive, though very small, rX2Y = 0.047. Ignoring the fact that this
relationship is tiny, the positive sign means that those who ate relatively
more during the month lost relatively more weight than those who ate rela-
tively less. This seems counterintuitive, if not also surprising. You’d think
that eating less would translate into more weight loss. Intuition and com-
mon sense both suggest that the relationship between food consumption
and weight loss should be negative.

This surprising finding can be explained by considering differences
among the participants in the amount they exercised weekly. As can be
seen in Table 3.1, participants 1, 2, and 3 did not exercise at all, participants
4, 5, 6, and 7 exercised 2 hours each week on average, and participants 8,
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FIGURE 3.1. An example with positive simple association and negative partial associa-
tion.

9, and 10 exercised 4 hours per week on average. Figure 3.1 shows weight
loss plotted against food intake but uses different symbols for these three
sets of participants who differ in the amount they exercised. The three
participants who did not exercise at all are represented with squares, those
who exercised 2 hours per week, with circles, and those who exercised 4
hours per week, with triangles.

If you look just at the squares in Figure 3.1—those who did not exer-
cise at all—the relationship between food intake and weight loss appears
negative. Turning your attention to the circles, representing those who
exercised 2 hours per week, the relationship again seems negative. And
again, focusing only on the triangles—participants who exercised 4 hours
per week—the relationship is clearly negative. So when exercise is held con-
stant, the expected negative relationship between food intake and weight
loss appears. The surprising positive (albeit tiny) relationship that exists
when ignoring exercise is merely due to the fact that those who consumed
more also exercised the most, and those who exercised the most lost the
most weight.

How can we state more precisely the relationship between food in-
take and weight loss when exercise is held constant? In this example, the
negative relationship between these two variables is clearly visible when
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examining subgroups of people equal on exercise. But you can imagine a
similar data set in which no two people have exercised exactly the same
amount. In that case, how could exercise be held constant? And how ex-
actly do we measure the relationship between two variables when holding
a third variable constant? The bulk of this entire chapter describes methods
for answering these questions.

3.1.2 Regressors

In the previous example, we asked about the relationship between food
intake and weight loss when exercise is held constant and found that the
relationship is negative, as would be expected. In this example, food
consumption is the independent variable (the presumed cause of weight
loss or lack thereof), weight loss is the dependent variable (the presumed
effect of lower food consumption), and exercise frequency is a covariate.
But we could just as easily ask about the relationship between exercise
frequency and weight loss, holding food consumption constant. In that
case, exercise frequency could be thought of as the independent variable,
weight loss the dependent variable, and food consumption the covariate.

We will see that in finding the answer to the first question using regres-
sion analysis, we automatically find the answer to the second question. For
this reason, mathematically we don’t need to distinguish between indepen-
dent variables and covariates when estimating regression models. So we
use the term regressor to include both independent variables and covariates
in a regression analysis.

In a typical regression analysis problem, we tell the computer the name
of the dependent variable in the data that is being modeled, as well as
the name of one or more regressors, making no distinction between inde-
pendent variable(s) and covariates. The computer then prints a measure
of the partial relationship between the dependent variable and each re-
gressor, holding constant all the other regressors. For example, using the
weight-loss data set, the SPSS code below will conduct a regression analysis
estimating dependent variable wtloss from regressors exercise and food :

regression/dep=wtloss/method=enter exercise food.

In SAS, try

proc reg data=exercise;model wtloss=exercise food;run;

and in STATA, use
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regress wtloss exercise food

The computer does not care which variable is the independent variable
and which is the covariate in your thinking about the problem, although
it certainly requires you to specify which is the dependent variable (in
STATA, the dependent variable is the first variable listed after the regress
command). Each regressor in a regression model simultaneously functions
as both independent variable and covariate. So the distinction between
independent variable and covariate is not a mathematical one. Rather, the
distinction enters when the data analyst looks at the computer output, in-
terprets that output, or talks or writes about about the partial relationships
that a regression analysis provides.

Because independent variables and covariates are both regressors, we
usually do not even bother to distinguish between them in our notation. In
this example, the regressors are X1 and X2 rather than, say, IV for indepen-
dent variable and C for covariate. Some authors use the term independent
variables to refer to all regressors, but we will normally use it in the more
restrictive sense explained here—as the variables whose relationship to Y
most interests us at the time of interpretation or when describing the re-
sults of the analysis in a talk or research report, such as an academic journal
article.

3.1.3 Models

Suppose an examination of the literature on diet, exercise, and weight loss
led you to the following conclusions:

1. People who eat the minimum number of calories to maintain good
health and who do not exercise at all will lose about 600 grams of
weight on average in a week.

2. If food intake is held constant, then each 1 hour of average daily
exercise leads to an average weight loss of 200 grams per week.

3. If you think of food intake above the minimum in units of 100 calories
each, then someone who eats 2,000 calories per day is consuming 10
units above the 1,000-calorie minimum. You conclude that each one
unit of food intake per day (i.e., 100 calories) above the minimum
to maintain good health translates to 50 grams less weight loss per
week than the person otherwise would have experienced by eating
only the minimum recommended calories.
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From these conclusions, you could estimate how much weight a person
could expect to lose who ate 1,600 calories per day (i.e., 6 units above
the 1,000-calorie minimum) and exercised 2 hours daily per week. The
reasoning for your estimate might go something like this:

Someone who eats the minimum of 1,000 calories and who
doesn’t exercise can expect to lose about 600 grams in a week.
But if such a person exercises 2 hours per week, this translates
to an additional 400 grams of weight loss (200 grams per week
per hour of exercise). But by eating 6 units more than the
minimum (600 calories), this adds back 300 grams (6 × 50) to
what otherwise would have been lost. So the estimated weight
loss for such a person is 600 + 400 − 300 = 700 grams per week.

This reasoning could be represented mathematically in the form of a
model of weight loss. Letting Y be weight loss in 100s of grams, X1 be hours
of exercise per week, and X2 be units of food intake above the 1,000-calorie
minimum in 100s of grams, the mathematical model is

Ŷ = 6 + 2X1 − 0.5X2

You could apply this equation to any person to estimate how much weight
that person could be expected to lose based on the amount he or she exer-
cises and consumes per day. This is a linear model because the numbers by
which X1 and X2 are multiplied when generating the estimate are simple
numbers; nonlinear models are described in Chapter 12.

This model could be written in a more generic form as

Ŷ = b0 + b1X1 + b2X2

where b0 is the model constant as in a simple regression model, and b1 and
b2 are coefficients or weights for X1 and X2, respectively. In this example,
b0 = 6, b1 = 2, and b2 = −0.5. We shall see shortly that b1 and b2 are also
called the slopes in a geometric representation of the model. They are also
often called beta weights, beta coefficients, or just the betas of the model. We
will avoid the use of the term beta because, as discussed in section 1.2.4, it
is used in so many ways by different people who write about regression
that doing so just invites confusion.

Because the regression coefficients in a model are scale-bound, they
cannot be meaningfully compared with each other. For instance, the coef-
ficients of 2 and −0.5 for exercise and food intake might lead you to believe
that exercise is more highly associated with weight loss or more important
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FIGURE 3.2. Plane representing the model Y = 6 + 2X1− 0.5X2.

in the model as a predictor of weight loss than is food intake since 2 is larger
in absolute value than −0.5. But had we expressed exercise time in minutes
rather than hours, then b1 would change from 2 to 0.033, which makes
exercise look less important than food intake. The problem of comparing
the importance of regressors is examined at length in Chapter 8.

3.1.4 Representing a Model Geometrically

In Chapter 2 we illustrated that a simple regression model of the form
Ŷ = b0 + b1X can be represented geometrically by a straight line. A model
of the form Ŷ = b0 + b1X1 + b2X2 can be represented by a plane in three-
dimensional space, as in Figure 3.2. In fact, this figure represents the very
model Ŷ = 6 + 2X1 − 0.5X2 that we have already considered. The left-hand
horizonal axis represents exercise (X1), the right-hand axis represents food
intake (X2), and the vertical axis represents weight loss (Y).

To see how this plane represents the model, consider first someone with
zero on both exercise and food intake. That is, X1 = 0 and X2 = 0. The
model estimates that this person will lose 600 grams per week (i.e., six
100-gram units) since for that person Ŷ = 6+ 2× 0− 0.5× 0 = 6. At the near
corner of the figure, you see that the plane has a Y value of 6 when both X1

and X2 are equal to zero.
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Now consider someone for whom X1 = 4 and X2 = 0. Inserting these
values into the model yields Ŷ = 6 + 2 × 4 − 0.5 × 0 = 14. At the upper
left corner of the tilted plane, you can see that Y = 14 when X1 = 4 and
X2 = 0. Since the plane rises 8 units, from 6 to 14, as X1 rises 4 units from 0
to 4, its slope relative to X1 is 8/4 = 2. If you try this with different values
of X1 and X2, you will find that regardless of the value of X2 you choose,
when you hold X2 constant at that value, each 1 unit increase in X1 results
in an increase of Y of 2 units. This is the coefficient for X1 in the model. It
represents the amount Y is estimated to change as X1 increases by 1 unit
but X2 is held constant.

Now consider someone for whom X1 = 0 and X2 = 8. Inserting these
values into the model, we find Ŷ = 6 + 2 × 0 − 0.5 × 8 = 2. At the far right
corner of the tilted plane, observe that Y = 2 when X1 = 0 and X2 = 8.
Comparing this to the value of Y = 6 when X1 = 0 and X2 = 0, Y falls 4
units, from 6 to 2, when X2 increases by 8 but X1 is fixed. So the plane’s
slope relative to X2 is 4/8 = −0.5. Regardless of the value of X1 you choose,
when you hold X1 constant at that value, each 1 unit increase in X2 results
in an increase of Y of −0.5 units or, in other words, a decrease of 0.5 units.
This is the coefficient for X2 in the model. It represents the amount Y is
estimated to change as X2 increases by 1 unit but X1 is held constant.

In summary, a model that represents Ŷ as a linear function of two
variables, X1 and X2, can be represented as a plane in three-dimensional
space. The plane’s Y value at X1 = X2 = 0 represents the additive constant,
b0 in the model. And the plane’s slopes relative to X1 and X2 represent the
coefficients for X1 and X2, or b1 and b2.

3.1.5 Model Errors

We have imagined that you made up the model from reading the litera-
ture on weight loss. Yet you have data from 10 people in Table 3.1 who
participated in a weight-loss class, each measured on the variables in the
model. How could you measure the consistency between the model of
weight loss you constructed and the weight loss actually experienced by
these 10 people? Might it be the case that a different model using the same
regressors would actually produce a more accurate estimate of weight loss?
For example, perhaps setting b1 = 2.1 and b2 = −0.6 would produce a more
accurate estimate of how much weight a person actually loses based on
food intake and exercise frequency.

As in simple regression, we can measure the discrepancy between the
estimates of Y generated by the model and the values of Y available in
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TABLE 3.2. Estimates and Residuals in the Weight-Loss Data Set

Exercise Food intake Weight loss Estimate Residual
ID X1 X2 Y Ŷ e

1 0 2 6 5 1
2 0 4 2 4 −2
3 0 6 4 3 1
4 2 2 8 9 1
5 2 4 9 8 1
6 2 6 8 7 1
7 2 8 5 6 −1
8 4 4 11 12 −1
9 4 6 13 11 2

10 4 8 9 10 −1

Mean 2 5 7.5 7.5 0

a data set by quantifying the amount the estimates of Y depart from the
actual values of Y observed. That is, the model generates Ŷi for each case,
which allows us to construct ei = Yi − Ŷi, the residual or error in estimate.
Table 3.2 contains the data in Table 3.1 but includes two additional columns
containing the estimates of Y from the model Ŷ = 6 + 2X1 − 0.5X2, as well
as the residuals ei, for each of the 10 cases.

We can give these data a geometric interpretation. Figure 3.3 shows
the data for our 10-person sample plotted in three-dimensional space. For
instance, for person 1 we have X1 = 0, X2 = 2, and Y = 6. Person 1 in this
figure appears atop a stick 6 units long, whose base is at X1 = 0,X2 = 2.
Other people in the figure are represented similarly.

If we put the plane and the 10 cases into the same figure, we get Figure
3.4. In this figure, each person’s vertical distance between Y and the plane—
which represents Ŷ—is shown by a short vertical line. The length of this line
for person i is ei, which is positive for those above the plane and negative
for those below. Persons 2 and 9 are each 2 units from the plane, and all
other people are just 1 unit from the plane.

As the size of these vertical lines—the errors in estimation—are deter-
mined in part by Ŷ, it follows that a different model will produce different
errors in estimation for each case. A good-fitting model is one in which
these errors of estimation are small. The consistency between a model and
the data is determined by how small these errors tend to be aggregated
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across all cases in the data. A model that is more consistent with the data
will have smaller errors in estimation than a model that is less consistent
with the data.

3.1.6 An Alternative View of the Model

Figures 3.2 and 3.4 represent Ŷ = 6+2X1−0.5X2 in three-dimensional space.
Figure 3.5 represents the model in two dimensions but otherwise contains
the same information. Line AB in Figure 3.4 falls from 6 to 2 as X2 increases
from 0 to 8. Line IJ in this figure falls from 14 to 10 over the same range
of X2. Lines CD, EF, and GH are evenly spaced between them. Figure 3.5
shows the same five lines drawn in a diagram of Y against X2. Like their
counterparts in Figure 3.4, line AB in Figure 3.5 falls from 6 to 2, IJ falls from
14 to 10, and lines CD, EF, and GH are evenly spaced between them. Thus,
Figure 3.5 conveys all the same information as Figure 3.4; it represents the
model in two-dimensional space rather than three-dimensional space.

As you can see in Figure 3.5, line AB applies when X1 = 0, line IJ applies
when X1 = 4, and the other three parallel lines apply when X1 equals 1, 2,
and 3. The appropriate value of X1 is written next to each sloping line in
Figure 3.5. Because the five sloping lines in Figure 3.5 apply to values of
X1 1 unit apart, the vertical distance between them is the amount the plane
rises as X1 increases 1 unit. But this is the slope of the plane relative to
X1. Thus, in this representation of the model, the vertical distance between
parallel lines represents the slope or apparent effect of X1.

Figure 3.6 also conveys all the information in Figure 3.4, but in Figure
3.6, Y is plotted against X1 instead of X2. Like line AI in Figure 3.4, line AI
in Figure 3.6 rises from 6 to 14 as X1 increases from 0 to 4. Similarly, line BJ
in Figure 3.6 corresponds to line BJ in Figure 3.4. But there the lines are for
values of X2 2 units apart, so the vertical distance between them is twice b2.

In summary, a linear model involving two X variables can also be rep-
resented by a series of parallel lines in two dimensions whose slope equals
one slope of the plane when the model is represented in three dimensions. If
lines represent values 1 unit apart on the other X variable, then the vertical
distance between adjacent lines represents the plane’s other slope.
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FIGURE 3.3. Ten data points plotted in three-dimensional space.
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3.2 The Best-Fitting Model

3.2.1 Model Estimation with Computer Software

In practice, linear models are constructed not by piecing one together
through an examination of the published literature, as we did hypotheti-
cally in the example that introduced section 3.1. Instead, linear models are
constructed by using a data set in which measurements on the outcome and
regressors are available and then subjecting that data to a linear regression
analysis. In the case of a two-regressor model, the model is

Ŷ = b0 + b1X1 + b2X2

It is possible to derive b0, b1, and b2 by hand with some formulas that
are not too complex and that we provide in section 3.4.5, but we don’t
recommend doing so. Instead, the computations required to derive the
model are almost always done by computer. A computer algorithm figures
out the values of b0, b1, and b2 such that the resulting model best fits the
data. A linear regression analysis using the least squares criterion defines
the best-fitting model as the one that minimizes the sum of the squared
residuals as first introduced in section 2.1.3:

SSresidual =

N∑
i=1

(Yi − Ŷi)2 =

N∑
i=1

e2
i

Although in that section the model had only a single regressor, the least
squares criterion works regardless of the number of regressors. No modi-
fication to the math or procedure is necessary.

The sum of the squared residuals is a measure of consistency between
the model and the data. A perfectly fitting model has SSresidual = 0, which
occurs only when Ŷ = Y for every case in the data. More typically, SSresidual
is greater than zero. The larger SSresidual, the less consistent the model is
with the data, and the worse the fit of the model.

Figure 3.7 contains SPSS output from a linear regression analysis of the
data in Table 3.1. The command to generate this output is

regression/statistics defaults zpp/dep=wtloss/method=enter exercise

food.

which is similar to the command on page 46 but includes a few additional
options to generate output that will be discussed later in this chapter and
elsewhere. Comparable commands in SAS and STATA would be
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b0, b1, and b2

SSresidual

srjprjrYXjbj

~

R  and  R2

Model Summary

Model R R Square
Adjusted R 

Square
Std. Error of the 

Estimate

1 .915a .838 .791 1.512

Predictors: (Constant), Food intake, Exercisea. 

ANOVAa

Model
Sum of 
Squares df Mean Square F Sig.

1 Regression

Residual

Total

82.500 2 41.250 18.047 .002b

16.000 7 2.286

98.500 9

Dependent Variable: Weight lossa. 

Predictors: (Constant), Food intake, Exerciseb. 

Coefficientsa

Model

Unstandardized Coefficients
Standardized 
Coefficients

t Sig.

Correlations

B Std. Error Beta Zero-order Partial Part

1 (Constant)

Exercise

Food intake

6.000 1.275 4.706 .002

2.000 .333 .987 6.000 .001 .864 .915 .914

-.500 .252 -.326 -1.984 .088 .047 -.600 -.302

Dependent Variable: Weight lossa. 

FIGURE 3.7. SPSS output from a multiple regression analysis of the weight-loss data.

proc reg data=exercise;model wtloss=exercise food/stb pcorr2

scorr2;run;

regress wtloss exercise food, beta

pcorr wtloss exercise food

which will produce output similar in content to Figure 3.7, although it will
be formatted differently. We describe some but not all of the contents of
this output in this chapter. By the time you get to the end of this book, you
will understand what everything in this output means.

As can be seen in Figure 3.7 under the section of output labeled
“Unstandardized Coefficients,” the best-fitting OLS regression model is
Ŷ = 6 + 2X1 − 0.5X2. It is no coincidence that this is the model we used in
the prior section, as we made that model up knowing it would correspond
to what a regression analysis would produce.

In the ANOVA summary in the middle of the output can be found
SSresidual, which is 16. No values of b0, b1, and b2 would produce a smaller
SSresidual than this. To verify yourself that this sum of the squared residuals
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Dependent Variable 

wtloss 

 

Sample size 

         10 

 

Complete Model Regression Summary 

          R       R-sq   Adj R-sq          F          p    SEofEst 

      .9152      .8376      .7912    18.0469      .0017     1.5119

 

ANOVA summary table 

                 SS         df         MS 

Regress     82.5000     2.0000    41.2500 

Residual    16.0000     7.0000     2.2857 

Total       98.5000     9.0000    10.9444 

 

Regression Model 

              Coeff         se          t          p       LLCI       ULCI 

constant     6.0000     1.2749     4.7062      .0022     2.9834     9.0166 

exercise     2.0000      .3333     6.0000      .0005     1.2113     2.7887 

food         -.5000      .2520    -1.9843      .0876    -1.0962      .0962 

 

Simple (r), semipartial (sr), partial (pr) correlations with outcome 

and standardized regression coefficients (stand) 

                  r         sr         pr      stand 

exercise      .8638      .9140      .9150      .9872 

food          .0466     -.3023     -.6000     -.3265 

 

********************* ANALYSIS NOTES AND WARNINGS ************************* 

 

NOTE: Level of confidence for confidence intervals: 

 95.00 

FIGURE 3.8. RLM macro output from SPSS for a multiple regression analysis of the
weight-loss data.

is in fact 16, take a look at the errors in estimate in Table 3.2 (ei) that result
when the model is applied to the 10 cases’ X1 and X2 values. Observe that
when you square these 10 values of ei and then add them up, they do sum
to 16: 1 + 4 + 1 + 1 + 1 + 1 + 1 + 1 + 4 + 1 = 16.

In Appendix A we describe and document a macro for SPSS and SAS
that conducts regression analysis. The SPSS version of the RLM command
to conduct this analysis is

rlm y=wtloss/x=exercise food/stand=1.

The comparable command for the SAS version of RLM is

%rlm (data=exercise,y=wtloss,x=exercise food,stand=1);

(Note that an RLM command won’t work without first running the RLM
program that defines the macro; see Appendix A.) The output from this



58 Regression Analysis and Linear Models

RLM command can be found in Figure 3.8. As can be seen comparing the
RLM output to Figure 3.7, RLM produces much of the same information
as does SPSS’s regression routine (as well as the regression routines in SAS
and STATA).

There is no reason to use RLM for straightforward regression problems
such as this. But RLM has some features and options that make some
analyses easier than what comes built into SPSS’s and SAS’s regression
procedures, and some of those features in RLM can do things that SPSS or
SAS can’t do at all. We describe some of these features when appropriate
throughout this book.

3.2.2 Partial Regression Coefficients

The regression coefficients b1 and b2 are known as partial regression coeffi-
cients, or partial regression slopes. They quantify the relationship between
Y and each regressor while holding all other regressors constant. More
formally, b1 quantifies the amount two cases that differ by 1 unit on X1 are
estimated to differ on Y when X2 is held constant. Similarly, b2 quantifies
the amount two cases that differ by 1 unit on X2 are estimated to differ on
Y when X1 is held constant.

The partial regression coefficient is one of several measures of partial
association that one can quantify with linear regression analysis. In this
section we demonstrate what it means to hold a variable constant mathe-
matically through the process of partialing one variable out of another. As
you will see, we can generate b1 and b2 without regressing Y on X1 and
X2 simultaneously. In practice you will not have to engage in the partial-
ing process we describe here, as it is done automatically by a computer
using matrix algebra when a linear regression analysis is conducted (see
Appendix D for the details). But it will help you to understand what the
partialing process entails.

If X1 and X2 are uncorrelated, no partialing is required to estimate b1

and b2. In that case, you can estimate b1 by regressing Y on X1 alone.
The regression coefficient for X1 in this model is b1 in the model with two
regressors X1 and X2. By the same token, b2 can be estimated by regressing
Y on X2 alone.

More typically, when you conduct a regression analysis the regressors
are correlated to some degree, although some regressors may be more cor-
related with others in models with several regressors. The two regression
coefficients for X1 and X2 can still be generated by regressing Y on X1 and
X2 separately, but only after X1 and X2 have been partialed of their rela-
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FIGURE 3.9. A scatterplot with the regression line estimating food intake (X2) from exer-
cise (X1).

tionship with each other. This involves constructing new measures of X1

and X2 that are independent of the other.
Consider a regression model that ignores Y, in which X2 is predicted

from X1. We’ll call a regression estimating one regressor from the other
regressor(s) in the model a crosswise regression. So imagine a crosswise
regression estimating X2 from X1. This model will generate estimates of
X2 from X1. Figure 3.9 depicts this for the weight-loss example in the form
of a scatterplot of X2 against X1, along with the best-fitting OLS regression
line.

The equation for this regression line is X̂2 = 4 + 0.5X1. This model of
X2 generates estimates of X2 given information about a case’s value of X1.
From these estimates we could construct residuals for each case, defined as
X2−X̂2. Call these residuals X2.1. These residuals correspond to the vertical
distance between each point in the scatterplot and the regression line from
the model estimating X2 from X1. Each case’s residual in the weight-loss
data for this crosswise regression can be found in Table 3.3.

Consider the third person (ID = 3) in Table 3.3. This person did not
exercise at all (X1 = 0). As can be seen in Figure 3.9, the crosswise regression
estimates this person’s food intake to be X̂2 = 4+ 0.5× 0 = 4, or 400 calories
above the minimum recommended. But this person actually consumed 6
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FIGURE 3.10. The regression coefficient b2 is the slope of the line.

units above (600 calories), so this person’s residual is X2.1 = X2−X̂2 = 6−4 =
2. This is the vertical distance between the point in Figure 3.9 labeled “3”
and the regression line. So case 3 consumed 200 calories more than would be
expected given the relationship between exercise and food intake. Using
the same reasoning, the eighth person (ID = 8) consumed 2 units fewer
(200 calories less) than would be expected given the relationship between
exercise and food intake. For case 8, X2.1 = X2 − X̂2 = 4− (4+ 0.5× 4) = −2.
This is the vertical distance between the point in Figure 3.9 labeled “8” and
the regression line.

The residuals from a regression model are linearly uncorrelated with all
regressors in the model, as first discussed in section 2.4. So the correlation
between X2.1 and X1 is exactly zero. Verify this for yourself by correlating
X2.1 and X1 using the data in Table 3.3. Thus, we can call X2.1 the component
of X2 that is independent of X1. Rephrased, the residuals from this crosswise
regression, X2.1, quantify the part of X2 that is unique to X2, meaning that it
cannot be explained by differences between people in X1. So we can think
of X2.1 as a new measure of food intake that provides unique information
about individual differences in food intake relative to the information about
food intake that could be predicted from individual differences in exercise
frequency.
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TABLE 3.3. Data Matrix with Some Residuals

Exercise Food intake Weight loss
ID X1 X2 Y X1.2 X2.1 Y.1 Y.2

1 0 2 6 −1.14 −2.00 2.00 −1.29
2 0 4 2 −1.71 0.00 −2.00 −5.43
3 0 6 4 −2.29 2.00 0.00 −3.57
4 2 2 8 0.86 −3.00 0.50 0.71
5 2 4 9 0.29 −1.00 1.50 1.57
6 2 6 8 −0.29 1.00 0.50 0.43
7 2 8 5 −0.86 3.00 −2.50 −2.71
8 4 4 11 2.29 −2.00 0.00 3.57
9 4 6 13 1.71 0.00 2.00 5.43

10 4 8 9 1.14 2.00 −2.00 1.29

Mean 2 5 7.5 0.00 0.00 0.00 0.00

Now consider a regression model estimating Y from X2.1. That is, let’s
regress Y on X2.1 to generate a model predicting how much weight a person
loses from information about his or her food intake that is independent
of the amount he or she exercises. Figure 3.10 depicts the association
between Y and X2.1, along with the regression line estimating Y from X2.1.
The equation for this line is Ŷ = 7.5 − 0.5X2.1, which you can verify for
yourself from the data in Table 3.3. It is not a coincidence that the regression
coefficient for X2.1 of −0.5 corresponds exactly to b2 in the regression model
estimating Y from both X1 and X2. We can say that controlling for exercise
frequency, or accounting for differences between people in exercise frequency,
or holding exercise frequency constant, two people that differ by 1 unit (100
calories) in food intake are estimated to differ by 0.5 units (50 grams) in
weight loss. The negative sign means that the person who takes in 1 more
unit of food loses 0.5 units less weight.

The same procedure can be used to generate b1. In a crosswise re-
gression, estimate X1 from X2 and construct the residuals X1.2 = X̂1 − X1.
Figure 3.11 depicts this crosswise regression, along with the regression line
estimating X1 from X2. Cases above the line have positive values of X1.2,
meaning they exercise more than expected given the relationship between
food intake and exercise. Cases below the line have negative values of X1.2,
meaning they exercise less than expected given their food intake. These
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FIGURE 3.11. A scatterplot with the regression line estimating exercise (X1) from food
intake (X2).
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FIGURE 3.12. The regression coefficient b1 is the slope of the line.
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residuals quantify the component of X1 that is linearly independent of X2

or unique to X1.
Now regress Y on X1.2, as depicted in Figure 3.12. This generates a model

of weight loss from the part of exercise frequency that is independent of
food intake. The regression line is 7.5 + 2.0X1.2. The regression coefficient
of 2.0 is the slope of the line in Figure 3.12, and it corresponds to b1 in the
regression model estimating Y from X1 and X2 simultaneously. We can
say that controlling for food intake, accounting for differences between people in
food intake, or holding food intake constant, two people that differ by 1 unit (1
hour) in exercise frequency are estimated to differ by 2 units (200 grams) in
weight loss. The positive sign means that the person who exercises more
loses more weight.

So the partial regression coefficient b1 in the model estimating Y from
X1 and X2 simultaneously corresponds to the regression weight estimating
Y from the component of X1 that is unique to X1. And b2 in the model
corresponds to the regression weight estimating Y from the component of
X2 that is unique to X2.

3.2.3 The Regression Constant

The regression constant b0 is interpreted as the estimated value of Y when
all regressors are set to zero. It is chosen so that the mean of the estimates

of Y correspond to the mean of Y (i.e., such that Ŷ = Y). This prevents the
estimated values of Y from either consistently exceeding or consistently
falling below the actual values of Y. When b1 and b2 are known, b0 can be
found from

b0 = Y − (b1X1 + b2X2) (3.1)

In this example, Y = 7.5, b1 = 2, X1 = 2, b2 = −0.5, X2 = 5, so b0 =

7.5 − (2 × 2 − 0.5 × 5) = 7.5 − 1.5 = 6, which corresponds to the value
generated by the OLS regression output from SPSS in Figure 3.7.

If you think about what a good model should do, then equation 3.1
makes sense. If you knew someone was average on the variables used to
generate Ŷ, then you’d expect the model to estimate that he or she would
be average on Y as well. Furthermore, you’d expect that a sensible model
should generate estimates of Y that, on average, equal Y. The regression
constant ensures the resulting model has these properties.
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3.2.4 Problems with Three or More Regressors

We very often want to quantify the relationship between an independent
variable and a dependent variable when controlling for or holding constant
several covariates. For instance, we might want to examine the relationship
between the success in school of adopted children and the school perfor-
mance of their biological mothers while holding constant several measures
of their adoptive environment—school quality, education of the adoptive
parents, number of books in the home, and similar variables. This section
describes the derivation of the partial regression coefficients for a problem
such as this. As before, these are not actual computing directions; their
purpose is to help you see the meaning of the statistics computed.

Let k be the number of regressors in a regression model. Our goal is
to estimate Y from k regressors using linear regression, which will yield a
model of Y that takes the form

Ŷ = b0 + b1X1 + b2X2 + · · · + bkXk

= b0 +

k∑
j=1

bjXj

In the previous section, weight loss was regressed on (modeled as a
linear function of) weekly hours of exercise (X1) and food intake (X2). We
add a new regressor: metabolic rate (X3). Measurements on this variable
can be found in Table 3.4. Using these data, we estimate

Ŷ = b0 + b1X1 + b2X2 + b3X3 (3.2)

Consider the partial relationship between Y and X3, with X1 and X2

held constant. We want to know the relationship between Y and the part of
X3 that is unique to it, meaning uncorrelated with X1 and X2. Recognizing
the residuals from a regression are uncorrelated with all regressors in the
model that generates the residuals, we can easily construct a measure of
X3 that is uncorrelated with both X1 and X2. In section 3.2.2 we defined a
crosswise regression as a regression estimating one regressor from the other
regressors in the model. In this case, the crosswise regression estimating
X3 from both X1 and X2 results in a set of residuals that we denote X3.12.
The residuals from this regression, X3.12, can be found in Table 3.4. You can
verify for yourself that X3.12 is uncorrelated with both X1 and X2.

A scatterplot of Y against X3.12 can be found in Figure 3.13, with the
regression line estimating Y from X3.12 superimposed on the scatterplot.
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TABLE 3.4. Data Matrix Including Metabolism

Exercise Food intake Metabolism Weight loss
ID X1 X2 X3 Y X1.23 X2.13 X3.12

1 0 2 15 6 −0.82 −1.38 1.00
2 0 4 14 2 0.35 1.24 −2.00
3 0 6 19 4 −1.19 0.14 1.00
4 2 2 15 8 1.18 0.10 −2.00
5 2 4 21 9 −0.81 −1.62 2.00
6 2 6 23 8 −1.00 −0.86 2.00
7 2 8 21 5 0.63 2.38 −2.00
8 4 4 22 11 0.74 −0.76 0.00
9 4 6 24 13 0.55 0.00 0.00

10 4 8 26 9 0.37 0.76 0.00

Mean 2 5 20 7.5 0.00 0.00 0.00

The slope of this line is b3 in equation 3.2. In this analysis, b3 = 0.636.
So we can say that two people who consume the same number of calories
and who exercise the same amount (i.e., holding food intake and exercise
constant, or controlling for food intake and exercise) but who differ by 1
unit in metabolism are estimated to differ by 0.636 units in weight loss.
The positive sign for b3 means that the person with higher metabolism is
estimated to lose more weight, which is what you would expect.

We repeat this process to generate b1 and b2. To find b1, estimate the
crosswise regression of X1 on X2 and X3. This produces the residuals
denoted X1.23 in Table 3.4. Regressing Y on these residuals X1.23 yields a
regression weight of 1.046 for X1.23. This is b1 in equation 3.2. So two
people who consume the same number of calories and who have the same
metabolic rate but who differ by 1 hour in exercise frequency are estimated
to differ by 1.046 units of weight loss, with the positive sign denoting that
the person who exercises more loses more weight.

Repeat this process to estimate b2 by regressing X2 on X1 and X3 to
produce X2.13 (see Table 3.4). Regressing Y on X2.13 yields b2 = −1.136. Two
people who exercise the same amount and with the same metabolic rate
(i.e., holding constant or controlling for these two variables) but who differ
by 1 unit in food intake are estimated to differ by 1.136 units in weight loss,
with the negative sign denoting that the person who consumes more loses
less weight.
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FIGURE 3.13. The regression coefficient b3 is the slope of the line.

With the regression coefficients for X1, X2, and X3 derived, the regres-
sion constant can be found. This is a direct extension of the approach used
in a model with only two regressors, and it generalizes to any number of
regressors. For the three regressor case,

b0 = Y − (b1X1 + b2X2 + b3X3)

Inserting b1, b2, and b3 as well as X1 = 2, X2 = 5, X3 = 20, and Y = 7.5 into
this formula yields

b0 = 7.5 − [1.046(2) − 1.136(5) + 0.636(20)] = −1.634

So the final regression model is

Ŷ = −1.634 + 1.046X1 − 1.136X2 + 0.636X3

This model minimizes the sum of the squared residuals, which is 7.091 here
(you can verify this yourself by constructing the residuals from this model,
squaring them, and adding them up). We cannot easily represent this model
visually. With two regressors, the model appears in three dimensions as a
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                                       The REG Procedure

                                         Model: MODEL1

                                  Dependent Variable: wtloss

                            Number of Observations Read          10

                            Number of Observations Used          10

                                      Analysis of Variance

                                             Sum of           Mean

         Source                   DF        Squares         Square    F Value    Pr > F

         Model                     3       91.40909       30.46970      25.78    0.0008

         Error                     6        7.09091        1.18182

         Corrected Total           9       98.50000

                      Root MSE              1.08711    R-Square     0.9280

                      Dependent Mean        7.50000    Adj R-Sq     0.8920

                      Coeff Var            14.49486

                                      Parameter Estimates

                                                                                       Squared

                    Parameter      Standard                        Standardized   Semi-partial

 Variable    DF      Estimate         Error   t Value   Pr > |t|       Estimate   Corr Type II

 Intercept    1      -1.63636       2.92847     -0.56     0.5965              0              .

 exercise     1       1.04545       0.42228      2.48     0.0481        0.51605        0.07354

 food         1      -1.13636       0.29419     -3.86     0.0083       -0.74203        0.17902

 metab        1       0.63636       0.23177      2.75     0.0335        0.79570        0.09045

                                     

                                        Squared

                                        Partial                      Variance

                  Variable    DF   Corr Type II      Tolerance      Inflation

                  Intercept    1              .              .              0

                  exercise     1        0.50533        0.27615        3.62121

                  food         1        0.71320        0.32512        3.07576

                  metab        1        0.55682        0.14286        7.00000

b0, b1, b2 and b3 srj

prj

bj

~ 2

2

SSresidual

R2

FIGURE 3.14. SAS output from a multiple regression analysis of the weight-loss data.

plane. With three regressors, the model is a “hyperplane” (a plane in space
of more than three dimensions).

But as with the two regressor case, there would be no need for you to
ever actually conduct these crosswise regressions, calculate the residuals,
and then regress Y on these residuals to generate the regression coefficients
and constant for this model. A linear regression module in any decent
statistical package will find the values of b0, b1, b2, and b3 for you that mini-
mize the sum of the squared residuals. An example output from SAS can be
found in Figure 3.14. Observe that it produces the same regression constant
and regression coefficients, and SSresidual is 7.091. No other combination of
values of b0, b1, b2, and b3 generate a smaller sum of squared residuals.
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3.2.5 The Multiple Correlation R

The correlation between Ŷ from a regression model and Y, the actual values
in the data, is called the multiple correlation coefficient and denoted R. R is
reported by almost all regression programs. R is frequently used as a
measure of model fit, as it quantifies the correspondence between what the
model estimates for Y and the actual values of Y it is attempting to estimate.
So larger values of R correspond to better fit, unlike SSresidual, where smaller
values reflect better fit.

As can be seen in Figure 3.7, R = 0.915 for the model estimating weight
loss from food intake and exercise. When metabolism is added to the
model, R = 0.963. These are exceptionally large values of R—higher than
you would typically find in research. But it makes sense in this case, as
you’d expect a combination of metabolism, the amount people eat, and how
much they exercise during a given period of time would predict very well
the amount of weight they lose during that period of time. Furthermore,
all other things being equal, R tends to be big in very small samples such
as this one. We shall see in Chapter 4 that R tends to exaggerate the fit
between model and data, especially in small samples. Better measures of
overall fit are introduced there.

R is never negative and would rarely be zero. It is almost always
positive, but it cannot exceed 1. To understand why, consider a scatterplot
showing a negative correlation between X and Y, as in Figure 3.15, panel A.
In this sample there is perfect linearity, so the regression line goes through
the three conditional means. Thus, Ŷ = 4 for the two cases on the left, 3
for the three cases in the middle, and 2 for the two on the right. But notice
that if you put Y on the X-axis and Ŷ on the Y-axis, as in Figure 3.15, panel
B, the correlation between Y and Ŷ is positive. Imagine the usefulness of
a modeling procedure that would allow the correlation between what the
model estimates and reality to be negative. Such a procedure would never
be used. At its worst, a regression model will produce estimates of Y that
are uncorrelated with Y, in which case R = 0. But as a Pearson correlation
(between Ŷ and Y), R cannot exceed 1 because Pearson’s r can’t exceed 1.
At its best, R equals 1 if and only if Y = Ŷ for every case in the data.

R also never falls below the absolute value of any regressor’s simple
correlation with Y. That is, R ≥ |rYXj | for all j. This is because R is the
correlation between Y and a weighted sum of regressors (Ŷ) constructed
such that it is maximally correlated with Y. But Xj is a weighted sum of
regressors in which Xj is weighted 1 and all other regressors are weighted
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FIGURE 3.15. R is positive even though rXY is negative.
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zero. So Xj is one possible weighted sum of the regressors, and the absolute
value of its correlation with Y could not exceed R.

If a regressor Xj makes absolutely no independent contribution to the
prediction of Y beyond what the other regressors in the model contribute,
then we will find that bj = 0 and R will be the same whether Xj is in the
model or not. But since the regression procedure will set bj to zero if doing
so minimizes SSresidual, then adding a variable to a regression model could
never lower R.

3.3 Scale-Free Measures of Partial Association

As discussed in section 3.1.3, the partial regression coefficients bj are scale-
bound. Changing the units of measurement of a regressor in a model by
multiplying or dividing all the measurements by a constant will change the
regression coefficient for that regressor both in absolute terms and relative
to other regression coefficients. This section introduces various measures of
partial association that are scale-free. Their values will not change merely
by multiplying or dividing a regressor by a constant.

3.3.1 Semipartial Correlation

We began this chapter by illustrating a regression model with two regres-
sors in which Y (weight loss) was regressed on X1 (exercise) and X2 (food
intake). We said earlier that the slopes of regression lines in Figures 3.10
and 3.12 are the partial regression coefficients for X2 and X1 in that model,
respectively. For reasons that will soon become clear, these scatterplots are
called semipartial scatterplots, and the correlations between Y and X1.2, and
between Y and X2.1 are called semipartial correlations, although some refer
to these as part correlations. These correlations are denoted sr1 and sr2. In
this example, sr1 = 0.914 and sr2 = −0.302. More generally, we use srj to
denote the semipartial correlation for regressor j.

Most regression programs will not produce the semipartial correlations
in the output by default, but some regression programs will give them to
you if you ask for them. The commands starting on page 55 include options
to request the semipartial correlations as well as the partial correlations,
described next. They can be found in the outputs in Figures 3.7 and 3.14.
Observe that SAS reports sr2

j rather than srj. The squaring removes the
sign, but the sign of srj is always the sign of bj.
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FIGURE 3.16. A partial scatterplot of the relationship between Y and X2 controlling for
X1.

3.3.2 Partial Correlation

In section 2.4 we discussed the residuals in a model with a single regressor
at length. In this chapter, thus far we have discussed residuals primarily
in the context of a crosswise regression, in which a regressor is estimated
from another regressor or set of regressors. That now changes. Consider
that your focus is on quantifying partial association for two regressors X1

and X2 in a model of Y that includes only those two regressors, such as the
model described in section 3.1. Let Y.1 denote the residuals from a model
estimating weight loss (Y) from exercise frequency (X1) alone, and let Y.2
denote the residuals from a model estimating weight loss from food intake
(X2) alone. Knowing that residuals are uncorrelated with all regressors in
the model, Y.1 will be uncorrelated with X1, and Y.2 will be uncorrelated
with X2. So Y.1 and Y.2 are new measures of weight loss that have been
partialled out of their relationship with exercise frequency and food intake,
respectively. These two sets of residuals can be found in Table 3.3.

Figure 3.16 shows a scatterplot of Y.1 against X2.1. Recall that X2.1 is
the residual from a crosswise regression estimating X2 from X1. This figure
is similar to but not the same as Figure 3.10, which plotted Y against X2.1.
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FIGURE 3.17. A partial scatterplot of the relationship between Y and X1 controlling for
X2.

In words, Figure 3.10 plots all of Y against part of X2, whereas Figure 3.16
plots part of Y—the part independent of X1—against the the part of X2 that
is independent of X1. Therefore, we call Figure 3.16 a partial scatterplot and
Figure 3.10 a semipartial scatterplot. Figure 3.17 is also a partial scatterplot,
but with the roles of X1 and X2 reversed compared to Figure 3.16. It plots
the part of Y independent of X2 against the part of X1 independent of X2.

The correlation between Y.1 and X2.1 depicted in the scatterplot in Figure
3.16 is called the partial correlation between Y and X2 controlling for X1.
It is the correlation between these two sets of residuals. Similarly, the
correlation between the Y.2 and X1.2 residuals in Figure 3.17 is the partial
correlation between Y and X1 controlling for X2. These are denoted pr2

and pr1, respectively. In this example, pr1 = 0.915 and pr2 = −0.600. In
general, we denote the partial correlation between Y and Xj controlling for
all other regressors in the model prj. The partial regression weight bj, the
partial correlation prj, and the semipartial correlation srj always have the
same sign, though they usually have different values.

It can be shown that the regression slope in a partial scatterplot always
equals the slope in the corresponding semipartial scatterplot. That is, the
slope of the line in Figure 3.16 is the same as the slope of the line in Figure
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3.10. The same is true for the slopes in Figures 3.17 and 3.12. So we don’t
need to distinguish between partial slopes and semipartial slopes. We just
call them partial regression slopes or partial regression weights. These are
the same as the partial regression weight for Xj in a model that includes Xj

and all the other regressors being controlled when the measures of partial
association are constructed.

The last sentence of the prior paragraph is important. Values of srj and
prj are always defined in terms of all the variables in the model. So if X3

were included in the model along with X1 and X2, then sr1 is defined as the
correlation between Y and X1.23, the portion of X1 independent of both X2

and X3, and pr1 is the correlation between Y.23 and X1.23, the portions of Y
and X1 independent of X2 and X3.

The partial correlation has three interpretations, depending on whether
it is squared or not. When unsquared, it is interpreted as an estimate
of the correlation between Y and Xj when all other regressors are held
constant. So it can be thought of as a correlation between Y and Xj that has
been “corrected for” their shared association with other regressors. When
squared it can be interpreted as the proportion by which the variance of
the residuals shrinks when Xj is added to the model. Its squared value is
also interpreted as the proportion of the variance in Y not explained by the
other regressors in the model that can be explained by regressor Xj. We
further discuss the interpretation of the semipartial and partial correlations
in section 3.4.1, and we offer a fourth interpretation in section 8.3.

Like the semipartial correlation, the partial correlation for each variable
in a model is not usually generated automatically by a regression program,
but many will print them if you ask. We did so when Figures 3.7 and 3.14
were generated in SPSS and SAS, and you will find the partial correlations
(in SPSS) or squared partial correlations (in SAS) in these outputs as a result.

3.3.3 The Standardized Regression Coefficient

A third measure of partial association is the standardized partial regression
coefficient, which we denote b̃ j to distinguish it from the unstandardized
regression coefficient bj. In section 2.3 we introduced the standardized
regression coefficient as the regression coefficient for X when you estimate
Y from X after first standardizing both. In a model with more than one
regressor, the standardized partial regression coefficient for regressor j is
the regression coefficient for Xj when Y and Xj are standardized prior to
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running the regression. But you can calculate it without actually doing this
regression on standardized variables by using

b̃ j = bj
sXj

sY

where sXj and sY are the standard deviations of Xj and Y, respectively. For
instance, in the two-regressor example we have been focusing on, b1 = 2,
sX1 = 1.549, and sY = 3.138, so b̃1 = 0.987. You can verify for yourself that
b̃2 = −0.326.

The standardized partial regression coefficient is interpreted just as is
the unstandardized regression coefficient bj, but the metric of discussion
is standard deviations of Xj and Y rather than their original metrics. That
is, two cases that differ by one standard deviation on Xj are estimated to
differ by b̃ j standard deviations on Y, holding all other regressors constant.
Given b̃1 = 0.987, we can say that two people who differ by one standard
deviation in exercise frequency but who consume the same amount are
estimated to differ by 0.987 standard deviations in weight loss, with the
positive sign meaning that the person who exercises more is estimated to
lose more weight. The sign of b̃ j will always be the same as the signs of bj,
srj, and prj.

Many people use b̃ j as a measure of the relative importance of a regressor
in a model. That is, if b1 is larger than b2, then some would say that X1

is more important in a statistical sense than is X2 in estimating Y. But
as we discuss in Chapter 8, this isn’t necessarily true, and we prefer the
semipartial correlation as a measure of relative importance. In addition,
many people use β or spell out “beta” when talking or writing about the
standardized regression coefficient. As noted in Chapter 1, β is used in
many ways in statistics as well as in regression analysis, so we don’t follow
this semiconvention, because doing so invites confusion.

If the investigator chooses the values of a regressor or manipulates them
experimentally rather than observes them naturally, then the standardized
regression coefficient does not quantify anything that generalizes to the
natural world. This is because the standard deviation of Xj and therefore
the value of b̃ j will be determined by the choice the investigator makes
about the values of this regressor. Even if Xj is a nominal and dichotomous
variable, such as whether a person is exposed to a message or not in an
experiment in order to assess the effects of the message on something like
attitudes, the value of b̃ j will be determined in part by the distribution of
the cases between the two groups. We discuss this in more detail in section
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5.1.5. For this reason, we discourage the use of standardized regression
coefficients as a measure of partial association in these circumstances.

Most regression programs will produce the standardized partial regres-
sion coefficients in output, although they won’t all do so automatically.
SPSS will print them whether you want them or not, whereas SAS and
STATA require that you request them. They can be found in Figures 3.7
and 3.14 for the two models we have been considering in this chapter.

3.4 Some Relations among Statistics

3.4.1 Relations among Simple, Multiple, Partial, and Semipartial
Correlations

We have now discussed three scale-free measures of partial relationship:
prj, srj, and b̃ j. The three measures are often but not always similar numer-
ically. In the weight-loss example, sr1 = 0.914, pr1 = 0.915, b̃1 = 0.987, and
sr2 = −0.302, pr2 = −0.600, b̃2 = −0.327. The proper use of each has been a
matter of some debate and confusion. We offer some of our own opinions
on this topic in Chapter 8. For now, suffice it to say that each has certain
good uses.

In Chapter 2 we learned that r2
XY is the proportion of the variance in

Y explained by X, and 1 − r2
XY is the proportion unexplained. In similar

terms, R2 is the proportion of the variance in Y explained by the model
as a whole—meaning the entire set of regressors. We will make this more
explicit in Chapter 4 when introducing the regression sum of squares and
total sum of squares. If R2 is the proportion of the total variance in Y
explained by the entire set of regressors, we can define a single regressor’s
unique contribution to the variance in Y explained as the amount that R2

would drop if that regressor were removed from the model. Alternatively,
it can be defined equivalently as the amount that R2 increases when it is
added to the model.

This difference in R2 that results when regressor j is added or removed
from a model is equivalent to sr2

j , its squared semipartial correlation. In
the two-regressor example modeling weight loss as a function of exercise
frequency and food intake, R2 = 0.837. If food intake (X2) were dropped
from the model, then only X1—exercise frequency—would remain. In that
case, R2 = r2

YX1
= 0.746. Thus, the contribution of X2 to variance explained

in Y is 0.837− 0.746 = 0.091, which is indeed the square of X2’s semipartial
correlation: sr2

2 = 0.3022 = 0.091. Rephrased, the proportion of the variance



76 Regression Analysis and Linear Models

explained in weight loss increases by 0.091 when food intake is added to a
model that includes only exercise frequency. Using the same computations,
you will find that when exercise frequency is added to a model of weight
loss that includes only food intake, R2 increases from 0.002 to 0.837. This
increase is equivalent to the squared semipartial correlation for exercise
frequency: sr2

1 = 0.9142 = 0.835.
So sr2

j quantifies how much of the variance in Y is uniquely explained

by Xj. It might be more useful to redefine sr2
j as the proportion of the total

variance in Y uniquely explained by Xj to distinguish it from pr2
j , which

quantifies the proportion of the variance in Y unexplained by all the other
regressors in the model that can be uniquely explained by Xj. The difference
in language is subtle but important. Consider the model of weight loss
that includes only exercise frequency. For this model, R2 = 0.746. So
the proportion of the variance in Y not explained by exercise frequency is
1−0.746 = 0.254. We know that when food intake is added to the model, R2

increases by 0.091, which is sr2
2, to 0.837. So the proportion of the variance

in Y that was not accounted for by exercise frequency that is accounted for
by food intake is 0.091/0.254 = 0.360. But this is the square of food intake’s
partial correlation: pr2

2 = −0.6002 = 0.360.Using the same logic, we can say
that the proportion of the variance in weight loss not explained by food
intake that is explained by exercise frequency is pr2

1 = 0.9152 = 0.837.
So sr2

j and pr2
j are both measures of the proportion of the variance in

Y uniquely explained by regressor j, but they differ with respect to the
reference point used for calculating the contribution. Whereas sr2

j gauges
Xj’s unique contribution to explaining variance relative to all of the variance
in Y, pr2

j indexes Xj’s contribution relative to the part of the variance in Y
that remains unexplained by all the other regressors in the model.

Define R2
k as the squared multiple correlation estimating Y from all k

regressors in a model and R2
(k− j) as the squared multiple correlation esti-

mating Y from those same k regressors except for regressor j. Then the
following relations hold:

R2
k = R2

(k− j) + sr2
j

sr2
j = R2

k − R2
(k− j)

pr2
j =

sr2
j

1 − R2
(k− j)
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From these equations, it can be derived that a variable’s partial corre-
lation with Y usually exceeds its semipartial correlation with Y in absolute
value, and its semipartial correlation can never exceed its partial correla-
tion. The former is apparent when you consider that pr2

j is sr2
j divided

by a number that is never larger than 1 and almost always smaller. This
means that pr2

j is generally more distant from zero than is sr2
j . So ignoring

sign, a variable’s partial correlation is the upper bound on its semipartial
correlation.

Considering the two-regressor model as a special case and letting R2 be
the squared multiple correlation for the model containing both X1 and X2:

R2 = r2
YX1
+ sr2

2

= r2
YX2
+ sr2

1

which has as a special case when rX1X2 = 0,

R2 = r2
YX1
+ r2

YX2

When two or more regressors correlate highly, R2 may fall well below the
sum of the squared correlations between Y and each of the regressors.
Indeed, R2 may be only slightly larger than the largest r2

YXj
. In fact, each

regressor’s unique contribution may be quite small even though the regres-
sors when treated as a set explain a substantial proportion of the variability
in Y. Such regressors are said to be collinear.

Although the individual values of r2
YXj

set a lower limit on R, they set
no upper limit. Artificial examples can be created in which all values of
r2

YXj
are small or zero but R is near 1 or even equal to 1 (Hamilton, 1987).

For example, consider the data in Table 3.5 from 10 schoolchildren. In these
data, X1 is skill at softball, and X2 is skill at basketball. The correlation
between skill at softball and basketball is high, as you might expect given
that some kids are more athletic and dextrous than are others: r = 0.918.
Suppose Y is the response to the question “On a scale from 1 to 9, which
sport do you prefer?”, where 1 = much prefer softball, 5 = no preference,
and 9 = much prefer basketball. Further suppose that a child’s preference
is determined primarily by the difference between his or her skill in the
two sports, with every child preferring the sport in which he or she excels
relative to the other. In these data, the correlation between each skill and
preference is negative, but only slightly so: rYX1 = −0.209, rYX2 = −0.195.
Yet the two skill measures almost perfectly predict preference in a linear
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TABLE 3.5. Skill at Softball, Basketball, and Preference

Softball Basketball Preference
ID X1 X2 Y

1 4 17 1
2 56 60 3
3 25 3 8
4 50 52 4
5 5 16 2
6 72 84 2
7 100 95 5
8 39 20 8
9 81 75 5

10 61 47 7

regression analysis, R = 0.993. To understand why, recognize that this
difference in skill is one possible linear function of the two skill measures.
So when sport preference is regressed onto the two skill measures, R is
very high, because preference is driven by the difference in skill. The
regression equation is Ŷ = 3.899+0.198X1−0.195X2, which is approximately
Ŷ = 3.899 + 0.2(X1 − X2).

We call a set of regressors complementary if R2 for the set exceeds the sum
of the individual values of r2

YXj
. Thus, complementarity and collinearity

are opposites, though either can occur only when regressors in a set are
intercorrelated. As discussed later in section 5.3.3, either collinearity or
complementarity can exist within a subset of the whole set of regressors.
For instance, in a problem with several regressors, two of them could be
collinear or complementary with each other but independent or nearly
independent of all other regressors.

3.4.2 Venn Diagrams

In our experience teaching regression, the distinction between the partial
and semipartial correlation is one of the toughest for students of regression
to master. The Venn diagram in Figure 3.18 will likely help keep them
straight. The Venn diagram represents relationships between variables,
and the relative sizes of areas in the diagram reflect measures of squared
association. Not all possible patterns of association can be depicted in a
Venn diagram but many can. In the diagram in Figure 3.18 there are two



Partial Relationship and the Multiple Regression Model 79

A

B

C

D

X1 X2

Y

R2 = (A + B + C) / (A + B + C + D)

sr2 = A / (A + B + C + D)
1

pr2 = C / (C + D)
2

pr2 = A / (A + D)
1

sr2 = C / (A + B + C + D)
2

FIGURE 3.18. A Venn diagram.

regressors, X1 and X2, and a dependent variable, Y. These variables are
depicted here in what we call the standard configuration, where all three
variables are correlated with each other to some degree. This is the cir-
cumstance you are most likely to encounter when conducting a regression
analysis.

The total area of the Y circle in the Venn diagram is the sum of the areas
labeled A, B, C, and D and can be thought of as the total variance in Y. The
squared correlation between X1 and Y is the ratio of (A + B) over (A + B +C
+D). It is the proportion of the variance in Y shared with X1. Likewise, the
squared correlation between X2 and Y is (B + C) over (A + B + C +D). And
if Y were regressed on X1 and X2, then R2 is the proportion of the variance
in Y explained by X1 and X2, and it corresponds to the ratio of (A + B + C)
over all of Y. Thus, R2 = (A + B + C)/(A + B + C + D).

With ratios of areas in a Venn diagram reflecting squared association,
sr2

1—the proportion of the variance in Y uniquely explained by X1—is the
proportion of the variance in Y (or A + B + C + D) shared only with X1

(or A in the diagram). Thus, sr2
1 is A/(A + B + C + D). Similarly, sr2

2 is the
proportion of the variance in Y shared only with X2, or C/(A + B + C + D).
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In contrast, the squared partial correlation between X1 and Y is the
proportion of the variance in Y not explained by X2 that can be uniquely
explained by X1. The proportion of the variance in Y not explained by X2

is A + D in the Venn diagram. Of this remaining variance in Y, the part it
shares with X1 is A, and thus pr2

1 = A/(A + D). Using a similar logic, pr2
2 =

C/(C + D).
If the Venn diagram and the previous explanation don’t help clarify the

semi- and partial correlations, perhaps adding a food analogy will. Suppose
you are second in line for a slice of pie. In front of you is Uncle Patrick, and
behind you is your sister Amanda. Call Uncle Patrick X2, yourself X1, and
the pie Y. Uncle Patrick gets first dibbs at eating part of the pie. Suppose
he takes the area of the pie in the Venn diagram corresponding to B + C.
That leaves A + D for you and Amanda and anyone who comes after her.
Suppose you take A, leaving D for Amanda and everyone else.

The area you have taken can be interpreted in two ways. On the one
hand, you’ve eaten a certain fraction of the total pie. This is A/(A + B +
C + D). In the Venn diagram in Figure 3.18, this looks like about 15% of
the pie, or 0.15 in proportion terms. This is sr2

1. Amanda might complain
that you got more than this, however. From her perspective, what Uncle
Patrick took is long gone. She wasn’t going to get a shot at this. She is
more worried about the amount you take, because she is next in line. From
her perspective (and in terms of Figure 3.18), you took what appears to be
about 25% of the remaining pie. In proportion terms, this is 0.25, or pr2

1.
Did you get 15% or 25% of the pie? That depends on your perspective.

In the same way, sr2
1 and pr2

1 differ in the perspective they take about X1’s
role in explaining variation in Y. sr2

1 gauges variance uniquely explained by
X1 relative to all of Y, whereas pr2

1 references X1’s contribution to explaining
Y relative to variance in Y not already explained by X2.

3.4.3 Partial Relationships and Simple Relationships May Have
Different Signs

We have seen that bj, srj, and prj all have the same sign. Intuition would
suggest that these measures of partial association would have the same
sign as the simple association between regressor Xj and Y. However, this
intuition is faulty. Recall the preschool examples of section 1.1.3, where
we saw that in Holly City, preschool had a negative simple relationship
to later school readiness, but a positive partial relationship when SES was
controlled. In Ivy City, the simple relationship was positive but the partial
relationship was zero. So we have seen in two examples already that the
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sign of a variable’s simple relationship with Y is not necessarily diagnostic
of the sign of its partial relationship with Y. Similar paradoxes can arise
when variables are continuous.

In section 3.4.5 we provide formulas for various measures of partial
association. We bring one to your attention here to make this point ana-
lytically. Although this discussion is framed in terms of correlations and
assumes one independent variable and one covariate, it generalizes to any
number of regressors and the other measures of partial association we have
discussed.

The partial correlation between independent variable X1 and Y when
controlling for covariate X2 is

pr1 =
rYX1 − rYX2rX1X2√
1 − r2

YX2

√
1 − r2

X1X2

(3.3)

Notice that the denominator of equation 3.3 cannot be negative, so we know
that the sign of pr1 is determined by the sign of the numerator of equation
3.3. The numerator contains rYX1 , the simple correlation between Y and X1.
If X2 is uncorrelated with X1 and Y, then we know that pr1 = rYX1 , and thus
the simple and partial correlations for X1 have not only the same sign but
are also equal. However, equation 3.3 shows that pr1 could be opposite in
sign to rYX1 if rYX2rX1X2 is further from zero than rYX1 , which can certainly
happen and often does. And there is nothing to preclude equation 3.3 from
producing a nonzero value for pr1 when rYX1 = 0. That would occur if both
rYX2 and rX1X2 are different from zero.

So an independent variable correlating positively with Y could get a
negative partial regression weight, or vice versa, depending on the sizes
and signs of the correlations between covariates and Y and between the co-
variates and the independent variable. And a variable that is uncorrelated
with Y may nevertheless receive a nonzero regression weight. We will see
in section 7.4.5 that similar paradoxes also arise when regression is used for
prediction. Some people call the situations we just described suppression,
but this term has many definitions in the statistics literature. We reserve
the use of this term to the situation we describe later.

3.4.4 How Covariates Affect Regression Coefficients

Suppose you have already computed a simple or partial regression coef-
ficient for an independent variable X, possibly in the presence of several
covariates collectively labeled U, and you are considering adding one more
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covariate C to the regression model. How will doing so change the regres-
sion coefficient for X? To find out precisely, you add C to the regression
and see what happens to bX. Here we give some rules that may enable
you to guess at least the sign of the change in bX without running a new
regression—is the change going to be positive, negative, or zero?

The sign of the change in bX in this scenario will be the product of the
signs of two correlations: prC and prCX.U. Here, prC is the partial correlation
between Y and C with X and U held constant, while prCX.U is the partial
correlation between C and X with U held constant. Of course, if there are
no other covariates U, then prCX.U reduces to rCX.

This rule means that if either prC or prCX.U is zero, then adding C to the
regression does not change bX at all. If the two correlations agree in sign
(either both positive or both negative), then bX increases, while if the two
correlations have opposite signs, then bX decreases. Here “increase” means
moving right on the number line and “decrease” means moving left on the
number line, rather than becoming more distant from zero. So either an
increase or a decrease in bX could mean getting closer to zero, depending
on what bX is before C is added.

There is no easy way to set a limit on the magnitude of the change in bX

produced by C; bX may change in sign, and may either increase or decrease
in absolute value. The simple regression formula b = rXY(sY)/sX tells us
that in simple regression, b cannot exceed sY/sX in value since −1 ≤ r ≤ 1.
But there is no comparable limit in multiple regression; even with variables
standardized so that sX = sY = 1, bX could theoretically fall far above 1 or
below −1, although this would tend to be rare.

3.4.5 Formulas for bj, pr j, sr j, and R

We have seen that bj, prj, srj and R can be defined in terms of residuals, and
that one need not estimate a multiple regression model to generate these
measures of partial association. In fact, one need not have a regression
program at all, as they can be computed from nothing other than Pearson
correlations and standard deviations. The formulas for three or more re-
gressors are too complex to include here. But for two regressors X1 and X2,
the formulas are
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b1 =
rYX1 − rYX2rX1X2

1 − r2
X1X2

× sY

sX1

b2 =
rYX2 − rYX1rX1X2

1 − r2
X1X2

× sY

sX2

pr1 =
rYX1 − rYX2rX1X2√
1 − r2

YX2

√
1 − r2

X1X2

pr2 =
rYX2 − rYX1rX1X2√
1 − r2

YX1

√
1 − r2

X1X2

sr1 =
rYX1 − rYX2rX1X2√

1 − r2
X1X2

sr2 =
rYX2 − rYX1rX1X2√

1 − r2
X1X2

R2 = r2
YX1
+ sr2

2 = r2
YX2
+ sr2

1

3.5 Chapter Summary

A multiple regression model is a linear model with more than one predictor
or regressor. Just as in a model with only a single regressor, an ordinary least
squares regression routine can derive a linear combination of regressors that
minimizes the sum of the squared residuals when Y is estimated from k
regressors. The resulting weights for each regressor in the model are called
partial regression weights or partial regression slopes. The partial regression
weight for regressor j provides information about the relationship between
regressor j and Y when holding all other regressors constant, also called
statistically controlling for those other regressors. There are several measures
of partial association, including the partial regression weight, the partial
and semipartial correlation, and the standardized partial regression weight.
They have different interpretations, but each in some way quantifies the
unique relationship between regressor j and Y.

Thus far our treatment of linear regression analysis has been entirely
descriptive in nature. That is, we have focused on the estimation of a model
and interpretation of various statistics that describe the association between
variables in the model. In the next chapter we switch our focus away from
description and direct it toward statistical inference, acknowledging that



84 Regression Analysis and Linear Models

the statistics computed in any sample are specific to that sample, and that
we often want to generalize the knowledge we acquire through regression
analysis to a broader population or to the process generating the data.



4
Statistical Inference in Regression

This chapter addresses statistical inference in linear regression. It be-
gins with a conceptual overview of the primary and secondary assump-
tions of inference in regression analysis, followed by a deconstruction of
the ANOVA summary table provided by most regression programs. Also
defined are the regression and total sum of squares, degrees of freedom,
and mean squares. Null hypothesis tests and interval estimates for par-
tial regression coefficients, multiple correlations, and partial correlations
are described. Significant attention is devoted to the factors that affect
the standard error of a regression coefficient, as well as collinearity be-
tween regressors and its effect on inference.

4.1 Concepts in Statistical Inference

4.1.1 Statistics and Parameters

The first three chapters have couched linear regression analysis in purely
descriptive terms. We’ve seen how the least squares criterion in linear re-
gression analysis generates an estimate of Y (denoted Ŷ) that is a linear
combination of regressors, with each regressor given a weight so as to
maximize the correspondence between Y and Ŷ. Various statistics can be
constructed along the way, such as the proportion of variance in Y ex-
plained by the model, measures of partial association, and so forth. These
all describe in one way or another, in numerical terms, something about
the relationship between Y and the regressors in the model in the data set.

All the quantities we’ve calculated to this point are sample specific.
They are statistics. The term statistic is often used to refer to the value
of some index or quantity that is a property of a particular sample. For
instance, the mean weight loss of the 10 people in the exercise and weight-
loss example we’ve been using thus far is a statistic, as is the standard
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deviation of weight loss, as is R—the correlation between Y and Ŷ in any
of the models we’ve estimated. They are sample specific in the sense that if
we calculated these quantities in exactly the same way but using a different
set of 10 people, they would almost certainly be different. Indeed, if any of
them were the same, we’d be witnessing something very improbable, and
probably just a coincidence.

Statistics are often used as estimators of their corresponding parameters,
sometimes called their true values or population values. Parameter has several
meanings, but for our purpose it is sufficient to think about a parameter
as the value of the corresponding statistic that you would get if you had
an infinitely large sample size or, alternatively, if the cases in your analysis
constitute all cases that could have been included if you had unlimited
resources and time and could collect data from (in the case of people)
everyone in the population you are studying. Such a sample is given a
special name—it is a census.

In this ideal but impossible reality of infinite sample size or statistics
based on a census, statistics cannot vary from sample to sample, because
there would be only one possible sample. The statistics we calculate are
parameters—their true values—in this case. But statistics vary from sample
to sample in the real world of research because our samples are not infinite
in size. And rarely do we have a census of a population. The statistics you
have calculated are what they are in part just by the luck of the draw—the
fact that you included these 10 people in your study rather than those 10
people. We call this sampling variance. Sampling variance is largely an
unavoidable fact of life in data analysis, but it can be estimated, and it can
be managed. We use information about sampling variance along with our
statistics to conduct statistical inferences, which is the topic of this chapter.
This chapter merely introduces statistical inference in regression by focus-
ing on the more common inferential tasks and tests used by researchers.
The topic also arises in later chapters.

The goal of population inference is to make a statement about the un-
known (a parameter) from a known (the corresponding statistic). But
sampling variance gets in the way. We know that our statistics vary from
their true values—the population values or parameters—merely as a result
of calculating the statistics on one set of cases rather than on another set.
But fortunately we have an arsenal of statistical theory to help us make
the leap from the known to the unknown. We assume that you’ve already
been exposed to the theory of statistical inference at some point and have
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probably already done an inference or two in your life as a scientist, so we
do not go into the theory in detail in this book.

We deal with many kinds of statistics and parameters in regression
analysis: multiple and partial correlations, simple and partial regression
weights, residual variances, partial multiple correlations (introduced later
in Chapter 5), marginal and conditional means, regression constants, and
so forth. It is common to use Greek letters to refer to parameters and
Roman letters to refer to statistics. If we followed this convention, you’d
have to remember the names and meanings of the entire Greek alphabet.
Furthermore, the same Greek symbols are used to mean different things,
depending on context. To avoid this confusion, we use a nonstandard
approach but one that we have found helpful. A presubscript T before a
symbol or abbreviation will denote a parameter, true value, or population
value (terms that mean the same thing in this book). Thus, Tbj, TR, and Tprj

denote, respectively, a population regression weight, a population multiple
correlation, and a population partial correlation. In words, you might say
“sub-T-b-sub-j” or “true p-r-sub-j.”

This chapter considers inferences concerning three types of parameters:

• The multiple correlation TR

• The simple and partial regression coefficient Tbj

• The simple and partial correlation Tprj

and four inferential problems:

• Estimating the parameter

• Testing the null hypothesis that the parameter equals zero

• Testing other null hypotheses about the parameter

• Constructing a confidence interval for the parameter

In combination, this gives 3 × 4 = 12 types of inference. This chapter
covers most of them in one way or another, although some are less impor-
tant than others and so space is differentially allocated to these problems
depending on their importance. We leave out one important family of
parameters involving subsets of regressors and corresponding inferential
problems. This topic is addressed in Chapter 5 when we address multidi-
mensional sets.

Given that any correlation is determined in part by the variation of the
variables in the sample, it would seem that some of these tests are of limited
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use given that correlations are therefore properties of the specific sample.
In particular, when the investigator determines variability of the variables
(e.g., when a quantitative regressor is experimentally manipulated), all
correlations are properties of the experiment itself rather than of the natural
world. But it turns out that this is not such a problem when testing a
hypothesis that a correlation is zero, because hypotheses about association
between variables can always be stated without reference to correlations, as
hypotheses about a relationship captured by statistics that are not sensitive
to artificially induced, researcher-imposed constraints on variation, such as
a regression weight.

4.1.2 Assumptions for Proper Inference

There are four assumptions made for proper statistical inference in linear
regression analysis that we call the standard assumptions of regression the-
ory. In our discussion we distinguish between primary assumptions and
secondary assumptions, although this terminology is not standard. A pri-
mary assumption is one that, when violated, jeopardizes the very meaning
of the parameter you are estimating with the model. A secondary assump-
tion is one that, when violated, may threaten the accuracy of the inference
we make about a parameter, but not the very meaning of the parameter
itself. We introduce these assumptions here only conceptually. We address
each of them in one form or another later in the book.

The first assumption is linearity, and it is a primary assumption. The
assumption of linearity states that conditional means of Y fall in a straight
line. Recall that a conditional mean is a mean conditioned on a value of the
regressor or regressors in the model. To interpret bj as an estimate of the
amount by which two cases that differ by one unit on Xj differ on Y, we must
assume that the conditional means of Y given Xj (controlling for all other
regressors if others are in the model) fall in a straight line. Recall that Ŷ is
used as an estimate of the conditional mean of Y. If we can’t assume that the
conditional means we are attempting to estimate are linearly related to the
regressor of interest, then this jeopardizes the meaning of the regression
coefficient for that regressor and any inference about it. A violation of
linearity would mean that the amount that two cases differing by 1 unit
on Xj actually differ on Y depends on Xj. If this were the case, then the
relationship between Xj and Y is not a line but, instead, a curve of some
kind. If the real relationship between Xj and Y is curvilinear, any estimate
of Tbj generated by a regression analysis will be a mischaracterization of
the true association.
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The second assumption goes by the tongue-twisting name of ho-
moscedasticity, sometimes but less frequently spelled with a k as homoskedas-
ticity. The homoscedasticity assumption is a secondary assumption, and
it states that the conditional distributions of Y have equal variances. Con-
sider a simple regression model estimating Y from a single regressor X.
The homoscedasticity assumption would be violated if, in the population,
the variance in the values of Y differed for different values of X. This is a
secondary assumption because violating it will only influence the accuracy
of the inference about certain parameters in a model. Research shows that
minor violations of homoscedasticity (called heteroscedasticity) don’t cause
too much of a problem, but the assumption is important enough that you
need to be aware of what heteroscedasticity is and its effects.

The third assumption concerns the shape of the conditional distribu-
tions of Y. For statistical inferences to be exact, these distributions must be
normal. Note that this assumption pertains to the conditional distributions
of Y, not the distribution of Y itself. As already mentioned, normality is
a secondary assumption. Regression is one of many statistical techniques
that assume normality. A very important theorem called the central limit
theorem applies to all these techniques. It says that the larger the sample, the
less important is the assumption of normality since the larger the sample
size, the closer the F- and t-statistics for these methods will come to hav-
ing the same shape as they would under exact normality. Thus, moderate
non-normality of the conditional distributions of Y is a problem mainly for
researchers working with sample sizes under about 30, although extreme
non-normality may require somewhat larger sample sizes.

The fourth assumption is independent sampling, which requires that cases
in the data be independent from one another on Y. Independence could
be violated in a number of ways. For example, if you included married
couples in your analysis but treated them as if they were strangers and
didn’t know and influence each other in some fashion, this could be a vi-
olation of independence, depending on what Y is. Alternatively, suppose
you randomly selected four downtown office buildings and stood outside
of the buildings and asked people questions as they left as part of your
data collection effort. If you are measuring something that might be corre-
lated with things that distinguish people who work in different buildings,
this could be a violation of independence as well. Independence is a sec-
ondary assumption. There are special forms of linear regression that can
be used when nonindependence is likely or assured due to the nature of
the sampling or data collection, such as multilevel modeling.
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As noted earlier, some assumption violations are more problematic
than others. Violations of normality are least severe, and the effects of non-
normality can usually be made even less problematic by increasing the
sample size. Violations of homoscedasticity can have different effects, de-
pending on the form of the violation. Unlike with non-normal conditional
distributions of Y, more data (i.e, increasing the sample size) won’t make
the problem go away. Violation of independence can wreak havoc with an
inference, but it may not, depending on the form of nonindependence and
how pervasive it is.

As a primary assumption, violating linearity can be disastrous for in-
ference because the regression coefficient simply isn’t estimating anything
that is meaningful. But it turns out that linear regression analysis can be
used to model curves, so even this problem can be dealt with in some
fashion. We address nonlinearity in Chapter 12.

All of these assumptions can also be framed in terms of the errors in
estimation of Y. Recall that the residuals from a regression model are the er-
rors in the estimation of Y from the regressors. The assumption of linearity
implies that the conditional distributions of the errors in estimation all have
means of zero. The assumptions of normality and homoscedasticity of the
conditional distributions of Y translate into equivalent assumptions about
the distributions of the errors in estimation. And independence means that
the errors in estimation are uncorrelated with each other. When all these
assumptions are combined, it is often said that inference in regression as-
sumes errors in estimation that are independently and identically distributed
(sometimes abbreviated i.i.d.) that are normal and centered at zero. When
these assumptions are met, it is said that the errors in estimation are ex-
changeable. They are exchangeable because they all come from the same
distribution—one with a mean of zero that is normal in shape with a given
variance.

Notice that none of these assumptions imposes a requirement of random
sampling from a population, although certain kinds of inferences do. If
the cases that are included in an analysis are selected from a population
through some kind of chance process, such as random selection with a
known or at least calculable probability of inclusion, we say the sample is a
random or probability sample. Most statistical texts and the tests described
in those texts presume random sampling from a defined population. When
a sample from a population is obtained through a probability sampling
method, it is possible to make claims about attributes of the population
from which the sample was derived. But this population model of inference
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is not the only model of inference. There are other ways of thinking about
sampling variance and inference that don’t assume random sampling from
a population. We discuss this in Chapter 16.

We can make assumptions all we want, but that doesn’t mean those
assumptions are true in a particular case. Fortunately, the plausibility of
the assumptions when a regression analysis is applied to a research problem
can be tested empirically. Some of these tests are easy to conduct; others are
more tedious, time consuming, and not implemented in popular software.
This can be a complex topic and entire books are dedicated to it (e.g., Berry,
1993). We address some approaches to testing these assumptions in Chapter
16. In reality, assumptions are routinely violated, sometimes with little
effect, but you can never know for certain what effect a particular violation
has on the validity or power of the inference you are attempting to make
with your data for the specific analysis being conducted. Assumptions are
worth understanding and checking, and when you have clear evidence that
there could be a problem, do something about it if you can. But don’t lose
lots of sleep worrying too much about every assumption violation.

4.1.3 Expected Values and Unbiased Estimation

The symbol E before any statistic denotes the expected value of that statistic.
For instance, the expected value of the sample mean of Y would be denoted
E(Y), and the expected value of the regression coefficient for regressor Xj

would be E(bj). To understand the concept of an expected value, imagine
drawing an infinite number of independent random samples of the same
size from some population, computing some statistic (e.g., a sample mean or
a regression coefficient) in each of these samples, then computing the mean
of all those values of the statistic. That mean is defined as the expected value
of the statistic. Note that it is possible for the expected value of a statistic to
be impossible to ever observe. For instance, consider a population of five
numbers: 1, 2, 3, 4, and 6. The expected value of the mean of a sample of
three of these numbers is 3.2, but a sample of three of these numbers could
never have a mean of 3.2.

If the expected value of a statistic is equal to its corresponding parameter
or “true value,” then the statistic is said to be an unbiased estimator of that
parameter. But if its expected value is different from the parameter, we say
the statistic is biased. An unbiased statistic may not and usually will not be
exactly equal to the parameter in any specific sample. Bias or lack of bias
is a property of the statistic over repeated sampling and estimation, not a
specific estimate calculated in a specific sample.
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It can be shown that when randomly sampling from a population, the
sample mean of some variable Y is an unbiased estimator of the population
mean of that variable, even if the distribution of Y is nonnormal and highly
skewed. Furthermore, each sample regression weight bj in a regression
analysis is an unbiased estimator of its corresponding parameter Tbj, but R
is not an unbiased estimator of TR.

4.2 The ANOVA Summary Table

Most every statistics program that conducts linear regression analysis will
produce an “ANOVA Summary Table” or something similar in its output,
although not all will label it as such. Understanding this table and where the
numbers come from are important for getting a grasp on regression analysis
as a whole, as well as the inference process. You won’t always need to look
at this table to get the information you need for a particular inference, but
the information you do look at can trace its source to something in this
table. So in this section, we use the ANOVA table as a springboard for
further discussing principles of regression and the topic of inference.

Throughout this section we rely on a linear regression analysis using the
EXERCISE data file in which weight loss is the dependent variable Y and
exercise frequency, food intake, and metabolism are regressors X1, X2, and
X3, respectively. Recall from section 3.2.4 that the best-fitting OLS regres-
sion model was Ŷ = −1.636 + 1.045X1 − 1.136X2 + 0.636X3. Corresponding
output from SPSS and STATA’s regression procedure can be found in Fig-
ures 4.1 and 4.2, and comparable SAS output was already presented earlier
in Figure 3.14. These were generated with the commands below. These
outputs contain more or less the same information, but we include them
all so you can easily map the discussion below to the output, regardless of
which software platform you choose.

regression/statistics defaults zpp ci tol/dep=wtloss/method=enter

exercise food metab.

proc reg data=exercise;model wtloss=exercise food metab/stb pcorr2

scorr2 tol vif;run;
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. regress wtloss exercise food metab

      Source |       SS           df       MS      Number of obs   =        10

-------------+----------------------------------   F(3, 6)         =     25.78

       Model |  91.4090909         3   30.469697   Prob > F        =    0.0008

    Residual |  7.09090909         6  1.18181818   R-squared       =    0.9280

-------------+----------------------------------   Adj R-squared   =    0.8920

       Total |        98.5         9  10.9444444   Root MSE        =    1.0871

------------------------------------------------------------------------------

      wtloss |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

    exercise |   1.045455   .4222763     2.48   0.048     .0121817    2.078727

        food |  -1.136364   .2941892    -3.86   0.008    -1.856219   -.4165086

       metab |   .6363636   .2317736     2.75   0.033      .069234    1.203493

       _cons |  -1.636364   2.928471    -0.56   0.597    -8.802074    5.529346

------------------------------------------------------------------------------

 

. pcorr wtloss exercise food

(obs=10)

Partial and semipartial correlations of wtloss with

               Partial   Semipartial      Partial   Semipartial   Significance

   Variable |    Corr.         Corr.      Corr.^2       Corr.^2          Value

------------+-----------------------------------------------------------------

   exercise |   0.9150        0.9140       0.8372        0.8354         0.0005

       food |  -0.6000       -0.3023       0.3600        0.0914         0.0876

 

. vif

    Variable |       VIF       1/VIF  

-------------+----------------------

    exercise |      1.17    0.857143

        food |      1.17    0.857143

-------------+----------------------

    Mean VIF |      1.17

toljVIFj

SE(bj)
bj  / SE(bj)

95% confidence interval for Tbj 

ANOVA summary table
F-ratio and p-value

p-value

MSresidual

prj srj

FIGURE 4.2. STATA output from a multiple regression analysis of the weight-loss data.
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regress wtloss exercise food metab

pcorr wtloss exercise food

vif

4.2.1 Data = Model + Error

In section 2.4.1 the formula

Yi = Y + (Ŷi − Y) + (Yi − Ŷi)

was introduced, showing that in a regression analysis, each case’s value of Y
can be broken into three components: the sample mean of Y, the difference
between the estimate of that case’s Y from the model and the mean of Y,
and the difference between the case’s actual value of Y and the model’s
estimate of that case’s value of Y. Of these three components, Y carries no
information about individual differences in Y, which is ultimately what we
are trying to model with regression analysis.

If we move Y to the left side of the equation, as in

Yi − Y = (Ŷi − Y) + (Yi − Ŷi)

then it can be seen more clearly that regression analysis splits how much
case i’s value on Y differs from Y into two components. Ŷ−Y is the model or
regression component. It is the part of the difference between Yi and Y that
the regression analysis extracts from information about the relationship
between the regressors and Y, or the part explained by the variables in the
model. What is left over, Yi − Ŷi, is the part of the difference between Yi

and Y that can’t be explained by the regressors. It is the error component
of the model. We’ve discussed the error component at length, as the error
component is just case i’s residual.

Thus, if we think of “the data” as the difference between Y and Y, then
we can say data = model + error. That is, the data for each case are the sum
of model and error components. In regression-speak, Y − Y is frequently
referred to as the total component, and we say total = regression + residual.

Table 4.1 shows each of these components generated from the regression
of weight loss on exercise frequency, food intake, and metabolism in the
columns labeled “Total,” “Regression,”, and “Residual.” As you can see,
for every case in the data, Total = Regression + Residual.
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−Y

) 2 =
91
.4

09

SS
re

si
du

al
=

∑( Y
−Ŷ
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4.2.2 Total and Regression Sums of Squares

In section 2.4 the residual sum of squares was introduced. In terms of the
formula data = model + error or total = regression + residual, SSresidual is the
sum of the squared error or residual components. SSresidual quantifies the
discrepancy between the estimates of Y from the regression model and the
actual values of Y, and it is this quantity that the least squares criterion
minimizes in the process of deriving the regression coefficients. It has a
lower bound of zero, which occurs only when Ŷ = Y for every case in the
data and indicates a model that perfectly fits the data.

Whereas zero is the lower bound of SSresidual, its upper bound is a
quantity called the total sum of squares, defined as

SStotal =

N∑
i=1

(Yi − Y)2

It is quite literally the sum of the squared total components. SStotal is
essentially a measure of variability in Y. In fact, SStotal is the numerator of
the definition of variance given in section 2.2.2:

Var(Y) =
∑N

i=1(Yi − Y)2

N
=

SStotal

N

For this reason, it is helpful for the sake of discussing regression to think
of SStotal as “variance to be explained.” It quantifies the variation between
cases around the mean of Y. A perfectly fitting model will explain all of
this variance. The closer SSresidual is to SStotal, the worse the model, meaning
the less of the variability between cases in Y the model explains. Note that
SStotal is a property of the data and not a property of the regression model. It
will be the same regardless of the number of regressors in the model, what
those regressors measure, and the relationship between those regressors
and Y. That is, any model of the same N values of Y will have the same
SStotal. Table 4.1 contains the squared regression and total components
from the weight-loss regression analysis, with their sums at the bottom.
Observe that SStotal = 98.5 and for this model, SSresidual = 7.091.

The difference between SSresidual and SStotal has its own name. It is called
the regression sum of squares and is defined as

SSregression =

N∑
i=1

(Ŷi − Y)2
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It is the sum of the squared regression components and quantifies the
discrepancy between what the model estimates for Y for each case and the
mean of Y. Unlike with SSresidual, for SSregression, the bigger the better. It
quantifies how much information the variables in the model provide about
how cases differ from Y. The closer SSregression is to SStotal, the better the
model fits the data. If the variables in the model contained no information
about Y, then the most sensible estimate of Y would be Y. That is, knowing
nothing else about a person, your best guess as to that person’s Y would
be Y. But if you knew something about that person related to Y, then you
could use that information to deviate your guess away from Y to something
that is more accurate. SSregression quantifies the amount the estimates of Y
deviate from Y.

SSregression and SSresidual are just two ways of conveying the same infor-
mation, because they are bound together by the fact that they add up to the
total sum of squares. That is,

SStotal = SSregression + SSresidual

Thus, a smaller regression sum of squares necessarily implies a larger resid-
ual sum of squares. When one goes up, the other must come down by
the same amount. The squared regression components for the weight-
loss analysis can be found in Table 4.1, as can SSregression. As can be
seen, SSregression = 91.409, which when added to SSresidual = 7.091 yields
SStotal = 98.5.

Given that SStotal represents total variance in Y and SSresidual is variance
in Y unexplained by the model, it follows that SSregression can be interpreted
as variance in Y explained by the model. But recall from section 3.2.5 that R
is the correlation between Ŷ and Y, and R2 is interpreted as the proportion
of variance in Y explained by the model. It follows that R2 is related to
these sum of squares, as such:

R2 =
SSregression

SStotal
= 1 − SSresidual

SStotal

From the weight-loss regression analysis, R2 = 0.928, or in terms of sums
of squares,

R2 =
91.409
98.500

= 1 − 7.091
98.500

= 0.928

If OLS regression operates by minimizing SSresidual, then it follows that in
so doing, it is also maximizing SSregression and therefore R2, because SStotal is
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fixed as a property of the data rather than the model. So the least squares
criterion generates estimates of the regression coefficients and regression
constant that maximize the correlation between Y and Ŷ.

4.2.3 Degrees of Freedom

A straight line is determined by two numbers—a Y-intercept and a slope.
By choosing those numbers we can make the line fall anywhere we choose
in two-dimensional space. We know that if a sample contained only two
cases measured on X and Y, so that a scatterplot of Y against X contained
only two dots that differed on X, then we could choose a regression constant
b0 and a regression coefficient b1 such that the regression line Ŷ = b0 + b1X
passes through both dots. We are free to choose any two values of b0 and
b1, so we have two degrees of freedom. A tilted plane, such as in section
3.1.4, is determined by three numbers—b0, b1, and b2. By freely choosing
appropriate values for these, we can make the plane pass through any three
points in three-dimensional space. Therefore, the plane has three degrees
of freedom. More generally, in any regression model with k regressors,
we have one degree of freedom for each regressor, and an extra degree
of freedom for the regression constant, making k + 1 degrees of freedom.
When a sample size N equals k + 1, we know before inspecting the data
that we can make the model fit the data perfectly. In other words, for any
sample size N = k + 1, a regression model with k regressors will almost
always produce R = 1, with SSresidual exactly zero, and SSregression equal to
SStotal. One exception would be when some cases have the same set of
values on the regressors but different Y values.

We are rarely interested in testing a hypothesis about Tb0 so we usually
think of a regression model as having k degrees of freedom if it contains
k regressors, one for each regression coefficient bj. We often let df denote
“degrees of freedom,” so k is the model or regression degrees of freedom, model
df, or regression df. In this book we will denote it dfregression.

Knowing that a linear regression model will always fit the data perfectly
with k + 1 cases, k + 1 of the cases contain no information that we can
use for statistical inference. But as soon as we add another case without
adding any regressors, now we know that a perfect-fitting model is not
assured. That additional case gives us information we can use for making
inferences about aspects of the model, whether it be an inference about
TR, Tbj, or any other parameter. The larger our sample size N, the better
we can estimate a model’s fit to the data, and the more precisely we can
estimate the regression coefficients and other measures of association. Each
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additional case contributes more and more information. More specifically,
if the sample size is N, then the number of cases that provide data useful
for inference is N − (k + 1) = N − k − 1. So, for instance, if k = 3, we know
beforehand that the model will fit perfectly a sample of four cases. Thus, if
N = 10, only the last six cases are actually useful for estimating a model’s fit
and making inferences, since N− k− 1 = 10− 3− 1 = 6. We call N− k− 1 the
residual degrees of freedom, or dfresidual. Some authors call it the error degrees of
freedom.

We can also view N − k − 1 as the number of regressors or degrees
of freedom we could add to the model before completely exhausting the
sample’s ability to tell us how well the model fits the population or to make
inferences about parameters of the model. For instance, if N = 10 and k = 3,
we know that if we added six regressors (and thus 6 degrees of freedom) to
the model, making k = 9, then the model would necessarily fit the sample
perfectly, so that its fit would tell us nothing about its fit to the population
and we couldn’t make inferences about the population or parameters of
the model.

It is possible to estimate a regression model without a constant or, in
other words, fixing the regression constant b0 to zero. In that case, dfresidual
is N − k instead of N − k − 1. But such problems are relatively rare.

Recall that the total sum of squares, SStotal, is the sum of the regression
and residual sum of squares. If you add up the regression and residual
degrees of freedom, you get the total degrees of freedom, or dftotal. The total
degrees of freedom is one less than the sample size. That is, dftotal =

dfregression + dfresidual = k + (N − k − 1) = N − 1.

4.2.4 Mean Squares

The regression and residual degrees of freedom both have zero as their
lower bound and SStotal as their upper bound. We know that as you add
regressors to a model, SSresidual cannot go up and will virtually always go
down, which means that SSregression generally goes up when regressors are
added. We also know that all other things being equal, as the sample size N
increases, so too will all of the sums of squares, because the more positive
numbers you add, the larger that sum will get.

An ANOVA table contains a statistic that adjusts the sum of squares
by dividing them by their corresponding degrees of freedom. The result
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is the mean squared total, mean squared regression, and mean squared residual,
denoted MStotal, MSregression, and MSresidual. That is,

MStotal =
SStotal

dftotal

MSregression =
SSregression

dfregression

MSresidual =
SSresidual

dfresidual

The ratio of MSregression to MSresidual is important when testing a hypothesis
about the multiple correlation. We address this in section 4.3. The name
“mean squared” is rather unfortunate given that neither of these is an actual
mean of the squared components. These statistics have the property that
they are generally less influenced by adding regressors or cases to a model
than are the sums of squares.

The mean squared residual, also called the mean squared error and often
abbreviated MSE, is an unbiased estimator of the variance of the errors in
estimation of Y, which we denoted Var(Y.X) in Chapter 2. That is, suppose
you wanted to know the amount, on average, Ŷ tends to differ from Y when
the model is fitted to the entire population (or in a sample of infinite size).
MSresidual is generally used in statistics as an important estimator of the
square of this quantity. Its square root is called the standard error of estimate,
which we denote sY.X, and it is printed as a matter of routine by many
regression programs. It is an estimator of the standard deviation of the
errors in estimate. As you know, means, regression coefficients, and other
statistics have their own standard errors. These usually decline with sample
size. But the standard error of estimate does not decline with increasing
sample size, because we are estimating a value for each participant rather
than a single value for the entire population.

It is unlikely you would ever do any of these computations by hand.
Most every statistical program that conducts regression analysis will pro-
vide a table containing the total, regression, and residual sum of squares,
degrees of freedom, and mean squares. SPSS, SAS, and STATA are not
exceptions, as can be seen in Figures 4.1, 4.2, and 3.14. Furthermore, you
need not memorize any these formulas, although there is no harm in do-
ing so and you may find yourself accidentally memorizing them as your
knowledge of regression expands. Table 4.2 contains a generic ANOVA
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TABLE 4.2. Formulas for Entries in a Regression ANOVA Summary Table

Source SS df MS F

Regression
∑N

i=1(Ŷi − Y)2 k SSregression/k MSregression/MSresidual

Residual
∑N

i=1(Yi − Ŷi)2 N − k − 1 SSresidual/(N − k − 1)
Total

∑N
i=1(Yi − Y)2 N − 1

summary table that shows the formulas for each of the entries in the typical
table.

4.3 Inference about the Multiple Correlation

4.3.1 Biased and Less Biased Estimation of TR2

If you had a census of a population, or at least a sample so large that to
distinguish between the size of the sample and the size of the population
would be splitting hairs, you could calculate TR2, the true squared multiple
correlation between a set of regressors and an outcome of interest. Instead,
by relying on a sample of finite size, you can only estimate TR2 as R2

calculated with whatever data you have available to you.
The problem is that R2 is a biased estimator of TR2. Because R2 is the

square of R, R is also a biased estimator of TR. More specifically, R2 tends
to overestimate TR2. That is, E(R2) > TR2. To see why, suppose you wanted
to estimate the true squared multiple correlation TR2 of the best-fitting
model estimating weight loss from exercise frequency, food intake, and
metabolism, and you did so using a sample size of only four people. For
reasons discussed in section 4.2.3, you know that your regression model
will fit the data perfectly, because SSresidual = 0 and R2 = 1 whenever the
residual degrees of freedom (N − k − 1) equals zero. Regardless of which
four people you used, you’d always get R2 = 1. This generalizes to a model
with any number of regressors. Whenever the residual degrees of freedom
is zero, R2 = 1. But if R2 always equals 1 whenever the sample size is
exactly one more than the number of regressors, then how could R2 be an
unbiased estimator of TR2?

It turns out that this bias is R2 as an estimator of TR2 is systematically
related to sample size and the number of regressors. A less biased (but still
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slightly biased) estimator of R2 adjusts R2 by k and N. It can be found in
two algebraically equivalent forms:

Adjusted R2 = R2 − k(1 − R2)
N − k − 1

= 1 − N − 1
N − k − 1

(1 − R2) (4.1)

which it turns out is also algebraically equivalent to

1 − MSresidual

MStotal

Adjusted R2 is not a new measure of multiple correlation but is, rather,
merely a better estimator of TR2. The term k(1−R2)/(N − k− 1) in equation
4.1 is the adjustment to R2 that makes it less biased. Fortunately, in most
real-world regression problems, the bias in R2 is not particularly severe so
long as the sample size is sufficiently large.

There are two caveats to adjusted R2. First, unlike R2, adjusted R2 can
be less than zero. A squared multiple correlation cannot be less than zero,
so whenever you calculate or see adjusted R2 below zero, simply round it
up to zero. Second, although adjusted R2 is less biased than R2, it is not
completely unbiased. There are less biased estimators of TR2 (see Olkin
& Pratt, 1958; Yin & Fan, 2001) but they are not calculated by popular
statistics programs, because they have other disadvantages we shall not
discuss. Unbiasedness is not the only desirable feature of a statistic, but a
discussion of these other features is beyond the scope of this book.

Even though R2 is a biased estimator, many people report R2 and go
ahead and interpret it as the proportion of the variance explained by the
model. There is probably little harm in this, and it is literally the proportion
of the variance in Y explained by the model in that sample. But you will also
see adjusted R2 reported by some instead.

Some people mistakenly interpret adjusted R2 as the proportion of vari-
ance in Y in the population explained when the regression model derived in
the sample is applied to the population. That is, imagine using the estimated
regression coefficients from the sample to produce Ŷ for every member in
the population. The squared correlation between Y in the population and
these estimates of Y is not adjusted R2. This squared correlation we call
shrunken R2 in Chapter 7, where we discuss it further.
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4.3.2 Testing a Hypothesis about TR

The multiple correlation quantifies the fit of the model to the data, as the
correlation between Y and Ŷ. We know that R and R2 will pretty much
always be greater than zero in any sample. We might want to know or
report whether the variables used as predictors in the regression model
explain any of the variation in the dependent variable in the population.
This is a question about whether TR = 0 or, equivalently, whether TR2 = 0.

The null hypothesis that TR = 0 can be tested against the alternative
that TR > 0 by forming a ratio of the regression and residual components of
the model or, more specifically, their mean squares. If the null hypothesis
is true, the ratio

F =
MSregression

MSresidual
(4.2)

follows the F(k,N− k− 1) distribution. These two values in parentheses are
the regression and residual degrees of freedom, respectively. This ratio is
available in the ANOVA summary table produced by most regression pro-
grams, along with a p-value for the obtained F. When the null hypothesis
is true, E(F) = dfresidual/(dfresidual − 2), which is about 1 unless the sample
size is small. The larger the obtained F, the smaller the probability of the
obtained R or R2 if the null hypothesis is true. If this probability, the p-
value, is smaller than some chosen level of significance for the test then the
null hypothesis is rejected. In the model estimating weight loss from food
intake, exercise frequency, and metabolism, F(3, 6) = 30.470/1.182 = 25.782,
which has a p-value of .001 (see the SAS, SPSS, and STATA outputs in Fig-
ures 3.14, 4.1, and 4.2). We can reject the null hypothesis. There is some
association between weight loss and a linear combination of food intake,
exercise frequency, and metabolism in the population.

The F-ratio can be derived without actually calculating mean squares.
It turns out that equation 4.2 is equivalent to

F =
dfresidual × R2

k(1 − R2)

Although it might seem strange to use R2, which is a biased estimator of TR2,
in the computations here, this is not a problem. The sampling distribution
of F and resulting p-value takes into account the bias in R2.
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4.4 The Distribution of and Inference about a
Partial Regression Coefficient

4.4.1 Testing a Null Hypothesis about Tbj

Unlike R, each regression weight bj is an unbiased estimator of the corre-
sponding true weight Tbj. That is, E(bj) = Tbj. This unbiasedness does not
depend on any of the secondary assumptions being met (i.e., normality,
independence, and homoscedasticity).

Next to each value of bj, most statistical programs include SE(bj), the
estimated standard error of bj. It will usually appear under the label “Stan-
dard Error,” “Std. Error”, or something similar. The standard error esti-
mates the amount bj tends to vary around Tbj due to random sampling.
More specifically, SE(bj) estimates the standard deviation of the sampling
distribution of bj when taking a random sample of size N from the popula-
tion and estimating the regression model. Its square is called the sampling
variance of bj. The accuracy of SE(bj) as an estimator of TSE(bj) does require
normality, homoscedasticity, and independence. The formula for SE(bj) is
examined at length in sections 4.4.3 and 4.4.4 and then again in section
17.1.2. We first examine the uses of SE(bj).

The value of t usually printed next to bj is the ratio of bj to SE(bj) and
is used when testing the null hypothesis that Tbj = 0. The obtained t
has a corresponding p-value that quantifies the probability of getting the
obtained value of bj or something more different from zero assuming that
Tbj = 0. This p-value comes from the t distribution with df = N − k − 1,
which is dfresidual for the model as a whole. This p-value, often labeled “Sig.,”
“Pr(> |t|),” or the like, is a two-tailed significance level associated with the
printed t. For instance, in the model estimating weight loss from exercise,
food intake, and metabolism, we have b1 = 1.045 and SE(b1) = 0.422, so
t = 1.045/0.422 = 2.476. In a sample of size 10 and with three regressors,
dfresidual = 10 − 3 − 1 = 6, and p = .048. So we can conclude at an α level
of .05 that Tb1 � 0; holding food intake and metabolism constant, there is
a positive relationship between exercise frequency and weight loss. The
obtained value of b1 = 1.045 is too far from zero to be credibly attributed to
“chance.”

With the exception of the final interpretation, all this information is
contained in most regression analysis outputs, as in Figures 4.1, 4.2, and
3.14. Typically, the p-value will be rounded to three or four decimal places,
depending on the software. So if you ever see a p-value listed as “0.000,” this
does not mean that p = 0. Some programs allow you to change the number
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of decimal places displayed. See the documentation for the program you
are using.

Occasionally you may wish to test a null hypothesis that Tbj equals
some value other than zero. In this example, for instance, b1 = 1.045, which
means that each daily hour of exercise is associated with 1.045 units (i.e.,
104.5 grams) of weekly weight loss when food intake and metabolism are
held constant. If you wanted to show that Tb1 is greater than 1, you could
test that hypothesis with the formula

t =
bj − null value of bj

SE(bj)

In this example, we have t = (1.045 − 1)/0.422 = 0.107, df = 6, p = .460
(one-tailed), so you cannot claim that Tb1 is greater than one. You would
usually have to rely on a table of critical values of t or a computer algorithm
to find the p-value when testing a null hypothesis other than zero, as most
statistical packages only provide p-values for testing a nil hypothesis (i.e., a
null hypothesis that the parameter equals zero). A table of critical values
of t can be found in Appendix C.

4.4.2 Interval Estimates for Tbj

You can also use SE(bj), along with a t-value from a table of critical values
of t to construct an interval estimate, confidence limit, or confidence interval for
Tbj based on the estimate bj.

Confidence limit = bj ± tabled t × SE(bj)

For instance, for a two-tailed 95% confidence interval, the critical value of t
when dfresidual = 6 is 2.447. Thus, in this example, a 95% confidence limit for
Tb1 is 1.045 ± 2.365 × 0.422 = 0.012 to 2.078. Your preferred software pack-
age may also provide confidence limits for regression coefficients, making
it unnecessary to find the proper tabled value of t and do the computations
manually. For instance, as can be seen in Figure 4.1, the confidence interval
for Tb1 produced by SPSS is 0.012 to 2.079, which agrees almost exactly with
these hand computations.

If you are concerned about errors in only one direction—either overes-
timation or underestimation of Tbj—you may use a one-sided confidence
interval. For instance, we may be more anxious to avoid overestimating the
effect of exercise than underestimating it, because we want to say “Exercise
is at least this effective.” Thus, we want a lower bound but not necessarily



Statistical Inference in Regression 107

an upper bound. In that case, for a one-sided 95% confidence interval, use
the tabled t-value at the 0.05 level. That value is 1.943, resulting in a lower
bound estimate of 1.045 − 1.943 × 0.422 = 0.225. The upper limit of the
interval estimate, however, is +∞. The price paid for reducing the error in
underestimation is no bound on the upper limit.

4.4.3 Factors Affecting the Standard Error of bj

The size of the standard error of bj directly influences the p-value for bj

when testing a hypotheses about a variable’s unique effect on Y or its
contribution to explaining variance in Y. It also determines the width of an
interval estimate of Tbj. The smaller the standard error of bj, the less values
of bj vary from sample to sample, and the more accurate is bj’s estimate of
Tbj. The square of the standard error of bj, called bj’s sampling variance, is a
function of four quantities:

SE2(bj) =
MSresidual

N × Var(Xj) × (1 − R2
j )

(4.3)

where Var(Xj) is the variance of regressor Xj and (1 − R2
j ) is the squared

multiple correlation estimating regressor Xj from the other k − 1 regressors
in the model. We will later define (1−R2

j ) as Xj’s tolerance, and its inverse as
Xj’s variance inflation factor. The square root of equation 4.3 is the standard
error of bj. This is perhaps one of the more important formulas in regression,
and much can be learned from understanding and dissecting it. In this
section we describe how each of these four quantities relates to the size of
SE(bj).

The most intuitive of the entries in this formula is the sample size N.
It is in the denominator of the standard error formula, so as N increases,
SE(bj) decreases. This is consistent with what is generally well known by
anyone who has taken a course in statistics. All other things being equal,
the more data one has, the less statistics vary around their corresponding
parameters, meaning the more accurate those statistics are as estimators.1

The numerator has only a single quantity: the mean squared residual.
MSresidual is directly tied to the size of SSresidual as well as to the multiple
correlation R. Given that the least squares criterion seeks to minimize
SSresidual, it also minimizes MSresidual while also maximizing R. MSresidual is
in the numerator of this formula, so the smaller MSresidual (i.e., the smaller

1Equation 4.3 is the definitional formula for SE(bj). Most likely, your regression program
uses dfresidual in place of N in the computation of regressor j’s standard error.
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SSresidual and the larger R), the smaller the standard error for bj; indeed,
the smaller MSresidual, the smaller the standard errors for all k regression
coefficients. In short, all other things being equal, better fitting models
yield regression coefficients with smaller standard errors.

At its extreme, consider a regression model with a single predictor, and
imagine that TR = |TrXY| = 1. In such a world, a scatterplot of Y against X
will be a straight line in any sample you take from this population, and the
regression coefficient for X will be the same in every sample. That means
that the regression coefficient for X does not vary from sample to sample,
meaning that the standard error of the regression coefficient should be zero.
Indeed, in any sample from such a population, SSresidual and MSresidual will
be zero, which when plugged into equation 4.3 yields SE(b1) = 0, as you
would expect. This generalizes to a regression model with any number of
predictors, under the condition that TR = 1.

The appearance of Var(Xj) in the denominator means that SE(bj) de-
creases as the variance of Xj increases. The reason for this is made clear by
considering a simple example. Imagine you are interested in building a lin-
ear model of life expectancy predicted from the amount a person smoked
during the course of life. Suppose you have available a person’s age at
death (Y) and the number of cigarettes the person smoked, on average,
each week (X), and you have these data for a large sample of people who
died at a local hospital. The regression coefficient for X in this model would
probably be negative, meaning those who smoked more died younger. This
regression coefficient could be thought of as a measure of the effect a single
additional cigarette per day would have on how much sooner a person will
die. It should make sense that you could estimate this effect much more
precisely if you have a sample that contains people who differ widely in
the amount they smoked during life relative to one in which the people
are very similar to each other in their smoking frequency. In other words,
you’d expect the standard error for the regression coefficient for cigarettes
smoked in this model to be much smaller in a sample that is very hetero-
geneous in smoking frequency, meaning in a sample that is more variable
on this regressor. Equation 4.3 reflects this.

The last component of this formula, 1−R2
j , quantifies the proportion of

the variance in Xj that cannot be explained by the other regressors in the
model. As this quantity increases, SE(bj) decreases. As 1 − R2

j is important
in its own right, we dedicate an entire section to this statistic next.
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4.4.4 Tolerance

In most uses of regression analysis, the regressors are correlated with each
other to some degree, some perhaps more than others. A statistic called a
variable’s tolerance quantifies how correlated a regressor is with the other
regressors in the model. Each regressor has a tolerance, which we denote
Tolj. Imagine estimating regressor Xj from the other k − 1 regressors. In
section 3.2.2 we introduced this idea, called a crosswise regression, when
deriving various measures of partial association. Call the squared multiple
correlation from this crosswise regression R2

j . Regressor Xj’s tolerance is

Tolj = 1 − R2
j

As R2
j quantifies the proportion of variance in Xj explained by the other

regressors in the model, Tolj quantifies the proportion of the variance in
Xj that is unexplained by the other regressors. Thus, Tolj is a measure
of the independence of Xj from the other regressors. If Xj is independent
of the other regressors, then Tolj = 1. If it is entirely dependent on the
other regressors, then Tolj = 0, a condition known as a singularity. Tolj

also measures Xj’s collinearity with other regressors, with low tolerance
indicating high collinearity. We introduced collinearity in section 3.4.1
without formally defining it. Two regressors are high in collinearity if they
are highly correlated. Thus, when two regressors that are highly correlated
are in the same model, each of their tolerances will be small because R2

j for
each of these regressors will be large.

Nonindependence between Xj and other regressors raises Rj, which
lowers Tolj, which raises SE(bj). The reason for this is perhaps seen most
easily when two regressors are both dichotomous. For instance, suppose
you want to study attitudes toward Saturday classes in a college’s student
body; in particular you want to examine the effects of biological sex and
residential status (living on campus or off campus) on this attitude. Suppose
that the difference between the mean attitude scores of residential and
nonresidential students (uncontrolled for sex) is large and significant, as
is the difference between the mean attitudes of male and female students
uncontrolled for residence. If there were no other important unmeasured
covariates, then you could conclude that attitude toward Saturday classes
must be affected by either residence or sex, or both.

But suppose most women live on campus and most men live off campus,
and you want to distinguish between the effects of residence and sex.
Your intuition tells you correctly that your ability to make this distinction
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depends on the numbers of off-campus women and on-campus men. The
smaller these frequencies, the harder it is to distinguish between these two
effects; at the extreme in which there are no off-campus women or on-
campus men, you have no ability at all to distinguish between the two
effects.

To perform significance tests that distinguish between these two effects,
you must run a regression predicting attitude from residence and sex si-
multaneously. Then the regression coefficient for residence controls for sex,
and vice versa, so these regression coefficients distinguish between the two
effects. But these regression coefficients are unbiased estimates of the true
effect sizes, regardless of how few off-campus women or on-campus men
are in the sample, so long as there are some. The difficulty in distinguishing
between the two effects shows up not as smaller expected coefficients but
as higher standard errors of those coefficients.

But also, the smaller the number of off-campus women and on-campus
men, the higher the correlation between the variables coding residence and
sex. Thus, the higher the correlation between two regressors, the higher are
both values of SE(bj). Similar effects operate when regressors are numerical.
The inclusion of Tolj in the formula for SE(bj) reflects this effect; the more
highly any regressor Xj correlates with the other regressors, as measured
by the crosswise squared multiple correlation Rj, the lower Tolj and the
higher SE(bj).

The denominator of the formula for SE(bj) contains Var(Xj) and the
tolerance for Xj, which is the proportion of the variance in Xj not explained
by the other regressors in the model. When multiplied together, Var(Xj) ×
Tolj is the unique portion of the variance in Xj, meaning that variance in Xj

not shared with other regressors. So equation 4.3 could be written as

SE2(bj) =
MSresidual

N × Var(unique portion of Xj)

This formula, too, is intuitively reasonable. For instance, suppose we want
to study the degree to which assertiveness is influenced by upbringing—
specifically, by encouragement of assertiveness in the child by the parents.
We might want to control for sex of the child when examining the effect of
encouragement. But if the study is performed in a society where assertive-
ness is strongly encouraged in boys and strongly discouraged in girls, then
the variable measuring encouragement by the parents will have little vari-
ance that is independent of sex, so its effect on later assertiveness cannot be
measured very accurately. That is, across the sample, the extent to which a
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parent encouraged the child to be assertive will be highly correlated with
sex, so encouragement will have little unique variance. This raises the
standard error of its regression coefficient.

The standard error formula reflects the fact that only so much intercor-
relation between regressors can be “tolerated” by the mathematics. As the
tolerance of Xj is in the denominator of the equation, it can’t be zero, as
this would make the entire denominator zero and division by zero is not
allowed in mathematics. When this happens, most regression programs
will either fail to execute and generate an error, or will attempt to solve
the problem by automatically removing a variable or variables from the
model so that no regressor’s tolerance is zero. Thus, it might be helpful to
remember that a small tolerance is less desirable by thinking “regression
has zero tolerance for zero tolerance.”

There is another way of expressing the standard error formula that
is helpful in understanding a related statistic called a regressor’s variance
inflation factor, sometimes abbreviated VIF. Consider

SE(bj) =

√
1

1 − R2
j

√
MSresidual

N × Var(Xj)

=
√

VIFj ×
√

MSresidual

N × Var(Xj)

which separates tolerance—actually its inverse—from the other factors that
affect the standard error of regressor Xj. The inverse of a variable’s tolerance
is its variance inflation factor, VIFj. It quantifies the amount the sampling
variance of the regression coefficient for regressor Xj is increased due to
its correlation with other regressors in the model. Its square root can be
interpreted as the factor increase in the standard error of bj that results from
the correlation between Xj and the other regressors. For example, if the
squared multiple correlation between Xj and the other regressors is 0.60,
then Tolj = 1− 0.60 = 0.40, and VIFj is 1/0.4 = 2.5. So the standard error of
Xj’s regression coefficient is

√
VIF =

√
2.5 = 1.58 times larger than it would

be if Xj were uncorrelated with the other regressors.
The quality of a regression program is determined in part by whether it

has a procedure or option for generating the tolerance or variance inflation
factor of a regressor. As can be seen in Figures 4.1, 4.2, and 3.14, SPSS,
SAS, and STATA are quality programs by that metric. The tolerance for
metabolism is the lowest of the three at 0.143, meaning that only 14.3%
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of its variance is unique to it, so its variance inflation factor is the largest.
This means that its standard error is raised more by its correlation with
the other regressors than are the standard errors of exercise frequency and
food intake.

You will find that some authors offer guidelines for deciding whether
collinearity is too large for a regression analysis to be conducted or whether
certain variables should be removed from the model. Such recommenda-
tions are often based on looking at the variance inflation factors to see if any
of them are larger than some value, with 10 being one often recommended
cutoff. The logic is that if a variable’s VIF is large, the analysis can’t be
trusted, because one or more of the variables are too highly correlated with
others, standard errors end up huge, and power of hypothesis tests are low.

We don’t find such rules of thumb particularly helpful and don’t use
them ourselves. There is nothing magical about 10 or any other arbitrary
rule of thumb when it comes to determining whether an analysis is mean-
ingful or can be trusted. And as the formula for SE(bj) shows, other things
can offset the effect of collinearity. If you have the luxury of increasing the
sample size, this is the easiest way of offsetting the effect of collinearity on
standard errors. Another alternative is adding regressors to the model cor-
related with Y but not with the other regressors. This will lower MSresidual
and the standard errors of all the regression coefficients. Further, it may be
that all collinearity is confined to covariates, so the important independent
variables have low standard errors. The collinearity then does no damage
at all.

4.5 Inferences about Partial Correlations

4.5.1 Testing a Null Hypothesis about Tpr j and Tsr j

If bj is statistically significant using the test described in section 4.4.1, it can
be said that there is a linear relationship between Xj and Y when all other
regressors are held constant. By the same token, if bj is not statistically
different from zero, then the corresponding claim is that Xj and Y are
not linearly related, holding all other regressors constant. Such a claim
generalizes to partial and semipartial correlations as well. If one claims that
Tbj � 0, one can also claim that Tprj and Tsrj � 0. Conversely, a claim that
Tbj is not different from zero leads to the corresponding claim that Tprj and
Tsrj are not different from zero. So separate tests are not required for partial
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regression coefficients, partial correlations, and semipartial correlations
when the null hypothesis is that the parameter equals zero.2

In fact, there is a direct correspondence between the size of t for bj and
the size of prj and srj. Although many statistical packages will provide srj

and prj in regression output, they can be computed from the t-value for bj

and a few other statistics. For prj,

|prj| =
√√√ t2

j

t2
j + dfresidual

(4.4)

where tj is the t-statistic for the regression coefficient for regressor Xj.
Equation 4.4 doesn’t give the sign of prj, but its sign always matches the
sign of bj. So if bj is negative, then so too is prj. For srj,

srj = tj

√
1 − R2

dfresidual
(4.5)

You will not usually have to do these computations by hand. We provide
equations 4.4 and 4.5 to make the point that if the p-value for bj comes from
the t-value, and the t-value can be converted into the partial or semipartial
correlation for Xj, then the p-value for a test of the null hypothesis that
Tprj = 0 or Tsrj = 0 must have the same p-value as the does the test that
Tbj = 0.

4.5.2 Other Inferences about Partial Correlations

Inferences other than whether Tprj or Tsrj equals zero are more problematic.
The problem is that, for reasons explained later in this section, inferences
about partial and semipartial correlations are considerably less robust to as-
sumption violations than other statistics. A test is robust when it produces
a valid inference even when its assumptions are violated.

In section 4.1.2 we defined a primary assumption as one whose violation
jeopardizes the very meaning of the parameter in question, while violations
of secondary assumptions merely threaten the accuracy of our inferences
about that parameter. The latter violations can sometimes be overcome by
using larger or more representative samples, while the former cannot. As
discussed, linearity is the only primary standard assumption. But the most
2It is worth keeping in mind that a failure to reject the null hypothesis does not imply
that the null hypothesis is actually true. It merely means that the evidence available is not
sufficient to reject the null from the realm of possibility.
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FIGURE 4.3. A slice defining a bivariate conditional distribution of Y and X1 with X2 held
constant at 4.

obvious uses of partial correlations require primary assumptions that are
not among even the secondary assumptions of most regression theory.

The most common inferential use of the partial correlation prj is to esti-
mate the conditional correlation between Y and Xj—the correlation between
Y and Xj in a subpopulation in which all other regressors are held constant
at some fixed value. There may be infinitely many such correlations—one
for every possible combination of values on the other regressors. To visu-
alize a conditional correlation, consider Figure 4.3. It shows not only the
familiar titled plane from Chapter 3 but also a vertical plane at the value
X2 = 4. In the example using the tilted plane, only 3 of the 10 sample cases
fell in the plane X2 = 4 (see Figure 3.3). But we can imagine that in the
population the number of cases at X2 = 4 is large. The correlation between
Y and X1 in the plane X2 = 4 is a conditional correlation. When scientists
say “the correlation between Y and Xj with other variables held constant,”
they ordinarily mean a conditional correlation of just this type. Thus, the
primary value of prj as an estimator lies in its ability to estimate such a
correlation.

But this use of prj requires bivariate conditional normality as a primary
assumption (see Figure 4.4 for a visual depiction). Violation of this assump-
tion is not trivial. In one artificial population satisfying all the standard
assumptions but not bivariate conditional normality, each conditional cor-



Statistical Inference in Regression 115

Y.2

-4

-2

0

2

4

X 1.2

-4

-2

0

2

4

FIGURE 4.4. A visual depiction of bivariate normality of X1 and Y conditioned on X2.

relation between Y and X1 holding X2 constant was 0.32, but the population
value Tpr1 was 0.85. Thus, prj can grossly mischaracterize the true condi-
tional correlation, even in a very large and representative sample. Even
more extreme examples can be created. Bivariate conditional normality
can never be satisfied if Xj is categorical since then the crosswise regression
predicting Xj can never attain linearity.

All this said, bivariate conditional normality may be met in some cir-
cumstances. When so, a meaningful interval estimate for Tprj can be con-
structed by using the Fisher r-to-Z transformation. This transformation is
often used when constructing a confidence interval for Tr, but its use gen-
eralizes to partial correlations. The method involves the following steps:

1. Translate prj into a Fisher Z using the formula

Z f = 0.5 × ln
(

1 + prj

1 − prj

)

The symbol ln denotes a natural logarithm. A table of values of Z f
can be found in Appendix C.

2. Find the standard error of Z f from the formula

SE(Z f ) =
1√

N − k − 2

where k is the number of regressors in the model.
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3. From a table of normal probabilities (see Appendix C), select the value
of z for the desired confidence level. For example, for a two-tailed
confidence interval at the 95% level, set z = 1.96.

4. The confidence limits on Z f are then found by the formula

Upper and lower bound = Z f ± z × SE(Z f )

5. Denoting these upper and lower bounds ζ, translate each of these
limits back to pr with the formula

pr =
e2ζ − 1
e2ζ + 1

where e is Euler’s constant, which is about 2.718282. Most scientific
calculators have an e button.

For instance, the partial correlation between exercise frequency and weight
loss controlling for food intake and metabolism is pr1 = 0.711. This trans-
lates to Z f = 1.006. Since N = 10 and k = 3, SE(Z f ) = 1/

√
10 − 3 − 2 = 0.447.

For a two-tailed 95% confidence interval, we find confidence limits of
1.006± 1.96× 0.447 = 0.130 to 1.882. These translate back into partial corre-
lations of 0.129 and 0.955, which is a 95% confidence interval for Tpr1. This
is a very wide interval indeed, and shows that we really know very little
about Tpr1 except that it is probably positive.

To test the null hypothesis that prj equals some specified nonzero value,
translate both the observed prj and the null value into Fisher Z’s from step
1, denoting the latter Z f 0. Then compute

Z =
Z f − Z f 0

SE(Z f )

and derive a p for Z from a table of standard normal probabilities.
This same procedure can be used to construct an interval estimate or test

a nonzero null hypothesis for Tr by substituting r for pr and using
√

N − 3
in the denominator of the standard error of Z f rather than

√
N − k − 2.

4.6 Inferences about Conditional Means

You may want to draw an inference about a conditional mean. Remember
that a linear regression model is a model of conditional means. When we
generate Ŷ from a regression model, we are generating a conditional mean.
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In this section, we describe the construction of the standard error for a
conditional mean. This can be used to generate a confidence interval for or
test a hypothesis about the conditional mean.

Let G be a combination of regressor scores, and define ŶG as the estimate
of Y from the model at point G. Point G need not necessarily be a case in the
sample; there may or may not be a point G in the data. For instance, in the
regression in section 3.1 we predicted weight loss from exercise frequency
(X1) and food intake (X2). Let G represent the point at which X1 = 3 and
X2 = 7. The regression model in that example was Ŷ = 6.0 + 2.0X1 − 0.5X2,
and so ŶG = 6.0+2.0(3)−0.5(7) = 8.5, or 850 grams of weight loss per week.

The estimate of Y at point G, ŶG, has two different interpretations. It is
the estimated Y for any case (and remember such a case may not exist in the
data) with values on the regressors corresponding to point G. It is also an
estimator of the population conditional Y at point G. Let TYG denote this
true conditional mean. If we wanted to construct a confidence interval for
TYG or test a hypothesis about its value, we would need to know SE(ŶG),
the standard error of ŶG. Unfortunately, SE(ŶG) depends heavily on G.
Different G points have different values of SE(ŶG). Fortunately, there is a
simple way of finding SE(ŶG) for any G with little computational effort.
The trick is to make the regression constant b0 equal ŶG. When this is done,
SE(b0) from the regression program is equal to SE(ŶG).

Remember that in a regression model, b0 is Ŷ when all regressors are
set to zero. To make b0 equal ŶG, subtract the values of the regressors that
define point G from all regressor values in the data. For example, we have
defined point G as X1 = 3 and X2 = 7, so we construct two new variables
X′

1 = X1 − 3 and X′
2 = X2 − 7. Now we regress Y on X′

1 and X′
2. In this

model, b0 is Ŷ when X′
1 = 0 and X′

2 = 0. But these correspond to X1 = 3 and
X2 = 7, so b0 from this model is ŶG, and SE(b0) is SE(ŶG).

When this method was applied to the weight-loss example, the resulting
model was Ŷ = 8.5 + 2.0X1 − 0.5X2. Notice that the regression coefficients
for X′

1 and X′
2 are the same as b1 and b2 prior to subtracting the values

defining G from the regressors. But b0 is now 8.5 rather than 6.0, and
this new regression constant equals ŶG. The regression program shows
SE(b0) = 0.683, which is also SE(ŶG). If you ask for it (and perhaps even
if you don’t, depending on the program you are using), you can get a 95%
confidence interval for Tb0, which is also a 95% confidence interval for TYG.
In this example, we get 6.885 ≤ TYG ≤ 10.115.

You could also test a null hypothesis about TYG. Suppose we want to
test the null hypothesis that TYG = 6.0 against the alternative that it is not
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6.0. The t-statistic for ŶG is t = (8.5 − 6)/0.683 = 3.660, which is distributed
as t on df residual = 7. This is statistically significant two-tailed at theα = 0.001
level.

You may find yourself wanting to conduct an inference for G when G is
defined by a specific value or values of some but not all of the regressors.
For instance, what if you defined G as X1 = 3 but didn’t care what X2

was? Unfortunately, you have to define X2 as something, because G must
be defined using all the regressors. In such a case, a sensible thing to
do is define G by setting all the other regressors you don’t care about
to their sample means (even if one or more of those other regressors is
dichotomous).

This centering strategy works with any regression program, but some
regression programs have built-in features for generating linear combina-
tions of regressors along with standard errors and other information for
inference. For example, the command to generate ŶG and SE(ŶG) for the
example just described using SPSS would be

glm wtloss with exercise food/print=parameters/lmatrix all 1 3 7.

The RLM macro for SPSS and SAS discussed in Appendix A has a similar
option for conducting inferences for linear combinations of regressors. See
your preferred program’s documentation for guidance.

4.7 Miscellaneous Issues in Inference

4.7.1 How Great a Drawback Is Collinearity?

As discussed in section 4.4.4, high collinearity increases the standard errors
for regression coefficients in a linear regression analysis, but this is often a
far less serious problem than researchers fear. There are three reasons for
this.

First, collinearity affects only the power of tests on regression
coefficients—not their validity. The standard errors of the partial regres-
sion slopes are increased for collinear variables. This widens confidence
intervals for Tbj and makes it harder to find statistically significant values
of bj. But a significant value of bj is just as conclusive when collinearity is
present as when it is absent.

Second, collinearity often affects only a few of the regressors. If those
affected are merely covariates, then values of SE(bj) are not raised for any
of the independent variables. For instance, suppose you have several
measures of SES and cannot decide which to use as a covariate. If you
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decide to avoid the problem by using them all, little or no harm results
from the fact that they may be highly collinear. SE(bj) will then be high
for those covariates but not for the independent variables. (The related
problem of excessive number of covariates is examined in sections 4.7.3
and 17.1.3; it, too, is less serious a problem than widely believed.)

Third, although collinearity reduces the power of tests of the individual
regressors that are highly correlated, collinearity does not reduce the power
of a test on the effect of the set of regressors as a whole. For instance, if
you want to test whether SES affects a dependent variable, you can do so
efficiently even if SES is measured by several highly collinear variables.
Such tests are described in section 5.3.3. Methods for discovering collinear
sets are discussed in section 17.3.2.

Another common misconception about collinearity is that it is somehow
a problem specific to regression analysis, and that more advanced statistical
methods can eliminate the problem either currently or some day in the
future. But the problem is essentially that when two variables are highly
correlated, it is harder to disentangle their effects than when the variables
are independent. This is simply an unalterable fact of life; it can’t be avoided
with more sophisticated methods. The solution lies not in more clever
analytic methods, but in straightforward devices such as larger sample
sizes or experimental manipulation of the variables.

But the effects of collinearity are very important to keep in mind when
testing competing theories using linear regression. You might want to
show that your theoretically important regressor X1 explains variation in
Y after accounting for a regressor X2 representing an alternative theoretical
orientation. That competing theory may make the opposite prediction—
that X2 and not X1 uniquely accounts for variation in Y. Suppose you
find that X1’s regression coefficient is statistically significant in a model
estimating Y from X1, X2, and a set of covariates, but in this model X2’s
regression coefficient is not statistically significant. You might be inclined
to celebrate, but this isn’t a fair comparison of theories if X2 is more highly
correlated with the covariates than is X1. This higher collinearity would
affect the standard error of b2 more than b1, resulting in a widening of the
confidence interval for Tb2 and lowering the power of the hypothesis test
for Tb2 relative to Tb1.

4.7.2 Contradicting Inferences

Tests described in this chapter for inference about TR and Tbj can produce
what seem to be conflicting results. It is not uncommon for a researcher to
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find that R is not statistically different from zero even though one or more of
the regression coefficients is. This leads to the apparent contradiction that
no linear combination of regressors explains variation in Y even though one
or more of the regressors in the model does. Conversely, one could find
that none of the regression coefficients are statistically different from zero,
yet a hypothesis test on the multiple correlation leads to the inference that
TR > 0. Thus, while none of the individual regressors is uniquely related
to Y, when considered as a set they explain variation in Y.

These tests are testing different null hypotheses. There is nothing in
the mathematics that requires them to produce internally consistent re-
sults. Usually, such conflicts are due to differences in the power by which
the methods test their corresponding hypotheses. As a general rule, hy-
pothesis tests that lead to vague claims are conducted with more power
than hypothesis tests that lead to specific claims. This is consistent with
day-to-day life. A detective may be certain that a burglary has occurred
even though he or she may be unable to claim who committed the crime.
You may be certain that your keys were misplaced, but you may not know
whether it was you, your spouse, or one of your children who set them
down in some errant location.

We saw that collinearity between regressors increases standard errors,
yet collinearity does not lower the power of hypothesis tests on the entire
set of variables in the model. As a result, it can be harder to come away
from an analysis being able to claim that a specific regressor is related to
Y than it is to make the much less specific claim that at least one of them
is related to Y. Yet the inclusion of a set of regressors in a model that is in
reality uncorrelated with Y increases sampling variance in the estimation
of TR but not necessarily the standard error of regression coefficients for
regressors that are correlated with Y. As a result, one might be left with
a specific conclusion about a given regressor’s unique relationship with Y
even though the model, by a hypothesis-testing standard, does not explain
more variance in Y than can be expected by chance.

In general, if a test of a specific null hypothesis is significant, and that
test survives corrections for multiple tests described in Chapter 11, we can
reject both that null hypothesis and any broader null hypothesis in which
the specific null is imbedded. These issues are discussed further in Chapter
11.
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4.7.3 Sample Size and Nonsignificant Covariates

To minimize standard errors and maximize the power of tests, should you
limit the number of covariates or delete nonsignificant covariates from the
model? Generally not. If a covariate correlates with no other variables in
the analysis, then its inclusion lowers the power of tests on independent
variables by the same amount as the loss of one case from the sample—both
lower dfresidual by one. Thus, when sample sizes are moderate or large, little
power is lost by adding a few extra covariates that turn out to be inde-
pendent of other variables. A covariate Xi that correlates highly with an
independent variable Xj can substantially increase SE(bj) and thus lower
power of tests for the regression coefficient for Xj. But that very fact is
usually evidence that it would be invalid to arbitrarily exclude covariate
Xi from the analysis. The collinearity between Xi and Xj will also raise
SE(bi), perhaps making it nonsignificant. Therefore, the nonsignificance of
a covariate’s regression weight is not a good reason for deleting it from the
model. If you felt controlling for a variable is necessary for the sake of accu-
rate inference about the phenomenon being modeled, that doesn’t change
just because its p-value is not small enough to reject the null hypothesis
that its regression weight is zero.

A common but misleading rule of thumb is that a regression analysis
should not contain more variables than one-tenth the sample size. But the
most important tests are usually on values of bj, and the power of those
tests is determined not by the ratio N/k suggested by this rule of thumb
but by dfresidual, which usually is N − k − 1, which, of course, is determined
by N − k. Thus, the power of the most important tests is determined by the
difference between the sample size N and the number of regressors k, not
their ratio (e.g., Green, 1991). When N− k = 40, a two-tailed test on bj at the
0.05 level has power of 0.80 if Tprj = 0.43, so one simple rule of thumb is
that unless the effects of interest are believed to be quite large, the sample
size should exceed k by 40 or more. But large samples allow a great variety
of potentially useful analyses that are not practical in small samples, so the
overriding rule is simply that larger samples are better than smaller ones.
The ratio of cases to regressors has little relevance to inference in regression
analysis.

4.7.4 Inference in Simple Regression (When k = 1)

Most books on regression analysis discuss inference in simple regression
prior to extending the principles to models with more than one regressor.
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We see regression with a single predictor as just a special case of multiple
regression in which k = 1, and all the tests mentioned so far thus apply to
this special case. The test on bj in section 4.4 and the test on R described
in section 4.3 apply to simple regression. The two tests then test the same
null hypothesis: the hypothesis of no association between Y and the single
regressor X. Further, the two tests are equivalent. The F found in testing
R will always equal the square of the t found when testing b1, and the
two-tailed p of the t-test will be equal to the p in the F-test. Both tests are
also equivalent to the following t-test on a simple correlation r for testing
the null hypothesis that Tr = 0:

t =

√
N − 2
1 − r2 , df = N − 2

In section 4.5.2 we provide a method for constructing a confidence
interval for Tprj that can also be used for constructing an interval estimate
for Tr.

4.8 Chapter Summary

This chapter is dedicated to statistical inference in linear regression. After
discussing the distinction between statistics and parameters, we covered
the primary (linearity) and secondary (normality, homoscedasticity, and
independence of errors in estimation) assumptions of valid inference, sav-
ing a more detailed discussion of these assumptions for Chapter 16. We
addressed how to test hypotheses about the multiple correlation coefficient
and various measures of partial association, such as the partial regression
coefficient and partial and semipartial correlation. Whereas the partial re-
gression coefficient is generally an unbiased estimator of its corresponding
parameter, the multiple correlation is a biased estimator, but an adjustment
reduces this bias.

Regression is particularly well-suited to answering questions about the
relationships between correlated regressors and a dependent variable when
other regressors are held constant. There is a limit, however, to how cor-
related regressors can be before damage is done to the inferential process.
Collinearity can decrease the precision in estimation of measures of par-
tial association, but as the formula for the standard error of a regression
coefficient shows, high collinearity can be offset by other things under an
investigator’s control. As a result, collinearity—which is a fact of life and
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not something with effects that can be eliminated by more sophisticated
methods—is not necessarily as problematic as some people believe.

The prior chapters of this book are dedicated to building the founda-
tion of your understanding of linear regression analysis principles, with an
emphasis on statistical control, measuring partial association, and testing
hypotheses using regression. The next chapter builds upon the foundation
just laid by addressing additional topics in statistical control and linear
models, such as dichotomous regressors, regression to the mean, and as-
sessing the contribution of conceptually overlapping sets of variables to
model fit and explaining variance in a dependent variable.





5
Extending Regression Analysis
Principles

This chapter expands on the principles of linear regression and partial
association introduced in Chapters 2 and 3. We show how linear re-
gression does not require that all regressors be numerical; one or more
can be dichotomous without modifying any of the underlying logic or
mathematics of the modeling process. In this case, a linear model can
be used to estimate the mean of Y for the two groups coded with the
dichotomous regressor, with or without equating the groups on other re-
gressors. The following section introduces regression to the mean and
how linear models properly deal with the phenomenon in ways that other
methods of analysis do not. We then generalize the measures of partial
association explained in Chapter 3 to sets of regressors before closing
with a look at how linear regression analysis can be extended and fore-
shadowing certain problems that we address later in the book.

5.1 Dichotomous Regressors

5.1.1 Indicator or Dummy Variables

The methods already described can easily be adapted to include dichoto-
mous regressors such as a participant’s biological sex or to which of two
conditions a participant in an experiment is assigned. The use of categorical
independent variables together with numerical covariates often goes by the
name analysis of covariance (ANCOVA), but in fact ANCOVA is just a special
case of the more general linear model discussed in this book. ANCOVA
can be conducted with any regression program.

To illustrate, we add a person’s sex to the model of weight loss that was
used throughout Chapter 3. Suppose our sample of 10 people includes four
women and six men. The sexes are distributed as shown in Table 5.1, with
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TABLE 5.1. The Weight-Loss Data Set Including Sex (with Males Coded 0 and Females
Coded 1)

Exercise Food intake Metabolism Sex Weight loss
ID X1 X2 X3 X4 Y

1 0 2 15 0 6
2 0 4 14 0 2
3 0 6 19 0 4
4 2 2 15 1 8
5 2 4 21 1 9
6 2 6 23 0 8
7 2 8 21 1 5
8 4 4 22 1 11
9 4 6 24 0 13

10 4 8 26 0 9

Means 2 5 20 7.5

males coded 0 and females coded 1. A dichotomous variable coded in this
fashion is called an indicator or dummy variable. Any two numerical values
can be used, but it is good and convenient for the purpose of interpretation
to get into the habit of coding a dichotomous variable with two codes that
differ by only 1 unit (e.g., 0 and 1; −0.5 and 0.5; and so forth).

For simplicity, we shall first consider the simple regression of weight
loss (Y) on sex (X4). A scatterplot is shown in Figure 5.1. We know
from section 2.1.2 that if conditional Y means fall in a straight line, the
regression line will pass through them. But in this figure there are only two
conditional Y means. The straight line connecting those two conditional
means is therefore the regression line.

5.1.2 Estimates of Y Are Group Means

If you do the calculations, you will find that the six men lost 7 units of
weight per week on average (i.e., 700 grams), whereas the four women
lost 8.25 units (825 grams) of weight on average per week. When Y is
regressed on a dichotomous regressor, the resulting values of Ŷ that the
model generates correspond exactly to these two means. You can verify for
yourself that regressing weight loss (Y) on sex (X4) yields Ŷ = 7.00+ 1.25X4

as the best-fitting ordinary least squares (OLS) regression model. Plugging
zero (males) into this equation for X4 yields Ŷ = 7.00 + 1.25(0) = 7.00,
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FIGURE 5.1. A scatterplot of weight loss against sex for the weight-loss data set.

which is Y for males. Similarly, plugging in one (females) yields Ŷ =
7.00 + 1.25(1) = 8.25, or Y for females. Observe that when using 0 and 1 to
code groups, b0 corresponds to Y for the group coded 0, and as discussed
in section 5.1.3, b1 is the difference between the group means.

A regression analysis with a dichotomous predictor generates the group
means regardless of the two values used to code the two groups. For
instance, suppose that rather than using 0 and 1 to code sex, we had used 1
and −1 for males and females, respectively. In that case, regressing weight
loss on sex yields Ŷ = 7.625− 0.625X4. This equation yields Ŷ values of 7.00
for males (X4 = 1) and 8.25 for females (X4 = −1), just as the regression
model did when using 0 and 1 to code sex.

To anthromorphize regression analysis, it is fairly smart. Knowing only
whether a case in the data file is male or female, it figures out that the best
guess of Y for males is the mean of the males, and the best guess of Y for
females is the mean of the females. It doesn’t care how you code sex. It will
figure out a regression coefficient and regression constant that reproduces
the two group means regardless of your decision.
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5.1.3 The Regression Coefficient for an Indicator Is a Difference

We have defined the slope of a line linking regressor X to Y as the amount
Y rises for a 1-unit increase in the regressor. But in Figure 5.1, there is only
one such increase in the regressor—the increase from 0 to 1. Thus, the slope
equals the difference between the two conditional Y means. The means
for males and females are 7.00 and 8.25, respectively, so their difference is
1.25, which is the regression coefficient in a linear regression estimating Y
from X4. In this example, the regression coefficient for X4 is the difference
between the mean weight loss for males versus females.

In sections 4.4.1 and 4.7.4 we presented a significance test for the
null hypothesis that a true simple or partial regression coefficient equals
zero. When there is only one regressor and it is dichotomous, that test
is equivalent to the familiar two-group t-test for the null hypothesis that
the group means are equal. In the present example, the difference be-
tween the two means is 1.25. Using the ordinary formula for the stan-
dard error of a difference between means and assuming equal population
variances, we estimate the standard error of the difference to be 2.221.
By the t-test, the significance of the difference is tested by computing
t = 1.25/2.221 = 0.562, df = N − 2 = 8, p = .59 (two-tailed). The regres-
sion test in section 4.7.4 would give exactly the same values of t and p.

You need not code two groups with 0 and 1. When you do so, the
regression coefficient for that variable is the difference between conditional
Y means. This will be true even when using different codes, so long as
they differ by 1 unit. We used males = 0 and females = 1 for X4, so they do
differ by 1 unit. The regression coefficient for X4 would be the same if we
used −0.5 and 0.5 instead. But if you chose different numerical codes that
differed by more than 1 unit, such as −1 and 1, then this would change the
regression coefficient. In this example, the regression coefficient would be
one-half of the difference between conditional Y means. More generally,
if the two groups are coded by values that differ by δ units—whatever
their values—then the regression coefficient will be 1/δ times the difference
between the conditional Y means. Changing the coding of the groups to
any two arbitrary values will not change the results of the inferential tests
for the regression coefficient, and the model will still exactly generate the
two group means.

Similar principles apply when the dichotomous regressor is one of sev-
eral. In multiple regression analysis, the regression coefficient for a di-
chotomous regressor coded 0 and 1 can be interpreted as the Y difference
between the two groups, adjusted for differences between groups on the
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other regressors. For instance, when all four regressors (exercise, food in-
take, metabolism, and sex) are used in the current example, we find that the
regression coefficient for sex is −0.404. This means that after adjusting or
correcting for differences between the four women and six men on exercise,
food intake, and metabolism, the women lost on average about 0.4 units or
40 grams less than the men per week—less because women were coded as
1 and men were coded 0 and the regression coefficient for sex is negative.
By the test introduced in section 4.4.1, this difference is not statistically
significant.

5.1.4 A Graphic Representation

In Figure 3.5 in section 3.1.6, we saw an example in which the regression
slope of X1 equals the vertical distance between parallel lines of best fit
for X2 where the lines represented X1 values 1 unit apart. If there is a
dichotomous regressor scored 0 and 1, then the adjusted slope or adjusted
difference for the dichotomous regressor can be interpreted as the vertical
distance between two parallel lines or planes of best fit for the other regres-
sors. For instance, if we regress Y on the numerical regressors of exercise
(X1) and food intake (X2) and the dichotomous regressor of sex (X4), we
find b1 = 2.216, b2 = −0.584, b4 = −1.008 and b0 = 6.571, so the model is

Ŷ = 6.571 + 2.126X1 − 0.584X2 − 1.008X4

When X4 = 0, this equation reduces to

Ŷ = 6.571 + 2.126X1 − 0.584X2

whereas when X4 = 1, it reduces to

Ŷ = 6.571 + 2.126X1 − 0.584X2 − 1.008

= 5.563 + 2.126X1 − 0.584X2

Each of these models can be represented by a tilted plane. Putting both
planes in the same figure gives Figure 5.2, in which the upper tilted plane
represents the model for men and the parallel plane just below it represents
the model for women. The vertical distance between the two planes is
1.008, which is b4. This is the difference between the average weight loss
of the four women and six men in the sample, adjusted for differences
between them on exercise and food intake.
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FIGURE 5.2. A model of weight loss that fits separate but parallel planes for men and
women.

5.1.5 A Caution about Standardized Regression Coefficients for
Dichotomous Regressors

As introduced in section 3.3.3, a regression coefficient can be expressed in
standardized or unstandardized form. Regression coefficients are in stan-
dardized form if one estimates Y from one or more regressors when Y and
all regressors are first standardized (converted to variables with mean 0
and standard deviation 1). We introduced b̃ as our notation for the stan-
dardized regression coefficient to distinguish it from the unstandardized
regression coefficient b.

Although it is not uncommon for investigators to report a regression
model in standardized form, we discourage the reporting of standardized
regression coefficients for dichotomous regressors. There are two problems
with doing so. First, standardization destroys the convenient interpretation
of the regression coefficient as a mean difference. Remember that the regres-
sion coefficient for X in a regression model corresponds to the estimated
difference in Y between two cases that differ by 1-unit on X (adjusting for
other regressors if others are in the model). So when expressed in unstan-
dardized form, the regression coefficient for a dichotomous regressor when
the groups are coded by a 1-unit difference is equal to the difference between
the group means on Y. However, this will not be true for the standardized
regression coefficient, because the two groups will not differ by 1 standard
deviation on the variable coding groups following standardization. That is,
b̃ cannot be interpreted as a mean difference regardless of how X is coded.
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Given that substantive questions involving dichotomous regressors in a
regression model almost always focus on differences between groups, we
think it makes more sense to keep a dichotomous regressor coded in a form
that yields a regression coefficient with a mean difference interpretation.

Second, to make matters worse, b̃ is affected by both the difference
between group means on Y and the distribution of the cases across the
two groups. To illustrate, consider a dichotomous regressor X coded 0 and
1. The standard deviation of X is

√
P0 × P1, where P0 is the proportion

of the individuals in the sample who are members of the group coded
X = 0 and P1 is the corresponding proportion of the individuals in the
sample who are members of the group coded X = 1. So when the sample is
equally split between the two groups, P0 = 0.5 and P1 = 0.5, meaning that
sX =

√
0.5 × 0.5 = 0.5. But when the sample is split, say 4:1 in favor of one

group, meaning P0 = 0.80 and P1 = 0.20, then sX =
√

0.80 × 0.20 = 0.40. In
the former case, the two groups differ by 1 unit on X prior to standardization
but 2 standard deviations on X after standardization. In the latter case, the
two groups of course still differ by 1 unit on X before standardization, but
they differ by 2.5 standard deviations on X after standardization.

The implications of this are important. Suppose that the two groups
differ by 2 points on Y on average, and sY = 4.00, meaning that they differ
by half a standard deviation on Y on average. If X is coded 0 and 1 and the
groups are equally split between the two groups (i.e., P0 = P1 = 0.5) and you
estimate Ŷ = b0+b1X, then b1 = 2.00, but b̃1 = 0.25. This should make sense;
b1 corresponds to the difference between group means on Y, as discussed
earlier. And remember that in the standardized regression model, the
regression coefficient for dichotomous predictor X is the estimated number
of standard deviations on Y by which two cases are estimated to differ
who differ by 1 standard deviation on X. The two groups differ by 2
standard deviations on X, so b̃1 is one-half of the difference between means
on standardized Y following standardization of X.

But suppose that instead your sample heavily favored one group, with
four times as many cases in group X = 0 than in group X = 1, but everything
else was otherwise the same, with the group means differing by 2 units on
Y and sY = 4.00. So the two group means differ by the same amount on
Y in either standardized or unstandardized form as when the groups were
equal in size. Whereas b1 in this regression will still be 2.00, which is the
difference between the group means on Y, b̃1 is not 0.25 as before but, rather,
0.20. So the same mean difference on Y has resulted in a smaller value of b̃1,
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but b1 is unaffected. Furthermore, b1 still has its convenient mean difference
interpretation, but b̃1 does not.

This means that b̃1 can’t be interpreted sensibly without considering
information about the distribution of the sample across the two groups,
whereas b1 does not require this information. In addition, any attempt at
generalizing b̃1 to the population must condition that inference on a pop-
ulation with that same split on the dichotomous variable. If your sample
represents the population with respect to the distribution of X, no problem,
but often various processes at work can result in a loss of representative-
ness of the distribution of one variable relative to the population (e.g., if
some members of the population are more likely to refuse to participate
in the study, or if you have intentionally oversampled one group). But b1

doesn’t have such a constraint on generalization. Finally, you can’t com-
pare standardized regression coefficients in the same model that includes a
dichotomous regressor but estimated in two different samples that differ in
the distribution of the dichotomous variable, even if the distribution on Y
is exactly the same in the two samples. If the two samples differ in variance
in Y as well as the distribution of cases across the two groups coded with X,
comparability is even further reduced. But b1 does not suffer from this lack
of comparability. (Note that this applies to comparisons of standardized
regression coefficients for numerical regressors as well).

This unfortunate property of standardized regression coefficients for
dichotomous regressors generalizes to models with multiple regressors,
although the argument is made slightly more complex by the fact that
the distribution of cases across the two groups also affects the correlation
between the dichotomous variable and the other regressors. Regardless, if
you want to report a standardized regression model, we recommend you
standardize all variables manually but leave the dichotomous regressors
in their original, unstandardized form, prior to estimating standardized Y
from the regressors. When you do so, the proper regression coefficients
to interpret are the ones identified in your regression program output as
unstandardized coefficients (which are actually standardized coefficients for
those regressors that were standardized prior to analysis).

5.1.6 Artificial Categorization of Numerical Variables

ANOVA is a staple in the curriculum of undergraduate and graduate pro-
grams in psychology and related disciplines. As described later in Chapter
9, ANOVA is just a special case of a more general linear model that is the
topic of this book. Unfortunately, researchers accustomed to thinking in
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ANOVA terms often take numerical variables and categorize them prior
to analysis, probably in order to fit the data to the analytical approach to
which they are most comfortable or accustomed. For instance, rather than
analyzing age as a continuum, a researcher might classify people into age
groups such as 20s, 30s, 40s, and so forth, and treat this as a categorical
variable using ANOVA. Or perhaps a media effects researcher measures
television viewing frequency in number of hours per day but then classi-
fies people into light, moderate, and heavy viewers based on how many
hours they report.

Typically, such categorization of people based on numerical data is done
arbitrarily. It may be based on predetermined criteria or on the distribution
of the numerical data. For instance, a light television viewer might be
defined as someone who watches less than 1 hour per day, a moderate
viewer as between 1 and 3 hours, and a heavy viewer as someone who
watches more than 3 hours per day. Alternatively, the researcher might
attempt to divide the sample based on the distribution, such that those in
the lower third of the distribution are classified as light, the middle third
as moderate, and the highest third as heavy viewers. Even more coarse
categorization is possible and often undertaken, such as the construction
of high and low groups based on whether a person is above or below the
sample mean or median.

Such categorization is no doubt most typically undertaken because the
researcher is familiar with ANOVA but not its more general linear model
form that doesn’t require people to be put into groups. Such categoriza-
tion is not necessary using the procedures described in this book. If one’s
hypothesis is that people who watch more television are likely to be less
healthy, as measured by something like the body mass index (BMI), it is not
necessary and can even be damaging to the analysis to classify people into
groups of TV viewing frequency and then conduct an ANOVA comparing
the group means. Better would be simply to regress BMI on the number
of hours the person reports watching TV and examine various measures
of linear association. Doing so generally is more valid and more powerful
because categorization throws away information about association, treats
people who are very similar as if they are maximally different, and increases
measurement error. There is a large literature admonishing researchers not
to artificially categorize variables that are or can be measured numeri-
cally or continuously (Cohen, 1983; Irwin & McClelland, 2002; Kuss, 2013;
MacCallum, Zhang, Preacher, & Rucker, 2002; Maxwell & Delaney, 1993;
Rucker, McShane, & Preacher, 2015). We largely agree with that literature.
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With this in mind, there are a few circumstances in which artificial cate-
gorization of numerical variables can be justified. One such circumstance is
when a quantitative measurement procedure results in a severely bimodal
distribution, with very little variation around two points. For instance, you
might ask people to place themselves on a 10-point scale with respect to
how much (1 = not at all, 10 = very much) they support a particular gov-
ernment proposal to reduce the potential threats of global climate change.
Suppose you find that most everyone responds with either a 1 or 10, with
a few people giving a 2 or 9, and still fewer responding with 3 or 7, with no
one giving a 4, 5, or 6 response. In that case, there probably isn’t much to
be gained by recognizing the distinction between a response of 1 and 2, or
between a 9 and 10. The results of the measurement procedure reflect that
there really are just two groups of people—those who support the proposal
and those who don’t. It would probably be safe in this case just to code
people dichotomously as opponents or proponents of the proposal.

Another circumstance in which categorization based on a numerical
variable could be sensible is when the variable you are really interested
in is dichotomous by nature but you have measured it in such a way that
you have more information than you need to use. For example, perhaps
you have asked people in a questionnaire how many cigarettes a week
they typically smoke. If all you really care about for the sake of analysis
is whether someone is a smoker or not, it would be sensible to classify
anyone who responds zero as a nonsmoker, and consider anyone who
gives a response other than zero as a smoker.

Finally, in some fields, whether or not a measurement exceeds a thresh-
old is considered important for theoretical or applied reasons, and you may
want to honor what is commonplace in that field. For example, in clinical
psychology, a person might be considered eligible for a particular diagnosis
if he or she has at least five symptoms from a list of many possible symp-
toms. Although you could do the analysis using how many symptoms the
person reports as a regressor, it may be clinically more meaningful or yield
results that are easier to apply if you simply categorized people as eligible
or not for the diagnosis prior to the analysis.

But don’t take these decisions lightly. The consequences of artificial
categorization are potentially severe. Make sure you think through the de-
cision, and be prepared to tell consumers of your research your justification
for discarding information that you had prior to analysis. As a general rule,
avoid the use of mean or median splits or other arbitrary approaches to cre-
ating categories out of quantitative variables. Assume that your reader is
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aware of the pitfalls of artificial categorization and will be skeptical of your
decision. Thinking about it this way will force you to ponder your decision
and make an informed one.

5.2 Regression to the Mean

5.2.1 How Regression Got Its Name

In its most general form, regression to the mean applies whenever two
variables X and Y are correlated less than perfectly in a sample of cases.
The principle asserts that if we select a subsample of cases with extreme
measurements on X, then the subsample’s mean on Y will almost always
be less extreme than its mean on X—that is, it will regress toward the
mean of the total sample. This section explains why and shows how the
phenomenon can lead the unwary researcher into a variety of errors that
are avoided by the proper use of linear models. When Sir Francis Galton
first noticed the phenomenon in the late 19th century, he considered it so
important that the linear models he used came to be known as regression
models.

5.2.2 The Phenomenon

Galton noticed the phenomenon when he studied the heights of a large
sample of middle-aged men and their grown sons. He observed that most
of the older men who were above average in height had sons shorter than
they, while most of the older men who were shorter than average had sons
taller than they. In other words, the heights of the sons were regressing
toward the mean height. This regression seemed to imply that the younger
generation was more homogeneous in height than the older generation.
But this conclusion was not supported; the standard deviation of the sons’
heights was found to be almost exactly equal to the standard deviation of
the fathers’ heights. This equality of standard deviations seem to contradict
the regression; how could both be true?

We know that this paradox was caused not by any peculiar properties of
the English or father–son pairs or height, but by the very general statistical
phenomenon of regression to the mean. For simplicity, consider a sample
of 19 father–son pairs and their heights, depicted in the scatterplot in Figure
5.3. The solid line is not the best-fitting regression line but rather the line of
equality, meaning that this line represents father–son pairs with identical
heights (i.e., Y = X). Dots above this line represent father–son pairs with
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FIGURE 5.3. Sample data set illustrating regression to the mean.

sons taller than their fathers (i.e., Y > X). Dots below this line correspond
to father–son pairs with fathers taller than their sons (i.e., Y < X).

Now observe a number of things. First, the marginal distributions of
the heights of fathers and sons are identical. That is, each distribution has
three heights in inches of 63, four heights of 66, five heights of 69, four
heights of 72, and three heights of 75. Thus, they have the same mean and
the same standard deviation. Second, only five of the sons are exactly the
same height as their fathers. More often, the son is either taller than the
father (7 pairs) or shorter than the father (7 pairs).

The average height of the fathers is 69 inches, as is the average height of
their sons. Consider the seven fathers who are below average in height—
the seven leftmost dots in Figure 5.3. Notice that most of their sons are
taller (4 of 7), and only one of the sons of these relatively shorter fathers is
shorter than his father. Furthermore, these sons are, on average, taller than
their fathers and closer to overall mean height than their fathers. Consider
the three fathers who are 63 inches tall. Their sons are, on average, 66
inches tall. Similarly, the four fathers who are 66 inches tall have sons who
are, on average, 67.5 inches tall.

Consider next the seven fathers who are above average in height. These
are the seven rightmost dots in Figure 5.3. Most of their sons are shorter
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than they are (4 of 7), and only one is taller. Consequently, the sons of these
seven fathers are, on average, shorter than their fathers and closer to the
mean height, on average, than their fathers. Examining the three tallest
fathers first—each of whom is 75 inches tall—notice that their sons are 72
inches on average. And the four fathers who are 72 inches tall have sons
who are, on average, only 70.5 inches tall.

This example has all the features of the paradox that Galton observed:
Most taller-than-average fathers have sons shorter than they, and most
shorter-than-average fathers have sons taller than they. Yet sons are not
less variable in height than are fathers, as the standard deviations of sons’
and fathers’ heights are the same.

Notice as well that this effect is symmetrical, in that most of the tallest
sons have fathers shorter than they, and most of the shortest sons have
fathers taller than they. That would lead you to think that the standard
deviation of the sons’ heights exceeds that of the fathers’ heights, while the
original paradox led you to believe that the opposite was true. Yet neither
is true. The standard deviations of the two distributions are the same.

Regression to the mean can also be described in terms of the gain or
difference score Y − X. So in this example, Y − X would be the difference
between the height of a son and the son’s father. A positive difference
means the son is taller than the father, and a negative difference means
the son is shorter than the father. Regression to the mean implies that the
difference Y − X is negatively related to X. That is, the difference between
the height of the son and the father is negatively correlated with the height
of the father. The 19 father–son pairs are depicted again in Figure 5.4 but
with Y−X, the difference between the son and father’s height, on the Y-axis
rather than just the son’s height. As can be seen, the correlation between
Y − X and X is negative; here, Pearson’s r = −0.50. The fathers who are
below average in height tend to have sons who are taller than they are are
(i.e., Y − X > 0), and the fathers who are above average in height tend to
have sons who are shorter than they are (i.e., Y − X < 0).

When framed in terms of difference scores, regression to the mean be-
comes very important to acknowledge whenever you conduct research
that involves measuring change over time. Consider a sample of people
whose depression is measured at a certain time, such as before therapy be-
gins, then again, perhaps after several sessions of psychotherapy, using the
same depression inventory. Unless you force it to be otherwise through the
sampling procedure, there will be differences between people in depression
at time 1. That is, some people will be more depressed than others; there
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FIGURE 5.4. The negative correlation between gain and X.

will be some variation. Furthermore, depression scores at time 1 and time
2 are likely to be positively correlated, but not perfectly.

Now suppose that the therapy is not effective, meaning that, on average,
people are just as depressed after therapy than they were before. Further
suppose that therapy does not affect variation in depression at time 2 rel-
ative to time 1 (i.e., the standard deviations at both times are about the
same). In that case, unless depression at time 1 and time 2 are perfectly
correlated, regression to the mean implies that people who are relatively
more depressed at time 1 are expected to improve at time 2, and people
who are relatively less depressed at time 1 are likely to be worse at time 2.
In other words, the correlation between depression at time 1 and improve-
ment in depression from time 1 to time 2 following therapy is likely to be
negative. Failure to acknowledge regression to the mean could lead to the
interpretation that therapy helps people who are worse off prior to therapy
but harms people who are not so bad to start with.

5.2.3 Versions of the Phenomenon

In both the father–son example and the depression and therapy example,
the means and standard deviations were the same. However, regression to
the mean is more general than this, and equality of the means or standard
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deviations is not a requirement for regression to the mean to occur. Given
this, it is worth acknowledging various forms that regression to the mean
can take. Consider four conditions:

1. Two variables X and Y correlate imperfectly.

2. X and Y are measured in equal units.

3. X and Y have equal standard deviations.

4. X and Y have equal means.

When all four conditions hold, as in the two prior examples, we can
say that in a subsample of people selected for their high values of X, their
values on Y will tend to be below their X values. Similarly, in a subsample
of people selected for their low values on X, their values on Y will tend to
be above their X values.

If we discard the fourth condition that X and Y have the same means,
then we can still say that in a subsample of people scoring below the mean
on X (or above the mean on X), their values of Y will tend to be closer to the
overall mean of Y than their values of X are to the overall mean of X. The
first three conditions are the minimum conditions for asserting confidently
that difference correlates negatively with X. For instance, if it is true that
“the rich get richer and the poor get poorer,” then gain in wealth correlates
positively with initial wealth—but then inequality of wealth is increasing,
meaning that standard deviations of wealth at the two times are not the
same.

If we further discard the second and third conditions, then it is no
longer true that a subsample selected for their relatively high (or relatively
low) values of X will necessarily have values of Y that are closer to Y than
their values of X are to X. But even given only condition one—imperfect
correlation between X and Y—we can still say that cases that are extreme
in the distribution of X relative to X will tend to be less extreme in the
distribution of Y relative to Y. For instance, let X and Y be height and
weight. These variables are not measured on the same scale, so it is not
even meaningful to ask if their means and standard deviations are the same.
But it is still meaningful to ask whether a specific person is more extreme
on height than on weight. For this case, regression to the mean says that
if you select the most extreme people on either variable, most of them will
probably be less extreme on the other variable.
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5.2.4 Misconceptions and Mistakes Fostered by Regression to the
Mean

Regression to the mean can be easily overlooked, even by experts in linear
models. A failure to recognize this phenomenon results in some common
misconceptions and potential mistakes. One of these we have already
addressed, and that is assuming that the standard deviation of Y must be
less than that standard deviation of X. We have seen the fallacy of this
conclusion.

An additional mistake is incorrectly accounting for regression to mean
when attempting to estimate a person’s measurement on one variable from
his or her measurement on another. If a person is 1 standard deviation
below the mean on one variable X, it is all too easy to assume if X and Y
are correlated that this person is likely to be around 1 standard deviation
below the mean on Y as well. But recall from Chapter 2 that in a simple
regression model of the form Ŷ = b0 + b1X,

b1 = rXY
sY

sX

If X and Y have been standardized, they have standard deviations of 1, so
b1 = rXY. Furthermore, since standardized variables have means of zero,
we also have

b0 = Y − b1X = 0 − b1 × 0 = 0

Therefore, when X and Y are standardized,

Ŷ = 0 + b1X = rXYX

So the best estimate of Y for someone who is 1 standard deviation below the
mean on X, meaning X = −1, is not Y = −1 but Y = −rXY, or rXY standard
deviations below the mean. More generally, if someone is k standard
deviations from the mean on X, meaning X = k, the best guess for how
many standard deviations from the mean that person is on Y is k × rXY.
Regression was named so in part for its ability to estimate accurately the
amount of regression to the mean in problems like this.

A failure to recognize regression to the mean can lead a person to
invent some kind of causal mechanism to explain the phenomenon when
it is adequately explained by chance variation. For instance, suppose in a
statistics course, students take a midterm and a final exam. If the two exam
scores do not correlate perfectly, which they likely will not, then students
with the highest scores on the midterm are not likely to be highest on the
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final as well. Similarly, those who do worst on the midterm are not likely
to be worst on the final. If you happened to notice this in a set of exam
scores, you might think that those who scored highest on the midterm must
not have studied as hard for the final, while those who scored lowest on
the midterm worked especially hard to overcome their deficits produced
by their first exam performance. But, in fact, regression to the mean can
account for such a pattern. Whenever two variables are less than perfectly
correlated, extreme measurements on one variable tend to be paired with
measurements on the other that are less extreme.

Finally, analysts not familiar with regression to the mean often make
the mistake of using the difference between measurements of the same
variable over time as a dependent variable in experiments lacking random
assignment, without also including the initial measurement as a covariate.
As discussed in section 5.2.5, there is little gained in the use of such a differ-
ence score relative to just using the second measurement as the dependent
variable and modeling it using the first measurement as a covariate.

5.2.5 Accounting for Regression to the Mean Using Linear Models

Linear modeling formally accounts for regression to the mean by generating
estimates of Y that will be less extreme from Y than X is from X. To illustrate,
consider the data in Figure 5.3. Regressing sons’ heights (Y) on fathers’
heights (X) yields

Ŷ = 34.5 + 0.5X

This regression equation is depicted graphically with the dotted line in
Figure 5.3. Consider the three fathers who are 63 inches tall, meaning 6
inches below the mean height of fathers. The regression equation estimates
that their sons are, on average, 34.5 + 0.5(63) = 66 inches tall, which is 3
inches below the mean of sons’ heights. This is also the conditional mean
of the heights of the sons of 66-inch-tall fathers depicted in Figure 5.3.
Similarly, this model estimates that the height of the son of a 72-inch-tall
father (3 inches above the mean height of fathers) is 34.5 + 0.5(72) = 70.5
inches, which is only 1.5 inches above the mean height of sons. Recalling
that standard deviations of fathers’ and sons’ heights are the same in this
example, it is clear that this equation generates estimates of Y that are less
extreme than X.

This property of the regression equation can also be seen by expressing it
in terms of standardized heights and correlations. The standard deviations
of the heights of sons and fathers are both 3 inches, and the correlation
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between their heights is 0.50. Thus, fathers who are 2 standard deviations
below the mean height (63 inches) are estimated to have sons who are
only 0.5(−2) = −1 standard deviation from the mean height of sons, or 1
standard deviation below the mean, which is 63 inches. And fathers who
are 1 standard deviation above the mean (72 inches) are estimated to have
sons who are 0.5(1) = 0.5 standard deviations above the mean height of
sons, or 70.5 inches. So the heights of sons are estimated to be less extreme
from the mean than their fathers’ heights.

A linear model also properly accounts for regression to the mean when
a variable Y is measured over time and interest is in predicting change in
Y. For example, suppose you wonder whether a driver training course is
more effective in reducing the accident rate among bad drivers who have
been compelled to take such a course by a traffic court than it is among
ordinary drivers not so compelled. So you obtain accident rates of two
groups of people before taking the course, those compelled to take the
course because of their tendency to get in accidents and those who simply
chose to do so. After the course is completed and some time passes, you
obtain the accident rates of these same people. Regression to the mean
implies that you are likely to find that the poor drivers compelled to take
the course improved more than those who took it by choice, because the
poor drivers were likely extreme in the distribution of accident rate prior to
taking the course. Remember that regression to the mean says that extremes
on one variable tend to be paired with less extremes on the other when the
variables are not perfectly correlated. Poor drivers have less room to get
worse and more room to improve than ordinary drivers. This is regression
to the mean.

Analytically, the problem can be handled with a linear model. Let Y2

be the postcourse accident rate, Y1 be the accident rate prior to taking the
course, and X be a dichotomous variable coding whether (X = 1) or not
(X = 0) the person was required by a court to take the course. It would be
unwise to estimate the effect of the training course using a simple model of
the difference score Y2 − Y1:

Y2 − Y1 = b0 + b1X + e

In this model, b1 is typically interpreted as an estimate of the average
difference in change in accident rate between those compelled to take the
course and those who choose to take it. To those familiar with ANOVA, the
test of significance for b1 is mathematically identical to a test of interaction
between time and condition in a mixed factorial analysis of variance with
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time as a within-subjects factor and condition as a between-subjects factor.
And the F-ratio for this interaction is the square of the t-statistic for b1 when
testing the null hypothesis that Tb1 = 0. We discuss interaction in detail in
Chapters 13 and 14.

But this model (whether labeled a regression analysis or a mixed
ANOVA) will fail to account for regression to the mean, and the differential
effectiveness of the course as estimated by b1 is likely to be biased. One
way of recognizing this is to consider that this model can be reexpressed in
identical form as

Y2 = b0 + b1X + b2Y1 + e, where b2 = 1

This is an improper linear model of postcourse accident rate, in the sense that
you are fixing the weight given to prior accident rate to b2 = 1 in the model
rather than letting the least squares algorithm figure out how to best weight
prior accident rate in order to minimize the sum of the squared residuals.
If X is correlated with Y1, as it likely to be in this example (i.e., those who
are compelled to take the course by a traffic course presumably have worse
accident rates prior to the course than those who choose to take it), the
difference between what b2 would be if properly estimated compared to
when it is fixed to 1 will get absorbed at least in part into b1, which biases the
estimate of the effect of being compelled to take the course on postcourse
accident rate.

The proper approach to answering the question as to whether those
compelled to take the course improve more than those not forced to take
it is to estimate postcourse accident rate Y2 from X while using precourse
accident rate Y1 as a covariate, as in

Y2 = b0 + b1X + b2Y1 + e

and letting your OLS regression program figure out how to weight Y1 rather
than fixing b2 to 1.

An alternative might have occurred to you. Since the difference in
accident rate before and after taking the course seems like the most direct
measure of change, why not keep the difference score as the dependent
variable but use precourse accident rate as a covariate? That is, how about
if we estimate

Y2 − Y1 = b0 + b1X + b2Y1 + e (5.1)

This would account for the fact that those whose accident rates are high are
likely to improve more, as expected by regression to the mean. Any change
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independent of prior accident rate will show up in b1, in accordance with
the principles introduced in Chapter 3.

But it is obvious once you see it that b1—the quantity of direct interest
to the question—will be the same regardless of whether Y2 or Y2 −Y1 is the
dependent variable, so long as Y1 is used as a covariate. Equation 5.1 can
be rewritten in identical form as

Y2 = b0 + b1X + (b2 + 1)Y1 + e

This means that b2 in a model of Y2 with Y1 as a covariate is simply one more
than b2 in a model of the difference score Y2 − Y1 when Y1 is a covariate
(cf. Allison, 1990; van Breukelen, 2013). But one of the morals of this
section is that the choice of dependent variable is of no consequence, as b1

is of primary interest, and it will be the same in each of these models. So
although there is no harm in using the difference score as the dependent
variable, mathematically there is no advantage to doing so. But, and this
is the second moral, it is mistake to model change over time (pre to post)
without including premeasurement as a covariate. Doing so fails to account
for regression to the mean, and this can bias the estimate of the effect of
other variables in the model if they are correlated with premeasurement.

5.3 Multidimensional Sets

Many measures of interest can be thought of as multidimensional. For
instance, we could probably construct a simple self-report attitude measure
containing a couple of questions that most people would agree measure at
least roughly what they mean by the term politically liberal. But if we wish
to assess this in a more comprehensive manner, we might create several
different scales or use several different things that measure an aspect of
what it means to be politically liberal. For instance, we might think about
measuring people with respect to not only the liberalness of their political
perspective on matters of foreign policy, but also on economic policy and
various social issues. We could also ask them how many times they have
voted for the candidate in a major political race who could be described as
liberal. Or we could quantify someone’s SES by using his or her income,
his or her occupational prestige, and how many years of education he or
she has received.

To say that some variable Y is unrelated to a set of other variables is to
say that it is uncorrelated with all the variables in the set. For instance, to say
that a measure of political ideology is unrelated to SES as operationalized
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above is to say that it is uncorrelated with all three of the variables in the set
used to define SES. More formally, this means that the multiple correlation
R in a model estimating political ideology from the three variables in the
SES set is equal to zero.

A single analysis may contain two or more sets of variables. For in-
stance, we might have a set of regressors we call the demographics set, such
as age, sex, and race, and a set we call the SES set, which includes such
things as income, occupational prestige, and education. Or one could have
a miscellaneous set of variables that do not squarely fit into other sets of
variables used in the model.

Using the indices of setwise partial association described in this section,
one would not need to aggregate and reduce all these variables into a single
score but, rather, they could be treated as distinct measures of separate but
related things by quantifying the relationship between the set and some
outcome variable of interest, while controlling for other variables in the
analysis.

5.3.1 The Partial and Semipartial Multiple Correlation

In section 3.4.1 we said that regressor j’s unique contribution to a regression
can be defined as the amount R2 would drop if the regressor were removed
from the analysis. Alternatively, it is the amount by which R2 increases
when it is added to a model without it. We saw that this unique contribution
equals 0 if and only if srj = 0, which implies that the other measures
of partial relationship (bj, b̃ j, and prj) also equal 0. These ideas can be
extended to sets of variables.

Let A and B denote two sets of variables. For example, let set A include
several demographic measures, while set B includes several SES measures.
We shall define the partial multiple correlation PR(B.A) as the multiple cor-
relation between Y and set B with all the variables in set A held constant.
To be precise, if mB is the number of variables in set B, imagine mB separate
regressions in which each of these B variables is regressed on (predicted
from) all the variables in set A. The residuals in all these regressions give
us mB variables that we can call the portions or components of B independent
of A. Imagine also regressing Y onto the set of A variables. The residuals
for this model are the portion of Y independent of A. Finally, imagine re-
gressing these residuals for Y onto the portions of set B independent of A
(i.e., the residuals from estimating each of the B variables from all of the A
variables). The multiple correlation in this regression is PR(B.A). If set B
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has only one variable, the value of PR(B.A) equals the absolute value of the
ordinary partial correlation.

We can similarly define a semipartial multiple correlation SR(B.A) as the
correlation between all of Y and the portions of set B independent of set A.
Again, if set B has only one variable, SR(B.A) reduces to the absolute value
of the ordinary semipartial correlation.

We do not actually have to compute all these residuals to calculate
PR(B.A) and SR(B.A), as they are easily calculated from other statistics.
Define R(A) as the multiple correlation from a model estimating Y from
only set A variables and define R(AB) as the multiple correlation from a
model estimating Y from variables in both set A and B. Then

SR(B.A)2 = R(AB)2 − R(A)2

while

PR(B.A)2 =
SR(B.A)2

1 − R(A)2

=
R(AB)2 − R(A)2

1 − R(A)2

These formulas are consistent with previous interpretations of partial and
semipartial correlations. SR(B.A.)2 is the unique contribution of set B to the
regression. If we think of Y as standardized to unit variance, then SR(B.A)2

is the proportion of the Y variance explained by the variables that define set
B independent of A. It is also the amount R2 increases when the variables
in set B are added to a model of Y including set A variables as regressors.

The denominator 1 − R(A)2 of the last ratio is the proportion of the
Y variance unexplained by A, so PR(B.A)2 is the proportion of remaining
variance in Y (i.e., the proportion not accounted for by A) that can be
uniquely explained by set B. A similar interpretation of pr2

j was given in
section 3.3.

A close examination of these formulas reveals that PR(B.A)2 and
SR(B.A)2 differ in their reference point for gauging variance explained by
set B. Whereas SR(B.A)2 indexes set B’s unique contribution to the model as
relative to all the variance of Y—whether explained or unexplained by set
A—PR(B.A)2 indexes set B’s contribution as relative to only the variance in
Y that remains unaccounted for by set A.

The formulas also show clearly another useful fact about a partial or
semipartial multiple correlation: To say that PR(B.A) = 0 or SR(B.A) = 0 is



Extending Regression Analysis Principles 147

to say that the multiple correlation between Y and set A equals that between
Y and sets A and B together. Adding the regressors in set B to a model that
includes the regressors in set A does not increase the regression model’s
ability to explain variance in Y.

To illustrate these computations, suppose we want to estimate how
much of the variance in weight loss can be explained by things that can
more easily be controlled by a person—exercise (X1) and food intake (X2)—
after accounting for things that might affect weight loss that are harder or
impossible for a person to control—metabolism (X3) and biological sex (X4).
Define set A as those factors not under personal control and set B those
things under a person’s control. If we first regress weight loss on set A, we
get Ŷ = −3.669 + 0.529X3 + 1.470X4, SS(A)regression = 46.734, R(A)2 = 0.474.
When the variables in set B are added, the result is Y = −0.967 + 1.151X1 −
1.133X2 + 0.6X3 − 0.404X4, SS(AB)regression = 91.703, R(AB)2 = 0.931. We
don’t need the regression sum of squares in these computations but we use
them later so we include them here.

Given these statistics,

SR(B.A)2 = R(AB)2 − R(A)2

= 0.931 − 0.474

= 0.457

PR(B.A)2 =
SR(B.A)2

1 − R(A)2

=
R(AB)2 − R(A)2

1 − R(A)2

=
0.931 − 0.474

1 − 0.474
= 0.869

So we can say that of these four factors, the ones most under a person’s
control (food intake and exercise) uniquely explain about 45.7% of the
variance in weight loss, holding constant the ones less under control (sex
and metabolism). We can also say the factors more under personal con-
trol explain about 86.9% of the variance in weight loss that remains after
accounting for the factors less under control.
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5.3.2 What It Means If PR = 0 or SR = 0

In the SES example, the word correlation strongly suggested positive simple
correlations, but that is not a necessary property of multiple and partial
multiple correlations. For instance, suppose we want to examine the rela-
tionship between a city’s rate of homelessness and both poverty rate and
availability of public housing. Four sociologists might have very different
ideas as to how these variables relate to homelessness rates. One might
guess that the homelessness rate is related primarily to the poverty rate,
while a second supposes that it is related primarily to the availability of
public housing. A third might advance the prediction that homelessness
is related to the difference between the poverty rate and the availability of
public housing expressed as a proportion of the city’s population. Yet a
fourth might argue that only two-thirds of poor people want to live in pub-
lic housing, so that homelessness might be related to the difference between
the availability of public housing and two-thirds of the poverty rate.

These views are quite different, but all imply that there is a correlation
between homelessness rate and some linear function of poverty rate and
public housing availability, and so all imply a nonzero multiple correlation
between the homelessness rate and the other two variables. If the multiple
correlation were found to be zero, this would contradict all four of these
views plus many others involving other specific combinations of the two
variables. Thus, a hypothesis test on a single multiple correlation of the type
introduced in Chapter 4 can test an entire array of specific hypotheses about
combinations of regressors. This is true even if some of the hypotheses
involve negative correlations.

A related set of questions might be answered by a partial multiple cor-
relation. Homelessness might be higher in larger cities or in cities with
warmer winter climates. Suppose we want to see whether homelessness
relates to poverty and public housing while controlling for city size and
average winter temperature. We could then include a city’s population
and average winter temperature in set A, include poverty rate and public
housing availability in set B, and examine the relationship between home-
lessness and set B with set A held constant.

5.3.3 Inference Concerning Sets of Variables

In section 5.3.1 we saw that the contribution of a set of variables to a
model’s ability to explain variance in Y can be estimated with the partial
or semipartial multiple correlation. It is often of interest to test whether
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this contribution is statistically different from zero. That is, one might ask
whether the set of regressors B contributes to the model’s fit after controlling
for the regressors defining set A. This boils down to a question about
whether TSR(B.A) or TPR(B.A) is equal to zero or, equivalently, whether
TR(AB) = TR(A). Reframed in terms of change in R2, we want to test
whether the increase in R2 for the model that results when set B regressors
are added to a model that already contains set A regressors is statistically
different from zero. We don’t need separate tests for TSR or TPR because if
one is zero, so is the other, and if a test described below leads to rejection
that one is zero, it leads to a corresponding claim that the other is also not
zero.

Such a hypothesis is frequently tested using the method of hierarchi-
cal entry of regressors into a model, which is what we did to estimate the
squared partial and semipartial multiple correlations earlier, but by follow-
ing up the computations with some inferential statistics. For instance, we
saw that as a set, exercise and food intake (set B) accounts for about 45.7%
of the variance in weight loss, holding constant metabolism and sex (set
A). That is, SR(B.A)2 = 0.457. Is this proportion—which is equivalent to
the change in R2 when set B variables are added to a model containing set
A—statistically different from zero?

To answer this question, SR(B.A) is converted to a statistic with a known
sampling distribution under the null hypothesis that TSR(B.A) = 0. That
statistic is an F-ratio, calculated as

F =
R(AB)2 − R(A)2

1 − R(AB)2 × dfresidual

mB
(5.2)

where mB is the number of regressors in set B and dfresidual is the residual
degrees of freedom for the model including set A and set B regressors.
Observe that the numerator of the first term above is just SR(B.A)2. Equation
5.2 can be expressed equivalently in terms of PR(B.A) as

F =
PR(B.A)2

1 − PR(B.A)2 ×
dfresidual

mB
(5.3)

Under a true null hypothesis, this F-ratio is distributed as F(mB, dfresidual). A
p-value can be found by computer or using a table of critical values of F for
a desired level of significance (see Appendix C).



150 Regression Analysis and Linear Models

In this example, for instance, we have R(AB)2 = 0.931, R(A)2 = 0.474,
PR(B.A)2 = 0.869, mB = 2, and dfresidual = 5. Equation 5.2 gives

F =
0.931 − 0.474

1 − 0.931
× 5

2
= 16.558

and equation 5.3 gives

F =
0.869

1 − 0.869
× 5

2
= 16.583

These are in fact equivalent formulas, but they seem to generate slightly
different results here due to rounding error introduced by doing the com-
putations to only three decimal places. The critical F(2, 5) for rejection of
the null hypothesis at a 0.05 level of significance is 5.786, so the p-value is
less than .05. We reject the null hypothesis at the α = .05 level and claim
that food intake and exercise frequency explain some of the variation in
weight loss after accounting for the effects of sex and metabolism.

The F-statistic was described as an F-ratio above because it is a ratio
of mean squares, just as is the F-ratio for the test that TR = 0 described in
section 4.3. To see how, remember that SSregression is sensitive to how much
of the variance in Y is explained by the model. When the set A regressors
are in the model, SSregression = SS(A)regression = 46.734, but when the regres-
sors in set B are added, SSregression increases to SS(AB)regression = 91.703. This
increase in the regression sum of squares when set B variables are added
to a model with set A variables already in it we denote SS(B.A)regression.
In this case, SS(B.A)regression = SS(AB)regression − SS(A)regression = 91.703 −
46.734 = 44.969. Expressed in terms of the mean increase per regressor,
we get MS(B.A)regression, which is 44.969/2 = 22.485. More generally,
MS(B.A)regression = SS(B.A)regression/mB, where mB is the number of regressors
in set B.

Equations 5.2 and 5.3 are mathematically equivalent to

F =
MS(B.A)regression

MSresidual

where MSresidual is the mean squared residual from the model containing
set A and set B regressors. This is a ratio of mean squares. In this example,

F =
22.485
1.359

= 16.545
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R(A)2 and R(AB)2

Model Summary

Model R R Square
Adjusted R 

Square
Std. Error of the 

Estimate

Change Statistics

R Square 
Change F Change df1 df2 Sig. F Change

1

2

.689a .474 .324 2.719 .474 3.160 2 7 .105

.965b .931 .876 1.166 .457 16.539 2 5 .006

Predictors: (Constant), Metabolism, Gendera. 

Predictors: (Constant), Metabolism, Gender, Food intake, Exerciseb. 

SR(B.A)2

FIGURE 5.5. SPSS output from a test of the contribution of a set of predictors to a model.

which again differs slightly from the results using the earlier formulas due
to rounding error in hand computation.

It is worth pointing out that the computation of SS(B.A)regression offers
another means of calculating SR(B.A)2, as

SR(B.A)2 =
SS(B.A)regression

SStotal

=
44.969

98.5
= 0.457

This should make sense, as SStotal is variance in Y to be explained, and
SS(B.A) is variance explained in Y uniquely by set B regressors. So their ratio
is the proportion of the variance in Y uniquely explained by the regressors
in set B, which is one definition of a squared semipartial correlation.

These computations are not difficult to do, but doing so is a little bit
tedious, and hand computation can introduce rounding errors in any for-
mula applied manually. Fortunately, there is no need to do any of these
computations manually, as most statistical packages have a means of im-
plementing this test automatically and to a higher degree of precision. The
code for SPSS, SAS, and STATA to conduct this test for this example can be
found below, and Figure 5.5 provides an excerpt of the relevant part of the
output from SPSS. All three programs yield F(2, 5) = 16.54, p = .006, which
is very close to our hand computations but more accurate.

regression/statistics defaults change/dep=wtloss/method=enter metab

sex/method=enter exercise food.
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proc reg data=exercise;model wtloss=metab sex exercise food;

test exercise=0,food=0;run;

regress wtloss metab sex exercise food

test exercise food

This procedure works even when there is only one variable in set B.
But when interest is in whether one regressor improves the model to a
statistically significant degree, it is easier to simply look at the t- and p-
values for the regression coefficient for that regressor. The t-value for that
regressor would be equal to the square root of the F-statistic calculated
using the procedure above, and the F- and t-statistics will have the same
p-value. These are mathematically equivalent tests when mB = 1.

As discussed in section 4.4.4, collinearity between two regressors occurs
when they correlate highly, and this correlation diminishes the unique
contribution of each to accounting for variation in Y. In larger problems,
collinearity may pervade an entire set of regressors. Three measures of
political liberalism might correlate so highly with each other that when
they are used together in a regression, any one might contribute nearly
as much to the regression as the entire set of three. They then form a
collinear set—a set whose members all correlate highly and thereby lower
each other’s unique contribution. Occasionally, collinearity may pervade
all the regressors in an analysis, but the usual situation is for it to pervade
merely one set of regressors, not affecting others in the same analysis.

Whereas collinearity between variables that define a set increases the
standard errors of the regressors in that set, this is not a problem when
testing whether the set improves the fit of the model or its ability to explain
variance in Y. In fact, it is not unusual to find a situation in which none of
the regression coefficients in the set is statistically different from zero, yet
the set as a whole significantly improves the fit of the model. The proper
conclusion in such cases is that one or more members of the set is related
to Y even though we cannot say specifically which one. This is a vague
conclusion, but such conclusions are sometimes the best you can do with
collinear sets.

5.4 A Glance at the Big Picture

With these principles of linear regression analysis outlined, now is a good
time to step back and take a look at how linear regression analysis can be
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further extended to deal with more complex analytical questions and also
introduce some problems you might encounter.

5.4.1 Further Extensions of Regression

This chapter has described several extensions of the basic type of linear
model introduced in Chapter 3. More are still to come. Chapter 6 examines
the use of linear models in conjunction with random assignment. In Chap-
ters 9 and 10 we shall see that a multicategorical regressor can be treated as a
set of dichotomous variables. For instance, the multicategorical variable of
religion (Protestant, Catholic, Jewish, or Other) can be thought of as a set of
yes–no questions, as in “Are you Protestant?,” “Are you Catholic?,” “Are
you Jewish?” A variable treated in this way is sometimes called a factor in
ANOVA, but as we will see, factors in the context of regression analysis are
just a set of dichotomous regressors.

In Chapter 12 we will see ways of fitting curves and curved surfaces
rather than straight lines and planes to a data set. A great many curvilinear
relationships can be fitted by the techniques described in Chapter 12. Still
more can be fitted by more complex extensions of regression analysis not
covered in this book.

Extensions of the ANOVA concept of interactions (differences between
differences) are treated in Chapters 13 and 14. Interaction allows you
to fit models in which one regressor’s relationship with Y depends on
another regressor in the model. For example, the relationship or partial
relationship between wealth and political conservativism might be higher
among men than among women, or it might decrease with increasing
years of education. And Chapter 15 introduces the concept of indirect effect
in which one variable affects another through a third. Additional chapters
deal with various issues and controversies in regression, such as testing
assumptions (Chapter 16), assessing the importance of regressors (Chapter
8), and statistical power (Chapter 17)

5.4.2 Some Difficulties and Limitations

Some significant difficulties that can arise in regression analysis, as well as
various limitations, are handled with varying degrees of ease and contro-
versy. We list them here to assure you early on that statisticians and others
who study linear models for a living have thought rather deeply about
these problems. You may find it convenient to use this section as a check-
list when planning an analysis. Of course, no list can cover all conceivable
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problems, and this list is not meant as a substitute for careful thought and
a little common sense.

1. Undercontrol is the basic problem we have considered from the very
beginning of this book—a failure to control all relevant variables that
make it difficult to interpret the correlation betweeen X and Y.

2. Overcontrol means destroying an otherwise valid design, analysis, or
interpretation by including as covariates any variable(s) affected by
the dependent variable Y; see section 17.3.4.

3. Singularity is the inability to compute regression coefficients because
at least one regressor is perfectly predictable from other regressors;
see section 17.3.3.

4. Nonlinearity occurs when a curved line or surface fits the data better
than a straight line or plane; see Chapter 12.

5. Interaction or moderation occurs when one regressor’s relationship
with dependent variable Y depends on the value of another regressor
in the model; see Chapters 13 and 14.

6. Heteroscedasticity means that conditional distributions of dependent
variable Y do not have the same standard deviation. This can destroy
the validity of ordinary methods of statistical inference in regression
or reduce their power; see Chapter 16, especially section 16.2.3.

7. Non-normality of errors in estimation means that the conditional distri-
butions of Y − Ŷ are not normal; see Chapter 16.

8. Outliers are cases with values on the dependent variable Y that are
extreme given their pattern of measurements on the regressors; see
Chapter 16.

9. Leverage points are cases with very unusual patterns of scores on re-
gressors. They do not destroy the validity of regression by them-
selves, but they make it more difficult to detect outliers; see Chapter
16.

10. Influential outliers are cases that heavily affect one or more partial
regression coefficients. Most often these are both leverage points and
ordinary outliers; see Chapter 16.
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11. Noninterval scaling arises when a 1-unit difference between two cases
on a variable has different meanings depending on where on the scale
the comparison between the cases is made; see section 17.3.5.

12. Missing data occur when a case has known scores on some variables
and unknown scores on others because the variable was not measured
for that case. An example would be when someone fails to answer a
question on a survey when responses to that question serve as one of
the regressors in the model; see section 17.3.6.

13. Measurement error is perhaps the most common and important prob-
lem of all. It occurs when variables are simply not measured accu-
rately; see section 17.2.

5.5 Chapter Summary

This chapter concludes our introduction to the fundamentals of the me-
chanics of linear regression analysis. We showed that the principles of
estimation and interpretation described in the first three chapters general-
ize to linear models that include a dichotomous regressor. The regression
coefficient for a dichotomous regressor corresponds to a mean difference
in Y when the two groups are represented by codes on the regressor that
differ by 1 unit. Although mean differences are a common metric of ef-
fect in research, we discourage researchers from artificially dichotomizing
numerical regressors, as doing so is not necessary and can damage an
analysis.

Whenever two variables X and Y are less than perfectly correlated,
regression to the mean will occur, meaning that cases relatively high or low
on X will tend to be less extreme on Y than they are on X. Linear regression
analysis properly handles this phenomenon by generating estimates of Y
that are correspondingly less extreme than X. The use of difference scores
in linear models does not properly account for regression to the mean.

The partial and semipartial correlations introduced in Chapter 3 gen-
eralize to sets of variables. These setwise measures of partial association
quantify the relationship between a set of regressors and a dependent vari-
able while holding all other regressors in the model constant.

In the next section of this book, we further advance your understanding
of regression by considering topics such as multicategorical regressors,
nonlinear relationships, and models that allow one regressor’s effect on
Y to depend on another in the model. But before diving into these areas,
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given our treatment of regression analysis thus far, it is worth now revisiting
some of the issues brought up in Chapter 1 that justify the value of statistical
control relative to other forms of control, as well as its limitations. That is
the topic of Chapter 6.



6
Statistical versus Experimental Control

The prior chapters have described the fundamentals of linear modeling
using linear regression analysis and some applications of statistical con-
trol. This chapter considers the advantages and disadvantages of sta-
tistical control relative to experimental control—its principal competitor—
especially random assignment. Although experimentation through ran-
dom assignment is often placed on an empirical pedestal, it too has
some disadvantages unique to it, as well as some shared with statistical
control. After a brief philosophical treatment of an extreme philosophy of
causation we call manipulationism, this chapter ends with a discussion
of how random assignment and statistical control can be used in tandem
to strengthen each other.

As the preceding few chapters have illustrated, statistical control and
various measures of partial association are useful means of establishing
whether X and Y are associated in spite of their covariation with other vari-
ables that cloud the interpretation of their simple association. But they are
not a panacea to all problems one might face, and they are limited relative
to random assignment. That said, random assignment has its limitations
too, which can be overcome in part through statistical control. Given the
limitations and strengths of both random assignment and statistical con-
trol, they can complement each other when used together. This chapter
addresses some of these limitations, strengths, and advantages of using
both random assignment and statistical control.

This is primarily a chapter of lists. We begin with some limitations
of statistical control that are overcome by random assignment. Then we
describe things often confused with random assignment, as well as some
nonstandard forms of random assignment that are sometimes not correctly
recognized as random assignment. We follow this discussion with several
limitations common to statistical control and random assignment, and then
a few problems often produced by or associated with random assignment in
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particular. A philosophical discussion of the concept of causation follows,
and we end with a set of reasons for combining statistical control with
random assignment when both are practical.

6.1 Why Random Assignment?

6.1.1 Limitations of Statistical Control

Statistical control has some major limitations. Perhaps the biggest of these
limitations is that the list of potential covariates is often endless. Consider
any study comparing two groups of people on some dependent variable.
If we control statistically for age, race, sex, and income, then a critic may
ask why we have not controlled for education, IQ, and political ideology.
No matter how many variables are controlled statistically, we always know
that the two groups are still likely differ in some nonrandom way we do not
fully understand, simply because the cases in one group are in that group
and others are not. In the experimental design literature, this is a threat to
internal validity called selection.

Although it might seem that one could just indiscriminately control
for everything one can conceive, it is possible to go overboard; hence, the
second limitation. A phenomenon called overcontrol, described in section
17.3.4, means that a single covariate added improperly can invalidate an
otherwise sound design and analysis.

A third problem is that we often approach an analysis under the as-
sumption that X causes Y. Our analysis is undertaken to establish whether
the association exists after controlling for various other variables that rep-
resent alternative explanations for the association. But even if we could
control all the right variables and no others, statistical control still does
not tell us whether X affects Y or whether Y affects X. An association that
survives the test of statistical control still provides no information about
causal order.

Fourth, statistical control requires not only that we measure covariates
but also that we measure them accurately. Covariates such as SES, IQ,
and various measures of personality or attitude, for example, are never
measured with complete accuracy. Even if we are measuring validly (i.e.,
measuring what we claim we are measuring), we probably are not measur-
ing with perfect reliability (i.e., with no random measurement error). Thus,
a covariate can never be fully controlled. We address this problem further
in Chapter 17.
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Finally, statistical control cannot distinguish causation from correlation
produced by excluding certain cases from the population. For instance, if
we found a correlation between age and wealth, we might at first say that
age must have caused the wealth, because wealth cannot influence the date
one was born. But if poor people die younger on the average, then there is a
different sense in which wealth produces age. This is correlation by selective
exclusion, better known in the experimental design literature as a threat to
internal validity known as attrition or mortality.

These limitations imply some (but not all) assumptions necessary to in-
fer causation from statistical control: that we have controlled all necessary
variables, that we have controlled no variables that would distort the rela-
tionship, that Y does not affect X, that covariates are measured accurately,
and that correlation is not produced by selective exclusion.

6.1.2 The Advantage of Random Assignment

Random assignment can provide an elegant way around these limitations.
An important outcome of successful random assignment is that all covari-
ates that are properties of participants, such as a person’s age or education,
are validly controlled without even being measured. If a study’s valid-
ity depends upon the control of such covariates, then random assignment
guarantees this validity more surely than does statistical control.

Random assignment can give valid control of covariates even for very
small samples. Validity means that the effect of an independent variable
will be statistically significant at, say, the 5% level only 5% of the time when
the null hypothesis is true. Designs with random assignment can have this
property even if the sample size is very small.

We might imagine an argument against random assignment that goes
like this: Even with random assignment to treatment and control groups,
there is a 5% chance that the two groups will differ on average age at the
5% level of significance. There is also a 5% chance that the two groups will
differ on average educational level. Likewise for income, race, sex, IQ, and
other covariates. When we consider that the number of potential covariates
is infinite, the two groups certainly differ significantly on at least one. Then
what have we gained by random assignment?

This argument is answered by recalling that while there may be many
covariates, there typically are few, and often there is only one dependent
variable. If assignment is random, then the probability is only .05 that the
two groups will differ significantly (at the .05 level) on the dependent variable
by chance alone.
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Therefore, random assignment, even with no attention paid at all to
covariates, can produce valid hypothesis tests more surely than the most
exhaustive and careful statistical control. If this argument seems incom-
plete to you, there is good cause: Wait until we consider the limitations of
random assignment in section 6.2.

6.1.3 The Meaning of Random Assignment

Random assignment is sometimes confused with other things, so that ran-
dom assignment is sometimes claimed to be part of a design when in fact
it is not. On the other hand, there are some forms of random assignment
that may not be correctly recognized as random assignment. We begin first
with things sometimes confused with random assignment.

Mere Manipulation. Random assignment requires us to manipulate
participants (except in unusual cases such as lotteries); but manipulation,
though a necessary condition, is not a sufficient condition for random
assignment. We are manipulating participants even when we just require
them to sit still and listen to our directions, but that does not mean we have
randomly assigned them to anything.

Other Types of Randomization. As mentioned in section 1.1.2, random
assignment must not be confused with other types of randomization. A
researcher may randomize the order of presentation of stimuli, or random-
ize which form of a test each participant takes, but that does not constitute
random assignment unless these are the variables or effects under study.

Forced Equality of Cell Frequencies. There are occasions when an in-
vestigator may choose to force the number of people in different conditions
to be the same across all conditions. This actually makes random assign-
ment more difficult, and special procedures must be followed. For instance,
suppose an investigator is using a 2 × 2 design and flips a coin twice for
each participant, using the first flip to place the participant in a row and
a second flip to place him or her in a column of the design. Then assign-
ment is random, but the four cells will probably end up with unequal cell
frequencies.

One way to ensure an equal number of cases in each cell while retaining
true random assignment is to assign each participant a number several
digits long from a random number table. The experimenter can then rank
the participants by the random numbers (breaking any ties randomly) and
place several participants in cell 1, an equal number in cell 2, and so forth.

Random But Nonindependent Assignment. The phrase random assign-
ment is really shorthand for random and independent assignment. If we choose
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two schools for an experiment involving a new curriculum and flip a coin
to see which school gets the curriculum, then, speaking literally, we have
assigned all students in each school randomly to the experimental or con-
trol group. But the students will not be assigned independently to the two
groups, so we do not have random assignment as that phrase is used here.
Unlike true random assignment, this design does not allow us to assume
that the two groups have been equated on covariates.

Random Sampling. Sampling refers to the process by which study par-
ticipants are selected from a larger population for inclusion in a study or
analysis, while assignment refers to the process by which the selected cases
are allocated to positions on the independent variable(s). For instance, if
there are 40 people in a class and 20 are randomly placed in one experi-
mental condition and 20 are randomly placed in a control group, then some
people might say we have randomly selected the groups. But in our ter-
minology, this is an example of random assignment without random sampling.
We have used the entire population (the class) in the analysis rather than
selecting part of it. But there is random assignment, because after the sam-
pling (or, in this case, nonsampling) is conducted, students are randomly
assigned to conditions.

Despite the uniformity with which introductory statistics textbooks as-
sume random sampling, it is well known among statisticians that valid
statistical inferences may sometimes be drawn without random sampling—
and in fact without either random sampling or random assignment. For
instance, suppose a college hired 100 new professors in the 1990s and an-
other 100 in the 2000s. If women made up 10 of the new professors in the
1990s and 30 in the 2000s, a statistical test could be conducted to determine
whether this difference can be attributed to chance. But there is no hint of
either random sampling or random assignment.

As mentioned earlier, there are forms of random assignment that are
sometimes not recognized as such:

1. Random assignment is usually employed with categorical indepen-
dent variables, but it may also be employed with numerical indepen-
dent variables. For instance, participants may be randomly assigned
to various hours of practice on a task.

2. If a process is truly random, it need not be under our control. If
we study the differences between winners and losers in a fair lottery,
we can assume that assignment has been random. But if we study
the differences between lottery players and others, there has been no
random assignment.
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3. Although random assignment is usually easier in laboratory experi-
ments than in field studies, it can be done in field studies and may
be absent in laboratory studies. For instance, if we are studying the
differences in responses to male and female pollsters and a random
process determines whether any given respondent is contacted by a
male or female pollster, then assignment is still random. On the other
hand, if those who are available to participate in a laboratory study in
the morning are placed in the experimental group, while those who
can participate in the afternoon are placed in the control group, then
assignment is not random.

4. If a study has two or more independent variables, assignment might
be random on some and not on others. For instance, a 2 × 2 de-
sign might cross sex with an experimental versus a control group.
Whereas individual men and women may be randomly assigned to
experimental or control conditions, they certainly aren’t randomly
assigned to be male or female.

5. If a study has three or more conditions, assignment might be random
among some of the conditions but not others. For instance, in a
stressful experiment, all participants in poor health might be placed
in a control condition while others are randomly assigned to the
remaining groups. Then the advantages of random assignment apply
to some comparisons but not to others.

6.2 Limitations of Random Assignment

6.2.1 Limitations Common to Statistical Control and Random
Assignment

Despite the advantages of random assignment, there are several problems
it fails to solve.

First, we never know for certain what facet of an independent variable
has produced an observed effect. For instance, was the effect of a new
school curriculum due to the curriculum itself or to the particular teachers
who implemented it?

Second, even when we have both random assignment and random
selection from some population, we will always have nonrandom selection
from the population to which the results will be applied. If we establish an
effect on human populations through an experiment run in April, then by
October all the people in the population are 6 months older, some have died,
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others have been born, and everyone has no doubt changed in one way or
another. The attacks on Pearl Harbor in 1941 and the World Trade Center
and Pentagon in September 2001 changed the way Americans perceive
the world in 1 day, affecting many aspects of their lives. A beautifully
randomized experiment on the most effective advertisement for a particular
product in August 2001 might have little relevance now. Although this is
perhaps an extreme example, the point is still valid. Populations change
in many ways over time, and as they change, the generalizability of the
findings of some study conducted in the past may be weaker.

But even if we cannot automatically generalize an experiment’s results
to the future, doesn’t an experiment at least establish a causal conclusion
for the precise population and moment of the experiment? This brings us to
the third insoluble problem: We never know whether a conclusion applies
to everyone in a population or only to some subpopulation. Thus, even
if we were to show, via a randomized experiment on human participants,
that smoking causes cancer, we should qualify the result with the phrase
“in at least part of the population.” For all we would know even after
this experiment, there may be some unidentified subpopulation in which
smoking prevents cancer. Another way to state this point is that we never
know whether we have identified all important moderator variables—a vari-
able that affects the relationship between the independent and dependent
variable—so that, for instance, the relationship is positive for people high
on the moderator and negative for people low on the moderator.

The fourth limitation is that we can never study all possible side effects
of a particular experimental treatment or intervention. We may show
conclusively that a motivational program lowers the number of teenagers
who drop out of high school, but we merely assume rather than know for
sure that it doesn’t have some negative effects later in time. Or it may
be that the effect observed is only short term and requires the presence
of various features inherent in the program in order for those effects to
appear. For instance, perhaps people exposed to such programs adapt so
that they never do anything positive without special incentives that are
rarely available in the real world.

The fifth limitation is that with numerical dependent variables, neither
ordinary nor “distribution-free” statistical methods allow us to draw truly
firm conclusions about the difference between two groups (e.g., experi-
mental treatment vs. control) without making some assumptions about the
shape of the population distribution of the thing measured. For instance,
suppose the dependent variable is measured on a 100-point scale and the
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population distribution in one group is positively skewed, with most of
the measurements bunched up in middle of the scale, but with a long tail
extending out to 100. Further suppose that the opposite is true for the other
group, with most measurements in the middle of the scale and a long tail
extending down to 0. Examples of this sort can be constructed in which the
population mean of the experimental group is lower than the mean of the
control population, but even “distribution-free” tests lead to the claim that
the experimental group’s mean is higher. For maximum relevance to pol-
icy and practical conclusions, we usually want our conclusions to concern
means. But distribution-free tests either reach conclusions about medians
or other statistics or, more commonly, yield “nonparametric” conclusions,
which are vague because they don’t describe parameters such as a mean or
median. Thus, a conclusion about the difference between two means can-
not actually be reached without some assumptions about the shapes of the
distributions of the variables being compared, contrary to the pretense that
random assignment allows us to avoid assumptions that are even slightly
questionable.

Sixth, whether or not random assignment is used, we never find ulti-
mate causation. Rather, we must always assume that causation operates
indirectly through intermediate variables. For instance, the independent
variable of a child’s parents’ attitudes about the importance of education
could not magically and directly make the child’s grades better. Even if it is
the case that differences between parents’ attitudes do in some way cause
differences in how their children perform in school, this effect must work
through some indirect mechanism, such as making the child study harder,
or through resources the parents give, such as a quiet place to study, which
in turn results in better performance. All causal effects operate through
something. So establishing an effect through random assignment only can
tell whether an effect exists, not how that effect operates.

Seventh, in the social and behavioral sciences, almost any study that
takes more than an hour or two of a participant’s time will suffer from
some kind of nonrandom attrition. Participants may fail to return for the
final session in which the dependent variable is measured, for example.
Or some may misunderstand some directions they were given during the
experiment, so no measurement of the dependent variable that is meaning-
ful can be obtained. As a result, the equating of groups through random
assignment on all covariates may be destroyed if the experimenter is forced
to nonrandomly delete participants from one or both groups. Even if such
attrition occurs with the same frequency in each group, this offers no as-
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surance that those removed are comparable. Participants may drop out of
one group because they find it too time-consuming, and participants in the
other may drop out because it is boring and they don’t see the point of the
study. Any claim that the two groups of dropouts are equivalent must be
based on some kind of analysis of the association between dropout status
and other variables, but the whole point of random assignment is to avoid
the limitations inherent in such mathematical methods.

In summary, random assignment does in principle allow us to make
firmer statements than statistical control about the effect of an independent
variable on a dependent variable. But even if there is no attrition, we
are still unsure about the operative facets of the independent variable, the
population to which the results apply, moderators, side effects, and ultimate
causation.

6.2.2 Limitations Specific to Random Assignment

The title of this section is not meant to imply that the problems discussed
here are unique to random assignment. But these problems differ from
those in section 6.2.1 in that these are more likely to be serious under
random assignment.

The most obvious problem with random assignment is that it is often
illegal, immoral, impractical, or impossible. It is simply impossible to ma-
nipulate a person’s age, race, or genetic sex. Or if we wanted to study the
effect of college attendance on income at age 40, random manipulation of
college attendance would require us to determine randomly who attends
college and who does not. This would be impractical, immoral, and per-
haps illegal. Often, the more important the independent and dependent
variables in a study, the less practical it is to use random assignment. But
as mentioned in section 1.1.2, random assignment may be impractical even
in laboratory experiments with animals. You may have no control over the
length of time a mouse looks at a stimulus, but you may be able to measure
that time accurately.

A second problem is that participants in randomized experiments often
know they are being manipulated. This may change their responses. If they
resent the manipulation or their placement in a control group, and if that
resentment makes them more likely to drop out of the study, then random
assignment can actually make groups less comparable after nonrandom
attrition has occurred.

The third major problem associated with random assignment is not so
much a problem of using it yourself as it is of evaluating research in which
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others have used it. The words random assignment have such blinding effects
on journal editors, reviewers, and granting agencies that there is enormous
temptation for a researcher to use this phrase when it is not completely
accurate. A research assistant in an educational experiment may feel a
special sympathy for a particular child and stretch the rules by making
sure that the child ends up in a particular group in the study in which
students are expected to excel rather than a different condition. When the
chief scientist learns of this lapse in proper procedure later, he or she may
be reluctant to drop the magic words randomly assigned from the research
report. When researchers or their assistants are questioned in detail about
every single participant in a study, the words random assignment may turn
out to cover up a variety of methodological sins.

6.2.3 Correlation and Causation

The limitations of statistical control described in section 6.1.1 are the basis
for the familiar saying, “Correlation does not imply causation.” In this
expression, the word correlation refers not specifically to the correlation
coefficient but, instead, to any type of statistical analysis based entirely on
observation rather than experimental manipulation. Another version of
this saying was offered by Holland (1986, p. 959): “No causation without
manipulation.” These two expressions are intended to apply not just to
the words cause and effect but to the very concept of causation, thereby
affecting our usage of dozens or hundreds of words implying causation,
such as produce, increase, harm, prevent, and so forth. We use the term
manipulationism to denote the viewpoint expressed by these sayings.

The manipulationist position helps us remember the limitations of sta-
tistical control described in section 6.1.1, but it should not be overstated.
Before discussing manipulationism itself, let’s briefly review the very basis
of knowledge. How do you know this book really exists? Perhaps you and
your friends or your instructor merely think that you see it and feel it. The
fact is that you cannot prove this book exists. But there is no doubt that the
simplest and most plausible hypothesis to explain your observations is that
the book does in fact exist. Essentially all knowledge about the external
world is of this type. It is not something we know beyond all doubt, but
is rather the simplest and most plausible way to explain our observations.
This includes virtually all knowledge that it never even occurs to us to
doubt, such as the existence of the objects we see around us everyday. With
this in mind, let’s examine several successively more modest versions of
manipulationism. We agree only with the last of them.
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An extreme form of manipulationism (denied even by most manipu-
lationists) holds that real causal knowledge always requires random as-
signment. That extreme position would deny most of the knowledge that
we routinely accept about the physical sciences, which rarely engage in
experimentation through random assignment. It seems more reasonable to
accept a hypothesis as supported by a single event predicted by researchers
but never before observed. For instance, when the first atomic bomb was
successfully exploded, few doubted anything about the causal process at
work producing the explosion, even though there had been no random
assignment to conditions. The probability is near zero that it would have
occurred just at the exact time and location that it actually did by chance
alone when it had never occurred anywhere else in recorded history. It is
safe to assume that the thought and work of scientists who produced the
atomic bomb are responsible for the explosion at that moment and location
rather than just happenstance.

Can we say then that causal knowledge requires random assignment,
with the exception of a small number of events such as this or ones like
it? That is the standard manipulationist position. But it is hard to imagine
anyone taking this seriously. Most of us go to work to keep our jobs or
professional status, study for important exams we take, drive carefully
to avoid accidents, dress before going outside to avoid embarrassment
or arrest, and lock our doors at night or when we leave the house so as
to avoid being a victim of a burglary. Yet, most likely, neither you nor
anyone else has ever experimentally examined whether people are more
likely to be burglarized when doors are left unlocked, whether arrest is
more likely when wandering the streets naked than when not, or whether
people who show up to work regularly are more likely to keep their jobs.
None of the causal associations implied in the beliefs that influence this
behavior have ever been put to experimental test in the manner that such a
perspective requires. By this principle, a manipulationist professor would
be comfortable with the rationale that you decided not to study for his or
her exam because there have been no experiments showing that studying
for his or her exams is effective.

Is manipulationism then tenable for “scientific knowledge”? Can we
say that causal relations are not proven “scientifically” unless they are
demonstrated by experimental manipulation and random assignment? If
so, this principle would reduce fields like biology, geology, meterology,
astronomy, and even astrophysics to pseudosciences or quasi-sciences, be-
cause these fields are based almost entirely on observation rather than on
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manipulation of the phenomena under study. A meterologist does not gen-
erally engage in experimentation to examine the effects of ocean currents
on weather but rather observes data from available sources and attempts
to examine how variations in current speeds, temperature, and depth is
related to variations in certain weather events. An investigator building a
weather satellite or slicing tissues for microscopic examination may be ma-
nipulating the immediate objects at hand, but in a broader sense the process
is one of observation rather than experimentation in the manipulationist
sense.

At its extreme, this position would mean that scientists frequently con-
duct their business in nonscientific ways. For example, a chemist might
avoid using certain beakers that his or her observation suggests are more
likely to break at higher temperatures. But absent planned experimen-
tal evidence, such experience garnered through nonexperimental methods
should not influence the behavior of the scientist, yet no doubt scientists
make decisions about how to run their laboratories through such infor-
mal experiences all the time. And at its most insidious, such a principle
leads people to doubt conclusions that are overwhelmingly consistent with
data collected through nonexperimental methods, such as how humans are
modifying the climate of the planet.

Might manipulationism then be further narrowed to the social and
biological sciences, which are the areas in which scientists really debate
these questions? But scientists have never established experimentally on
human participants the life-saving effects of seat belt use or the toxic effects
of leaded gasoline exhaust. But seat belts are required in most developed
countries and many less developed ones, and leaded gasoline has been
banned. Few would doubt the wisdom of these policies even though this
wisdom has never been put to experimental test. In the legislative battles
for these reforms against fierce industry opposition, we can certainly be
thankful for the efforts of the advocates of reform who weren’t afraid to
utter simple sentences such as “All the evidence suggests that seat belts
prevent unnecessary deaths.” This is that point at which we should recall
the nature of knowledge as described earlier.

Could we then just say that in the social and biological sciences, causal
relationships verified by random assignment experiments are established
more firmly than other causal relationships? But is that really true? Sections
6.2.1 and 6.2.2 mentioned some rather fundamental limitations that may
apply even to research with random assignment. The concentration of
fluoride in drinking water varies widely around the world, with towns just
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a few miles apart sometimes differing drastically in fluoride concentration.
Detailed statistical analyses of these differences can show the preventive
effect of fluoride on tooth cavities. It would be at least as accurate to
summarize such studies with the simple causal sentence, “Research shows
that fluoride prevents cavities in children,” as it would be to summarize
a typical randomized study on the effects of two algebra curricula with
the sentence, “Curriculum A has been shown to be more effective than
curriculum B.”

Finally we might just say that random assignment is a very important
feature of a study, and if random assignment was feasible even if not car-
ried out, then even a very brief report of a study in the newspaper or a
university press release should mention whether or not it was used. This is
a version of manipulationism we can agree with. Given that some reports
of studies are just a sentence long, we need a single phrase that conveys
this point. Of course “random assignment” is not available. A phrase like
“experimentally verified causal relationship” seems reasonable. Anyone
is free to invent a shorter phrase. But manipulationists shouldn’t try to
monopolize the entire concept of causation with their narrow conceptual-
ization of what evidence is required unless they are genuinely uncertain
that careless driving causes accidents or are willing to streak past a police
station naked.

6.3 Supplementing Random Assignment with
Statistical Control

We have been speaking as if statistical control and random assignment are
simply competitors. But there are several reasons for supplementing ran-
dom assignment with linear models whenever possible. The first is really a
set of reasons that requires no additional discussion—the existence of non-
random attrition and all the real-world limitations of random assignment
that we described in section 6.2. This section is dedicated to three reasons
not yet discussed.

6.3.1 Increased Precision and Power

One reason for supplementing random assignment with linear models fol-
lows more directly than the prior reason from principles of statistics and
logic. This reason is a potentially large gain in the precision with which
an independent variable’s effect is estimated and the power of hypothesis
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TABLE 6.1. Data From a Hypothetical Study Examining the Effect of a New Therapy on
Symptoms of Posttraumatic Stress

Posttest Pretest Therapy Gain
ID Y X1 X2 Y − X1

1 2 1 1 1
2 4 3 1 1
3 6 7 1 −1
4 6 10 1 −4
5 9 13 1 −4
6 10 17 1 −7
7 12 19 1 −7
8 6 1 0 5
9 7 5 0 2

10 9 7 0 2
11 9 9 0 0
12 12 13 0 −1
13 12 16 0 −4
14 15 19 0 −4

tests on that effect. This advantage increases with the correlations between
covariates and the dependent variable within levels of the independent
variable.

As an illustration, consider the data in Table 6.1 from a hypothetical
study of the effect of a proposed therapy for posttraumatic stress disorder
(PTSD) conducted on 14 military veterans who experienced combat. Half
of the veterans were randomly assigned to experience 6 weeks of the pro-
posed therapy (X2 = 1) and the other half received 6 weeks of a traditional
therapy (X2 = 0). Each was pretested prior to therapy with respect to
their PTSD symptoms (X1), and an identical posttest assessment of symp-
toms was administered upon the completion of therapy (Y). These data
are represented graphically in Figure 6.1, with the seven veterans in the
experimental therapy group denoted with solid squares and the seven in
the traditional therapy group denoted with hollow circles. In these data,
the mean pretest scores are exactly equal in the two groups, although the
major points below are valid without this condition.

The diagonal lines in the figure represent the regression lines estimating
posttest from pretest in each of the two groups. The slopes of the two re-
gression lines are almost identical—even the most discerning eye could not
detect any difference in them. Furthermore, a formal test of the difference
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FIGURE 6.1. A scatterplot with regression lines estimating posttherapy PTSD symptoms
from pretherapy symptoms.

between the slopes of the two lines that we introduce in Chapter 13 reveals
no statistically significant evidence of difference between the slopes of these
lines. Therefore, the vertical distance between the two regression lines can
be construed as a rough estimate of the effect of the experimental therapy,
which in this case appears to be about 3 points on the posttest PTSD as-
sessment relative to the traditional therapy. Your intuition tells you after
even a cursory look at Figure 6.1 that the differences between treatment
and control groups at the end of therapy probably can’t be attributed to
chance. The regression line for the experimental therapy group is consid-
erably lower than the line for the traditional therapy group. Furthermore,
every one of the experimental therapy cases is closer to the regression line
for the experimental therapy group than to the traditional therapy line,
while every one of the traditional therapy cases is closer to the traditional
therapy line.

We can formally estimate the size of the effect of the proposed therapy—
the distance between the two regression lines—using a linear model esti-
mating posttest PTSD scores from pretest PTSD scores and the variable
coding which therapy the veteran received. Doing so yields

Ŷ = 5.019 + 0.498X1 − 3.000X2
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Consistent with the figure, the regression coefficient for X2 is −3.000. That
is, holding constant pretest PTSD symptoms, veterans who received the ex-
perimental therapy are estimated to be about 3 points lower in PTSD symp-
toms than those who experienced traditional therapy. Using the formulas
and inferential procedures introduced in Chapter 4, this effect is statistically
significant at any sensible α-level, t(11) = −8.326, p = .00004. The standard
error of the regression coefficient for X2 measures how precisely this effect
is estimated. In this case, the standard error for the treatment effect is
0.360. All other things being equal, a smaller standard error translates into
a more precise estimate. In this case, the treatment effect is estimated quite
precisely.

Given that random assignment would be expected to equate the two
groups in their PTSD symptoms before therapy (and in this case it exactly
did), a much simpler analysis taught to any student of introductory statis-
tics or research methods might have occurred to you. Why not just conduct
a two-sample t-test to test the significance of the differences in means be-
tween the two groups in their symptoms at the conclusion of therapy?
Doing so effectively ignores the information about each case’s horizontal
placement in Figure 6.1 (i.e., pretest PTSD) and uses only its vertical place-
ment. If this information were all we had, our noncomputational intuitive
testing would lead us to be considerably less certain about the size or even
the existence of the treatment effect since the experimental therapy posttest
PTSD scores range from 6 to 15, and the traditional therapy group’s scores
overlap them substantially, ranging from 2 to 12. An independent groups
t-test confirms intuition. The difference between the means is 3.000, just
as was found with the linear regression analysis, with the experimental
therapy group lower on average in posttest PTSD symptoms, but this dif-
ference is not statistically different from zero, t(12) = −1.680, p = .119. This
difference in significance is attributable entirely to the much larger stan-
dard error for the estimated effect. In the independent groups t-test, the
standard error of the estimated mean difference is 1.786. In other words,
the effect is estimated with much less precision than when the analysis
included pretest PTSD symptoms as a covariate.

Yet another alternative might have occurred to you. Why not instead
perform a t-test on change in PTSD symptoms between pretest and posttest?
In other words, use the difference score Y − X1 as the dependent variable
in a run-of-the-mill t-test? It is hard to intuit the result of this test merely
by inspecting Figure 6.1. But if you do the computations, you will find
that the average change in symptoms for those assigned to the traditional
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therapy was 0 (i.e., no change on average), whereas the the average change
for those given the experimental therapy was −3 (i.e., an improvement in
symptoms). But the difference between these differences is not statistically
different from zero, t(12) = 1.667, p = .121. So the effect is the same as in
the prior analysis—a 3-point difference in symptom change pre- to post-
therapy, but this effect is estimated rather imprecisely, as the standard error
of the difference between these differences is 1.799. As noted in section 5.2.5,
this is equivalent to testing for an interaction between time and therapy in
a 2 (time: PTSD symptoms pre and posttherapy) × 2 (experimental vs.
traditional therapy) mixed factorial analysis of variance, with time as a
within-subjects factor and therapy type as a between-subjects factor.

These two alternatives are really special forms of a two-regressor lin-
ear model in which the regression coefficient for pretest PTSD symptoms
is constrained to either zero or one. The covariate adjustment approach
involves the estimation of b0, b1, and b2 so as to minimize the sum of the
squared residuals in a model of the form

Y = b0 + b1X1 + b2X2 + e

When doing so, the regression coefficient for pretest PTSD symptoms (b1)
is 0.498, SSresidual = 4.998, and R = 0.985. The first alternative, which
ignores pretest PTSD symptoms entirely, is equivalent to estimating this
same model but constraining b1 to zero. Not surprisingly, that model does
not fit nearly as well as the model that derives the optimal value of b1 by the
least squares criterion, SSresidual = 134.000, R = 0.436. The analysis using
the difference between posttest PTSD symptoms and pretest symptoms can
be written in the form of a linear model as

Y − X1 = b0 + b2X2 + e

which is equivalent to

Y = b0 + 1X1 + b2X2 + e

In other words, the difference score approach is like the covariance adjust-
ment approach but fixing b1 to 1 rather than letting the mathematics derive
the optimal weight for pretest PTSD symptoms. This model, not surpris-
ingly, does not fit as well as the model that optimizes fit by letting the data
inform the estimate of b1, SSresidual = 136.000, R = 0.434.

The main point of this example is that random assignment combined
with covariate adjustment can result in more precise estimates of the effect
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of independent variables of interest. This follows directly from the discus-
sion of the factors that influence the standard error of a regression coefficient
in section 4.4.3. Including covariates that are related to Y but unrelated to
manipulated independent variables through the random assignment proce-
dure lowers MSresidual and thereby lowers standard errors for manipulated
variables (and possibly nonmanipulated regressors as well). A corollary
point is that the use of a difference score is rarely a good substitute for
an SSresidual-optimized linear model. For the reasons described in our dis-
cussion of regression to the mean (see section 5.2), it is rarely accurate to
assume that when a posttest is predicted from a pretest, its regression slope
will be 1.0. And ignoring pretest PTSD symptoms would be legitimate if
it were unrelated to posttest symptoms, holding therapy method constant.
But in this example, clearly, such an assumption is unwarranted, as you’d
expect veterans relatively higher in the distribution of PTSD symptoms
before treatment to still be relatively higher following therapy, regardless
of the form that therapy takes. Figure 6.1 confirms this expectation. In
either case, the result is an estimate of the effect of therapy that is much
less precise and a hypothesis test that is lower in power compared to when
pretest is used as a covariate.

This does not mean, however, that one always gains power by indis-
criminately adding covariates to a model with random assignment. The
more strongly a covariate affects the dependent variable Y, the more power
is gained from controlling it. But if a covariate has absolutely no effect on
Y, one actually loses a little power by adding it to the model. The power
lost is the same as what is lost by randomly discarding one case from the
sample, so the loss is usually small unless the sample size is tiny. But even
this small loss suggests that one should not indiscriminately add dozens of
extra covariates to the model just because they happen to be in the data set.

6.3.2 Invulnerability to Chance Differences between Groups

An additional reason for supplementing random assignment with statisti-
cal control is that statistical control increases a conclusion’s invulnerability
to criticism based on chance differences between groups on other variables
correlated with the dependent variable. For an extreme example, consider
a design like the one in the prior section with pretest and posttest measures
of PTSD symptoms from military veterans randomly assigned to experi-
ence either a new therapy for PTSD or a traditional therapy already in wide
use. Suppose we find a statistically significant posttest mean difference
between the two groups in PTSD symptoms using a test whose validity is
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not challenged. But we happen to notice that every person’s PTSD score
on the posttest, regardless of which therapy he or she experienced, exactly
equals his or her score on the pretest prior to therapy, so that the difference
between groups is just as significant on pretest as on posttest! Although
random assignment makes such a scenario unlikely, it doesn’t make it im-
possible. Given such a “failure” of random assignment to equate the groups
on pretest PTSD symptoms, the significant difference on posttest no longer
gives us any confidence at all that the experimental therapy works any
better or worse than the traditional therapy. Rather, the hypothesis most
consistent with the data is that the new therapy has no effect at all, that
nobody’s PTSD symptoms change from pretest to posttest, and that just by
chance, the groups differed on the pretest.

Once we agree that in this extreme example there is some doubt about
the treatment’s effectiveness, we must ask how extreme an example must
be to raise similar doubts. Perhaps we should be concerned about all sig-
nificant differences between groups on covariates, despite the argument of
section 6.1.2 against this position. But we can avoid the whole problem by
using linear models along with random assignment. The problem arises
because we presume that the covariates correlate with the dependent vari-
able in the population, so that if by chance we draw a sample in which the
covariates correlate with the experimental manipulation as well, then we
must presume the sample correlation between the manipulation and the
dependent variable is at least partly spurious. But as described in Chapter
3, linear models examine the relation of the dependent variable to an artifi-
cially constructed independent variable that is uncorrelated with all other
regressors in the model. This constructed variable is exactly uncorrelated
with all covariates in the sample studied, not merely in some hypothetical
population. This eliminates the problem. Even in this extreme example,
regression would estimate the treatment effect to be zero, which is the
estimate supported by intuition.

6.3.3 Quantifying and Assessing Indirect Effects

Even if random assignment establishes that X affects Y, it does nothing to
establish how the effect works. But when random assignment to values
of X is combined with linear modeling, it is possible to quantify how that
effect operates if one has measured one or more mechanism or mediator
variables M presumed to be causally located between X and Y. For instance,
consider an experiment in which half of the participants are told a mental
test indicates they should be especially good at solving problems of a certain
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type, whereas the other half are given no such information. Suppose that
those told they are good at solving such problems are found to persist longer
in trying to solve such problems, which are in fact impossible, than those
not told they are good at solving them. Was their persistence produced by
an increase in self-confidence (M1) or by a desire to please the experimenter
who had just complimented him or her (M2)? A mediation analysis using
linear modeling is a common approach to answering this question. Such
an analysis requires, among other things, estimating Y from both X and
the proposed mediator or mediators M. Doing so is part of the procedure
required for the computation of the direct and indirect effects of X on Y.
We save a discussion of mediation analysis for Chapter 15.

6.4 Chapter Summary

Experimental and statistical control are both powerful weapons in the em-
piricist’s arsenal. Random assignment has as its primary advantage its
ability to equate groups on all conceivable covariates, measured or unmea-
sured, and this strengthens causal conclusions. Even so, random assign-
ment has some limitations. Statistical control can be an effective fallback
when random assignment is not feasible or practical, but one must not use
it indiscriminately. Although it may be harder for the researcher to muster
faith in a causal conclusion based only on statistical control, we disagree
with the manipulationist position that random assignment is required in
order to make causal claims. When possible, we recommend designs that
include random assignment, but analyzed using statistical control as well,
for doing so can yield more precise estimates and more powerful tests.



7
Regression for Prediction

Regression is very frequently used in causal analysis with the goal of ex-
amining if there is a relationship between a regressor X and dependent
variable Y when all other regressors are held constant. Another use of
regression is the production of an equation to generate a prediction of Y
for cases not used to generate the equation in the first place. With this
use of regression, emphasis is on building a regression model that is
accurate in the sense of predicting Y well for those cases. This chapter
addresses issues in the use of regression for prediction, such as how to
select a model from among a large set of possible models, and how to
estimate how well a model fits data when applied to a population. Also
addressed is how a variable’s contribution to a prediction of Y is related
to its correlation with Y and other variables.

7.1 Mechanical Prediction and Regression

7.1.1 The Advantages of Mechanical Prediction

The need to predict one variable from others arises in many contexts. Col-
lege admissions officers may want to predict the future GPA of a student
in college if he or she were admitted. A firm hiring new employees may
want to predict employee performance if hired. An insurance company
may want to predict the remaining lifespan of someone applying for a life
insurance policy, or whether a person is likely to be in a car accident if given
an auto insurance policy. A parole board may want to predict whether a
prison inmate will commit more crimes if released. The U.S. Secret Service
may want to predict whether someone who has threatened a government
official is likely to take action and attempt to carry out the threat. A social
worker may want to determine whether a person is likely to commit suicide
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or otherwise harm him- or herself based on information obtained during a
court-mandated interview of the person.

Most people would assume that such predictions are left to experts in
the domain, and that there is no substitute for expert judgment. However,
research has shown that even when human judges follow the right rules
when attempting to make predictions of this sort, they often follow them
inconsistently, so that they make one prediction one day but make a differ-
ent prediction based on the same information on another day or for another
case with identical information. For this and other reasons, many studies
comparing predictions of human judges and predictions made from math-
ematical formulas have found that mechanical, mathematical approaches
tend to outperform human judges far more often than the opposite. For a
discussion of this point, related research, and some counterarguments, see
Dana and Thomas (2006), Grove, Zald, Lebow, Snitz, and Nelson (2000),
Kleinmuntz (1990), Litwack (2001), Meehl (1957), and Wiggins (1973).

It is understandable how some might take offense to using a formula or
computer algorithm to make decisions about people—decisions that have
consequences on their lives and thus should be made with people who are
informed about the specifics of the case at hand and can be compassionate
and reasoned in their approach. But computers are particularly good at
these kinds of things because they have no stake in the decision and can ap-
ply the rule, once it is constructed, consistently and without bias, exception,
and (for better or worse) emotion. We still need people to figure out what
things should go into a cold, calculating, mechanical prediction system or
algorithm, in the same way that computers can’t predict the weather with-
out human beings telling the computer what to use to make the prediction.
But once human beings have decided what inputs to put into the formula,
the research suggests it is best to then leave people out of the process and
let the computer aggregate the information to make the actual prediction
in any particular case.

7.1.2 Regression as a Mechanical Prediction Method

There are many ways that a computer could make a prediction of some
variable Y from a set of input variables X. Regression analysis is only
one of those ways, but it is the one we focus on in this chapter. It can
be particularly good when it has a lot of data upon which to generate the
decision, meaning that the formula was constructed from a large number
of cases used to calibrate the prediction system. For small samples, there
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are alternatives that we cannot begin to discuss here; see Wiggins (1973)
and Darlington (1978).

Consider a very simple case in which a college admissions office is
considering the relative importance of tests of verbal and mathematical
ability, which we’ll call X1 and X2, respectively, in predicting an applicant’s
success in college. One admissions officer might think that verbal ability
is more important than mathematical ability, for without being able to
speak and write effectively, a student will have a hard time succeeding in a
rigorous academic environment. If the goal is to predict, say, college GPA
at the end of the first year, this admissions officer would presumably give
more weight to X1 when making the prediction, and might even ignore
X2 entirely. This officer might choose to admit only those students who
achieve a certain score on X1. But a second officer might argue that there
is no reason to weight one more than another or discard information in X2:
They can just be weighted equally. This officer would just add up X1 and
X2 and decide to admit a student based on his or her score on this sum. Still
another officer might agree with the first but not be willing to completely
discount mathematical ability. Perhaps this officer would argue that verbal
ability should be given twice as much weight, and so the criterion for
admission should be based on achieving some value on 2X1 + X2.

So here we have three fairly simple mechanical rules for choosing which
applicants to admit. The first officer advocates 1X1+0X2 (which is the same
as just using X1, ignoring X2 entirely), the second advances X1 + X2 as the
prediction rule, and the third recommends the use of 2X1+X2. Each of these
would require some kind of decision criterion for determining whether a
student should be admitted, such as a certain score on this favored index.

Regression is well suited to dealing with problems such as this. Not
only can regression analysis be used to generate a formula to produce the
prediction, but it can also help to resolve questions involving how to best
weight X1 and X2. Suppose the goal is to predict first-year GPA, which will
be Y in the model. To do so, take a sample of current students or students
from the past who have already completed 1 year and thus have first-year
GPAs that are known. Presumably these students’ records also contain
their scores on X1 and X2, which we call predictors in this context. Then
use a regression analysis to estimate Y from predictor variables X1 and X2

based on these cases with known first-year GPAs. The regression formula
will generate Ŷ, which is a weighted sum of X1 and X2, that is maximally
correlated with Y in the data available. With this optimal weighted sum
of X1 and X2 constructed, it can be applied to future students who have
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applied for admission to generate a prediction for their GPAs at the end of
the first year. Perhaps the admissions office decides then to admit those
students whose predicted first-year GPA is at least 3.0.

In this example, you may have assumed that X1 and X2 are measured
on roughly equal scales, such as is the case with the verbal and quantitative
sections of the Scholastic Aptitude Test used in the United States for college
admissions. If X1 and X2 were not on comparable metrics, then the selection
rules advocated by officers two and three above wouldn’t weight these
predictors appropriately. For instance, if X1 were on a 200 to 800 scale and
X2 were on a 1 to 10 scale, then X1 + X2 would not equally weight these
two variables, because the sum would be determined almost entirely by
X1. Of course, if the tests had different scales, this would have complicated
the discussion between the admissions officers.

But regression requires absolutely no assumption that different predic-
tors are measured on comparable scales. For instance, X1 and X2 might be
tests of verbal and mathematical ability that are on the same scale, but the
regression might also include an X3, high school GPA, which may be on
a 1 to 4 scale. The regression formula will still find the weighted sum of
X1, X2, and X3 that yields the best prediction of Y in the sample of cases
available. Regression compensates for a predictor’s low range by giving it
a larger regression coefficient in the model. For instance, if we changed the
range of high school GPA from 1 to 4 to 100 to 400 by multiplying all the
GPAs by 100, it would not change the predictions at all but would simply
make b3 one-hundredth the size it would be otherwise.

7.1.3 A Focus on R Rather Than on the Regression Weights

There are a great many differences between regression’s use in prediction
problems such as this and when it is used in causal analysis. In prediction
we refer to predictors and the criterion instead of regressors and the depen-
dent variable. There is no distinction between independent variables and
covariates—the terms are not used. The word validity in prediction prob-
lems refers to the accuracy with which Y can be predicted. Variables are
included or excluded from the analysis primarily based on availability and
ease of measurement. Interest focuses on the multiple correlation R and
related statistics, with rather little emphasis on the individual predictors
in the model. And when attention is directed at a specific predictor rather
than at how well the model as a whole estimates Y, focus is directed on
its predictive power, meaning how much it contributes to increasing R,
rather than on its regression coefficient. Indeed, a valid regression analysis
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used for prediction need not involve tests of significance for the individual
regression coefficients or their predictive power. More important is cross-
validation or a close substitute, which addresses how well the prediction
formula predicts when it is used on a data set different from the one used to
generate the equation in the first place. This is not something ordinarily un-
dertaken in causal analysis. Modified versions of regression analysis, such
as ridge regression and stepwise regression, are appropriate for prediction
but not for causal analysis.

7.2 Estimating True Validity

7.2.1 Shrunken versus Adjusted R

In section 4.3.1 we described how R is a biased estimator of TR and that
adjusted R2 (equation 4.1) is a better estimator of TR2 than is R2. Recall that
R quantifies the correlation between Y and Ŷ in the sample data when Ŷ is
derived from the sample regression weights for the predictors. It tells us
how well the variables in the model predict Y in the sample. By contrast,
TR is the correlation between Y and Ŷ using the population data and using
the population regression weights for each of the predictors to generate Ŷ.
Thus, there are two ways in which TR is a population value relative to R.
It is derived using the population of data on the variables in the model. It
is also based on the population regression weights for the variables rather
than the sample regression weights.

If our goal is to estimate how well the variables in a regression model
would predict Y if we had the population of data available to generate the
model (and thus we would not have to estimate the regression coefficients—
they could be known exactly), then we care about TR. However, in applied
prediction problems, we are interested in a different quantity, which we
denote TRS for shrunken R. (We use RS rather than SR because we already
used SR to refer to a semipartial multiple correlation in section 5.3.1). TRS
quantifies how well the regression model generated from a sample predicts
Y when the sample regression model is applied to the population. In other
words, if the regression model based on the sample regression weights is used to
produce an estimate of Y in the population of data, then TRS is the resulting
correlation between Y and Ŷ. This tells us about the predictive power of the
sample regression weights when the model is used to generate estimates of
Y in the population. We care about this in an applied prediction problem,
because when making predictions, the model being used to generate the
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TABLE 7.1. Shrunken R versus R and TR

Compute rYŶ in:

Sample Population

Compute Sample R TRS
b’s in: Population TR

prediction is derived from the sample regression coefficients generated in
a single sample.

If the preceding two paragraphs are confusing after a first reading, we
recommend reading them again. If the distinction between R, TR, and TRS
remains unclear, Table 7.1 may help. In this table we define these three
quantities based on the whether the weights are generated in a sample
or using the population, and whether the correlation between Y and Ŷ is
computed in the sample or the population.

A parameter is fixed, though typically unknown. It must be estimated
using some data, but doing so does not change the parameter. A parameter
does not vary from sample to sample, so it is independent of the sample
drawn. So whereas R varies from sample to sample, TR does not. TRS is
a fixed quantity, like a parameter, but unlike TR, there is no single value
of TRS, because it is determined by the sample regression weights used to
generate the estimate of Y in the population. Different samples will gener-
ate different sample regression weights, and therefore different prediction
models, which generate different estimates of Y when applied to the pop-
ulation. Thus, two investigators who use different samples to produce a
model to estimate Y in a population will have different models. They may
each want to estimate TRS, but the quantity they are attempting to estimate
is probably not going to be the same, because TRS depends on the sample
used to generate the model.

Since TR is defined as rYŶ when the population weights Tbj are used
to compute Ŷ, no other set of weights can yield a higher value of rYŶ in
the population. Thus, TRS cannot possibly exceed TR and will usually fall
below it, often by a substantial margin. This is very important when we
are interested in prediction; adjusted R is sometimes used as an estimate
of TRS, but instead it estimates the completely different value TR. TRS also
almost always falls below R; this is known as validity shrinkage.
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7.2.2 Estimating TRS

TRS can be estimated in at least four different ways. We address each of
these ways in this section.

Cross-Validation. The first method, cross-validation, requires two sam-
ples of data with measurements on all predictors, as well as Y. The two
samples may be independently drawn random samples from the same
population or one large sample that is randomly split into two subsamples.
Regression weights bj are calculated in the first sample, then the regression
model based on these regression weights is used to generate Ŷ in the second
sample. The correlation between Y and Ŷ in the second sample is used as
an estimate of TRS.

A validity estimate based on cross-validation is not TRS itself. Rather,
the correlation between Y and Ŷ in the second sample is an approximately
unbiased estimator of TRS. Validity estimates constructed in this fashion
are subject to the same sampling errors as any correlation. When used to
estimate TRS, the ordinary multiple correlation R suffers from both bias and
random variability; cross-validation removes the bias but not the random
variability.

To handle this problem, the method described in section 4.5.2 based on
Fisher’s r-to-Z transformation for constructing a confidence interval for a
correlation can be applied to generate an interval estimate for TRS. A little
experimentation with the r-to-Z method shows that if much faith is to be
put in cross-validity figures, cross-validation samples must be moderately
large. For instance, suppose we decide in advance that if our estimate of
TRS turns out to be 0.4, we would like to be 95% confident that TRS is
at least 0.3. It turns out that the necessary cross-validation sample (i.e.,
the second sample in the method described above) size is 211. If the first
sample contained 100 cases, then over 300 in total would be needed. So
cross-validation with far smaller samples should be viewed as more of a
negative test than a positive one. That is, with smaller samples, a low
cross-validity means we can have little faith in the predictions made from
the regression, but a high cross-validity may not mean we can have much
faith in them.

Double Cross-Validation. The second approach to estimation of TRS
is an extension of cross-validation called double cross-validation. With this
approach, the total available sample is divided in half, a regression model
is estimated in each half, and then each of these regression models is used
to estimate Ŷ in the other half. This generates two correlations between Ŷ
and Y. The average of these two correlations is then used as a conserva-
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tive estimate of the validity of the regression model generated in the total
sample.

Leave-One-Out. A third method called the leave-one-out method elimi-
nates nearly all the conservatism of ordinary and double cross-validation.
We describe two leave-one-out approaches. Imagine you have N cases and
you regress Y on a set of k predictors, but after excluding the first case
in the data. Using the regression model based on these N − 1 cases, you
then generate an estimate of Y for the first case discarded from this anal-
ysis. Then repeat this process by returning the first case to the data but
discarding the second case, estimating Y from the predictors, and using
this model to generate an estimate of Y for the second case. Repeat this for
a total of N times, at which point you will have estimated Y for each case
in the data based on a model that excludes it. At the end of this procedure,
you have N values of Y and N values of Ŷ. You could use any measure of
correspondence between Ŷ and Y as a cross-validity estimate, such as the
correlation between Y and Ŷ. This is a bona fide estimate of TRS.

Although it may seem like this procedure would take a lot of computer
time, this turns out not to be a problem. Computers are quite fast these
days, and conducting thousands, tens of thousands, or even hundreds of
thousands of regressions is a fairly routine computational problem accom-
plished by modern computers quite rapidly. Furthermore, it turns out that
it isn’t even necessary to conduct all N leave-one-out regressions, because
it can be shown that the error in prediction made by leaving out case i from
the regression is simply the residual for case i from a model containing all
N cases divided by 1− hi, where hi, defined in section 16.1.3, is also derived
from the regression based on all N cases. So in fact, only one regression
based on all N cases is required to implement the leave-one-out method. In
section 7.2.3 we show how this can be done in SPSS in a few lines of code.

One problem with this approach is that it can yield negative estimates
of TRS. This is in part due to the fact that the higher the Y of the omitted
case, the lower is Y when that case is excluded. This will tend to increase
the size of the errors produced by this method. When applied to random
data, where the correlation between Y and Ŷ should be zero, this method
typically yields negative estimates of the correlation between Y and Ŷ. A
second leave-one-out approach corrects this problem by computing the
other N− 1 values of Y calculated from the regression based on N− 1 cases,
computing the mean and standard deviation of Y of those N − 1 cases,
and expressing Ŷi in standardized form using that mean and standard
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deviation. This too can be done in far less computing time than one would
think.

Formulaic Methods. A fourth means of estimating TRS is through one
of many formulas that have been advanced for this purpose. Yin and Fan
(2001) have reviewed and studied a variety of these methods and find, as
do we, that the method proposed by Browne (1975) works quite well, at
least when the predictors are multivariate normal. This estimator is based
in part on adjusted R2 as calculated using equation 4.1 and denoted below
as R2

a . If adjusted R2 is zero, then don’t bother with the computations below
and consider RS = 0. But if adjusted R2 > 0, then calculate

ρ4 = R2
a −

2k(1 − R2
a)2

N − k − 1

If ρ4 > 0, use ρ4 in equation 7.1 to produce RS. But if ρ4 ≤ 0, then consider
RS = 0.

RS =

√
(N − k − 3)ρ4R2

a

R2
a(N − 2k + 2) + k

(7.1)

Table 7.2 shows values of RS calculated using equation 7.1 for various
ratios of sample size and number of predictors. To produce this table, RS
was calculated for each of the 96 values of k from 5 to 100; the table shows
the minimum and maximum values yielded by the formula for a fixed N/k
ratio for different values of adjusted R. Observe that when both adjusted
R and N/k are small, RS is substantially smaller than adjusted R. This
shrinkage itself shrinks as adjusted R is increased, or as N/k is increased.
Shrinkage is noticeably smaller but still not zero, with as many as 20 or 30
times more cases than predictors.

All four of these methods—ordinary and double cross-validation, leave-
one-out, and the Browne method—yield approximately unbiased estimates
of TRS. Ordinary cross-validation gives a fairly exact method—the Fisher
r-to-Z method—for finding confidence limits on TRS. We have found that
when TRS is low, the standard error of the leave-one-out methods is about√

2/N; the number of predictors k has very little effect. When TRS is high, the
standard error is smaller than

√
2/N, so

√
2/N is conservative. The leave-

one-out methods and the Browne (1975) method give very similar estimates
of TRS when the distributions of the regressors are approximately normal
and both estimates are positive; the major difference between the two is
that the leave-one-out method can yield negative estimates of TRS, while
the Browne method cannot. Thus,

√
2/N can be taken as a conservative
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TABLE 7.2. Values of Expected Shrunken R Using the Browne (1975) Estimator

Adjusted R

N/k 0.2 0.3 0.4 0.5 0.6 0.7 0.8

2 Min .020 .030 .075 .162 .302 .453 .611
Max .090 .137 .185 .241 .355 .487 .638

3 Min .020 .049 .119 .255 .414 .560 .705
Max .088 .131 .202 .313 .435 .567 .707

4 Min .020 .067 .160 .327 .469 .603 .734
Max .087 .133 .237 .352 .475 .604 .737

5 Min .025 .085 .217 .366 .499 .624 .749
Max .085 .153 .261 .377 .499 .627 .753

6 Min .030 .098 .252 .390 .515 .637 .759
Max .084 .168 .278 .395 .518 .642 .763

8 Min .040 .141 .292 .418 .536 .653 .770
Max .086 .190 .302 .420 .541 .658 .774

10 Min .048 .179 .315 .433 .549 .663 .776
Max .099 .205 .318 .437 .554 .667 .780

12 Min .058 .201 .329 .443 .557 .669 .780
Max .108 .216 .329 .448 .562 .673 .783

15 Min .073 .222 .341 .454 .565 .676 .785
Max .119 .228 .344 .459 .570 .679 .787

20 Min .106 .241 .354 .465 .574 .682 .789
Max .132 .242 .358 .469 .578 .685 .790

25 Min .127 .252 .363 .472 .579 .685 .791
Max .141 .253 .366 .476 .582 .688 .792

30 Min .140 .258 .368 .476 .583 .688 .792
Max .148 .261 .372 .480 .585 .690 .794

estimate of the standard error of RS when calculated using equation 7.1
when the distributions of the regressors are approximately normal.

7.2.3 Shrunken R Using Statistical Software

Almost all statistical software that does regression analysis generates R
and adjusted R. Few if any widely used programs produce estimates of
RS using the methods described in section 7.2.2. In Appendix A we doc-
ument a macro called RLM for SPSS and SAS that conducts regression
analysis that includes a number of features not ordinarily available in these
two programs, including the production of three measures of RS. The
example output in Figure 7.1 is from a regression based on 340 people esti-
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 Outcome Variable 

 pknow 

 

Complete Model Regression Summary 

          R       R-sq   Adj R-sq          F          p    SEofEst 

      .5120      .2621      .2511    23.7311      .0000     3.7843

 

Shrunken R estimates 

     Browne     LvOut1     LvOut2 

      .4922      .4863      .4942 

 

ANOVA summary table 

                 SS         df         MS 

Regress   1699.2879     5.0000   339.8576 

Residual  4783.2857   334.0000    14.3212 

Total     6482.5735   339.0000    19.1226 

 

Regression Model 

              Coeff         se          t          p       LLCI       ULCI 

constant     7.0122      .5872    11.9416      .0000     5.8571     8.1673 

natnews       .1765      .0885     1.9954      .0468      .0025      .3506 

npnews        .4141      .0759     5.4558      .0000      .2648      .5634 

locnews      -.4511      .1029    -4.3839      .0000     -.6535     -.2487 

talkrad       .6596      .1660     3.9725      .0001      .3330      .9862 

pdiscuss      .4579      .0844     5.4244      .0000      .2918      .6239 

 

Simple (r), semipartial (sr), and partial (pr) correlations with outcome 

                  r         sr         pr 

natnews       .1481      .0938      .1085 

npnews        .2983      .2564      .2861 

locnews      -.1065     -.2061     -.2333 

talkrad       .2609      .1867      .2124 

pdiscuss      .3465      .2550      .2845 

 

Estimates of TRS

FIGURE 7.1. Output from the RLM macro for regression analysis.

mating scores on a test of political knowledge from measures of exposure
to various sources of information about politics (e.g., newspaper reading,
talking about politics, watching the local news; the data can be found at
www.afhayes.com and is called POLITICS). The variables used or the sub-
stantive interpretation of the model is not important here. But observe that
in addition to R and adjusted R, the output produces both leave-one-out
estimates as well as Browne’s estimate of RS from equation 7.1. In this case,
they are all very similar, and not much smaller than adjusted R given that
the N/k ratio is over 60.

This macro does produce the first leave-one-out estimate of TRS de-
scribed in section 7.2.2, but it is worth pointing out how easy it is to generate
in at least some statistical programs. Let dei be the difference in Ŷi when a
case is excluded versus included from the model. Let Ŷi be case i’s estimate
of Y when all cases are in the analysis, and Ŷi,not i be case i’s estimate of Y
when it is excluded. That is, Ŷi,not i is generated by regressing Y on the set
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of predictors after excluding case i, and then the resulting model is used to
generate Ŷ for that excluded case. dei is defined as

dei = Ŷi − Ŷi,not i

Though not obvious from this formula, dei is equivalent to the difference in
case i’s residual when the case i is used to estimate the model versus when
it is not. That is, dei = (Yi − Ŷi)− (Yi − Ŷi,not i), which simplifies to Ŷi − Ŷi,not i.
With dei calculated,

Ŷi,not i = Ŷi − dei

Since Ŷi is easily constructed, and with dei automatically calculated by a
regression routine, it is easy to then construct Ŷi,not i and correlate that with
Y. The resulting correlation is an estimate of TRS using the first leave-one-
out method.

The code for SPSS below does this for the same data set that generated
Figure 7.1. In this code, pred and dfit are options to produce Yi and dei

that are added automatically by SPSS to the data set as pre 1 and dfi 1.
The next line of code constructs Ŷi,not i. The correlation between Y (pknow in
the data) and the new variable constructed named yhatnoti by this code
is the estimate of TRS using the first leave-one-out method. The last line of
the code generates this correlation.

regression/dep=pknow/method=enter natnews npnews locnews talkrad

pdiscuss/save pred dfit.

compute yhatnoti=pre 1 - dfi 1.

correlations variables = pknow yhatnoti.

7.3 Selecting Predictor Variables

We have seen that TRS is nearly always below TR, which in turn is nearly
always below R. Although regression analysis finds a set of regression
weights bj that maximizes R, other methods may yield predictions of Y that
are more accurate for the population.

When k predictor variables are available for use in predicting Y, re-
gression yields the model with the highest R, but that model may not be
the best when the goal is to maximize TRS. With k variables available for
use in predicting Y, there are a great many possible models that could be
constructed from this set of k when you consider models that exclude one
or more of these k variables. Perhaps a better model contains only a sub-
set of these k. It is not immediately obvious how to choose from among



Regression for Prediction 189

the possible alternative candidate models. Adding a variable to a model
almost always raises R, meaning that larger models (i.e., those with more
predictors) will generally have larger values of R, but the addition of some
of those predictors may not actually improve the validity of the model as
measured by TRS. Indeed, the more variables in the model, the larger the
validity shrinkage.

One of the simplest ways of addressing validity shrinkage is to reduce
the number of variables used as predictors in the model, as validity shrink-
age increases with the number of predictor variables used to estimate Y
in the sample. The methods for selecting predictor variables discussed
here not only address validity shrinkage but also can be used to reduce
a large number of potential predictors to a smaller and potentially more
manageable number that could be used when the model is applied to fu-
ture cases. Thus, these methods can also have some practical value, even if
none of them can be used to establish that any one model is better beyond
a reasonable doubt.

The methods described here are crude in comparison to other prediction
methods available in the literature on psychometric theory. Their major ad-
vantage over those other methods is that they can be applied with ordinary
regression computer programs. However, the methods we discuss can be
quite satisfactory if N is large relative to k. More complex methods are
discussed in books on psychometric theory as well as in Darlington (1978),
including some that that can be effective when N is small and k is large.

7.3.1 Stepwise Regression

Stepwise regression exists in two primary forms: forward and backward.
They are both based on the the goal of maximizing the correlation between
Y and Ŷ while using as few predictors as needed to do so. In order to
accomplish this, some kind of decision rule is needed to determine whether
adding or removing a predictor changes R to a degree worth concerning
oneself about, since we know that adding or removing predictor variables
will, except in very unusual circumstances, change R to some extent. Most
regression programs that can do stepwise regression give the data analyst
some control over the criterion used for deciding whether to add or remove
a variable.

Forward Stepwise Regression. In its simplest form, a forward stepwise
regression starts by selecting, from a set of k predictor variables determined
by the data analyst, the one predictor with largest absolute correlation with
Y; that is, |rYXj |. We will call this variable P1 to denote that it was the first
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predictor selected. This leaves k − 1 remaining variables for consideration
for addition to the model. The stepwise procedure then chooses from these
remaining k − 1 variables that which most increases R when it is added to
the model containing only P1. Call this P2 for the second predictor selected.
This procedure continues until all k variables have been added, producing
a model with all k predictor variables. This method generates k models,
and the data analyst can choose that model that balances large R with a
small number of predictors. Variables added later generally contribute less
to increasing R, so those variables added later may not be worth keeping in
the prediction model, especially if it is difficult or otherwise burdensome
to collect the data on those variables in future cases to which the model is
likely to be applied.

The procedure just described is often carried out not by constructing all
k models but, instead, by using a statistical significance test for deciding
whether to add a variable to a model or to stop the selection process entirely.
In the first step, a variable P1 is chosen only if correlated with Y by a
statistical significance criterion, such as a p-value of less than .05. If no
variables among the k are significantly correlated with Y, the procedure
stops with no predictors. Assuming one is found, the second step chooses
a predictor variable from the remaining k − 1 that increases R the most
and to a statistically significant degree (meaning that the p-value for its
regression weight is less than or equal to .05) when it is added to a model
containing only P1. If no such variables exist, the procedure stops with only
P1 as the sole predictor. But if one is found, the process adds P2 to the model
discovered in this step. This process continues until no more variables that
haven’t yet been added increase R to a statistically significant degree or the
number of candidate predictors is exhausted. Note that the first procedure
could be thought of as a version of this more refined procedure but using a
p-value of less than 1 as the decision criterion for adding a variable to the
model.

This procedure can be refined further by allowing a variable already
selected to be removed at a later step. At later steps in the forward selection
process, it is possible for a variable that significantly increased R at a prior
step to become nonsignificantly associated with Y, with other variables
in the model added after it. In this case, removing the variable wouldn’t
significantly lower R, and so it becomes a candidate for removal. Thus,
this refinement of forward stepwise regression is really a combination of
forward and backward stepwise selection. We address backward stepwise
selection next.
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Backward stepwise regression. Whereas forward selection starts with
no predictors and then builds the model by adding predictors one at a time,
backward stepwise selection begins with a model with all k predictors and
then removes them one at a time using some kind of criterion for removal.
In forward stepwise regression, a variable is added at a step if it increases
R the most. In backward selection, at each step a variable is removed that
lowers R the least relative to others still in the model. This process continues
until only one variable remains.

In practice, a statistical significance test often is used to determine
whether or not a variable is removed at a certain step or whether the process
terminates. Unlike with forward selection, a variable is kept in a model if
removing it would significantly lower R (which is equivalent to saying that
adding it to a model without it would increase R to a statistically significant
degree). If more than one variable meets this test, the one that least reduces
R is the winner for removal at that step. The process terminates when no
variables can be removed without significantly lowering R.

Most statistics programs that conduct linear regression analysis can do
forward or backward stepwise variable selection. For instance, suppose
you are trying to build a model of first-year college GPA that maximizes
R without including a bunch of unnecessary predictors (which would in-
crease validity shrinkage). Suppose among six candidate predictors are
scores on the verbal, analytical, and writing sections of the Scholastic Ap-
titude Test, GPA in courses taken in years 3 and 4 of high school, and the
number of sports a person played in high school. The SPSS command be-
low would conduct a forward stepwise variable selection, using the default
of a p-value of .05 for variable entry.

regression/dep=cgpa/method=forward vsat asat wsat gpa3 gpa4 sports.

Comparable commands in SAS and STATA are

proc reg;

model cgpa=vsat asat wsat gpa3 gpa4 sports

/selection=forward slentry=0.05;

run;

stepwise, pe(.05): regress cgpa vsat asat wsat gpa3 gpa4 sports

In SPSS, changing the selection method to backward stepwise is as
simple as changing forward in the command above to backward. In SAS
or STATA, code for backward selection for this problem would be
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proc reg;

model cgpa=vsat asat wsat gpa3 gpa4 sports

/selection=backward slstay=0.05;

run;

stepwise, pr(.05): regress cgpa vsat asat wsat gpa3 gpa4 sports

7.3.2 All Subsets Regression

The number of possible models from a set of candidate predictors is typ-
ically quite large even for fairly simple problems. Specifically, if you are
considering k variables as possible predictors in your model, there are 2k

possible models if you include the model with no predictors at all. This
number can be huge; when k is 5, 10, 15, or 20, 2k is 32, 1,024, 32,768, and
1,048,576, respectively.

When using forward or backward stepwise selection, only a small sub-
set of the possible models one could construct from the k candidate pre-
dictors is evaluated. To see why, consider you are using forward selection
with k = 10 candidate predictors, and the method chooses variable 2 as the
first predictor to include. Unless you allow for removal of variable 2 later
in the process, you know that any of the 512 models that excludes variable
2 among the 1,024 possible models is ruled out for consideration in future
steps. Yet the optimal model in terms of maximizing R while minimizing
the number of predictors may very well be one of those 512 models. Once
the second variable is chosen, still more of the possible models are ruled
out from further consideration even though one of those may be the best
model. A similar logic applies to backward selection.

All subsets regression gets around this problem by considering all of
the possibilities. Using this method, a statistic called Mallow’s Cp is often
used to choose the “best” of the 2k possible models. But in our opinion,
there is no clear rationale for using Cp. A superior strategy would be to use
any of the estimates of TRS described in section 7.2.2. If you want to give
all subsets regression a try, it is available as an option in STATA and SAS,
as well as in the RLM macro discussed in Appendix A.

7.3.3 How Do Variable Selection Methods Perform?

Once we have used stepwise or all subsets regression to select a prediction
model, the estimates of TRS described earlier no longer apply, and p-values
and confidence intervals lose their meaning and usefulness. This is like
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regression to the mean; once we have selected a model with the highest
value of R from among many models, we can no longer have confidence
that its true value is as high as it appears.

Numerous studies have been conducted that compare the performance
of different methods of variable selection, including those discussed here.
To test these methods, researchers can generate samples from populations
mathematically defined where certain variables are known to be useful
in increasing R and others are not. The methods are evaluated relative to
others by examining how often they select the best model (which, of course,
is defined by the researcher and thus known), and how often they choose
models that include useless predictors or accept models that don’t include
at least some of the useful predictors. This literature has shown that all
methods are vulnerable to some extent to choosing the wrong model. For
specifics of some of these findings, see Derksen and Keselman (1992) and
Flack and Chang (1987), among many others.

Furthermore, different methods often select different “best” models
when applied to the same data. To consider how this sometimes can
happen, revisit the example in section 3.4.1. Recall from that example that
while neither skill at baseball nor skill at basketball significantly predicted
preference for basketball over baseball on their own, when both were put
in the model, R = 0.97. In this example, forward selection relying on a
statistical significance criterion for variable selection would select as the
best model of preference the one with no predictors at all, as neither variable
significantly predicts preference. Yet backward selection would choose the
model with both predictors as best, because removing either performance
variable would significantly lower R.

In this case, we know that backward selection is getting it right. In gen-
eral, you’d expect backward selection to do better than forward selection,
because it would be less susceptible to problems produced by collinearity
between predictor variables, as in this example, that would lead forward
selection to reject predictors that should be in the model. Yet the liter-
ature also shows that backward selection can select models that include
useless predictors, just as forward and all subsets can, and this is a problem
given that the goal of these methods is to find a model that maximizes the
correlation between Y and Ŷ while minimizing the number of predictors.

Given the documented problems of these selection methods, it is hard
to have too much faith in the model that any one of them derives in a
specific circumstance as the “best” of possible models given the k candidate
predictors used. As a general rule, you can assume that the model selected
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by any of these methods will tend to overfit the available data and offer a
more optimistic prognosis of its fit to future data than is likely to be realized.

To understand the problem of overfitting, suppose you were trying
to estimate the mean of some population and you took 1,000 samples of
100 from this population. If you selected the largest mean of the 1,000
sample means as your estimate of the population mean, you would almost
certainly end up overestimating the population mean. Or suppose you
calculated the correlation between two variables in 10 samples and used
the highest correlation as your estimate of the population correlation in a
research article. It is likely that in doing so, you would be overestimating
the size of the population correlation.

Automated variable selection methods suffer from this same kind of
problem to varying degrees, with all subsets regression being most vul-
nerable. Regression is good at extracting information from the observed
relationships between predictors and criterion. Its job is to do so such that
estimation of Y in the sample cannot be improved upon without funda-
mentally changing the form of the model in some fashion. When you have
conducted many regressions with different subsets of variables from a set
of k candidates (with all subsets being the most extreme form), the model
that looks best in the sample is not likely to be quite as good when it is
applied to future data. It may be that the model chosen is the best of the
candidate models considered (though it may not be), but it is very likely
not to fit future data as well as it fit the data used to construct it.

But these methods can be still be useful if their limitations are acknowl-
edged and proper precautions are taken. The goal of these methods is to
produce a model that makes good predictions of Y when applied to cases
not used to construct the model. When it is applied, examine how well
the model performs using some of the methods discussed elsewhere in this
chapter, and be willing to modify the model later if new data suggest the
original model does not perform as well as expected (and most likely, it will
not). The construction of a useful prediction model should be an iterative
process that is informed by new data, which feeds into modifications that
are then validated with the next round. Such a process will, over time,
likely result in a model that performs better than the model initially used.

Resist the temptation to employ an automated variable selection method
when regression is being used for causal analysis and statistical control.
Variable selection methods are more appropriate when research empha-
sis is directed toward maximizing the correlation between Y and Ŷ. In
causal analysis, much greater emphasis is placed on regression coefficients
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and measures of partial association rather than on the multiple correlation.
When the focus is on the relationship between Y and a particular inde-
pendent variable or set of independent variables, then, of course, those
independent variables should always be in the model and not a candidate
for exclusion using a variable selection algorithm. It is likely when do-
ing causal analysis that you have reason to believe that any associations
observed may be attributable to other variables that correlate with the in-
dependent and the dependent variable. When a critic, existing research, or
theory suggests certain variables should be controlled, then those covari-
ates should be in the model too, and not on the chopping block for potential
exclusion using a variable selection method.

7.4 Predictor Variable Configurations

Although focus is on R rather than on the regression weights when using re-
gression analysis for prediction, the regression weights certainly do matter
for the prediction. If a predictor variable j receives no weight in the pre-
diction formula, then it is not used in generating Ŷ, meaning that variation
in predictions is not determined at all by predictor j. This is equivalent to
excluding variable j from the prediction formula entirely. Conversely, the
more predictor variable j’s weight deviates from zero, the more variation
in predictor j maps onto variation in Ŷ.

In a simple two-variable model predicting Y from X1 and X2, the formula
for the regression weight for X1 is provided in section 3.4.5. We repeat it
below for convenience.

b1 =
rYX1 − rYX2rX1X2

1 − r2
X1X2

× sY

sX1

(7.2)

In this discussion we can ignore sY/sX1 , as these merely scale the regression
weight for X1 in terms of the measurement scales of X1 and Y. Examining
equation 7.2, it is apparent that whereas b1 is clearly determined in part by
X1’s simple correlation with Y (rYX1), it is also determined by the correlation
between Y and X2 (rYX2), as well as the correlation between X1 and X2 (rX1X2).
So we can’t say that X1 will necessarily receive a nonzero regression weight
just because it is correlated with Y. We also cannot say that a regression
weight of zero for X1 implies no correlation between X1 and Y. It is possible
for X1 to receive a weight of zero or nearly so even if X1 is highly correlated
with Y. It’s weight could even differ in sign from its simple correlation,
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meaning that a variable that is positively correlated with Y could be given
a negative weight in a prediction formula.

In this section and the next, we discuss several configurations of inter-
correlation between predictors and between predictors and Y. Although
we couch this discussion in terms of prediction, they are also relevant to
the use of regression for causal analysis. The main configurations are in-
dependence, redundancy, complementarity, and suppression. The latter three
can be either partial or complete. Thus, there are seven configurations in
all: independence (which can only be complete), partial and complete re-
dundancy, partial and complete complementary, and partial and complete
suppression.

The four “complete” configurations all require certain exact equalities
(e.g., a certain correlation may have to be exactly zero), while the three
“partial” configurations merely require certain inequalities (e.g., a certain
correlation may have to be negative). Thus, the three partial configurations
are the ones usually observed. But the four complete configurations can
help you understand the others, and they do occur occasionally. Partial
redundancy is by far the most common of all seven configurations, and so
we start with it.

7.4.1 Partial Redundancy (the Standard Configuration)

In section 3.4.2 we introduced the Venn diagram as a visual aide to under-
standing the distinction between the semipartial and partial correlation.
In a Venn diagram, areas of overlap between variables depicted as circles
represent correlation or shared variance. Remember that we also said that
Venn diagrams can’t depict every situation that can happen mathemati-
cally. This remains true, as will be seen. We again use the Venn diagram
to illustrate some of the configurations that can be depicted visually in this
manner.

In that Venn diagram, which we replicate in Figure 7.2, panel A, the
variables were in the standard configuration, or what we are calling par-
tial redundancy here. In this configuration, the predictors are correlated
with each other, and correlated predictor variables typically (though not
necessarily) duplicate each other’s function to some extent in the role they
play in estimating Y. The intercorrelation between predictors is visually
depicted in this Venn diagram as the area B + E. When two variables are
intercorrelated, it is often the case that one variable contributes less to ex-
plaining variation in Y in the presence of the other variable in the model.
For instance, suppose you want to estimate future performance from two



Regression for Prediction 197

X1 X2

Y

X1
X2

Y

X1

X2

Y

A

B

C

A

B

C

E

D

A

B

A C

D

D

E

FIGURE 7.2. Venn diagrams depicting partial redundancy (A), complete redundancy (B),
and independence (C).
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tests of verbal ability administered in high school. Most likely, the two test
scores will be somewhat correlated, perhaps moderately or even highly so.
Using them both to predict future performance may result in less accurate
predictions than if we used one of the measures of verbal ability and some-
thing else correlated with Y but less correlated with verbal ability, such as
mathematical ability. The two measures of verbal ability are likely to be
partially redundant. Although there may be some redundancy between
verbal and mathematical ability, their redundancy is likely to be less than
the redundancy between the two measures of verbal ability.

7.4.2 Complete Redundancy

Imagine pushing the X1 and X2 circles closer together in Figure 7.2, panel
A. As you do so, redundancy between X1 and X2 would increase as B + E
increases in size, and the areas A and C shrink relative to B. At its extreme, if
X1 and X2 completely overlap, then they are completely redundant. How-
ever, complete overlap between the X1 and X2 circles in the Venn diagram
(meaning |rX1X2 | = 1) is not the definition of complete redundancy. Rather,
X2 is completely redundant with X1 if adding X2 to a model containing X1

does not increase R at all. In the situation just described, this would be
true. If the X1 and X2 circles overlapped completely, then no information
about variability in Y (i.e., no increase in prediction accuracy) is acquired
by adding X2 to a model already containing X1. That is, there is no part
of X2 that uniquely overlaps with Y. But panel B of Figure 7.2 also depicts
redundancy. Even though X1 and X2 are not perfectly correlated (i.e., they
don’t completely overlap), adding X2 to a model containing X1 would not
increase R, because X2 shares nothing with Y that is unique to it relative to
X1.

In regression analysis, complete redundancy is evidenced by a variable
receiving a regression weight of zero even though it is correlated with Y.
For example, suppose you are trying to predict college GPA (Y) from high
school GPA and a test of academic ability, such as the Scholastic Aptitude
Test. Suppose the test of academic ability correlates positively with Y, but
when high school GPA is controlled, that correlation drops to zero. In
other words, in a group of people with the same high school GPA, there
is no correlation between the test of academic ability and college GPA.
Thus, the test is useless as a predictor of college GPA once high school
GPA is considered. This means that R is the same with or without the test
of academic ability in the model when high school GPA is in the model.



Regression for Prediction 199

This is complete redundancy. The test of academic ability is completely
redundant with high school GPA.

7.4.3 Independence

When all predictors are uncorrelated, a very simple relation holds:

R2 = r2
YX1
+ r2

YX2
+ · · · + r2

YXk
(7.3)

That is, R2 is the sum of squared simple correlations between Y and the
k predictors, or what we are calling their squared validities in this con-
text. This situation is depicted in the Venn diagram in Figure 7.2, panel
C. Equation 7.3 makes it useful to think of each squared correlation as a
“proportion of variance explained” when predictors are independent. In
this special case, proportions of variance simply add up, so that two vari-
ables accounting for 20 and 30% of the variance in Y will together account
for 50% of the variance in Y. In Chapter 8 we will see that it is misleading
to say that a variable accounting for 20% of the variance in Y is only two-
thirds as “important” as one accounting for 30%. But provided they are not
misinterpreted, the additive nature of proportions of variance provides a
convenient way to talk about differences among variables.

7.4.4 Complementarity

In section 3.4.1 we defined complementarity as any situation in which the
unique contribution of a set of regressors exceeds the sum of their individ-
ual unique contributions. In prediction, we distinguish between ordinary
complementarity and a type of complementarity called suppression. In com-
mon usage in prediction contexts, only ordinary complementarity is even
called complementarity, and we continue that usage here. In a prediction
context such as that discussed in this chapter, we call two variables com-
plementary if R2 > (r2

YX1
+ r2

YX2
) in the absence of the suppression effects

described in section 7.4.5. As we will see in section 7.4.6, these conditions
imply that rX1X2 < 0 even though neither predictor correlates negatively
with Y.

Under independence, R2 equals the sum of the squared validities, but
under complementarity, R2 may be far above that sum. A Venn diagram
cannot represent this, and if this seems strange or impossible to you, recall
the example from section 3.4.1, though that was not the kind of comple-
mentarity we are discussing here. For instance, imagine that success as a
trial lawyer is determined primarily by scholarly ability and acting ability.
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TABLE 7.3. A Data Set Illustrating Perfect Complementarity

X1 X2 Y

1 8 9
2 9 11
3 6 9
4 7 11
5 5 10
6 3 9
7 4 11
8 1 9
9 2 11

Imagine that the correlation between these two abilities is highly negative.
Then either trait alone may be rather poor at predicting success as a trial
lawyer, even though the two together could predict success excellently.

A numerical example illustrates this point. In Table 7.3 are scores on a
variable X1 that are simply the first nine integers. Values on X2 are chosen
so that they are highly negatively correlated with X1 but not perfectly
(here, rX1X2 = −0.933). Y is defined as X1 + X2, and thus we know Y
can be predicted perfectly by this linear combination. Because X1 and X2

correlate so negatively, their sum cannot correlate highly with either; here,
rYX1 = rYX2 = 0.183. But we know that R = 1 (verify this for yourself, if you
desire). Thus, this example illustrates complete complementarity. In this
case, r2

YX1
+ r2

YX2
= 0.067, which is well below R2 = 1.

7.4.5 Suppression

Imagine a multiple-choice history test (X1) that is an excellent measure
of knowledge of history (Y), except that the test is highly speeded so that
people who can read faster tend to do better. Suppose we have a measure of
the test takers’ reading speed (X2). Even though reading speed is positively
correlated with performance (i.e., rYX2 > 0), there is a surprising way that
we could use it. If two people scored equally on the history test but person
A scored higher than person B on reading speed, then we might make the
following argument: Person B’s low reading speed has disadvantaged B
relative to A, yet B still scored as high as A on the test, so B probably knows
more history than A. In other words, among people equal in performance
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on the test, we’d guess that the lower the person’s reading speed, the more
knowledge that person has of history.

But this is equivalent to giving reading speed a negative regression
weight even though it correlates positively with Y. For instance, if Ŷ =
6 + 5X1 − 2X2, then holding test score X1 constant, the lower a person’s
reading speed X2, the higher we estimate his or her history knowledge Y
relative to someone who scored higher on X2.

This illustrates a rule we can state more generally: If X2 is a good
measure of the sources of error in X1 (e.g., reading speed), then by giving
X2 a negative weight, we may be able to predict Y very accurately even
though neither X1 nor X2 alone does so. We are using X2 to subtract out,
correct for, or suppress the sources of error in X1. In that case X2 is called a
suppressor variable.

In an extreme case, X1 could have very large sources of error such
as reading speed, but if X2 measured those sources of error perfectly, we
could completely correct for them and get perfect prediction, even though
neither X1 nor X2 correlated highly with Y. Thus, we would have complete
suppression. As a fictitious example, imagine a sample of adults, each of
whom was the older child in a two-child family. Suppose a personality trait
Y is completely determined by the person’s age at which his or her sibling
was born. Then Y will correlate little with the person’s age and little with
the age of the person’s younger sibling, but it will correlate perfectly with
the difference between the two.

You can imagine how users of a regression model for prediction might
be reluctant to take advantage of suppression they may find, even though
using suppressor variables would enhance accuracy of prediction. Few
administrators of schools, government agencies, or corporations using re-
gression models for personnel selection or related prediction tasks would
survive public knowledge of the fact that they select people with the lowest
scores on certain tests. But insights gained by the discovery of suppressors
can be used to modify other measures in the prediction formula to reduce
the influence of things such as reading speed, “test-wiseness,” or other
individual differences that generate sources of error in test scores.

7.4.6 How These Configurations Relate to the Correlation
between Predictors

The seven configurations described in this section seem to represent a mind-
boggling array of possibilities. But if we think about it from the perspective
of pairs of variables X1 and X2 and there being two correlations rYX1 and
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rYX2 that are fixed, then the seven configurations simply represent different
values and ranges of rX1X2 . To explore this topic further, we must first
consider the possible range of rX1X2 for fixed values of rYX1 and rYX2 .

It should not surprise you to learn that if two variables are correlated 0.9
with each other, then it would be impossible for one to be correlated 0.9 with
a third variable but for the other to be uncorrelated with that third variable.
The material in this section requires understanding which combinations of
correlations are possible and which are impossible. Therefore, for the case
of two predictor variables, we now develop a formula showing the possible
range of rX1X2 as a function of rYX1 and rYX2 .

We know that any correlation—simple, partial, or semipartial—cannot
fall above 1 or below −1. Define r12.Y as the partial correlation between
X1 and X2 when controlling for Y (we’ve never discussed a partial correla-
tion between predictors holding Y constant, but that doesn’t mean such a
correlation can’t or doesn’t exist) is

r12.Y =
rX1X2 − rYX1rYX2√
1 − r2

YX1

√
1 − r2

YX2

A close look at this formula shows that if rYX1 and rYX2 are fixed, r12.Y

increases as rX1X2 increases. Given that no correlation can be larger than
1 or smaller than −1, we can find the range of possible values of rX1X2 by
setting r12.Y to 1 and −1 and solving for rX1X2 . When doing so, we find that
the limits on rX1X2 are

rYX1rYX2 ±
√

(1 − r2
YX1

)(1 − r2
YX2

)

For instance, if rYX1 = 0.5 and rYX2 = 0.3, then −0.676 < rX1X2 < 0.976.
So under these constraints on rYX1 and rYX2 , rX1X2 can be almost but not
perfectly correlated positively, but rX1X2 cannot be as negative as it can be
positive.

Having now derived the possible values of rX1X2 given their correlations
with Y, we can now discuss how these configurations relate to the size of
rX1X2 . This discussion requires recognition that it is always possible to
reflect a predictor variable (i.e., reverse its scoring direction, making low
values high and high values low) so that it has a positive or zero correlation
with Y. We assume this has been done for both X1 and X2. But this still
allows rX1X2 to be negative.
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FIGURE 7.3. Complementarity, redundancy, and suppression as a function of rX1X2 when
rYX1 = 0.5 and rYX2 = 0.3.

Figure 7.3 shows how R relates to rX1X2 when rYX1 and rYX2 are fixed at
0.5 and 0.3, respectively. In section 3.4.5 we saw that

R2 = r2
YX1
+ sr2

2 = r2
YX1
+

(rYX2 − rYX1rX1X2 )2

1 − r2
X1X2

Figure 7.3 was constructed using this formula to compute values of R for
various values of rX1X2 when rYX1 = 0.5 and rYX2 = 0.3. We shall use this
figure to show how rX1X2 relates to the seven configurations.

Two of the seven configurations have already been related to rX1X2 ;
we said that independence implies rX1X2 = 0 and complementarity implies
rX1X2 < 0. These configurations have been marked in Figure 7.3.

We can define suppression as the case in which either b1 or b2 is negative
even though rYX1 and rYX2 are both non-negative. We shall consider the
case in which b2 is negative and then derive the result for b1 by analogy.
We have

b2 =
rYX2 − rYX1rX1X2

1 − r2
X1X2

× sY

sX2

(7.4)
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But sY, sX2 , and 1 − r2
X1X2

are all non-negative, so b2 is negative whenever
rYX2 − rYX1rX1X2 is negative. This, in turn, occurs if and only if rX1X2 >
(rYX2/rYX1 ). A symmetrical argument shows that b1 can be negative only if
rX1X2 > (rYX1/rYX2). We have assumed that rYX1 and rYX2 are non-negative,
so we conclude that suppression occurs only if rX1X2 is positive and above
the lower of rYX1/rYX2 and rYX2/rYX1 . In this example, these two values are
1.67 and 0.6, so suppression occurs if rX1X2 > 0.6. Figure 7.4 shows the
values of sr1 and sr2 for each value of rX1X2 ; notice that sr2 is negative in the
suppression region.

Complete redundancy occurs for X2 if its optimum weight is zero. At the
point of complete redundancy, R reaches its lowest possible value for fixed
values of rYX1 and rYX2 ; it equals the higher of these two validities. We see
from equation 7.4 for b2 that b2 = 0 if rYX2 − rYX1rX1X2 = 0, which implies
rX1X2 = rYX2/rYX1 . In this example, that means rX1X2 = 0.3/0.5 = 0.6. This
value is also shown in Figure 7.3. Lower positive values of rX1X2 yield the
standard configuration or partial redundancy.

As rX1X2 becomes more negative with rYX1 and rYX2 fixed, the predic-
tors become ever more complementary, until at the most negative possible
values of rX1X2 complete complementarity is achieved (at the far left in Figure
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7.3). At the right, as rX1X2 increases, suppression becomes ever larger, until
at the maximum possible value of rX1X2 we have complete suppression.

Thus, in summary, as rX1X2 rises from its smallest to its largest possible
value, we move through the seven configurations of complete and partial
complementarity, independence, partial and complete redundancy, and
partial and complete suppression.

7.4.7 Configurations of Three or More Predictors

When there are three or more predictors, we can define suppression as any
case in which a variable receives a significant negative weight when it has
a positive or zero correlation with Y. Complementarity can be defined as
any significant negative correlation between predictors when both have a
positive or zero correlation with Y. As before, complete complementarity
or suppression occurs if R = 1 when no simple correlation involving Y is
1, and complete redundancy occurs if some regression weight is exactly
zero. Independence occurs if the correlation between all predictors is zero.
The standard configuration of partial redundancy can be defined as the ab-
sence of the other six configurations. We may be able to predict perfectly
well without even knowing whether nonstandard configurations exist in
the data. But understanding these configurations can help explain unex-
pected findings such as negative regression weights for variables positively
correlated with Y or surprisingly high values of R.

7.5 Revisiting the Value of Human Judgment

At the beginning of this chapter we said that predictions made solely by ex-
pert human judgment are quite consistently less accurate than those made
by mechanical methods such as regression because of the unreliability in
the judgment process. That is, human judges don’t always apply the same
decision rule when using the available information. In one case, a variable
might be given no weight, whereas in another it might be given a lot of
weight. Experts might say that the complexity of human behavior requires
flexibility in how information is weighted, depending on the circumstance.
But that is generally the source of the problem, not the solution to it.

One way to remove the unreliablity is to ask expert judges not to make
decisions in every specific case, but rather to assign weights to the various
predictor variables using whatever system their expertise or intuition dic-
tates and using that weighting system for all cases. Dawes (1979, 1988) and
others have argued that predictions made by such a system are often at least
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as accurate as those made by regression, especially if the sample available
for the regression is small. And this method is also simpler, in that it does
not require a sample of cases to develop a mechanical prediction system in
the first place.

A choice between these two methods cannot be made simply by seeing
which method has usually worked better on other problems in the past, be-
cause the relative merits of the two approaches obviously depend on factors
such as the sample size available for the regression and the degree to which
relationships among the variables studied are genuinely understood by the
expert judges. But we know on theoretical grounds that a pure human
judgment approach has the same problem as forward and mixed stepwise
regression—there is no upper limit to the predictive power that may be
overlooked by ignoring available data. Therefore, what is needed is a way
to combine the advantages of regression and human judgment in such a
way as to overcome the sampling errors in regression if those errors are
large and human judgments are accurate, but to use the regression results
if they turn out to add predictive power to inaccurate human judgments.
There is a way to do this that we discuss below. Darlington (1978) discusses
some others.

The first step is to make a composite variable for each case being pre-
dicted using the relative weights for each variable an expert (alone, by
committee, or whatever system) judges to be optimum. Call this XSC for a
“subjective composite.” This should be created before examination of any
of the actual regression weights that a regression procedure generates. XSC

may be a composite of all k predictors, or it may exclude some of them.
If you are thinking the next step would be to include XSC in the regres-

sion analysis of Y with the k predictors to see what kind of weight it gets,
your thinking fails to acknowledge a problem with this. Because XSC is a
linear combination of the k predictors, including XSC in a regression model
along with the k predictors would produce a singularity. A singularity
occurs when one predictor is a perfect linear combination of the other pre-
dictors in the model. But that is exactly what XSC is. Therefore, one of the
other predictors must be removed before XSC can be added. Furthermore,
the variable removed must be one of those with a nonzero weight in XSC,
or else the singularity will remain after the variable is removed.

So the next step is to momentarily ignore XSC and estimate Y from all
k predictors. From the variables with nonzero weights in XSC, remove the
one with the t closest to zero and replace it with XSC. As you already
know, the one removed is the one whose contribution to the regression
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prediction is least statistically significant. It is also the one whose removal
will lower R the least. Since this variable is the one least useful even in the
absence of XSC, it seems extremely likely that it will not be missed in any
regression that includes XSC, which itself includes the deleted predictor.
After making this replacement, apply any of the methods of this chapter,
such as backward stepwise regression, to this model.

If the subjective guesses used in the construction of XSC were accurate,
it is very likely that the regression finally selected by this process is the
regression that includes only XSC. Thus, this process enjoys the advantages
of subjective judgment—the avoidance of unnecessary reliance on sample
data that may be unreliable—while still allowing the sample data to play a
role if the subjective judgments turn out to be inaccurate.

7.6 Chapter Summary

Regression has a practical, applied role to play in prediction problems.
With a sample of cases measured on a set of predictor variables, as well
as some criterion variable of interest, regression analysis can be used to
derive a regression equation that produces an optimally weighted sum of
the predictors that correlates maximally with the criterion. The regression
formula can then be applied to cases not originally used to derive the equa-
tion in the first place, in order to generate a prediction of Y for those cases,
knowing only their scores on the predictor variables. Using a regression
equation in this fashion gets around some of the inaccuracy created when
human judges attempt to make predictions relying only their expertise or
intuition. We still need human beings to decide what predictor variables to
consider as candidates in the regression equation, but once that is done, re-
search suggests it is best to remove humans from the process of generating
the prediction itself.

Regression analysis is so good at its job of constructing the regression
weights that it tends to “overfit” the data, modeling not only the systematic
processes linking predictors to criterion but also all the idiosyncracies of
the sample itself. As a result, the correlation between what the model
estimates for Y and the actual model of Y when applied to cases not used
to generate the regression model—shrunken R—tends to be smaller than R.
Shrunken R can be estimated in a variety of ways, such as cross-validation,
leave-one-out methods, and various analytical formulas.

The reduction in the predictive accuracy of a sample-derived regression
model when applied to new data, what is called validity shrinkage, can be
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managed in part by a number of variable selection methods. Methods such
as forward and backward stepwise regression and all subsets regression
attempt to maximize the correlation between Ŷ and Y, while minimizing
the number of predictors. The fewer predictors that are used in a regression
model applied to future cases, the less validity shrinkage tends to be. These
variable selection methods have documented problems, however, in that
they too tend to overfit the data. But they can be useful in some contexts if
their limits are understood and it is recognized that none of them is likely
to be selecting the best or correct model by some objective standard.

Whether a variable receives a zero or a nonzero weight in a prediction
formula will depend on more than just its correlation with Y. There are
many configurations of intercorrelation between predictors and between
predictors and criterion—redundancy, independence, complementary, and
suppression—that give rise to some counterintuitive phenemona, such as
when a regressor is uncorrelated with Y yet receives a nonzero weight in
the regression equation, or when R is very large when all the correlation
between Y and the predictors in the model are small.

It is possible to combine subjective human judgment and mechanical
prediction methods. This can be done by constructing a subjective com-
posite of predictor variables using human judgment or intuition, and using
it as a predictor in variable selection problem, after first acknowledging
the singularity this will produce. Such a method may help to determine
whether human judgment produces the best prediction, should be ignored,
or can be supplemented by information derived by a mechanical prediction
system such as regression analysis.



8
Assessing the Importance of
Regressors

In this chapter we address the topic of assessing importance, either in
absolute or relative terms, of a regressor in a regression model. Al-
though the impulse to label one regressor’s relationship with Y as im-
portant and another’s as less so is very strong, how to quantify the im-
portance of a simple or partial relationship is a controversial topic in
statistics. Although researchers often use standardized regression co-
efficients or squared measures of association as indices of a variable’s
importance, we provide some arguments against doing so. In this chap-
ter we offer some recommendations, but mostly opinions, about how to
think about, define, and measure the importance of a regressor in a re-
gression analysis.

We have seen that there is little ambiguity concerning the interpretation
of the partial regression coefficient bj in a regression analysis. Given the
single assumption of linearity, Tbj is the average difference in Y associated
with a 1-unit difference in Xj when other regressors are held constant. The
sample regression coefficient bj estimates this effect. But bj cannot be used
to compare the importance of regressors because it is a scale-bound metric.
If Xj is measured in inches, then changing its metric to feet will multiply
bj by 12 but will not change its importance in absolute terms or relative to
other regressors in the model. If our goal is to assess the importance of a
regressor, the distance between bj and zero will not accomplish that goal,
at least not without thinking about the scale of measurement, nor will it
allow us to compare the importance of regressors in a model. A scale-free
measure is needed.

There are three basic scale-free measures: the standardized regression
coefficient b̃ j, the partial correlation prj, and the semipartial correlation srj.
The latter two are often squared; as mentioned in section 3.4.1, sr2

j is the
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proportion of the variance in Y uniquely explained by Xj, and pr2
j is the

same value expressed as a proportion of the variance in Y unexplained by
the other regressors in the model.

Thus, we have at least four questions: Which, if any, of the three basic
scale-free measures should be used as a measure of a variable’s importance?
Should they be squared? Are there better measures of importance? And
what do we mean by importance anyway? There is no consensus among
scientists and statisticians on the answers to these questions. In this chapter,
we offer some of our opinions on the topic of the importance of regressors,
acknowledging that importance cannot usually be distilled down to just
one number. Kelley and Preacher (2012) offer a good discussion of variable
importance under the label of “effect size,” pointing out the many confusing
definitions that exist and how it is nearly impossible to settle on a single
measure of importance.

8.1 What Does It Mean for a Variable to Be
Important?

Null hypothesis significance testing is the framework most researchers use
for establishing whether or not an effect in some study exists. Although
it has its many critics, and alternatives such as Bayesian methods exist,
it is likely to remain dominant into the foreseeable future. Typically, the
null hypothesis tested is that there is no effect, meaning two variables are
not associated, or two groups don’t differ from each other. A “statistically
significant” relationship allows for a claim of the existence of an effect,
but it says nothing about the size of its effect or its practical or theoretical
importance. Regression analysis can be used to generate an estimate of
the size of some regressor’s effect and test hypotheses about whether a
relationship exists between a regressor and a dependent variable. But
whether that effect is large or small, important or trivial, is largely in the
eye of the beholder. These judgments are highly context-dependent and
will vary between areas of inquiry and even within an area, depending on
who is making the judgment.

8.1.1 Variable Importance in Substantive or Applied Terms

Researchers probably could not approach their jobs day in and day out
if they felt that their work wasn’t important. Everyone wants to feel like
the work he or she does matters in some way. But what does it mean to
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say that one’s work is important? And if one decides that one’s work is
important at least in principle or on the face of it, who is to say that the
research one has done has revealed important findings? From a funding
perspective, which research is worth funding, and which is not? We can
all agree that taxpayer dollars probably should not be spent on things that
aren’t important. But who is to make that judgment? And how do we know
if a researcher’s findings, if funded, will be important? Basic research is
often undertaken without obvious application, and governments regularly
fund basic research. The importance of research is sometimes determined
only later, once someone finds an application for it.

It is probably obvious to you that statistics can have little to say about
judgments of importance of this variety, whether those judgments are about
entire fields of inquiry or specific findings, or whether a line of work is
worth funding. We start this chapter by stating the obvious, because we
think it is important to keep in mind that when we use the term important,
we are not using it with these kinds of questions in mind.

8.1.2 Variable Importance in Statistical Terms

Statistics can and does offer a contribution to science with respect to how
researchers can think about and quantify the importance of a variable in
abstract quantitative terms that is free of value judgment. For instance,
the importance of a variable could be indexed with respect to how much
of the variability in the dependent variable Y it explains since, after all,
accounting for variation between Y and Y is essentially what regression
algebra does. The more important variables in a model explain more of
the variability in Y. A variable could be deemed especially important if it
explains lots of the variability, even in the presence of other variables in the
model. But complicating this way of conceptualizing importance is the fact
that variability can be quantified in more than one way, such as by squaring
deviations from the mean or using the standard deviation.

Importance could also be quantified as the amount that including a
regressor in a model lowers the error in estimation of Y. The most important
variables in a regression would be those that lower the error in estimation
the most relative to when those variables are not in the model. If your goal
is to estimate Y accurately and you care how much in error your estimates
of Y tend to be, then using a measure of importance that is sensitive to this
would be desired.

Importance could also be measured by the amount Y changes as a
result of changing the regressor a certain amount. Regressors that “move”
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Y more are more important than those that move Y little. So a variable
that, if changed by a certain amount, results in a larger change in Y than
some other regressor when changed by a comparable amount, then that
first variable could be deemed more important.

Such approaches are related mathematically, and all may be useful in
one way or another, but perhaps more so in some contexts than others.
There is no best way of defining importance in a purely numerical sense
that is independent of context, but there are some ways that can be avoided
and others that may be more useful across contexts. We make a few recom-
mendations later in the chapter.

If you are new to the business of science, it won’t be long before you
encounter various rules of thumb circulating about how to label a variable’s
effect as “small,” “moderate,” or “large” based on some metric. These
rules take a variety of forms depending on the metric being used (e.g., a
standardized mean difference or proportion of variance explained), and
not all rules of thumb are consistent. We don’t see much value in these
rules of thumb and don’t use them ourselves. If someone tells you that
a correlation of 0.3 is too small an effect to concern yourself with, or you
should care only about large effects that explain at least 10% of the variance
in Y, take that advice or criticism with a grain of salt.

8.2 Should Correlations Be Squared?

We have discussed in various places already (e.g., sections 2.4.2, 3.4.1, and
4.2.2) that r2

XY can be interpreted as the proportion of the variance in Y
explained by X. If X is a set of regressors rather than just one, then R2

for the model estimating Y from this set is interpreted as the proportion
of variance in Y explained by the model or the set of regressors. If an
investigator reported that the correlation (simple or multiple) in his or her
study between X and Y is 0.1 but statistically different from zero, no doubt
a critic would bring up that X explains a mere 1% of the variance in Y, and
this is hardly news worth disseminating.

Similarly, a researcher advocating theory B over theory C might show
that when theory B’s regressors are added to a model of Y that already
contains theory C’s regressors, the squared multiple correlation increases
more than can be explained by chance, and this supports the relevance
of theory B in explaining individual differences in Y. We saw in sections
3.4.1 and 5.3.1 that when a variable or variable set is added to a model,
that variable’s or set of variables’ squared semipartial correlation with Y is
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interpreted as the proportion of the variance in Y uniquely explained by
that variable or variable set. It is the change in R2 that results when those
variables are added to the model, and a researcher may expect criticism if
it seems too small to observers and consumers of that research.

It is almost taken as gospel that the square of a correlation is a measure
of the importance of the relationship between two variables. Researchers
routinely square rXY to derive the proportion of variance in Y explained
by X, they report R2 in their regression tables in research articles, and they
talk about improvement in the fit of a model in terms of the amount R2

increases when a variable or set of variables is added to a model. Thinking
of relationships in terms of proportions of variance explained is extremely
entrenched among scientists and statisticians. But doing so can be very
misleading, and result in understated claims and perhaps unwarranted
criticisms about the role a variable plays in explaining Y. In this section we
document how so. We are not the first to put this perspective in writing.
See, for example, Cronbach and Gleser (1965), D’Andrade and Dart (1990),
and Ozer (1985) for related discussions.

8.2.1 Decision Theory

In decision theory, the importance of the relationship between two variables
is often defined as proportional to the expected gain from taking advantage
of the relationship relative to ignoring it. For instance, if we were to use a
psychological test to decide which of two kinds of therapy to administer
to patients in a psychiatric hospital, then the expected gain from using that
test to make the decision might be measured in the number of days by
which the average patient’s hospital stay is shortened or lengthened as a
result. The test’s value or importance would be defined as proportional
to the number of days the average hospital stay is shortened by use of the
test. So if using the test to choose method A or B cuts the number of days
in the hospital in half relative to when the test is not used, that would be
twice as valuable as if using the test cut the stay of the average patient’s
hospitalization by only 25%. Of course, other metrics could be used, such as
dollars saved by the patient or the hospital. It makes no difference, though
using dollars generalizes the point we make in this section to other areas
such as business and marketing. Regardless, thinking about importance
in these terms yields a ratio scale of importance. If using the relationship
between X and Y when making a decision cuts costs from $2,000 to $1,000
dollars (or from 20 days to 10 days), this is twice as important as if it cuts
costs from $2,000 to only $1,500 (or from 20 days to 15 days).
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In this section we show how a decision theory approach yields no single
relationship between a correlation and importance. But if we had to pick
the most common single relationship, it would be most accurate to say that
the importance of a correlation is proportional to r rather than r2. This point
is widely accepted among psychometricians; see, for instance, Cronbach
and Gleser (1965). But it seems this is hardly known outside of this circle
(except perhaps among decision theorists), so we shall develop it in some
detail with a few examples.

As a first example, suppose 19 people apply for a small number of
positions at your company, and you give them each a test known to be
correlated with ability to do the job for which they are applying. With only
seven spaces available, naturally you select the seven who score highest,
and the 12 lower scorers are rejected. In real life, of course, we would
not know their actual ability to do the job until they were hired. But let’s
imagine that for these 19 people, their actual abilities are known. Let
Figure 8.1 represent a scatterplot depicting the observed test scores of these
19 people (X) against their actual ability to do the job (Y).

In these data, the correlation between test score and ability is rXY = 0.50.
Furthermore, the mean of the actual ability of these 19 people is Y = 3.0.
So if you didn’t use the test at all and just randomly selected seven of these
19 to hire, then the expected ability of the seven you hire is 3.0. On the
other hand, if your test were correlated r = 1.0 with actual ability rather
than only 0.5, then your test would lead you to select the seven people
with the highest ability, meaning scores of 4 or 5 on Y. These are the seven
cases in Figure 8.1 at the top of the plot. The mean of their actual ability is
(4+ 4+ 4+ 4+ 5+ 5+ 5)/7 = 31/7. Thus, the use of this hypothetical perfect
test raises the expected mean of the ability of the seven selected from 3, if
the test were not used at all, to 31/7 = 4.429. This is a gain of 10/7, or 1.429.

However, you aren’t using this hypothetical perfect test but, rather, a
test that is not perfectly correlated with ability. You select the seven highest
scorers on this imperfect test. These are the seven people scoring X = 4 or
X = 5 on the test, found in Figure 8.1 at the right end of the scatterplot. The
mean of the actual ability (Y) of these seven is (2 + 3 + 4 + 5 + 3 + 4 + 5)/7 =
26/7 = 3.714. This is a gain of 5/7 or 0.714 in the ability of those selected
relative to if no test were used. This gain of 5/7 is exactly half of the 10/7
gain that would result if you used the hypothetical perfect test. But rXY is
0.5, which is exactly one half of 1.0. So in this example, the value of the test
is proportional to r, not to r2.
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FIGURE 8.1. A scatterplot of observed test score of ability against actual ability.

Consider a second example. Suppose you are taking two different
courses, A and B. In each course, a study has been conducted examining
the relationship between course grade (Y) and hours of study in that course
(X) as recorded in student diaries. Both studies have adequately controlled
for various confounds such as a student’s ability and previous knowledge
of course material. In course A, rXY = 0.3 and in course B, rXY = 0.6. Further
suppose that the standard deviations of study time (sX) are the same in the
two courses, as are the standard deviations of grade (sY). We might want
to know whether studying is more important in one course than another
by examining the sizes of the regression weight for study time in a linear
model estimating Y from X in each of the courses. This regression weight
tells us the expected gain in course grade resulting from one additional
hour of study time.

From section 2.2.3, these regression weights are equal to rXY(sY/sX), but
given that the standard deviations of X and Y are the same across the two
courses, then the ratio of their standard deviations is the same. That means
that the ratio of the two regression weights is the same as the ratio of the
two correlations between X and Y. That is, given that rXY is twice as large
in course B than in course A, so too is the regression weight relating Y to
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X in course B than in course A. That means that 1 hour of additional study
time has twice the impact on grade in course B as in course A. If your
objective is to maximize your course grade, you’d be better off studying
the additional hour in course B than course A, because the expected gain
in grade is double relative to studying more in course A. But the important
point here is that the ratio of expected gains between the two courses is the
ratio of the two correlations, not the ratio of the two squared correlations,
which is 4 (i.e., 0.62/0.32 = 4). So in this example, a correlation twice as
high equates to twice the importance, not four times.

If you are gambler, this third example will appeal to you. You flip a
nickel (worth 5 cents) and a dime (worth 10 cents) simultaneously and
repeatedly. On each trial, if the dime comes up heads, you win 10 cents,
tails you win nothing. Similarly, if the nickel comes up heads, you win 5
cents, tails you win nothing. So on each trial, you have a 25% chance of
winning 15 cents (heads on both), a 25% chance of winning 10 cents (heads
on dime not on nickel), a 25% chance of winning 5 cents (heads on nickel
not on dime), and a 25% chance of winning nothing (heads on neither).
Call your winnings on each set of flips W.

You know that in a long sequence of trials, the results of the nickel will
be independent of the results from the dime because the outcome of the flip
of the dime has no influence on the outcome of the flip of the nickel. And
since the winnings you receive over a long sequence of trials is determined
entirely by the outcome of these two coins, the percentage of your winnings
attributable to the nickel and to the dime must sum to 100%. It can be shown
that the dime accounts for 80% of the variance in your total winnings, while
the nickel accounts for only 20%. In correlational terms, imagine a dummy
variable D coded 1 for the dime if it comes up heads and 0 if it comes up
tails and a similar dummy variable N for the nickel. In a long series of flips,
you’d find that r2

DW = 0.8 and r2
NW = 0.2.

This makes it seem like the dime is four times as important as the nickel
in determining your winnings. But in ordinary language and thinking,
we would say that the dime affects your winnings twice as much not four
times as much, because the dime is worth twice as much as the nickel when
it comes up heads. Importantly, notice that the unsquared correlations
between W and each of the two dummy variables are rDW = 0.894 and
rNW = 0.447, which is a 2 to 1 ratio, same as the value of a dime relative to
a nickel.
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TABLE 8.1. Five-Year Mortality Rate

Alive 5 years after diagnosis?

No (Y = 0) Yes (Y = 1) Total

Received drug (X = 1) 90 110 200
45% 55%

Received placebo (X = 0) 110 90 200
55% 45%

8.2.2 Small Squared Correlations Can Reflect Noteworthy Effects

The previous examples show that sometimes the size of an effect is better
represented by an unsquared correlation than a squared correlation. We
now address a slightly different matter, and that is whether small squared
correlations are necessarily small or unimpressive effects.

Suppose you were suffering from a serious illness, and mortality statis-
tics show that for every 100 people diagnosed with this illness, 55 die within
5 years of diagnosis. In other words, 45%, or less than half, are still alive
after 5 years. This sounds like a fairly depressing prognosis. But suppose
a randomized clinical trial for a new drug shows that this drug reduces the
death rate within 5 years after diagnosis to 45 out of 100. Rephrased, of
those who take the drug, 55% are still alive after 5 years. This may still
sound depressing, but at least the drug offers some hope.

These statistics are reflected in Table 8.1 for 400 people, half of whom
were given the drug and half of whom were given a placebo. Let X be a
variable coded 0 for those who did not take the drug and 1 for those who did,
and let Y be a variable coded 1 if still alive in 5 years and 0 if dead in 5 years.
In this table, rXY is 0.10, meaning that the drug accounts for only r2

XY = .01 or
1% of the variance in death within 5 years. Though statistically significant,
in variance-explained terms, this seems like a pretty small effect. Even if
you were a researcher who advocates squared correlations as measures of
effect size, you would probably still take the drug if offered. What would
you have to lose, after all? But these statistics don’t seem to offer you much
hope of prolonging your life with the drug. If the side effects were more
than minor, you might even contemplate not taking it.
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But if thought of in terms of lives saved with the drug, the effect of this
drug is actually fairly large. Given the findings from the clinical trial, which
necessarily involves random assignment to condition (drug or no drug), we
can infer that if the 200 in the bottom row of Table 8.1 were given the drug,
then 20 of those 110 who would have otherwise died with 5 years would
still be alive. In other words, we would expect the drug to spare the lives
of 20 of 110 people, or about 18% of those would have died within 5 years
by not taking the drug. Yet the drug accounts for only 1% of the variance
in mortality rate in 5 years. This tiny effect in variance-explained terms is
actually a fairly substantial effect when thought of in terms of percentage
of lives saved.

Rosenthal and Rubin (1982) provide a more thorough discussion of
effect size for problems similar to this one, labeling rXY the binomial effect
size display, or BESD. In this example, BESD = 0.10, which corresponds to
a difference of 10% between the “success rates” (i.e., being alive after 5
years) in the two groups. They offer a generalization of the measure to
continuous variables, and argue that at least for some problems like this,
squaring r can make large effects seem considerably less impressive. Their
brief discussion is worth reading. Also see Abelson (1985) for a related
discussion in the context of sports.

8.2.3 Pearson’s r as the Ratio of a Regression Coefficient to Its
Maximum Possible Value

When talking about the size of an effect or the importance of a variable, it
is natural to couch the discussion relative to zero; that is, no effect or “zero
importance.” But the meaningfulness of the distance between some effect
or measure and zero will depend on how large that effect or measure can
get. To say you walked half the distance from your house to work means
something different if your house is 1 mile away from work relative to
whether it is 20 miles away. This is one reason why rXY is generally more
useful as a measure of association than the covariance between X and Y.
The correlation is scaled to be between −1 and 1, whereas the covariance’s
upper bound is always scaled by the metrics of measurement of X and
Y. A “large” covariance could be either large or small, depending on the
variance of the variables.

The same is true for regression coefficients. Although a regression co-
efficient of zero clearly is meaningful, anything other than zero needs to be
interpreted relative to how large it could be hypothetically or theoretically.
For instance, if each hour of foreign language vocabulary training expands
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a student’s working vocabulary by 10 words, this could be a large or small
effect depending on how you think about it. We might be able to imagine
some superefficient training method that adds 1,000, or even 10,000 words
for each hour, so for all we know, the actual training method might be only
one-hundredth or one-thousandth as effective as some other method that
maybe does or could exist. So how large a measure of association is relative
to the maximum it could be needs to be considered when interpreting an
effect’s importance. Sometimes this is impossible, but not always.

It is possible to calculate the maximum possible association between
two variables if we think of certain quantities as fixed. For instance, in
a certain sample, suppose we have calculated that the standard deviation
of annual income is $20, 000 and that the standard deviation of years of
education is 4 years. Now suppose we regress income on education and
find b1 = 2,000. So each year of education translates into an additional
$2,000 in income. Is this a big effect or a small effect?

To answer this question, at least in a statistical sense, suppose the cor-
relation between these two variables was perfect (i.e., rXY = 1) and we
regressed income (Y) on education (X). The simple regression formula

b1 = rXY
sY

sX

tells us that the regression coefficient when estimating income from educa-
tion would be 1×20, 000/4 = 5, 000. Because rXY cannot exceed 1, that is the
highest the regression coefficient could be given these standard deviations
of income and education. If we think of those standard deviations as fixed,
then b1 = 5, 000 × rXY and b1 is proportional to rXY. Therefore, rXY can
be interpreted as the ratio of b1 to its maximum possible value given the
standard deviations of Y and X. So if the correlation between income and
education were actually rXY = 0.4 rather than 1, that means b1 = 2,000. In
other words, the regression coefficient for education is 0.4 times or 40% of
its maximum possible value of 5, 000 given the two standard deviations.

A similar but more complex rule applies to multiple regression. Sup-
pose we think of all statistics in the sample as fixed except statistics measur-
ing the partial association between Y and a particular regressor Xj. These
conditions fix a maximum possible value of bj, and prj equals the ratio
between the actual value of bj and that theoretical maximum. This is a
useful interpretation of prj which does not require the limiting conditions
mentioned in section 4.5.
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This point can be expressed in a formula. We regress Y on k regressors,
one of which, Xj, we think of as the independent variable and the rest are
covariates. Let C (for “covariates”) denote the set of k − 1 regressors. Let
V(Y.C) be the mean of the squared residuals when Y is regressed on the
k − 1 covariates. You can think of V(Y.C) as variance in Y not explained by
the covariates. It can be shown that

prj = bjsXj

√
Tolj

V(Y.C)

This formula shows that if we think of sXj , Tolj (the proportion of the
variance in Xj not explained by the covariates) and V(Y.C) as fixed, then
given that prj cannot exceed 1, prj equals the ratio between bj and its
maximum possible value with the same values of those three statistics.

So the maximum size that bj can possibly be can be as useful a reference
against which to compare bj as is zero. If a language training program
increases vocabulary by 10 words for every hour (i.e., b1 = 10), and the
correlation between hours of training and vocabulary is 0.67, then you can
say that given the standard deviations of hours and vocabulary observed in
the data, the largest b1 could be in a regression estimating vocabulary from
hours of training is 15. This means that the observed effect is two-thirds
of its maximum possible value given the available information. If you had
controlled for a set of covariates in a multiple regression and prj was 0.5,
then the observed effect of an hour of training is one-half of its maximum
possible value given the observed variability in hours or training and how
much of the observed variance in hours of training and vocabulary is
explained by the covariates.

8.2.4 Proportional Reduction in Estimation Error

Now that you may be starting to believe that r is a more sensible measure
of importance than r2, we provide an example illustrating the opposite.
Suppose that your goal is to estimate a future college student’s GPA (Y).
You have two measures available to you: performance on the Scholastic
Aptitude Test (SAT, which we denote X), and high school GPA (W). Sup-
pose that research shows that rXY = 0.3 and rWY = 0.6. There would be
no argument that high school GPA is a better predictor in this example,
though we could debate how to quantify just how much better. Using
the squared correlation as the metric, GPA is four times as important as
SAT, because it explains four times more variance in college GPA. But the
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prior argument suggests that the ratio of the unsquared correlations better
reflects their relative importance. By that measure, SAT is only two times
more important.

One way of measuring the quality of a prediction system is how large
the errors in estimation tend to be. The standard error of estimate first
introduced in section 4.2.4 is widely used as a measure of this. In large
samples, this is very close to the standard deviation of the residuals, and
it is estimated as sY.X =

√
MSresidual. Because the least squares criterion

minimizes MSresidual, it follows that it also minimizes sY.X. The smaller sY.X,
the “better” the model, in the sense that the model generates estimates of
Y that are closer to Y than some other model of the same Y with a bigger
sY.X.

In a model with a single predictor X of Y, the standard error of estimate
is related to rXY by the formula

sY.X = sY

√
(1 − r2

XY) (8.1)

Now suppose that you wanted to guess the college GPA of a set of appli-
cants, but you had no information available about their high school GPA
or SAT scores. In that case, your best guess for every applicant would be
that their college GPAs will be average. That is, your model would Ŷ = Y.
This is equivalent to using a predictor with no correlation with Y, and so,
from equation 8.1, sY.X = sY for this model. That is, the standard error of
estimate is just the standard deviation of Y.

How much would this error in estimation be reduced by using informa-
tion about the students’ SAT scores? Earlier, you were told that rXY = 0.3,
so the standard error of estimate would be sY

√
1 − 0.32 = 0.954sY. That is,

the standard error of estimate is 95.4% of the size of the standard devia-
tion of Y. This could be expressed in a different way as the proportional
reduction in the standard error of estimate that results when using the rela-
tionship between X and Y to estimate Y, known as the coefficient of forecasting
efficiency:

E = 1 −
√

1 − r2
XY (8.2)

(The fact that we use E to denote expected value in earlier chapters does not
complicate notation since we do not mention the coefficient of forecasting
efficiency after this section.) E ranges between 0 and 1, with a number closer
to 1 reflecting a more “important” relationship in a statistical sense. In this
example, E = 1 − √

1 − 0.32 = 0.046, meaning that the error in estimation
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is reduced by 4.6% by using SAT scores relative to when not. Observe
that this number is even smaller than the squared multiple correlation. If
explaining only 9% of the variance in college GPA is unimpressive to you,
you’d be even more unimpressed with reducing the error in estimation by
only 4.6%.

How does high school GPA fare by this standard? Earlier you were
told that rXW = 0.6. By equation 8.1 and 8.2, the standard error of estimate
if high school GPA were used to predict college GPA would be 0.800sY,
which represents a proportional reduction in error of E = 0.200, or a 20%
reduction in the size of the errors in estimation relative to when predicting
the mean college GPA for every application. While 20% is not small by
some standards, it certainly is smaller than 36%, which is the percent of the
variance in Y explained by W.

In this example, using high school GPA to estimate college GPA reduces
the error in estimation by 20%, whereas using SAT reduces the error in
estimation by 4.6%. The ratio of the forecasting efficiencies of these two
predictors is 0.2/0.046 = 4.3.Observe that this is much closer to the ratio of
their squared correlations (0.36/0.09) = 4 than their unsquared correlations
(0.6/0.3) = 2. This is contrary to our other examples, where the ratio of the
unsquared correlations better reflected the gain that results from using one
measure to predict Y compared to another measure.

8.2.5 When the Standard Is Perfection

Sometimes we expect very accurate prediction and naturally focus not on
our ability to predict better than chance but on whatever errors remain.
For instance, you understandably would not be particularly impressed if
a weather predictor was able to forecast very well the temperature in a
particular location on the globe based on latitude, longitude, day of the
year, and time of the day. Across many predictions, it wouldn’t be at
all surprising to find his or her predictions correlated 0.95 with actual
temperature readings across the globe.

Suppose a meteorologist proposed a new weather mechanism that when
utilized in the prediction process further increases this correlation from 0.95
to, say, 0.98. Even though this is a tiny increase, it is a drop in the error
of estimation from small to nearly zero, and this seems noteworthy and
perhaps even impressive. So an increase of 0.03 in the size of a correlation
need not be seen as small. It depends on the reference against which
it is being compared. An increase from 0.95 to 0.98 seems much more
impressive than the same increase in an absolute sense from 0 to 0.03.
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This reflects a problem that is not unique to regression and correlation.
If a certain training program raises the success rate on some task from 10 to
20%, we would naturally say that the success rate was doubled. But if the
training increased the success rate from 98 to 99%, a much smaller increase,
we could justifiably note that the training cut the failure rate in half. By
the same reasoning, there is a sense in which a correlation of 0.99 is much
higher than one of 0.98, not just 1% higher. So a correlation needs to be
interpreted relative to a certain standard, and a correlation of zero is not
necessarily the only meaningful standard. Sometimes, in fact, it may not
be a meaningful standard at all.

8.2.6 Summary

The examples in this section illustrate that importance, by at least some def-
initions of the word, is very often proportional to r rather than r2. But we
have seen that there are some meaningful measures of importance, such
as the coefficient of forecasting efficiency, where the opposite is true. Re-
gardless, small or moderate correlations are not necessarily unimportant.
On the contrary, small correlations are often more important or impres-
sive than is often realized. Squared correlations fit remarkably well into
algebra and much statistical theory, as many of the chapters in this book
illustrate, but algebraic simplicity and elegance do not imply substantive
meaningfulness.

8.3 Determining the Relative Importance of
Regressors in a Single Regression Model

We now turn to the problem of comparing the importance of two or more
regressors in the same regression model. It is common for an investigator to
build a model estimating a dependent variable from several regressors, with
the goal of determining which variable or variables are most important, or
somehow ranking their relative importance on some kind of quantitative
metric. For example, suppose the dependent variable is GPA at the end
of the first year of college, and the regressors include sex, education level
of the parents, high school GPA, performance on a college entrance exam,
and the quality of the student’s high school. When accounting for their
intercorrelations, which variable best accounts for individual differences in
college performance?
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This is a complex problem, and there have been many treatments of
this topic in the regression analysis literature. Suffice it to say that there
is no single way of comparing the importance of two regressors that is
ideal in all circumstances, but we feel some measures and approaches are
better than others. Later we discuss a method called dominance analysis
that is computationally burdensome and involves the estimation of many
regression models but can be done fairly easily with a computer. We
dedicate all of section 8.4 to it. Here we offer some opinions about some
metrics that are readily available from a regression analysis.

We can rule out from the beginning and for most problems any approach
that uses the unstandardized regression coefficient bj as a measure of the
importance of Xj relative to another regressor Xi. As discussed already
in sections 2.3.1 and 3.1.3, as well as at the beginning of this chapter, bj

is a scale-bound metric, meaning that the regression coefficients for two
regressors in a model generally cannot be meaningfully compared to each
other, because changing the metric of measurement of one may change
the relative sizes of their regression coefficients. So unless variables being
compared are measured on the same scale, their regression coefficients
cannot be compared, and judgments of relative importance cannot be made
using them.

8.3.1 The Limitations of the Standardized Regression Coefficient

Perhaps the most widely used measure of relative importance is b̃ j, the
standardized regression coefficient. Recall from sections 2.3 and 3.3.3 that
the standardized regression coefficient is the regression weight a regressor
would receive if Xj and Y were standardized prior to estimating the regres-
sion. Most regression programs, when requested or by default, provide
the standardized regression coefficient for all regressors. It is commonly
believed that the most important regressors are those with larger values of
b̃ in absolute value. Because standardization places all regressors on the
same measurement metric (one with a mean of zero and a standard devi-
ation of one), according to widely held belief, this eliminates the problem
with the use of the unstandardized regression coefficient bj as a measure
of importance, and so standardized regression coefficients can be directly
compared to each other. In this section we take a contrary position and
argue that b̃ j should not be used as a measure of importance.

The standardized regression coefficient, b̃ j, can be interpreted as the
expected difference in standard deviations of Y between two cases that are
one standard deviation apart on Xj but are the same on all other regressors
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in the model. But it seems to have been overlooked that if Xj correlates
highly with other regressors, it is rare, even nearly impossible, for two
such cases to even exist. As an extreme example, suppose X1 and X2 are
correlated 0.99. Then the unique variance of each variable is 1 − 0.992 =

0.0199. In a crosswise regression predicting X2 from X1, the standard
deviation of the conditional distribution of X2 is only

√
0.0199 = 0.141.

Since 1/0.141 = 7.09, two people who are equal on X1 but one standard
deviation apart on X2 are actually 7.09 standard deviations apart on the
conditional distribution of X2 in which they both fall. Rarely would you
find two cases that many standard deviations apart. Even in a sample of a
thousand it would be uncommon.

But now suppose you have a third regressor X3 in the model with X1 and
X2 that is uncorrelated with both X1 and X2. There would be no difficulty
at all in finding two people who are one standard deviation apart on X3 but
equal on X1 and X2. In a model with X1, X2, and X3 as regressors, b̃3 would
understate the relative importance of X3 compared to X2 and X1, because
b̃3 reflects only a small fraction of the total range of X3, while b̃1 and b̃2 in
effect reflect the total possible range of those variables—or even more than
the possible range—given that other variables are held constant.

8.3.2 The Advantage of the Semipartial Correlation

There is a simple solution to this problem with the standardized regression
coefficient as a measure of importance. This solution takes into account the
standard deviations of the conditional distributions of the regressors. For
Xj, the ratio of the standard deviation of its conditional distribution (i.e.,
when other regressors are held constant) to the standard deviation of its
unconditional or marginal distribution (i.e., without holding other regres-
sors constant) is the square root of its tolerance,

√
Tolj (recall from section

4.4.4 that the tolerance of a variable is the proportion of the variance in Xj

that is not explained by the other regressors in the model). The importance
of Xj based on b̃ j is overstated by the reciprocal of this amount. For in-
stance, in the example in section 8.3.1, the importance of X2 is overstated
relative to X3 by a factor of 1/

√
Tol2 = 7.09. We can correct this problem

by multiplying each value of b̃ j by
√

Tolj. Thus, the corrected measure of a
variable’s importance is b̃ j

√
Tolj.

But it can be shown that b̃ j
√

Tolj is equivalent to srj, regressor Xj’s
semipartial correlation. This gives us another interpretation of srj as the
expected difference in standardized Y between two people who are equal
on all regressors except Xj and who differ on Xj by the standard deviation



226 Regression Analysis and Linear Models

of the conditional distribution of Xj. For any two regressors Xi and Xj, the
ratio sri/srj equals the ratio of these expected differences.

A variable’s semipartial correlation is available in output in most regres-
sion programs, and we’ve now given three different formulas (in the prior
paragraph, as well in sections 3.4.1 and 3.4.5) for deriving it. Although you
would typically let a computer calculate a variable’s semipartial correlation,
there is still another formula you could use that requires only regressor j’s
t from the regression (i.e., the ratio of b to its standard error), as well as the
multiple correlation estimating Y from all k predictors including regressor
j. That formula is

srj = tj

√
1 − R2

N − k − 1
We mention this formula because it illustrates how tj can be thought of
as a measure of importance with ratio qualities. Given that R, N, and
k are the same for all variables in a regression, it follows that the ratio
of two regressors’ t-ratios is equivalent to the ratio of their semipartial
correlations. That is, ti/tj = sri/srj. So if you are convinced that the
semipartial correlation is a sensible measure of importance, and thus the
ratio of two semipartial correlations is meaningful as a measure of relative
importance, then you can just take the ratio of two regressors’ t-statistics as
an equivalent measure of relative importance with ratio qualities.

8.3.3 Some Equivalences among Measures

For many other measures of partial association or mathematical derivatives
of those measures, the rest of this discussion could be quite lengthy, but
it turns out not to have to be. It is often the case that a researcher wants
to know whether one variable is more important than another, with little
regard for how much more. But it makes little difference which measure
we discuss below is used, because the vast majority of measures of partial
association rank regressors in the same order (when ignoring their signs,
for measures that need not be positive). That is, the regressor that is most
important by any one measure will be most important by all of them. We
therefore think of these measures as a family and call them measures of the
unique contribution of Xj to the regression. These measures are

1. prj and pr2
j .

2. srj and sr2
j .
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3. tj or Fj, the value of t or F used to test the significance of bj. Since df
is equal for t and F and F = t2, the regressors with the highest value
of t or F will also have the smallest p-values for bj.

4. The change in R, R2, adjusted R2, or adjusted R2 when Xj is deleted
from the regression.

5. Unique SS: The increase in SSresidual or the decrease in SSregression when
Xj is deleted from the regression.

But sometimes a researcher wants to be able to make ratio-type claims,
such as regressor Xj is twice as important as regressor Xi. It is important to
remember that most of these measures do not have similar proportionality
or ratio properties. For instance, if pr1 is twice pr2, that does not mean that
sr1 is twice sr2. But proportionality does hold for some of these measures;
sr2

j , Fj, unique SS, and change in R2 are all proportional to each other, and
srj and tj are proportional to each other. Thus, whether one can say that
Xj is twice or three times as important, as Xi will depend on the measure
used, and that claim will not necessarily generalize to other measures of
importance.

8.3.4 Eta-Squared, Partial Eta-Squared, and Cohen’s f -Squared

In section 8.2 we said that although it is common for researchers to use
squared measures of association to quantify the size of an effect, squared
measures of association can be misleading as measures of a variable’s effect.
Yet use of squared measures is pervasive both when quantifying the size
of an effect in an absolute sense and relative to the effects of other variables
in a model. This section introduces a third measure, Cohen’s f 2 (Cohen,
1988), which is often used or reported in regression analysis as a measure
of a variable’s effect on Y. We are not advocating its use, but because it is
used by many, you should be familiar with it. It is similar to sr2 and pr2 in
some ways and quite different from them in others.

We have said that sr2
j quantifies the proportion of the variance in Y

uniquely explained by Xj. In terms of the Venn diagrams in Figure 3.18 or
Figure 7.2, panel A, sr2

1 = A/(A + B + C + D) and sr2
2 = C/(A + B + C + D).

In the ANOVA literature, sr2 is mathematically equivalent to an effect size
measure called eta-squared, symbolized η2. The partial correlation pr2

j , by
contrast, is the proportion of the variance in Y that is unaccounted for by
the other regressors in the model that can be uniquely explained by Xj. In
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the Venn diagram, pr2
1 = A/(A + D) and pr2

2 = C/(C + D). In the ANOVA
literature, pr2 goes by the name partial eta-squared, or partial η2.

Cohen’s f 2 for regressor Xj is a ratio of the proportion of the variance in Y
uniquely explained by Xj to the proportion of the variance in Y unexplained
by any variable in the model. Suppose you have estimated Y from two
regressors X1 and X2 as

Ŷ + b0 + b1X1 + b1X2 (8.3)

which results in R2. In this model, f 2
j = sr2

j/(1 − R2). In terms of the

Venn diagram, f 2
1 = A/D and f 2

2 = C/D. For instance, from the weight-loss
example from Chapter 3, where X1 is exercise frequency and X2 is food
intake, sr2

1 = 0.835, sr2
2 = 0.091, and R2 = 0.838, so f 2

1 = 0.835/(1 − 0.838) =
5.154 and f 2

2 = 0.091/(1 − 0.838) = 0.562. The variance in weight loss
uniquely explained by exercise frequency is over five times larger than the
variance not accounted for by food intake and exercise frequency as a set.
And the variance in weight loss uniquely explained by food intake is about
half as large as the variance not accounted for by food intake or exercise
frequency as a set.

We say f 2 is a ratio rather than a proportion because although it can’t be
smaller than zero, f 2 has no upper bound. A proportion must be between
0 and 1. If R2 is large enough, f 2 can be greater than 1 and perhaps much
greater, as in the weight-loss example just presented. So one important
difference between sr2, pr2, and f 2 is that whereas sr2 and pr2 are bound
between 0 and 1 and have a proportion of variance explained interpretation,
f 2 does not. Thus, if you use or see people report f 2, do not interpret this like
you would a squared correlation. It does not have such an interpretation.

All three of these measures of effect size have something in common.
They all index Xj’s effect partly in terms of the variance in Y that can be
uniquely explained by Xj. These are areas A and C for X1 and X2 in the
Venn diagram. But they differ with respect to the reference against which
that explained variance is compared. For sr2

j , the reference is all of the

variance in Y (the area A + B + C +D). For pr2
j , the reference is the variance

in Y that is not explained by Xj (the area A + D or C + D). And for f 2
j , the

reference is the variance in Y not explained by any of the regressors (area
D).

Cohen’s f 2 shares a limitation with pr2 that is not a property of sr2. An
investigator unsatisfied with the size of an independent variable’s effect can
hunt for variables to add to the model that are correlated with Y but uncor-
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related or weakly correlated with the independent variable and covariates.
Doing so will increase power of the test of the independent variable (see
sections 6.3.1 and 17.1.2 for a discussion of this point), but it will also in-
crease pr2 and f 2 for the independent variable, because adding that new
regressor will take a bite out of area D in the Venn diagram while doing
little to the sizes of A or C. But adding this additional regressor would do
little to sr2. So sr2 is less easily manipulated by an investigator motivated
to report a large effect than are pr2 and f 2.

An investigator doesn’t need to be consciously unscrupulous to gain
this advantage of reporting partial η2 (i.e., pr2) or f 2 rather than η2 (i.e., sr2).
Consider two investigators who have conducted exactly the same experi-
ment using the same sample size, with some variables that are manipulated
identically and with random assignment, so that they are all uncorrelated.
Perhaps investigator A sensibly justifies including a few additional regres-
sors in the model correlated with Y, whereas investigator B doesn’t think
to include any covariates or simply decides not to include any. If random
assignment was effective, then all these additional regressors should be
uncorrelated or nearly so with the manipulated variables. In that case, all
other things being equal, we would expect investigator A to find bigger
effects of the manipulated variables than investigator B if they reported
effect size as pr2 or f 2. But we would expect their effects to be very similar
if they reported sr2 as their measure of effect size, because it wouldn’t be
affected by the inclusion of the additional regressors. Of course, sampling
variance will by itself produce some differences in the observed effect sizes.
But effect sizes for investigators A and B for the manipulated variables
would be the same if they used sr2 rather than pr2 or f 2.

Some of this discussion focused on the differences between sr2, pr2, and
f 2 in a model with two regressors. But we could think of X1 and X2 as sets
of variables, and everything we have said would generalize to measures
of multivariate partial association and multivariate f 2, substituting SR2

and PR2 into the discussion and formulas. We have also couched our
discussion in terms of squared measures. But this discussion applies to
their unsquared counterparts. So the arguments we present here are yet
another reason for preferring the semipartial correlation as a measure of a
variable importance over many other measures that are commonly used.

8.3.5 Comparing Two Regression Coefficients in the Same Model

At the beginning of this chapter and in section 8.3 we stated that the re-
gression coefficient bj cannot be used to assess the relative importance of
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regressors because bj is a scale-bound measure of association. The rank
ordering of regression coefficients can be changed by changing the scale of
measurement for one or more variables, such that if we found that b1 > b2,
it is likely we could rescale X1 so that b1 < b2. That means that b1 and b2

aren’t comparable, and it would not be meaningful to describe X1 as more
or less important than X2 depending on the relative sizes of their regression
coefficients.

But sometimes two or more regressors are measured on comparable
scales so their regression coefficients are comparable. For instance, two
regressors predicting weight loss might be hours spent running per week
and hours spent swimming per week, or they might be calories consumed
before 5 in the afternoon and calories consumed after 5. When two regres-
sors are measured in the same units, as in these examples, it is meaningful
to ask whether one has a larger effect on Y, such as weight loss, than the
other. By regressing weight loss on hours spent running, hours spent swim-
ming, and additional covariates if desired, one can determine whether the
regression coefficient for hours spent running is the same or different than
the regression coefficient for hours spent swimming. If we found a differ-
ence between these two regression coefficients, we would conclude that an
additional 1 hour of swimming does not have the same effect on weight
loss as an additional 1 hour of running.

It is possible to compare the regression coefficients for two regressors
X1 and X2 that are both in a model of Y. This can be done even if the two
regressors are measured on different scales, but the comparison probably
wouldn’t be particularly meaningful in that case. The easiest way to do
this is to first create two new variables, one that is one-half the sum of X1

and X2, and the other that is the one-half the difference between X1 and X2.
We will call these two new regressors X+ and X−, respectively. That is,

X+ = 0.5(X1 + X2)

X− = 0.5(X1 − X2)

With X+ and X− constructed, regress Y on X+ and X−, as well as any covari-
ates you want to hold constant. In that regression analysis, the regression
coefficient for X− will be equal to difference between the regression coef-
ficients for X1 and X2 from the regression estimating Y from X1 and X2.
The standard error for the regression coefficient X− along with its t-value,
p-value, and confidence interval can be used for inference about the differ-
ence between the regression coefficients for X1 and X2.
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Now that we have described this in words, we put it in symbolic form.
Our model of Y is

Ŷ = b0 + b1X1 + b2X2 (8.4)

and we want to test the null that Tb1 = Tb2 or construct a confidence
interval for that difference. We do so by computing X+ = 0.5(X1 + X2) and
X− = 0.5(X1 − X2) and then estimate the model

Ŷ = b0 + b+1 X+ + b−2 X−

It can be shown that in this model, b−1 is equal to b1 − b2 from equation 8.4,
and so a test that Tb−1 = 0 is equivalent to the test that Tb1 = Tb2. Likewise,
a confidence interval for Tb− is a confidence interval for Tb1 − Tb2.

We illustrate using data from a national survey of residents of the United
States. The data set is named POLITICS and it can be downloaded from this
book’s web page at www.afhayes.com. The participants in this study were
asked a set of questions used to quantify their knowledge of politics, politi-
cians, and the political process (pknow). In addition, various measures
of frequency of exposure (in days per week) to various sources of news
were measured, including reading the newspaper (npnews) and watch-
ing a national network news broadcast (natnews). Under the assumption
that knowledge is caused by exposure to information in the news, we ask
whether reading the newspaper has the same effect on knowledge acquisi-
tion as does watching the national network news broadcast. We can answer
this question using these data because newspaper reading and watching
televised news are scaled on the same metric: days per week.

Call Y political knowledge, call X1 days per week reading the news-
paper, and call X2 days per week watching the national network news
broadcast. We include age (X3) and sex (X4) as covariates. Regressing Y on
X1 through X4 yields

Ŷ = 8.795 + 0.371X1 + 0.155X2 + 2.245X3 − 0.009X4 (8.5)

with R = .401 and SSresidual = 5442.070. In this model, b1 = 0.371, meaning
that holding sex, age, and days per week watching the national network
news broadcast constant, two people who differ by 1 day in how often they
read the newspaper are estimated to differ by 0.371 units in their knowledge.
But the effect of watching the national network news on knowledge appears
smaller. Here, b2 = 0.155, meaning that holding sex, age, and days per week
reading the newspaper constant, two people who differ by 1 day in how
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often they watch the national network news broadcast are estimated to
differ by 0.155 units in their knowledge.

To test the equality of the two regression coefficients, we construct X+

and X− as described above and then regress Y on these sums and differences
as well as sex and age. In SPSS, the code is

compute sum=0.5*(npnews+natnews).

compute diff=0.5*(npnews-natnews).

regression/dep=pknow/method=enter sum diff sex age.

Or in SAS and STATA, use

data politics;set politics;sum=0.5*(npnews+natnews);

diff=0.5*(npnews-natnews);run;

proc reg data=politics;model pknow=sum diff sex age;run;

gen sum=0.5*(npnews+natnews)

gen diff=0.5*(npnews-natnews)

regress pknow sum diff sex age

The resulting model is

Ŷ = 8.795 + 0.525X+ + 0.216X− + 2.245X3 − 0.009X4

with R = .401 and SSresidual = 5442.070. So the fit of this model is the same
as the fit of the model using X1 and X2 as regressors, and it generates the
same values of Ŷ. But notice that the regression coefficient for X− is 0.216,
which is the same as b1 − b2 = 0.371 − 0.155 from equation 8.5. From the
regression output, the standard error of the regression coefficient for X− is
0.130, and so t(335) = 1.666, p = .097. We can’t reject the null hypothesis
that watching the network news and reading the newspaper have the same
effect on political knowledge.

A little algebra shows why this works. We defined X+ as 0.5(X1 + X2)
and X− as 0.5(X1 − X2). If we solve for X1 and X2 in terms of X+ and X−,
we get X1 = (X+ + X−) and X2 = (X+ − X−). Therefore,

Ŷ = b0 + b1X1 + b2X2

= b0 + b1(X+ + X−) + b2(X+ − X−)

= b0 + b1X+ + b1X− + b2X+ − b2X−

= b0 + (b1 + b2)X+ + (b1 − b2)X−
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which means that no matter what b1 and b2 turn out to be, the linear
function b0+ b1X1+ b2X2 will be exactly replicated by the function b0+ (b1+

b2)X+ + (b1 − b2)X−. Therefore, the hypothesis Tb1 = Tb2 is equivalent to the
hypothesis that the true regression coefficient for X− is zero.

This trick to comparing two regression coefficients from the same model
is easy to employ. But some statistical packages have this test built in,
though in somewhat disguised form. We can think of b2 − b1 as a weighted
linear combination of regression coefficients, just as is Ŷ. In this case, the
linear combination is 0(b0) + 1(b1) − 1(b2) + 0(b3) + 0(b4), which reduces to
b1 − b2. Your computer software may be able to construct a standard error
for this linear combination, which can be used to generate a p-value or a
confidence interval.

SPSS has such a feature. The code to conduct this test is

glm pknow with npnews natnews sex age/print = parameters/

lmatrix all 0 1 -1 0 0.

The sequence of five numbers following lmatrix all is the weights for the
regression constant and b1 through b4 in that order.

The RLM macro for SPSS and SAS has a comparable feature. In SPSS,
the RLM code to conduct this test is

rlm y=pknow/x=npnews natnews sex age/contrast=0,1,-1,0,0.

Or in the SAS version, use

%rlm (data=politics,y=pknow,x=npnews natnews sex age,

contrast=0 1 -1 0 0);

The RLM documentation in Appendix A provides some detail about the
contrast option in RLM. See your preferred program’s documentation for
information about whether it can perform this test.

8.4 Dominance Analysis

Dominance analysis (Azen & Budescu, 2003; Budescu, 1993) is a means of
rank ordering the regressors in a model with respect to importance as
defined by improvement in the fit of the model. It is based on how one
regressor relative to another contributes to increasing R, which coincides
with the amount of the variance in Y a regressor explains or how much it
shrinks the error in estimation. Actually, dominance analysis as described
by Azen and Budescu (2003) and Budescu (1993) relies on the relative
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increase in R2 rather than R, but since we are rank-ordering the variables,
it doesn’t matter whether we use an increase in R or R2.

Remember that sr2
j quantifies the amount R2 increases when Xj is added

to a model without it. Given this, it sounds as if dominance analysis merely
defines a regressor’s importance as sr2 and so rank-orders regressors with
respect to the absolute value of their semipartial correlations. However, this
is not quite what dominance analysis does, because it assesses regressor j’s
contribution to model fit in competition with another regressor i when that
competing regressor i is not in the model. So unlike srj from the full model with
all k regressors, dominance analysis uses the increase in fit due to regressor
j relative to regressor i in a model that otherwise includes only the other
k−2 regressors. Furthermore, regressors i and j compete against each other
in all possible subset models that contain some or all of those k−2 regressors.

Suppose that in your regression model with k regressors, you want to
know whether regressor j is more important than regressor i. DefineΔRj as
the amount R increases when regressor j is added to a model that contains
regressor set A, where set A is defined as some subset of the remaining
k − 2 regressors with i not included in set A. Similarly, define ΔRi as the
amount R increases when regressor i is added to a model that contains
that same regressor set A, with A not including regressor j. So these two
regressions have the regressors in set A in common, with set A containing
neither regressor i nor j. In other words, they differ only with respect to
whether i or j is included in the model.

Three relations betweenΔRj andΔRi are possible: ΔRj > ΔRi,ΔRj < ΔRi

or ΔRj = ΔRi. That is, R may increase more when j is added to regressor
set A relative to when i is added, R may increase more when i is added
to regressor set A relative to when j is added, or the increase in R may
be the same. In the first case, we’d say that regressor j is more important
than regressor i. In the second case we would claim i is more important
than regressor j. In the third case we would say that regressor i and j are
equally important. Note that given that ΔRj and ΔRi are constructed from
models that differ only with respect to the inclusion of regressor i or j, we
can also just compare the size of the two multiple correlations rather than
the change in the multiple correlations.

This competition between i and j is undertaken for all possible models
defined by subsets of the regressors in set A, including the subset containing
no regressors. There are 2k−2 such subsets of k − 2 regressors. For example,
if k = 5 regressors, when we remove i and j because they are in competition
with each other, then there are three remaining regressors, and so 25−2 = 8
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subsets of these three regressors one can construct. If these regressors are
X1, X2, and X3, then the eight subsets are (1) no regressors, (2) X1 only, (3) X2

only, (4) X3 only, (5) X1 and X2, (6) X1 and X3, (7) X2 and X3, and (8) X1, X2,
and X3. ΔRj andΔRi is constructed for each of these eight models, resulting
in eight comparisons. The outcome of these comparisons determines the
extent to which variable j is deemed more important than regressor i.

8.4.1 Complete and Partial Dominance

In a dominance analysis, regressor j is said to dominate regressor i if ΔRj >
ΔRi for each and every one of these 2k−2 comparisons based on subsets of
the k − 2 other regressors. In other words, if in every model containing
some subset of the k − 2 regressors not being compared R increases more
when j is added to the model compared to when regressor i is added to
the model, then regressor j dominates regressor i and regressor j is deemed
more important than regressor i.

In the language of dominance analysis as introduced by Budescu (1993),
dominance is an all-or-none property. Regressor j either dominates i en-
tirely or completely, or it does not. But it seems worth acknowledging that
regressor j may enhance prediction or reduce error in the estimation of Y
in most of the subset models. We call such a scenario partial dominance
and say that regressor j partly dominates regressor i, by our definition, if
ΔRj > ΔRi in more than half of the subset model comparisons. Of course,
in some circumstances, it may be that ΔRj > ΔRi in as many subset models
as does ΔRi > ΔRj. In that case, neither j nor i dominates the other either
partially or completely.1

Clearly, a claim of complete dominance of one regressor over another
is a punchier conclusion than a claim of partial dominance. Complete
dominance means that the completely dominant regressor adds more to
prediction accuracy or explaining variance in Y than does any regressor it
completely dominates; thus the dominant regressor is more important by
these measures. But partial dominance means that in at least some of the
possible subset models, the less dominant regressor actually explains more
variance or does better at reducing prediction inaccuracy. This leaves the
question as to which of the two is more important open to debate.

1Azen and Budescu (2003) introduce finer degrees of dominance than the complete versus
partial distinction we make. See their discussion of conditional dominance and general
dominance.
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8.4.2 Example Computations

We illustrate these computations using the POLITICS data first described
in section 8.3.5. In addition to a measure of each participant’s political
knowledge (talkrad) and days per week reading the newspaper (npnews)
and watching the national network news broadcast (natnews), the data
set includes days per week watching a local news broadcast (locnews) and
how much the participant reports listening to political talk radio (talkrad).

We treat political knowledge as the dependent variable Y and determine
whether listening to political talk radio is more or less important than
watching the national network news broadcast in explaining individual
differences in political knowledge. We do this in the context of a full model
that includes all four sources of information as regressors. So k = 4. We’ll
call political talk ratio regressor j and national network news use regressor
i. The two remaining regressors, reading the newspaper and watching the
local news broadcast, are defined as set A.

It is important to note that we can’t use the test described in section
8.3.5 to determine the relative importance of listening to political talk radio
and watching the national network news, because the measurement scales
for natnews and talkrad are different. Specifically, listening to political
talk radio is the participant’s average response on an ordinal scale to two
questions about how often he or she listens to political talk radio and how
much attention he or she pays when listening. But watching the network
news is measured as number of days per week the person watches the
broadcast.

With set A defined as two regressors, there are 24−2 = 4 subsets of these
two regressors. Those four sets can be found in the rows of Table 8.2. For
each each subset, we calculate R three times, first regressing Y on just the
variables in the A subset, then regressing Y on the subset as well as regressor
j, then regressing Y on the subset as well as regressor i. Importantly, we
do not calculate R when both regressor i and j are in the model. With these
computations done we can derive ΔRj and ΔRi in each of the four subsets.
Table 8.2 shows these computations.

As can be seen, in all four models defined by subsets of newspaper
reading and local news use, adding talk radio use to the model increases
R more than does watching the national network news. Never does the
addition of watching the national network news improve model fit more
than listening to political talk radio. So talk radio use completely dominates
watching the national network news in explaining variation in political
knowledge.
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TABLE 8.2. Relative Improvement in Fit for Dominance Computations

Adding i Adding j
talkrad natnews

Set A subset R R R ΔRj ΔRi

None — .261 .148 .261 .148
npnews .298 .393 .310 .095 .012
locnews .106 .288 .237 .182 .131
npnews and locnews .338 .430 .373 .092 .035

8.4.3 Dominance Analysis Using a Regression Program

Remember that the full regression model contains k regressors, and interest
is in rank-ordering the relative importance of these k regressors, not just
two of them. Our discussion thus far has been restricted to one pair of
regressors i and j. But in a model with k regressors, there are k(k − 1)/2
possible pairs of regressors i and j. In order to rank-order the relative
importance of the k regressors, these comparisons need to be done for all
of these possible pairs of regressors. Except for fairly simple models where
k is small (5 or 6 at most), this is a lot of computation and comparisons to
keep track of.

Dominance analysis is a very computationally tedious task and so
should be left to a computer. As far as we are aware, you won’t find
dominance analysis implemented in any software off the shelf. Azen and
Budescu (2003) provide a SAS macro that can conduct a more sophisticated
version of dominance analysis—quantitative dominance analysis—than we
have described. The RLM macro described in Appendix A has an option
for the qualitative dominance analysis we discuss. An example output from
the RLM macro for SPSS can be found in Figure 8.2, generated with the
command

rlm y=pknow/x=natnews npnews locnews talkrad/subsets=1/dominate=1.

The section relevant to the dominance analysis can be found toward the
bottom under the heading “Dominance matrix.” This matrix contains four
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rows and columns because there are four regressors.2 The elements in the
dominance matrix, all between 0 and 1, are the proportion of the subset
models in which adding the variable in the row to the subset increases
R more than does adding the variable in the column to the subset. An
entry of 1 indicates complete dominance of the variable in the row over
the variable in the column, and a number greater than 0.5 but less than 1
indicates partial dominance. In general, the entries in row i and column j
and row j and column i will add to 1, except in the case where there are
ties.

Remember that in a dominance analysis, regressors i and j being com-
pared are never in the model at the same time. So with four regressors as
in this example, the subset models contain no more than two regressors,
because the subset excludes the variables in the row and the column of the
table. In this case, there are four possible submodels, one with no regres-
sors, two with one regressor, and one with two regressors. For this reason,
all entries are either 0, 0.25, 0.5, 0.75, or 1, which are the only proportions
possible when an integer between 0 (inclusive) and 4 is divided by 4.

Examining the dominance matrix reveals that reading the newspaper
completely dominates the other three sources of news. In all subset models,
adding newspaper reading frequency increases R more than does adding
any other source. Following newspaper news use, political talk radio is next
most dominant, as it is completely dominant over exposure to local news
and the national network news. Local news use comes next, but it only
partially dominant over watching the national network news broadcast. In
only three of the four (and hence the 0.75 entry) subset models did adding
local news use increase R more than did adding national network news.
Thus, from the dominance analysis, the importance of these four sources
can be ranked in the order newspaper > talk radio > local network news
> national network news. This is the same rank ordering one could get
looking at the absolute values of the semipartial correlations or t-values,
though this wouldn’t necessarily always be the case.

The dominance matrix is constructed from an all subsets regression
(introduced in section 7.3.2, though in that section we discounted its use-
fulness in the context of prediction and model selection). The RLM macro
can do all subsets regression. In Figure 8.2 the results of all subsets re-

2Budescu (1993) does not discuss such a table in the article using this term. So far as we
are aware, this term is our invention, but any user of a dominance analysis would probably
have to invent such a table to make sense of his or her own analysis. We feel it is a sensible
way of representing the results of what Budescu (1993) calls a “qualitative” dominance
analysis.
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Dependent Variable 

 pknow 

 

Sample size 

        340 

 

Complete Model Regression Summary 

          R       R-sq   Adj R-sq          F          p    SEofEst 

      .4440      .1971      .1875    20.5629      .0000     3.9416 

 

ANOVA summary table 

                 SS         df         MS 

Regress   1277.8934     4.0000   319.4733 

Residual  5204.6801   335.0000    15.5364 

Total     6482.5735   339.0000    19.1226 

 

Regression Model 

              Coeff         se          t          p       LLCI       ULCI 

constant     8.5566      .5349    15.9959      .0000     7.5043     9.6088 

natnews       .2086      .0919     2.2687      .0239      .0277      .3895 

npnews        .4717      .0783     6.0258      .0000      .3177      .6257 

locnews      -.4441      .1072    -4.1439      .0000     -.6549     -.2333 

talkrad       .8324      .1697     4.9044      .0000      .4986     1.1663 

 

Simple (r), semipartial (sr), and partial (pr) correlations with outcome 

                  r         sr         pr 

natnews       .1481      .1111      .1230 

npnews        .2983      .2950      .3127 

locnews      -.1065     -.2029     -.2208 

talkrad       .2609      .2401      .2588 

 

*************************************************************************** 

 

All subsets regression results 

 natnews  npnews locnews talkrad       R 

   .0000   .0000  1.0000   .0000   .1065 

  1.0000   .0000   .0000   .0000   .1481 

  1.0000   .0000  1.0000   .0000   .2373 

   .0000   .0000   .0000  1.0000   .2609 

  1.0000   .0000   .0000  1.0000   .2793 

   .0000   .0000  1.0000  1.0000   .2878 

   .0000  1.0000   .0000   .0000   .2983 

  1.0000  1.0000   .0000   .0000   .3097 

  1.0000   .0000  1.0000  1.0000   .3318 

   .0000  1.0000  1.0000   .0000   .3379 

  1.0000  1.0000  1.0000   .0000   .3735 

   .0000  1.0000   .0000  1.0000   .3935 

  1.0000  1.0000   .0000  1.0000   .3949 

   .0000  1.0000  1.0000  1.0000   .4299 

  1.0000  1.0000  1.0000  1.0000   .4440 

 

*************************************************************************** 

 

Dominance matrix 

        natnews  npnews locnews talkrad 

natnews    .000    .000    .250    .000 

npnews    1.000    .000   1.000   1.000 

locnews    .750    .000    .000    .000 

talkrad   1.000    .000   1.000    .000 

Proportion of submodels in which the 

inclusion of the regressor in the row

results in a larger increase in R than 

inclusion of the regressor in the column.

FIGURE 8.2. SPSS RLM macro output showing the dominance matrix and all subsets
regression results.
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gression are displayed above the dominance matrix. In this section of the
output, possible models with at least one predictor define the rows, a 1
indicates the variable in the column is in that model, whereas 0 indicates
that variable is not in that model. The multiple correlation for that model
is in the “R” column. If you were to look carefully and with considerable
concentration, you would observe that there are four sets of subset models
that are the same with respect to the inclusion or exclusion of locnews and
talkrad yet include natnews or npnews but not both. For example, one of
these sets is defined by rows 2 and 7, where both locnews and talkrad are
not in the model. Another set is defined by rows 3 and 10, where locnews
is in the model but talkrad is not. In each of these four sets, R is larger
when npnews is included and natnews is excluded than when natnews is in-
cluded and npnews is excluded. This is why newspaper reading frequency
completely dominates watching the national network news and its entry
in the dominance matrix is 1.

This is not the case for local news and national network news. There are
also four sets of subset models that are the same with respect to the inclusion
or exclusion of npnews and talkrad yet include natnews or locnews but
not both (e.g., rows 1 and 2; rows 5 and 6). In three of these R is larger
when locnews is included and natnews is excluded, but in one of them, R is
larger when natnews is included and locnews is excluded. This translates
into 0.75 in the local news row and national network news column, and
0.25 in the national network news row and local news column. Local news
use only partially dominates national network news use.

8.5 Chapter Summary

The importance of a regressor in a regression model can be framed in
either substantive or applied terms, or in abstract quantitative terms. In
substantive or applied terms, importance is a value judgment, and statistics
has little to say about matters of personal or social values. But statistics can
be used to inform judgments relevant to such values. Unfortunately there
is no single way of quantifying the importance of an effect in a regression
analysis that can or should be applied to all circumstances. It is tempting
to just wash your hands of the problem by relying on rules of thumb about
what constitutes a large or a small effect, but arbitrary guidelines such as
those you find in some books about effect size are not useful, in our opinion.

Squaring measures of simple or partial association as a means of quan-
tifying the importance or size of an effect is deeply ingrained in practice.
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When interest is merely in rank-ordering the size of effects in a regression
analysis, little harm is done by squaring simple, partial, or semipartial cor-
relations as measures of relative importance. But importance is as often if
not more often proportional to unsquared correlations rather than squared
correlations. We provided some examples illustrating that squaring re-
lationships can result in counterintuitive or understated claims about the
size or magnitude of a relationship in statistical and substantive or applied
terms. We also discussed how zero is not the only meaningful reference
point for evaluating the size of a relationship or effect.

The standardized partial regression coefficient is perhaps the most
widely used measure of relative importance or relative size of the effect
of a regressor. But this measure has problems that make it harder to rec-
ommend than the semipartial correlation, our preferred metric. Many
measures of variable importance rank-order the variables in the same way,
so it makes little difference which is used when that is the goal. Dominance
analysis is an interesting approach to assessing relative importance in a
statistical sense, and we provide an entire discussion and simple way of
conducting a dominance analysis using SPSS or SAS.

In all examples of regression analysis provided thus far in this book, a
regressor was either dichotomous or a quantitative dimension of some kind.
But researchers often want to use regressors that code membership in one
of several groups. How to properly represent multicategorical variables
for use in a regression analysis is the topic of the next two chapters.





9
Multicategorical Regressors

In all discussions and examples of linear regression analysis thus far,
regressors have been either quantitative variables or dichotomous. But
multicategorical variables—variables that are categorical but with more
than two categories—can be used as regressors if special procedures
are employed to represent group membership. This chapter describes
regression analysis with multicategorical variables. It begins by intro-
ducing indicator coding of groups, followed by a discussion of the math-
ematical parallels between linear regression analysis with multicategori-
cal variables and single-factor or “one-way” ANOVA. Comparing groups
while statistically controlling for other variables that the groups may (or
may not) differ on is the next topic, followed by a discussion of the linkage
between linear regression analysis and analysis of covariance.

Regression analysis is used to estimate a dependent variable Y from a
set of regressors. The regressors often are numerical, but we saw in Chapter
5 that a dichotomous variable can also be used as a regressor. When the two
groups that a dichotomous regressor represents are coded with numbers
that differ by only one unit (e.g., as 0 and 1, or −0.5 and 0.5), its regression
coefficient quantifies the difference between the group means on Y. When
other regressors are in the model, the dichotomous regressor’s regression
coefficient quantifies the difference between the group means on Y when
all other regressors are held constant.

Often you will want to include a regressor (or two or three) in a regres-
sion model that represents membership in one of several distinct groups.
For instance, perhaps you want to include religion (Catholic, Jewish, Protes-
tant, Muslim) or occupational category (manual laborer, office worker, retail
sales, professional, etc.) as a regressor in your model. Or perhaps you have
data from an experiment that includes a control condition and three or four
experimental treatment conditions.

243
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These variables might be numerically coded in your data, much like
when using 0 for females and 1 for males. For instance, maybe ethnicity is
coded 1 for Caucasians, 2 for Asians, 3 for Hispanics, and 4 for everyone
else. But these numbers are arbitrary codes. They carry no quantitative
information. Although this is true for dichotomous regressors as well, we
saw in Chapter 5 that this is not a problem when there are only two groups.
But when a categorical variable has more than two categories, we cannot
just use these arbitrary numerical codes as a regressor in a regression model.
Doing so will generally yield nonsense.

This chapter addresses how to properly represent categorical variables
such as these so that they can be used in a regression model. We will call a
variable that is categorical and codes more than two groups a multicategori-
cal variable. A multicategorical variable is sometimes called a factor, a term
often used in ANOVA. In this chapter we discuss the use of a multicategor-
ical variable or factor in a regression model that is strictly nominal and thus
of kind, such as the ethnicity or religion examples above. But the methods
described in this chapter could also be used for any regressor that is cate-
gorical but ordinal. An example would be level of education, which might
include the categories “no high school diploma,” “high school diploma but
no university or college coursework,” “some university or college course-
work,” “university or college degree,” “some postgraduate coursework,“
and “postgraduate degree.” But we focus on nominal multicategorical
variables in this chapter, saving a discussion of ordinal multicategorical
variables in regression analysis for Chapter 10.

A regression analysis with just one multicategorical regressor is es-
sentially a one-way ANOVA, which you may have already learned about
elsewhere. We demonstrate how so in this chapter. It may seem like the
method discussed here is really just a roundabout way of doing ANOVA,
but a regression-based version of ANOVA is much more versatile. For
example, your multicategorical regressor might be religion, but you could
include ethnicity, biological sex, income, various measures of certain social
attitudes, or any other conceivable variable in the model too.

9.1 Multicategorical Variables as Sets

In section 5.1.1 we saw that a dichotomous variable can be represented
with an indicator or dummy variable: a variable taking only one of two
values. Dichotomous regressors such as this can be legitimately included
in a regression model as is. You might have several dichotomous variables
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as regressors in a linear model, such as biological sex, whether or not a
person has a university or college degree, whether or not he or she is
currently married, and so forth.

A multicategorical variable can be represented with a set of indicator or
dummy variables—variables with the values 0 and 1—and we introduce
a system for coding a categorical variable based on dummy variable sets.
As will be seen, if a multicategorical variable has g categories, it takes a
set of g − 1 variables (dummy variables or something else) to code the g
categories. So although we think of a dimension such as ethnicity as a single
variable, if that dimension includes more than two categories, it requires
more than one regressor to represent it. We use the term compound variable
to refer to a multicategorical variable represented with a set of variables
in a regression model. Although ethnicity might have four categories and
therefore requires three regressors in the model to represent it, it is still only
a single variable in our thinking about it.

9.1.1 Indicator (Dummy) Coding

Suppose you included a question in a survey like

What is your current marital status (choose only one)?

(a) Married

(b) Divorced

(c) Single

(d) Widowed

You may choose to code peoples’ responses to this question with the
numbers 1, 2, 3, and 4, to represent the four responses. Thus, in your data,
you would have a single column containing a person’s marital status as
coded arbitrarily, with the numbers 1 through 4 representing the person’s
response to the question.

Table 9.1 contains a hypothetical data set containing 20 cases with mar-
ital status represented in this way in the column labeled X1. The data file is
available from www.afhayes.com and is named MARRIED. The column la-
beled Y is a measure of how satisfied the person is with life at this moment
(satis in the data file), on a 1 to 100 scale, based on other questions in the
survey. The remaining columns will be explained later.

Perhaps you want to know whether there is a relationship between
marital status and life satisfaction and so you regress life satisfaction (Y)
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TABLE 9.1. Marital Status, Life Satisfaction, Income (in Thousands of Dollars), and Sex
(0 = Female, 1 = Male)

mstatus satis income sex

ID X1 D1 D2 D3 D4 Y X2 X3

1 Single 3 0 0 1 0 85 53 0
2 Divorced 2 0 1 0 0 80 65 1
3 Widowed 4 0 0 0 1 72 54 0
4 Widowed 4 0 0 0 1 60 35 0
5 Married 1 1 0 0 0 92 73 1
6 Single 3 0 0 1 0 88 75 1
7 Divorced 2 0 1 0 0 74 57 0
8 Divorced 2 0 1 0 0 84 59 0
9 Single 3 0 0 1 0 88 60 0

10 Married 1 1 0 0 0 82 52 0
11 Single 3 0 0 1 0 76 47 1
12 Windowed 4 0 0 0 1 78 60 0
13 Married 1 1 0 0 0 78 63 1
14 Married 1 1 0 0 0 93 66 1
15 Divorced 2 0 1 0 0 73 51 0
16 Married 1 1 0 0 0 80 53 1
17 Single 3 0 0 1 0 75 44 0
18 Divorced 2 0 1 0 0 85 61 1
19 Widowed 4 0 0 0 1 76 55 0
20 Married 1 1 0 0 0 88 55 1

on marital status (X1) using a simple linear regression model Ŷ = b0+ b1X1.
If you did so, you’d find the best-fitting model is Ŷ = 89.104 − 3.725X1,
with R = 0.536. This model would lead to the claim that married people
(X1 = 2) are estimated to have a life satisfaction of Ŷ = 89.104 − 3.725 × 2 =
81.654 units on average, single people (X1 = 3) are estimated to have
a life satisfaction of Ŷ = 89.104 − 3.725 × 3 = 77.929 units on average,
and the correlation between actual and estimated life satisfaction is 0.536.
You might also say that single people are estimated to be 3.725 units less
satisfied than those who are divorced. This is b1 = −3.725—the estimated
difference in Y between two cases that differ by one unit on X1. From the
negative value of b1, it seems that as marital status increases, life satisfaction
decreases.

These claims are all nonsense. The use of the codes 1, 2, 3, and 4 for
the different marital status groups was arbitrary. And the choice to use
numbers rather than letters or some other symbol was just as arbitrary
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as which numbers were used to code the groups. Most important, even
though there is nothing even quantitative about a person’s marital status,
the regression math is treating these “values” of marital status as if they
carry quantitative information about distinctions between people in their
absolute degrees of marital status, and then it uses information about the
relationship between these arbitrary numbers and life satisfaction to derive
the regression model. A multicategorical variable should not be included
in a regression model in this manner. Doing so will yield nonsense. An
alternative approach to representing groups is required.

To understand the alternative approach, you could imagine a different
way of asking a person about marital status. Rather than asking the person
to choose from one of four response options, you could ask four yes/no
questions, as such:

Are you currently. . .

. . . married? Yes No

. . . divorced? Yes No

. . . single? Yes No

. . . neither married, divorced, nor single? Yes No

You wouldn’t actually need to ask the last question, because saying no to
the first three implies a yes answer to the last question, and saying yes to
any of the preceding questions implies saying no to the last.

Recognizing the redundancy of the last question, assume you only
asked the first three questions. When marital status is asked in this way,
you might enter the data with three variables that are dichotomous, set to 1
if the person said yes to the question and 0 if the person said no. The three
columns in Table 9.1 labeled D1, D2, and D3 represent how each person
presumably would have responded to these three questions based on their
marital status, had they been asked about marital status in this manner
rather than in the first way. Notice that someone who said no to all three
questions has a zero for D1, D2, and D3. In that sense, the fourth question
is not needed. If we had asked this question and coded the response with
D4, as in Table 9.1, then we would know that D4 = 1− (D1 +D2 +D3) since
a person would not (or at least should not) say yes to more than one of the
questions. So D4 contains no information about marital status not already
provided by D1, D2, and D3.

Although these two approaches are essentially equivalent in the infor-
mation they yield, they are not equivalent in some important ways. The
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first format of the question requires less time to ask and probably less time
to answer. The first format also produces data that are much easier to enter
if you are entering manually by typing them into a program for analysis.
Whereas the first approach requires entering only a single variable (i.e., a
single column in one’s data set) with the values 1 through 4, the second
approach requires several variables and hence much more typing and po-
tential for data entry errors. But most important for the sake of regression
analysis, marital status as represented with a single variable based on the
first format could not be used as predictor in a regression model, as dis-
cussed earlier, whereas the data based on the second format can be used
legitimately in a regression analysis.

We know that it is legitimate to include dichotomous variables as re-
gressors in a linear regression model. If D1, D2, and D3 contain all the
information about marital status contained in X1, then we can estimate a
person’s life satisfaction from marital status by using D1, D2, and D3 as
regressors, which is legitimate, rather than X1, which is not. Doing so with
the data in Table 9.1 yields

Ŷ = 71.500 + 14.000D1 + 7.700D2 + 10.900D3

and R = 0.649. This regression model does contain three regressors, but
keep in mind that really it is a model of life satisfaction from a single com-
pound variable—marital status. Thus, in our thinking about the problem,
we are predicting Y from only one variable, even though the model literally
does contain three regressors.

This system of coding groups is called indicator coding or dummy coding.
In this example, there were g = 4 groups. For reasons to be made clear
soon, we use only three rather than four dummy variables to code a mul-
ticategorical variable with four groups. Recall that we didn’t have to ask
the last question in the set of four, as it contains no new information, so we
need not and indeed cannot include D4 in the model along with the other
three dummy variables. More generally, a multicategorical variable with
g categories requires g − 1 dummy variables (or g − 1 variables of some
other kind, as discussed in Chapter 10) to represent membership in the g
categories.

A set of indicator variables to represent a compound variable with g
categories can be constructed with a simple algorithm. To code membership
in one of g groups, use g − 1 dummy variables D1,D2, . . . ,Dg−1. Set Dj = 1
for all cases that are in group j and set all remaining g − 1 Dj,(i� j) to 0. This
algorithm is illustrated in Table 9.2.
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TABLE 9.2. Indicator Coding of g Categories

Group D1 D2 · · · Dj · · · Dg−1

1 1 0 · · · 0 · · · 0
2 0 1 · · · 0 · · · 0
...
j 0 0 · · · 1 · · · 0
...

g − 1 0 0 · · · 0 · · · 1
g 0 0 · · · 0 · · · 0

9.1.2 Constructing Indicator Variables

We can perform a regression analysis estimating life satisfaction from mar-
ital status using indicator coding of marital status without having to in-
convenience our respondents using the awkward, second question format
described earlier. We can ask participants using the simpler first format
and then enter the data as if the second format was used. But more typi-
cally, a researcher would enter the data as a single variable with arbitrary
numerical codes for the groups, as with X1 in Table 9.1, and then write
computer code that produces the indicator codes.

Using SPSS, for example, with marital status and life satisfaction in the
data as variables named mstatus and satis, the code below constructs
D1, D2, and D3 and then regresses life satisfaction on marital status. The
resulting output can be found in Figure 9.1.

compute d1=(mstatus=1).

compute d2=(mstatus=2).

compute d3=(mstatus=3).

regression/dep=satis/method=enter d1 d2 d3.

Corresponding code in SAS and STATA is

data married;set married;

d1=(mstatus=1);d2=(mstatus=2);d3=(mstatus=3);run;

proc reg data=married;model satis=d1 d2 d3;run;
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Model Summary

Model R R Square
Adjusted R 

Square
Std. Error of the 

Estimate

1 .649a .421 .313 6.550

Predictors: (Constant), d3, d2, d1a. 

ANOVAa

Model
Sum of 
Squares df Mean Square F Sig.

1 Regression

Residual

Total

500.050 3 166.683 3.885 .029b

686.500 16 42.906

1186.550 19

Dependent Variable: satisa. 

Predictors: (Constant), d3, d2, d1b. 

Coefficientsa

Model

Unstandardized Coefficients
Standardized 
Coefficients

t Sig.B Std. Error Beta

1 (Constant)

d1

d2

d3

71.500 3.275 21.831 .000

14.000 4.228 .833 3.311 .004

7.700 4.394 .433 1.752 .099

10.900 4.394 .613 2.481 .025

Dependent Variable: satisa. 

FIGURE 9.1. SPSS output from a multiple regression analysis estimating life satisfaction
from marital status represented with three indicator variables.

gen d1=(mstatus==1)

gen d2=(mstatus==2)

gen d3=(mstatus==3)

regress satis d1 d2 d3

These are not the only ways to construct indicator codes. Different
programmers choose to write code in different ways; you may already
have a better approach in mind that is more efficient or otherwise more
elegant. And some programs have commands built in to produce indicator
codes automatically. Check your program’s manual.

9.1.3 The Reference Category

In this example, the “Widowed” category was treated differently than all
other categories; it had no indicator variable of its own in the regression
model. Most systems of coding multicategorical variables require that
one category be treated differently from the others. When using indicator
coding, this category is called the reference category or base category, for
reasons that will be made clear in section 9.1.6. If we perform the coding
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by hand or write the code to do so ourselves, as above, we have a number
of options concerning the reference category. If your program produces
codes automatically, it will probably have its own system for designating
the reference category.

What happens if we fail to select a reference category when using indi-
cator coding and instead use g dummy variables as regressors, one for each
of the g categories? In the example above, this would mean including D4

in the regression model along with D1, D2, and D3. In section 9.1.1 we saw
that D4, the dummy variable for the widowed, could be perfectly predicted
from the equation D4 = 1 − (D1 +D2 +D3). So D4 contains no information
about marital status not already contained in the combination of values
of D1, D2 and D3 for each case in the data. That means that the multiple
correlation between D4 and the remaining indicator variables is 1, so its
tolerance is zero. But recall from section 4.4.4 that regression has “zero
tolerance for zero tolerance.” This is a singularity, and it is not allowed in
the regression mathematics.

In fact, every indicator variable will have a tolerance of 0 and a cross-
wise multiple correlation of 1 if all four indicators are included in the
regression equation. To see why, recognize that every indicator variable
can be predicted perfectly from the other three dummy variables. For ex-
ample, D1 = 1 − (D2 + D3 + D4), D2 = 1 − (D1 + D3 + D4), and so forth.
This means that the standard error of the regression coefficient for every
indicator would be infinity as a result of this disturbing and destructive
singularity.

The simplest way to avoid this problem is to identify one category as
the reference category and omit its indicator variable from the regression
model, as we did in the example. Thus, for a multicategorical variable with
g categories, we need g−1 indicator variables, not g. We could use any cat-
egory we want as the reference category; it makes no difference, but some
choices may be more convenient than others when it comes to substantive
interpretation of the regression coefficients. For example, if the multicate-
gorical variable consists of three categories—two experimental groups and
a control group—then it is usually convenient for interpretation to use the
control group category as the reference. Or if there is a catchall ”other” cat-
egory, this is often a sensible choice for the reference. But mathematically it
makes no difference. The choice will affect only the regression coefficients
and the regression constant and their standard errors. The choice of ref-
erence won’t change how well the model fits the data or the estimates of
Y the model generates. Mathematically, regression models using different
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TABLE 9.3. Satisfaction with Life in Four Groups

Group ( j) Marital status Yj sYj nj

1 Married 85.500 6.380 6
2 Divorced 79.200 5.541 5
3 Single 82.400 6.427 5
4 Widowed 71.500 8.062 4

reference categories will be the same; one is just a reparameterization of the
other. They are identical but just package the information about differences
between the groups in different ways.

9.1.4 Testing the Equality of Several Means

Indicator coding can be used in complex analyses with many regressors,
but we first consider its simplest use: to test the equality of the means of
a set of groups. For instance, suppose we want to test whether people of
different marital status differ, on average, in how satisfied they are with life.
Table 9.3 contains the mean and standard deviation of life satisfaction for
each of the four marital status groups, using the data in Table 9.1. Defining
Yj as the mean life satisfaction for group j and nj as the sample size in group
j, you can see in Table 9.3 that Y1 = 85.500, Y2 = 79.200, Y3 = 82.400, and
Y4 = 71.500, with the numerical subscripts referring to married, divorced,
single, and those who are widowed, respectively. These means are based
on sample sizes of n1 = 6, n2 = 5, n3 = 5, and n4 = 4.

From a purely descriptive perspective, it seems that people who are
married are most satisfied on average, followed by single people, then
divorced people, with those who are widowed being least satisfied. That
said, there is quite a bit of variation in satisfaction between people of the
same marital status, so it is hard to say just looking at the means whether
these differences are statistically significant. We’ll address that question in
this section using output from the regression analysis in Figure 9.1.

Consider the meaning of the correlation between the three dummy
variables used as regressors and Y, which we’ll denote as rD1Y, rD2Y, and
rD3Y. If you correlated D1 with Y, you’d get rD1Y = 0.438. This positive
value reflects that fact that the mean life satisfaction of 85.500 for the six
married people (D1 = 1) is higher than the mean life satisfaction of 78.143
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for those who are not married (D1 = 0). Had the married peoples’ mean
satisfaction been lower, then rD1Y would be negative. Using this same logic,
rD2Y = −0.086, which is negative because the five divorced people are less
satisfied on average (79.200) than the 15 who are not divorced (80.733),
and rD3Y = 0.154, which is positive because the five single people are more
satisfied on average (82.400) than the 15 who are not single (79.667).

Suppose that all four group means were exactly equal in the data, mean-
ing that the four groups all had exactly equal average life satisfaction. In
that case, then rD1Y, rD2Y, and rD3Y would all be exactly zero. But if D1, D2,
and D3 were the sole predictors in a regression model of Y and they are all
uncorrelated with Y, then the multiple correlation would be zero. Thus, R
is zero if (and only if) all group means are equal. Any departure from zero
for any of the correlations between Y and any of the indicator variables
coding groups would translate into R > 0.

This argument has been made using a sample of only 20 people, but it
applies to the population as well. The true multiple correlation TR equals
zero if, and only if, all g population group means are equal. This means
that the F-ratio for testing the null hypothesis that TR = 0 first introduced in
section 4.3.2 can be used as a test of the null hypothesis that the g population
means are the same.

Figure 9.1 shows computer output from a regression of life satisfaction
on D1, D2, and D3. As discussed in section 4.3.2, the F-ratio in the ANOVA
summary table is used to test the null hypothesis that TR = 0. In this
example, F(3, 16) = 3.885, p = .029. That null hypothesis can be rejected.
So we can conclude that married people, divorced people, single people,
and those who are widowed differ on average in their satisfaction with life.
Reframed, we can say that there is a nonzero association between marital
status and life satisfaction. Marital status and life satisfaction are related to
each other in this sample more than can be explained by just chance.

Earlier it was noted that g indicators cannot be used as regressors in
the model, as this will produce a singularity. The group whose indicator
is left out of the analysis ends up as the reference category, and it makes
no difference which group that is. This also extends to the result of the
test of the null hypothesis that TR = 0. We could have, for instance,
decided to specify married people as the reference category by regressing
life satisfaction on D2, D3, and D4. Doing so would produce the same
F-ratio and the same p-value (and many other things that are the same).
Try this for yourself, and you will see that happily, your conclusion about
differences between the groups does not depend on the group you choose.
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. oneway satis mstatus, tabulate

            |          Summary of satis

   religion |        Mean   Std. Dev.       Freq.

------------+------------------------------------

    married |        85.5   6.3796552           6

   divorced |        79.2   5.5407581           5

     single |        82.4   6.4265076           5

    widowed |        71.5   8.0622577           4

------------+------------------------------------

      Total |       80.35   7.9025312          20

                        Analysis of Variance

    Source              SS         df      MS            F     Prob > F

------------------------------------------------------------------------

Between groups          500.05      3   166.683333      3.88     0.0292

 Within groups           686.5     16     42.90625

------------------------------------------------------------------------

    Total              1186.55     19        62.45

FIGURE 9.2. STATA output from a one-way ANOVA examining differences between mar-
ital status groups in life satisfaction.

9.1.5 Parallels with Analysis of Variance

If you have studied one-way ANOVA, you know that standard ANOVA
output contains a summary table that typically has at least 10 entries. Three
of these are sums of squares (between, within, and total), three are degrees
of freedom (between, within, and total), two are mean squares (between
and within), one is an F-ratio, and the remaining one is a p-value. Some
statistical programs will include more or less than this, but these 10 are most
typical. The SPSS, SAS, and STATA code to conduct a one-way ANOVA
testing for differences between these four groups in life satisfaction can be
found below.

oneway satis by mstatus/statistics descriptive.

proc anova data=married;class mstatus;model satis = mstatus;

means mstatus;

run;

oneway satis mstatus, tabulate

The STATA output can be found in Figure 9.2. Output from other programs
will contain basically the same information, although the format will of
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course be different. Most important for our discussion is the ANOVA
summary table containing the sums of squares, mean squares, and so forth.
As can be seen, we would reject the null hypothesis of equality of the four
group means, F(3, 16) = 3.88, p = .029.

Everything in the ANOVA summary table should look familiar, for
these are the same statistics generated by a regression analysis using in-
dicator variables. Compare the section of the regression output in Figure
9.1 (page 250) used to test the null that TR = 0 to the summary table from
the one-way ANOVA in Figure 9.2. As can be seen, SSregression = SSbetween,
SSwithin = SSresidual, MSbetween = MSregression, the F-ratios are equivalent, and
so forth. Mathematically, one-way ANOVA is just a special case of regres-
sion analysis with a single multicategorical variable represented with a set
of codes for group membership (in this case, indicator variables). If you
have a program capable of doing linear regression, you don’t need a one-
way ANOVA routine. You can do one-way ANOVA with linear regression.

9.1.6 Interpreting Estimated Y and the Regression Coefficients

With g groups, the linear regression equation estimating Y from g − 1
indicator variables coding group membership is

Ŷ = b0 + b1Di + · · · + bg−1Dg−1

In this example, the model is (from Figure 9.1)

Ŷ = 71.500 + 14.000D1 + 7.700D2 + 10.900D3 (9.1)

and thus b0 = 71.500, b1 = 14.000, b2 = 7.700, and b3 = 10.900.
Equation 9.1 can be used to generate an estimate of a person’s satisfac-

tion from his or her marital status by plugging in the values of D1, D2, and
D3 corresponding to his or her marital status. Each group has a unique
combination of values of D1, D2, and D3—unique to that group relative
to the other three groups—but not unique for each person within a group.
Quite the contrary, the pattern of values of D1, D2, and D3 are the same for
every person in the same group. Thus, the regression model produces the
same estimate of life satisfaction for every person in the same group.

Because there are four groups coded with the indicator variables, there
are only four unique patterns of the indicators, so the model generates only
four values of Ŷ, one for each group. These are produced by plugging the
corresponding indicator values for each group into equation 9.1, as below:
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Married: Ŷ = 71.500 + 14.000(1) + 7.700(0) + 10.900(0) = 85.500

Divorced: Ŷ = 71.500 + 14.000(0) + 7.700(1) + 10.900(0) = 79.200

Single: Ŷ = 71.500 + 14.000(0) + 7.700(0) + 10.900(1) = 82.400

Widowed: Ŷ = 71.500 + 14.000(0) + 7.700(0) + 10.900(0) = 71.500

Notice that Ŷ for each group corresponds to Y for that group in Table 9.3.
So the best-fitting linear regression model weights each indicator in such a
manner that Ŷ for cases in group j equals Yj.

In this analysis, the widowed group is the reference group because its
indicator (D4) is left out of the model. In this model the regression constant
b0 corresponds to Y for this reference category. Indeed, observe that Ŷ for
this group is b0 = 71.500, which corresponds to Y4 in Table 9.3. This is
generally true when using indicator coding of a multicategorical variable.
The regression constant is Ŷ for the group whose indicator is excluded from
the model. But we’ll see in section 9.2.3 that this is true only if the model
doesn’t include other regressors.

To see what each regression coefficient bj equals when using indicator
coding, consider in generic form the model we estimated:

Ŷ = b0 + b1D1 + b2D2 + b3D3 (9.2)

We know that Ŷ for each group equals that group’s mean of Y. We also
know that for every person, except those in the reference category, one Dj

is 1 and all the others are 0. Now consider a married person, for whom
D1 = 1 and D2 = D3 = 0. We know that for married people, from equation
9.2, Ŷ = Y1. We also know that b0 = Y4. Substituting all these values into
equation 9.2, we have

Y1 = Y4 + b1(1) + b2(0) + b3(0)

Y1 = Y4 + b1

which can be written as
b1 = Y1 − Y4

So b1 corresponds to the difference between Y for married people and Y for
the reference category—the widowed. In these data, b1 = 14.000, which is
indeed exactly equal to 85.500 − 71.500 from Table 9.3.
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The same reasoning leads to the following derivations

b2 = Y2 − Y4

b3 = Y3 − Y4

and the general principle:

When indicator coding is used in a model with no other regres-
sors, bj equals the difference between the mean of the corre-
sponding group coded with Dj and the mean of the reference
group.

The t- and p-values for each bj can be used to test a hypothesis about the
difference between the mean of group j and the reference group, or the
standard error for bj can be used to construct a confidence interval around
the population mean difference. This information is available in standard
regression output. As can be seen in Figure 9.1, we can say that the mean
difference of 14.000 units in life satisfaction between married people and
the widowed is statistically significant, t(16) = 3.311, p = .004. There is
no statistically significant difference in the average life satisfaction of the
divorced relative to the widowed, b2 = 7.700, t(16) = 1.752, p = .099. But
single people are more satisfied with life, on average, than the widowed
(b3 = 10.900 units higher), t(16) = 2.481, p = .025

We see now that even though the reference category lacks its own indi-
cator variable in the model, it is not ignored at all. Rather, the reference cat-
egory provides a standard of comparison for the remaining groups (which
is why it is called the reference category). You may also see now why
indicator coding can be especially useful when analyzing a study from a
design with one control group. By making the control group the reference,
the regression analysis gives not only a test of the null hypothesis that
all groups are equal on average on the dependent variable, but also a set
of specific comparisons between the means of each group and the control
condition.

You may be wondering why all this matters, given that we already have
ANOVA to handle these problems. The indicator-variable approach is a bit
more complex, but we see next that it can easily be used in models with
other independent variables or covariates, whether or not they correlate
with the multicategorical variable.
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9.2 Multicategorical Regressors as or with
Covariates

We have introduced the principles of coding multicategorical variables and
interpretation of regression analysis results using a simple model with only
a single multicategorical independent variable represented with indicator
codes. In practice, you will often want to estimate Y from a multicategor-
ical variable as well as additional regressors. Those other variables could
be numerical, dichotomous, even additional compound variables—sets of
indicator codes for another multicategorical variable. There are at least two
major reasons you may find yourself wanting to do this, and we discuss
each of these in this section.

9.2.1 Multicategorical Variables as Covariates

In section 3.1.2 we distinguished between an independent variable and a
covariate, pointing out that a linear regression algorithm in a computer
makes no distinction between them. They are merely regressors in a linear
model. Your primary research interest may be in estimating the relationship
between a numerical or dichotomous independent variable and Y, but you
want to control for a multicategorical variable. That is, you may be thinking
of the multicategorical variable as a covariate rather than as your primary
independent variable of interest. Differences between groups defined by
the multicategorical variable on the independent variable or Y may make it
harder to interpret the relationship between the independent variable you
care about and Y. Statistical control helps to disentangle association that
may be causal and association that is due to other processes.

Consider the relationship between life satisfaction (Y) and income (X2).
In the data in Table 9.1, rX2Y = 0.755, which is statistically different from
zero, p < .001. In regression terms, when satisfaction Y is regressed on
income X2, the model is Ŷ = 44.032+ 0.638X2. So two people who differ by
$1,000 in income are estimated to differ by 0.638 units in life satisfaction,
with the person with more income estimated as more satisfied with life.

Although establishing association does not establish cause–effect, this
relationship is at least consistent with income possibly causing higher sat-
isfaction. But the reverse is also possible of course. Maybe being satisfied
leads people to make more money. Alternatively, the association could be
spurious, due to differences between people with different marital status in
their income and satisfaction. Maybe being married or divorced, for exam-
ple, leads to world views that influence both life satisfaction and income.
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Indeed, we have already established that the four groups differ in satisfac-
tion with life. Although a formal test of differences in mean income between
the four groups results in a nonsignificant effect, F(3, 16) = 0.859, p = .482,
the pattern of the means is fairly consistent with the satisfaction differences.
In these data, the married people have the highest income (mean= $60,333)
and are also most satisfied , those who are widowed make less on average
(mean = $51,000) and are least satisfied, and the divorced and single are in
between on both income (means = $58,600 and $55,800, respectively) and
satisfaction.

Linear regression analysis will not allow us to distinguish between com-
peting explanations for direction of cause, at least not with data like these.
But it can help us establish whether the relationship between income and
satisfaction exists among people of the same marital status (i.e., holding
marital status constant). We can’t enter X1 into the regression model as is,
for reasons discussed in section 9.1.1. But we can include three indicator
codes representing the four groups into a model along with income to exam-
ine the partial association between income and life satisfaction controlling
for marital status. Doing so with a linear regression model yields

Ŷ = 44.032 + 9.00D1 + 3.628D2 + 8.329D3 + 0.536X2

The regression coefficient for income in this model is 0.536, with a standard
error of 0.113, t(15) = 4.728, p < .001 (see Figure 9.3). Two people that
differ by $1,000 dollars in income but are of the same marital status are
estimated to differ in 0.536 units in life satisfaction. This is a smaller
difference than when marital status was not controlled, but it is not zero.
The relationship observed between income and satisfaction with life is
not explained entirely by any income and satisfaction differences between
people who differ in marital status. When marital status is held constant,
the positive relationship observed absent statistical control persists.

In this analysis (or any comparable analysis), it makes no difference
which group is coded as the reference group. Here, the widowed is the
reference group. But the regression coefficient for income is unaffected by
that choice. Indeed, since we aren’t interpreting the regression coefficients
for D1, D2, and D3 (though we could and will in section 9.2.2), the idea of
a “reference group” really doesn’t have much meaning in this application,
because we aren’t comparing the satisfaction of the different marital status
groups in this analysis. Marital status is just a covariate in our interpreta-
tion of the results, an interpretation that focuses on the partial association
between income and satisfaction.
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                                   The REG Procedure

                                     Model: MODEL1

                               Dependent Variable: satis

                        Number of Observations Read          20

                        Number of Observations Used          20

                                  Analysis of Variance

                                         Sum of           Mean

     Source                   DF        Squares         Square    F Value    Pr > F

     Model                     4      910.84337      227.71084      12.39    0.0001

     Error                    15      275.70663       18.38044

     Corrected Total          19     1186.55000

                  Root MSE              4.28724    R-Square     0.7676

                  Dependent Mean       80.35000    Adj R-Sq     0.7057

                  Coeff Var             5.33571

                                  Parameter Estimates

                               Parameter       Standard

          Variable     DF       Estimate          Error    t Value    Pr > |t|

          Intercept     1       44.17806        6.16407       7.17      <.0001

          d1            1        8.99991        2.96263       3.04      0.0083

          d2            1        3.62850        3.00215       1.21      0.2455

          d3            1        8.32852        2.92696       2.85      0.0123

          income        1        0.53572        0.11332       4.73      0.0003

FIGURE 9.3. SAS output from a regression examining the effect of income on life satis-
faction controlling for marital status.

This approach generalizes to any number of covariates. We could just
as easily control for one or more additional multicategorical variables by
including their indicators in the model. Or we could control for dichoto-
mous or numerical regressors along with other multicategorical variables.
It makes no difference to the regression math how many covariates are
included. Regression analysis will result in a regression weight for income,
along with information that can be used for inference about the relationship
between income and satisfaction, holding all those other variables in the
model constant.

9.2.2 Comparing Groups and Statistical Control

A second reason for estimating a model with both a multicategorical vari-
able and additional variables—dichotomous, numerical, or multicategor-
ical in any combination—is to examine whether mean differences in Y
between groups defined by the independent multicategorical variable exist
after statistically equating those groups on other variables in the model. For
example, we might want to know whether three different forms of treat-
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ment for PTSD result in differences in the number of symptoms experienced
6 months later after adjusting for differences between the therapy groups
in the severity of the traumatic experience suffered, age of the person, and
support from the person’s spouse or family.

This kind of adjustment or statistical control is particularly important
when groups aren’t constructed through random assignment. But as dis-
cussed in section 6.3.1, statistical control can be useful even in experiments
with random assignment to groups. We know random assignment will
tend to equate the groups on all other variables at the time point of random
assignment, including potential covariates. But when covariates are related
to Y but not to the independent variable, adjusting for the covariates can
increase the power of tests of group difference and enhance precision in the
estimate of those differences.

In section 9.2.1 we examined the relationship between income and life
satisfaction, holding marital status constant. But we could also examine
differences in average life satisfaction between people who differ in mar-
ital status when holding income constant. Recall that in that section, we
regressed Y on D1, D2, D3, and X2 and focused on measures of partial
association between X2 and Y along with inferential tests. The indicator
variables in that model were indicator codes representing marital status.

This same model provides estimates of the mean difference in income
between pairs of marital status groups if they were equal in income. In
generic form, the model is

Ŷ = b0 + b1D1 + b2D2 + b3D3 + b4X2 (9.3)

We discussed earlier that b4 = 0.536, which is statistically different from
zero. But we don’t care about that now. We are now thinking of income (X2)
as a covariate and marital status as the independent variable. Our interest
now is the differences between the groups in satisfaction when income is
held constant, not the association between income and satisfaction when
marital status is held constant. Our focus therefore shifts away from b4

toward b1, b2, b3, and related statistics and tests. Figure 9.4 provides output
from SPSS for the entire model, as well as additional regression analysis
output, generated with the command on page 264. This output provides
the context for the discussion that follows.

In section 5.3.1 we introduced the partial and semipartial multiple cor-
relations, which quantify the association between a set of variables B and
some outcome when controlling for a set of one of more covariates A. Infer-
ence about the variables in set B can be conducted by examining whether
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the fit of the model of Y improves when the variables in set B are added to
the model of Y that includes set A variables. This is exactly the problem
we confront here. Think of income as set A containing only one variable,
X2, and marital status as set B, which includes three indicator variables D1,
D2, and D3 coding groups. If the groups don’t differ in average life satis-
faction when income is held constant, this means that D1, D2, and D3 add
no information about variability in life satisfaction relative to what is al-
ready explained by income. But if the groups differ in life satisfaction when
income is held constant, then including information about which marital
status group a person belongs in should improve the fit of the model.

So we have two models of Y we are comparing here. One of them
includes income, X2, as the sole predictor. Call this model A. As already
discussed, estimation of that model yields

Ŷ = 44.032 + 0.638X2

with R2(A) = 0.571. The second model includes income as well as marital
status, represented by three indicator codes. Call this model AB. Estimation
of this model yields:

Ŷ = 44.178 + 9.000D1 + 3.628D2 + 8.329D3 + 0.536X2

with R2(AB) = 0.876. Observe that this is the same as the model from the
analysis described in section 9.2.2 when marital status was conceptualized
as a covariate rather than the independent variable (remember that the
regression math makes no distinction). The difference between R2(AB)
and R2(A) we defined in section 5.3.1 as the squared semipartial multiple
correlation between Y and B controlling for A: SR2(B.A) = R2(AB)−R2(A) =
0.768 − 0.571 = 0.197. This is also called the incremental change in R2,
sometimes denoted ΔR2. It is an estimate of TSR2(B.A), the proportion of
the variance in Y uniquely attributable to the variables in set B when the
variables in set A are held constant.

To test the null hypothesis that TSR2(B.A) = 0 against the alternative
hypothesis that TSR2(B.A) > 0, use equation 5.2, which yields an F-ratio
that can be compared to the critical F in an F-table. Alternatively, let a
computer do the work for you. In SPSS, the command below produced
the output in Figure 9.4, which generates both models, as well as a test of
difference in the fit of the two models.
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regression/statistics defaults change/dep=satis/method=enter income

/method=enter d1 d2 d3.

Comparable code in SAS and STATA to conduct the test would be

proc reg data=married;

model satis=income d1 d2 d3;

test d1=0,d2=0,d3=0;run;

regress satis income d1 d2 d3

test d1 d2 d3

As can be seen in Figure 9.4 in the section highlighted with the dashed
box, SR2(B.A) = ΔR2 = 0.197 , F(3, 15) = 4.240, p = .023. We can reject the
null hypothesis. The interpretation is that when you account for differ-
ences between the four groups in their average income, the groups differ
from each other in average satisfaction in life to a statistically significant
degree. That is, adding information about marital status to information
about income provides some additional information about a person’s life
satisfaction relative to when marital status is just ignored entirely.

This latter interpretation relates to an alternative way of thinking about
the null hypothesis we are testing. If there is no difference between the
g groups on average on Y when the covariate is held constant, then this
implies that all of the g − 1 true regression weights for the indicator codes
representing the g group are all zero. That is, when the variables in set B
represent membership in one of the g groups and set A represents one (or
more variables being held constant, TSR2(B.A) = 0 implies that all g − 1
values of TbDj = 0. But if TSR2(B.A) > 0, this implies that at least one
TbDj � 0. So by rejecting the null hypothesis that TSR2(B.A) = 0, we can
also reject the null hypothesis that all g − 1 values of TbDj = 0.

9.2.3 Interpretation of Regression Coefficients

In section 9.2.1 we interpreted b4, which is also the regression coefficient
for income in model AB from section 9.2.2, as the estimated difference
in satisfaction people of the same marital status who differ by $1,000 in
income. But we have not yet interpreted the regression coefficients for D1,
D2, and D3 or the regression constant b0. We do so now.

In section 9.1.6, before covariates were introduced in our discussion of
multicategorical regressors, the regression coefficient for Dj when using
indicator coding of groups was interpreted as the difference in the mean



Multicategorical Regressors 265

of Y between the group coded with Dj and the mean of the reference
group. That interpretation still applies, but with the addition of holding the
covariate(s) constant or statistically controlling for the covariate(s). For example,
suppose we imagine a group of people with the same income of $50,000
but who are of different marital status. Two people with different marital
status will differ in their pattern of values on D1, D2, and D3, but they will
be the same on X2, which we have fixed at 50. Consider a married person
(any married person) who makes $50,000. The model

Ŷ = 44.032 + 9.000D1 + 3.628D2 + 8.329D3 + 0.536X2

generates

Ŷ = 44.178 + 9.000(1) + 3.628(0) + 8.329(0) + 0.536(50)

= 44.178 + 9.000(1) + 0.536(50)

= 79.978

as his or her estimated satisfaction with life. But for someone who is
widowed, the model generates

Ŷ = 44.032 + 9.000(0) + 3.628(0) + 8.329(0) + 0.536(50)

= 44.178 + 0.536(50)

= 70.978

as his or her estimated satisfaction with life. The difference between these
is 9 satisfaction units, which is the regression coefficient for D1 in the
model. But observe from this math that it makes no difference whatsoever
what value of income you use in the model. Regardless of the choice, the
difference between the estimates of Y for these two groups is 9 units. So
b1 quantifies the estimated difference in Y between the group set to 1 on
D1 and the reference group when X2 is held constant. A hypothesis test or
confidence interval leads to a corresponding inference about the difference
between the true means. As can be seen in Figure 9.4, this estimated
difference of b1 = 9.000 satisfaction units is statistically different from zero,
t(15) = 3.038, p = .008. It seems that married people and those who are
widowed with the same income differ in satisfaction, with married people
more satisfied by an estimated 9 units on the scale.

Regression coefficients b2 and b3 can be interpreted similarly. The re-
gression coefficient for D2 is b2 = 3.828. This is the estimated difference
in life satisfaction between a group of divorced people and the widowed
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with the same income. This difference of 3.828 units in satisfaction is not
statistically different from zero, t(15) = 1.209, p = .246. But single people
and the widowed with the same income do differ in average satisfaction,
with the singles estimated as more satisfied on average. The estimated
difference in satisfaction is b3 = 8.329 units, t(15) = 2.845, p = .012.

The inclusion of an additional regressor in the model as a covariate has
changed the interpretation of b0 relative to a model without covariates. In
section 9.1.6, b0 was Y for the reference group—the group set to 0 on all
g − 1 indicator variables. To see what b0 now quantifies, consider that for
anyone in the reference group (widowed), D1 = D2 = D3 = 0, so the model
expressed in equation 9.3 becomes

Ŷ = b0 + b1(0) + b2(0) + b3(0) + b4X2

= b0 + b4X2

which means that Ŷ equals b0 when X2 = 0. So b0 is the estimate of Y for the
reference group when the covariate equals zero. In terms of this example,
b0 estimates the average life satisfaction of people with no income who are
widowed.

9.2.4 Adjusted Means

When we have a categorical independent variable and one or more other
regressors, adjusted means are the estimated means on Y of the various
groups for people who are at the mean on all other regressors. In a sense,
when comparing groups while statistically controlling for a covariate, one
is essentially testing the equality of the adjusted means, and when inter-
preting differences between groups after adjusting for the covariate, it is
conventional to base the interpretation on the adjusted means rather than
on the unadjusted means in Table 9.3.

The adjusted means are calculated from the regression model by plug-
ging in each group’s pattern of values on the indicator codes into the
regression equation while setting the covariate to the sample mean, disre-
garding group. In this example, the mean income is X2 = 56.900. So the
adjusted mean life satisfaction for married people (D1 = 1, D2 = 0, D3 = 0)
is

adj. Y1 = 44.178 + 9.000(1) + 3.628(0) + 8.329(0) + 0.536(56.9) = 83.676



Multicategorical Regressors 267

30 40 50 60 70 80

50
60

70
80

90
10

0

Income in thousands of dollars (X2)

S
a
ti
s
fa
c
ti
o
n
 w

it
h
 l
if
e
 (

Y
)

Widowed

Divorced

Married

Single

56.900

83.676

83.005

78.304

74.676

Adjusted means

FIGURE 9.5. A visual representation of adjusted means.

The adjusted means for divorced, single, and widowed are calculated sim-
ilarly:

adj. Y2 = 44.178 + 9.000(0) + 3.628(1) + 8.329(0) + 0.536(56.9) = 83.005

adj. Y3 = 44.178 + 9.000(0) + 3.628(0) + 8.329(1) + 0.536(56.9) = 78.304

adj. Y4 = 44.178 + 9.000(0) + 3.628(0) + 8.329(0) + 0.536(56.9) = 74.676

These adjusted means are represented graphically in Figure 9.5. This figure
depicts the regression model, which as can be seen is four parallel lines
relating the covariate to Y. The slope of each of these lines is the regression
coefficient for the covariate, which in this example is 0.536. The adjusted
mean for a group is found by projecting from the sample mean of the co-
variate up to a group’s line relating the covariate to Y and then horizontally
across to the Y-axis. The point at which the projection crosses the Y-axis is
that group’s adjusted mean.

Whereas the common slope for the lines in Figure 9.5 corresponds to
the regression coefficient for the covariate, the vertical distances between
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certain pairs of lines correspond to the regression coefficients for the indi-
cators. For example, the vertical distance between the line for married and
the line for widowed is 9.000 units, which corresponds to b1. Observe that
this is also equivalent to the difference in the adjusted means for these two
groups, since these lines differ by 9.000 units in distance at the mean of the
covariate (and, indeed, any other point on the covariate scale). Similarly,
b2 = 3.628 is the distance between the married line and the widowed line,
or the difference between the adjusted means of these two groups; b3 is
interpreted equivalently for the comparison between single and widowed.

In principle, one could construct adjusted means by setting the covariate
to any desired value, but it is conventional to use the sample mean for the
adjustment. For instance, one could construct each group’s adjusted mean
if the average income of each group was equal to $40,000 by using X2 = 40
in the computations above rather than the sample mean. This would not
influence the relative differences between the adjusted group means, but
rather would merely shift them all up or down in value by the same constant
amount. This can be seen easily in Figure 9.5 by imagining where the dotted
lines would cross the Y-axis if the line projected up from X2 = 40 rather
than 56.9. Of course, the vertical distance between the lines would not
change, meaning that the regression coefficients for the indicators can be
interpreted as the difference between group-adjusted means regardless of
the value of the covariate.

9.2.5 Parallels with ANCOVA

You may already be familiar with ANCOVA, which is an extension of
ANOVA that allows for the comparison between groups while holding one
or more covariates fixed. In this section we show that the test described
in section 9.2.2 generates the same result as one would get from an AN-
COVA. An important point we make is that this is neither coincidental nor
surprising, because mathematically they are the same test.

Figure 9.6, panel A, contains an ANCOVA summary table from STATA
examining differences between marital status groups in their satisfaction
controlling for income. This output was generated with the command

anova satis mstatus c.income

Comparable summary tables can be obtained from SPSS and SAS with the
commands
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unianova satis by mstatus with income.

proc glm data=married;

class mstatus;model satis=mstatus income;run;

This summary table looks similar to the one in Figure 9.2, but it contains
an additional line for income. Observe that each of the two effects (the
effect of marital status and the effect of income) has a corresponding sum
of squares, degrees of freedom, mean square, F-ratio, and p-value. Books
that discuss ANCOVA often provide complex formulas for deriving the
entries in this table. But ANCOVA is just a form of multiple regression,
and all these entries can be generated with a regression analysis program.
We focus on derivation of the sums of squares for the effects, because many
of the rest of the entries are functions of these sums of squares.

Suppose we estimated satisfaction from income and marital status, with
marital status represented with three indicator codes. This model has four
regressors, and SSregression = 910.843, SSresidual = 275.707, which add up to
SStotal = 1186.550. These sums of squares can be found in the ANCOVA
summary table, and they can also be found in the regression analysis output
in Figure 9.3 from section 9.2.1.

Figure 9.6, panel B, visualizes these quantities in the form of a Venn
diagram. The area of the Y circle corresponds to SStotal. The area in the
Y circle is the sum of the areas labeled A, B, C, and D, so we can also
say that A + B + C + D = 1186.550. This is all of the variance in life
satisfaction available to be explained. The variance in Y that is explained
by both marital status and income is the area of overlap between the life
satisfaction circle and the income and marital status circles, or A + B + C.
This corresponds to SSregression = 910.843, denoted SSMstatus+Income in Figure
9.6. The variance in Y not accounted for by income and marital status is D,
or SSresidual = 275.707.

Now consider two regression models of life satisfaction Y, one that
contains only marital status as its sole predictor and one that contains only
income as its sole predictor. The regression and residual sums of squares for
these two models we denote SSMstatus and SSIncome, respectively, in Figure
9.6. In terms of the Venn diagram, the regression sum of squares for the
model with marital status as the only predictor is the sum of areas A + B =
500.050. Similarly, the regression sum of squares for the model with income
as the only predictor is the sum of areas B + C = 677.028.

We know that when both marital status and income are in the model,
SSregression = SSMstatus+Income = A + B + C = 910.843. If martial status were
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 . anova satis mstatus c.income

       Number of obs =      20     R-squared     =  0.7676

       Root MSE      = 4.28724     Adj R-squared =  0.7057

 

      Source |  Partial SS    df       MS           F     Prob > F

  -----------+----------------------------------------------------

       Model |  910.843367     4  227.710842      12.39     0.0001

             |

     mstatus |  233.815753     3  77.9385843       4.24     0.0234

      income |  410.793367     1  410.793367      22.35     0.0003    

             |

    Residual |  275.706633    15  18.3804422   

  -----------+----------------------------------------------------

       Total |     1186.55    19       62.45  

A

B

Marital Status
(D1, D2, D3)

Income
   (X2)

A

B

C

D

  Satisfaction
          (Y)

  SSTotal = A + B + C + D = 1186.550

  SS Mstatus + Income = A + B + C = 910.843

  SSResidual = D = 275.707

  SSMstatus = A + B = 500.050

  SSIncome = B + C = 677.028

  SSMstatus.Income = A = 233.816

  SSIncome.Mstatus = C = 410.793

FIGURE 9.6. STATA output from a one-way ANCOVA examining differences between
marital status groups in life satisfaction with income as a covariate (panel A) and sums of
squares in Venn diagram form (panel B).
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removed from the model, SSregression would drop from A + B + C = 910.843
to B + C = SSIncome = 677.028. This difference corresponds to area A in
the Venn diagram, which we denote SSMstatus.Income in Figure 9.6. In sum
of squares terms, the area of A is 910.843 − 677.028 = 233.815. This is the
sum of squares for marital status in the ANCOVA summary table in Figure
9.6. Dividing 233.815 by the number of regressors in the model representing
marital status (the three indicator variables, which is the degrees of freedom
for this effect), yields a mean square of 77.939 and an F-ratio of 4.240 when
this mean square is divided by 18.380, the mean squared residual for the
model containing both income and marital status. These can also be found
in the ANCOVA summary table.

But notice that this F-ratio of 4.240 corresponds exactly to the F-statistic
from the test that the squared semipartial multiple correlation for marital
status equals zero discussed in section 9.2.2 and corresponding regression
analysis output in Figure 9.4. This should make sense, because area A
corresponds to the proportion of the area in Y (variance available to be
explained in life satisfaction) that is uniquely attributable to marital status,
meaning the amount the squared multiple correlation in a model estimating
income increases when marital status is added to a model of life satisfaction
that already contains income as a predictor. That quantity we have defined
as a squared semipartial multiple correlation. So the test discussed in
section 9.2.2 is mathematically equivalent to the results from an ANCOVA.

A similar mathematical logic results in the part of the regression sum
of squares in the model with income and marital status as regressors that
is uniquely attributable to income. This is area C in the Venn diagram. It
is equal to SSMstatus+Income, from the model with both income and marital
status (A + B + C = 910.843), minus SSMstatus, which is SSregression from
a model with just marital status as a predictor (A + B = 233.816). That
difference is 410.793, which we denote SSIncome.Mstatus in Figure 9.6, which is
the sum of squares for income in the ANCOVA summary table. The mean
square and F-ratio follows from the same mathematics.

9.2.6 More Than One Covariate

All of this discussion about comparing groups while holding another vari-
able constant applies without modification to more than one covariate. To
test for differences between g groups on Y when holding constant more
than one variable, simply include those other variables in the regression
model along with the g−1 indicator variables coding group. A comparison
of the fit of a linear model of Y that includes the covariates and the g − 1
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indicators relative to one that excludes those indicators provides a test of
the null hypothesis of equality of the group means when all the covariates
are held constant.

For example, we can compare the mean satisfaction of the four marital
status groups while holding income and sex (X3 in Table 9.1) constant. The
resulting model is

Ŷ = 42.200 + 10.318D1 + 4.140D2 + 8.949D3 + 0.575X2 − 2.016X3 (9.4)

with R2 = 0.777. When the three marital status indicators are excluded
from the model, R2 = 0.584. The difference in these squared multiple
correlations is ΔR2 = 0.193, which is the squared semipartial multiple
correlation between marital status and life satisfaction when sex and income
are statistically controlled. Marital status uniquely explains 19.3% of the
variance in life satisfaction. This is statistically different from zero, F(3, 14) =
4.042, p = .029, using the test described in section 9.2.2.

The adjusted means are calculated from equation 9.4 for each group
using each group’s pattern of values of D1, D2, and D3 in the model and
substituting the mean income X2 = 56.900 and “mean sex” (X3 = 0.450) for
X2 and X3, respectively. Doing so yields Y1 = 84.328, Y2 = 78.150−74.010 =,
Y3 = 82.959, and Y4 = 74.010 for married, divorced, single, and widowed,
respectively. Using the mean of sex in equation 9.4 may seem strange given
that the numerical codes of 0 and 1 for females and males are arbitrary. But
doing so is completely legitimate mathematically. If this bothers you, you
can compute the adjusted means for males and for females by repeating
these computations, using X3 = 0 for females and X3 = 1 for males instead
of X3 = 0.450. This will generate eight adjusted means, four for males of
different marital status and four for females of different marital status.

The regression constant b0 = 42.200 estimates the mean life satisfaction
of males who are widowed with no income. The regression coefficient b4 =

0.575 is the estimated average difference in life satisfaction between two
people of the same sex and marital status who differ by $1,000 in income,
t(14) = 4.571, p < .001, while b5 = −2.016 is the estimated average difference
in life satisfaction between men and women equal in income and of the
same marital status, but this is not statistically significant, t(14) = 0.762, p =
.459. The remaining regression coefficients for the three indicator variables
estimate the mean difference in life satisfaction between the reference group
of widowed and the group coded with that indicator, holding income and
sex constant. So married people of a given income are more satisfied with
life than those who are widowed of that same sex and income by b1 = 10.318
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units, t(14) = 2.976, p = .010, and single people are more satisfied on average
than those who are widowed by b3 = 8.949 units, t(14) = 2.907, p = .011,
holding sex and income fixed. Among divorced people and widowed of
the same sex and income, there is no statistically significant difference in
average life satisfaction, b2 = 4.140, t(14) = 1.328, p = .205.

9.3 Chapter Summary

Multicategorical variables—variables that are categorical with more than
two categories—can be used as regressors in a linear regression model when
properly represented using some kind of coding system. This chapter intro-
duced indicator coding as way of representing a multicategorical variable.
A test of the null hypothesis that the g groups don’t differ on average on Y
can be conducted by testing whether TR = 0 when Y is regressed on the set
of group codes. This test is the regression analysis equivalent of a one-way
ANOVA, and regression and ANOVA will produce identical results. But
regression analysis is much more flexible and versatile than ANOVA, which
assumes that all variables are categorical. Regression analysis can be used
with any mix of continuous, dichotomous, or multicategorical variables.

When an analyst seeks to compare more than two groups on some
dependent variable that may also differ on other variables, ANCOVA is
frequently used. But ANCOVA is just a special form of linear regression
analysis with group as the independent variable and the other variables
treated as covariates. In that case, a test of multivariate partial association
between indicator variables coding group and Y provides a test of the
difference between group means if the groups were equal on all covariates.

In the next chapter, we show that indicator coding is only one of many
ways of representing groups. Different systems of coding groups exist that
provide not only tests of differences between groups, as with indicator cod-
ing, but also allow the analyst to address questions involving association
between an ordinal multicategorical variable and a dependent variable,
either with or without statistical control.
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More on Multicategorical Regressors

This chapter builds on the discussion of multicategorical regressors in
Chapter 9 by introducing several additional methods of coding groups.
Two of these methods, sequential and Helmert coding, are particularly
useful when the multicategorical regressor is categorical and ordinal.
We also discuss statistical tests of complex contrasts of means, both
with and without covariates.

We described in Chapter 9 how a categorical variable representing g ≥ 3
groups can be used as a regressor in a linear model if it is represented with
g − 1 indicator variables. The gth group does not require its own indicator
because it would not contain any information about group membership
not already contained in the g − 1 indicators in the model. When using
indicator coding, the group not given an indicator serves as the reference
group, and regression coefficients for the indicators quantify the difference
in Y between the group coded with an indicator and the reference group.

Using this system of coding groups, regression analysis can be used
to compare g group means either with or without additional variables in
the model serving as covariates. In this chapter, we discuss some other
methods of coding groups that produce mathematically identical models,
in that they fit just as well and produce the same estimates of Y, yet yield
regression coefficients with different interpretations. We also introduce
some methods for conducting complex contrasts between group means,
formed by combining group means together in various ways to test whether
one set of group means, when aggregated, differ from another group mean
or set of means.

275
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TABLE 10.1. Age and Willingness to Self-Censor

ID Age cohort cohort wtsc (Y)

1 Baby boomer 3 2.75
2 Pre-baby boomer 4 3.50
3 Pre-baby boomer 4 2.75
4 Baby boomer 3 2.25
5 Generation X 2 4.00
...

...
...

...
457 Baby boomer 3 2.87
458 Pre-baby boomer 4 2.75
459 Generation X 2 3.00
460 Baby boomer 3 2.50
461 Generation Y 1 2.75

10.1 Alternative Coding Systems

Indicator coding is only one of many ways of representing a multicategori-
cal variable in a linear regression model. Two of these alternatives, sequential
coding and Helmert coding, are particularly useful when the groups can be
ordered relative to each other on the variable used to define the groups
(though these two coding methods can be used for strictly nominal cate-
gories as well). Another alternative called effect coding is similar to indicator
coding but changes the reference against which the groups are compared.

We rely on a data set containing the responses of 461 people living in
the United States and the United Kingdom to a set of questions on a survey
administered through the Internet. An excerpt from the data file (named
WTSC and downloadable from this book’s web page at www.afhayes.com)
can be found in Table 10.1. The variable in the column labeled wtsc is
scores on an instrument called the Willingness to Self-Censor Scale (Hayes,
Glynn, & Shanahan, 2005). This instrument measures how reluctant versus
willing a person is to express his or her opinion publicly when the person
believes others hold a different opinion. Higher scores reflect a greater
willingness to self-censor one’s opinion expression. This is the dependent
variable Y in all analyses in this chapter.

The data set also contains an ordinal categorical variable coding a re-
spondent’s age named cohort. The data were returned from the data
collection company with each respondent classified into one of four age
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TABLE 10.2. Willingness to Self-Censor in Four Age Cohorts

Group ( j) Age cohort Yj SDYj nj

1 Generation Y (born after 1985) 3.201 0.494 38
2 Generation X (born 1966 − 1985) 3.111 0.622 149
3 Baby boomer (born 1945 − 1965) 2.857 0.468 173
4 Pre-baby boomer (born before 1945) 2.802 0.454 101

cohorts. Ordinally lowest in age is “Generation Y,” the youngest group
and born after 1985, and is coded cohort = 1 in the data. The data collection
occurred in 2009, so all Generation Y respondents were 23 years old or
younger (no one under 18 participated in the study). Following Genera-
tion Y is Generation X, coded cohort = 2, a group containing people born
between 1966 and 1985 and thus between the ages of 24 and 43. Next comes
the baby boomers born between 1945 and 1965 (cohort = 3, between 44 and
64 years old). The ordinally highest group in age is the pre-baby boomers.
They were born before 1945, all at least 65 years old, and coded cohort = 4.
Thus, in terms of age, pre-baby boomers > baby boomers > Generation X
> Generation Y.

Each group’s mean willingness to self-censor can be found in Table 10.2.
As can be seen, it appears that the relationship between age and willingness
to self-censor is negative, as successive increments up the ordinal age scale
correspond to a lower mean willingness to self-censor.

Let’s regress willingness to self-censor on age cohort using the indicator
coding system introduced in Chapter 9 at the top of Table 10.3. This system
codes Generation Y, Generation X, and baby boomers with D1, D2, and D3,
and pre-baby boomers are the reference category. The resulting model can
be found at the top of Table 10.4. You can verify for yourself that this model
generates the group means as its estimates for Y for the four groups. A test
of the null hypothesis that TR = 0 can be rejected, F(3, 457) = 12.207, p <
.001. That is, the four age groups differ in their average willingness to
self-censor.

10.1.1 Sequential (Adjacent or Repeated Categories) Coding

Sequential coding would most typically be used when the groups can be
ordered on the variable that defines them and interest is in examining
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TABLE 10.3. Four Ways of Coding Age Cohort and the Group Means Defined in Terms
of the Regression Coefficients and Regression Constant

Age cohort by D1 D2 D3 Mean of Y
increasing age

Indicator coding

Generation Y 1 0 0 Y1 = b0 + b1

Generation X 0 1 0 Y2 = b0 + b2

Baby boomer 0 0 1 Y3 = b0 + b3

Pre-baby boomer 0 0 0 Y4 = b0

Sequential coding

Generation Y 0 0 0 Y1 = b0

Generation X 1 0 0 Y2 = b0 + b1

Baby boomer 1 1 0 Y3 = b0 + b1 + b2

Pre-baby boomer 1 1 1 Y4 = b0 + b1 + b2 + b3

Helmert coding

Generation Y −3/4 0 0 Y1 = b0 − 3
4 b1

Generation X 1/4 −2/3 0 Y2 = b0 +
1
4 b1 − 2

3 b2

Baby boomer 1/4 1/3 −1/2 Y3 = b0 +
1
4 b1 +

1
3 b2 − 1

2 b3

Pre-baby boomer 1/4 1/3 1/2 Y4 = b0 +
1
4 b1 +

1
3 b2 +

1
2 b3

Effect coding

Generation Y 1 0 0 Y1 = b0 + b1

Generation X 0 1 0 Y2 = b0 + b2

Baby boomer 0 0 1 Y3 = b0 + b3

Pre-baby boomer −1 −1 −1 Y4 = b0 − b1 − b2 − b3
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TABLE 10.4. Estimating Willingess to Self-Censor from Age Cohort Using the Coding
Systems in Table 10.3

Coeff. SE t p

Indicator coding
(pre-baby boomers as reference)
R = 0.272,F(3, 457) = 12.207, p < .001

Constant b0 2.802 0.052 53.933 < .001
D1 b1 0.399 0.099 4.019 < .001
D2 b2 0.310 0.067 4.603 < .001
D3 b3 0.055 0.065 0.846 .398

Sequential coding
R = 0.272,F(3, 457) = 12.207, p < .001

Constant b0 3.201 0.085 37.797 < .001
D1 b1 −0.090 0.095 −0.944 .346
D2 b2 −0.254 0.058 −4.361 < .001
D3 b3 −0.055 0.065 −0.846 .398

Helmert coding
R = 0.272,F(3, 457) = 12.207, p < .001

Constant b0 2.993 0.029 103.898 < .001
D1 b1 −0.278 0.089 −3.133 .002
D2 b2 −0.282 0.054 −5.240 < .001
D3 b3 −0.055 0.065 −0.846 .398

Effect coding
(pre-baby boomers uncoded)
R = 0.272,F(3, 457) = 12.207, p < .001

Constant b0 2.993 0.029 103.898 < .001
D1 b1 0.208 0.066 3.133 .002
D2 b2 0.119 0.042 2.841 .005
D3 b3 −0.136 0.040 −3.376 .001
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TABLE 10.5. Sequential Coding of g Categories

Group D1 D2 D3 · · · Dg−1

1 0 0 0 · · · 0
2 1 0 0 · · · 0
3 1 1 0 · · · 0
4 1 1 1 · · · 0
...
g 1 1 1 · · · 1

how Yj changes as the ordinal predictor variable increases by one step.
Like indicator coding, sequential coding relies on dummy variables. When
using sequential coding with g groups, we set Dj to 1 for cases that are
members of a group ordinally higher than position j on the variable defining
groups; otherwise, we set to Dj to 0.

Table 10.5 provides a general representation of sequential coding with
g ordered groups, and Table 10.3 provides the sequential codes for coding
four groups as in this example. In this case, we set D1 to 1 for anyone
older than Generation Y, and Generation Y gets D1 = 0. Moving up the
ordinal age scale, D2 is set to 1 for anyone older than Generation X, and
Generations X and Y receive D2 = 0. Finally, anyone older than the baby
boomers (the pre-baby boomers) receives a code of D3 = 1, and all others
get 0 on D3.

Regressing willingness to self-censor on the set of three sequential codes
yields the regression model in Table 10.4. As can be seen, the model is

Ŷ = 3.201 − 0.090D1 − 0.254D2 − 0.055D3

and has exactly the same R (and thus the same SSresidual and other measures
of fit) as when indicator coding was used. The outcome of the test as
to whether TR = 0 is the same as well, with the same F-ratio, degrees of
freedom, and p-value. We can reject the null hypothesis and conclude that
the groups differ in their average willingness to self-censor. Furthermore,
plugging values of D1, D2, and D3 into the model generates the four group
means, just as does the model based on indicator coding:
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Ŷ1 = 3.201 − 0.090(0) − 0.254(0) − 0.055(0) = 3.201 = Y1

Ŷ2 = 3.201 − 0.090(1) − 0.254(0) − 0.055(0) = 3.111 = Y2

Ŷ3 = 3.201 − 0.090(1) − 0.254(1) − 0.055(0) = 2.857 = Y3

Ŷ4 = 3.201 − 0.090(1) − 0.254(1) − 0.055(1) = 2.802 = Y4

So mathematically, this model is the same as the model based on indicator
coding of groups. It produces the same estimates of Y, it fits identically,
and it yields the same p-value when testing the null hypothesis that TR = 0.

But there is an obvious difference between the two models in the re-
gression coefficients and the constant. This is because these now quantify
something different. Recall that with indicator coding, b0 is Y for the refer-
ence group, and bj is the mean difference in Y between the group receiving
1 on Dj and the reference group. But in sequential coding, b0 is Y for
the group ordinally lowest on the variable defining the groups, and bj is
the mean difference in Y between the group in ordinal position j and the
group one ordinal position lower. In other words, bj is the difference in
means between categories that are ordinally adjacent on the variable defin-
ing groups. And the t- and p-value tests the null hypothesis that these two
means are equal.

To see how this works, consider that for Generation Y,

Y1 = b0 + b10 + b20 + b30

Y1 = b0

and for Generation X,

Y2 = b0 + b11 + b20 + b30

Y2 = b0 + b1.

But b0 = Y1 and so
Y2 = Y1 + b1

which can be rewritten as
b1 = Y2 − Y1

So b1 is the mean difference in Y between the two groups that are ordinally
lowest in age. In this example, b1 = −0.090, which is indeed Y2 − Y1 =

3.111 − 3.201 (from Table 10.2). These means are not statistically different
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from each other, t(457) = −0.944, p = .346. Generation X is no more or less
willing to self-censor, on average, than Generation Y.

This same reasoning leads to the derivation that b2 is the mean difference
Y between the groups in the second and third ordinal position. In this case,
this is the baby boomers versus Generation X. For baby boomers,

Y3 = b0 + b11 + b21 + b30

Y3 = b0 + b1 + b2

but b0 + b1 = Y2, and so
Y3 = Y2 + b2

and isolation of b2 results in

b2 = Y3 − Y2.

In this example, b2 = −0.254, which is Y3 − Y2 = 2.857 − 3.111. Baby
boomers are less willing to self-censor, on average, than Generation X,
t(457) = −4.361, p < .001. Following this same logic leads to the conclusion
that pre-baby boomers do not differ significantly from baby boomers, on
average, in their willingness to self-censor, b3 = −0.055, t(457) = −0.846, p =
.398. Observe that b3 = Y4 − Y3 = 2.802 − 2.857.

It should be apparent why sequential coding can also be called adjacent
categories coding. It would be the coding system to use if you are interested
in comparing how Y changes with incremental increases in the ordinal
multicategorical predictor represented with the g−1 dummy variables. This
could be especially useful when the g categories can be ranked on some a
priori basis on some dimension such as cost or difficulty in implementation.
For instance, perhaps five drugs differ in the amount they cost. Each bj

quantifies the increase in Y associated with each additional cost increase,
and hypothesis tests formally examine whether the increase in Y associated
with an additional step up in cost is statistically significant.

It might be apparent already to you that sequential coding does not
require that the multicategorical variable be ordinal. It could be used for a
nominal multicategorical variable as well if you strategically “ordered” the
nominal categories in such a way that the regression coefficients that result
quantify the mean differences of interest.
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TABLE 10.6. Helmert Coding of Three or Four Ordinal Categories

Ordinal position D1 D2 D3 Mean of Y
(low to high)

g = 3 groups

1 −2/3 0 — Y1 = b0 − (2/3)b1

2 1/3 −1/2 — Y2 = b0 + (1/3)b1 − (1/2)b2

3 1/3 1/2 — Y3 = b0 + (1/3)b1 + (1/2)b2

g = 4 groups

1 −3/4 0 0 Y1 = b0 − (3/4)b1

2 1/4 −2/3 0 Y2 = b0 + (1/4)b1 − (2/3)b2

3 1/4 1/3 −1/2 Y3 = b0 + (1/4)b1 + (1/3)b2 − (1/2)b3

4 1/4 1/3 1/2 Y4 = b0 + (1/4)b1 + (1/3)b2 + (1/2)b3

10.1.2 Helmert Coding

Sequential coding results in regression coefficients that quantify the dif-
ference between means for groups ordinally adjacent to each other on the
variable defining groups. An alternative coding system useful for ordinal
multicategorical variables is Helmert coding. This method of coding groups
results in regression coefficients that quantify the difference in means be-
tween one group and the mean of the means of all groups ordinally higher
on the multicategorical variable defining groups.

Table 10.6 shows a set of Helmert codes for three as well as four groups,
and Table 10.7 provides the general algorithm for constructing codes for
five or more groups. Regressing willingness to self-censor on D1, D2, and
D3 using the Helmert codes in Table 10.3, the resulting model is (see Table
10.4)

Ŷ = 2.993 − 0.278D1 − 0.282D2 − 0.055D3

with the same R as when groups were coded with indicator or sequential
codes, and the same F- and p-values for testing the null hypothesis that
TR = 0. And the model generates Ŷ values that correspond to the groups
means:
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TABLE 10.7. Helmert Coding of g Categories, g ≥ 5

Ordinal position D1 D2 D3 · · · Dg−1

(low to high)

1 −(g − 1)/g 0 0 · · · 0
2 1/g −(g − 2)/(g − 1) 0 · · · 0
3 1/g 1/(g − 1) −(g − 3)/(g − 2) · · · 0
...

g − 1 1/g 1/(g − 1) 1/(g − 2) · · · −1/2
g 1/g 1/(g − 1) 1/(g − 2) · · · 1/2

Ŷ1 = 2.993 − 0.278(−3/4) − 0.282(0) − 0.055(0) = 3.201 = Y1

Ŷ2 = 2.993 − 0.278(1/4) − 0.282(−2/3) − 0.055(0) = 3.111 = Y2

Ŷ3 = 2.993 − 0.278(1/4) − 0.282(1/3) − 0.055(−1/2) = 2.857 = Y3

Ŷ4 = 2.993 − 0.278(1/4) − 0.282(1/3) − 0.055(1/2) = 2.802 = Y4

So mathematically, this model is no different than any other model of the
groups means we have estimated in that it generates the same estimates
of Y and fits exactly the same. But the regression coefficients are different,
because they quantify different things now.

Tables 10.3 and 10.6 contains the formulas used to derive each group’s
mean from the regression model, and the computations above are com-
pleted for this example. As can be seen,

Y1 = b0 − (3/4)b1 (10.1)

What cannot be seen quite as easily is that the mean of the three means
for the groups ordinally higher than group 1 on the variable defining the
groups is

Y2 + Y3 + Y4

3
=

b0 + b1/4 − 2b2/3
3

+
b0 + b1/4 + b2/3 − b3/2

3
+

b0 + b1/4 + b2/3 + b3/2
3
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which, happily, reduces to a much simpler form:

Y2 + Y3 + Y4

3
= b0 + (1/4)b1 (10.2)

Substraction of equation 10.1 from equation 10.2 yields

(b0 + b1/4) − (b0 − 3b1/4) =
Y2 + Y3 + Y4

3
− Y1

b1 =
Y2 + Y3 + Y4

3
− Y1

and so b1 quantifies the difference between Y1 and the average of Y2, Y3,
and Y4. Indeed, observe in this example that

Y2 + Y3 + Y4

3
− Y1 =

3.111 + 2.857 + 2.802
3

− 3.201 = −0.278 = b1

The t-statistic and p-value are used to test whether these two means are
statistically different. In this example, we can conclude that generations
older than Generation Y are less willing to self-censor on average than are
members of Generation Y, b1 = −0.278, t(457) = −3.133, p = .002.

Similar derivations lead to similar interpretations of b2 and b3:

b2 =
Y3 + Y4

2
− Y2

b3 = Y4 − Y3

which is indeed the case in this example:

b2 =
2.857 + 2.802

2
− 3.111 = −0.282

b3 = Y4 − Y3 = 2.802 − 2.857 = −0.055

Generations older than Generation X are less willing to self-censor on av-
erage than are members of Generation X, b2 = −0.282, t(457) = −5.240, p <
.001, but there is no statistically significant difference in average will-
ingness to self-censor between baby boomers and pre-baby boomers,
b3 = −0.055, t(457) = −0.846, p = .398. Notice that b3 is the same with
Helmert coding as it was in section 10.1.1 when using sequential coding.
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So when using Helmert coding, bj, the regression coefficient for Dj,
estimates the difference between Yj and the unweighted mean of means for
all groups ordinally higher than group j on the variable defining groups.
The t- and p-values can be used to test the null hypothesis that these means
are equal.

Thus far we have neglected the regression constant, b0. In this example,
b0 = 2.993, which is equal to the mean of the four group means:

b0 =
Y1 + Y2 + Y3 + Y4

4

b0 =
3.201 + 3.111 + 2.857 + 2.802

4
b0 = 2.993

More generally, when using Helmert coding in this fashion (and assuming
no other regressors are in the model, as in this case), the regression constant
is the unweighted mean of all the group means.

A variation on Helmert coding is reverse Helmert coding. With reverse
Helmert coding, the regression coefficient bj quantifies the difference be-
tween the mean of Y for the group in ordinal position j on the variable
defining groups and the unweighted average mean of Y for all groups
ordinally lower than position j. Although reverse Helmert coding has a
different name, there is no need here to provide detail about how the codes
are constructed. This is because you can mimic reverse Helmert coding by
using ordinary Helmert coding of the ordinal categories as in Tables 10.3,
10.6, and 10.7, but after first ordering the groups on the variable that defines
them from high to low rather than low to high.

Helmert coding can be useful even when the multicategorical variable
is nominal. For example, perhaps you have conducted an experiment
with four conditions that consist of a control group and three experimental
treatment conditions, with the treatment being a manipulation of a variable
that is not quantitative in any sense of the word. If you use numerical
codes for the four conditions strategically, then you can use Helmert coding
(though it wouldn’t generally be called this) to set up a set of comparisons
between the mean of group 1 (say, the control group) versus the mean of
the three treatment groups, the mean of the first treatment group versus
the mean of the other two treatment groups, and the mean of the second
treatment group versus the mean of the third treatment group.
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10.1.3 Effect Coding

Effect coding is a minor variation on indicator coding, but the reference
against which group means are compared changes. Recall that in indicator
coding, one of the g groups receives a code of zero on all indicator variables,
and that group ends up the reference group against which all other group
means are compared.

With effect coding, a set of g − 1 variables Dj are constructed just as
in indicator coding, but the group left “uncoded” is set to −1 on all Dj

rather 0, as in Table 10.8. Thus, the g− 1 Dj variables are no longer dummy
variables, as they contain three values (0, 1, or −1) rather than only two.
This minor change in coding has an important effect on the interpretation
of the regression coefficients and the constant relative to indicator coding.

When willingness to self-censor is regressed on D1, D2, and D3 using
the effect coding system for age in Table 10.3, the resulting model is (see
Table 10.4)

Ŷ = 2.993 + 0.208D1 + 0.119D2 − 0.136D3

with the same R as when groups were coded with indicator, sequential, or
Helmert codes, and the same F- and p-value for testing the null hypothesis
that TR = 0. And the model generates Ŷ values that equal the group means:

Ŷ1 = 2.993 + 0.208(1) + 0.119(0) − 0.136(0) = 3.201 = Y1

Ŷ2 = 2.993 + 0.208(0) + 0.119(1) − 0.136(0) = 3.111 = Y2

Ŷ3 = 2.993 + 0.208(0) + 0.119(0) − 0.136(1) = 2.857 = Y3

Ŷ4 = 2.993 + 0.208(−1) + 0.119(−1) − 0.136(−1) = 2.802 = Y4

So mathematically, this model is no different than any other model of the
groups means we have estimated, in that it generates the same estimates
of Y and fits exactly the same.

With indicator coding, bj quantifies the difference between the mean of
the group coded by Dj and the reference group. But with effect coding, bj

is the difference in the mean of group j and the mean of all g group means.
That is,

bj = Yj −
Y1 + Y2 + · · · + Yg

g

and the t- and p-values for each bj tests the null hypothesis that Yj equals
the mean of all group means. Assuming no additional variables are in
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TABLE 10.8. Effect Coding of g Categories

Group D1 D2 · · · Dj · · · Dg−1

1 1 0 · · · 0 · · · 0
2 0 1 · · · 0 · · · 0
...
j 0 0 · · · 1 · · · 0
...

g − 1 0 0 · · · 0 · · · 1
g −1 −1 · · · −1 · · · −1

the model, the regression constant is that unweighted mean of all g group
means. For example, from Table 10.2

b0 =
Y1 + Y2 + Y3 + Y4

4
=

3.201 + 3.111 + 2.857 + 2.802
4

= 2.993

and

b1 = Y1 − Y1 + Y2 + Y3 + Y4

4
= 3.201 − 2.993 = 0.208

b2 = Y2 − Y1 + Y2 + Y3 + Y4

4
= 3.111 − 2.993 = 0.119

b3 = Y3 − Y1 + Y2 + Y3 + Y4

4
= 2.857 − 2.993 = −0.136

all of which correspond to the model coefficients from Table 10.4. We
can conclude that Generation Y is more willing to self-censor than average,
t(457) = 3.133, p = .002, as is Generation X, t(457) = 2.841, p = .005. But baby
boomers are less willing to self-censor than average, t(457) = −3.376, p =
.001

Missing from this analysis is a comparison of the pre-baby boomers to
the average. This finding is sacrificed by the requirement that only g − 1
variables coding group can be used in the model. But this comparison can
be obtained by rerunning the analysis, setting a different group to receive
the −1 codes on all Dj.
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10.2 Comparisons and Contrasts

10.2.1 Contrasts

Many questions about differences between group means can be phrased
as questions about contrasts. The simplest type of contrast is a pairwise
comparison, which is the difference between two means. Some of the coding
systems described in sections 9.1.1 and 10.1 produce regression coefficients
and hypothesis tests that yield pairwise comparisons, such as the g−1 com-
parisons between each group mean and a reference group mean when using
indicator coding or between group means for groups ordinally adjacent on
the ordinal, multicategorical variable when using sequential coding.

More complex contrasts involve more than two means. For instance,
perhaps an investigator is entertaining the efficacy of five different therapies
for the treatment of depression. Perhaps methods 1, 2, and 3 are all based
on principles of theory A about how people think and feel, and methods
4 and 5 are based on a second theoretical orientation B, perhaps one that
also includes the use of medication. One might want to know whether
clients who are treated with one of the theory A methods differ, on average,
in depression 6 months later than clients treated with one of the theory B
methods. In this example, the mean depression of those those treated by
theory A could be expressed as (Y1 + Y2 + Y3)/3 and the mean depression
of those treated by theory B would be (Y4 + Y5)/2. The difference between
these,

Y1 + Y2 + Y3

3
− Y4 + Y5

2
is a more complex comparison involving several group means rather than
a simple pairwise comparison.

Any contrast, whether a pairwise comparison or more complex, can be
expressed as a weighted sum of means of the form

Contrast =
g∑

j=1

cjYj (10.3)

where cj is the contrast coefficient for group j and
∑

cj = 0. For instance, the
complex contrast above can be expressed as

Contrast = (1/3)Y1 + (1/3)Y2 + (1/3)Y3 + (−1/2)Y4 + (−1/2)Y5 (10.4)
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which is a weighted sum of means as in equation 10.3 with c1 = c2 = c3 = 1/3
and c4 = c5 = −1/2.

There is no requirement that all contrast coefficients be nonzero, so long
as they sum to zero. For example, a pairwise comparison among a set of five
means that compares only the means of groups 1 and 2 can be written as

Contrast = (1)Y1 + (−1)Y2 + (0)Y3 + (0)Y4 + (0)Y5

which is in the form of equation 10.3 with c1 = 1, c2 = −1 and c3 = c4 = c5 =

0. Observe that this simplifies to Y1 − Y2.
We can multiply contrast coefficients by a constant without affecting

the results of statistical tests of contrasts. This can be especially convenient
when a coefficient in fractional form cannot be expressed in decimal form
without some rounding or loss of precision (such as 1/3 = 0.33333 . . . ). For
instance, the complex contrast in equation 10.4 can be expressed as

Contrast = (2)Y1 + (2)Y2 + (2)Y3 + (−3)Y4 + (−3)Y5

which results from multiplying all contrast coefficients by six. The result-
ing contrast will be six times larger as a result, but the standard error as
generated by the formula in section 10.2.2 will also be six times larger to
compensate, so the p-value from a hypothesis test is unaffected. We’ll see
this illustrated in section 10.2.3.

To illustrate the computations, let’s use contrast coefficients to gener-
ate a contrast of the average willingness to self-censor of Generation Y
compared to everyone else. That is,

Y2 + Y3 + Y4

3
− Y1

We’ll also construct a contrast comparing the average willingness to self-
censor of Generation X and Generation Y relative to baby boomers and
pre-baby boomers, which is

Y1 + Y2

2
− Y3 + Y4

2

For the former contrast, we use contrast coefficients of c1 = −1, c2 = 1/3,
c3 = 1/3, and c4 = 1/3, for Generation Y, Generation X, baby boomers, and
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pre-baby boomers, respectively. Notice these add up to zero, as required
for a proper contrast. Applying equation 10.3 yields

Contrast = (1/3)Y2 + (1/3)Y3 + (1/3)Y4 − Y1

= (1/3)3.111 − (1/3)2.857 − (1/3)2.802) − (1)Y1

= −0.278

which is interpreted to mean that Generation Y is estimated to be, on
average, 0.278 units higher in willingness to self-censor than the average
willingness to self-censor of Generation X, baby boomers, and pre-baby
boomers. Note that this contrast is identical to b1 from the regression
model when using Helmert coding of groups (see Table 10.4).

The second contrast requires contrast coefficients of c1 = 1/2, c2 = 1/2,
c3 = −1/2, and c4 = −1/2, respectively, which add to zero as required.
Applying equation 10.3 produces

Contrast = (1/2)Y1 + (1/2)Y2 + (−1/2)Y3 + (−1/2)Y4

= (1/2)3.201 + (1/2)3.111 − (1/2)2.857 − (1/2)2.802

= 0.327

So Generations X and Y are estimated as, on average, 0.327 units higher in
willingness to self-censor than baby boomers and pre-baby boomers.

10.2.2 Computing the Standard Error of a Contrast

For inference, we need an estimate of the standard error of the contrast.
When regression analysis is used to emulate analysis of variance with g
groups, some simple hand computations yield the standard error using
only the contrast coefficients, group sample sizes, and MSresidual from the
regression. The formula is

SE(contrast) =

√√√√
MSresidual

g∑
j=1

c2
j

nj
(10.5)

With the standard error for a contrast computed, a test of significance for
the null hypothesis that the contrast equals zero can be conducted using

t =
Contrast

SE(contrast)
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and generating a p-value using the t(dfresidual) distribution. Alternatively,
a confidence interval can be constructed in the usual way as the point
estimate plus or minus tcrit standard errors, where tcrit is from a table of
critical values of t for an interval corresponding to a certain degree of
confidence (see Appendix C).

For the contrast comparing the mean of Generation Y against the mean
of the other three group means, applying equation 10.5 using the means
and group sample sizes in Table 10.2 and the MSresidual from any of the
regression models in Table 10.4 results in

SE(contrast) =

√
0.273

(
(−1)2

38
+

(1/3)2

149
+

(1/3)2

173
+

(1/3)2

101

)
= 0.089

and so t(457) = −0.278/0.089 = −3.133, p < .001. This contrast of means
is statistically significant. Notice that the standard error of this contrast is
identical to the standard error of b1 in the model of Y using Helmert coding.
So clearly, given that this contrast is just a comparison of the ordinally
lowest age group against all others, much work is saved conducting this
contrast by just using Helmert coding and regressing willingness to self-
censor on the Helmert codes.

None of the coding systems described in section 10.1 yield the second
contrast results comparing the mean of the means of Generation X and
Generation Y to the mean of the means of baby boomers and pre-baby
boomers. The estimated standard error of this contrast is

SE(contrast) =

√
0.273

(
(1/2)2

38
+

(1/2)2

149
+

(−1/2)2

173
+

(−1/2)2

101

)
= 0.058

and so t(457) = 0.327/0.058 = 5.638, which is statistically significant, p <
.001.

10.2.3 Contrasts Using Statistical Software

These computations need not be conducted by hand if you have a statistics
program capable of doing them. Most good programs can these days.
You will probably find options for conducting contrasts in your program’s
ANOVA routine rather than its regression module, as historically it is in
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Descriptives

WTSC: Willingness to Self-CensorWTSC: Willingness to Self-Censor

N Mean Std. Deviation Std. Error

95% Confidence Interval for Mean

Minimum MaximumLower Bound Upper Bound

Generation Y

Generation X

Baby boomer

Pre baby boomer

Total

38 3.2013 .49403 .08014 3.0389 3.3637 2.12 4.37

149 3.1117 .62201 .05096 3.0110 3.2124 1.25 5.00

173 2.8573 .46793 .03558 2.7871 2.9275 1.87 4.50

101 2.8020 .45420 .04519 2.7123 2.8916 1.75 4.00

461 2.9558 .54086 .02519 2.9063 3.0053 1.25 5.00

WTSC Willi S lf C

ANOVA

WTSC: Willingness to Self-Censor

Sum of 
Squares df Mean Square F Sig.

Between Groups

Within Groups

Total

9.983 3 3.328 12.207 .000

124.581 457 .273

134.564 460

WTSC Willi S lf C

Contrast Coefficients

Contrast

COHORT: Age cohort

Generation Y Generation X Baby boomer
Pre baby 
boomer

1

2

-3 1 1 1

.5 .5 -.5 -.5

Contrast Tests

Contrast
Value of 
Contrast Std. Error t df Sig. (2-tailed)

WTSC: Willingness to Self-
Censor

Assume equal variances 1

2

Does not assume equal 
variances

1

2

-.8329 .26584 -3.133 457 .002

.3269 .05762 5.674 457 .000

-.8329 .25241 -3.300 44.897 .002

.3269 .05551 5.888 125.437 .000

FIGURE 10.1. SPSS output from a one-way ANOVA with two contrasts.

the context of ANOVA that contrasts are usually introduced in textbooks
and classrooms.

In SPSS, for example, the command below will conduct an analysis of
variance testing for a difference in mean willingness to self-censor between
the four age cohorts, while also conducting the two contrasts described
earlier by specifying the appropriate contrast coefficients following the
contrast option.

oneway wtsc by cohort/contrast -3 1 1 1/contrast 0.5 0.5 -0.5 -0.5

/statistics descriptive.

In this command, the coefficients for the first contrast were multiplied
by 3. SPSS’s ONEWAY module does not allow fractions such as “1/3” in
the contrast line, and 1/3 cannot be represented in decimal form exactly.
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Observe from the output in Figure 10.1 that the resulting contrast is
three times larger than when computed using fractional coefficients, but
the standard error is also three times larger. As a result, the t-ratio and
p-value are the same as when fractional coefficients are used. Because 1/2
can be represented exactly in decimal form, there is no need to multiply the
coefficients by a constant for the second contrast.

Comparable code for SAS is

proc glm data=wtsc;

class cohort;model wtsc=cohort;means cohort;

contrast ’1 vs 2 3 4’ cohort -3 1 1 1;

contrast ’1 2 vs 3 4’ cohort 0.5 0.5 -0.5 -0.5;

run;

In SAS you must provide a name for the contrast in quotes, as above,
prior to listing the coefficients. SAS will produce the contrasts in the form
of F-ratios with 1 and dfresidual degrees of freedom, along with a p-value
corresponding to the test of the null that the contrast equals zero.

SPSS’s UNIANOVA module has some options built in to do contrasts
that correspond to the coding systems described in this chapter. For in-
stance, the command below conducts a one-way ANOVA while also pro-
ducing output for contrasts equivalent to those generated by Helmert,
sequential (repeated), and indicator (simple) coding of groups.

unianova wtsc by cohort/emmeans=tables(cohort)/contrast (cohort)=

helmert/contrast (cohort)=repeated/contrast (cohort)=simple.

Consult your preferred program’s documentation to see if it is capable of
doing comparable analyses.

10.2.4 Covariates and the Comparison of Adjusted Means

Adjusted means were introduced in sections 9.2.4 and 9.2.6 as estimates of
group means if all groups were average on a covariate or covariates. We
saw in those sections that the regression coefficients for indicator codes can
be interpreted as differences between adjusted means whenever a covariate
is included in the model along with the codes for groups, and hypothesis
tests or confidence intervals used for inference.

Covariates can be included in a model when groups are represented
with any coding system, including sequential, Helmert, and effect coding.
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When covariates are included, the interpretation we gave to the regres-
sion coefficients in section 10.1 apply to adjusted means rather than to the
unadjusted means.

To illustrate, we examine differences between the four age groups in
willingness to self-censor, with shyness used as as a covariate and using
Helmert coding of age cohort. Research shows that people who are rel-
atively higher in willingness to self-censor are also relatively higher on
measures of shyness (Hayes et al., 2005), so it is worth examining whether
the differences in willingness to self-censor exist independent of any differ-
ences between groups in their average shyness. A measure of shyness was
included in the survey and is available in the data file, so it is a simple mat-
ter to adjust for shyness by simply including it as an additional regressor
in the model. The resulting regression equation is

Ŷ = 2.187 − 0.163D1 − 0.133D2 + 0.028D3 + 0.281X1 (10.6)

where X1 is shyness. Corresponding regression output (from SAS, though
SPSS and STATA output provide the same information) can be found in
Figure 10.2. Applying the test discussed in section 9.2.2 results in SR2 =

ΔR2 = .019, F(3, 456) = 4.256, p = .006. So the groups differ on average
in willingness to self-censor even after accounting for differences between
them in shyness.

Setting shyness to the sample mean (in the data, X1 = 2.832) and plug-
ging the Helmert codes into equation 10.6 generates the adjusted mean
willingness to self-censor for each group:

Ŷ1 = 2.187 − 0.163(−3/4) − 0.133(0) + 0.028(0) + 0.281(2.832) = 3.105

Ŷ2 = 2.187 − 0.163(1/4) − 0.133(−2/3) + 0.028(0) + 0.281(2.832) = 3.031

Ŷ3 = 2.187 − 0.163(1/4) − 0.133(1/3) + 0.028(−1/2) + 0.281(2.832) = 2.884

Ŷ4 = 2.187 − 0.163(1/4) − 0.133(1/3) + 0.028(1/2) + 0.281(2.832) = 2.912

The computations described in section 10.1.2 but substituting the adjusted
means for the unadjusted means reveals that the regression coefficients
quantify differences between adjusted means (or means of adjusted means):
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b1 =
Ŷ2 + Ŷ3 + Ŷ4

3
− Ŷ1

=
3.031 + 2.884 + 2.912

3
− 3.105

= −0.163

b2 =
Ŷ3 + Ŷ4

2
− Ŷ2

=
2.884 + 2.912

2
− 3.031

= −0.133

b3 = Ŷ4 − Ŷ3

= 2.912 − 2.884

= 0.028

Standard errors for these differences are available in regression output,
along with t- and p-values and confidence intervals if desired. As can be
seen in Figure 10.2, holding shyness constant (at the mean or any other
value else), Generation Y is more willing to self-censor than those older;
t(456) = −2.107, p = 0.036; and Generation X is more willing to self-censor
than those older; t(456) = −2.748, p = .006; but baby boomers and pre-baby
boomers do not differ significantly in willingness to self-censor; t(456) =
0.495, p = .621.

Complex contrasts between means were introduced in section 10.2.1.
A contrast is a weighted sum of means, with the weighting determined
by a group’s contrast coefficient. Although equation 10.3 can be applied
to adjusted means, the standard error of a contrast involving weighted
means cannot be calculated using equation 10.5. The proper formula is
complex, especially when more than one covariate is in the model. It is
best to leave the production of the standard error for a complex contrast
involving adjusted means to a computer.

In SPSS, the command below produces a complex contrast comparing
the adjusted mean of Generation X to the mean of the adjusted means of
all other groups, as well as a contrast comparing the mean of the adjusted
means for Generations X and Y against mean of the adjusted means for baby
boomers and pre-baby boomers. See a discussion of this latter contrast in
section 10.2.1 for how the contrast coefficients are selected. The result
of the first contrast is identical to the estimate and hypothesis test for b1
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                                   The REG Procedure

                                     Model: MODEL1

                               Dependent Variable: wtsc

                        Number of Observations Read         461

                        Number of Observations Used         461

                                 Analysis of Variance

                                              Sum of           Mean

  Source                   DF        Squares         Square    F Value    Pr > F

  Model                     4       41.00281       10.25070      49.96    <.0001

  Error                   456       93.56104        0.20518

  Corrected Total         460      134.56385

                 Root MSE              0.45297    R-Square     0.3047

                 Dependent Mean        2.95577    Adj R-Sq     0.2986

                 Coeff Var            15.32479

                               Parameter Estimates

                            Parameter       Standard

      Variable     DF       Estimate          Error    t Value    Pr > |t|

       Intercept     1        2.18674        0.07018      31.16      <.0001

       d1            1       -0.16317        0.07744      -2.11      0.0357

       d2            1       -0.13263        0.04826      -2.75      0.0062

       d3            1        0.02826        0.05713       0.49      0.6211

       shy           1        0.28122        0.02287      12.30      <.0001

                  Test 1 Results for Dependent Variable wtsc

                                           Mean

           Source             DF         Square    F Value    Pr > F

           Numerator           3        0.87325       4.26    0.0056

           Denominator       456        0.20518

FIGURE 10.2. SAS output from a regression estimating willingness to self-censor from
age cohort controlling for shyness.

in the example above when Helmert coding was used to code groups.
The second shows that the means of these adjusted means are statistically
different, contrast = −0.170, t(456) = 3.295, p < .01. SAS produces the result
in the form of an F-ratio rather than a t-statistic.

glm wtsc by cohort with shy/emmeans=tables(cohort)/

lmatrix cohort -1 1/3 1/3 1/3/lmatrix cohort -0.5 -0.5 0.5 0.5.

In SAS the comparable commands are

proc glm data=wtsc;

class cohort;model wtsc=cohort shy;lsmeans cohort;

contrast ’1 vs 2 3 4’ cohort 3 -1 -1 -1;
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contrast ’1 2 vs 3 4’ cohort 0.5 0.5 -0.5 -0.5;

run;

10.3 Weighted Group Coding and Contrasts

Section 10.1 described various methods for coding a multicategorical vari-
able that produced regression coefficients that correspond to a comparison
between two means. For indicator and sequential coding, the regression
coefficients for each code quantified a difference between the means of
two and only two groups. But for Helmert and effect coding, the regres-
sion coefficients quantified the difference between one group mean and an
unweighted mean of the means of two or more groups.

For example, when Helmert coding was used in section 10.1.2, the
regression coefficient of −0.278 for D1 quantified the difference in mean
willingness to self-censor between Generation Y (3.201) and the mean of
the three means for the groups older than Generation Y (2.923). The mean
for everyone older than Generation Y was constructed as

Y2 + Y3 + Y4

3
=

3.111 + 2.857 + 2.802
3

= 2.923

This is an unweighted mean, in that ignores the differences in sample sizes
between the three groups that contribute to it. Notice from Table 10.2 that
there are 149 in the sample from Generation X, 173 baby boomers, and 101
pre-baby boomers. So the 101 pre-baby boomers contribute as much to the
construction of this mean of means as the 173 baby boomers, even though
there are substantially fewer pre-baby boomers in the data. If this bothers
you, then read this section, where we describe versions of Helmert, effect
coding, and contrasts that acknowledge differences between the group
sample sizes whenever one of the means being compared is formed as a
mean of means.

10.3.1 Weighted Effect Coding

We saw in section 10.1.3 that the youngest three cohorts (Generation Y,
Generation X, and baby boomers) differ from average in their willingness
to self-censor, where average was defined as the mean of the four group
means. But this was an unweighted average of the four group means,
meaning it ignored the fact that the four age cohorts differ in size. If you
want the average against which each mean is compared when using effect
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TABLE 10.9. Weighted Effect Coding of g Categories

Group ( j) D1 D2 · · · Dj · · · Dg−1

1 1 0 · · · 0 · · · 0
2 0 1 · · · 0 · · · 0
...
j 0 0 · · · 1 · · · 0
...

g − 1 0 0 · · · 0 · · · 1
g −n1/ng −n2/ng · · · −nj/ng · · · −ng−1/ng

coding to incorporate group size, you can use weighted effect coding. It
requires replacing the −1 codes used in effect coding with ratios of group
sizes. More specifically, if ng is the sample size for the group coded −1 on
all Dj, replace the −1 for Dj with −nj/ng. See Table 10.9.

For example, in these data there are 38 people from Generation Y, 149
people from Generation X, 173 baby boomers, and 101 pre-baby boomers.
Thus, we change the −1 values for Dj for the pre-baby boomers to D1 =

−38/101, D2 = −149/101, and D3 = −173/101 (see Table 10.10). Regressing
willingness to self-censor on these weighted effect codes yields

Ŷ = 2.956 + 0.246D1 + 0.156D2 − 0.098D3

(see Table 10.11). As with all the other coding systems used in section 10.1,
the model fits the same, and it reproduces the group means. Now b0 is
the weighted mean of means (which is equivalent to just calculating the
average of Y ignoring age cohort entirely):

b0 =
n1Y1 + n2Y2 + n3Y3 + n4Y4

n1 + n2 + n3 + n4

b0 =
38(3.201) + 149(3.111) + 173(2.857) + 101(2.802)

461
b0 = 2.956
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and bj is the difference between the mean Y for the group receiving Dj = 1
and the weighted mean of all g group means on Y:

b1 = Y1 − 2.956 = 3.201 − 2.956 = 0.246

b2 = Y2 − 2.956 = 3.111 − 2.956 = 0.156

b3 = Y3 − 2.956 = 2.857 − 2.956 = −0.098

As when using unweighted effect coding, we conclude that Generation
Y is more willing to self-censor than average, t(457) = 3.026, p = .003, as
is Generation X, t(457) = 4.433, p < .001, whereas baby boomers are less
willing to self-censor than average, t(457) = −3.139, p = .002.

10.3.2 Weighted Helmert Coding

Weighted Helmert coding is comparable to Helmert coding, in that it gen-
erates regression coefficients that compare the mean Y of one group to the
mean Y of all groups ordinally higher on the variable coding groups. How-
ever, for weighted Helmert coding the mean of Y for all groups higher than
ordinal position j is a weighted mean rather than an unweighted mean.

There is no way of representing how to generate weighted Helmert
codes with a simple algorithm in table form as in Table 10.7. Construction
of weighted Helmert codes requires matrix algebra. But an understanding
of matrix algebra is not required to implement this coding system using
the syntax we provide at the end of the section. However, you do need to
know how to construct the matrix that is used as input into the syntax.

The first step is the construction of a g × (g − 1) matrix that takes the
form in Table 10.12, where g is the number of groups and nj+ is the sum of
the sample sizes for groups in ordinal position j or higher on the variable
defining the groups. That is,

nj+ =

g∑
i= j

ni

For example, from the size of the age cohorts in the willingness to self-
censor data (see Table 10.2), n2+ = n2 + n3 + n4 = 149 + 173 + 101 = 423,
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TABLE 10.10. Weighted Effect and Helmert Coding and the Group Means Defined in
Terms of the Regression Coefficients and Regression Constant

Age cohort by D1 D2 D3

increasing age

Weighted effect coding

Generation Y 1 0 0
Generation X 0 1 0
Baby boomer 0 0 1
Pre-baby boomer −38/101 −149/101 −173/101

Weighted Helmert coding

Generation Y −.7500000000 −.0141843972 −.0656934307
Generation X .2500000000 −.6619385343 −.0656934307
Baby boomer .2500000000 .3380614657 −.4343065693
Pre-baby boomer .2500000000 .3380614657 .5656934307

TABLE 10.11. Estimating Willingness to Self-Censor from Age Cohort Using the Coding
Systems in Table 10.10

Coeff. SE t p

Weighted effect coding
(Pre-baby boomers uncoded)
R = 0.272, F(3, 457) = 12.207, p < .001

Constant b0 2.956 0.024 121.550 < .001
D1 b1 0.246 0.081 3.026 .003
D2 b2 0.156 0.035 4.443 < .001
D3 b3 −0.098 0.031 −3.139 .002

Weighted Helmert coding
R = 0.272, F(3, 457) = 12.207, p < .001

Constant b0 2.993 0.029 103.898 < .001
D1 b1 −0.268 0.088 −3.026 .003
D2 b2 −0.275 0.053 −5.172 < .001
D3 b3 −0.055 0.065 −0.846 .398
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TABLE 10.12. Construction of the Input Matrix for Weighted Helmert Coding

Column
1 2 3 · · · g − 1

Row

1 −1 0 0 · · · 0
2 n2/n2+ −1 0 · · · 0
3 n3/n2+ n3/n3+ −1 · · · 0
...

g − 1 ng−1/n2+ ng−1/n3+ ng−1/n(g−1)+ · · · −1
g ng/n2+ ng/n3+ ng/n(g−1)+ · · · 1

n3+ = n3 + n4 = 173 + 101 = 274, and n4+ = 101. So with g = 4 groups as in
this example, the 4 × 3 matrix would be

−1 0 0
n2/n2+ −1 0
n3/n2+ n3/n3+ −1
n4/n2+ n4/n3+ 1

or, in terms of the group sample sizes in the four age cohorts,

−1 0 0
149/423 −1 0
173/423 173/274 −1
101/423 101/274 1

Once this matrix is constructed, it is manipulated through matrix algebra to
produce a g× (g−1) matrix that contains the g−1 sets of weighted Helmert
codes for the g groups, where rows correspond to groups and columns are
the codes D1, D2, and so forth. In this example, the resulting matrix is

−.7500000000 −.0141843972 −.0656934307
.2500000000 −.6619385343 −.0656934307
.2500000000 .3380614657 −.4343065693
.2500000000 .3380614657 .5656934307
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which are the codes for D1, D2, and D3 found in Table 10.10. Regressing
willingness to self-censor on D1, D2, and D3 using these weighted Helmert
codes yields the following model:

Ŷ = 2.993 − 0.268D1 − 0.274D2 − 0.055D3

(see Table 10.4) with the same R as when any other coding system is used,
as well as the same F- and p-values for testing the null that TR = 0. And
the model generates Ŷ values that correspond to the group means.

So mathematically, this model is no different than any other model of
the groups means we have constructed so far, in that it generates the same
estimates of Y and fits exactly the same. But now the regression coefficient
for Dj quantifies the difference between Yj and the weighted mean of the
means of Y for all groups coded higher than j on the variable quantifying
the groups:

b1 =

(
149Y2

423
+

173Y3

423
+

101Y4

423

)
− Y1 = 2.933 − 3.201 = −0.268

b2 =

(
173Y3

274
+

101Y4

274

)
− Y2 = 2.837 − 3.111 = −0.274

b3 = Y4 − Y3 = 2.802 − 2.857 = −0.055

The t-statistic and p-value for each regression coefficient tests the null hy-
pothesis that the difference between the corresponding true means is equal
to zero. As can be seen comparing the results when using unweighted
to weighted Helmert coding (Tables 10.4 and 10.11), the results are very
similar in this case, although this won’t always be true. Generation Y self-
censors less on average than those older, and Generation X self-censors on
average more than those older, but baby boomers self-censor no more on
average than pre-baby boomers.

The matrix computations are very tedious to do by hand. Fortunately,
many good statistics programs have built-in features to do matrix com-
putations. The SPSS code below takes the input matrix, implements the
matrix algebra, and outputs the matrix of weighted Helmert codes. You
can then construct D1, D2, and D3 using if and compute commands. See
the Syntax Reference Manual for guidance or consult a local expert.

matrix.

compute m=
{
-1.0000, 0.0000, 0.0000;
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149/423,-1.0000, 0.0000;

173/423,173/274,-1.0000;

101/423,101/274, 1.0000
}
.

compute d=m*inv(t(m)*m).

print d.

end matrix.

In SAS, matrix operations can be conducted using PROC IML, which is an
optional package. Check your installation. The comparable code in SAS
is

proc iml;

m=
{
-1.000000000 0.000000000 0.000000000,

0.352245862 -1.000000000 0.000000000,

0.408983451 0.631386861 -1.000000000,

0.238770685 0.368613138 1.000000000
}
;

d=m*inv(m`*m);

print d;

quit;

In STATA, try

mata

m=(-1.00000,0.00000,0.00000\
149/423,-1.0000,0.00000\
173/423,173/274,-1.0000\
101/423,101/274, 1.0000)

d=m*luinv(m’*m)

d

end

10.3.3 Weighted Contrasts

Use of weighted Helmert codes generates regression coefficients and tests
of significance, some of which can be interpreted as complex contrasts, a
term and method introduced in section 10.2.1. However, in that discussion,
the contrast involved a comparison of unweighted means. For example,
in that section, we compared average willingness to self-censor among
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Generation Y and Generation X to average willingness to self-censor among
baby boomers and pre-baby boomers:

Contrast =
Y1 + Y2

2
− Y3 + Y4

2
= 3.156 − 2.830

Those two means being compared were unweighted, because the mean
of Generations Y and X was constructed merely by taking the arithmetic
average of Y1 and Y2, ignoring that there are many fewer Generation Y in
the sample than Generation X. Similarly, the mean of the baby boomers and
pre-baby boomers was was constructed as the mean of Y3 and Y4, ignoring
differences in sample size.

Weighted versions of these two means of means would give weight to
Generation X relative to Generation Y, and to baby boomers relative to pre-
baby boomers, in proportion to differences in their sample sizes. So rather
than 3.156 for the combination of Generations X and Y, their weighted mean
would be

38Y1 + 149Y2

187
=

38(3.201) + 149(3.111)
187

= 3.129

Notice that this is closer to the mean of Generation X than Generation
Y, because Generation X contributes more data to the mean. Similarly,
the weighted mean for the combination of baby boomers and pre-baby
boomers would be

173Y3 + 101Y4

274
=

173(2.857) + 101(2.802)
274

= 2.837

rather than 2.830, which is closer to the mean of baby boomers, because its
sample size is larger than the pre-baby boomers.

Complex contrasts can be conducted that compare weighted means
to each other by using the relative sample sizes of the groups, as in the
example computations above. Define a contrast grouping as a set of groups
being combined in a contrast. A contrast always involves two, and only
two, contrast groupings. In this example, contrast grouping 1 is the group
defined as Generation X and Generation Y, and contrast grouping 2 is the
group defined as baby boomers and pre-baby boomers. Now define ngroup1

as the sum of the sample sizes of the groups that define contrast grouping
1, and ngroup2 as the sum of the sample sizes of the groups that define
contrast grouping 2. So in this example, ngroup1 = 38 + 149 = 187 and



306 Regression Analysis and Linear Models

ngroup2 = 173 + 101 = 274. Finally, define λ j as the ratio of group j’s sample
size to the sample size of its corresponding contrast grouping. In this case,

λ1 = n1/ngroup1 = 38/187

λ2 = n2/ngroup1 = 149/187

λ3 = n3/ngroup2 = 173/274

λ4 = n4/ngroup2 = 101/274

With the g = 4 values of λ calculated, a weighted contrast is constructed as

Contrast =
g∑

j=1

cjλ jYj (10.7)

and its standard error estimated as

SE(contrast) =

√√√√√
MSresidual

g∑
j=1

(
cjλ j

)2

nj
(10.8)

where cj is the contrast coefficients for group j as defined in section 10.2.1.
The ratio of the contrast to its standard error is distributed as t(dfresidual),
and a p-value can be constructed using the t-distribution for testing a null
hypothesis about the contrast (e.g., that the two weighted means are equal,
meaning their difference is zero).

In this example, c1 = c2 = 0.5 and c3 = c4 = −0.5. Application of
equation 10.7 yields

Contrast = 0.5(38/187)(3.201) + 0.5(149/187)(3.111)−
0.5(173/274)(2.857) − 0.5(101/274)(2.802)

= 0.146

and equation 10.8 generates

SE(contrast) =

√√√√√
0.273

⎡⎢⎢⎢⎢⎢⎢⎢⎣
(
0.5 38

187

)2

38
+

(
0.5 149

187

)2

149
+

(
−0.5 173

274

)2

173
+

(
−0.5 101

274

)2

101

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= 0.025
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Their ratio is t = 0.146/0.025 = 5.840, which has an exceedingly tiny two-
tailed p-value derived from the t(457) distribution. The null hypothesis of
equality of the weighted means is rejected.

Notice that in this example, the contrast calculated above is actually one
half of the difference between the weighted means rather than the difference
itself:

Contrast = 0.5(38/187)Y1 + 0.5(149/187)Y2−
0.5(173/274)Y3 − 0.5(101/274)Y4

= 0.5
[( 38

187
Y1 +

149
187

Y2

)
−

(173
274

Y3 +
101
274

Y4

)]
= 0.5(3.129 − 2.837)

= 0.146

However, so too is the estimated standard error one-half of the standard
error of the difference between the weighted means, so the result of the
inference is unaffected. If this bothers you, simply multiply both by two
when reporting. This correction would be important if reporting a con-
fidence interval for the difference between weighted means, because you
would want the confidence interval to be in the metric of the difference, not
one-half the difference.1

These computations can be done by most statistical programs that allow
you to specify contrast coefficients in an ANOVA procedure, and these will
be done more accurately than the hand computations illustrated above.
In the unweighted contrast example from section 10.2.3, we put cj in the
computer code to produce the contrast. But now, we use cjλ j for the contrast
coefficients instead. So in SPSS, the code to conduct this contrast would be

oneway wtsc by cohort/contrast 0.101604 0.398396 -0.315693 -0.184307

/statistics descriptive.

or in SAS, use

proc glm data=wtsc;

class cohort;model wtsc=cohort;means cohort;

contrast ’1 2 vs 3 4’ cohort 0.101604 0.398396 -0.315693 -0.184307;

run;

1It is not generally true that equation 10.7 will produce one-half the difference between
weighted means. Whether or not equation 10.7 produces the weighted mean difference or
some multiple of it will depend on the values of cj used.
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In this example, each value of cjλ j input into the code could be multiplied
by 2 to rescale the contrast to the mean difference metric rather than one-half
the difference.

10.3.4 Application to Adjusted Means

Weighted effect and weighted Helmert coding will produce regression co-
efficients that correspond to differences between weighted adjusted means
when covariates are included in the model. You may be tempted to do
complex weighted contrasts between adjusted means using the procedure
described in section 10.3.3, substituting adjusted means for Yj. But equa-
tion 10.8 does not produce a proper estimate of the standard error of a
contrast between weighted adjusted means. The computer-assisted proce-
dures described in section 10.2.3 can be used instead, so long as the contrast
coefficients fed to the computer algorithm are multiplied by the appropriate
weights (i.e., use cjλ j rather than cj) to produce the contrast of interest.

10.4 Chapter Summary

In this chapter we introduced and illustrated several ways of coding a
multicategorical variable so that it can be used as a regressor in a regression
model. These methods, including sequential coding, Helmert coding, and
effect coding, yield models that are mathematically equivalent to the model
generated when indicator coding is used. Of these methods, sequential and
Helmert coding are particularly useful when the multicategorical variable
represents an ordinal dimension. But regardless of the method of coding
used, the choice one makes about how to code groups does not affect the fit
of the model or the estimates of Y is produces. Furthermore, the choice does
not affect the test of the null hypothesis that the g groups don’t differ on
average on Y, and using regression analysis results in the same inference
produced by ANOVA and ANCOVA. However, the method of coding
groups will change the regression constant and the regression coefficients
and how they are interpreted.

Complex contrasts between means is a staple topic in analysis of vari-
ance books, but it is still appropriate in a regression analysis book such
as this because ANOVA is just a special case of linear regression analysis,
and contrasts can be conducted using output from a regression analy-
sis. Another topic commonly introduced in the context of ANOVA is the
multiple test problem—the positive correlation between the number of tests
conducted and the probability of making at least one Type I error. In the
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next chapter we address the multiple test problem and its relevance not
only to comparing groups but also to regression analysis more generally.





11
Multiple Tests

A multiple regression analysis contains many inferential tests, such as
the test that the multiple correlation is zero, a test for each partial regres-
sion coefficient, and maybe a test or two examining the contribution of a
set of predictors to improving the fit of the model. Indeed, in any scientific
report, usually there are many tests conducted, whether that takes the
form of many regression analyses or some combination of other statisti-
cal procedures, each with its own set of tests. Given that each inference
carries with it the possibility of a Type I error, the more tests that are
conducted, the greater the likelihood of reporting as real at least one
effect that is not. In this chapter we introduce this multiple test problem
by way of illustration and then outline the Bonferroni method as a simple
approach to dealing with it when one has conducted multiple hypothe-
sis tests. As we discuss in the last section of the chapter, the multiple
test problem introduces many interesting philosophical questions. It be-
comes clear after thinking about some of these questions that whether
one should correct for all hypotheses tests to account for the multiple
test problem, or just some of them, or none of them, depends on many
things that are hard to quantify, such as the plausibility that all null hy-
potheses are true, how well established the research area is, and the
logical independence of the hypotheses being tested.

In Chapters 9 and 10 we showed that a multicategorical variable can be
used as a regressor in a linear model if properly represented with a set of
regressors. We showed how linear regression analysis mimics the results
you would get if you conducted an ANOVA or ANCOVA comparing the
group means on Y. Furthermore, the regression coefficients for the variables
coding groups can be interpreted as tests of differences between certain
means or sets of means.

A reader with a background in ANOVA might have observed that we
failed to address one topic in these two chapters that is a staple in ANOVA
textbooks and classrooms: the problem of multiple tests. The multiple
test problem is usually discussed in the context of comparing group means
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following a statistically significant result from ANOVA. Because rejection of
the null hypothesis of no difference between the group means leads to only
a vague conclusion, follow-up tests are typically used to find the source
of the differences. But this usually involves more than one hypothesis
test, and the more hypothesis tests you conduct (or the more confidence
intervals you construct), the more likely you are to claim an existence of a
difference between means that reflects only chance or random noise.

As we discuss in this chapter, the multiple test problem is pervasive
and surfaces almost any time we analyze data, regardless of the statistical
method used. It is not specific to ANOVA-type problems. Rarely does an
investigator conduct only a single test in a study. And these days, research
articles frequently contain more than one and often several studies, each of
which contains several hypothesis tests. Hypothesis tests abound in any
research report, and the likelihood of a decision error—at least one Type I
error—in the collection is much larger than an investigator might realize
and be willing to tolerate if something isn’t done about it. We offer some of
our thoughts on how to approach thinking about the multiple test problem.

11.1 The Multiple Test Problem

11.1.1 An Illustration through Simulation

We illustrate the multiple test problem using a computer to conduct a simu-
lation. The SPSS code below creates a new data set containing 10 variables
named X1, X2, and so forth, through X10. Each variable contains a sample
of size 100 from a normally distributed population. In the population, these
10 variables are all linearly uncorrelated. That is, TrXiXj = 0 for all i and
j. So when we test the null hypothesis that a specific correlation is zero,
we know that the null hypothesis is true going in. That means we are in a
situation scientists aren’t usually in, where we know the truth we are trying
to discern from a hypothesis test. That means we can tell if the procedure
leads us astray in our decision, and how often it does so.

new file.

input program.

loop rep=1 to 100.

end case.

end loop.

end file.
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end input program.

do repeat x=x1 to x10.

compute x=rv.normal(0,1).

end repeat.

correlations variables = x1 to x10.

regression/dep=x10/method=enter x1 to x9.

In SAS and STATA, the equivalent programs can be written more concisely:

data multtest;

array x {10} x1-x10;
do j = 1 to 100;do i = 1 to 10;x{i} = rand("Normal");end;output;end;
run;

proc corr data=multtest;var x1-x10;run;

proc reg data=multtest;model x10=x1-x9;run;

clear

drawnorm x1-x10,n(100)

pwcorr x1-x10,sig

regress x10 x1-x9

If you run this program, it will produce as output a 10 × 10 matrix
of correlations as well as a linear regression analysis estimating X10 from
the nine other X variables. We focus for now on the correlation matrix.
Figure 11.1 is an example of the correlation matrix from the SPSS version of
the program, though yours will look different because your sample of 100
will be different than the one that generated this matrix. Each cell in the
matrix contains an estimate of TrXiXj , along with a p-value for testing the
null hypothesis that TrXiXj = 0. There are 45 such correlations and p-values
corresponding to the 10(10 − 1)/2 = 45 possible pairs of two variables. The
cells below the diagonal are the same as the corresponding cells above the
diagonal, because rXiXj = rXjXi . That is, each correlation between Xi and
Xj and corresponding p-value for the hypothesis test is found twice in the
matrix.

Notice in Figure 11.1 that even though we know that these variables
are all mutually uncorrelated in the population, we would reject the null
hypothesis of no correlation at the .05 level of significance for two of cor-
relations. These are highlighted in the figure. Of course, you probably
observed something different when you ran the program. Perhaps none of
the p-values in your 10 × 10 matrix are less than .05. Or maybe only one of
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Correlations

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

X1 Pearson Correlation

Sig. (2-tailed)

N

X2 Pearson Correlation

Sig. (2-tailed)

N

X3 Pearson Correlation

Sig. (2-tailed)

N

X4 Pearson Correlation

Sig. (2-tailed)

N

X5 Pearson Correlation

Sig. (2-tailed)

N

X6 Pearson Correlation

Sig. (2-tailed)

N

X7 Pearson Correlation

Sig. (2-tailed)

N

X8 Pearson Correlation

Sig. (2-tailed)

N

X9 Pearson Correlation

Sig. (2-tailed)

N

X10 Pearson Correlation

Sig. (2-tailed)

N

1 -.147 .145 -.049 -.185 .039 .120 -.117 .041 -.240

.144 .149 .630 .065 .703 .233 .245 .682 .016

100 100 100 100 100 100 100 100 100 100

-.147 1 -.035 .019 .131 .007 -.093 -.178 .128 .069

.144 .726 .850 .193 .942 .359 .077 .203 .495

100 100 100 100 100 100 100 100 100 100

.145 -.035 1 -.038 -.117 -.023 -.008 .030 -.027 -.064

.149 .726 .711 .248 .822 .938 .766 .789 .525

100 100 100 100 100 100 100 100 100 100

-.049 .019 -.038 1 .007 .100 -.067 -.030 .063 -.079

.630 .850 .711 .944 .320 .508 .768 .537 .433

100 100 100 100 100 100 100 100 100 100

-.185 .131 -.117 .007 1 -.052 -.079 -.231 .136 -.084

.065 .193 .248 .944 .608 .434 .021 .177 .407

100 100 100 100 100 100 100 100 100 100

.039 .007 -.023 .100 -.052 1 -.017 -.093 -.150 .009

.703 .942 .822 .320 .608 .869 .357 .136 .932

100 100 100 100 100 100 100 100 100 100

.120 -.093 -.008 -.067 -.079 -.017 1 -.073 .046 .000

.233 .359 .938 .508 .434 .869 .473 .652 .999

100 100 100 100 100 100 100 100 100 100

-.117 -.178 .030 -.030 -.093 -.073 1 -.125 .087

.245 .077 .766 .768 .357 .473 .217 .390

100 100 100 100 100 100 100 100 100

.041 .128 -.027 .063 .136 -.150 .046 -.125 1 .085

.682 .203 .789 .537 .177 .136 .652 .217 .401

100 100 100 100 100 100 100 100 100 100

.069 -.064 -.079 -.084 .009 .000 .087 .085 1

.495 .525 .433 .407 .932 .999 .390 .401

100 100 100 100 100 100 100 100 100

-.240

.016

100

-.231

.021

100

FIGURE 11.1. A matrix of correlations between 10 independent random normal variables
in a sample size of 100.

them is. Or maybe three or even four or five are. More likely than not, as
we discuss, at least one of them is.

The first lesson to learn here is that Type I errors do happen. Even
though we know that all 45 of the population correlations are zero, we
would claim that two of them are not if we took Figure 11.1 at face value.
These represent Type I errors—claiming an effect exists when in reality no
effect exists. Of course, in your own data analyses, you don’t know whether
or not a particular null hypothesis is true. You assume it is true when
you calculate a p-value, but that assumption may be wrong. And you’ll
never know whether a particular decision you make when you conduct a
hypothesis test is correct or incorrect.

The second lesson requires that you run the program many times. Each
time you run it, take notice of three things. First, focus on the correlation
between X1 and X2 and record whether the p-value for its hypothesis test
is less than .05. Do the same for the three correlations between X1, X2, and
X3, noting whether any of them are statistically significant at the .05 level.
Finally, look at the entire matrix of correlations and record whether or not
any of the 45 correlations in the matrix is statistically significant at the .05
level. Repeat this as many times as you care to, but at least 20 or so.
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If your experience is typical, what you will likely have observed after
many executions of this program is that the correlation between X1 and X2 is
only rarely statistically significant. It is more common for at least one of the
three correlations between X1, X2, and X3 to be statistically significant, and it
is even more common for at least one of the 45 correlations to be statistically
significant. Just how often this happens in your case will depend on the
number of times you executed the program.

When we did this 1 million times with the aid of a computer, in 49,833
of the runs the correlation between X1 and X2 was statistically significant
at the .05 level. This is about what you would expect. We know that when
we test a true null hypothesis, the probability of a Type I error is .05 when
using an α = .05 criterion for deciding between reject and fail to reject. So
in 1 million tests of the null hypothesis that X1 and X2 is zero you would
to expect to reject this true hypothesis about 50,000 times. Our estimate of
the Type I error rate from this simulation is right on at about .05.

But even though we know that none of the correlations between X1, X2,
and X3 are different from zero in the population, we found that in 142, 530
of the 1 million runs of the program, at least one of these three correlations
was statistically significant at the .05 level. This is far more than the 50,000
expected when we focused on only one of the correlations. And in the
entire matrix, at least one of the correlations was statistically significant in
a whopping 901, 254 of the runs, or 90% of the time!

So from this simulation, we estimate that the probability of incorrectly
rejecting at least one of the true null hypotheses when testing the correla-
tions between X1,X2, and X3 in a sample of size 100 is around 0.142, even
though we tested each null hypothesis the .05 level. And when we look
at the whole set of 45 tests, with each test conducted at the .05 level, the
probability of incorrectly rejecting at least one of the true null hypotheses
is around 0.901. It is nearly certain to happen.

So the second lesson to take away from this illustration is that when you
conduct a bunch of hypothesis tests, the probability of making at least one
Type I error in the set increases with the size of the set. So the more tests of
a true null hypothesis that you conduct, the more likely you are to make a
mistake at least once and claim an effect exists that does not in reality. This
is the multiple test problem.

11.1.2 The Problem Defined

When we test a null hypothesis, if the null hypothesis is true and the test is
valid, the probability of incorrectly rejecting the null hypothesis is the level
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of significance αwe are using for the test; most researchers use α = .05. But
when we test many null hypotheses each at the α level of significance and
all of the null hypotheses we test are true, the probability that at least one
of those decisions is a Type I error is higher than α. And the more tests you
do, the greater the probability that at least one of the decisions is a Type I
error.

Define αFW as the probability of making at least one Type I error in a
set or family of B hypothesis tests (FW stands for familywise), and define α
as the constant level of significance used to reject the null in each of the B
tests. The multiple test problem is reflected in the following:

αFW ≥ α
So when you conduct more than one statistical test, the likelihood that you
make at least one Type I error in the set of B tests—the familywise Type I
error rate or familywise α—is generally larger than the probability that any
one specific decision is a Type I error.

11.1.3 The Role of Sample Size

You might think that the inflation of the Type I error rate when many hy-
pothesis tests are conducted would depend on sample size. For instance,
you might have heard some people say that you can reject any null hypoth-
esis if you have a big enough sample. That would suggest that the problem
would be worse in large samples, because large samples are more likely to
produce statistically significant effects. Alternatively, you may believe that
because estimates vary more from sample to sample in small samples, the
problem would be worse in small samples since it is easier to find big effects
in small samples. Or maybe the problem wouldn’t be as bad, because it is
harder to get small p-values in small samples.

But in fact neither of these is true. Type I errors are generally no more
or less probable in large samples than in small ones, and so the inflation
of the Type I error rate when multiple hypothesis tests are conducted is
not determined by sample size. You can demonstrate this for yourself by
repeating the exercise in section 11.1.1 but changing the “100” in the line of
code to a bigger or smaller number. We repeated this simulation twice (with
1 million repetitions each time), once with a sample size of 500 and once
with a sample size of 20, and the results were largely identical. Sample size
doesn’t matter because the derivation of the p-value for a null hypothesis
test incorporates sample size. So the extent of the multiple test problem
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is not influenced by sample size. You can’t make it lessen or go away by
increasing or decreasing the sample size. What matters is the number of
tests conducted, not the sample size.

11.1.4 The Generality of the Problem

The multiple test problem is usually first discussed in statistics books in the
context of ANOVA and the comparison of means. Rejection of the null hy-
pothesis that g means are equal is a vague conclusion that typically initiates
a hunt for the source of the differences. One common procedure is to con-
duct all possible pairwise comparisons between the g means in an attempt
to find where the differences between the means resides. Alternatively,
one can conduct a set of focused comparisons between specific means or
sets of means. At this point, students of ANOVA are often introduced to a
mind boggling assortment of approaches to conducting pairwise compar-
isons that go by such names as Scheffe’s test, Tukey’s HSD test, Dunnett’s
test, the Neuman–Keuls method, or the Games–Howell approach, among
many others. These are all attempts to deal with the multiple test problem
in one way or another, with varying degrees of success. Many journal ar-
ticles, book chapters, and even entire books exist on the topic of pairwise
comparisons between means.

But the multiple test problem is more general than this. We saw in
section 11.1.1 that it surfaces when we look at the hypothesis tests found
in a matrix of correlation coefficients. In Chapters 9 and 10 we discussed
that regression can be used to conduct an ANOVA and ANCOVA and also
provides a set of comparisons between means or combination of means
depending on how the groups are represented in the coding system em-
ployed. When covariates are included, we also get a measure of partial
association between the covariate and the outcome. Each line of a table
of regression includes a test of the null hypothesis that the true regression
coefficient is zero, which corresponds to a null hypothesis test for the dif-
ference between group means or the partial association between Y and the
covariate.

Indeed, a regression analysis typically includes several hypothesis tests,
such as for each regression coefficient, for the multiple correlation, and the
change in the multiple correlation when variables are entered into the
model hierarchically. The various stepwise entry procedures discussed
in section 7.3.1 are often conducted using a hypothesis testing approach
to determine what variables to enter or remove and when. Although we
didn’t talk about the regression output generated by the simulation code in
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section 11.1.1, if you take a look at the regression coefficients printed below
the correlation matrix, you will observe that some of them are statistically
significant now and then, even though we know there is no relationship
between X10 and any of the nine regressors. In 350,677 of our 1 million
runs of the simulation, or about 35% of the time, at least one of the partial
regression coefficients was statistically significant at the .05 level.

The problem also surfaces whenever you use more than one analytical
method to analyze a data set. For example, you may use confirmatory factor
analysis for one part of the study to examine or test a measurement model.
This process typically involves hypothesis testing. Once the measurement
model is established, you may then seek to examine how the measured
variables relate to each other by piecing them together in the form of a
path diagram and estimating the model coefficients. This process also
involves hypothesis testing. As the number of hypothesis tests builds up
as you progress through the analysis, the likelihood of making a Type I
error increases.

Finally, if you think you can avoid Type I error inflation by using con-
fidence intervals or alternative approaches to inference such as Bayesian
methods, think again. The problem is not caused by any mathematics that
is particular to hypothesis testing. The more confidence intervals you con-
struct, the more likely at least one of them will not cover the true value
of the parameter being estimated. Bayesian credible intervals are just as
susceptible to the problem. Any time multiple inferential procedures are
employed when analyzing data from a study, the more likely you are to
report at least one effect as real that is not, or report an interval (confidence
or credible) that is inaccurate in some way.

As we discuss in section 11.3, you can get really philosophical about
the problem and start pondering questions like whether you should worry
about the multiple test problem across a set of studies you have conducted
on a common topic or all the studies you have conducted in your laboratory.
And if you are going to ponder these questions, why stop there? For
instance, perhaps all the investigators in your department should team up
and come up with some kind of plan for dealing with what is undoubtedly
a large number of Type I errors being committed collectively by all the
researchers in the department in a given semester, or a given year, or even
in the history of the department. But as we discuss later, if you are inclined
to worry about the multiple test problem, it is possible to worry more than
you really need to.
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11.1.5 Do Omnibus Tests Offer “Protection”?

You may have learned that one way of avoiding the multiple test problem
is to condition the hunt for effects on evidence of an effect to be found. For
example, you may have read about or been told that if the F-ratio from
an ANOVA comparing g means is statistically significant, then this affords
“protection” from making Type I errors when you start comparing specific
means to each other. By this logic, the significant ANOVA result means
there is some difference between the means, so you can go ahead and search
all you want for it without worrying about the multiple test problem. A
related notion in regression analysis says that if R is not statistically different
from zero, then you can’t interpret the hypothesis tests on the individual
regression coefficients, but if R is different from zero by a hypothesis test,
then this protects you from making Type I errors when looking at the
inferential statistics for the regression coefficients.

But suppose that you’ve conducted an experiment with five groups,
your F-ratio is statistically significant, but in reality four of the means are
the same, and one of the means differs from the those four. With five
groups, there are 10 pairwise comparisons between means you can do, and
for four of them, the null is false, and for six of them the null is true. Since
you are doing six tests of a true null hypothesis, the probability you will
make at least one Type I error in that set of six is higher than α, even though
you have correctly rejected the null hypothesis that the five means are the
same. So a statistically significant ANOVA result does not protect you from
making an excessive number of Type I errors in the follow-up tests.

11.1.6 Should You Be Concerned about the Multiple Test
Problem?

Should you be concerned about Type I error inflation? We can’t answer that
question for you. Some scientists worry about the multiple test problem
more than others do. It has even been suggested that this difference is
like religious differences, in that no amount of argumentation will change
anyone’s mind. However, we assume that when you write a scientific
article, you want it to be convincing to the broadest possible audience, and
to all the reviewers who review it before publication. Or if you read an
article, you may want to convince others of the accuracy and importance
of its conclusions. Sometimes the article will not address the multiple test
problem, yet the people you want to convince may include some who take
the problem seriously. Several methods for managing multiple tests are
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quite simple and yet deal effectively with the problem. Some don’t require
access to all the raw data, and can be done using only the summary statistics
appearing in a published article. Therefore, any scientist who deals with
statistics will benefit from having some knowledge of these methods, either
when publishing or when assessing work by others. We dedicate the next
section to the simplest and most versatile of these methods.

11.2 The Bonferroni Method

When we test a null hypothesis at the α-level of significance using a valid
hypothesis-testing procedure, the probability of failing to reject the null
hypothesis if it is true is 1 − α, and the probability of incorrectly rejecting
the null hypothesis if true is α. So if the null hypothesis is true and we use
α = .05 as the level of significance for testing the null, then the probability
of correctly failing to reject the null is 1 − .05 = .95, and the probability of a
Type I error is .05.

Applied to the multiple test problem, we seek to test a family of B
null hypotheses while ensuring that the probability of failing to reject all B
hypotheses if they are all true is 1 − αFW. Rephrased, we want to test all
B null hypotheses knowing that if they are all true, then the probability of
incorrectly rejecting at least one is no more than αFW.

The Bonferroni method is by far the easiest and most versatile approach
to dealing with the multiple test problem. It has two variants that are
mathematically identical and a third that is slightly less conservative, which
we discuss in section 11.2.4. One variant is based on a modification of the
upper bound on a p-value that is considered statistically significant. The
other variant is an adjustment to the p-value from a hypothesis test prior
to making a decision with it. Mathematically, these are equivalent, but the
latter is a bit more flexible and easier to implement.

With the Bonferroni method, the probability of at least one Type I error
in a set of B hypothesis tests is no higher than αFW if each null hypothesis
in the set is tested at the αFW/B level of significance. For instance, if you
conduct B = 5 null hypothesis tests and you want the probability of at least
one Type I error in the set to be no higher than αFW = .05, then use an
α = .05/5 = .01 level of significance for rejecting each null hypothesis. That
is, for each test, reject its null hypothesis only if p ≤ .01. So this version of
the Bonferroni method modifies α downward as a function of the number
of tests, and the null hypothesis is rejected only if the p-value from the test
is less than this smaller α.
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A mathematically equivalent procedure is to compute a “corrected” p-
value, which we will denote pc, and compare this to the desired αFW. Using
this variant, pc = B × p, where p is the ordinary p-value from the test. In
this context, B is sometimes called the “Bonferroni correction factor.” So
if you have conducted five tests, then an original p-value of .01 translates
to pc = .01 × 5 = .05. Thus, for αFW = .05 and five tests are conducted, an
original p-value of .003 would be considered statistically significant after a
Bonferroni correction factor of 5 is applied, because pc = .003 × 5 = .015,
which is less than .05. But an original p-value of .02 is not statistically
significant after a Bonferroni correction of 5 because pc = .02 × 5 = .10,
which is greater than .05.

11.2.1 Independent Tests

The reasonableness of the Bonferroni approach is shown most easily for
independent tests. The concept of independence is explained more fully
in section 11.2.2. Suppose that five investigators all test the same null
hypothesis, and the null hypothesis is actually true. What is the probability
that at least one of them will incorrectly reject the null hypothesis at the .05
level?

This question is most easily answered by calculating the probability
that they will all correctly fail to reject the null hypothesis. We know that
for each investigator, the probability of correctly failing to reject the null is
1 − .05 = .95. From the multiplicative law of probability for independent
events, the probability that all five would fail to reject the null is (1− .05)5 =

.955 = .774. So the probability that at least one investigator will incorrectly
reject the null is 1 − .774 = .226. The logic of the Bonferroni method above
estimates this probability as 5 × .05 = 0.25.

More generally, for a set of B independent hypothesis tests conducted
at the same α level,

αFW = 1 − (1 − α)B (11.1)

Using the Bonferroni method, if we wanted αFW to be .05, then we test each
null hypothesis using α = .05/5 = .01. Applying equation 11.1 yields

αFW = 1 − (1 − .99)5 = 1 − .995 = 0.049

which is pretty close. The formula αB will always be larger than what
equation 11.1 yields, so for independent tests, the Bonferroni method is
conservative, meaning that it overestimates αFW as produced more exactly
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by equation 11.1. For instance, when B is 10, the Bonferroni method yields
αFW = .5, whereas equation 11.1 yields .401.

In practice, our interest typically is not in estimating αFW but, instead,
fixing αFW to something small and adjusting α accordingly or calculating
pc. Equation 11.1 can be rearranged so as to isolate α, which gives the cutoff
for p for rejecting the null:

α = 1 − (1 − αFW)1/B (11.2)

So for B = 10 and αFW = .05, equation 11.2 yields α = .00512. The sim-
pler Bonferroni formula, which says to reject the null only if p ≤ αFW/B,
generates α = .05/10 = .005, which is close.

The result ofαFW/B is always smaller than what equation 11.2 generates,
which means that the Bonferroni method is conservative for independent
tests. But even when B is large, the approximation is close for small values
of αFW, which is typically the only scenario we care about in practice. For
instance, for B = 50 tests, the Bonferroni method requires p ≤ .001 to reject
the null for each test to ensure αFW = .05. Applying equation 11.1 yields
αFW = 1 − (1 − .001)50 = .0488, which is pretty close. In our opinion,
the simplicity of the Bonferroni method is worth the tradeoff for its slight
inaccuracy and conservatism.

11.2.2 The Bonferroni Method for Nonindependent Tests

If a regression contains k regressors, then the tests on the k regression
coefficients are not statistically independent, because the regressors are not
independent. Or if a categorical regressor has g categories, there are g(g −
1)/2 possible pairwise comparisons between means, and these tests are not
independent either. The comparison of Y1 − Y2 is not independent of Y1 −
Y3, because anything that influences Y1 will influence both comparisons.
Although this would not be true for Y1−Y2 versus Y3−Y4, it is still not true
that the tests are independent, because they both use the same MSresidual in
the construction of the standard error and p-value. So a chance random
fluctuation downward of MSresidual relative to its true value will raise both
t-values for these comparisons. Because of this nonindependence between
tests, it would seem that the Bonferroni method would not be relevant.

However, it is relevant. The Bonferroni method is based on an equation
called the Bonferroni inequality. It states that for two numbers a and B, and
if 0 < a < 1 and B > 1, then

1 − (1 − a)B < aB (11.3)
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If we substitute α for a and still call B the number of tests, then equation
11.3 can be rewritten as

1 − (1 − α)B < αB (11.4)

But earlier we said the Bonferroni method estimates αFW as no higher than
αB. So equations 11.1 and 11.4 are identical except for the < rather than
=. Earler we saw that αFW is 1 − (1 − α)B for independent tests, and so
equation 11.4 conveys what we said in section 11.2.1, when we said that
the Bonferroni method overestimates αFW.

Ryan (1960) showed that if we replace < in equation 11.4 with ≤, then
it applies to nonindependent tests as well. Ryan also showed that the
overestimation of αFW by αB is small whenever αB is small, which is the
only case we would care about in practice. So the simple Bonferroni method
is an accurate but slightly conservative approach for both independent and
nonindependent tests.

The conservativism of the Bonferroni method is positively correlated
with the extent of the nonindependence of the tests. We can think of
nonindependence as a continuum from −1 to 1. Consider an extreme form
of negative nonindependence. Suppose you conducted two one-tailed tests
of the correlation between X and Y using a single sample. The first is a test
of the null that TrXY ≤ 0, and the second is a test of the null that TrXY ≥ 0.
We know that when applied to the same rXY, the t-statistics for these tests
will be equal but opposite in sign. Thus, their correlation is −1. If each
test was conducted at the .025 level and both nulls are true, which can
only happen if TrXY = 0, then the probability of an incorrect rejection for
at least one of these tests is estimated as not exceeding 2 × .025 = 0.05 by
the Bonferroni method. An equivalent test would be a single two-tailed
test of the null that TrXY = 0. If the null is true, then the probability of
false rejection is .05. So in this case, the Bonferroni method applied to two
one-tailed tests that are perfectly negatively correlated gives the correct
αFW, not an overestimate. A two-tailed test can actually be thought of as a
Bonferroni correction applied to a one-tailed test, using a Bonferroni factor
of 2 to correct for the fact that an effect or difference could have come out
in the opposite direction from what was observed.

It can be shown that as the nonindependence moves from −1 to 1, the
conservativism of the Bonferroni method increases, and is at its maximum
when the tests are perfectly positively correlated. For instance, if three tests
are perfectly positively correlated, then if one null is rejected, so too are the
other two nulls rejected. So if three perfectly correlated tests are conducted
at the α = .05 level, the probability of at least one false rejection of the
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TABLE 11.1. Estimated αFW from the Simulation

B Uncorrected Bonferroni

1 .0497 —
3 .1423 .0490
9 .3497 .0487

45 .9018 .0460

null hypothesis in the three tests is .05, not the much larger .05 × 3. But
remember that the Bonferroni method gives an upper bound of αFW. That
is why it is generally conservative. The upper bound may be and typically
will be larger than the actual αFW.

11.2.3 Revisiting the Illustration

We introduced the multiple test problem in section 11.1.1 with an example
and simulation. Recall from that illustration that when you focused only on
the correlation between X1 and X2, the true null hypothesis of no correlation
was rarely rejected. In 1 million runs, incorrect rejection occurred only
about 5% of the time, which is what would be expected for a test that is
valid. But when examining the three correlations between X1, X2, and
X3, all 45 of the correlations between X1 through X10, or the nine partial
regression coefficients when estimating X10 from the other nine variables,
at least one effect in the set was statistically significant far more often than
5% of the time in our 1 million trials. These results are summarized in Table
11.1 in the column labeled “uncorrected.”

We applied the Bonferroni method during the simulation as well. The
Bonferroni method took care of the problem quite satisfactorily, as can be
seen in Table 11.1. In all three scenarios the estimated αFW over the one
million replications was near and never above .05 after correction of the
p-values to compensate for the number of tests conducted. The fact that the
estimates are below .05 reflect the conservatism of the Bonferroni method.

11.2.4 Bonferroni Layering

The Bonferroni method applies the same Bonferroni correction factor B to
all B tests to produce a corrected p-value, pc. An alternative and slightly less
conservative approach is Bonferroni layering, also known as Holm’s sequential
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rejection procedure (Holm, 1979). To apply layering to a set of B tests, find
the one with the smallest p-value and multiply that p-value by B. If the
resulting pc is less than your desired αFW, consider this result statistically
significant. Then multiply the next smallest p-value by B−1 and compare it
to αFW. If pc is smaller than αFW, consider this result statistically significant.
Continue with this procedure, each time reducing the Bonferroni correction
factor by 1, until the first time that pc is above αFW. When that happens,
declare that test as nonsignificant, as well as all other tests with p-values
not yet corrected.

The idea behind layering is that when you single out the most significant
result from a set, you need to be most harsh in the p-value correction for
that test to compensate for the fact that it was selected post hoc. Once that
result is removed from the set of B tests, you are then going back into the
remaining set of B − 1 tests and selecting the next most significant result
for correction. This second correction doesn’t need to be quite as harsh as
the first, but it still needs substantial correction because, again, it is being
selected post hoc for examination.

More generally, the jth-most significant result among B tests is the most
significant result in a set of B + 1 − j results, so to layer in the Bonferroni
method, we multiply the jth-most significant p among B by a Bonferroni
factor of B + 1 − j. For instance, if the most significant three results out of
10 tests yield p-values of .0012, .0038, and .0092, then the corrected p-values
are .0012 × 10 = .012, .0038 × 9 = .034, and .0092 × 8 = .074. Only the
first two are significant at the .05 level after correction, and we don’t apply
any more corrections to the remaining p-values, as these are all considered
nonsignificant.

11.2.5 Finding an “Exact” p-Value

Most researchers use a statistical package of some kind for data analysis,
and most statistical packages produce p-values for various hypothesis tests
as a matter of routine. But usually the output from a statistical package
shows the p-value to only three or four decimal places of accuracy. When
implementing the Bonferroni method, we often need a more precise p-
value than is shown in computer output. For example, suppose you want
to apply a Bonferroni correction factor of 25 to a p-value to generate pc, and
the uncorrected p is shown in your output as .002, because your program
rounds output to the third decimal place. So .002 could reflect a p-value as
small as .0015 or as large as but not quite .0025. If you want αFW to be no
greater than .05, the exact value of p matters because .0015 × 25 is less than
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.05, but .0024 × 25 is greater than .05. And as will be seen in later chapters,
there are times when you will want to apply a Bonferroni correction as
large as N, the sample size for the study. If N is large, such as 1,500, you
need to know p very precisely in order to apply the correction. Multiplying
something with rounding error by something large will produce something
with even more rounding error in absolute terms.

Fortunately, most statistical packages have options for changing the
number of decimal places of resolution generated in output. Check your
program’s documentation. If yours does not, there is a good chance that
it has a number of functions built in that you can access for generating
p-values from other statistics in the output. The application of these algo-
rithms will yield some rounding error, because the input you feed it (e.g., a
t-statistic from the output) will also contain some rounding error. But what
these algorithms generate even then will still be more precise than what
your output is giving you if it doesn’t let you see p-values to more than
three or four decimal places of accuracy.

The first four lines of SPSS code below generate p-values (two-tailed)
corresponding to Z = 4, t(20) = 4, F(3, 30) = 4, and χ2(2) = 4, respectively.
You can modify the code for different values of Z, t, F, or χ2 for different
degrees of freedom by changing the relevant part of the code. Before
executing this code, you have to have a data file open. Alternatively, you
can start with a new data set that you first populate with a single observation
and a single arbitrary value for a single variable arbitrarily named.

compute pz=2*(1-cdf.normal(4,0,1)).

compute pt=2*(1-cdf.t(4,20)).

compute pf=1-cdf.f(4,3,30).

compute pchi=1-cdf.chi(4,2).

format pz pt pf (F16.8).

execute.

The results of these operations will be produced as new variables in
the data set. In this case, the code produces variables pz, pt, pf , and pchi
that are populated with the values .00006334, .00070352, .01651537, and
.13533528, respectively. The 8 in F16.8 tells SPSS to show eight decimal
places of resolution. Change this to something larger if desired. These p-
values are displayed to eight decimal places of resolution, but can’t really be
considered “exact” even at this level of resolution, because these functions
themselves generate only approximations of p-values, not exact values.

In SAS, the code below accomplishes these computations and prints the
p-values in the output window:
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data pprob;

pz=2*(1-cdf(’normal’,4));

pt=2*(1-cdf(’t’,4,20));

pf=1-cdf(’F’,4,3,30);

pchi=1-cdf(’chisquare’,4,2);

run;

proc print data=pprob;var pz pt pf pchi;run;

In STATA, the command window can be used sort of like a calculator.
This set of commands will display these four p-values in the output window,
without producing or modifying any data file:

scalar pz=2*(1-normal(4))

scalar pt=2*ttail(20,4)

scalar pf=Ftail(3,30,4)

scalar pchi=chi2tail(2,4)

display pz,pt,pf,pchi

Consult your program’s user manual for specific details on how these
functions work and what computational algorithms they implement.

11.2.6 Nonsense Values

The Bonferroni method can produce values of pc or upper bounds on αFW

that are greater than 1. For instance, if each of B = 30 tests is conducted at
the .05 level, thenαB = .05×30 = 1.5. ButαFW is a probability and so can’t be
larger than 1. Similarly, suppose that the original p-value for a test is .04 but
you have conducted 30 tests. The corrected p-value is pc = .04 × 30 = 1.2.
But probabilities can’t be larger than 1. In cases like this, simply truncate pc

or αFW at 1. In application it makes no difference. If pc > α, then you don’t
reject the null hypothesis. It doesn’t matter how much larger pc is relative
to α in such cases. Similarly, we don’t usually approach a multiple testing
situation by estimating and upper bound on αFW. Rather, we fix the upper
bound to some small value such as .05 and ask how small does p have to
be uncorrected in order to reject the null.

11.2.7 Flexibility of the Bonferroni Method

The Bonferroni method is extremely flexible and can be applied to any set
of tests, not just tests involving means. The tests may be either independent
or nonindependent. They may be part of the same study conducted by an
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investigator, from a set of studies conducted by the same investigator, or
even different studies conducted by different investigators. The original
tests can be one- or two-tailed. They can be from parametric or nonpara-
metric tests, in any combination. They can be from different types of test
based on different sampling distributions, such as t-tests, chi-square tests,
F-tests, and so forth.

11.2.8 Power of the Bonferroni Method

Intuitively, the power of the Bonferroni method might seem very poor.
After all, if obtaining p < .05 seems a lofty goal under the best of circum-
stances, then finding something smaller than .05 must be even harder. We
have already said that it tends to be conservative. But it is easy to fail to
notice how small a p-value actually is, because many statistics programs
will show small p-values as .000. Consider a fairly ordinary finding of
rXY = 0.4 based on a sample size of 100. The two-tailed p-value for such
a result is .0000374, which would be statistically significant at the .05 level
even with a Bonferroni correction of 1,336.

It is true that when the Bonferroni method is used instead of a method
dedicated to comparing means, it tends to be more conservative than those
methods whose validity is unquestioned. But the difference isn’t that large,
and the lower power of the Bonferroni method seems like a reasonable price
to pay given its enormous flexibility. If the conservativism of the Bonferroni
method still bothers you, you might consider an alternative general method
such as the one described by Benjamini and Hochberg (1995, 2000) that is a
bit more powerful but not as easy to implement.

11.3 Some Basic Issues Surrounding Multiple
Tests

It is almost impossible to perform or even evaluate scientific research with-
out facing the problem of multiple tests, and one cannot consider multiple
tests without facing difficult philosophical questions. For example, why
correct for multiple tests at all? After all, regardless of the number of tests
performed, won’t it still be true that, in the long run, only 5% of all true
null hypotheses will be mistakenly rejected at the .05 level? At the other
extreme, if we decide to correct for multiple tests in some fashion, why
don’t we make even more conservative corrections that one might ordinar-
ily contemplate? If you are worried about multiple tests when evaluating
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the result of a single experiment or study, why not correct for all the tests
you do when you publish a multiple-study article? But why stop there,
given you are likely to be reporting many studies over many articles in your
career. Should you correct for all the tests you have done to date or will ever
do? And what about all the tests being done in a particular area, such as
social psychology, or indeed, the entire history of science? The Bonferroni
method isn’t the only way to deal with the multiple test problem, but until
we can answer broad questions like these, it seems unlikely that we will
agree on narrower philosophical questions concerning specific methods of
correcting for Type I error inflation. This section attempts to answer some
of these questions, at least from our perspective.

11.3.1 Why Correct for Multiple Tests at All?

The argument for correcting for multiple tests relies heavily on the concept
of a composite null hypothesis (CNH). A CNH is the hypothesis that two
or more simple null hypotheses are all true. Familiar types of CNH include
the hypothesis tested with ANOVA that three or more means are equal,
and the hypothesis in regression that TR = 0, which implies that TrYXj = 0
for every j.

CNHs play a very important role in the scientific process, because tests
on them can be more powerful than tests on the specific hypotheses nested
within them. CNHs usually lead to only vague conclusions (e.g., g means
are not the same; at least one regression coefficient is not zero), but vague
conclusions are more easily reached than specific ones. Rejection of a CNH
is a vague conclusion; it asserts that there is at least one real effect nested
within the CNH without telling us which one or ones.

But rejection of any specific null hypothesis within a CNH implies
rejection of the CNH itself. Suppose we had an experiment with five
conditions and we did all 10 possible pairwise comparisons between two
means using independent groups t-tests rather than a one-way ANOVA. If
we reject the null hypothesis tested with any of the t-tests, then we thereby
must reject the CNH that all five means are equal. Thus if we perform 1,000
experiments without correcting for the fact that there are, say, five means
being compared in each, far more than 5% of 1,000 CNHs will falsely be
rejected at the .05 level if we don’t correct for the fact that we are doing
10 t-tests in each experiment. Thus, it is simply not true, as hinted above,
that even with no corrections, only 5% of all true null hypotheses will be
rejected.
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CNHs define whole areas of science. For instance, the assertion “No
baldness lotions work” is a CNH. But folk medicine around the world men-
tions hundreds of lotions for baldness. We would not want to adopt rules
that made rejections of a CNH almost certain if we simply tested enough
simple hypotheses within the CNH. That is why we need corrections for
multiple tests—a correction transforms the test of a simple hypothesis into
a valid test of the CNH within which it is nested.

11.3.2 Why Not Correct for the Whole History of Science?

A CNH can be nested within a broader CNH. For example, in a 4 × 6
factorial ANOVA, the CNH that all four means defining the first factor are
equal is nested within the broader CNH that all 24 means are equal. The
CNH that humans lack mental telepathy is nested within the broader CNH
that all species lack it. All null hypotheses in all areas of science are nested
within the broadest CNH of all—the hypothesis that every statistically
significant result in the history of science is a Type I error, resulting from
the very large number of tests scientists have performed in world history—
“All science is bunk.”

Section 11.3.1 implied that the broader the CNH, the vaguer is the
conclusion and the easier it should be to reject the CNH. This is true; the
CNH, “All science is bunk,” is easier to reject than you might imagine.
Consider that polls of the public are undertaken weekly if not daily, and it
is not uncommon for these polls to be based on 1,500 or so people. Suppose
a poll of 1,500 people who were asked whether they have a favorable
or unfavorable opinion of the current U.S. President shows a 60–40 split,
with 60% having a favorable opinion and 40% an unfavorable opinion. A
test of the null that the public is equally split (i.e., 50–50) would lead to
a rejection of the null hypothesis at any level of significance you would
fathom using. But what Bonferroni correction would have to be applied
to make the p-value no longer statistically significant at, say, the .05 level?
Might it be 100, or 1,000, or maybe even 10,000? The answer may amaze
you. The two-tailed p-value for this test is about 1 in 100 trillion. So it
would take a Bonferroni correction of about 5 trillion to make this p-value
.05. It is probably fair to say that no more than 5 trillion null hypothesis
tests have ever been performed in the entire history of science. So this one
very modest poll result is sufficient for us to reject the null hypothesis that
“all science is bunk.” Indeed, many everyday scientific results based on
moderately large samples would allow us to do so. For instance, a fairly
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ordinary correlation of .5 in a sample of 211 cases is significant at the same
level as the above example: 1 in 100 trillion.

A similar argument applies to CNHs that are narrower than this one
but still very broad—such as the CNH that “all social psychology is bunk,”
because all significant results in that area can be explained by the sheer
number of hypothesis tests. Because the number of tests ever performed
in this area is far less than the number performed in all of science, we
need an even less impressive result to reject it—and results at the level of
significance required to do so are common in social psychology. In this
way, we work down a hierarchy of nested CNHs. Except in perhaps a few
small areas of research, this line of reasoning usually allows a researcher
to conclude that broadest CNH he or she may need to consider is the one
spanning a particular experiment. That is why we do not need to correct
for the whole history of science, or, usually, for any tests at all outside of
our present study.

11.3.3 Plausibility and Logical Independence of Hypotheses

Suppose that the investigators in a given lab work in different areas of
a well-established discipline, and in a given month five studies are con-
ducted, one by each investigator in his or her own particular area. One
of the results is statistically significant at the .02 level, and the other four
have large p-values. If the one result were corrected for the other four by
the Bonferroni method, it would no longer be statistically significant. But
most scientists would assert that such correction is unreasonable because
these five tests are “independent.”

But consider a slight variation of this problem. Suppose five investiga-
tors at different universities all conducted the same study, tested the same
null hypothesis, and one rejected the null with p = .02 and the other four
investigators had large p-values. Most scientists would consider it quite
reasonable to correct the one significant result for the other four.

What is the difference between these two scenarios? We assert that the
impulse to correct for multiple tests in the second scenario but not in the first
stems from the fact that the five investigators in the first scenario are testing
logically independent hypotheses, whereas the five investigators in the
second scenario are testing hypotheses that are not logically independent.

We shall define two or more hypotheses as logically independent if firm
knowledge of the truth or falsehood of one hypothesis would not change
our opinion of the plausibility of the other hypotheses. Consider the hy-
pothesis that in New York State more women than men will vote for the
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Democratic candidate in the next presidential election. By changing the
state, we can generate 49 other forms of that hypothesis. Those 50 hypothe-
ses are certainly distinguishable; some may be true and others false. But are
they logically independent? No; at least we don’t think so. Learning that
more women than men had voted Democratic in New York State would,
for most people, increase the plausibility of the hypothesis that the same
result will be found in other states. Similarly, knowing that one investiga-
tor testing a certain hypothesis failed to reject the null hypothesis would
probably affect our beliefs about the likelihood that a different investigator
testing that same hypothesis would be able to reject the null. In both of
these cases, these hypotheses are not logically independent.

But five investigators testing different hypotheses in their own areas
of inquiry are testing logically independent hypotheses, or at least more
independent than five different investigators testing the same hypothe-
sis. Knowing the outcome of one investigator’s study would provide no
(or, at least, less) information, leading us to change our beliefs about the
plausibility of the hypotheses the other investigators are testing.

It may be apparent to you that there is some subjectivity in the deter-
mination as to whether the hypotheses in a set are logically independent.
Suppose two investigators in the same lab were studying different phe-
nomena, such as the effect of traumatic experiences on satisfaction with
one’s relationships, and the effect of different types of therapies for treating
PTSD. But two investigators in another lab were comparing the effects of
a particular type of therapy on various mental states, with one investiga-
tor studying depression and the other studying anxiety. On the surface it
would seem that the hypotheses the first two investigators are testing are
logically independent, more so than the latter two.

But does knowing that a method of therapy does not work for depres-
sion really provide information about the likelihood of it working or not
for anxiety? That depends on your perspective. Knowing that it doesn’t
work for one symptom may lead you to believe it is not likely to work with
others, but anxiety and depression are different psychological experiences.
Who is to say that there are any implications whatsoever about the effec-
tiveness of a therapeutic method for one kind of psychological state on its
effectiveness on other psychological states or symptoms?

The relevance of logical independence is more apparent in the context
of the plausibility of a CNH. Some CNHs are more plausible than others.
Consider the CNH that experiencing trauma has no effect on any aspect
of a person’s life, and the CNH that a exposure to trauma does not affect
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cognitive reasoning. Most would think the former CNH is much less
plausible than the latter. Remember that the truth of the CNH implies the
truth of all specific hypotheses nested within it. So all the null hypotheses
tested by investigators examining the relationship between exposure to
trauma and cognitive reasoning are nested within the broader CNH that
trauma has no effect on any aspect of a person’s life. Likewise, the specific
null hypothesis tested by an investigator examining the effect of trauma on
something like the ability to solve anagrams is nested within the CNH that
the trauma does not affect cognitive reasoning.

Consider now the multiplicative law of probabilities, which states that
when two or more events are independent, the probability that all the events
will occur equals the product of the individual probabilities. Suppose 100
logically independent specific hypotheses about the effect of trauma are
tested that are nested under the CNH that exposure to trauma has no effect
on any aspect of a person’s life. And further suppose that for each specific
hypothesis test, we can all agree that the probability that the null is true
for that test is very high, say 0.95. By the multiplicative law, if the tests are
independent, then the probability that all 100 of the specific null hypotheses
are true is 0.95100 = .006. In other words, the probability that the CNH is
true is only .006, even though we are pretty sure for each test that its null
hypothesis is true. Reframed, we can be pretty sure that at least one of the
specific nulls is actually false; the probability of that is 1 − 0.006 = 0.994.
This means that we can probably reject the CNH outright, without any
testing needed, because it is simply too implausible.

But this logic applies to logically independent hypotheses. If the hy-
potheses the 100 investigators tested aren’t logically independent, such as if
they were all testing the same null hypothesis using the same methodology,
then we can’t just multiply the probabilities of the specific null hypotheses
being true together in this fashion. The probability that they are all incor-
rect may be quite high, perhaps as high as 0.95 if the tests were perfectly
positively correlated. The CNH is more plausible when the hypotheses are
logically independent, and we should be concerned about falsely rejecting
it if enough tests are done (as in the balding lotions example).

But recognizing the implausibility of the CNH has a bearing on the
severity of the multiple test problem we face. Remember that the compu-
tations we went through in sections 11.1.1 and 11.2 assume that all null
hypotheses are true. In other words, it assumes that the CNH is true. But
we just said that the CNH may be implausible. If it isn’t plausible, why
would we worry about falsely rejecting it, and why would we want to build
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in multiple test correction into our specific tests that assumes the implau-
sible null hypothesis is true? It isn’t that we shouldn’t worry at all about
multiple tests. It may be that there is some subset of specific hypotheses
that, when combined, constitute a plausible CNH. But the size of that sub-
set would determine the kind of correction we apply to compensate for
multiple tests, not the broader set of all specific null hypotheses under the
implausible CNH. Regardless, the former is smaller than the latter, so by
applying a Bonferroni correction corresponding to the latter, we may be
overcorrecting.

An argument could also be made that when an investigator conducts
a set of hypothesis tests, the CNH that all nulls the investigator tests are
true is often not particularly plausible. Most scientists don’t just conjure
hypotheses out of thin air. Rather, the questions they ask of their data, and
the studies they design to answer those questions, usually reflect a rea-
soned argument based on their training and knowledge of the substantive
area they are studying, existing relevant literature that leads them to make
predictions about what they should find if there is any truth to the past lit-
erature, the theories prior research supports, and so forth. Most scientists
are not so stupid that they are likely to get it wrong for every hypothesis
they test in a study. It seems that there is a good chance that that a scien-
tist’s informed, theory-derived reasoning is correct for at least one of those
hypotheses being tested. We may not know which one, but they probably
aren’t all wrong. This suggests that it would be overcompensating to apply
a multiple test correction that assumes all specific null hypothesis are true.
This just doesn’t seem very plausible.

Thinking about the multiple test problem from the perspective of plau-
sibility of the CNH suggests that we should be less concerned about the
problem when conducting research in an established area than in a new
area. By established, we mean in an area for which there is already some
evidence of an effect. When a new research area appears, there may be a
period where we should entertain the possibility that all apparent phenom-
ena reported in the area are caused by the multiplicity of hypothesis tests
conducted in the area. But after an area becomes established and accepted
as legitimate, we worry less about later related findings in the area being
Type I errors.

So if researchers have already established that a particular form of ther-
apy works in treating some psychological conditions, it seems less plausible
that it would not work at treating other conditions than it would seem if
there wasn’t already some evidence that the therapy works. So if you
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repeatedly conduct a study on its effectiveness on some different condi-
tion, or conduct a single study of its effectiveness on several conditions,
you should be less worried about the multiple test problem given that its
effectiveness has already been established for at least some psychological
conditions. This does not mean that you need not worry at all about mul-
tiple tests. But the CNH may not be very plausible when doing research in
a well-established area relative to when doing work in a new area.

11.3.4 Planned versus Unplanned Tests

Suppose that on January 1 I declared that I was going to win the lottery
at least twice this year. If I played every day, you might or might not be
surprised if I did actually win twice. Your surprise would of course depend
on the probability of winning on any particular day. If the likelihood of
winning on any given day were, say, 1 in a million, winning even once
might surprise you, and you might think that perhaps I had some kind
of clairvoyance if I did indeed win twice. But if the odds of winning on
any day were higher, such as 1 in 20, then winning twice wouldn’t be
particularly surprising. Indeed, in that case, you’d be surprised if I didn’t
win at least twice if I played every day.

But suppose that I were more specific in my forecast, and I declared
that I was going to win on February 14th and on May 8th. Now if that
actually happened, you would understandably be impressed, even if the
odds of winning on any given day were as high as 1 in 20. And if the odds
of winning on any given day were only 1 in a million, you would have a
hard time convincing yourself that I wasn’t clairvoyant. Cheating or the
gamble being somehow fixed in my favor may be the only other plausible
explanation for my success at forecasting the 2 days such a low probability
event would occur.

Researchers usually conduct research with a particular objective in mind
and particular predictions about what they will find that are tested statisti-
cally once the data are available. That is, researchers often approach their
jobs expecting certain things to happen, in the same way as if I were to say I
was going to win the lottery on February 14th and May 8th. In science, the
predictions take the form of particular null hypotheses the scientist expects
to be rejected when put to the test. Suppose an investigator makes three
predictions, and all three null hypotheses he or she predicted would be
rejected are in fact rejected. It seems implausible at this point that all of
those null hypotheses are actually true (the CNH) given that the investi-
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gator forecasted in advance of seeing the data and doing the analysis that
they were going to be rejected.

But suppose the investigator did not forecast these results in advance
and instead merely reported that only these three results were statistically
significant out of many hypothesis tests the researcher decided to conduct
when exploring the data looking for statistically significant effects. Now
it seems much more plausible that all three of these null hypotheses could
actually be true, and we would rightfully be more concerned about the
multiple test problem than we would if the investigator predicted these
results in advance. This is similar to how you would feel if I were to win
the lottery a few times in a year when the odds of winning any given time
were high, such as 1 in 20, relative to if I were to call out the specific days I
was going to win and that actually happened.

So our thinking about the multiple test problem clearly has to be dif-
ferent when evaluating the results of tests that are anticipated in advance
relative to just discovered after a round of “data snooping.” Some use
the terms planned and unplanned to distinguish between these two testing
scenarios, though these terms seem unsatisfying, because we could plan to
mine our data looking for statistically significant results. A priori and post
hoc testing probably is a better set of terms, though still not perfect.

Some feel that for hypothesis tests that are planned or a priori, we
need not worry about the multiple test problem or apply any multiple test
correction to results. Though we are sympathetic to the position that the
multiple test problem is less of a problem for a priori hypothesis tests, this
seems too extreme a position for our tastes. By this argument, it would be
to a researcher’s advantage to formulate a prediction for every conceivable
test one could conduct with one’s data. But if one were to actually conduct
every conceivable test, it is certainly true that some Type I errors would
be made if some kind of correction for multiple tests is not made. Yet we
should not correct as much for a small set of hypothesis tests relevant to
specific predictions we make in advance relative to when we conduct a
large number of tests for no reason other than to just see what turns out to
be statistically significant.

Planned or a priori tests are usually the ones that researchers care the
most about, because they test specific predictions or hypotheses that mo-
tivated the research in the first place. Unplanned or post hoc tests usually
are of less interest, in that they are frequently exploratory and often sug-
gest themselves after seeing the data. Rosenthal and Rubin (1984) offer a
sensible approach to multiple test correction that weights sets of tests by
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their interest value. The idea is to partition the desired αFW into the part for
tests of high interest and the part for tests of less interest. In principle, one
could partition further, such as high, moderate, and low interest, but for
simplicity, we assume only two partitions. Using this approach, a different
multiple test correction is applied to the two sets, depending on the number
of tests in each.

For example, suppose that you plan on doing three hypothesis tests
that directly motivated the research you conducted. If you didn’t conduct
these tests, you wouldn’t be answering the very questions you designed
the study to answer. But perhaps there are five other tests that are worth
conducting, even though they didn’t motivate the research in the first place.
For those three you care most about, you might set αFW for this set of three
to .03 and apply a Bonferroni correction factor of 3 to each of the p-values.
That is, you reject the test’s null hypothesis only if its uncorrected p is no
higher than than .01, meaning its corrected p is no higher than .03. For the
five other tests that are of less interest, you conduct those tests such that
αFW = .02, which is .05 minus the .03 you already gave to the three tests
of most interest to you. So for each of these five tests, you reject the null
hypothesis only if its uncorrected p is no greater than .02/5 = .004, meaning
its corrected p is no larger than .02.

Observe that by this strategy, the three tests you care most about are
conducted less conservatively than if you corrected all tests by a Bonferroni
correction of 8, which would mean you reject a test’s null hypothesis only
if its uncorrected p is less than .00625, regardless of the interest value of the
hypothesis being tested. So for those three tests, you are gaining a little
power, because the p-value doesn’t have to be quite as small to reject the
null. For those tests you don’t care as much about, you are being more
conservative than you otherwise would be, but that is a small price to pay
given that you don’t care as much about those tests and you gain a little
power for those tests you care about. Importantly, the probability of at least
one Type I error across the eight test remains acceptably low at just about
.05.

The one difficulty with this approach is how to weight the tests, meaning
which ones you care more about and how to partition αFW across the
interesting and less interesting tests. The decision is subjective, but one
can usually come up with sensible and defensible strategy for making the
choice. See de Cani (1984) for a discussion.



338 Regression Analysis and Linear Models

11.3.5 Summary of the Basic Issues

Most solutions to the multiple test problem are predicated on the assump-
tion of a true CNH. We assume a true CNH when applying the Bonferroni
correction of B to account for the fact that one has conducted B hypothesis
tests. But if the CNH is implausible, this means that it is very unlikely
that all of the specific null hypotheses nested under the CNH are true,
but it may be plausible that some smaller set of fewer than B specific null
hypotheses are all true. Thus, indiscriminantly multiplying each p-value
by B or dividing αFW by B can be an overcorrection when the CNH is im-
plausible. When the set of specific hypotheses are logically independent,
the plausibility of the CNH declines as the number of specific hypotheses
nested within the CNH increases. It also declines the more established a
research area becomes. Thus, the multiple test problem is not as much of
a problem, meaning correction doesn’t have to be as strict, for logically
independent hypotheses or in research areas that are well established. We
need to be particularly concerned about the multiple test problem when the
specific null hypotheses being tested are logically nonindependent, when
the research area is new, and when exploring data and testing hypotheses
not based on a priori predictions.

Using a Bonferroni correction of B when adjusting test results for the
multiplicity of tests conducted is perfectly valid even when tests are log-
ically independent and the CNH is implausible. The only harm in doing
so is conservatism, meaning reduced power to detect false specific null
hypotheses. Although a less strict multiple test correction may be justi-
fied in these circumstances, there is no empirical way of choosing that less
conservative correction. But you can separate the tests into those that are
more versus less interesting or important to your research objectives, and
partition αFW across these sets with a separate Bonferroni correction in each
set. This can reduce the conservativism of the ordinary Bonferroni method
for those hypothesis tests the results of which you care more about.

11.4 Chapter Summary

In this chapter we addressed the problem associated with conducting mul-
tiple hypothesis tests. If all null hypotheses in a set being tested are true and
each is tested at the α level of significance, then the probability of at least
one Type I error in the set—the familywise α or αFW—is generally higher
than α. If the number of tests B is large enough, then it may be almost
certain that one of the conclusions resulting from the tests is a Type I error.
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But this assumes that the CNH is true—that all of the B null hypotheses
tested are true.

The Bonferroni method is a simple, albeit somewhat conservative ap-
proach to dealing with the multiple test problem. Its conservativism is a
small price to pay given its enormous flexibility, how easily it is imple-
mented, that it works for both independent and nonindependent tests, and
that it can be applied to any hypothesis test that yields a p-value regard-
less of the specific statistical method being used. The Bonferroni method
involves multiplying the p-value from a hypothesis test by the number of
tests conducted and evaluating this “Bonferroni-corrected” p relative to the
desired αFW, rejecting the null only if the corrected p-value is less than αFW.
When this procedure is applied and the CNH is true, the probability of at
least one Type I error in the set is no higher than αFW.

Many investigators religiously invoke worries about the multiple test
problem whenever a set of tests is conducted. The extreme form is to always
apply the most strict version of the Bonferroni method, multiplying all p-
values by B. This works, but this extreme position fails to acknowledge
that there are various factors, some that can’t be objectively quantified, that
influence how concerned we should be about the multiple test problem.
These factors include how plausible the CNH is, whether the tests in the
set are logically independent, how well established the research area is,
and the interest value of the hypotheses relative to the purpose of the
study. Although never correcting for multiple tests may be hard to justify,
applying a Bonferroni correction of B to all tests can be an overcorrection
of the problem.





12
Nonlinear Relationships

Assuming linearity between two variables when modeling their relation-
ship often results in reasonably good models that are useful and easy
to interpret. But sometimes we have reason to believe a relationship
is not linear, or the evidence compels us to accept that it is not. In
spite of its name, linear regression analysis can be used to model rela-
tionships that are better described with curves than with straight lines.
In this chapter we discuss reasons you might choose to fit a curve to
a relationship rather than a straight line, and we show how to detect
nonlinearity visually as well as using polynomial regression. We also
give a brief overview of spline regression, an interesting extension of
regression analysis that allows for chaining of line or curve segments
to capture complex forms of nonlinearity. We end with a discussion of
transformations, often used to make nonlinear relationships approximate
linear ones.

12.1 Linear Regression Can Model Nonlinear
Relationships

Relationships between variables are sometimes better described with
curves than with straight lines. A graph showing world population on
the vertical axis against time on the horizontal axis would constantly curve
upward, with the growth accelerating rapidly with time. Human height
against age rises more slowly during childhood than in the early teen years
but levels off later. A plot of “commitment to democracy” versus the extent
to which a person identifies as politically conservative versus politically
liberal might show greater commitment among those in the middle of the
ideology continuum than among those on either the liberal or the con-
servative end of the spectrum. Desire to acquire more money might be
especially high among people who have very little, slowly drop off as in-
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come increases, and perhaps climb again among people who are already
very wealthy.

It may come as a surprise that a statistical technique called linear re-
gression analysis can be used to fit curves. It can. In this chapter, we show
some of the ways this is done.

12.1.1 When Must Curves Be Fitted?

In a scatterplot of Y against X, sometimes you can see that a curve better
describes a relationship than does a straight line. It may be that you could
easily draw a curve freehand through the scatterplot that seems to fit better
than any straight line that a regression program would generate. But there
are times when you need to go beyond this informal means of representing
curvilinearity. These include

• When you must estimate Y from X.

• When you want to test whether the relationship is curvilinear against
the null hypothesis that it is linear.

• When you must estimate the value of X at which Y is maximized
or minimized, such as the amplification volume at which a person’s
speech is perceived clearest, or the length of rest breaks that maxi-
mizes productivity.

• When you must correct for a nonlinear relationship between Y and a
covariate when studying the relationship between Y and independent
variable X.

Consider the data represented by the scatterplot in Figure 12.1. It is obvi-
ous that no straight line adequately characterizes the relationship between
X and Y. The best-fitting regression line of the form Y = b0+b1X is superim-
posed on the scatterplot. The equation for this line is Ŷ = 3.289 − 0.220X.
It is the best-fitting line by the least squares criterion. In this example,
R = 0.591, SSresidual = 6.003, and we know that no equation of this form
would result in a smaller SSresidual or larger R.

But consider a quadratic equation of the form Y = b0 + b1X + b2X2. This
is the equation for a parabola. The equation Ŷ = 1.254 + 1.597X − 0.359X2

is superimposed on Figure 12.1, which is the best-fitting parabola for these
data. Just looking at the plot, it obviously fits much better than the linear
model. Statistics confirm the better fit, as R = 0.905 and SSresidual = 1.666 for
this equation, which was found simply by regressing Y on X and X2. R is
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FIGURE 12.1. The best-fitting linear and quadratic model for these data.

much larger and SSresidual is much smaller for the quadratic model than the
linear model. So we have produced a better-fitting equation relating Y to X
by adding the regressor X2 to the model. Thus, linear regression analysis
can be used to fit parabolas to data. Indeed, it can be used to fit other kinds
of functions to data that are curves or semblances of curves.

This example illustrates each of the four points above. If your goal
was to generate an estimate or prediction of Y from X, clearly you would
do better using the model with X2 than you would the model without
it. You could also statistically compare the fit of the linear model to the
nonlinear model to formally test whether the relationship is better described
as curvilinear rather than linear. This would be the same as testing the
null hypothesis that the regression coefficient for X2 is equal to zero. Using
calculus, you can derive that the estimated peak in Y occurs when X = 2.224;
for those with a calculus background, the first derivative of the equation
for Ŷ with respect to X is 1.597 − 2 × 0.359X, which is equal to zero when
X = 2.224. And suppose that X was a covariate. The procedures we
described in Chapter 3 and elsewhere could result in improper control of X
if you assumed that the relationship between Y and X was linear. But using
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X2 along with X as regressors in the model along with your independent
variable of interest may reduce or eliminate this problem.

This latter point is worth developing further. Let the covariate be la-
beled C, and let X and Y be independent and dependent variables, respec-
tively. Imagine that C has a mean near zero (either naturally or because
you have made it so), meaning that C and C2 are uncorrelated or nearly
uncorrelated (we develop this point in section 12.2.4). Now suppose that
Y is determined entirely by C2 as Y = C2. And further suppose that C also
entirely determines X in the same way: X = C2. Thus, Y = X, and both
correlate zero or nearly so with C. If you failed to control for the curvilin-
ear effect of C on Y, you would mistakenly conclude that X determines Y
completely, when it actually has no effect at all, because Y is determined
entirely by C.

The distortion in the apparent effect of X on Y occurs in this example
because the relationship between X and C mirrors that between Y and C.
But even in the absence of this, failure to control for curvilinear effects
of covariates can distort results in the opposite direction by increasing
MSresidual, which makes it harder to identify effects of X on Y that actually
do exist, because all other things being equal, standard errors for regression
coefficients are larger when MSresidual is larger (recall equation 4.3).

12.1.2 The Graphical Display of Curvilinearity

When there are no covariates to complicate matters, a simple scatterplot
depicting the relationship between two variables can be very useful both
for seeing that a relationship is curvilinear and for discerning the nature
of the curvilinearity. To take a few examples from the Roman alphabet, a
scatterplot depicting nonlinearity between X and Y, with Y on the vertical
axis and X on the horizonal axis, may look something like an L, with a
sharp, rapid drop in Y as X increases, but a flattening of Y as X increases
further. Or it could look like a U, with Y higher on the extremes of X than
in the moderate values of X. The inverse of this would be a lowercase n,
with Y lower in the extremes of X but higher in the middle of X. A J-shaped
relationship would appear with Y relatively flat with increases in X with
a sharp spike upward in Y once X reaches a certain value. Other forms of
nonlinearity that are possible may not look like letters from the alphabet.

However, it is more difficult than you might think to depict or discern
a nonlinear relationship between X and Y when there are covariates. If
we have an independent variable X, a dependent variable Y, and one or
more covariates C, and if there is a curvilinear relation between X and Y
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FIGURE 12.2. Eight possible scatterplots of Y against X with a covariate C. Plot G is the
residual scatterplot.
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when covariates are controlled, then there are no fewer than eight different
scatterplots that we might think would display this curvilinearity. This
is because there are four “forms” of Y we might consider: Y itself, the
portion of Y independent of X (Y.X), the portion of Y independent of C
(Y.C), and the portion of Y independent of X and C (Y.XC). In Chapter 3 we
discussed that these portions of Y are residuals from a regression (e.g., Y.C
is the residual from a regression estimating Y from C). There are also two
forms of X we might consider: X itself, and the portion of X independent
of C (X.C). By combining the four forms of Y with the two forms of X,
we can generate eight different scatterplots that we might imagine would
display any curvilinearity between X and Y. And indeed any of these eight
will work if X is independent of C and neither X nor C has any linear
effect on Y. But abandoning any one of these three conditions can make
the curvilinearity invisible, or nearly so, in four of these eight scatterplots,
abandoning a second condition makes it invisible, or nearly so, in two
more, and abandoning a third makes it invisible, or nearly so, in one more.
The only scatterplot that is impervious to violations of all three conditions
is the residual scatterplot, which is the plot of Y.XC against X.

This point is illustrated in Figure 12.2, which shows these eight scat-
terplots for a sample with two regressors. This artificial data set is fairly
typical, except that Y was defined as an exact nonlinear function of X and
C to make any nonlinearity as visible as possible. The exact definition of
Y used was Y = 5X + 1X2 + 10C, meaning X is nonlinearity related to Y
when C is controlled. Curvilinearity is clearly visible only in the residual
scatterplot, which is plot G in the lower left corner (Y.XC against X). The
semipartial scatterplot (Y against X.C) described in section 3.3.1 is plot B,
and the partial scatterplot (Y.C against X.C) described in section 3.3.2 is
plot F. They can hide even substantial nonlinearity. Curvilinearity is barely
visible in plots C (Y.X against X) and H (Y.XC against X.C) but is crystal
clear in the residual scatterplot.

Residual scatterplots provide the best graphical method for detecting
nonlinearity and discovering its nature, but they have a major limitation
that creates the need for nongraphical methods. One limitation of any
graphical approach is the inefficiency of the human eye in detecting non-
linearity. This is illustrated in Figure 12.3. If you didn’t know otherwise,
you would probably think that the relationship between X and Y depicted
there is linear. Yet in these data, nonlinearity is statistically significant at
the .01 level and can easily be detected by polynomial regression intro-
duced in section 12.2, even though that nonlinearity is essentially invisible
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FIGURE 12.3. Real nonlinearity is sometimes hard to see in a scatterplot.

to the eye. This can be particularly problematic when there are nonlinear
relations among regressors. In that situation, nonlinearity between one
regressor and Y may be totally invisible even in a residual scatterplot.

An alternative problem is the tendency for the human mind to see
patterns among even a random dispersion of dots. That is, you might
think you see nonlinearity, but that nonlinearity is not actually present
when formally tested. But whether it is failing to see real nonlinearity,
or interpreting linearity as if it were nonlinearity, nongraphical methods
are a good addition to and typically even better than graphical methods
that rely on the subjective assessments of the perceiver. We cover some
nongraphical methods in the next two sections.

12.2 Polynomial Regression

12.2.1 Basic Principles

Polynomial regression fits curves to data by using regressors that are succes-
sive powers, such as X, X2, X3, and so forth. The “order” of the polynomial
is defined by the largest power in the polynomial. Figure 12.4 graphically
depicts four equations relating Y to X. The linear equation is the one we
have focused on throughout most of this book, where Y changes by the
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FIGURE 12.4. Some example polynomial models of the relationship between X and Y.

same amount as X increases by a fixed amount. A quadratic polynomial
would take the form Y = b0 + b1X + b2X2 and is thus of “second order,”
because two is the largest power of X. A quadratic polynomial allows only
a single “bend” in the relationship between X and Y, as in Figure 12.4.
Adding a third power of X (thus yielding a “third-order” polynomial) re-
sults in a cubic model: Y = b0+ b1X+ b2X2+ b3X3. This model allows for two
bends in the curve, as can be seen in Figure 12.4. It would be exceedingly
rare when using polynomial regression to add more than a third power
of a variable to a model, but it is possible. Figure 12.4 depicts a quartic
model, which by definition has a fourth power and thus is of the form
Y = b0 + b1X + b2X2 + b3X3 + b4X4. This function allows three bends in the
curve.

As Figure 12.4 depicts, the higher the order of the polynomial for X, the
more complex the curve relating X to Y can be. The shape of the curve is
also determined by the regression coefficients given to each of the powers
of the variable. A characteristic of a polynomial of second order or higher
is that the amount Y changes as X changes by a fixed unit depends on the
starting point of X. So adding one unit to X will have a different effect
on the amount Y changes depending on the value of X at which you start.
Indeed, this is an informal definition of a curvilinear relationship between
X and Y.
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Some people criticize polynomial regression as excessively mechanical.
Such critics argue that one should choose a curve whose shape makes sci-
entific sense, which a polynomial may not. This is certainly good practice
when possible. But polynomial regression can do a decent job representing
curvilinear relationships that may not conform exactly to other kinds of
functions (e.g., a logarithmic function; see section 12.4). Polynomial re-
gression is also very versatile, because the shape a polynomial takes can
be modified substantially by the amount of weight each power receives
in the generation of Y, and your regression program will figure out how
to weight each power in order to minimize SSresidual and thus maximize
the correlation between Y and Ŷ. Although it may be true that very few
nonlinear relationships are truly parabolic, taking a U or inverted U shape,
some nonlinear relationships between X and Y can be well described with
a quadratic function within the domain of measurement of X.

Polynomials can also be nice ways of dealing with nonlinearity in co-
variates. Even if the relationship between an independent variable X and
a dependent variable Y is linear, when those variables relate nonlinearly
to a covariate C, it is important to allow for that nonlinearity in order to
properly visualize and estimate the partial association between X and Y.
We wouldn’t typically care if the polynomial is a substantively or theoret-
ically meaningful representation of the nonlinear relationship between a
covariate and independent and dependent variables if it does a good job
at capturing that nonlinearity and thereby affords a better adjustment for
constructing measures of partial association between key variables in your
analysis.

Polynomial regression is often used as a means of testing for nonlinear-
ity in the relationship between X and Y. Because polynomials can describe
such a wide range of curves, a test of nonlinearity can be conducted by
determining if adding successive powers or sets of powers of X improves
the fit of the model to a statistically significant degree. The test described
in section 5.3.3 can be used for this purpose. We will see an example of this
in section 12.2.2.

When a variable X is included as a regressor along with various powers
of that variable, we usually think of that set of variables as a compound
variable representing X. So, for example, if you think that age is nonlinearly
related to something like attitudes toward gun control, you could use age
as well as age2 and perhaps even age3 as regressors in the model. Any
test involving age would involve all three of these. For instance, you
could test whether gun control is related to age while controlling for sex
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and income by adding age, age2, and age3 to a model of gun control that
already contains income and sex. An improvement in fit as indexed by
a statistically significant increase in R is evidence of a partial relationship
between age and gun control, without imposing the assumption that this
relationship is linear. But ordinarily, you would start with age and then
decide whether adding powers of age improves the fit of the model, because
it is easier to interpret linear relationships, and we wouldn’t want to add
an unnecessary complexity to a model unless the data (or relevant theory
or past literature) suggested it was necessary to do so.

You would almost never include higher powers of a regressor in a model
without including all of the lower powers as regressors as well. Consider,
for example, the equation Y = 2 + 3X2. This equation contains the second
power of X but not the first. As a result, the line for this equation must
pass through the point X = 0,Y = 2. This is very restrictive and not likely
to be consistent with your data. When you include X, the function is no
longer so restricted. Notice that Y = 2+ 3X2 could be written in equivalent
form as Y = 2 + 0X + X2. Leaving X out of the model but including X2 is
like forcing the regression coefficient for X to be zero, and this is not likely
to fit the data as well as if you let X’s regression coefficient be something
else. It is better to let your regression program figure out how to weight X
in tandem with X2 rather than imposing this constraint on the estimation
process.

12.2.2 An Example

We illustrate polynomial regression using the POLITICS data file, which
comes from a nationally representative survey of people living in the United
States at the time of data collection. The dependent variable Y is score
on a test of political knowledge (pknow), and we will estimate political
knowledge from frequency of use of traditional news sources (X), named
news in the data file. Participants in the study were asked three questions
about how many days (0 through 7) during the typical week they read the
newspaper, watch the national network news broadcast, and watch their
local televised news broadcast. Responses to these three questions were
averaged to produce the measure of traditional news use. We will look
for evidence of nonlinearity between news use and political knowledge,
while holding constant the respondent’s age (C1), sex (C2), and SES (C3,
labeled ses in the data, defined as the average of the person’s standardized
education level and income).
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FIGURE 12.5. A residual scatterplot depicting the association between political knowl-
edge and news use. The residuals are departures from estimated knowledge from a model
that includes sex, age, SES, and news use.

Regressing political knowledge on news use X and the covariates, but
without any higher powers of news use (without X2, X3, etc.), yields R =
0.566. The regression coefficient for news use is 0.265 and statistically
significant, t(335) = 2.214, p = .028, indicating that people who use the
news more frequently know more about politics. More specifically, two
people who differ by 1 day in their typical news use but are equal on the
covariates are estimated to differ by 0.265 units in their knowledge, with
the more frequent news user being more political knowledgeable. But the
meaningfulness of this depends on the partial relationship being linear.

Figure 12.5 is a residual scatterplot depicting the relationship between
covariate-adjusted political knowledge and unadjusted news use. You can
probably see some evidence of nonlinearity, as the residuals appear to be
larger (more positive) in the center of the X distribution than in the extremes
of X. But we should do a formal test.

When the square of news use is added to the model, the resulting model
is

Ŷ = 7.168 + 1.372X − 0.156X2 + 0.022C1 + 1.720C2 + 2.472C3 (12.1)
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The regression coefficient for the square of news use is statistically sig-
nificant, t(334) = −2.807, p = .005. This test is equivalent to the change in
the fit of the model when the square of news use is added to the model.
Without X2, R2 = 0.320, but with X2, R2 = 0.336. This is a statistically sig-
nificant increase, F(1, 334) = 7.879, p = .005. The increase in R2 of .016 is the
proportion of the variability in political knowledge uniquely attributable to
the square of news use. If we wanted the proportion attributable uniquely
to news use, we’d have to look at difference in the squared multiple corre-
lations between a model that excludes news use and the square of news use,
because news use is a compound variable in this model. Doing so, along
with a test of significance as described in section 5.3.3, yields a difference
of 0.026 in the two model R2s, F(2, 334) = 6.441, p = .002. So news use
uniquely accounts for about 2.6% of the variance in political knowledge.

Figure 12.6 visually depicts equation 12.1. This figure was generated
by setting C1, C2, and C3 to their sample means1 and plotting estimated
political knowledge for many values of news use (X and therefore X2). As
can be seen, holding age, SES, and sex constant, political knowledge is
estimated as higher among those moderate in their news use, with more
extreme users (less or more) estimated as lower in political knowledge. As
you can see, the curvilinear effect is quite large even though it was barely
visible in the partial scatterplot of Figure 12.5.

Just to make sure more complex curvilinearity is not missed, the cube
of news use (X3) was added to the model that includes news use and its
square. The cubed term was not significant, meaning that adding it to the
quadratic model does not improve the fit of the model to a statistically
significant degree.

12.2.3 The Meaning of the Regression Coefficients for
Lower-Order Regressors

We define a global property of a model as a property of the entire model,
while a local property applies to only part of the model. For instance, a
straight line relating X to Y has the same slope at all points, so the slope,
estimated by the regression coefficient for X, is a global property of the
model. But a curve defined by quadratic model that includes X and X2

as regressors has different slopes at different points and may even slope
downward in some sections but upward in others. Thus, the slope of

1It is legitimate to use the sample mean of a dichotomous variable when generating a plot
such as this, even if the mean has no inherent meaning. In this case, sex is coded 0 for
females and 1 for males, so the mean is the proportion of the sample that is male.
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FIGURE 12.6. A quadratic polynomial model of political knowledge from news use fre-
quency.

a curve defined by a quadratic model is a local property of the model.
But a quadratic model is either concave, with a slope that becomes more
positive as X increases, or convex, meaning that the slope is becoming more
negative as X increases. So the concavity or convexity of a quadratic model
is a global property of the model.

In a quadratic equation, it can be shown that if the regression coefficient
for X2 is positive, then the function is concave, but if this coefficient is neg-
ative, then the function is convex. It can also be shown that this regression
coefficient measures the curvature of the relationship between X and Y,
defined as the difference between the Ŷ value of at any X point and the
average of the two Ŷ values corresponding to the values of X one unit to
the left and one unit to the right. For instance, if Ŷ = 2X2 and we arbitrarily
use X = 5, then Ŷ = 32, 50, and 72 when X is 4, 5, and 6, respectively. We
then have (32 + 72)/2 − 50 = 2, which is the coefficient for X2. We would
find the same value of 2 if we chose any other X value besides 5. Thus, the
coefficient for X2 measures a global property of the model, and we shall
call X2 a global term in the regression.
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On the other hand, it can be shown that the coefficient of X in a quadratic
equation measures the slope of the curve at the single point where X = 0.
Readers who know calculus can see why this is so; if Ŷ = b0 + b1X + b2X2,
then the first derivative of this function is dŶ/dX = b1 + 2b2X, which equals
b1 when X = 0. In the political knowledge example, b1 = 1.372, and you
can see by inspecting Figure 12.6 that this is about the slope of the parabola
where it meets the Y-axis, when X = 0. Therefore, we call X a local term,
since its regression coefficient measures a local property of the model.

This logic applies to higher-order polynomials, though understanding
it requires knowledge of some calculus. For example, in a cubic model,
the regression coefficient for X3 is a global property of the model, but
the regression coefficients for X and X2 are local properties. In calculus
terms, the first derivative of a cubic model Ŷ = b0 + b1X + b2X2 + b3X3 is
dŶ/dX = b1 + 2b2X + 3b3X2. The first derivative is the slope of the curve
at given point X, and you can see that if you set X to 0 in the equation for
the first derivative, then you get b1. Thus, b1 is the slope of the curve when
X = 0; thus, it is a local property of a cubic regression model.

The second derivative of a cubic model is 2b2 + 6b3X. The second
derivative quantifies how quickly and in what direction the slope is changing
at a point X. This is sometimes called the acceleration of the function. If
the second derivative is positive, that means that the slope is increasing
as X is increasing in value. But if the second derivative is negative, that
means that the slope is decreasing in value as X is increasing. The larger
the second derivative ignoring sign, the faster the slope is changing. In this
case, if you set X to 0 in the equation for the second derivative, you get 2b2.
So b2 is one-half of the speed at which the slope is changing at the point
X = 0. This makes b2 a local property in a cubic regression model.

12.2.4 Centering Variables in Polynomial Regression

A variable is mean-centered by subtracting its mean from all measurements,
creating a new variable with a mean of zero. A variable can be mean-
centered relative to its sample mean, or relative to its population mean if
that happens to be known. There are two reasons why you might choose
to mean-center X in a polynomial regression involving powers of X.

First, if X is high relative to sX, then the successive powers X, X2,
X3, and so on, might correlate with each other so highly that rounding
error is produced, or you will reach the lower limit on the tolerance for a
regressor that your regression program allows. For instance, in a sample
of size N = 5 containing the values of X equal to 1,000, 1,001, 1,002, 1,003,
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and 1,004, the correlation between X and X2 is 0.99999983, which may
be large enough to start introducing nontrivial rounding error into some
regression computations. This can be corrected by centering X around its
mean before computing the powers of X. If we subtract 1,002 from these
five measurements (which is their mean), they become −2, −1, 0, 1, and 2,
and now the correlation between X and X2 is exactly zero. This can reduce
computational problems and allow your regression program to estimate
the model.

The second reason for mean-centering X before computing powers of
X is that the regression coefficient for X is then the effect of X on Y at the
mean of X, instead of when X = 0. This is likely to be more interpretable.
A proof of this point was given in section 12.2.3.

Mean-centering a variable has no effect on regression coefficients for
regressors or correlations when only first-order terms are used (e.g., X
itself). But the situation with polynomial regression is more complex.
Measures of simple relationship, such as correlations or simple regression
coefficients, are affected for all but the first-order terms. For instance, if five
measurements on X are 1, 2, 3, 4, and 5, then the five values of X2 are 1, 4,
9, 16, and 25. But if we subtract 5 points from X before computing X2, the
new X values are −4, −3, −2, −1, and 0, and the new values of X2 are 16,
9, 4, 1, and 0. Thus, the cases having the highest values on X2 originally
now have the lowest values. This, of course, will change the correlation
between X2 and other variables.

Measures of unique contribution for X or one of its powers, such as bj,
prj, srj, and the values of t or F that test their significance, are affected by
centering for all but the highest power term. This is illustrated in Figure
12.7. Consider curve A. Its equation is Y = 11.75−5.50X+0.75X2. The slope
of this curve is negative at X = 0 because Y is decreasing as X increases past
zero. Thus, the regression coefficient for X is negative (see section 12.2.3). If
we subtract 6 from X, then the curve shifts and becomes curve B in Figure
12.7, which has the same shape as curve A but is shifted horizontally
in space. The equation for this curve is Y = 5.75 + 3.50X + 0.75X2. Its
slope at X = 0 is the coefficient for X, which is now positive because Y is
increasing as X increases past X = 0. So centering X has changed the value
of the regression coefficient for X, but the regression coefficient for X2 is
unaffected.
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FIGURE 12.7. The effect of centering X on the regression coefficient for X in a quadratic
model.

12.2.5 Finding a Parabola’s Maximum or Minimum

Suppose you have estimated a model of the form Y = b0 + b1X + b2X2.
The model could contain additional regressors as well, without changing
the discussion that follows. However, the model should not include any
regressors formed as the product of X and some other variable. The reasons
for using a regressor that is a product of variables is discussed starting in
Chapter 13.

In such a model, the value of X that either maximizes or minimizes Y
(when all other variables are held constant, if the model contains additional
regressors) is

X =
−0.5b1

b2
(12.2)

Readers familiar with calculus will recognize this as the value at which the
first derivative of Y with respect to X is equal to zero. The first derivative
of a function of X with respect to X quantifies the amount Y is changing as
X changes at a particular value of X. In a parabola, there is a point at which
Y stops increasing or decreasing with changes in X and then “reverses
course,” such that if it was increasing with X, it now begins to decrease, or
if it were decreasing with X, it now begins to increase. This point is either
the minimum or maximum value. If the sign of b2 is positive, then this
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value is a minimum. If the sign of b2 is negative, then this is a maximum
value. But keep in mind that this point may not be within the range of the
observed data.

To illustrate, in the political knowledge example in section 12.2.2
we had b1 = 1.372 and b2 = −0.156. Applying equation 12.2 gives
X = −0.5(1.372)/ − 0.156 = 4.397. So we can say that holding constant ed-
ucation, age, sex, and SES, political knowledge is at its peak among those
who use traditional news sources a bit over 4 days per week. We know it
is a maximum and not a minimum because b2 is negative, and we can also
tell this from Figure 12.6.

12.3 Spline Regression

The scatterplot in Figure 12.8 depicts the association between two variables
X and Y. As can be seen, the relationship is complex, with Y increasing with
increasing X in some ranges of X, but decreasing Y with increasing X in
other ranges. After reading section 12.2, you might think a quartic function
would fit these data well. This would involving estimating Y from X, X2,
X3, and X4. Doing so results in Ŷ = 5.161 + 6.217X − 0.845X2 + 0.037X3 −
0.001X4, and R = 0.883. This function is depicted in Figure 12.8 with the
curve running through the scatterplot. It is apparent that even though
R is fairly large, there is quite a bit of room for improvement. Observe
that the vast majority of residuals are positive when X is between about 6
and 13, most are negative when X is between about 16 and 23, most are
again positive between 23 and 26, and then again mostly negative beyond
26. This model is consistently underestimating Y in some ranges of X but
overestimating Y in other ranges.

Spline regression is an alternative to polynomial regression. Segmented
regression might be a better term, as the methods we discuss here all focus
on fitting a set of models to various segments of the relationship between
X and Y. But we will stick with the traditional term spline regression. Spline
regression can model complex curves and do many other things, such as
fitting lines with different slopes in different ranges of X. It can also be used
when Y is expected to abruptly jump up or down at a specific value of X.

In this section, we introduce the fundamentals of spline regression,
focusing first on linear spline models, which approximate a complex curve
with a set of straight lines that are connected at joints. After describing these
fundamentals, we discuss polynomial spline regression, which connects
polynomials at joints. Polynomial splines are more versatile and therefore
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FIGURE 12.8. A scatterplot depicting a complex relationship and a quartic model super-
imposed.

more useful than linear splines, but you may find occasion to use linear
splines, and it is easier to understand polynomial spline models by first
learning how linear spline models work.

As a category of methods rather than a single method, spline regression
includes more complex variants than we describe here. For a discussion of
some of these more complex variants and their applications, see Ahlberg,
Nilson, and Walsh (1967), Greville (1969), and Marsh and Cormier (2002).
We focus only on methods that can be applied with an ordinary regression
program.

12.3.1 Linear Spline Regression

In its simplest form, linear spline regression is a method for fitting to data
a jagged line, like the solid line in Figure 12.9. Observe that this “curve”
is formed by the four line segments that are joined together. By increasing
the number of line segments, even extremely complex shapes can be fitted.
The user of linear spline regression chooses the values of the regressor X
but not the Y values that define the “joints” in a spline model. In Figure
12.9, these are marked J1, J2, and J3. These could be chosen after examining
a scatterplot, as we did in this example, or they could be chosen before
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FIGURE 12.9. A linear spline regression model with three joints.

examining the data if you had an a priori basis for expecting a change in
the relationship between X and Y at some values of X.

Spline regression using linear splines essentially estimates the slope
of each line segment relating X to Y by computing the slope of the first
segment and then the change in the slope at each joint. In Figure 12.9, the
slopes of the four line segments displayed are 0.926, −2.027, 1.594, and
−0.235, so a spline regression would estimate the changes in slope at J1, J2,
and J3 as −2.953, 3.621, and −1.829, respectively. These changes in slopes
will be manifested in the regression solution as the regression weights for
artificial variables created based on values of X.

To see how this is achieved, consider Figure 12.10. Line segment A,
which applies when X ≤ 4, is defined by the equation Y = 1.00 + 1.00X.
Line segment B applies when X > 4, and it is defined by Y = 13.00− 2.00X.
That is,

Y = 1.00 + 1.00X when X ≤ 4 (segment A)

Y = 13.00 − 2.00X when X > 4 (segment B)

Suppose we used the formula for line segment A to estimate all the Y
values, regardless of whether or not X was greater than 4. As can be seen
in Figure 12.10, doing so fits the Y values of the first four points perfectly,
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FIGURE 12.10. Why spline regression works.

but extending it beyond X = 4 (the dotted section of the line representing a
continuation of line segment A) overestimates the next two Y values by 3
and 6 units, respectively. What we want to do is find a way of integrating
the equations above into one equation that applies regardless of X.

Here is how we do it. Suppose we create a variable J1 set to 0 when X
is 4 or less, but set to X − 4 when X > 4. These values of J1 can be found on
the horizontal axis in Figure 12.10 below the values of X. Let e be defined
as the errors in the estimation of Y from the equation for line segment A:
1.00 + 1.00X. Notice that e = 0 when J1 = 0, e = −3 when J1 = 1, and e = −6
when J1 = 2. In other words, e = −3 × J1. So an equation that perfectly fits
the Y data would be

Ŷ = 1.00 + 1.00X − 3.00J1 (12.3)

This is the equation for the jagged line AB, and it integrates the equations
for segments A and B into one equation. Observe that the line segment A
has a slope of 1.00, and line segment B has a slope of−2.00, so the difference
between these slopes is−3.00, which is the coefficient for J1 in equation 12.3.
So by creating the variable J1 in this fashion, we were able to model the
amount the slope of the line relating X to Y changes once X is higher than
the location defining the joint. This example is atypical in that we do not
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normally achieve a perfect fit. But once the X values of the joints have been
selected, the regression program will fit the jagged line that minimizes the
sum of the squared residuals and maximizes R.

Returning to the more complex example in Figure 12.9, using this ap-
proach we can fit a series of line segments with different slopes for different
ranges of X but connected to each other at the joints. In Figure 12.9 there are
three joints at X values of 9, 18, and 26. So we construct three new variables
defined as X minus the joint location, but conditioned on X exceeding that
joint value. If X does not exceed the joint value, then that variable is set to
zero. In this example,

if X > 9, then J1 = X − 9 else J1 = 0

if X > 18, then J2 = X − 18 else J2 = 0

if X > 26, then J3 = X − 26 else J3 = 0

Once J1, J2, and J3 are created, then regressing Y on X, J1, J2, and J3

yields the equation

Ŷ = 11.628 + 0.926X − 2.953J1 + 3.621J2 − 1.829J3 (12.4)

The regression weight for X is the slope of the first line segment, and the
values of bj for J1, J2, and J3 equal the changes in slope at joints J1, J2, and
J3. As in other forms of regression, regression programs routinely provide
a test of significance for each bj. When bj represents a change in slope, we
are testing the null hypothesis of no change in slope. In this example, these
changes in slope at each joint are all statistically significant. Joints with
nonsignificant changes may be deleted, given that the results in such a case
suggest that there is no change in the size or direction of the association at
that joint.

For this model, R = 0.948,F(4, 95) = 209.101, p < .001. This is a decent
improvement from the quartic model (recall that in that model, R = 0.883),
and as can be seen by comparing Figure 12.8 and Figure 12.9, the linear
spline model does a better job estimating Y across the range of X. As
discussed in section 4.3.2, the F-ratio for this model tests the null hypothesis
that TR = 0. This can be interpreted as a test of the null hypothesis of no
relationship between X and Y, where X is a compound variable consisting
of X itself as well as J1, J2, and J3. We can test whether the relationship
between X and Y is linear against the null hypothesis that it is nonlinear
using the method in section 5.3.3. First estimate a model of Y from X alone.
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Then add the J variables to the model. A statistically significant increase
in R means that the linear spline model fits better than the ordinary linear
model. In this case, the model with just X has R = 0.263, whereas the
model with X and the three J variables has R = 0.948. This is a statistically
significant increase, F(3, 95) = 257.351, p < .001. The linear spline model
fits better than the simple linear model.

To better understand how this test works, consider that the model with
just X as a regressor is equivalent to the spline model but with the constraint
that all the regression weights for the J variables are equal to zero, meaning
no change in slope at the joints. If the spline model fits better, then allowing
for at least one joint with a change in slope produces a better-fitting model.

But we cannot use this test to compare the fit of this spline model
to the quartic model. This test works only when the model with more
variables (the spline model) contains all the same variables as the model
with fewer variables (the quartic model), plus at least one extra variable.
The J variables are not the same as the X2, X3, and X4 variables, so we can’t
formally test the significance of the difference in fit of these two models.

However, there is an alternative approach that can be used to assess the
relative value of the polynomial (X2, X3, and X4) and spline terms (the J
regressors). Combining these two models as

Ŷ = b0 + b1X + b2J1 + b3J2 + b4J3 + b5X2 + b6X3 + b7X4 (12.5)

yields R = .952 when applied to these data. We can ask how much the
polynomial terms add to fit by removing them from equation 12.5 and see-
ing if fit is significantly worse (which is the same as asking whether adding
the polynomial terms to the linear spline model significantly improves
fit). We already know that the linear spline model has R = 0.948. When
the polynomial terms are added to the model, the test from section 5.3.3,
which is appropriate here, does not quite achieve statistical significance,
F(3, 92) = 2.564, p = .059. But when only the linear spline terms are removed
from equation 12.5, the result is the quartic model, and we know that for
this model R = 0.883. This reduction in fit relative to the combined model
is statistically significant using this same test, F(3, 92) = 41.034, p < .001.
That is, the inclusion of the linear spline terms significantly improves the
fit of the model relative to when Y is modeled as a quartic function of X.
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12.3.2 Implementation in Statistical Software

Although spline regression is not built into any commonly used statistical
software packages of which we are aware, it can be implemented with any
regression program. Assuming X is in your data and named as such, the
SPSS code below constructs the three J variables in the four-segment linear
spline model described in section 12.3.1 and then estimates the model.

compute j1=0.

compute j2=0.

compute j3=0.

if (x>9) j1=x-9.

if (x>18) j2=x-18.

if (x>26) j3=x-26.

regression/dep=y/method=enter x j1 j2 j3.

Assuming the data reside in a file named SPLINE, the comparable SAS
code is

data spline;set spline;j1=0;j2=0;j3=0;

if (x>9) then j1=x-9;if (x>18) then j2=x-18;if (x>26) then j3=x-26;

run;

proc reg data=spline;

model y=x j1 j2 j3;

run;

and in STATA, use

gen j1=0

gen j2=0

gen j3=0

replace j1=x-9 if x>9

replace j2=x-18 if x>18

replace j3=x-26 if x>26

regress y x j1 j2 j3

The RLM macro documented in Appendix A has an option for linear
spline regression. The user specifies the location of the joints, and RLM
constructs all of the necessary J variables and then estimates the model.
For instance, the SPSS RLM command below is comparable to the SPSS
code above.
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rlm y=y/x=x/spline=9,18,26.

See Appendix A for information on the use of the spline option in RLM.

12.3.3 Polynomial Spline Regression

Linear spline regression works as means of modeling nonlinearity, because
any curve can be approximated by a set of line segments tied together at
joints. The more joints you include, the better the approximation to the
curvilinearity, in the same way that an octagon approximates a circle better
than does a pentagon. But one restriction of linear spline regression is that
between joints, the relationship between X and Y is fixed to be linear. As a
result, the curve ends up jagged, with “elbows” at the joints and potentially
very abrupt shifts in slope at the joints. A polynomial model doesn’t have
this problem, but a polynomial may not fit the relationship between X and
Y as well, as in this example.

Polynomial spline regression combines the strengths of both polyno-
mial and linear spline regression while eliminating the largest weakness of
each. This procedure fits a polynomial rather than a straight line within
each segment of the regressor. In principle, one could model the relation-
ship between joints with a polynomial of any order, but we focus only on
parabolic models (i.e., involving X2) between joints, because this is usually
sufficient. This will allow for different models of the relationship between
X and Y in the segments, but will produce a smooth curve (rather than a
line) between joints, with sets of smooth curves tied together at the joint
points and no jaggedness at the joints.

When we fitted straight lines between joints, we constructed new vari-
ables defined as a set of one or more new variables quantifying whether
and by how much X exceeded a particular joint value. To fit polynomials
between the joints, we follow a similar procedure except that the new vari-
ables are higher powers of X conditioned on X exceeding the joint value.
So if you want to fit a parabola between joint values, then the new variable
will be set to 0 if X is less than or equal to the joint value, but if X exceeds
the joint value, then set the new variable to the square of how much X
exceeds that joint value. For instance, if X ranged between 0 and 20 and
you placed a joint at 10, then J1 would be set to 0 unless X > 10. If X > 10,
then J1 would be set to (X − 10)2. You could include a higher additional
power if desired, such as (X − 10)3, if you wanted to fit a cubic function,
although in practice, squares will usually suffice. You would typically also
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include these same powers of X in the model to allow a polynomial of the
same order for the first segment.

The scatterplot in Figure 12.11 is the same as the scatterplot in Figures
12.8 and 12.9, with the quartic model superimposed as a dashed line. This
is a nice smooth curve, but as discussed already, its fit leaves something to
be desired. The solid line depicts a polynomial spline model, the splines
defined by second powers of X. Clearly, this does a better job describing
the relationship between X and Y. We now describe how this model was
constructed and estimated.

Examination of the scatterplot suggests that an inverted parabola may
characterize the relationship between X and Y for values of X below 11.
Between 11 and 16, the relationship appears linear or nearly so. Between
16 and 22, we can see what appears to be an upright parabola, but the left
side of an inverted parabola appears to describe the relationship between
X and Y between the values of 22 and 25. Finally, for X higher than 25, the
relationship between X and Y looks linear or nearly so. So we define the
five segments of the range of X with X values of 11, 16, 22, and 25. These
are depicted in Figure 12.11.

With these five segments defined, we then create four J variables set
to zero unless X exceeds the joint value. If X exceeds the joint value, then
the J variable is set to the square of the amount X exceeds that joint. The
algorithm for constructing these four J variables is

if X > 11, then J1 = (X − 11)2 else J1 = 0

if X > 16, then J2 = (X − 16)2 else J2 = 0

if X > 22, then J3 = (X − 22)2 else J3 = 0

if X > 25, then J4 = (X − 25)2 else J4 = 0

We then regress Y on X and X2 (which fits a parabola to the first segment),
as well as J1, J2, J3, and J4. The resulting model is

Ŷ = 8.688 + 2.884X − 0.207X2 + 0.148J1 + 0.513J2 − 0.972J3 + 0.507J4 (12.6)

with R = 0.956. It is represented by the solid line in Figure 12.11. Observe
it is a smooth curve, with no jaggedness at the joints as occurs when using
linear splines. The fit of this model is clearly superior to the quartic model,
and it is not obvious in looking at the scatterplot how this model could
be changed to improve it further. All of the regression coefficients in this
model are statistically significant, with p-values below .0001.



366 Regression Analysis and Linear Models

0 5 10 15 20 25 30

0
5

10
15

20
25

X

Y

0 5 10 15 20 25 30

0
5

10
15

20
25

J1 J2 J3 J4

FIGURE 12.11. A quartic model (dashed line) and a polynomial spine model with four
joints (solid line).

The code in section 12.3.2 can easily be modified to produce the J vari-
ables based on the algorithm above. For example, in SPSS, you can use

compute j1=0.

compute j2=0.

compute j3=0.

compute j4=0.

compute xsq=x*x.

if (x>11) j1=(x-11)*(x-11).

if (x>16) j2=(x-16)*(x-16).

if (x>22) j3=(x-22)*(x-22).

if (x>25) j4=(x-25)*(x-25).

regression/dep=y/method=enter x xsq j1 j2 j3 j4.

You may find with some statistics programs that the correlation between
the regressors is sufficiently large that the model won’t estimate, or the
program may remove one or more of the regressors to deal with the near
singularity (see section 17.3.3). If this occurs, center X around the mean of X
(i.e., subtract X from all X values) and set up the joints and J variables using
this transformed X. This likely will raise the tolerances of the regressors to
more acceptable levels and may allow your program to estimate the model.
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In section 12.3.1, we saw that the regression coefficients for the J vari-
ables quantify the difference in the slope relating X to Y between adjacent
segments. In this quadratic spline regression model, the regression co-
efficients for the J variables quantify the change in curvilinearity of the
relationship between X and Y between adjacent segments. Mathemati-
cally, this corresponds to the change in the regression coefficient for the
squared term between adjacent segments. To see how this works, consider
that for all values of X ≤ 11, J1 = J2 = J3 = J4 = 0. So equation 12.6 reduces
to Ŷ = 8.688 + 2.884X − 0.207X2. This is the model relating X to Y when
X ≤ 11. The regression coefficient for X2 is −0.207.

For the next segment defined as 11 < X ≤ 15, J1 = (X − 11)2 and
J2 = J3 = J4 = 0, so equation 12.6 simplifies to Ŷ = 8.688 + 2.884X −
0.207X2 + 0.148(X − 11)2. A little algebra results in

Ŷ = 8.688 + 2.884X − 0.207X2 + 0.148(X − 11)2

= 8.688 + 2.884X − 0.207X2 + 0.148(X2 − 22X + 121)

= 26.744 − 0.372X − 0.059X2

Thus, when 11 < X ≤ 16, the model relating Y to X is Ŷ = 26.744− 0.372X−
0.059X2. The regression coefficient for X2 is −0.059, which is a change of
0.148 relative to the regression coefficient for X in the segment defined by
X ≤ 11. Notice that the regression coefficient for J1 is 0.148. It is statistically
significant from zero. If it were not statistically significant, then J1 could
be excluded from the model, because this would mean that allowing for a
shift in the curvilinearity of the relationship between X and Y at this joint
does not improve the fit of the model to a statistically significant degree.

Using this same logic and algebra for each segment produces a quadratic
model for each segment, with the regression coefficient for successive J
variables quantifying the difference in the regression coefficient for X2 in a
given segment relative to the prior segment. These changes add up cumu-
latively, so you can derive the weight for X2 for any segment by starting
with the regression coefficient for X2 and then adding up the regression
coefficients for each successive J variable, stopping once you reach the de-
sired segment. For example, the regression coefficient for X2 for the fourth
segment (X > 22 ≤ 25) is 0.207 + 0.148 + 0.513 − 0.972 = −0.518. You can
see in Figure 12.11 that, indeed, the model in this segment looks like the
left half of a downward pointing parabola, consistent with a negative co-
efficient for X2. And for the segment defined as X > 25, the weight for X2
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is 0.207 + 0.148 + 0.513 − 0.972 + 0.507 = −0.011. This too is consistent with
Figure 12.11. Observe that the regression line is nearly straight in the last
segment, as you would expect for a polynomial model with such a small
weight for the squared term.

12.3.4 Covariates, Weak Curvilinearity, and Choosing Joints

In the examples of spline regression we have described, there were no co-
variates, and we chose where to locate the joints by eyeballing a scatterplot.
Covariates are easily added to a spline regression model simply by includ-
ing them as regressors, and no modification to the procedure is needed. But
we saw in section 12.1.2 that nonlinearity in the partial association between
X and Y may be hard to see unless you construct the right scatterplot. And
in real data, nonlinearity in the simple or partial association between X and
Y may be so weak that it can’t be detected with the eye even in the proper
scatterplot. In such cases, you may not be able to eyeball a scatterplot and
figure out where to locate the joints.

We don’t have any silver bullet solutions to this problem, but is impor-
tant to acknowledge the problem exists. If your sample size is sufficiently
large, one option is to use a large number of joints equally dispersed across
the range of X and then estimate a linear or polynomial spline model as
discussed here. As you know, the p-values for the regression coefficients
for the J variables can be used to decide whether a change in slope or
curvilinearity is needed at specific joints. If not, those joints can be deleted.
You can iteratively apply this procedure, adding or removing joints until
you settle on a model that is satisfying to you. There are more advanced
versions of spline regression that don’t require the joints to be specified by
the analyst but, rather, are derived mathematically from the data. You can
read about some of these methods in the literature on spline regression,
including the references we provided earlier in this chapter.

When you choose joints by eyeballing a scatterplot or using an ex-
ploratory method such as that just described, the concern is overfitting the
data. Choosing joints by examining the data will tend to increase the vari-
ance explained by X. When X is a covariate, this produces a conservative
bias into tests on independent variables. But if X is an independent vari-
able, then the bias is toward exaggerating the importance of X in explaining
variation in Y, and the nonlinearity captured by your spline model may
not replicate in another sample.

But joint values need not always be chosen arbitrarily or by exploring
the data and looking at scatterplots for visual evidence of transitions in the
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relationship. You may have some a priori basis for choosing certain joint
values. For example, if X were time and Y were something like a stock
price, you might know that at a certain point in time (perhaps even a point
in time of your choosing), some event happened that you think would
change the trajectory for Y, making it increase or decrease in a particular
manner that is different from what it was before that point in time. Or
perhaps X is score on some kind of psychological test, such as a test of
depression. If you assume, believe, or hypothesize that the relationship
between depression and some dependent variable of interest is different
for people who are below a certain score on the test relative to those who
are above it, then that score would be natural choice for a joint in a spline
regression model.

12.4 Transformations of Dependent Variables or
Regressors

The natural relationship between two variables may be nonlinear, but some-
times nonlinear relationships can be made linear or nearly so by some kind
of transformation of one of the variables. There are many kinds of transfor-
mations, but we focus on monotonic transformations here. A transformation
is monotonic if the original and transformed values have the same rank or-
der, such that the highest value on the original variable is the highest after
transformation, the second highest original value is the second highest
transformed value, and so forth. Technically, we should distinguish be-
tween positive and negative monotonic transformations. What we have
described just now is positive monotonic. A negative monotonic transfor-
mation exactly reverses the ranks, so that the highest original value is the
lowest transformed value, the second highest original is the second lowest
transformed value, and so forth. Unless we say otherwise, when we say
monotonic assume we are talking about positive monotonic.

Monotonic transformations of a variable may produce as many as three
benefits at once. The first we have already discussed: Two variables may be
nonlinearly related in their original form, but linear if one or both is trans-
formed monotonically. This often simplifies interpretation of regression
results. The second benefit is that a transformation may improve the pre-
diction of one variable from another. Third, they can make residuals more
normally distributed. Normality of the errors in estimation (manifested
as residuals in a specific analysis) is an assumption of linear regression
analysis.
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12.4.1 Logarithmic Transformation

A logarithmic transformation can be used when the importance of the dif-
ference between two values is judged to be proportional to their ratio rather
than their absolute difference. For instance, if we are studying the effect
of an animal’s size on some feature of its behavior or structure, we might
consider the difference between body weights of 100 and 200 kilograms to
be no more important than a difference between 1 and 2 kilograms. In abso-
lute terms, a difference of 100 kilograms is 100 times larger than a difference
of 1 kilogram, but both ratios are 2:1. Whereas weight may be nonlinearly
related to many things (e.g., brain size), a logarithmic transformation may
make the relationship linear. Or if the difference between incomes of $50,000
and $100,000 has the same average effect on attitudes toward wealth as the
difference between $10,000 and $20,000, then income will have a nonlinear
relationship with attitude, but a logarithmic transformation can make the
relationship linear.

Only positive numbers have logarithms, but there are many kinds of
logarithms. The most commonly used logarithms are the common log-
arithm, also called a base 10 log and often denoted log, and the natural
logarithm or base e log, most often denoted as ln. The common logarithm
of a number X is the power of 10, which equals X. For instance, the com-
mon logarithms of 10, 100, and 1,000 are, respectively, 1, 2, and 3, because
101 = 10, 102 = 100, and 103 = 1,000.

Whereas a common logarithm is a power of 10, a natural logarithm is
a power of e, where e is approximately 2.718828. Like the number pi, e
cannot be written exactly. The natural logs of 10, 100, and 1,000 are, respec-
tively, 2.30259, 4.60517, and 9.21034, because e2.30259 = 10, e4.60516 = 100,
and e9.21034 = 1, 000. Natural logarithms are proportional to common loga-
rithms; for any number X, the natural logarithm of X equals approximately
2.302589 times the common logarithm of X.

An interesting property of natural logarithms is that when two numbers
A and B are nearly equal, the difference between their natural logarithms
approximately equals the proportional difference between them. For in-
stance, 63 is 5% larger than 60, and their natural logarithms are 4.1431 and
4.0943, which differ by .0488, which is close to 0.05. Thus, if the weights
of two animals differed by 0.05 on a natural logarithm scale, you would
know without calculation that one was about 5% heavier than the other.
As two numbers approach equality, this relationship approaches exactness.
For instance, the natural logarithms of 1,000 and 1,001 differ by .0009995,
which to four significant digits is .001, or 1/1,000.
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FIGURE 12.12. A log tranformation of X and Y can turn a nonlinear relationship into a
linear relationship.

When a scatterplot depicting the association between two variables
appears nonlinear, for some forms of nonlinearity a logarithmic transfor-
mation of X or Y may make the relationship more linear. If small changes in
X result in large positive changes in Y at first but then the size of the change
in Y levels off as X increases, as in Figure 12.12, panel A, on the left, then a
logarithmic transformation of X may reduce or eliminate the nonlinearity.
The scatterplot on the right of Figure 12.12, panel A, depicts the association
between X and Y after a natural log transformation of X. As you can see,
the relationship appears more linear after transformation than before.

But if small changes in X result in little changes in Y at first, but the
change in Y with a change in X accelerates rapidly, as in Figure 12.12, panel
B, on the left, then a logarithmic transformation of Y rather than X may
reduce the nonlinearity. A scatterplot of the natural log of Y against X can
be seen in the scatterplot on the right side of Figure 12.12, panel B; the
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relationship between X and Y following the transformation now appears
to be linear rather than nonlinear.

When using a logarithmic transformation, we often don’t have to make
distinctions between the different forms. If the common logarithms of X are
linearly related to another variable Y, then the natural logarithms will be
also. Thus, if we say that a logarithmic transformation makes a relationship
linear, we need not specify which type of logarithm. But when reporting
the results of an analysis that uses a transformation, it is a good idea to be
explicit about what transformation was employed.

12.4.2 The Box–Cox Transformation

Box and Cox (1964) describe a family of transformations that includes
logarithmic transformations as special cases. In this approach, one chooses
a constant m, which may be any positive or negative real number (i.e.,
not zero). Then one transforms the original variable X to a transformed
variable XT by the equation

XT =
Xm − 1

m
(12.7)

In practice, you can try different values of m and see which one is best
by some criterion of interest, such as making some extreme scores less
extreme, improving linearity, or eliminating the need for an interaction (a
concept introduced in Chapter 13). Although we use X in equation 12.7,
the transformation can be applied to dependent variables, independent
variables, or covariates.

Figure 12.13 displays the results of the transformation for 0 < X ≤ 5 for
different values of m. The dashed line corresponding to m = 1 reflects no
transformation (actually, when m = 1, XT = X − 1). X = 1 is a pivoting
point in the transformation, and what happens to the relative sizes of X
after transformation depends on the distance from 1 and the value of m.

Define measurement expansion as making differences between values of X
larger after the transformation, and define measurement compression as mak-
ing differences between values of X smaller after transformation. Given
these definitions, setting m > 1 results in measurement expansion when
X > 1, with the expansion larger with higher values of m. But when
X < 1, measurement compression is the result. But when m < 1, the trans-
formation has the opposite effect on X. When X > 1, measurements are
compressed, with greater compression occurring with smaller values of m.
But when X < 1, measurement expansion occurs.
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FIGURE 12.13. The Box–Cox tranformation as a function of m.

By making m arbitrarily close to zero (either positive or negative), we
can make the Box–Cox transformation approach arbitrarily close to a loga-
rithmic transformation. Thus, we can think of a logarithmic transformation
as the special case of the Box–Cox transformation in which m = 0.

A Box–Cox transformation requires all measurements on the original
variable to be positive since a negative number cannot be raised to a non-
integer power. But if all measurements are negative we lose no informa-
tion by replacing the original measurements with their absolute values
before making the transformation. Thus, the requirement really is that all
measurements have the same sign. This usually means that all measure-
ments in the population must have the same sign, not just the measurements
themselves, because inferences to the population have no meaning if some
measurements in the population cannot be transformed.

Could one add points to a variable to make all its measurements have
the same sign? Theoretically, a Box–Cox transformation is scientifically
meaningful only if the original scale is a ratio scale—a scale with a mean-
ingful zero point, so that it is meaningful to talk abut the ratios of two
measurements. Thus, for instance, height and weight are ratio scales, but
an attitude scale running from 1 to 9, with 1 denoting “very negative” and
9 denoting “very positive,” is not. But in practice this restriction is not
very important when using Box–Cox, because the effect of changing m is
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often very similar to adding a constant to X before transformation. For
instance, consider five cases scoring 1, 2, 3, 4, and 5 on a variable X. If
we set m = 0.5, these five values transform to 0, 0.8284, 1.4641, 2.0000,
and 2.4721, respectively. Thus, the second, third, and fourth transformed
values are, respectively, 33.5, 59.2, and 80.9% of the distance from the first
transformed value to the last. But if we add 7.841 to each of the original
scores, then apply a Box–Cox transformation using m = −1, the percentages
are nearly identical to the previous ones, now being 32.6, 59.2, and 81.3%.
Thus, using m = 0.5 is nearly equivalent to adding 7.841 to each score and
then using m = −1. Since trying different values of m is often very similar
to adding different positive and negative constants to the original scores
before making the transformation, the original zero point does not seem
particularly sacrosanct.

12.5 Chapter Summary

Linear regression analysis can be used to model relationships between
variables even when those relationships are not linear. It is always worth
checking for nonlinearity by constructing a scatterplot, but it is important to
construct the right scatterplot. The residual scatterplot is the best choice for
detecting nonlinearity between X and Y when a model contains covariates.
In a residual scatterplot, the residuals in the estimation of Y from X and
the covariates are plotted against X. But even with the help of a residual
scatterplot, the human eye is not very good at detecting relationships, so
such eyeballing should be accompanied by some kind of formal analysis of
nonlinearity.

Polynomial regression analysis is a versatile approach to testing for
nonlinearity between X and Y, as well as modeling nonlinear relationships.
This method involves estimating Y from X and successive powers of X, such
as X2 and, if desired, X3 and (rarely) X4. A statistically significant regression
coefficient for one of the higher powers of X implies nonlinearity, as does
an incremental increase in the fit of the model when one or more powers
of X is added. Interpretation of the regression coefficients is complex and
aided with an understanding of calculus. Most important is that in a model
with a power of X higher than 1, the regression coefficient for X is a local
term of the model and quantifies the relationship between X and Y when
X = 0. Higher-order terms are interpreted in terms of changes in rates of
changes of Y as X is changing.
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Spline regression can be used to fit a jagged line to data. Any curve can
be approximated by a set of jagged lines, and sometimes a spline model will
fit better than a polynomial, because spline models better capture abrupt
shifts in the relationship between X and Y as X increases or decreases.
Spline and polynomial regression can be combined into polynomial spline
regression. This involves estimating and tying together polynomials at
various points in the distribution of X, thereby increasing the complexity
of the kinds of curves that can be estimated.

Some nonlinear relationships can be made linear or nearly so through
the use of a transformation, and transformations can sometimes help in
meeting the other assumptions of regression. Logarithmic transformations
of X and Y can be used in different circumstances, depending on the form
of nonlinearity. A logarithmic transformation is a special form of the more
general Box–Cox transformation. Using this transformation, the analyst
selects an exponent in the function that produces the most appealing trans-
formation, as defined by how well it makes a nonlinear relationship linear
or removes skew or heteroscedasticity in the errors in estimation, for in-
stance.

One could define a nonlinear relationship as one in which the relation-
ship between X and Y depends on X. This could be thought of as a special
kind of moderation, the topic of the next two chapters. With nonlinearity,
X moderates its own effect on Y. In the following chapter we introduce
how to build flexibility into a regression analysis by allowing the effect of
a regressor X on Y to vary linearly with another regressor in the model.





13
Linear Interaction

This chapter relaxes the assumption built into all models discussed thus
far that one regressor’s effect on the dependent variable, expressed by
its regression coefficient, is independent of the other regressors in the
model. When one variable’s effect depends on another, we say that the
two variables interact or that one variable moderates the other’s effect.
We address the fundamentals of linear interaction, which allows one re-
gressor’s effect to be a linear function of another regressor. Unlike in
ANOVA books and classes, where researchers are often first exposed
to the concept of interaction, there is no requirement that all the vari-
ables interacting be categorical. Using any regression program, one can
estimate and test hypotheses about interaction between numerical, di-
chotomous, or multicategorical variables in any combination.

13.1 Interaction Fundamentals

13.1.1 Interaction as a Difference in Slope

In all examples of linear regression analysis thus far, a regressor’s effect,
expressed in the form of its regression coefficient, is fixed to be invariant
across values of the other regressors in the model. For instance, in a model
of the form Ŷ = b0 + b1X1 + b2X2, a 1 unit change in X1 changes Ŷ by the
same amount, independent of the value of X2. So when we say that X1’s
effect equals b1 when controlling for X2, we are saying that when X2 is held
fixed, changing X1 by 1 unit changes Ŷ by b1 units regardless of the value
at which X2 is held fixed. This idea was expressed visually in Figure 3.6,
which represents X1’s effect as a set of parallel lines. The same is true for X2

and its effect. In this model, a change of a given number of units in X2 has
the same effect on Ŷ regardless of the value of X1, as in Figure 3.5. When

377
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plotted in three-dimensional space, such a model looks like a plane (as in
Figure 3.2).

But one regressor’s effect on the dependent variable may depend on
another regressor in the model. When this happens, we say that the two
regressors interact, or that there is an interaction between the two regressors
in their effect on Y. Readers familiar with factorial ANOVA know about
interaction as a difference in simple effects. For instance, in a two-condition
experiment, it may be that the effect of the treatment relative to the control
on the dependent variable is some value among men (the simple effect of
treatment in men) but a different value among women (the simple effect of
treatment in women). In that case, we’d say that experimental condition
and sex interact. In other words, the average difference between the two
conditions is different between men and women. So interaction means that
differences are different.

We can generalize this definition of interaction to the general linear
model by defining interaction as a change in one regressor’s relationship with
Y when another regressor changes. This definition subsumes the ANOVA def-
inition as a special case. We saw in section 5.1.3 that a regression coefficient
for a dichotomous regressor is a kind of difference, so a difference between
differences in regression terms is akin to a change in a regression coefficient
for one regressor as another regressor changes.

Another term commonly used to convey the concept of interaction is
moderation. In this example, we would say that the effect of experimental
condition (treatment vs. control) is moderated by sex, or that sex moderates
the relationship between experimental condition and the dependent vari-
able. So sex is a moderator variable, and experimental condition is often
called the focal predictor. More generally, if X2 moderates the relationship
between X1 and Y, this means that changing X1 has a different effect on Y
depending on the value of X2. In this description, X1 is the focal predictor,
and X2 is the moderator. But as will be seen in section 13.1.6, we can flip
X1 and X2 and think of X1 as the moderator and X2 as the focal predictor
without changing the mathematics of the model.

13.1.2 Interaction between Two Numerical Regressors

This broad definition of interaction applies when both variables are numer-
ical, as in the following examples:

• Most physicians believe that the higher a patient’s blood pressure,
the greater the negative effect of being overweight on life expectancy.
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This hypothesis specifies an interaction between blood pressure and
weight in affecting life expectancy.

• If the relationship between political liberalism and SES is positive
among people who are relatively younger but negative among peo-
ple who are relatively older, then age and SES interact in affecting
liberalism.

• If five persuasive political messages differ in their appeal to emotion
versus reason, the most emotional appeals may be most effective in
changing opinions among less educated voters, while the least emo-
tional appeals may be most effective among more educated voters.
If so, then education and strength of emotional appeal interact in
affecting opinion change.

Interaction between two numerical regressors X1 and X2 is illustrated
in Figure 13.1. Each line in this figure represents the regression of Y on X1

for a particular value of X2. It shows that the relationship between Y and
X1 is negative when X2 equals 0, 1, or 2; it is zero when X2 equals 3, and
it is positive when X2 equals 4 or 5. The effect of X1 on Y for a particular
value of X2 goes by various names, such as a simple effect, a conditional effect,
or a simple slope. If X2 is numerical, then there may be infinitely many
conditional effects of X1; but if X2 is categorical with g categories, then
there are just g conditional effects of X1.

Notice that the Y-intercepts in Figure 13.1 change as X2 changes. But
that was also true of the series of parallel lines in Figure 3.6, when there
was no interaction between X1 and X2. The defining feature of interaction
when depicted in visual form is nonparallel regression lines, or lines with
different slopes, such as in Figure 13.1.

13.1.3 Interaction versus Intercorrelation

Interaction between regressors is sometimes confused with intercorrelation
between regressors. So you might read a statement like “bX was reduced
to near zero by the addition of covariate C to the regression, because C
interacts with X.” But the writer clearly means to say that C correlates with
X. The sentence in quotation marks says that the effect of X on Y (bX) is
affected by the inclusion of C, while interaction means that the effect of X on
Y depends on the value of C. The interaction between X and C describes
how X and C relate to Y when considered jointly, so it can be computed only
when Y values are known and available. But the correlation between X and
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FIGURE 13.1. Simple linear interaction between X1 and X2.

C can be computed even if there is no third variable Y. When the addition
of a covariate C to a model changes the effect of X on Y, there still is only
one number that describes how changing X changes Y, and this applies
to all cases. But interaction means that the amount changing X changes
Y depends on the value of C. Depending on whether C is categorical or
numerical, there may be a few such effects of X on Y, or a infinite number
of them.

13.1.4 Simple Linear Interaction

Any pattern of nonparallel regression lines is an interaction. However, we
focus on simple linear interaction in this chapter, which occurs when the effect
of one regressor on Y is linearly related to the value of another regressor.
This exists in Figure 13.1; the six regression lines depicted there can be
found in Table 13.1. This table shows the six conditional effects of X1 on Y
for the six values of X2. Observe that these six conditional effects have an
exact linear relationship with X2; each 1-unit increase in X2 is associated
with an increase of 0.1 in b1.

We could formalize this linear relationship with the linear function
b1 = −0.3 + 0.1X2, where −0.3 is the “intercept” and 0.1 is the “slope.”
Notice that this is an equation for a line. But it is a model not of Y but,
rather, the conditional effect of X1 on Y. Observe that when you set X2 to
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TABLE 13.1. The Six Regression Lines Depicted in Figure 13.1

X2 b0 b1

0 10.0 −0.3
1 12.0 −0.2
2 14.0 −0.1
3 16.0 0.0
4 18.0 0.1
5 20.0 0.2

1, the function generates b1 = −0.3+ 0.1(1) = −0.2, which is the conditional
effect of X1 when X2 = 1 in Table 13.1 and the slope of the line relating X1

to Y when X2 = 1 in Figure 13.1. Other values of X2 produce comparable
conditional effects in Table 13.1 and slopes in Figure 13.1. So we have a
linear model of the conditional effect of X2 and hence simple linear interaction.

13.1.5 Representing Simple Linear Interaction with a
Cross-Product

Simple linear interaction can be represented by a regression equation with
two linear terms and a constructed cross-product term defined as the product
of the two variables interacting. It looks like

Ŷ = b0 + b1X1 + b2X2 + b3X1X2 (13.1)

To see why, consider further Figure 13.1. We have just seen that the re-
gression line when X2 = 0 has slope −0.3 and the slope rises 0.1 for each
1-unit increase in X2. In section 13.1.4 we said that we can represent this
relationship between X1’s effect on Y and X2 as −0.3 + 0.1X2. We can also
see that the Y-intercept of the regression line equals 10 when X2 = 0 and
increases by 2 (to 12, 14, etc.) for each 1-unit increase in X2. In other words,
the relation between the intercept and X2 could be expressed as a function
of the form 10 + 2X2. If we substitute these two functions into the simple
linear regression equation Ŷ = b0 + b1X1, this gives

Ŷ = b0 + b1X1 = (10 + 2X2) + (−0.3 + 0.1X2)X1



382 Regression Analysis and Linear Models

which can be written in equivalent form by multiplying X1 through and
removing parentheses as

Ŷ = 10 − 0.3X1 + 2X2 − 0.1X1X2

Thus, we see that a whole series of nonparallel regression lines can be
represented by a single regression equation that includes the terms X1, X2,
and X1X2.

We saw in Chapter 3 that a model without the X1X2 cross-product
takes the form of parallel regression lines, which means X1’s effect on Y is
constant across values of X2. Such a model, Ŷ = b0 + b1X1 + b2X2, generates
parallel regression lines and can be thought of as a special case of equation
13.1, where b3 is fixed to zero. That is, the parallel lines model, meaning no
interaction, can be expressed as Ŷ = b0 + b1X1 + b2X2 + 0X1X2, whereas the
nonparallel lines model expressed in equation 13.1 allows for interaction
by allowing b3 to be different from zero.

In equation 13.1, b3 quantifies how much the conditional effect of X1

changes as X2 changes by 1 unit. As for any regression coefficient, a hy-
pothesis test can be conducted on its value. No interaction in the population
implies that Tb3 = 0. We can test the hypothesis of no interaction between
X1 and X2 with a hypothesis test that Tb3 = 0 against the alternative hy-
pothesis that Tb3 � 0. Any regression analysis program provides all the
information needed to conduct this test, just as it does for all the other re-
gression coefficients. Rejection of the null hypothesis means that X1’s effect
on Y depends on X2; that is, X1 and X2 interact, or X2 moderates the effect
of X1 on Y. Alternatively, a confidence interval could be used to convey the
two values between which Tb3 = 0 is likely to be. If zero is outside of the
interval, this implies interaction.

13.1.6 The Symmetry of Interaction

Thus far we have discussed linear interaction by showing how in a model
that includes X1, X2, and their cross-product X1X2, X1’s effect on Y de-
pends linearly on X2, meaning that X1’s effect on Y changes as X2 changes.
Interpreted that way, X2 is the moderator and X1 is the focal predictor.
But we could have reversed the roles of X1 and X2 in the prior discussion
and made X1 the moderator and X2 the focal predictor. That is, a parallel
description of the interactive relationship between X1 and X2 tells us how
the conditional effect of X2 on Y changes as X1 changes. That is, we could
construe X1 as a moderator of the effect of the focal predictor X2 on Y.
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FIGURE 13.2. Another representation of simple linear interaction between X1 and X2.

Figure 13.2 is an alternative representation of the model Ŷ = 10 −
0.3X1 + 2.0X2 + 0.1X1X2. It looks very different than Figure 13.1, but in
fact it represents the same model. In Figure 13.2 we have put X2 on the
horizontal axis and have shown different regression lines relating X2 to Y
for different values of X1. Of course, this is only three of the many possible
regression lines one could visualize.

The three regression lines depicted in Figure 13.2 are found in mathe-
matical form Ŷ = b0 + b2X2 in Table 13.2. Notice there that as X1 rises by
10 units, the conditional effect of X2 increases by 1 unit. Remembering that
we chose X1 values of 0, 10, and 20 arbitrarily, we could say more generally
that as X1 rises by 1 unit, the conditional effect of X2 increases by 0.1 units.
So we could represent the relation between X2’s conditional effect on Y and
X1 by the function 2.0+0.1X1. And observe that as X1 increases by 10 units,
the Y intercept decreases by 3 units. That is, as X1 increases by 1 unit, the
intercept increases by −0.3 units. In function form, the Y-intercept is related
to X1 as 10 − 0.3X1.

Using the same logic presented in section 13.1.5, we can substitute these
two functions into the simple linear regression equation Ŷ = b0 + b2X2 and
this gives

Ŷ = b0 + b2X2 = (10 − 0.3X1) + (2.0 + 0.1X1)X2
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TABLE 13.2. The Three Regression Lines Depicted in Figure 13.2

X1 b0 b2

0 10.0 2.0
10 7.0 3.0
20 4.0 4.0

which can be written in equivalent form by multiplying X2 through and
removing parentheses as

Ŷ = 10 − 0.3X1 + 2.0X2 + 0.1X1X2

So, mathematically, the model is the same as when X1 played the role of
focal predictor and X2 played the role of moderator. This is the symmetry
property of interactions. Interaction between X1 and X2 means that the
effect of X1 on Y changes as X2 changes and that the effect of X2 on Y
changes as X1 changes. This change in the effect of one variable as the
other changes is b3, regardless of whether X1 is the focal predictor and X2

the moderator or the other way around. Regardless of how we construe
the roles of X1 and X2, we can test a hypothesis of interaction using the
estimate of b3 and its test of significance in a regression analysis.

13.1.7 Interaction as a Warped Surface

In Chapter 3 we saw that an equation of the form Ŷ = b0 + b1X1 + b2X2

can be represented either as a series of parallel lines or as a tilted plane
in three-dimensional space. An equation with a cross-product term of the
form

Ŷ = b0 + b1X1 + b2X2 + b3X1X2

can be represented either as a series of nonparallel lines, as in Figures 13.1
and 13.2, or as a warped surface in three-dimensional space. Figure 13.3
represents the model we’ve been discussing thus far: Ŷ = 10.0 − 0.3X1 +

2.0X2 + 0.1X1X2. The line in Figure 13.3 from Y = 10 to Y = 4 corresponds
to the line labeled X2 = 0 in Figure 13.1, and the line in Figure 13.3 from
Y = 20 to Y = 24 corresponds to the line labeled X2 = 5 in Figure 13.1. The
other four lines from Figure 13.1 also appear in Figure 13.3. Any surface
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representing a simple linear interaction looks like a bent piece of sheet
metal, as in Figure 13.3.

13.1.8 Covariates in a Regression Model with an Interaction

Our discussion of linear regression with interactions generalizes to models
with covariates. Covariates are added to a model with an interaction merely
by including the covariates as additional regressors in the model, and the
usual “holding the covariates constant” interpretation applies. As in an
ordinary regression model with covariates, there is no practical limit to the
number of covariates you could include. Only the sample size determines
the limit. Because the cross-product term takes away 1 degree of freedom
from d fresidual, the maximum number of covariates you can include in a
model with a cross-product term is N − 4.

13.1.9 The Meaning of the Regression Coefficients

In a model of the form Ŷ = b0 + b1X1 + b2X2 + b3X1X2, the following in-
terpretations of the regression coefficients and regression constant apply
regardless of how the variables are coded or scaled in the data.

• b0 is the estimate of Y when both X1 and X2 equal zero (and, if the
model includes covariates, when all covariates are equal to zero).
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• b1 is the estimated difference in Y between two cases that differ by 1
unit on X1 but whose scores on X2 equal zero (and are the same on
any covariates). It is the conditional effect of X1 when X2 = 0.

• b2 is the estimated difference in Y between two cases that differ by 1
unit on X2 but whose scores on X1 equal zero (and are the same on
any covariates). It is the conditional effect of X2 when X1 = 0.

• b3 is the estimated change in the conditional effect of X1 as X2 increases
by 1 unit; alternatively, it is the estimated change in the conditional
effect of X2 as X1 increases by 1 unit. When covariates are in the
model, we impose the additional condition “holding the covariate(s)
constant.”

In this example, b1 = −0.3 and is the slope of the line relating X1 to
Y when X2 = 0, highlighted in Figures 13.1, 13.2, and 13.3. Here, b2 =

2.0, which corresponds to the slope of the line relating X2 to Y under the
condition that X1 = 0, as depicted in Figures 13.2 and 13.3. In section 14.4.4
we further emphasize the conditional nature of these effects, and that care
must be taken when interpreting them so as to not misinterpret them as
if they are “main effects” in an ANOVA sense, or “average” effects, which
they very much are not.

The regression coefficient for the cross-product, b3 = 0.1, requires more
explanation and visualization. In this example, it is the difference in the
conditional slope of the line relating X1 to Y between two sets of cases that
differ by 1 unit on X2. This is easiest to see in Figure 13.1. It is the amount
the slope for X1 changes as you move up 1 point on the X2 scale. Observe
that the slope is increasing by 0.1 units as X2 increases by 1 unit. By the
symmetry of interactions, b3 = 0.1 is also the difference in the conditional
slope of the line relating X2 to Y between two sets of cases that differ by 1
unit on X1. In Figure 13.2, the slopes plotted are for values of X1 that differ
by 10 units. So the difference between consecutive conditional slopes for
X2 as you move 10 points up the X1 scale is 10b3 = 1.0.

The regression constant, b0 = 10.0 is the estimate of Y when both X1

and X2 are zero. As can be seen, the regression constant in this example
appears in Figures 13.1, 13.2, and 13.3.

13.1.10 An Example with Estimation Using Statistical Software

In practice you will use a statistical package of some kind to estimate your
regression models, and that includes models with a cross-product when
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testing for interaction between regressors. All programs allow the analyst
to construct a new variable defined as the product of X1 and X2 and then
include it as a regressor along with X1 and X2. The regression coefficient and
its test of significance is provided by the software, along with a confidence
interval if desired.

We illustrate using the HOSPITAL data file available on this book’s web
page at www.afhayes.com. These data are fabricated but are motivated by a
study of hospital workers described in Halbesleben (2010). Three hundred
health care workers at a hospital were asked questions about their physical
and mental work-related exhaustion, held in the variable exhaust, with
higher scores reflecting greater feelings of exhaustion (X1). Six months
later, they were asked a series of questions to measure how frequently they
use various methods of getting around safety protocols during their day-
to-day work-related tasks with equipment and patients at the hospital (Y).
This is held in a variable named safety. Also available in the data is the
variable tenure, which quantifies how long the person has been working
in the health care field (X2). We refer to this in the discussion below simply
as “job tenure” or “job experience.”

For this example, we will test whether the relationship between ex-
haustion and use of safety protocol work-arounds interacts with job tenure
(i.e., experience as a health care worker). To do so, we regress safety on
exhaust, tenure, and their cross-product. To show that covariates are eas-
ily included, we will control for the sex of the employee (X3), as well as age
(X4), by including them in the model as additional regressors. The data file
does not include a variable that is the product of exhaust and tenure, so we
construct it prior to running a regression command. For instance, in SPSS,
the code would be

compute crossprd=exhaust*tenure.

regression/dep=safety/method=enter exhaust tenure crossprd sex age.

Comparable code in SAS is

data hospital;set hospital;crossprd=exhaust*tenure;run;

proc reg data=hospital;

model safety=exhaust tenure crossprd sex age;run;

and in STATA, try

gen crossprd=exhaust*tenure

regress safety exhaust tenure crossprd sex age
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                              The REG Procedure

                                 Model: MODEL1

                          Dependent Variable: safety

                    Number of Observations Read         300

                    Number of Observations Used         300

                              Analysis of Variance

                                     Sum of           Mean

 Source                   DF        Squares         Square    F Value    Pr > F

 Model                     5       88.42535       17.68507      20.01    <.0001

 Error                   294      259.89345        0.88399

 Corrected Total         299      348.31880

              Root MSE              0.94021    R-Square     0.2539

              Dependent Mean        4.10200    Adj R-Sq     0.2412

              Coeff Var            22.92072

                              Parameter Estimates

                           Parameter       Standard

      Variable     DF       Estimate          Error    t Value    Pr > |t|

      Intercept     1        3.51461        0.51936       6.77      <.0001

      exhaust       1        0.62235        0.10926       5.70      <.0001

      tenure        1        0.09680        0.05598       1.73      0.0848

      crossprd      1       -0.06189        0.01629      -3.80      0.0002

      sex           1        0.01587        0.17183       0.09      0.9265

      age           1       -0.02018        0.00799      -2.53      0.0120

FIGURE 13.4. SAS output for a regression model containing a cross-product.

The output from SAS PROC REG can be found in Figure 13.4. The re-
gression coefficient for the X1X2 cross-product is −0.062, t(294) = −3.80, p =
.0002. Exhaustion and job tenure interact. Alternatively, we can say that
job tenure moderates the relationship between exhaustion and use of safety
protocol work-arounds.

As can be seen in the SAS output, the regression model is

Ŷ = 3.515 + 0.622X1 + 0.097X2 − 0.062X1X2 + 0.016X3 − 0.020X4 (13.2)

Equation 13.2 can be written in equivalent form as

Ŷ = 3.515 + (0.622 − 0.062X2)X1 + 0.097X2 + 0.016X3 − 0.020X4

which conveys the conditional effect of exhaustion (X1) on the use of safety
protocol work-arounds as a linear function of job tenure: 0.622 − 0.062X2.

Figure 13.5 visually represents the model. This model was generated
by using equation 13.2 to produce Ŷ for various values of X1 and X2, setting
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FIGURE 13.5. The interaction between exhaustion and job tenure.

the covariates X3 and X4 to their sample means.1 Second, these values of Ŷ
as a function of X1 and X2 were plotted, connecting those representing the
same value of X2 with a line. The three values of X2 used to produce this
figure are the sample median job tenure or 50th percentile (X2 = 5 years),
the 25th percentile (X2 = 2 years), and the 75th percentile (X2 = 8 years). We
might call these relatively moderate, relatively low, and relatively high in
job tenure, respectively. Of course, these values are arbitrary and “relative”
is sample specific, because they are defined in terms of the distribution in
the sample. Other values of X2 could be used, so long as they are within
the range of the available data.

As is apparent in Figure 13.5, it seems that exhaustion has a bigger
effect on the use of safety protocol work-arounds among those with less
experience working on the job, as reflected in the steeper slope of the line
when job tenure X2 is larger. Among those with more experience, the
slope while still positive is much less steep. So consider two health care
workers who differ by 1 unit in their exhaustion. These findings say that
these two people are estimated to differ more in their use of safety protocol
work-arounds if they have less job experience relative to if they have more.

1Although it might seem strange or mathematically inappropriate to use the mean of a
dichotomous predictor in these computations, doing so is mathematically legitimate, re-
gardless of the two codes used to code the groups the dichotomous variable represents.
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The slopes of the three lines in Figure 13.5 can be calculated from the
linear function relating job tenure to the conditional effect of exhaustion
on the use of safety protocol work-arounds. Recall that function is 0.622 −
0.062X2. Plugging values of 3, 5, and 8 into this function yield conditional
effects of 0.622 − 0.062(3) = 0.436, 0.622 − 0.062(5) = 0.312, and 0.622 −
0.062(8) = 0.126, which are the slopes of the lines in Figure 13.5.

In the earlier SPSS, SAS, and STATA codes, the product of the focal pre-
dictor and moderator was constructed prior to estimating the model. SAS
has a feature in PROC GLM (not available in PROC REG) that eliminates
the need to manually construct the product of the focal predictor and mod-
erator in OLS regression. To include a cross-product involving exhaust and
tenure, include exhaust*tenure in the PROC GLM model line, as in

proc glm data=hospital;

model safety=exhaust tenure exhaust*tenure sex age;run;

The RLM macro for SPSS and SAS described in Appendix A can also
estimate a model with an interaction without requiring the analyst to first
construct the product. For instance, in SPSS, the RLM command would be

rlm y=safety/x=sex age exhaust tenure/mod=1/ptiles=1/plot=1.

The mod=1 option tells SPSS to estimate a model with a cross-product, with
the cross-product being constructed from the last two variables in the x=
list. The ptiles=1 and plot=1 components of the command are optional
and produce the conditional effect of the focal predictor at the 25th, 50th,
and 75th percentiles of the moderator, as well as a table values of Ŷ to
assist in the production of a plot such as Figure 13.5. See Appendix A for
additional information about the use of the RLM macro.

13.2 Interaction Involving a Categorical Regressor

13.2.1 Interaction between a Dichotomous and a Numerical
Regressor

If the relationship between X1 and Y differs between two groups coded with
X2, such as if people assigned to a treatment group in an experiment are
coded X2 = 1 and those assigned to a control group are coded X2 = 0, then
one can think about the relationship between X1 and Y as characterized
with two regression lines, one for the treatment group, and another for the
control group. In section 13.1.5 we saw how a whole series of nonparallel
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regression lines can be represented by a single equation. Therefore, it
should come as no surprise that we can use a single regression equation
to represent two nonparallel regression lines. For instance, consider the
two regression models below, one for people assigned to an experimental
treatment group (X2 = 1) and another for people assigned to a control
group (X2 = 0).

Ŷ = 3.0 + 0.7X1 when X2 = 1 (treatment)

Ŷ = 2.0 + 0.3X1 when X2 = 0 (control)

The regression lines for these equations appear in Figure 13.6. The differ-
ence between these two equations is

1.0 + 0.4X1

Now consider the equation

Ŷ = 2.0 + 0.3X1 + (1.0 + 0.4X1)X2 (13.3)
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where 1.0+0.4X1 is the difference between the two equations relating X1 to
Y when X2 = 0 compared to when X2 = 1. Observe that if we set X2 to 0 in
equation 13.3, which would be the case for those in the control condition,
then

Ŷ = 2.0 + 0.3X1 + (1.0 + 0.4X1)(0)

Ŷ = 2.0 + 0.3X1

which is the equation for the control group. But if we set X2 to 1, then
equation 13.3 becomes

Ŷ = 2.0 + 0.3X1 + (1.0 + 0.4X1)(1)

Ŷ = 3.0 + 0.7X1

which is the equation for the treatment group. So equation 13.3 applies to
both groups. By multiplying to remove parentheses, equation 13.3 becomes

Ŷ = 2.0 + 0.3X1 + 1.0X2 + 0.4X1X2

and we have expressed a single equation for the relationship between X1

and Y that applies to both the treatment and the control groups.
So we can test for interaction between a numerical and a dichotomous

regressor in exactly the same manner as when both regressors were numer-
ical. We include the cross-product of the numerical and the dichotomous
regressors in the model. A hypothesis test for the regression coefficient for
the cross-product tests whether X2 moderates X1’s effect on Y. The sym-
metry of interaction means that this also tests whether X1 moderates the
effect of X2 on Y.

13.2.2 The Meaning of the Regression Coefficients

The interpretation of the regression coefficients presented in section 13.1.9
applies regardless of the scaling or coding of X1 and X2. In the equation for
the previous example, b0 = 2.0, b1 = 0.3, b2 = 1.0, and b3 = 0.4. So b1 = 0.3
is the conditional effect of X1 when X2 = 0. That is, two cases with X2 = 0
but differ by 1 unit on X1 are estimated to differ by 0.3 units on Y. As can
be seen in Figure 13.6, this corresponds to the slope of the line relating X1

to Y for those in the control group, because X2 = 0 for those assigned to the
control group.
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The regression coefficient for X2 is the conditional effect of X2 when
X1 = 0. Two cases that differ by 1 unit on X2 but that are 0 on X1 are
estimated to differ by b2 = 1.0 units on Y. This is the estimated difference in
Y between those in the treatment relative to the control group, conditioned
on X1 = 0. Thus, it is an estimated conditional mean difference, but under
the condition that X2 = 0. It is the distance between the points highlighted
on Figure 13.6.

The regression coefficient for the X1X2 cross-product is b3 = 0.4. This
quantifies how the conditional effect of X1 on Y changes as X2 changes by
1 unit. A change of 1 unit on X2 corresponds to the difference between the
control and treatment conditions. In other words, b3 = 0.4 is the difference
between the slopes of regression lines linking X1 to Y in the treatment group
relative to the control group.

Knowing that in the control group the conditional effect of X1 is b1 = 0.3,
and that as X2 increases by 1 unit the conditional effect of X1 changes by
0.4 units, we can calculate that the conditional effect of X1 for those in the
treatment group is b1 + b3 = 0.3 + 0.4 = 0.7. This is the slope of the line
relating X1 to Y in the treatment group (see Figure 13.6). In this example, b3

represents the difference between these two slopes because the two groups
are coded on X2 such that they differ by 1 unit. If we used different codes,
such as 0 and 2, then b3 would be only one-half of the difference between
the slopes. But the t- and p-values for b3 would be the same.

The interpretation we gave to b3 just now applies if we construe X2 as
the moderator and X1 as the focal predictor. But remember that without
changing the model whatsoever, we can flip the roles of focal predictor and
moderator—the symmetry of interaction. In that case, b3 quantifies how
the conditional effect of X2 on Y changes as X1 changes by 1 unit. In this
example, X2 codes treatment or control and the two groups differ by 1 unit
on X2, so we can interpret b3 as a measure of the amount the estimated
difference in Y across the two groups changes as X1 changes. So consider
X1 = 3.0. For the control group, the model generates

Ŷ = 2.0 + 0.3(3) + 1.0(0) + 0.4(3)(0) = 2.9

and for the treatment group the model generates

Ŷ = 2.0 + 0.3(3) + 1.0(1) + 0.4(3)(1) = 5.1

which is a difference of 5.1− 2.9 = 2.2 and the conditional effect of X2 when
X1 = 3.0. This corresponds to the difference between points on the two
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lines for the treatment and control groups when X1 = 3. Now consider the
same computations but when X1 = 4.0, which produce

Ŷ = 2.0 + 0.3(4) + 1.0(0) + 0.4(4)(0) = 3.2

for the control group, and

Ŷ = 2.0 + 0.3(4) + 1.0(1) + 0.4(4)(1) = 5.8

for the treatment group, which is a difference of 5.7− 3.2 = 2.6 and also the
conditional effect of X2 when X1 = 4.0. This corresponds to the difference
between points on the two lines for the treatment and control groups when
X1 = 4.

Remember that interaction means that differences are different. When
X1 = 4.0, the difference in estimated Y between the groups is 2.6, and when
X1 = 3, the difference in estimated Y between the two groups is 2.2. The
difference between these differences is 2.6 − 2.2 = 0.4 = b3. So b3 quantifies
a difference between differences. These computations can be repeated,
changing the first value of X1 but making sure the second value is 1 unit
higher than the first value chosen. The difference between the differences
in Y will always be b4 = 0.4, regardless of the first value of X1 chosen.

13.2.3 Interaction Involving a Multicategorical and a Numerical
Regressor

We have modeled linear interaction between X1 and X2 by including the
cross-product of X1 and X2 as a regressor in the model along with X1 and
X2. This works when X1 and X2 are both numerical as well as when one is
dichotomous. A similar procedure can be used when one of the variables
is multicategorical. We saw in Chapters 9 and 10 that a multicategorical
variable coding g groups can be represented with g−1 regressors, such as a
set of indicator codes, sequential codes, or some other system for coding the
groups. Interaction between a multicategorical variable X2 and numerical
X1 involves the construction of g − 1 cross-products involving X1 and the
g − 1 variables coding group, and including them in the regression model
along with X1 and the g − 1 group codes.

Consider a three-category variable X2 represented with two indicator
codes D1 and D2, such that group 1 is represented with D1 = 1 and D2 = 0,
group 2 is coded with D1 = 0 and D2 = 1, and group 3 is the reference
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group with D1 = D2 = 0. Interaction between X1 and X2 is estimated with
the following model:

Ŷ = b0 + b1X1 + b2D1 + b3D2 + b4X1D1 + b5X1D2 (13.4)

For instance, imagine an experiment with one control group (the refer-
ence group) and two treatment groups coded with two indicator codes D1

and D2. Suppose the resulting model that includes the interaction between
X1 and group is

Ŷ = 5.0 + 2.0X1 − 1.0D1 + 0.5D2 + 1.0X1D1 − 1.5X1D2 (13.5)

and thus b0 = 5.0, b1 = 2.0, b2 = −1.0, b3 = 0.5, b4 = 1.0, b5 = −1.5. This
model is represented visually in Figure 13.7. As can be seen, it takes the
form of three lines relating X1 to Y, one for each group. This figure can be
interpreted in two ways. It can be interpreted as three regression lines with
different slopes (and intercepts), meaning that the relationship between X1

and Y depends on group. It can also be interpreted as distances between
points on the three lines conditioned on a specific value of X1 that vary
systematically across the the X1 distribution. Either way, we can see that
equation 13.5 represents three regression lines by plugging in values of D1

and D2 representing the groups and simplifying. For group 1

Ŷ = 5.0 + 2.0X1 − 1.0(1) + 0.5(0) + 1.0X1(1) − 1.5X1(0)

= 4.0 + 3.0X1

Similarly, for group 2

Ŷ = 5.0 + 2.0X1 − 1.0(0) + 0.5(1) + 1.0X1(0) − 1.5X1(1)

= 5.5 + 0.5X1

and for group 3

Ŷ = 5.0 + 2.0X1 − 1.0(0) + 0.5(0) + 1.0X1(0) − 1.5X1(0)

= 5.0 + 2.0X1

These are the equations for the three lines in Figure 13.7. So equation 13.5
represents all three regression lines in one condensed form.

This model allows X1’s conditional effect on Y to differ across the three
groups or the estimated difference on Y across the three groups to depend
on X1. In the former case, where X2 is the moderator (represented with the
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FIGURE 13.7. A plot depicting interaction between a multicategorical and a numerical
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set of regressors D1 and D2) and X1 is the focal predictor, the conditional
effect of X1 on Y is most easily seen by reexpressing equation 13.4 as

Ŷ = b0 + (b1 + b4D1 + b5D2)X1 + b2D1 + b3D2

which shows that X1’s effect on Y depends on the pattern of indicator codes
representing group: b1 + b4D1 + b5D2. Alternatively, equation 13.4 can be
equivalently written as

Ŷ = b0 + (b2 + b4X1)D1 + (b3 + b5X1)D2 + b1X1

which shows that the differences across the three groups depend on X1. In
this form, X1 is the moderator and X2 (represented with D1 and D2) is the
focal predictor. Two functions characterize the difference across the groups
on Y. The first relates the difference between group 1 and the reference
group to X1: b2 + b4X1. The second relates the difference between group 2
and the reference group to X1: b3 + b5X1.

This system of modeling interaction between a multicategorical and a
numerical regressor works for any number of groups. Simply include g− 1
variables required to code groups in the model along with X1 and all g − 1
cross-products involving group codes and X1. It can also be used for any
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system of coding groups. We used indicator coding in the example above,
but sequential, Helmert, or effect codes could be used instead.

13.2.4 Inference When Interaction Requires More Than One
Regression Coefficient

In the first two examples in this chapter, interaction between X1 and X2 was
carried in a single regression coefficient for the X1X2 cross-product and a
hypothesis test undertaken using the t-statistic and p-value for that regres-
sion coefficient. But in the example with a multicategorical variable coding
g groups, g − 1 cross-product terms were required to estimate interaction.
A different approach to inference is required.

When the focal predictor or moderator is multicategorical, an inferential
test of interaction relies on the strategy described in section 5.3.3 when
we discussed inference about sets of variables. This strategy involves
comparing the fit of two models, one that allows the focal predictor’s effect
to vary as a function of the moderator and another that fixes the focal
predictor’s effect to be independent of the moderator. If the first model fits
better than the second, this implies interaction. But if there is no statistically
significant difference in fit, parsimony tells us to prefer the simpler model
that doesn’t allow the focal predictor’s effect to depend on the moderator.

To see how this works, consider the model we just introduced:

Ŷ = b0 + b1X1 + b2D1 + b3D2 + b4X1D1 + b5X1D2 (13.6)

This is a flexible model in that it allows the effect of X1 on Y to differ
between the three groups coded with D1 and D2 (or the effect of group
membership to vary as a function of X1). It is the regression coefficients b4

and b5 that provide this flexibility, because they determine how much the
focal predictor’s effect varies with the moderator. We could remove that
flexibility by forcing b4 and b5 to be zero, which would be equivalent to
estimating

Ŷ = b0 + b1X1 + b2D1 + b3D2 (13.7)

Descriptively speaking, these two models will fit differently, except in the
rare case where b4 and b5 are both exactly zero. We know that R2 for the
model expressed by equation 13.6 will be larger than R2 for the model
expressed in equation 13.7, because equation 13.6 contains the same regres-
sors as equation 13.7 plus a few more, and adding variables to a model
almost always increases R2 somewhat. Recognizing that the difference in
R2 between these two models is a squared semipartial multiple correlation,
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we can test whether TSR2 is equal to zero using the F-test introduced in
section 5.3.3. Under the null hypothesis of no interaction between X1 and
the multicategorical variable, this F-ratio is F(g − 1, d fresidual) distributed,
where d fresidual is the residual degrees of freedom for the model that in-
cludes the g − 1 cross-products (in this example, g = 3). This is equivalent
to testing the null hypothesis that all g − 1 of the regression coefficients for
the cross-products are equal to zero.

In fact, using the t-statistic and p-value for inference when only a single
cross-product term is needed is a special case of this more general F-test.
We discuss this point in section 14.4.5.

13.2.5 A Substantive Example

The POLITICS data file discussed earlier in the book includes a variable
named demoneg that contains the survey respondents’ evaluations of the
Democrat running for President of the United States in that year’s election.
This evaluation is an aggregate of responses to questions asking how much
certain traits such as “moral,” “dishonest,” and ”a good leader” apply to the
person. Higher scores on this variable reflect a more negative evaluation of
the candidate. This will be the dependent variable in a model that includes
the number of days per week the respondent reports engaging in political
discussion with others (X1:pdiscuss), the respondent’s political party self-
identification (X2), and the interaction between party identification and
political discussion frequency. Party identification is held in the variable
named party and is coded 1=Democrat, 2=Republican, 3= Independent.
Because party identification is multicategorical, we represent it in the model
with two regressors coding group. In this example, we use indicator coding,
with Democrats coded D1 = 1 and D2 = 0 and Republicans coded D1 = 0
and D2 = 1. The Independents are set to 0 on both D1 and D2 and so
function as the reference group. Thus, we estimate

Ŷ = b0 + b1X1 + b2D1 + b3D2 + b4X1D1 + b5X1D2

Because the interaction requires two regression coefficients to estimate it,
one for each of the cross-products, we test the null hypothesis of no inter-
action by testing whether both Tb4 and Tb5 = 0. This is accomplished by
examining whether the model above fits better than

Ŷ = b0 + b1X1 + b2D1 + b3D2
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by examining the difference in R2 between the two models, as discussed in
section 13.2.4.

The SPSS code below constructs the indicator codes and estimates both
models while also producing a test of the difference in fit of the two models:

compute d1=(party=1).

compute d2=(party=2).

compute crossp1=pdiscuss*d1.

compute crossp2=pdiscuss*d2.

regression/statistics defaults change/dep=demoneg/method=enter pdiscuss

d1 d2/method=enter crossp1 crossp2.

The output generated by this code can be found in Figure 13.8. The best
fitting regression model including the two cross-products is

Ŷ = 2.078 + 0.038X1 − 0.049D1 + 0.179D2 − 0.071X1D1 + 0.027X1D2 (13.8)

As can be seen in the output, adding the two cross-products significantly
improves the fit of the model. The change in R2 (which we also refer to as
a squared semipartial multiple correlation) is 0.032, F(2, 334) = 7.834, p <
.001. It seems that the relationship between political discussion frequency
and evaluation of the candidate differs between the three groups. Alterna-
tively, we can say that the difference between Democrats, Republicans, and
Independents in their evaluation of the Democrat depends on frequency of
political discussion.

Comparable code in SAS that conducts this analysis is

data politics;set politics;

d1=(party=1);d2=(party=2);crossp1=pdiscuss*d1;crossp2=pdiscuss*d2;run;

proc reg data=politics;

model demoneg=d1 d2 pdiscuss crossp1 crossp2;

test crossp1=0,crossp2=0;run;

and in STATA, try

gen d1=(party==1)

gen d2=(party==2)

gen crossp1=pdiscuss*d1

gen crossp2=pdiscuss*d2

regress demoneg d1 d2 pdiscuss crossp1 crossp2

test crossp1 crossp2
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Model Summary

Model R R Square
Adjusted R 

Square
Std. Error of the 

Estimate

Change Statistics

R Square 
Change F Change df1 df2 Sig. F Change

1

2

.532a .283 .276 .53659 .283 44.151 3 336 .000

.561b .315 .305 .52600 .032 7.834 2 334 .000

Predictors: (Constant), d2, pdiscuss, d1a. 

Predictors: (Constant), d2, pdiscuss, d1, crossp1, crossp2b. 

ANOVAa

Model
Sum of 
Squares df Mean Square F Sig.

1 Regression

Residual

Total

2 Regression

Residual

Total

38.136 3 12.712 44.151 .000b

96.743 336 .288

134.880 339

42.471 5 8.494 30.701 .000c

92.409 334 .277

134.880 339

Dependent Variable: Democrat: Negative evaluationa. 

Predictors: (Constant), d2, pdiscuss, d1b. 

Predictors: (Constant), d2, pdiscuss, d1, crossp1, crossp2c. 

Coefficientsa

Model

Unstandardized Coefficients
Standardized 
Coefficients

t Sig.B Std. Error Beta

1 (Constant)

pdiscuss

d1

d2

2 (Constant)

pdiscuss

d1

d2

crossp1

crossp2

2.163 .089 24.274 .000

.018 .012 .072 1.552 .122

-.372 .087 -.291 -4.297 .000

.340 .087 .267 3.920 .000

2.078 .136 15.244 .000

.038 .027 .151 1.403 .162

-.049 .165 -.038 -.298 .766

.179 .172 .141 1.042 .298

-.071 .032 -.317 -2.206 .028

.027 .032 .130 .833 .405

Dependent Variable: Democrat: Negative evaluationa. 

FIGURE 13.8. SPSS output from a model estimating an interaction between a multicate-
gorical and a numerical regressor.
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The RLM macro documented in Appendix A has an option for spec-
ifying an interaction between a multicategorical and a numerical or di-
chotomous regressor. It does all the computations itself, including the
construction of the necessary cross-products and the test of interaction. For
this analysis, the SPSS version of the RLM command is

rlm y=demoneg/x=pdiscuss party/catx=1/mod=1.

A visual depiction of the interaction represented by equation 13.8 can
be found in Figure 13.9, generated by plugging in various values of polit-
ical discussion frequency and indicator codes into the equation and then
plotting the resulting Ŷ values. In this example we had no covariates, but
if we had, we could have set them to the sample mean to produce the Ŷ
values that go into the plot, as in the example in section 13.1.10.

Interpretation of the results using Figure 13.9 would depend on whether
political discussion frequency is construed as the focal predictor or mod-
erator. As focal predictor, attention would be directed toward the different
slopes relating political discussion frequency to negativity of the evalua-
tion of the Democrat. As can be seen, it appears that among Republicans,
this relationship is positive with more discussion linked to a more negative
evaluation, whereas with Democrats, the opposite appears to be the case.
Among Independents, the relationship is in between, with a slight positive
slope meaning more discussion relates to a more negative evaluation.

If political discussion frequency is construed as the moderator, then
interpretation focuses on how the differences in estimated evaluation of
the Democrat among people who differ in political party identification
vary depending on political discussion frequency. In Figure 13.9, this leads
to an examination of the distances between points on the lines between the
three groups when political discussion frequency is held fixed and how
these distances vary with discussion frequency.

Interpreted in this way, with political discussion frequency as the mod-
erator, the most apparent result is that the differences in how the Democrat
is perceived between people of different party identifications seem more
pronounced (i.e., larger) among those who discuss politics more frequently,
compared to those who discuss politics less frequently. If one assumes that
people primarily talk about politics to like-minded others, we might in-
terpret these findings to mean that political discussion frequency polarizes
opinions. Alternatively, it could be that people who hold more extreme
positions are more inclined to talk about politics with other people (like-
minded or not).



402 Regression Analysis and Linear Models

0 1 2 3 4 5 6 7

1.
6

1.
8

2.
0

2.
2

2.
4

2.
6

2.
8

3.
0

Political discussion frequency (X 1)

N
e
g
a
ti
v

e
 e

v
a
lu

a
ti
o
n
 o

f 
th

e
 D

e
m

o
c
ra

t 
(Y

)

Republicans
(D1 = 0, D2 = 1)

Independents
(D1 = 0, D2 = 0)

Democrats
(D1 = 1, D 2 = 0)

b1 = 0.038
(the slope of this line)

b5 = 0.027
(difference between the
slopes of these lines)

b4 = -0.071
(difference between the
slopes of these lines)

b3 = 0.180
(this distance)

b2 = -0.048
(this distance)

FIGURE 13.9. A plot depicting interaction between political discussion frequency and
party identification.

13.2.6 Interpretation of the Regression Coefficients

Information from the regression model allows us to quantify the three
slopes in Figure 13.9 and the difference between pairs of slopes. Recall
from section 13.2.3 that we can express the model in equation 13.8 in the
form

Ŷ = 2.078 + (0.038 − 0.071D1 + 0.027D2)X1 − 0.049D1 + 0.179D2

which shows that the relationship between X1 and Y varies with D1 and D2

(i.e., b1 + b4D1 + b5D2 = 0.038 − 0.071D1 + 0.027D2), or, in other words, as
a function of party identification, because D1 and D2 code a person’s party
self-identification. For the three combinations of D1 and D2 coding groups,
we get
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Democrats: b1 + b4(1) + b5(0) = 0.038 − 0.071(1) + 0.027(0) = −0.033

Republicans: b1 + b4(0) + b5(1) = 0.038 − 0.071(0) + 0.027(1) = 0.065

Independents: b1 + b4(0) + b5(0) = 0.038 − 0.071(0) + 0.027(0) = 0.038

for the three conditional effects of political discussion frequency X1. Thus,
the regression coefficient for political discussion frequency, b1 = 0.038, is
the conditional effect of X1 on Y for Independents. That is the slope of
the line relating X1 to Y among Independents in Figure 13.9. But from the
regression output in Figure 13.8, this is not statistically different from zero,
t(334) = 1.403, p = .162. The slope of the line for Democrats is b1 + b4 =

0.038 − 0.071 = −0.033 and so b4 = −0.071 is the difference between the
slopes for Democrats relative to Independents. As can be seen in the
output in Figure 13.8, this difference between these two slopes is statistically
significant, t(334) = −2.206, p = .028. Similarly, the slope of the line for
Republicans is b1 + b5 = 0.038 + 0.027 = 0.065 and so b5 = 0.027 is the
difference between the slopes for Republicans relative to Independents.
But this difference is not statistically significant, t(334) = 0.833, p = .405.

The symmetry property of interactions tells us that we can interpret b4

and b5 in two ways. We just interpreted b4 and b5 as the difference between
the slopes of the lines relating X1 to Y. But we can also interpret b4 and b5 as
how much differences between groups in how they perceive the Democrat
change as X1 changes by 1 unit. Recall from section 13.2.3 that we can
express equation 13.8 in the form

Ŷ = 2.078 + 0.038X1 + (−0.049 − 0.071X1)D1 + (0.179 + 0.027X1)D2

This means that the difference in how the Democrat is perceived between
Independents and Democrats is b2 + b4X1 = −0.049 + −0.071X1, which
is a function of political discussion frequency. For instance, when X1 =

1, the difference is −0.049 − 0.071(1) = −0.120, meaning that Democrats
who talk 1 day per week about politics perceive the Democrat 0.120 units
less negatively than Independents who talk about politics 1 day a week.
But when X1 = 2 days per week, the difference is −0.049 − 0.071(2) =
−0.191, meaning that such Democrats perceive the Democrat 0.190 units
less negatively than such Independents. This change in the difference with
a 1 unit change in X1 is b4 = −0.071, and it is invariant to where you start
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on X2. It is the amount the distance between the points on the Democrat
and Independent lines in Figure 13.9 changes as X1 increases by 1.

Using the same reasoning, the difference in how the Democrat is per-
ceived between Independents and Republicans is b3 + b5X1 = 0.179 +
0.027X1. Regardless of the value of X1 at which you start, as you increase
X1 by 1 unit (i.e., 1 day of political discussion), the difference in how Re-
publicans and Independents perceive the Democrat changes by b5 = 0.027
units. As can be seen in Figure 13.9, the gap between the Independent and
Republican line is growing as X1 increases by 1 unit. The gap is growing
by 0.027 units per 1 unit change in X1.

We have thus far neglected b2 and b3. The prior two paragraphs lead to
the interpretation that these are the estimated difference in how negatively
the Democrat is perceived between Independents and Democrats (b2) and
between Independents and Republicans (b3) among people who report not
discussing politics at all. That is, these conditional effects are conditioned
on X1 = 0. So among those who don’t discuss politics at all, Democrats
perceive the Democrat b2 = −0.049 units differently than Independents. The
negative sign means that Democrats perceive the Democrat less negatively
than do Independents, as can be seen in Figure 13.9. Similarly, among
those who don’t discuss politics, Republicans perceive the Democrat b3 =

0.179 units differently than Independents. The positive sign means that
Republicans perceive the Democrat more negatively than do Independents
(see Figure 13.9). But neither of these conditional effects is statistically
significant.

13.3 Interaction between Two Categorical
Regressors

Every example of interaction we have presented has included at least one
numerical regressor serving the role of focal predictor or moderator. When
both focal predictor and moderator are categorical, most researchers would
conduct an ANOVA or ANCOVA. But AN(C)OVA is just a special case of
the general linear model and can be conducted using a linear regression
analysis program.

13.3.1 The 2 × 2 Design

Consider the 2 × 2 table of cell means in Table 13.3, which shows the mean
of Y for males and females (X2) randomly assigned to either a treatment or
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a control group (X1). The pattern of means in this table is consistent with
interaction between X1 and X2, because the simple effect of experimental
condition differs between men and women. Notice that for men, the mean
difference between the treatment and control groups is 9 − 8 = 1, but
for women, the mean difference between the two groups is 5 − 7 = −2.
The difference between these differences is 1 − (−2) = 3. Notice that this
difference between differences is the same if we look at the simple effects
of sex. For those assigned to the treatment group, the mean difference
between men and women is 9 − 5 = 4, but for those assigned to the control
group, the mean difference between men and women is 8 − 7 = 1. The
difference between these differences is 4 − 1 = 3.

When the difference between simple effects in a 2 × 2 design is not
zero, this implies interaction. When this difference is zero, this means no
interaction. Of course, we have not acknowledged sampling error in this
discussion. A hypothesis test for this difference between differences takes
the form of an F-test, as users of ANOVA are aware.

Suppose the treatment and control groups were coded X1 = 1 and
X2 = 0, respectively. And suppose men were coded X2 = 1 and females
were coded X2 = 0. In that case, the pattern of means in this table can be
expressed with the linear model

Ŷ = 7 − 2X1 + 1X2 + 3X1X2 (13.9)

That is, b0 = 7, b1 = −2, b2 = 1, and b3 = 3. You can plug values of 0 and 1
for X1 and X2 corresponding to the groups into equation 13.9 to verify that
it generates the cell means. For instance, for males assigned to the control
condition, Ŷ = 7 − 2(0) + 1(1) + 3(0)(1) = 8.

When the groups are coded this way, b1 is the simple effect of experi-
mental condition among women (5 − 7 = −2), b2 is the simple effect of sex
for those assigned to the control condition (8 − 7 = 1), b3 is the difference
between the simple effects (i.e., interaction; see the calculations above), and
b0 is the mean of Y for the females assigned to the control condition (see
Figure 13.10, panel A). This is a simple effects parameterization of the 2 × 2
design, because b1 and b2 represent simple effects of X1 and X2, respectively.
We have been calling these conditional effects, which is another name for a
simple effect. The t- and p-values for these regression coefficients provide a
test of the null hypothesis that the corresponding simple effect is zero. For
the interaction, the square of its t value for b3 will be equal to the F-ratio for
the interaction from a 2 × 2 ANOVA, and its p-value would be the same.



406 Regression Analysis and Linear Models

4
5

6
7

8
9

10

X1 

Y

0 1

Females (X2 = 0)

Males (X2 = 1)

Control Treatment

4
5

6
7

8
9

10

X1 

Y

-0.5 0.0 0.5

Females (X2 = -0.5)

Males (X2 = 0.5)

Control Treatment

A

B

b1 = -2.0
(the slope of this line)

b0 = 7.00

b2 = 1.00
(this distance) b3 = 3.0

(difference between the
slopes of these lines)

b1 + b3 =1.0
(the slope of this line)

b1 = -0.5
(the slope of this line)

b3 = 3.0
(difference between the
slopes of these lines)

b2 = 2.50
(this distance)

b0 = 7.25

b1 + (-0.5)b3 =-2.0
(the slope of this line)

b1 + (0.5)b3 =1.0
(the slope of this line)

FIGURE 13.10. A visual representation of cell means and regression coefficients from a
2 × 2 design using simple effects (A) and main effects (B) parameterizations.
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TABLE 13.3. A Table of Means from a 2 × 2 Design

Sex (X2)

Condition (X1) Male Female

Treatment Y = 9.00 Y = 5.00
Control Y = 8.00 Y = 7.00

An alternative parameterization is the main effects parameterization. In
the lingo of ANOVA, a main effect is an unweighted average simple effect. In
Table 13.3, the main effect of experimental condition is −0.5, calculated as
the mean of the two simple effects of experimental condition: [(9 − 8) +
(5 − 7)]/2 = −0.5. The main effect of sex is 2.5, calculated as the mean of
the two simple effects of sex: [(9 − 5) + (8 − 7)]/2 = 2.5. To implement a
main effects parameterization, code the treatment group X1 = 0.5 and the
control group X1 = −0.5. Similarly, code males and females X2 = 0.5 and
X2 = −0.5, respectively. In that case, the model that generates the group
means is

Ŷ = 7.25 − 0.5X1 + 2.5X2 + 3X1X2 (13.10)

and so b0 = 7.25, b1 = −0.5, b2 = 2.5, and b3 = 3. Plugging in values of −0.5
and 0.5 corresponding to the groups into equation 13.10 will reproduce the
group means. For example, for males assigned to the control condition,
Ŷ = 7.25 − 0.5(−0.5) + 2.5(0.5) + 3(−0.5)(0.5) = 8.

Observe that b3 is the same compared to when the simple effects pa-
rameterization was used. Its t- and p-values would also be the same. But
the other terms have changed. Now b1 is the main effect of experimental
condition and b2 is the main effect of sex, as calculated earlier. Now b0

is the unweighted mean of the four cell means: (9 + 5 + 8 + 7)/4 = 7.25
(see Figure 13.10, panel B). The squares of the t-values for these effects will
correspond to the F-ratios for the corresponding effects from an ANOVA,
and the p-values will be the same.

13.3.2 Interaction between a Dichotomous and a Multicategorical
Regressor

So regression analysis can generate the results from a 2 × 2 ANOVA when
the main effects parameterization is used, and it will generate the same test
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of interaction and some of the tests of simple effects when the simple effects
parameterization is used. But what about a design with more than two
levels of a categorical variable?

If one of the variables is dichotomous but the other is multicategorical
with g categories, the approach discussed in section 13.2.3 applies. If
X1 were a dichotomous variable in the example in that section, in some
ways but not others, the approach described would would be equivalent
to a 3 × 2 factorial ANOVA, with the similarity depending on how the
groups are coded. The test for interaction between the dichotomous and the
multicategorical variable would be the same as the F-test from the ANOVA.
But the tests for the multicategorical and dichotomous regressors would not
correspond to the “main effects” from the ANOVA unless the dichotomous
variable was coded with two values equal but opposite in sign (e.g., −1
and 1 or −0.5 and 0.5) and the multicategorical variable was coded using
the effect coding system described in section 10.1.3. The coding system for
the categorical variables would not change the test of significance for the
interaction. Its F-ratio and p-value would be the same regardless, and the
increment in R due to the cross-product terms would be unaffected.

13.3.3 Interaction between Two Multicategorical Regressors

When both focal predictor and moderator are multicategorical with three
or more categories, regression analysis can still duplicate ANOVA results,
but most researchers will find this more tedious than just doing an ANOVA
in the usual way. If the focal predictor has g1 categories and moderator
g2 categories, then (g1 − 1)(g2 − 1) cross-products are required to represent
the g1 × g2 interaction. This number can be large, and managing and inter-
preting all these regression coefficients, not to mention those quantifying
simple or main effects, can be cumbersome. Yet if effect coding is used
for both variables, ANOVA F-ratios for main and interaction effects can be
generated by testing the contribution of sets of regression coefficients to
explaining variance in Y using the hierarchical entry strategy described in
section 5.3.3.

13.4 Chapter Summary

Linear interaction between a focal predictor X1 and a moderator X2 can
be estimated and tested by including the cross-product X1X2 as a regres-
sor along with X1 and X2. This works so long as neither X1 nor X2 is a
multicategorical variable. In such a model, the regression coefficient for X1
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estimates the conditional effect of X1 on Y when X2 = 0, and the regression
coefficient for X2 quantifies the conditional effect of X2 on Y when X1 = 0.
The regression coefficient for X1X2 quantifies the amount the conditional
effect of X1 on Y changes as X2 changes by 1 unit. If this regression coeffi-
cient is statistically different from zero, we can say that X1 and X2 interact,
or that X2 moderates the effect of X1 on Y.

The symmetry property of interaction tells us that we can flip the roles
of focal predictor and moderator without changing the essence of the inter-
action or the regression coefficient for the X1X2 cross-product. If we think
of X2 as the focal predictor and X1 as the moderator, then the regression
coefficient for the product can be interpreted as how the conditional effect
of X2 changes as X1 changes by 1 unit. This will be the same as the amount
the conditional effect of X1 changes as X2 changes by 1 unit.

When either the focal predictor or moderator is multicategorical, inter-
action requires multiple cross-products in the model, and a test of interac-
tion requires comparing the fit of two models, one with the cross-products
and one without. Although estimation of the model is straightforward,
interpretation is a bit more complex. But the same rules of interpreta-
tion apply, where the regression coefficients for the variables that define
the interaction are conditional effects, and regression coefficients for cross-
products quantify how the conditional effect of one variable changes as
another variable changes by 1 unit. When the moderator is multicategor-
ical with g groups, such a model will represent g regression lines relating
the focal predictor to Y. When the focal predictor is multicategorical, the
model can be used to quantify how the groups differ from each other on
average at given values of the moderator, and how those differences change
as the moderator changes.

When both X1 and X2 are categorical, regression analysis can be used
to mimic factorial ANOVA. Interaction in a factorial ANOVA can be rep-
resented with a set of cross-product regressors and estimated using any
regression analysis program. In simple designs involving only two vari-
ables with a few levels each, interpretation of the regression coefficients is
fairly straightforward. But as the number of categories increases, so does
the number of cross-products required, and interpretation of the effects can
become quite complex.





14
Probing Interactions and Various
Complexities

When two variables interact, one variable’s effect on the dependent vari-
able can be expressed as a function of the other variable involved in the
interaction. We start this chapter by formalizing the functions linking one
variable’s effect to another in a linear interaction model. These functions
can be used to generate estimates of the conditional effect of one vari-
able at values of another, and inference can proceed with an estimate of
the standard error of the conditional effect. We also discuss techniques
for probing interactions based on estimates of conditional effects, in-
cluding the Johnson–Neyman technique, which eliminates the need to
choose a value of the moderator when probing an interaction. We end
with a discussion of various complexities and controversies, including
the difficulty of detecting interactions, distinguishing between interaction
and curvilinearity, as well as models with multiple or higher-order inter-
actions.

14.1 Conditional Effects as Functions

We have seen in Chapters 3, 13, and elsewhere in the book that in a model
of the form

Ŷ = b0 + b1X1 + b2X2

the effects of X1 and X2 are constant across values of the other variable.
That is, the effect of a 1 unit change in X1 on Y does not depend on X2,
just like the effect of a 1 unit change in X2 on Y does not depend on X1.
When these effects are independent of the other variable, it is sensible to
talk about the effect of X1 or X2 and draw inferences about its size.

411
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But when a cross-product between X1 and X2 is included as a regressor
in the model, as in

Ŷ = b0 + b1X1 + b2X2 + b3X1X2 (14.1)

then the effects of X1 and X2 can no longer be expressed by a single number.
Each of their effects becomes a function of the other variable, and so it is
not sensible to talk about the effect of X1 on Y without conditioning that
discussion on a value of X2. Likewise, we can’t talk about the effect of X2

on Y without conditioning that discussion on X1.
In this section, we formalize those functions in models that include a

cross-product, depending on the combination of the focal predictor and
moderator as continuous or categorical. These functions take the form of
equations that can be used to generate an estimate of the conditional effect
of X1 on Y for a given value of X2 and the conditional effect of X2 on Y for a
given value of X1. Our discussion generalizes to models with covariates so
long as those covariates are not allowed to interact with X1 or X2. In Chapter
13 we applied these functions, but in the context of specific examples. Our
discussion here is more general and organizes all the functions into one
place rather than spreading them throughout the entire chapter.

14.1.1 When the Interaction Involves Dichotomous or Numerical
Variables

We can use the model in equation 14.1 when the focal predictor and mod-
erator are dichotomous or numerical in any combination. That is, the
mathematics to generate the function are the same for any of the four com-
binations of the dichotomous or numerical status of the focal predictor and
moderator. A different function is required when either the focal predictor
or moderator is multicategorical. We address this in section 14.1.2.

Notice in equation 14.1 that X1 and X2 both appear twice. We can rewrite
it in a form where X1 appears only once by grouping terms involving X1

and then factoring out X1 from the group that includes it. That is,

Ŷ = b0 + (b1X1 + b3X1X2) + b2X2

= b0 + (b1 + b3X2)X1 + b2X2
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In this form, we can see that X1’s effect on Y is a function of X2. That
function is b1 + b3X2. So in a model of the form in equation 14.1,

θX1 = b1 + b3X2 (14.2)

where θX1 is the conditional effect of X1 on Y. So if we want an estimate of
X1’s effect on Y when X2 equals some value, we can generate it with an
estimate of b1 and b3 and that value of X2.

For instance, revisiting the example presented in section 13.1.10, we had
Ŷ = 3.515+0.622X1+0.097X2−0.062X1X2+0.016X3−0.020X4 for the model of
the use of safety protocol work-arounds with exhaustion as focal predictor
X1 and job tenure as moderator X2, with sex and age as covariates (equation
13.2. Figure 13.5 depicts the model). Using equation 14.2 we estimate the
conditional effect of exhaustion on use of safety protocol work-arounds for
hospital workers with 5 years of job experience (X2 = 5) as

θX1 = b1 + b3X2 = 0.622 − 0.062(5) = 0.312 (14.3)

So when X2 = 5, changing X1 by 1 unit results in an increase in the estimate
of Y by 0.312 units. This is the slope of the X2 = 5 line in Figure 13.5.

If X2, which is functioning as the moderator in the discussion above,
is dichotomous, then equation 14.2 produces only two conditional effects
of X1, one for each of the groups defined by X2. It makes no difference
how X2 is coded, for the estimation of the regression coefficients adjusts for
the scaling of X2 such that equation 14.2 generates the same values for θX1

regardless of how the two groups are coded. When X2 is numerical, there
may be many values of X2, even an infinite number, depending on how
finely measured X2 is.

This same logic results in a function defining the conditional effect of
X2. Equation 14.1 can be rewritten by factoring X2 out of terms involving
X2:

Ŷ = b0 + (b2X2 + b3X2X1) + b1X1

= b0 + (b2 + b3X1)X2 + b1X1

which shows that X2’s effect on Y is a function X1 of the form b2 + b3X1.
That is, the conditional effect of X2 is

θX2 = b2 + b3X1

With estimates of b2 and b3, θX2 can be calculated for any value of X1.
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14.1.2 When the Interaction Involves a Multicategorical Variable

When the focal predictor or moderator is multicategorical with g categories,
the regression model should include g − 1 variables coding group, as well
as g − 1 cross-products involving those codes and the focal predictor (see
section 13.2.3). In the discussion below, we assume that the moderator X2 is
multicategorical with three groups, but the procedure generalizes to g > 3
by including additional group codes and cross-products.

For g = 3 groups, the model to estimate interaction involving the mul-
ticategorical variable is

Ŷ = b0 + b1X1 + b2D1 + b3D2 + b4X1D1 + b5X1D2 (14.4)

where D1 and D2 are indicator codes, Helmert codes, sequential codes, effect
codes, or codes derived from some other group coding system. The function
defining the conditional effect of focal predictor X1, which is dichotomous
or numerical, is found by grouping terms involving X1 and then factoring
it out, as in

Ŷ = b0 + (b1X1 + b4X1D1 + b5X1D2) + b2D1 + b3D2

= b0 + (b1 + b4D1 + b5D2)X1 + b2D1 + b3D2

which shows that X1’s conditional effect on Y is a function of group, mean-
ing a function of combinations of D1 and D2. That is,

θX1 = b1 + b4D1 + b5D2 (14.5)

With estimates of b1, b4, and b5, the conditional effect of X1 can be de-
rived for each of the three groups by plugging the values of D1 and D2

corresponding to the group in the coding system used. For example, revis-
iting the political discussion example from section 13.2.5, the model was
Ŷ = 2.078 + 0.038X1 − 0.049D1 + 0.179D2 − 0.071X1D1 + 0.027X1D2. In
that analysis, indicator coding was used to code groups. For the group
coded D1 = 0 and D2 = 1 (the Republicans), application of equation 14.5
yields θX1 = 0.038 − 0.071(0) + 0.027(1) = 0.065 for the conditional effect of
political discussion (X1) for Republicans.

When the focal predictor is the multicategorical variable and X1 is the
moderator, then there are g − 1 conditional effects for a given value of X1.
Each of these conditional effects compare estimates of Y, conditioned on
X1, that reflect the group comparisons built into the coding system. For
instance, if indicator coding is used, then the two conditional effects gauge
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the difference between the group coded with Di and the reference group
conditioned on X1 being some value.

By grouping terms into sets that share Di in equation 14.4 and then
factoring out Di we get

Ŷ = b0 + b1X1 + (b2D1 + b4X1D1) + (b3D2 + b5X1D2)

= b0 + b1X1 + (b2 + b4X1)D1 + (b3 + b5X1)D2

Recognizing that the categorical variable X2 is represented with two vari-
ables, D1 and D2, we get two conditional effects of X2, one for D1 and one
for D2. Those functions are

θD1 = b2 + b4X1 (14.6)

and
θD2 = b3 + b5X1 (14.7)

both of which are functions of X1. So using the model coefficients from the
example above, when X1 = 2, for instance, equations 14.6 and 14.7 yield
θD1 = −0.049 − 0.071(2) = −0.191 and θD2 = 0.179 + 0.027(2) = 0.233. Thus,
when X1 = 2, the group coded with D1 = 1 (Democrats) is estimated to
differ by−0.191 units on Y compared to the reference group (Independents),
and the group coded with D2 = 1 (Republicans) is estimated to differ by
0.233 units on Y from the reference group of Independents.

14.2 Inference about a Conditional Effect

In section 14.1 we offered functions that relate the effect of X1 on Y to X2 and
the effect of X2 on Y to X1 in a model that allows linear interaction between
X1 and X2. Using these functions, one can generate a point estimate of the
conditional effect of one variable conditioned on the other variable involved
in the interaction. We next turn to inference about conditional effects.

14.2.1 When the Focal Predictor and Moderator Are Numerical or
Dichotomous

Standard errors can be estimated for a conditional effect in order to generate
a confidence interval for TθX1 or TθX2 or test a null hypothesis. Unless X1 or
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X2 is multicategorical, in a linear interaction model of the form in equation
14.1, the standard errors for θX1 and θX2 are calculated as

SE(θX1 ) =
√

SE(b1)2 + 2X2COVb1b3 + X2
2SE(b3)2 (14.8)

and
SE(θX2 ) =

√
SE(b2)2 + 2X1COVb2b3 + X2

1SE(b3)2

These require estimates of the standard errors of b1, b2, b3, and the value at
which the effect is being conditioned. The standard errors are provided in
the output of any OLS regression program. Also required is a covariance
(COV) between regression coefficients. These usually are not found in
default output in most programs but typically can be obtained by request.

Once a conditional effect and its standard error are calculated, a confi-
dence interval can be constructed as the point estimate plus and minus the
standard error times the critical value of t for a given degree of confidence
(see Appendix C). For testing the null hypothesis that the conditional effect
equals zero, the point estimate can be divided by the standard error and
p-value for this ratio derived from the t(dfresidual) distribution.

These computations are not difficult to do by hand, but we don’t rec-
ommend attempting them, so we don’t illustrate them here. It is too easy
to mistakenly plug the wrong value into the wrong part of the formula,
and even if you implement the formula correctly, rounding error is likely to
creep into your computations unless you do them to many decimal places
of accuracy even with a spreadsheet calculator of some kind.

We recommend letting a computer do the work for you using a method
we call the regression centering approach. This method relies on the fact
that in a model of the form Ŷ = b0 + b1X1 + b2X2 + b3X1X2, b1 estimates
the conditional effect of X1 on Y when X2 = 0, and regression output
includes its standard error, t-, and p-values, and even a confidence interval,
if requested. What we seek is an estimate of the conditional effect of X1

when X2 is equal to some value λ of our choosing rather than zero. To
estimate the conditional effect of X1 when X2 = λ, construct a new variable
X′

2 = X2 − λ and then estimate

Ŷ = b0 + b1X1 + b2X′
2 + b3X1X′

2

In this model, b1 estimates the conditional effect of X1 on Y when X′
2 = 0.

But notice that X′
2 = 0 when X2 = λ, so b1 therefore estimates the conditional

effect of X1 when X2 = λ. Importantly, SE(b1) is the estimated standard error
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for this conditional effect and the same as you would get if you applied
equation 14.8 to calculate the standard error. Obviously, this is easier, and
the resulting standard error will be computed much more accurately than
you will likely do by hand computation. Using this standard error, t- and
p-values can be derived for null hypothesis testing, or a confidence interval
constructed in the usual way.

This same logic could be used to estimate the conditional effect of X2 on
Y when X1 equals some value ω along with its standard error and p-value.
Or you could simultaneously center X1 around some value of interest ω
and X2 around some value λ by constructing X′

2 as discussed above and
X′

1 = X1−ω and then estimating Ŷ = b0+b1X′
1+b2X′

2+b3X′
1X′

2. That would
generate the estimates, standard errors, t-, and p-values for the conditional
effect of X1 when X2 = λ and the conditional effect of X2 when X1 = ω.

We illustrate this approach with the HOSPITAL data, estimating the
conditional effect of exhaustion (X1) on the use of safety protocol work-
arounds among people with 5 years of experience on the job (i.e., X2 = 5),
controlling for sex and age as in the earlier example. If we used X1 and X2

in the model along with X1X2, then the regression coefficient for X1 along
with its standard error would be conditioned on X2 = 0. To condition it on
X2 = 5, we subtract 5 from all values of X2 prior to constructing the product,
and then we substitute the centered X2 in the model for the original X2.
The SPSS code below accomplishes this.

compute tenurep=tenure-5.

compute crossprd=exhaust*tenurep.

regression/dep=safety/method=enter exhaust tenurep crossprd sex age.

Comparable code in SAS is

data hospital;set hospital;

tenurep=tenure-5;crossprd=exhaust*tenurep;run;

proc reg data=hospital;

model safety=exhaust tenurep crossprd sex age;run;

and in STATA, try

gen tenurep=tenure-5

gen crossprd=exhaust*tenure

regress safety exhaust tenurep crossprd sex age

STATA output can be found in Figure 14.1. Observe that the model is

Ŷ = 3.999 + 0.313X1 + 0.097X2 − 0.062X1X2 + 0.016X4 − 0.020X5
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.

      Source |       SS       df       MS              Number of obs =     300

-------------+------------------------------           F(  5,   294) =   20.01

       Model |  88.4253474     5  17.6850695           Prob > F      =  0.0000

    Residual |  259.893453   294  .883991335           R-squared     =  0.2539

-------------+------------------------------           Adj R-squared =  0.2412

       Total |    348.3188   299  1.16494582           Root MSE      =  .94021

------------------------------------------------------------------------------

      safety |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

     exhaust |   .3129059   .0566463     5.52   0.000     .2014222    .4243895

     tenurep |   .0968027   .0559833     1.73   0.085     -.013376    .2069814

    crossprd |  -.0618893   .0162901    -3.80   0.000    -.0939493   -.0298292

         sex |   .0158722    .171829     0.09   0.926    -.3222987     .354043

         age |  -.0201783    .007985    -2.53   0.012    -.0358933   -.0044632

       _cons |   3.998619    .429063     9.32   0.000     3.154195    4.843043

------------------------------------------------------------------------------

FIGURE 14.1. STATA output from implementation of the regression centering approach.

The regression coefficient for exhaustion is b1 = 0.313, SE(b1) =

0.057, t(294) = 5.524, p < .001. So among people with 5 years of experi-
ence, the estimated relationship between exhaustion and the use of safety
protocol work-arounds is positive and statistically significant. Observe that
the regression coefficient for exhaustion in this model is θX1 and the same
as we calculated using equation 14.3. But now we have a standard error,
t- and p-values, and a confidence interval. Use of the regression centering
method has avoided the need to apply formulas for θX1 and SE(θX1) using
hand computations or other more tedious methods.

The regression coefficient for the X1X2 cross-product, its standard error,
t- and p-values will not be affected by centering of X1, X2, or both in this
fashion. They remain the same, as can be seen by comparing the outputs
in Figures 14.1 and 13.4

The RLM macro offers a still easier approach to inference for conditional
effects that doesn’t even require centering of X1 or X2. The SPSS RLM
command

rlm y=safety/x=sex age exhaust tenure/mod=1/modval=5.

tells SPSS to estimate the linear interaction model we’ve been discussing.
The addition of modval=5 to the command requests an estimate of the
conditional effect of the focal predictor when the moderator is equal to
5. In the output, the conditional effect is provided along with a standard
error, t- and p-values, and confidence interval. The SAS version of the RLM
command is
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%rlm (data=hospital,y=safety,x=sex age exhaust tenure,mod=1,modval=5);

When the moderator X2 is dichotomous, the regression output will
provide the conditional effect of X1 for the group coded X2 = 0 if you
coded one of the groups zero. It may have occurred to you that if you want
the conditional effect of X1 for the other group, you could just rerun the
analysis after recoding X2 so that X2 = 0 for that group. This will work,
for it is equivalent to the regression centering approach. If your groups are
coded 0 and 1 on X2, then X′

2 = X2 − 1 yields X′
2 = 0 when X2 = 1.

14.2.2 When the Focal Predictor or Moderator Is Multicategorical

When X1 or X2 is multicategorical, the strategy for inference is changed
slightly. In the case where the moderator X2 is multicategorical, the simplest
approach to inference about the conditional effect of X1 is to estimate the
model g times using an indicator coding system for coding the g groups
on the moderator variable. When you run the regression analysis, the
regression coefficient for X1 will be θX1 for the reference group, and your
output will provide a standard error, t-value, and p-value. Then redo the
analysis, making a different group the reference group, and so forth. Repeat
for a total of g times.

When the focal predictor is multicategorical but the moderator is di-
chotomous or numerical, there are two inferences you might want to make.
One of these is an omnibus test of equality of the g estimates of Y con-
ditioned on a particular value of X2. For instance, from the political dis-
cussion example from section 13.2.5, you might want to know whether
among people who discuss politics 2 days a week, there a difference be-
tween Democrats, Republicans, and Independents in how they perceive the
Democrat running for President. Or you might want to do specific com-
parisons as reflected in the coding system for groups, but conditioned on a
value of the moderator. For instance, do Democrats who discuss politics 2
days a week differ from Republicans who discuss politics 2 days a week in
how they perceive the Democrat?

The omnibus test can be conducted using a variation of the hierarchical
regression strategy described in section 5.3.3. This involves estimating two
models. Before estimation of either model, X2 is first centered around the
value λ at which you want to condition the inference. That is, compute
X′

2 = X2 − λ. The first model you estimate then includes X′
2 and all the
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cross-products involving Di and X′
2, but it excludes all Di variables coding

groups. So assuming three groups, this first model is

Ŷ = b0 + b3X′
2 + b4X′

2D1 + b5X′
2D2 (14.9)

The second model is the same as the first but adds the g − 1 Di variables
coding groups. So for two groups,

Ŷ = b0 + b1D1 + b2D2 + b3X′
2 + b4X′

2D1 + b5X′
2D2 (14.10)

Under the null hypothesis of no difference in Y between the three groups
when X2 = λ, the difference in R2 between the models can be converted
to an F-statistic in the same way described in section 5.3.3. A sufficiently
small p-value leads to the inference that the groups differ on average in Y
conditioned on X2 = λ.

The logic of this method is apparent when you consider that equation
14.9 is identical to equation 14.10 when you impose the constraint that
b1 = b2 = 0. But in the second model, b1 and b2 estimate differences between
groups on Y when X2 = λ. If both Tb1 and Tb2 are equal to zero, this implies
that the groups don’t differ on average on Y when X2 = λ. So we are testing
whether relaxing this assumption of equality of the conditional estimates
of Y across the g groups (equation 14.10) yields a better-fitting model than
when we assume they are the same (equation 14.9).

Equation 14.10 yields regression coefficients b1 and b2 that estimate the
difference between pairs of group means or sets of means on Y conditioned
on X2 = λ, along with standard errors, t-values, and p-values. These can
be used to test whether the estimates of Y for the groups coded by D1 and
D2 differ from each other. For instance, if D1 and D2 are indicator codes,
b1 and b2 and their tests of significance provide an inference as to whether
the group coded by D1 differs from the reference group on Y and whether
the group coded by D2 differs from the reference group on Y, conditioned
on X2 = λ.

Using computer software, implementation involves the combination of
the regression centering approach described above with hierarchical entry
of regressors. For instance, in SPSS we could test whether Republicans,
Democrats, and Independents who talk about politics 2 days a week differ
from each other in how they perceive the Democrat by executing the code
below, assuming D1 and D2 are indicator codes that have already been
constructed as described in section 13.2.5:
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compute pdiscp=pdiscuss-2.

compute crosspd1=pdiscp*d1.

compute crosspd2=pdiscp*d2.

regression/statistics defaults change/dep=demoneg/method=enter pdiscp

crosspd1 crosspd2/method=enter d1 d2.

The second model that allows the estimates of Y to differ between the
three groups when X2 = 2 fits better than the one that constrains them to
be the same, ΔR2 = .039, F(2, 334) = 9.413, p < .001. So we can say that
the three groups differ on average in how they perceive the Democrat,
conditioned on talking about politics 2 days a week.

In SAS, the comparable commands are

data politics;set politics;

pdiscp=pdiscuss-2;crosspd1=pdiscp*d1;crosspd2=pdiscp*d2;run;

proc reg data=politics;

model demoneg=d1 d2 pdiscp crosspd1 crosspd2;test

crosspd1=0,crosspd2=0;run;

and in STATA, use

gen pdiscp=pdiscuss-2

gen crosspd1=pdiscp*d1

gen crosspd2=pdiscp*d2

regress demoneg d1 d2 pdiscp crosspd1 crosspd2

test crosspd1 crosspd2

The two regression coefficients for D1 and D2 are b1 = −0.190, t(334) =
−1.658, p = .098 and b2 = 0.233, t(334) = 1.942, p = .053. So although we can
say that Democrats, Independents, and Republicans who talk about politics
2 days a week differ on average in how they perceived the Democrat,
we can’t definitively say that the Democrats differ from Independents,
or that Republicans differ from Independents. If we were to recode the
groups, choosing Democrats as the reference, we’d find that they differ
from Republicans. Democrats who talk about politics 2 days a week differ
from Republicans who talk about politics 2 days a week, b1 = 0.424, t(334) =
4.338, p < .001.More specifically, Republicans are estimated to perceive the
Democrat 0.424 units more negatively than Democrats.

The RLM macro has a function built in to conduct this test without
having to construct the indicator codes or center the moderator. The SPSS
RLM command would be
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*************************************************************************** 

 

Conditional Effect of Focal Predictor at Values of the Moderator Variable 

 

Moderator value: 

pdiscuss     2.0000 

 

        Coeff         se          t          p       LLCI       ULCI 

D1     -.1904      .1148    -1.6581      .0982     -.4162      .0355 

D2      .2334      .1202     1.9415      .0530     -.0031      .4699 

 

Test of equality of conditional means at this value of the moderator 

    R2-chng          F        df1        df2          p 

      .0386     9.4127     2.0000   334.0000      .0001 

 

Estimated conditional means at this value of the moderator 

      party       yhat 

     1.0000     1.9630 

     2.0000     2.3868 

     3.0000     2.1534

*************************************************************************** 

FIGURE 14.2. SPSS RLM output.

rlm y=demoneg/x=party pdiscuss/mcfoc=1/modval=2.

and in SAS, use

%rlm (data=politics,y=demoneg,x=party pdiscuss,mcfoc=1,modval=2);

The relevant section of SPSS output can be found in Figure 14.2, where the
statistics reported above can be found.

14.3 Probing an Interaction

We have seen how to test whether X1’s effect varies linearly with X2 in a
regression model and how to estimate the effect of X1 when X2 is set to a
specific value. Researchers typically seek to better understand the nature
of the dependency between X2 and the effect of X1 on Y as revealed by an
interaction analysis by applying inferential statistical procedures such as
described above, with the goal of making specific claims about the values
of X2 at which the focal predictor X1 is related to Y and the values at which
it is not. This exercise is often called probing an interaction.
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14.3.1 Examining Conditional Effects at Various Values of the
Moderator

With evidence that X1 and X2 interact, a common strategy for making
sense of the conditional nature of the effect of focal predictor X1 on Y is
to estimate the conditional effect of X1 at various values of moderator X2

and test which of these conditional effects is different from zero using the
procedure described in section 14.2. This method is known by various
names, such as the pick-a-point approach, an analysis of simple slopes, or
a spotlight analysis (Bauer & Curran, 2005; Spiller, Fitzsimons, Lynch, &
McClelland, 2013).

In order to implement this approach, one must settle on values of X2

at which to condition the estimate of X1’s effect. When X2 is dichotomous
or multicategorical, the choice is easy. You simply estimate X1’s effect
conditioned on values of X2 corresponding to the groups. These values
manifest themselves in the form of the pattern of codes on D1, D2, and so
forth.

But when X2 is numerical, the choice is more difficult. Ideally, the
values of a numerical X2 that are chosen are meaningful in some way,
either theoretically or practically. For instance, if your moderator X2 is
number of packs of cigarettes smoked a day, you might estimate the effect
of X1 on Y for people who don’t smoke at all (X2 = 0 packs), who smoke
X2 = 1 pack a day, and who smoke X2 = 2 packs a day. But sometimes there
is no basis for deciding what values of X2 to choose. In these circumstances,
a common convention is to use three values that operationalize “relatively
low,” “relatively moderate,” and “relatively high” on X2. Some possibilities
include a standard deviation below the mean of X2, the mean of X2, and
a standard deviation above the mean of X2. An alternative strategy is the
25th, 50th, and 75th percentiles of the distribution of X2. Each of these is
just as arbitrary as the other. These relative values could be based on the
distribution of X2 in the sample, or some other distribution. For example,
if X2 contains scores on some standardized test, then you could use values
from the distribution of published test norms.

We have already explained how to conduct an inference for a single
conditional effect in section 14.2. Implementation of this method of probing
interactions involves repeating this process as many times as desired for
different values of X2 in order to understand a bit about where in the
distribution of X2 the focal predictor X1 has an effect and where it does
not. Using the regression centering method, you would simply reconduct
the analysis, say, three times, each time centering X2 around a particular
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*************************************************************************** 

 

Conditional Effect of Focal Predictor at Values of the Moderator Variable 

     tenure     effect         se          t          p       LLCI       ULCI 

     3.0000      .4367      .0715     6.1097      .0000      .2960      .5773 

     5.0000      .3129      .0566     5.5239      .0000      .2014      .4244 

     8.0000      .1272      .0659     1.9314      .0544     -.0024      .2569 

 

Moderator values are 25th, 50th, and 75th percentiles of the moderator distribution 

 

***************************************************************************

FIGURE 14.3. RLM output from the pick-a-point approach to probing an interaction.

moderator value, and interpreting the effect for X1 as conditioned on X2

being that value you centered it around.
The RLM macro described in Appendix A makes this much easier be-

cause it is automated, and it works for dichotomous, numerical, and mul-
ticategorical variables. When you specify a model with an interaction,
RLM will automatically include in its output a section that provides the
conditional effect of the focal predictor at various values of the modera-
tor. If the moderator is multicategorical, it will provide estimates of the
conditional effect of the focal predictor in each of the groups, along with
standard errors, t- and p-values, and confidence intervals. If the moderator
is numerical, it will implement the pick-a-point approach conditioned on
values of the moderator that correspond to the sample mean and a standard
deviation below and above the mean. An option also exists to condition
the effect of the focal predictor on various percentiles of the distribution of
the moderator.

The section of the output generated by the RLM command on page 390
for the safety protocol work-arounds study can be found in Figure 14.3. The
ptiles=1 option tells RLM to condition the moderator on the 25th, 50th,
and 75th percentiles, and it provides estimates of the conditional effect of
exhaustion (the focal predictor) on use of safety protocol workarounds at
those values of job tenure (the moderator), along with standard errors, t-
and p-values, and a 95% confidence interval. As can be seen, among those
low in job tenure (the 25th percentile, X2 = 3), the conditional effect of
exhaustion is positive (θX1 = 0.437) and statistically significant, t(294) =
6.110, p < .0001. It is also positive (θX1 = 0.313) and statistically significant
among those “moderate” in job tenure (at the 50th percentile, X2 = 5),
t(294) = 5.524, p < .001 Among those relatively high in job tenure (the
75th percentile, X2 = 8), the conditional effect of exhaustion is positive
(θX1 = 0.127) but just misses statistical significance, t(294) = 1.931, p = .054.



Probing Interactions and Various Complexities 425

These conditional effects correspond to the slopes of the lines in Figure
13.5.1

RLM implements a comparable method when X1 is multicategorical. In
that case, RLM conducts an F-test of equality of the estimated values of Y
between the g groups conditioned on various values of a dichotomous or
numerical X2. It also provides g − 1 specific comparisons between groups,
as determined by the coding system used.

14.3.2 The Johnson–Neyman Technique

The approach to probing an interaction discussed in section 14.3.1 suffers
from the limitation that the data analyst must choose values of the moder-
ator, and typically the choice is arbitrary when the moderator is numerical.
Although conventions exist, such as described earlier, these conventions
are also arbitrary. The choice of values of the moderator at which to con-
dition the estimate of the focal predictor’s effect can influence what an
investigator reports as statistically significant and not. Without a rationale
for preferring some values rather than others, different investigators who
make different decisions could go away with different claims, even when
analyzing the same data using the same model.

When the moderator is numerical, the Johnson–Neyman technique,
called a floodlight analysis by Spiller et al. (2013), avoids this problem by
analytically deriving the values of the moderator that represent “points of
transition” between a statistically significant and nonsignficant conditional
effect. These points of transition demarcate regions of significance of the
focal predictor’s effect. Whereas the pick-a-point approach involves the
investigator choosing a value of the moderator and obtaining t- and p-
values for θX1 at that value, the Johnson–Neyman technique asks what
value of the moderator produces a p-value for θX1 that is exactly equal
to the α-level chosen for the test, such as .05, or a confidence interval
for the conditional effect that just touches zero. Originally introduced
by Johnson and Neyman (1936) in the context of ANCOVA, the algebra
for this derivation in regression analysis more generally is provided in

1Results like these raise an interesting conflict between conservative and parsimonious
hypotheses. To say that exhaustion operates at low and medium job tenures but not at
higher tenures is to imply an interaction between tenure and exhaustion. Thus, this model
is less parsimonious but more conservative than a model that posits an effect of exhaustion
at all levels of job tenure. There is no mechanical answer as to which of these models is
preferable. Here we say merely that some scientists would consider it reasonable to assume
an effect of exhaustion at all levels of job tenure, even if that effect was not significant at all
levels, because that assumption produces a simpler model.
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Bauer and Curran (2005), but is offered only for dichotomous or numerical
focal predictors and requires that the moderator be numerical. See Bauer
and Curran for the formulas, which we don’t recommend attempting to
implement by hand.

When the Johnson–Neyman technique is applied, two solutions will
result, but one or both of these solutions may have no use to the researcher.
For instance, one or both of the solutions may be beyond the range of
measurement of the moderator and thus not be interpretable. Alternatively,
one may be an imaginary number. When these are eliminated from the
solution, the result is either zero, one, or two values of the moderator
at which θX1 is just statistically significant at the α level of significance.
Zero values means that θX1 is statistically significant for any value of the
moderator in the range of the data or at no value in the range of the data.
One value means that θX1 is statistically significant when the moderator is
either above or below that value. Two values means that θX1 is statistically
significant when the moderator is below the smallest value and above the
largest value, or only between those two values.

The Johnson–Neyman technique is best left to a computer. No commer-
cially available software that we are aware of provides this as an option
when estimating a model with an interaction, but there are packages for
R that will conduct it, as well as macros for SPSS and SAS such as MOD-
PROBE (Hayes & Matthes, 2009), PROCESS (Hayes, 2013), and the RLM
macro described in Appendix A. For the study of health care workers,
adding jn=1 while removing the ptile=1 option from the RLM command
on page 390 produces the section of output in Figure 14.4.

Toward the top, we can see that RLM has identified 7.9797 and 15.2716
as points on the continuum of job tenure at which the conditional effect of
exhaustion on the use of safety protocol work-arounds is just statistically
significant with a p-value of .05. At these two values, θX1 is 0.129 and
−0.323, respectively, as can be seen in the table of values of θX1 , standard
errors, t- and p-values, and confidence intervals in the rest of Figure 14.4.
Looking at this output, we see that when job tenure is less than 7.9797,
θX1 is statistically significant and positive. This is one of the regions of
significance identified by the Johnson–Neyman technique. But between
7.9797 and 15.2716, θX1 is not statistically significant. Finally, above 15.2716,
θX1 is statistically significant and negative—another region of significance.

Caution must be exercised when interpreting the results of the Johnson–
Neyman technique to make sure you don’t interpret certain regions of
significance where there is very little data in that region. Toward the top
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*************************************************************************** 

 

Moderator Value(s) Defining Nonsimultaneous Johnson-Neyman Significance Region(s) 

      Value    % below    % above 

     7.9696    74.3333    25.6667 

    15.2716    98.3333     1.6667 

 

Conditional Effect of Focal Predictor at Values of Moderator Variable 

     tenure     effect         se          t          p       LLCI       ULCI 

     1.0000      .5605      .0956     5.8652      .0000      .3724      .7485 

     1.8500      .5079      .0846     6.0010      .0000      .3413      .6744 

     2.7000      .4553      .0747     6.0963      .0000      .3083      .6022 

     3.5500      .4026      .0661     6.0878      .0000      .2725      .5328 

     4.4000      .3500      .0596     5.8701      .0000      .2327      .4674 

     5.2500      .2974      .0559     5.3244      .0000      .1875      .4074 

     6.1000      .2448      .0554     4.4195      .0000      .1358      .3539 

     6.9500      .1922      .0583     3.2963      .0011      .0775      .3070 

     7.8000      .1396      .0642     2.1763      .0303      .0134      .2659 

     7.9696      .1291      .0656     1.9681      .0500      .0000      .2582 

     8.6500      .0870      .0722     1.2049      .2292     -.0551      .2291 

     9.5000      .0344      .0818      .4204      .6745     -.1266      .1955 

    10.3500     -.0182      .0925     -.1967      .8442     -.2003      .1639 

    11.2000     -.0708      .1040     -.6810      .4964     -.2754      .1338 

    12.0500     -.1234      .1159    -1.0644      .2880     -.3516      .1048 

    12.9000     -.1760      .1283    -1.3720      .1711     -.4285      .0765 

    13.7500     -.2286      .1409    -1.6224      .1058     -.5060      .0487 

    14.6000     -.2812      .1538    -1.8290      .0684     -.5838      .0214 

    15.2716     -.3228      .1640    -1.9681      .0500     -.6456      .0000 

    15.4500     -.3338      .1668    -2.0019      .0462     -.6620     -.0056 

    16.3000     -.3864      .1799    -2.1483      .0325     -.7405     -.0324 

    17.1500     -.4390      .1931    -2.2736      .0237     -.8191     -.0590 

    18.0000     -.4917      .2064    -2.3819      .0179     -.8979     -.0854 

 

Alpha level used for Johnson-Neyman method: 

  .05 

*************************************************************************** 

FIGURE 14.4. Johnson–Neyman output from the RLM macro.

of the output, notice that RLM says that 1.667% of the cases in the data
are above 15.2716. In a sample of 300, this is only five cases. Most would
be uncomfortable making a claim about the relationship between the focal
predictor and the dependent variable in a region of the domain of the
moderator where there are so few data. A more sensible interpretation of
these results is that there is one region of significance defined as moderator
values 7.9797 and less.

14.3.3 Testing versus Probing an Interaction

When probing an interaction using either of these methods, keep in mind
that just because X1 and X2 interact, that doesn’t mean that X1’s conditional
effect on Y must be statistically different from zero for some value of X2

and not others. It is possible that all conditional effects you estimate are
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statistically different from zero. It is also possible for none of them to
be different from zero, even though X1 and X2 interact. The result of a
test of interaction says nothing about the pattern of significance or lack of
significance of various conditional effects when the interaction is probed.

You may also find yourself tempted to probe a nonsignificant interac-
tion. That is, you might observe after applying one of these methods that
for some values of moderator X2, the conditional effect of X1 is different
from zero, but it is not different from zero for some other values of X2, yet
X1 and X2 do not significantly interact. Be careful how you talk about such
a pattern, taking care that you don’t interpret it as if X1’s effect varies with
X2. A test of linear interaction tests whether X1’s effect, θX1 , varies linearly
with X2. If the answer to that question is no by a test of interaction, then
you can think of X1’s effect as linearly independent of X2, meaning that
θX1 is not a linear function of X2. Rather than interpreting a pattern of
hypothesis tests for various conditional effects, it would be more sensible
to reestimate the model without the X1X2 cross-product, which forces X1’s
effect to be independent of X2, and then interpret X1’s partial effect on Y,
which is necessarily a constant.

14.3.4 Comparing Conditional Effects

When probing an interaction between X1 and X2 from a model that includes
their cross-product as a regressor, we can estimate the conditional effect of
X1 at various values of X2, as discussed earlier. One might think it would
be worth testing whether those conditional effects differ significantly from
each other. Although this seems reasonable, it can be shown that in a linear
interaction model that includes X1X2 as a regressor, if X1 and X2 interact,
then it follows that any two conditional effects of X1 for different values of
X2 are statistically different, regardless of the two values of X2 you choose.
Conversely, if X1 and X2 do not interact, then any two conditional effects of
X1 for different values of X2 are not statistically different from each other.
This is true for both dichotomous and numerical X2.

This is not intuitively obvious, but it can be shown that the ratio of the
difference between two conditional effects of X1 to the standard error of
their difference is equal to the t-statistic for the regression coefficient for
X1X2. So no further tests comparing conditional effects of X1 conditioned
on different values of X2 are necessary once you have tested whether X1

and X2 interact.
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14.4 Complications and Confusions in the Study of
Interactions

14.4.1 The Difficulty of Detecting Interactions

Interactions are difficult to detect. It may be that substantial interaction
effects just rarely exist in the real world. But this is unlikely, in our opinion,
given that it seems improbable that any relationship you might find in
a study is invariant across the seemingly unlimited number of possible
moderator variables. More likely, such effects do exist as a matter of routine
but probably are so small in magnitude that it takes large samples to detect
them. That is, hypothesis tests for interaction are simply not very powerful
in the kinds of sample sizes that are typical in research.

Given this, one probably has good reason to be initially skeptical of
statistically significant interactions found in small samples. It may be
that the interaction you have observed in a small sample reflects a real
interaction that is large, but it may be just as possible that the interaction
you are observing is the result of one or two cases in the data that are highly
influential. It is a good idea to apply the kinds of methods discussed
in Chapter 16 and rule out influential cases whenever you observe an
interaction in a small sample before reporting it as real.

There are various reasons that interactions are hard to detect. In Chapter
17 we talk about how measurement error in regressors can lower power of
hypothesis tests. As discussed by Busemeyer and Jones (1983), if X1 and X2

are measured with lots of random measurement error, their cross-product
will contain still more random error, meaning regression coefficients for
product terms may be highly unstable from sample to sample (and poten-
tially biased).

McClelland and Judd (1993) describe and explain how interactions are
harder to detect using observational data than when using experimental
methods. Their argument rests on the fact that interaction between X1 and
X2 is ultimately about partial association between X1X2 and Y when X1

and X2 are partialed out of both. The standard error for the regression
coefficient for the cross-product is determined by the size of the residual
variance of X1X2, and this tends to be smaller in observational studies
than in experimental studies, where the investigator has more control over
the joint distribution of X1 and X2 and therefore the variance of X1X2.
We make a similar point in section 17.1.2 when we recommend designing
studies so that the variance of independent variables is large because the
standard error of a regressor’s regression coefficient is inversely related to
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TABLE 14.1. Curvilinearity Masquerading as Interaction

X1 X2 X1X2 Y

1 2 2 1
2 1 2 4
3 4 12 9
4 3 12 16
5 6 30 25
6 5 30 36
7 8 56 49
8 7 56 64

the variability of that regressor. X1X2 is simply a variable in a regression
model, so our recommendation there applies to the analysis of interactions
as well.

14.4.2 Confusing Interaction with Curvilinearity

Interaction and curvilinearity can at times be difficult to distinguish, and
they can masquerade as each other. Consider, for instance, the data in Table
14.1. You can see for yourself that Y = X2

1 exactly and so R = 1 if you were
to estimate Y from X1 and X2

1. But X1 and X2 are highly correlated, and so
the X1X2 cross-product is highly correlated with X2

1. Regressing Y on X1,
X2, and X1X2 yields

Ŷ = 0.5 + 4.5X1 − 4.5X2 + 1X1X2

and the regression coefficient for X1X2 is statistically significant, t(4) =
3.578, p = .024. Yet we know that Y was constructed without regard to X2

or the cross-product. That is, there is no interaction, yet an analysis would
suggest that X2 moderates X′

1s effect on Y (or the other way around).
Another example with a dichotomous regressor makes the same point.

In Figure 14.5 we see a scatterplot depicting the relationship between X1

and Y among nine women (X2 = 0) and nine men (X2 = 1). If we ignore
X2 entirely and model Y as a parabolic function of X1 we get the parabola
shown, described by the function

Ŷ = 15.228 − 4.060X1 + 0.340X2
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FIGURE 14.5. Curvilinearity and interaction can masquerade as each other.

The fit of this model is excellent; R = 0.897. Adding X2 does not significantly
improve the fit of the model, nor does adding both X2 and X1X2. But if we
remove X2

1 and model Y from X1, X2, and their cross-product, the resulting
model is

Ŷ = 12.111 − 1.667X1 − 26.561X2 + 4.017X1X2

which also fits very well (R = 0.886). Importantly, the regression coefficient
for the cross-product is statistically significant. The regression lines relating
X1 and Y can be found in Figure 14.5. As can be seen, the regression weight
predicting Y from X1 does seem to differ dramatically between men and
women. The point is that both of these are good accounts of the relationship
between X1 and Y. That relationship could be adequately described as
either curvilinear or dependent on sex in this example.

Some argue that tests for interaction should not be accepted at face value
without also examining for curvilinearity (either in a separate model or si-
multaneously) in order to reduce the likelihood of reporting interactions
that could reflect nonlinearity rather than true interaction or to avoid mis-
reporting the signs of interactions, such as when the relationship between
focal predictor and Y increases with the moderator but the analysis finds
the opposite (Ganzach, 1997; Lubinski & Humphreys, 1990). But product
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terms and square terms are often highly correlated, so much so that when
they are both in the model, standard errors are so large that no effects that
would otherwise be found are statistically significant. Indeed, in the exam-
ple just presented, estimating Y = b0 + b1X1 + b2X2 + b3X1X2 + b4X2

1 yields
a model that fits very well (R = 0.901) but neither b3 nor b4 is statistically
significant, even though both of the curvilinearity and interaction terms are
statistically significant when estimated separately.

Lubinski and Humphreys (1990) suggest stepwise methods of variable
selection, described in section 7.3.1, as a means of distinguishing between
the two possible models, though these methods will not always select
the correct model and their performance is dependent on many things
(MacCallum & Mar, 1995). Regardless, it is important to recognize that
when both nonlinearity and interaction are consistent with the data and
also plausible conceptually or theoretically, the analysis may not be able to
help you decide which is correct.

14.4.3 How the Scaling of Y Affects Interaction

We discussed transformation of variables in section 12.4. When sample
sizes are fairly large, the results of a two-sample t-test comparing means
are rarely much affected by transforming Y—for instance by replacing Y
by log(Y) or eY. The same is true in regression with only linear terms. If
Xj has a large partial relationship with Y, that relationship rarely vanishes
if Y is transformed. But this is not true for interaction. Tranforming Y can
greatly affect the size and significance of interactions. When a statistically
significant interaction is found, it might vanish under some transformation
of Y.

Consider the data in Table 14.2. If you were to regress Y on X1, X2,
and their cross-product X1X2, you’d find exceptionally good fit (R = 0.995),
with Ŷ = −0.75 + 2.75X1 + 8.00X2 + 2.00X1X2. The regression coefficient of
2.00 for the cross-product is statistically significant, t(12) = 6.928, p < .001.
This regression coefficient means that the slope relating X1 to Y differs by 2
between the two groups coded with X1. That is, the slope linking X1 to Y
is steeper when X2 = 1 compared to when X2 = 0.

The fourth column in Table 14.2 contains a square root transformation of
Y. Regressing

√
Y on X1, X2, and X1X2 yields a perfectly fitting model, R =

1, and that perfectly fitting model is Ŷ = 1.00+ 0.50X1 + 2.00X2 + 0.00X1X2.
The coefficient for the cross-product is exactly zero, meaning that the slopes
of the lines relating X1 to Y are exactly the same when X2 = 0 and X2 = 1.
You can see this for yourself in the data without any regression analysis at
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TABLE 14.2. A Data Set Illustrating the Effect of Transformations

X1 X2 Y
√

Y

0 0 1.00 1.00
1 0 2.25 1.50
2 0 4.00 2.00
3 0 6.25 2.50
4 0 9.00 3.00
5 0 12.25 3.50
6 0 16.00 4.00
7 0 20.25 4.50
0 1 9.00 3.00
1 1 12.50 3.50
2 1 16.00 4.00
3 1 20.25 4.50
4 1 25.00 5.00
5 1 30.25 5.50
6 1 36.00 6.00
7 1 42.25 6.50

all. In both groups defined by X2, as X1 increases by 1 unit,
√

Y increases
by one-half a unit.

This effect of the scaling of Y on interaction applies as much to classi-
cal ANOVA as it does to regression analysis. It is not adequate to show
that residuals are approximately normal distributions or equal in variance.
These are tests of the sampling assumptions of linear models and have
nothing to do with this problem, which can occur in very large samples or
even if the entire population is available for study.

It is tempting to go away from this example with the message that one
should not accept an interaction as real if it goes away with a transforma-
tion. However, if the original scaling of Y is highly meaningful and the
transformation is arbitrary, the model with the original Y may sometimes
be preferable even with the interaction term.

14.4.4 The Interpretation of Lower-Order Regression Coefficients
When a Cross-Product Is Present

In a regression model that includes X1, X2, and their cross-product X1X2,
the regression coefficients for X1 and X2 do not have the same interpretation
as they do when X1X2 is excluded from the model. In a model of the form
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Ŷ = b0 + b1X1 + b2X2, b1 and b2 are partial effects. They represent how
changes in one variable relate to changes in Y when the other variable is
fixed at any value. This is what is meant by the term holding constant. But in
a model of the form Ŷ = b0 + b1X1 + b2X2 + b3X1X2, b1 and b2 are conditional
effects. They represent how changes in one variable relate to changes in
Y when the other variable is fixed at zero. So b1 quantifies the association
between X1 and Y when X2 = 0, and b2 quantifies the association between
X2 and Y when X1 = 0.

To illustrate, remember that

Ŷ = b0 + b1X1 + b2X2 + b3X1X2

can be written in two equivalent forms

Ŷ = b0 + (b1 + b3X2)X1 + b2X2

and
Ŷ = b0 + b1X1 + (b2 + b3X1)X2

In such a model, X1’s effect on Y is not constant but, rather, a function of X2,
as discussed in section 14.1. The effect of changing X1 on Y will depend on
the values of b1, b3, and X2. But if X2 = 0, then this function relating X1 to Y
reduces to a simpler form: b1 + b3(0) = b1. So b1 quantifies the relationship
between X1 and Y under the condition that X2 = 0. By the same reasoning,
b2 quantifies the relationship between X2 and Y under the condition that
X1 = 0, from b2 + b3X1, the function relating X1 to the effect of X2. When X1

is set to zero, this function reduces to b2 + b3(0) = b2.
This is a very subtle point, but one that is very important point to under-

stand. We have observed many instances in the literature of investigators
interpreting b1 and b2 as “average” effects or “main effects” as in ANOVA,
as the effect of X1 and X2 collapsing across the other variable. But that is
not what b1 and b2 quantify. Indeed, b1, b2, or both, along with their tests of
significance, may be meaningless if zero is meaningless in the measurement
system or outside of the bounds of the measurement scale.

This confusion may stem from the fact that many investigators first
learn about interactions in the context of ANOVA, where the rules of inter-
pretation are different and don’t generalize to linear models more broadly.
There have been many articles written about this confusion (e.g., Friedrich,
1982; Hayes, Glynn, & Huge, 2012; Irwin & McClelland, 2001; Spiller et
al., 2013), but the message has been slow to disseminate among users of
regression analysis.
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A simple solution to this potential for misinterpretation is to mean-
center X1 and/or X2 prior to testing for interaction. A variable is mean-
centered by subtracting its mean from all measurements on that variable.
Doing so is not required, but it can aid interpretation of b1 and b2 and
render them and their hypothesis tests meaningful. We discuss this further
in section 14.4.5.

14.4.5 Some Myths about Testing Interaction

It is widely believed that one should never test interaction between X1

and X2 by including their cross-product without first mean-centering X1

and X2 prior to constructing their product and model estimation. That is,
according to this myth, linear interaction should be tested by estimating

Ŷ = b0 + b1(X1 − X1) + b2(X2 − X2) + b3(X1 − X1)(X2 − X2) (14.11)

This practice is often justified by believers of this myth on the grounds that
X1X2 is likely to be highly correlated with X1, X2, or both. By centering X1

and X2 around their means prior to constructing the product, the tolerance
(see section 4.4.4) of the cross-product goes up, and this will lower the
standard error of the regression coefficient for the product and produce a
more powerful test of interaction. Thus, you often find people describing
how they mean-centered X1 and X2 prior to producing the product “to
avoid the problems produced by collinearity.”

This myth has been widely debunked (see, e.g., Cronbach, 1987; Echam-
badi & Hess, 2007; Edwards, 2009; Friedrich, 1982; Hayes et al., 2012; Hayes,
2013; Irwin & McClelland, 2001; Kam & Franzese, 2007; Kromrey & Foster-
Johnson, 1998; Sheih, 2011; Whisman & McClelland, 2005) but it is worth
repeating the argument here in brief. Although it is true the tolerance of
the product of mean-centered variables will be higher than the product of
uncentered variables, this turns out not to matter, because the variance of
the product also changes by mean-centering X1 and X2. The change in
tolerance and the change in the variance of the cross-product completely
offset each other in the standard error computations, resulting in no change
in the standard error of the regression coefficient for the cross-product. So
the standard error of the regression coefficient for the product is completely
unaffected, as is the regression coefficient itself, and the t- and p-values as
a result are the same whether you test interaction using centered or uncen-
tered focal predictor and moderator. For a worked example of how these
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offsetting changes to the tolerance and variance result in no change to the
standard error, see Hayes (2013).

This said, it can be valuable for other reasons to mean-center X1 and
X2 and estimate the model in equation 14.11 rather than one using the
original metrics of X1 and X2. As discussed in section 14.4.4, b1 and b2

are conditioned on the other variable involved in the interaction being
zero. But when you mean-center X1 and X2, zero on the mean-centered
versions of X1 and X2 correspond to the sample means of X1 and X2. That
means that b1 in equation 14.11 estimates the effect of X1 on Y among those
average on X2, and b2 estimates the effect of X2 on Y among those average
on X1. These will always be meaningful, as will their hypothesis tests
and confidence intervals. So mean-centering can render meaningful those
regression coefficients and tests that may not be meaningful if zero is not a
meaningful value on the measurement scales.

Another myth you will frequently hear is that to properly test interaction
between X1 and X2, you must build the regression model hierarchically by
first estimating Y from X1 and X2 and then, in a second step, entering X1X2.
If R2 increases to a statistically significant degree when the cross-product
is added, then this is evidence of interaction. In section 5.3.3 we discussed
how to test whether adding variables to a model significantly improves the
fit of the model. We did so assuming one was entering a set of variables,
but a single variable can be thought of as a set of size one, so the method
discussed there applies to this simpler version of hierarchical entry.

Although this hierarchical entry of regressors will work, it is required
only if the interaction requires more than a single cross-product to represent
it, such as in the examples in section 13.2.3 and 14.1.2. It is not required if
only a single cross-product is needed to estimate the interaction. Hierarchi-
cal entry as discussed in section 5.3.3 will generate an F-ratio for the change
in R2 along with a p-value for testing the null hypothesis of no interaction.
But this F-ratio is equal to the square of the t for the regression coefficient
for the cross-product, and the two p-values (one for the F and one for the t)
will be identical. Mathematically these are the same test. Furthermore, the
change in R2 when the cross-product term is added is equal to the squared
semipartial correlation for X1X2 in the model that includes X1, X2, and their
product. So if your regression program generates the semipartial correla-
tion, you don’t need to use hierarchical entry even to generate the change
in R2.
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14.4.6 Interaction and Nonsignificant Linear Terms

You will often find when estimating a model with X1X2 as a regressor that
the regression coefficient for the lower-order variables X1, X2, or both, are
not statistically significant. In such a situation, you may be tempted to
remove those nonsignificant variables from the model. Resist this tempta-
tion, for doing so will usually bias the test of interaction and also invalidate
approaches to probing the interaction.

Often these coefficients and tests of significance are substantively mean-
ingless. Remembering that the regression coefficients for X1 and X2 quan-
tify the effect of one variable when the other is zero, it could be that b1,
b2, or both, are estimating effects that are outside of the range of the ob-
served data. Thus, the tests of significance can’t even be interpreted in a
meaningful way, and we shouldn’t use such meaningless tests to guide our
decisions about model construction.

Even if these regression coefficients and their tests are meaningful, the
bias that can result is not worth the apparent parsimony that the exclusion
of these variables buys. As a general rule, when a product of two regressors
is in a model, keep the two variables that were used to construct the product
in the model, regardless of the statistical significance of their regression co-
efficients. There are some circumstances where this rule can be violated (we
did so in section 14.2.2, for example), but doing so in these circumstances is
founded on relevant estimation principles. Lack of statistical significance
is not a sufficiently principled basis for removing nonsignificant regressors
that are used to form a cross-product.

14.4.7 Homogeneity of Regression in ANCOVA

In section 9.2, we showed how regression analysis can be used to conduct
ANCOVA, which is a statistical technique employed when an investigator
wants to compare the means of g ≥ 2 groups while holding one or more
covariates fixed. The literature on ANCOVA discusses an assumption one
must make when doing so called homogeneity of regression. This assumption
states that the relationship between the the covariate and Y is the same in
all g groups. This assumption is represented in Figure 9.5, which visually
represents the computation of adjusted means. Notice in this figure that
the relationship between the covariate and Y is the same; the regression
lines are parallel.

Having read this chapter, you can now see how the homogeneity of
regression assumption is really an assumption of no interaction between
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the covariate and group in the model of Y. You can also see how the
difference between the groups on Y would vary with the covariate if the
lines in Figure 9.5 were not parallel. This would make any test of differences
between adjusted means hard to interpret. For this reason, it is worth testing
this assumption prior to interpreting the results of an ANCOVA using the
methods discussed in this chapter. If this assumption is not met (i.e., if the
covariate interacts with group), then interpretation should focus on how
the difference between the groups on Y depends on the covariate, using the
methods discussed in section 14.3.

14.4.8 Multiple, Higher-Order, and Curvilinear Interactions

A regression model can include more than one interaction. For instance,
you might propose that X1’s effect on Y varies linearly with X2 and X3 in
an additive matter. Such a model would look like

Ŷ = b0 + b1X1 + b2X2 + b3X3 + b4X1X2 + b5X1X3

and includes interactions involving X1. In this model, the conditional
effect of X1 is defined by the function b1+b4X2+b5X3; b4 quantifies how the
conditional effect of X1 changes as X2 changes by 1 unit and X3 is held fixed,
and b5 quantifies how the conditional effect of X1 changes as X3 changes by
1 unit and X2 is held fixed.

In models that include more than one interaction, it is likely that the
cross-product terms in the model will be correlated. For instance, if your
model includes three cross-products, X1X2, X1X3, and X2X3 representing
three two-way interactions, substantial collinearity can result if any pairs
of the three variables, X1, X2, and X3, are highly correlated. As a result,
they may be confused for each other if you test for each of these two-
way interactions separately. This is unimportant if the focus is merely on
dismissing interactions, as it sometimes is. But it should be considered if
you want to demonstrate the existence of specific interactions.

A two-way interaction can be moderated; that is, it may be dependent
on a third variable. Examine the means in Table 14.3 from a hypothetical
experiment conducted in two different cities. In City A, the difference in
the effect of experimental condition between men and women is (9 − 8) −
(5 − 7) = 3, while in City B, the comparable value is (6 − 4) − (3 − 6) = 5.
These values quantify the condition by sex interaction in each city, and
they differ between the two cities. This illustrates three-way interaction: a
condition × sex × city interaction. A two-way interaction means that the
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TABLE 14.3. A Three-Way Interaction

City A City B

Male Female Male Female

Treatment Y = 9.00 Y = 5.00 Y = 6.00 Y = 3.00
Control Y = 8.00 Y = 7.00 Y = 4.00 Y = 6.00

size of a conditional effect changes with another variable, while a three-
way interaction means that the size of the two-way interaction changes
with another variable. If City A is coded 1 and City B is coded 0, then the
three-way interaction in the data in Table 14.3 is 3 − 5 = −2.

In this example, all three variables are dichotomous. But as with two-
way interaction, interaction can be defined when variables are dichotomous
or continuous or numerical or multicategorical or any combination of these.
Three-way interactions can be included in a model by forming all possible
products involving the variables. For instance, a model with a three-way
interaction between numerical or dichotomous variables X1, X2, and X3

would look like

Ŷ = b0 + b1X1 + b2X2 + b3X3 + b4X1X2 + b5X1X3 + b6X2X3 + b7X1X2X3

If b7 is statistically different from zero, this means that the two-way in-
teraction between X1 and X2 varies with X3. The symmetry property of
interactions applies to higher-order interactions as well. So if b7 is statis-
tically different from zero, we can also say that the two-way interaction
between X1 and X3 varies with X2, or the two-way interaction between X2

and X3 varies with X1.
Still higher-order interactions are defined similarly. A four-way inter-

action is defined as the change in a three-way interaction for each 1-unit
change in a fourth variable, a five-way interaction is defined as the change
in a four-way interaction for each 1-unit change in a fifth variable, and
so on. Each is constructed by including all possible products of all the
variables defining the highest-order interaction as regressors in the model,
including all lower-order products and all the variables themselves.

Three-way interactions can be very hard to interpret, and interactions of
order higher than three are nearly impossible to interpret. Remember that



440 Regression Analysis and Linear Models

a two-way interaction quantifies a difference between differences. A three-
way interaction means the difference between differences that characterize
a two-way interaction differs with another variable. Four-way interaction
means that the difference between the difference between differences differs
with a fourth variable, and a five-way interaction means that difference in
the difference between the difference between differences differs with a fifth
variable!

Although it is not uncommon for researchers conducting ANOVA to
test four- or five-way interactions in complex experiments with many fac-
tors, this is generally not a good idea in our opinion unless you have a good
reason for doing so, such as a strong theoretical orientation that predicts
such an interaction. But even with a strong theory, tests on such higher-
order interactions tend to be low in power, so a failure to find a significant
four- or five-way interaction is not very informative about whether such an
interaction actually does exist. But more important, few theories predict
such a complex pattern of differences between differences between differ-
ences (between differences), and if you are theorizing a four- or five-way
interaction, your troubles are going to be more in convincing critics that
your theoretical orientation is parsimonious enough for anyone to take se-
riously than in demonstrating the existence of such an interaction. And
you will find it next to impossible to convey your results to anyone in a
manner that he or she will be able to keep straight, assuming you are even
able to make sense of them yourself.

A curvilinear effect can be moderated. Curvilinear interaction is a change
in the curvilinearity of one variable as another variable changes. For in-
stance, if X1 is represented by a parabola through a X2

1 term in the regression,
the coefficient of this square term measures the degree of curvilinearity,
equaling zero if the best fit is provided by a straight line. If the optimum
degree of curvature for X1 changes linearly with another variable X2, that
would appear as an interaction between X2

1 and X2. Such a hypothesis
could be tested by estimating a model that looks like

Ŷ = b0 + b1X1 + b2X2
1 + b3X1X2 + b4X2

1X2

with b4 and its test of significance carrying information about whether and
by what amount the curvilinearity in the relationship between X1 and Y
varies with X2.

As is probably apparent, these models are complex, and proper interpre-
tation of models with multiple interactions, three-way or higher-order in-
teractions, or curvilinear interactions requires care and an organized mind.



Probing Interactions and Various Complexities 441

We do not discuss the estimation or interpretation of such models in this
book. For guidance, see Aiken and West (1991) or Hayes (2013).

14.4.9 Artificial Categorization of Continua

In section 5.1.6 we cautioned against categorizing numerical variables prior
to analysis. We repeat that warning here. Investigators often categorize
continuous variables prior to testing interaction. Perhaps because many
researchers are not familiar with the general regression strategy for testing
interactions that we have covered in the last two chapters, they instead
choose to split a continuous variable into low and high groups based on a
mean or median split and then conduct a more familiar factorial ANOVA
to test interaction. The reasons we offered in section 5.1.6 against artificial
categorization apply here too. Artificial categorization prior to testing for
interaction can either lower power to detect interactions that are real or
produce false interactions that are not (Hayes, 2005; Humphreys, 1978;
Maxwell & Delaney, 1993; Veiel, 1988). Given that it is no more difficult to
test for interaction when focal predictor or moderator is continuous relative
to when both are categorical, this practice is rarely justified.

14.5 Organizing Tests on Interaction

The number of possible interactions that can be constructed and estimated
in a regression model can be very large. If there are 10 regressors that are
numerical or dichotomous in any combination, there are (10×9)/2 = 45 pos-
sible two-way interactions, meaning you would need a sample no smaller
than 56 to estimate the model, and that wouldn’t allow any inference be-
cause dfresidual would be zero if N = 56. Fit would be perfect and inference
could not be undertaken unless you had a sample of larger than 56, and
you’d likely be grossly overfitting the data unless you had a lot more than 56
cases. If you care to also estimate all possible three-way interactions, there
are 120 of them, meaning you need a sample size no smaller than 176 just
to calculate the effects. If interactions involve multicategorical variables,
the needed sample size is even bigger, because interactions with multicate-
gorical variables require more regression coefficients than interactions that
involve dichotomous or numerical regressors.

Ignoring the needed sample size, which may not be problematic in many
research situations, how would you go about testing so many possible in-
teractions? Should you test them at all? Should you test them individually
or as sets? How do you organize the sets? Do you group interactions by
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variables involved (e.g., all interactions involving X1) or by order of the
interactions (e.g., all two-ways, all three-ways, and so forth)? These are
important questions, and we begin to address them in this section.

Curiously, we often study interactions in order to dismiss them—to dis-
miss either their existence or their relevance, thus allowing the conclusion
that the study’s major conclusions apply equally to all cases. This fact can
influence the analysis of interactions, as we shall see.

14.5.1 Three Approaches to Managing Complications

Complications always arise when analyzing data, and the number of pos-
sible interactions one could estimate may be considered a complication. In
any statistical analysis, there are three general ways to handle complica-
tions, in order of increasing conservativeness:

1. Assume their absence—the standard method for some researchers
as well as in introductory classes, where dealing with complications
is beyond the scope of the class or perhaps the knowledge of the
researcher.

2. Check for them, and assume their absence if they are not clearly
present. If present, use an alternative statistical method that may be
less powerful but is valid even in the presence of the complications.

3. Use the less powerful method even when no complications are de-
tected, on the ground that the absence of complications is a null
hypothesis that can never be proved.

The choice among these three methods arose in section 4.7.3. There
we considered the possibility of simply failing to analyze covariates of
doubtful importance (method 1 in the list above) or deleting from the
model covariates found to have nonsignificant effects (method 2 in the list).
We criticized both these approaches and recommended method 3, which
in that case meant including covariates in the model even if they were both
nonsignificant and of doubtful importance. But we shall see in section
14.5.2 that this conservative approach cannot be consistently applied when
the complications are interactions.

If we consider all possible interactions in a model with k regressors, then
there are even more interactions than implied in the earlier discussion. If we
considered every possible multiplicative interaction involving k numerical
regressors (i.e., all interactions up to order k), there would be 2k − k − 1
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possible interactions. If k = 10, this amounts to over 1,000 interactions. You
would need a sample of over 1,000 cases just to estimate such a model. And
this ignores that nonmultiplicative interactions can be defined, though they
are not discussed in this book. Therefore, we simply have to assume the
absence of some interactions in most real-world research scenarios.

This problem is made more manageable by the fact that most tests for
interactions yield nonsignificant results, and this is even more likely to be so
for higher-order interactions. Thus, we typically ignore the highest-order
interactions not because of their impossibility but because of their implau-
sibility. Many investigators do not check for interactions at all—a practice
we don’t necessarily endorse. Most researchers do not check for three-way
interactions unless their theory or hypothesis leads them to expect such an
interaction. This seems more reasonable. Thus, of the three methods listed
earlier, method 1, the least conservative, is actually the standard method
for analyzing higher-order interactions. Simple interactions, such as two-
way interactions, probably should be tested routinely, and certainly if your
theory or hypothesis predicts it or you designed the study expecting it.

14.5.2 Broad versus Narrow Tests

We can distinguish between three types of tests for interaction:

• An overall test that includes in a single model all the interactions to
be tested and that tests change in fit when all are dropped from the
model.

• Variable-by-variable tests that perform one test for all the interactions
involving a specific regressor—for instance, all interactions involving
age.

• Simple interaction tests that test a specific interaction.

Tests on individual terms would typically be corrected for the num-
ber of tests performed—a number that may be large. When performing
variable-by-variable tests, you should probably also correct for the number
of tests performed (see Chapter 11), but that number will only be k. Each
interaction is then counted twice; for instance, an age × income interac-
tion is included in both the test of all interactions involving age and in
the test of all interactions involving income. But this does not violate any
assumptions.

For reasons that will soon become clear, we call the first of these ap-
proaches the broadest of the three, and the last the narrowest. One advan-
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tage of breadth was first mentioned in section 4.7.2. Tests of vague null
hypotheses are usually conducted with more power than tests of specific
null hypotheses. Broad tests yield vague conclusions, and vague conclu-
sions are reached more easily than specific conclusions. If several different
interaction effects are largely independent and each has a small effect, a test
of them as a set may be testing the significance of a larger effect, so that test
may be more powerful than separate tests on separate interaction terms.

Another advantage of broader tests for interaction is that they are ca-
pable of detecting effects despite complementarity among interactions. For
instance, suppose occupational prestige correlates highly with education,
and suppose a dependent variable of self-confidence is determined among
men largely by occupational prestige relative to education, whereas this
effect does not operate among women. Then sex interacts strongly with
a linear function of education and occupational prestige, even though the
individual sex × education and sex × prestige interactions may both be
small.

The disadvantages of broad tests of vague null hypotheses are important
when the number of terms is large relative to sample size, and this is more
likely to occur with interaction terms than with lower-order terms. The
first disadvantage of broad tests occurs in its extreme form when there
are many interaction terms, but only one has any effect on Y. Then a
narrow set of tests is more likely to detect it. But the potential size of
this advantage is limited by the number of interaction terms since the
variance explained by a single interaction term cannot exceed the variance
explained by the set of all interaction terms. On the other hand, under
complementarity, the countervailing disadvantage of narrower tests can
theoretically be enormous.

The second advantage of narrower tests relative to broad tests is that
they use fewer degrees of freedom, leaving more for the residual. The
smaller the sample, the more important this advantage. In an extreme case,
an overall test can use up all the degrees of freedom and then some, so its
power is necessarily zero.

These countervailing advantages make a simple choice among the three
approaches very difficult. About all that can be said unambiguously is that
the relative advantages of broader tests increase with sample size, so the
broader tests are especially recommended when samples are large and
the narrower tests when samples are small, with variable-by-variable tests
perhaps the most appropriate for intermediate sample sizes. If the purpose
of the analysis is to dismiss the interactions, then the most conservative
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approach is to perform all three types of tests, with the hope that all yield
nonsignificant results.

Of course, a failure to reject a null hypothesis does not prove the null
hypothesis. A nonsignificant interaction may still exist in reality. So even
if an interaction is nonexistent, a very conservative researcher might want
to take into consideration the possibility that it exists by retaining it in the
model. If the interaction involves only covariates, this is not a problem.
But if the interaction involves independent variables, interpretation and
discussion are harder, because you can’t really talk about one variable’s
effect without conditioning it on the other variable it is (nonsignificantly)
interacting with in the model. This invariably leads to awkward interpre-
tations and writing that seem to convey that an interaction exists when you
have not been able to establish that it does by the kind of evidence that
scientists expect to see.

14.6 Chapter Summary

In a regression model that includes X1, X2, and X1X2, X1’s effect on Y can
be expressed as a linear function of X2, and X2’s effect can be expressed as
a linear function of X1. Using the function, an estimate of the conditional
effect of one variable at a given value of the other can be calculated, and
inference about its size undertaken with an estimate of the standard error.
These computations are best left to a computer either through the regression
centering strategy, which produces conditional effects and their standard
errors without having to rely on hand computation, or relying on macros
that others have produced, such as the RLM macro described in Appendix
A.

It is common when evidence of interaction exists to probe the inter-
action by conducting inferences about various strategically or arbitrarily
chosen conditional effects, in order to understand where in the distribution
of the moderator the focal predictor is significantly related to the depen-
dent variable. Most typically the investigator chooses a set of values of
the moderator and conducts an inference about conditional effects at those
values. But the arbitrariness of the selection of moderator values makes
this strategy less attractive than the Johnson–Neyman technique, which al-
gebraically derives “regions of significance”—the range or ranges of values
in the domain of the moderator where the focal predictor is significantly
related to the dependent variable and where it is not. This approach elimi-
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nates the need to choose values of the moderator in advance when probing
an interaction.

Entire books have been written about interactions in regression analysis,
because it is a complex topic and it is easy to misanalyze your data or misin-
terpret your results if you don’t know what you are doing. Interactions are
generally somewhat difficult to detect, and when they are detected, they
can be the result of nonlinearities rather than actual interaction. Interac-
tions can also come and go with various transformations of Y. Perhaps the
biggest difficulty that researchers seem to have is misinterpreting condi-
tional effects that come out of a regression analysis with a cross-product as
a predictor as if they are “main effects” in an ANOVA sense. There are also
various myths circulating about how to properly test interaction, including
that the variables involved in an interaction must first be mean-centered or
that hierarchical entry is required to test interaction. We have debunked
those myths in this chapter.

Even in a modest regression model with very few regressors, the num-
ber of potential interactions one could estimate can be large. Various strate-
gies for managing the analysis of interactions can be employed, such as
assuming their absence, testing for them as sets, testing them one variable
at a time, or testing them individually. Most of these strategies involve
multiple hypothesis tests, and researchers looking for interactions should
be aware of the multiple test problem and the possibility of overfitting one’s
data when exploring in search of interactions.



15
Mediation and Path Analysis

There is always some kind of a process at work behind a relationship
between two variables, whether psychological, sociological, cognitive,
or biological in nature. Causal effects operate through mechanisms—a
sequence of steps in which an independent variable causally influences
a dependent variable by affecting an intermediary or mediator variable
or variables, which then carry their own causal effect onto the depen-
dent variable. In this chapter we overview path analysis as a means
of statistically assessing mediation. We describe the algebra by which
an independent variable’s effect on a dependent variable can be broken
into direct and indirect pathways of influence. After discussing inference
about indirect effects and models with multiple mediators, we overview
various complications as well as extensions to mediation analysis that
can be undertaken using linear regression.

Good research often goes further than just establishing that there is
some relationship between an independent and a dependent variable. As
first discussed in section 6.2.1, even in experiments in which you can con-
clusively say that X causes Y, for all you know there may be some group of
people for whom X does not cause Y, or where the effect of X on Y is even
the opposite of what you observed in your study. Chapters 13 and 14 ad-
dressed how to examine the extent to which an independent variable’s effect
depends on another variable; this was interaction or moderation. These
techniques can be used to help understand the contingencies or boundary
conditions of a relationship or an effect.

Establishing that two variables are related also may not say much of
anything about how that relationship comes to be, a point we also raised
in section 6.2.1 and again in section 6.3.3. That is, what is the process
or mechanism at work that leads to X being related to Y, or X causally
influencing Y? For instance, knowing that a particular method of teaching
increases student performance on a standardized math test leaves open
questions as to how that effect operates. Does the method increase students’
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motivation, how deeply they process information, or their ability to recall
information or use it in new ways? True understanding of a phenomenon
exists when we can say not only that X and Y are related, but also how that
effect operates.

Establishing cause and effect is far more than just data analysis. In fact,
by some arguments, statistics really doesn’t have too much to say about
cause–effect, as research design is ultimately key when it comes to the kinds
of cause–effect claims one can make with data. But statistics can be used to
quantify effects, rule out certain alternative interpretations for a relationship
observed, and assess the role of sampling variability or “chance” in study
findings. With the limitations of statistical analysis and the role it can
play in answering cause–effect questions in mind (a point we again raise
at the end of this chapter), here we address the topic of mediation analysis
using linear regression. Mediation analysis is used to quantify pathways
of influence, or the process or processes by which an independent variable
can influence a dependent variable. Using the methods discussed in this
chapter, you can ascertain the extent to which a variable can be said to
be functioning as a mediator of the relationship between independent and
dependent variable.

15.1 Path Analysis and Linear Regression

15.1.1 Direct, Indirect, and Total Effects

In a causal system, one variable may affect another directly, indirectly
through other variables, or both directly and indirectly. For instance, ex-
ercise might affect weight loss in three ways. It could directly influence
weight loss as calories are consumed during exercise. Or it could indirectly
influence weight loss by curbing or stimulating appetite and therefore food
consumption, or by raising metabolic rate, which increases how quickly
calories are burned.

In a regression model estimating dependent variable Y from a set of two
or more regressors, the regression coefficient for regressor Xj quantifies Xj’s
direct effect on Y, ignoring any indirect effects that may work through other
variables. So when we regressed weight loss onto exercise, food intake,
and metabolism in the example in section 3.2.4, we found a regression
weight of 1.045 for exercise—its direct effect—meaning that when food
intake and metabolism are held constant, each additional hour of weekly
exercise translates into 1.045 units (104.5 grams) of average weekly weight
loss. It ignores any effect that exercise might have on food consumption or
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metabolism, both of which could affect weight loss as well. So if you wanted
to know the amount that exercise affects weight loss in the aggregate,
controlling for metabolism and food intake may not be a good idea.

Sometimes we are interested not in the direct or indirect effects but
instead the total effect of some independent variable. As we discuss later,
a variable’s total effect is the sum of its direct and indirect effects. For
instance, suppose a state’s Department of Education is considering rais-
ing the requirements for promotion from eighth grade to ninth grade, in
the hope that this will encourage students to study harder, and this will
increase their average performance as measured by a nationally standard-
ized achievement test. So they conduct an experiment in which students
in some school districts have a higher requirement imposed and students
from other districts have no such higher requirement, to see what affects
this has on test performance across the state.

We could depict a causal system such as this one in the form of a path
diagram, as in Figure 15.1, panel A. In this diagram, the arrows repre-
sent assumed causal affects, with the presumed direction of causal flow
progressing in the direction of the arrow. So this diagram shows that
higher requirements are assumed to affect study time, which in turn af-
fects achievement as measured by performance on the test. This is the
indirect effect of requirements on achievement through study time. Study
time is called a mediator variable in this process, because it is the con-
duit through which requirements affect achievement. The indirect effect
represents one mechanism by which changing requirements might influ-
ence achievement. But this model also includes a path from requirements
directly to achievement—the direct effect of requirements. This direct ef-
fect means that raising requirements may influence achievement through
some process other than study time. Because all effects must be medi-
ated by something, a direct effect essentially represents another process or
mechanism—an unspecified mediator—that is not formalized in the path
diagram.

In this example, the school district would probably be most interested
in assessing the total effect of a raised requirement on achievement. Re-
gressing achievement on requirements (coded, for instance, 0 and 1 for
lower and higher requirement school districts) while controlling for study
time would not generate an estimate of the total effect of the requirements
on achievement but, rather, just the direct effect, independent of its effects
on study time. So we should not control for study time. Doing so is
much like selecting a group of students who study the same amount but
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FIGURE 15.1. Three path diagrams depicting direct and indirect effects of graduation
requirements on eighth-grade achievement (panel A), SES on educational track placement
(panel B), and preschool attendance on second-grade achievement (panel C).

come from districts that differ in requirements. If the new requirements
improve achievement only by making students study harder, we would
expect to find no difference in average achievement between students com-
ing from districts with different requirements when average study time is
controlled. If we find an effect of requirements in this model, manifested
by the regression coefficient for the dummy variable coding district type,
this estimates the effect of requirements that operates through something
other than study time—the direct effect. If we want to estimate the average
difference in achievement between the two types of districts, we should do
so without controlling for study time.

Both direct and indirect effects may provide useful information. If we
control for study time, then the direct effect of requirements on achievement
could tell us whether the change in requirements affects achievement by any
mechanism other than by increasing study time. For example, the difference
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in achievement between students who study the same amount but come
from districts that differ in requirements may be attributable to something
that the teachers are doing to raise achievement through some other process,
such as the expectations the teachers have for good performance, which
may increase motivation that manifests its effects through something other
than time spent studying. Maybe the missing mediator is how efficiently
the students study, rather than how much. Without a measure of efficiency
of a child’s study, this can’t be tested. So the direct effect may be quantifying
some other process at work that is not a part of the causal system being
formally estimated.

In some situations, the direct effect or indirect effect (or both) may be
of more interest than the total effect. For example, suppose we assume
that SES affects grades in school, and that grades affect the school track
that teachers recommend to a child’s parents. Thus, we assume that SES
affects track placement indirectly through grades, as depicted in Figure 15.1,
panel B. Knowing whether this is true could be important theoretically and
practically. But it would also be very interesting to know if SES also affects
track placement directly. Are children from a middle-class background
more likely to be placed on a high track than children from a working-class
background who have earned the same grades? If so, what might this
say about the system used to determine the educational track of a child?
Might there be some kind of systematic bias that enhances opportunities for
middle-class children and works against opportunities for working-class
children?

Or consider the effect of preschool attendance on school achievement
as measured at the end of second grade. Suppose an experiment had
been done in which some children were randomly assigned to a preschool
program, while others were assigned to a control group. There is then no
requirement to control for factors like SES, because it can be assumed that
those factors relate only randomly to the independent variable of preschool
attendance. Controlling for it may increase the power of tests, but it isn’t
necessary. But some educators might argue that preschool attendance
produces a temporary artifactual inflation of IQ test scores, that children
with high IQ scores were given more attention by the first- and second-
grade teachers, and that this mechanism produced the positive effect of
preschool on achievement scores at the end of the second grade. In Figure
15.1, panel C, this hypothesis is represented by the indirect path from
preschool to achievement through IQ scores. This is clearly important to
assess. But other educators might consider this implausible, or they may
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argue that it does not matter how preschool affects achievement so long
as the effect does exist. The former educators would be most interested in
the indirect and direct effect of preschool on achievement with IQ scores
controlled; the latter group would be most interested in the total effect, with
less concern about the direct and indirect effects.

15.1.2 The Regression Algebra of Path Analysis

The total, direct, and indirect effects in a path model or mediation model, as
described in section 15.1.1, can be estimated with least squares regression
analysis. Figure 15.2 represents a model with a single mediator, also called a
simple mediation model, in generic form. Each of the causal arrows is labeled
with a regression coefficient from one of the regression models in equations
15.1, 15.2, and 15.3.

The total effect of independent variable X1 on dependent variable Y is
estimated by regressing Y on X1, as

Ŷ = b0 + b1X1 (15.1)

Using regression analysis, we can break the total effect b1 into two
components—direct and indirect. The direct effect of X1 on Y comes from
a model of Y that includes X1 and mediator variable X2 as regressors

Ŷ = b0 + b2X1 + b3X2 (15.2)

where b2 is the direct effect of X1 on Y. The computation of the indirect
effect of X1 on Y through X2 requires a third regression quantifying the
effect of independent variable X1 on mediator variable X2:

X̂2 = b0 + b4X1 (15.3)

Once b4 is estimated, the indirect effect of X1 on Y through X2 can be
calculated as the product of b4 from equation 15.3 and b3 from equation
15.2:

Indirect effect of X1 on Y = b4b3 (15.4)

With the direct and indirect effects defined, we can now express the
total effect of X1 as the sum of its direct and indirect effects. That is,

b1 = b2 + b4b3 (15.5)
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b1

Direct and Indirect Effects of X1Total Effect of X1

 X1 Y

 X1

b4

b2

b3

Indirect effect = b4b3

 X2

Y

Direct effect = b2
Total effect = b1

FIGURE 15.2. Path diagrams depicting the total, direct, and indirect effects of X1 on Y,
with the indirect effect operating through a single mediator X2.

Equation 15.5 is always true whenever X2 and Y are estimated using ordi-
nary least squares regression. Because b1 is equivalent to the sum of the
direct and indirect effects, we could calculate b1 directly using equation 15.1
or indirectly using equation 15.5 to get the total effect of X1 on Y. However,
only the direct calculation when conducted with regression software yields
standard errors and statistical inferences for the total effect.

The direct, indirect, and total effects can be interpreted like regression
coefficients, though the indirect effect is actually estimated as a product of
two regression coefficients. The total effect b1 estimates by how much two
cases that differ by 1 unit on X1 are estimated to differ on Y. The direct
effect b2 estimates by how much two cases that differ by 1 unit on X1 but are
equal on X2 are estimated to differ on Y. The indirect effect b4b3 estimates
the amount by which two cases that differ by 1 unit on X1 are estimated
to differ on Y through the sequence of causal steps in which X1 affects X2,
which in turn carries its effect on to Y.

We illustrate these computations using the exercise and weight-loss
data first introduced in Chapter 3. The model we estimate allows exercise
frequency, X1, to affect weight loss, Y, directly as well as indirectly through
food intake, X2. By this process, it is expected that when food intake is
held constant, more exercise should translate into greater weight loss. This
is the direct effect of exercise frequency on weight loss. But exercise could
also increase appetite, manifested through greater food intake among those
who exercise more. This increase in consumption of calories could decrease
weight loss. The is the indirect effect of exercise frequency on weight loss
through food intake.
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Estimation of the linear regression models in equations 15.1, 15.2, and
15.3 yields

Ŷ = 4.000 + 1.750X1

Ŷ = 6.000 + 2.000X1 − 0.500X2

X̂2 = 4.000 + 0.500X1

and thus b1 = 1.750, b2 = 2.000, b3 = −0.500, and b4 = 0.500. The total
effect of exercise frequency on weight loss is b1. Each hour of exercise per
week is associated with 1.750 units, or 175 grams, of weight loss per week.
This total effect breaks into two components. The direct effect of exercise
on weight loss is b2 = 2.000, meaning that among people who consume the
same number of calories above the minimum recommended, the person
who exercises 1 additional hour per week more is estimated to lose 2.000
more units of weight, or 200 grams. The indirect effect of exercise frequency
on weight loss through food consumption is b4b3 = 0.500(−0.500) = −0.250.
This is a decrease in weight loss as a result of exercise. This negative indirect
effect results from greater food intake among those who exercise more
(b4 = 0.500 units of calories per hour of exercise), and each 1 unit of food
intake results in a b4 = −0.500 unit (50 gram) increase, meaning a decrease, in
weight loss. Observe that as stated by equation 15.5, the direct and indirect
effects do indeed add up to the total effect of exercise frequency on weight
loss: b2 + b3b4 = 2.000 + (−0.250) = 1.750 = b1.

We have estimated and expressed the direct, indirect, and total effects
of X1 in unstandardized form, meaning they are interpreted with respect to
the original units of measurement of the variables. Standardized regression
coefficients b̃ can be substituted into equations 15.1 through 15.5, and they
still apply (but remember that we don’t recommend expressing effects in
standardized form when X1 is a dichotomous variable; see section 5.1.5). In
that case, the interpretations of these effects as discussed earlier generalize,
except “1 unit” becomes “1 standard deviation.”

15.1.3 Covariates

Our discussion thus far has assumed no covariates. But this is not an
assumption of the path analysis algebra. We can add covariates to a path
analysis represented by equations 15.1, 15.2, and 15.3 just by including
them as regressors. However, equation 15.5 will be true only if the same
covariates are included in all three of the these equations.
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Suppose, for example, you wanted to include age (C1) and weight in
kilograms at the start of the study (C2) as covariates in the weight-loss path
analysis just presented. By including C1 and C2 in the models of Y and X2,
as in

Ŷ = b0 + b1X1 + b5C1 + b6C2 (15.6)

Ŷ = b0 + b2X1 + b3X2 + b7C1 + b8C2 (15.7)

X̂2 = b0 + b4X1 + b9C1 + b10C2

then equation 15.5 still holds. All the interpretations of the total, direct,
and indirect effects described in section 15.1.2 apply, but with the addition
of “holding age and initial weight constant.” But violating this rule (by,
e.g., putting C1 and C2 only in the model of X2 or putting C1 in the model
of Y and C2 in the model of X2) results in a total effect of X1 that does not
equal the sum of the direct and indirect effects. This should make sense,
because you can’t interpret the total, direct, and indirect effects as holding
the covariate set constant if you haven’t held the same covariates constant
in all of the equations that are used to generate these effects.

15.1.4 Inference about the Total and Direct Effects

The total and direct effects of an independent variable on a dependent
variable are quantified with regression coefficients b1 and b2 in equations
15.1 and 15.2 or, if covariates are included, equations 15.6 and 15.7. All
regression programs will provide a standard error of these regression coef-
ficients that can be used for testing a null hypothesis about these effects, or
a confidence interval can be constructed in the usual way.

In the exercise and weight-loss example, the total effect of exercise is
statistically different from zero, t(8) = 4.850, p = .001, as is the direct effect,
t(7) = 6.000, p < .001. The degrees of freedom for these tests are the residual
degrees of freedom for the corresponding model of the dependent variable
from which the estimates are derived.

15.1.5 Inference about the Indirect Effect

When your hypothesis focuses on whether a variable is functioning as
a mediator of the effect of the independent variable on the dependent
variable, you need to be able to rule out chance as an explanation for the
obtained indirect effect. A hypothesis-testing procedure can be used to
test the null hypothesis that the true indirect effect, Tb4Tb3, equals zero, or
you can construct a confidence interval for the indirect effect. Although
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a hypothesis-testing framework is widely understood, confidence interval
approaches with a confidence interval constructed in a specific way are
more widely recommended, for reasons that will be made clear in this
section.

With an estimate of the standard error of b4b3, we could proceed with
inference in the usual way by computing a p-value for the ratio of the
indirect effect to its standard error or by constructing a traditional confi-
dence interval as the point estimate plus or minus about 2 standard errors.
There are a few formulas for the standard error of the product of two sta-
tistically independent regression coefficients in the literature (b4 and b3 are
statistically independent in this model). The simplest is

SE(b4b3) =
√

b2
4SE2(b3) + b2

3SE2(b4) (15.8)

Equation 15.8 requires only b3, b4, and their standard errors, and these
are available in any regression output. Sobel (1982) suggests using Z =
b4b3/SE(b4b3), with Z interpreted as a standard normal variable, and the p-
value for testing the null hypothesis that Tb4Tb3 = 0 derived from a table of
standard normal probabilities (see Appendix C) or a computer algorithm.
In this example,

SE(b4b3) =
√

(0.5002)0.2522 + (−0.5002)0.4332 = 0.251

and so Z = −0.250/0.251 = −0.998, with a two-tailed p-value of .318. We can
say that the indirect effect is not statistically significant. A 95% confidence
interval would be b4b3 ± 1.96SE(b4b3), which in this example is −0.742 to
0.242.

If you are going to use this Sobel test, we recommend doing the com-
putations to many decimals places, as adding squares of small numbers
can introduce lots of rounding error if the computations are done to only
a few decimal places. But we don’t recommend using this test anyway.
The problem with the Sobel test is that the sampling distribution of the
product of regression coefficients is not normal, or even symmetrical, so
using the normal distribution for generating a p-value is not appropriate.
Most experts in the statistical analysis of mediation discourage the use of
this test in part for this reason.

Two better alternatives are the bootstrap confidence interval and the
Monte Carlo confidence interval. These methods don’t make any assump-
tion about the shape of the sampling distribution of b4b3, but both require
a computer, as they are computationally intensive and require many repet-
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itive computations. We discuss the mechanics of bootstrapping in section
16.3.3. Suffice it to say now that in the bootstrap method, we construct
many many estimates of the indirect effect by constructing a new data set
with N cases from the existing data set by randomly sampling the N rows
of the original data with replacement. We estimate the indirect effect in
this new data in the same way we did in the original data, and then we
repeat this process thousands of times to generate the bootstrap distribution
of the indirect effect. Using the distribution of these thousands of bootstrap
estimates of the indirect effect, we form a 95% confidence interval for the
indirect effect as the values in the bootstrap distribution that define the
2.5th and 97.5th percentiles of the distribution.

A bootstrap confidence interval requires estimation of the mediation
model thousands of times. A similar method that requires only one estima-
tion of the model is the Monte Carlo confidence interval. For this method,
you estimate b3 and b4 and their standard errors using regression analysis.
Once these are calculated, they are used as inputs into an algorithm that
generates a random draw from a normal distribution with a mean of b4 and
a standard deviation of SE(b4), which is then multiplied by a random draw
from a normal distribution with a mean of b3 and a standard deviation
of SE(b3). Most statistical packages and computing languages have rou-
tines for generating random draws from various probability distributions.
Like bootstrapping, this process of multiplying random draws from nor-
mal distributions is repeated thousands of times to produce a Monte Carlo
distribution of the indirect effect. This Monte Carlo distribution is used to
construct a 95% confidence interval for the indirect effect as the values in
the Monte Carlo distribution that define the 2.5th and 97.5th percentiles of
the distribution.

We discuss some programs you can use for generating bootstrap or
Monte Carlo confidence intervals in section 15.1.6, using a more realistic
example. Using some of these programs, a 95% bootstrap confidence in-
terval for the indirect effect in the exercise and weight-loss example was
−1.013 to 0.100. Using the Monte Carlo method, we got −0.892 to 0.174. Be-
cause the confidence interval includes zero, we cannot confidently rule out
chance as the explanation for the obtained indirect effect. If the confidence
interval did not include zero, then this would be consistent with mediation
of the effect of exercise frequency on weight loss by food intake.

Research has shown that both of these confidence interval methods
tend to perform pretty well and better than the Sobel test (see, e.g., Hayes
& Scharkow, 2013; Preacher & Selig, 2012). More specifically, the Sobel
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test tends to be lower in power than either the bootstrap or Monte Carlo
confidence interval. Even if they were equal in power, the Sobel test relies
on a patently false assumption that other methods avoid—that of normality
of the sampling distribution of the product of regression coefficients. Why
make an assumption you don’t need to make when there are tests that are
just as good that don’t require that assumption?

15.1.6 Implementation in Statistical Software

Ordinarily, mediation analysis (or most any analysis for that matter) would
not be undertaken with such a small sample, although there is nothing in
the mathematics or statistical theory that would prevent you from doing
so. Here we do a more realistic illustration using the HOSPITAL data file
first introduced in Chapter 13, while showing how to generate an infer-
ence for the indirect effect. The data set, fabricated for this illustration but
motivated by Halbesleben (2010), contains the responses of 300 health care
employees at a hospital. At time 1, they were asked questions to measure
their physical and emotional exhaustion (X1:exhaust). Also available is a
baseline measure of workplace injury (C1:injuryb) that is an index based
on the number and severity of injuries the health care worker had experi-
enced since starting employment. Some months later, these same workers
were asked how frequently they engage in various work-arounds to safety
protocols, so as to avoid the time and hassle these safety measures require
(X2:safety), and their workplace injury frequency and severity was again
quantified (Y:injury).

The path model is depicted in Figure 15.3. This model estimates the
effects of physical and emotional exhaustion on later workplace injuries, di-
rectly as well as indirectly, through the use of safety protocol work-arounds.
That is, according to this process, physical and emotional exhaustion may
prompt workplace injuries because people who are exhausted are more
likely to avoid the use of safety protocols, which in turn translates into a
greater likelihood of injury. This is the indirect effect of exhaustion depicted
in Figure 15.3. But exhaustion may influence workplace injuries through
some other process not a part of this model (the direct effect). We use base-
line workplace injuries as a covariate. Thus, the effect of exhaustion on later
injuries and use of safety protocol work-arounds is assessed independent
of how frequently the worker tended to get injured before the study started
and measurements on X1, X2, and Y were obtained.

The total, direct, and indirect effects can be estimated using any statistics
program capable of conducting regression analysis. We assume at this point
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  Exhaustion
         (X1)

      Safety
workarounds
         (X2)

Injuries
     (Y)

b2 = 0.053
SE(b2) = 0.054

b4 = 0.303
SE(b4) = 0.060

b3 = 0.222
SE(b3) = 0.050

b1 = 0.120
SE(b1) = 0.054

Direct and Indirect EffectTotal Effect

  Exhaustion
         (X1)

Injuries
     (Y)

b4b3 = 0.067

FIGURE 15.3. Path diagrams depicting the total, direct, and indirect effects of physical
and emotional exhaustion on workplace injuries, with the indirect effect operating through
the use of safety protocol work-arounds. Baseline workplace injury frequency, used as a
covariate, is not depicted in the diagram.

in the book that you could estimate the corresponding equations of X2 and
Y using your chosen software. Doing so yields the following regression
equations for the use of safety protocol work-arounds and later workplace
injuries (see corresponding STATA output in Figure 15.4):

Ŷ = 0.869 + 0.120X1 + 0.294C1

Ŷ = 0.236 + 0.053X1 + 0.222X2 + 0.273C1

X̂2 = 2.852 + 0.303X1 + 0.098C1

The relevant regression coefficients are superimposed on Figure 15.3. From
these equations (also see Figure 15.4), they are b1 = 0.120, b2 = 0.053,
b3 = 0.222, and b4 = 0.303. The regression analysis output will also include
standard errors for the total and direct effects of exhaustion, along with
t- and p-values for testing the null hypothesis that the effect equals zero.
Confidence intervals can also be used for interval estimation.

The total, direct, and indirect effects of exhaustion on workplace injury
are b1 = 0.120, b2 = 0.053, and b4b3 = 0.303(0.222) = 0.067, respectively.
The total effect, with an estimated standard error of 0.054, is statistically
significant, t(297) = 2.240, p = .026. Two hospital workers who are equal
in initial workplace injuries but who differ by 1 unit in exhaustion are es-
timated to differ by 0.120 units in later workplace injuries, with the more
exhausted person experiencing more injury. The direct effect is also pos-
itive, b2 = 0.053, but with a standard error of 0.054, it is not statistically
significant, t(296) = 0.979, p = .328.
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. regress injury exhaust injuryb

      Source |       SS       df       MS              Number of obs =     300

-------------+------------------------------           F(  2,   297) =   18.04

       Model |  30.6553853     2  15.3276926           Prob > F      =  0.0000

    Residual |  252.373781   297  .849743372           R-squared     =  0.1083

-------------+------------------------------           Adj R-squared =  0.1023

       Total |  283.029167   299  .946585842           Root MSE      =  .92182

------------------------------------------------------------------------------

      injury |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

     exhaust |   .1203445   .0537149     2.24   0.026     .0146344    .2260546

     injuryb |   .2942794   .0535393     5.50   0.000      .188915    .3996439

       _cons |   .8685071   .2238288     3.88   0.000     .4280156    1.308999

------------------------------------------------------------------------------

. regress injury exhaust safety injuryb

      Source |       SS       df       MS              Number of obs =     300

-------------+------------------------------           F(  3,   296) =   19.30

       Model |  46.2960237     3  15.4320079           Prob > F      =  0.0000

    Residual |  236.733143   296  .799774132           R-squared     =  0.1636

-------------+------------------------------           Adj R-squared =  0.1551

       Total |  283.029167   299  .946585842           Root MSE      =   .8943

------------------------------------------------------------------------------

      injury |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

     exhaust |   .0531588   .0542811     0.98   0.328    -.0536671    .1599846

      safety |   .2218199   .0501599     4.42   0.000     .1231046    .3205352

     injuryb |   .2726304   .0521714     5.23   0.000     .1699565    .3753044

       _cons |   .2358901   .2600335     0.91   0.365    -.2758587    .7476389

------------------------------------------------------------------------------

. regress safety exhaust injuryb

      Source |       SS       df       MS              Number of obs =     300

-------------+------------------------------           F(  2,   297) =   14.22

       Model |  30.4459928     2  15.2229964           Prob > F      =  0.0000

    Residual |  317.872807   297  1.07027881           R-squared     =  0.0874

-------------+------------------------------           Adj R-squared =  0.0813

       Total |    348.3188   299  1.16494582           Root MSE      =  1.0345

------------------------------------------------------------------------------

      safety |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

     exhaust |   .3028841   .0602837     5.02   0.000     .1842469    .4215214

     injuryb |   .0975972   .0600865     1.62   0.105    -.0206521    .2158465

       _cons |   2.851939   .2512006    11.35   0.000     2.357581    3.346298

------------------------------------------------------------------------------

A

B

C

b1

b4

b2 
and
b3

FIGURE 15.4. STATA output from a regression-based path analysis of mediation of the
effect of exhaustion on workplace injury through the use of safety protocol work-arounds.
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*********************** PROCESS Procedure for SPSS *********************** 

 

          Written by Andrew F. Hayes, Ph.D.       www.afhayes.com 

    Documentation available in Hayes (2013). www.guilford.com/p/hayes3 

 

************************************************************************** 

Model = 4 

    Y = injury 

    X = exhaust 

    M = safety 

 

Statistical Controls: 

CONTROL= injuryb 

 

Sample size 

        300 

 

************************************************************************** 

Outcome: safety 

 

Model Summary 

          R       R-sq        MSE          F        df1        df2          p 

      .2956      .0874     1.0703    14.2234     2.0000   297.0000      .0000 

 

Model 

              coeff         se          t          p       LLCI       ULCI 

constant     2.8519      .2512    11.3532      .0000     2.3576     3.3463 

exhaust       .3029      .0603     5.0243      .0000      .1842      .4215 

injuryb       .0976      .0601     1.6243      .1054     -.0207      .2158 

 

************************************************************************** 

Outcome: injury 

 

Model Summary 

          R       R-sq        MSE          F        df1        df2          p 

      .4044      .1636      .7998    19.2955     3.0000   296.0000      .0000 

 

Model 

              coeff         se          t          p       LLCI       ULCI 

constant      .2359      .2600      .9072      .3651     -.2759      .7476 

safety        .2218      .0502     4.4223      .0000      .1231      .3205 

exhaust       .0532      .0543      .9793      .3282     -.0537      .1600 

injuryb       .2726      .0522     5.2257      .0000      .1700      .3753 

 

************************** TOTAL EFFECT MODEL **************************** 

Outcome: injury 

 

Model Summary 

          R       R-sq        MSE          F        df1        df2          p 

      .3291      .1083      .8497    18.0380     2.0000   297.0000      .0000 

 

Model 

              coeff         se          t          p       LLCI       ULCI 

constant      .8685      .2238     3.8802      .0001      .4280     1.3090 

exhaust       .1203      .0537     2.2404      .0258      .0146      .2261 

injuryb       .2943      .0535     5.4965      .0000      .1889      .3996 

 

***************** TOTAL, DIRECT, AND INDIRECT EFFECTS ******************** 

 

Total effect of X on Y 

     Effect         SE          t          p       LLCI       ULCI 

      .1203      .0537     2.2404      .0258      .0146      .2261 

 

Direct effect of X on Y 

     Effect         SE          t          p       LLCI       ULCI 

      .0532      .0543      .9793      .3282     -.0537      .1600 

 

Indirect effect of X on Y 

           Effect    Boot SE   BootLLCI   BootULCI 

safety      .0672      .0194      .0335      .1104 

************************************************************************** 

 

b1

b4

b3 
and
b2

b1

b2

b4b3

FIGURE 15.5. PROCESS for SPSS output from a simple mediation analysis estimating
the direct and indirect effects of exhaustion on workplace injury, with the a 95% bootstrap
confidence interval for the indirect effect through use of safety protocol work-arounds.
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Most regression programs will not generate the indirect effect, although
it can easily be constructed by multiplying b4 and b3 by hand. In this exam-
ple, the indirect effect 0.067. This is due to the positive effect of exhaustion
on the use of safety protocol work-arounds (b4 = 0.303), which in turn is
positively related to later injury (b3 = 0.222). The result is a difference of
0.067 units in later workplace injury due to exhaustion indirectly through
the use of safety protocol work-arounds. Notice that as promised, the
indirect effect of exhaustion of 0.067 when added to the direct effect of ex-
haustion of 0.053 yields the total effect of exhaustion: 0.067+ 0.053 = 0.120.

We have not yet discussed inference about the indirect effect. The meth-
ods discussed in section 15.1.5 are generally not implemented in regression
programs, but they are available as special tools or freely available macros
for SPSS, SAS, or R. For instance, the SOBEL or INDIRECT macros for SPSS
and SAS (Preacher & Hayes, 2004, 2008) conduct simple mediation analysis
and provide various inferential tests for the indirect effect that can be used
for inference. Hayes (2013) provides code for construction of a Monte Carlo
confidence interval in SPSS and SAS, and we provide code for STATA be-
low. The Rmediate (Tofighi & MacKinnon, 2011) and MBESS (Kelley, 2007)
packages are available for R users. Mediation analysis can also be pro-
grammed into a structural equation modeling program such as Mplus or
AMOS, both of which have features for estimation of and inference about
indirect effects, including bootstrap confidence intervals.

The PROCESS macro, freely available for SPSS and SAS and described
in Hayes (2013), is a simple, widely used tool for mediation analysis, so
we illustrate its use here for construction of an interval estimate of the
indirect effect. PROCESS has various path analysis features that estimate
all the regression coefficients in a mediation model and provide inferential
tests for the direct, indirect, and total effects, including the Sobel test and
a bootstrap or Monte Carlo confidence interval. PROCESS does not come
with SPSS or SAS. It must be downloaded from www.processmacro.org and
executed before SPSS or SAS will understand a PROCESS command. The
features in PROCESS are documented in Hayes (2013), which also provides
a more detailed discussion of mediation analysis than we provide in this
book.

The output for this analysis from the SPSS version of PROCESS can be
found in Figure 15.5. This output was generated with the command

process vars=exhaust safety injury injuryb/y=injury/x=exhaust/m=safety

/model=4/total=1/boot=5000.

The equivalent command in the SAS version of PROCESS is



Mediation and Path Analysis 463

%process (data=hospital,vars=exhaust safety injury injuryb,y=injury,

x=exhaust,m=safety,model=4,total=1,boot=5000);

As can be seen in Figure 15.5, the output contains all the regression
coefficients, standard errors, and t- and p-values for each path in the causal
system, as well as the covariates. At the very bottom of the output can be
found the indirect effect, which is listed as 0.067 and is the same as we cal-
culated earlier. The lower and upper bounds of a 95% bootstrap confidence
interval based on 5,000 bootstrap samples are listed under “BootLLCI”
and “BootULCI.” The confidence interval is 0.034 to 0.110. As this is en-
tirely above zero, we can conclude with 95% confidence that the indirect
effect is positive. Statistically, this is evidence of mediation of the effect of
exhaustion on workplace injury through the use of safety protocol work-
arounds. But as discussed in section 15.3.1, although this is consistent with
mediation—a causal process—there is more to establishing cause–effect
than just data analysis.

PROCESS is not available for STATA, but all the effects can be estimated
using ordinary least squares regression in STATA with the regress com-
mand illustrated numerous times elsewhere in this book. Special STATA
programming skills are required to generate a bootstrap confidence inter-
val for the indirect effect. But a Monte Carlo confidence interval is fairly
simple to generate in STATA once you have b3 and b4 and their standard
errors from the output from the regress commands. The code below gen-
erates a Monte Carlo confidence interval for the indirect effect using 5,000
samples. In this code, b4 and SE(b4) are in the second line of code and b3

and SE(b3) are in the third line of code. The resulting output can be found
in Figure 15.6, showing a 95% confidence interval for the indirect effect of
0.032 to 0.111. This is very similar to the confidence interval generated by
bootstrapping and leads to the same conclusion about the indirect effect.

set obs 5000

gen b4 = (invnorm(uniform())*0.060)+0.303

gen b3 = (invnorm(uniform())*0.050)+0.222

gen b4b3 = b4*b3

centile b4b3, centile (2.5 97.5)
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                                                       -- Binom. Interp. --

    Variable |     Obs  Percentile      Centile        [95% Conf. Interval]

-------------+-------------------------------------------------------------

        b4b3 |    5000        2.5      .0317703        .0311352    .0323194

             |               97.5      .1112644        .1102048    .1123792

95% confidence interval for indirect effect

FIGURE 15.6. STATA output for a 95% Monte Carlo confidence interval for the indirect
effect.

15.2 Multiple Mediator Models

The path analyses in sections 15.1.2 and 15.1.6 contained only one mediator.
But more complex path models are possible that allow an independent
variable to exert its effect on a dependent variable through more than
one indirect pathway. For instance, in a parallel multiple mediator model,
we have more than one mediator between independent and dependent
variable, but those mediators are not connected to each other causally.
Figure 15.7, panel B, depicts a parallel multiple mediator model with two
mediators. In such a model, although the mediators might be correlated,
no commitment is made that one causes the other. In the example depicted
in Figure 15.7, panel B, exercise is modeled as affecting weight loss through
three pathways. One pathway operates indirectly through food intake. A
second pathway operates indirectly through metabolic rate. And the final
pathway is direct, bypassing both food intake and metabolic rate.

But you may have some basis for believing that metabolic rate would
influence food intake. In that case, you might prefer a serial multiple mediator
model, such as in Figure 15.7, panel C. Now we have four pathways of
influence, three indirect and one direct. One indirect effect operates only
through food intake, one operates only only through metabolic rate, and
one operates through metabolic rate and food intake in sequence or serially.
The final pathway is the direct effect, bypassing both food intake and
metabolic rate.

In both the parallel and the serial multiple mediator models, the total
effect of the independent variable can be partitioned into direct and indi-
rect components. These indirect and direct effects can be estimated using
regression analysis.

15.2.1 Path Analysis for a Parallel Multiple Mediator Model

The total effect in a mediation model is not determined by how many me-
diators are placed in between the independent variable and the dependent
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variable. If X1 is the independent variable and Y is the dependent variable,
the total effect of X1 on Y is b1 in a regression model estimating Y from
X1, as in equation 15.1. Covariates can be included if desired, as discussed
in section 15.1.3. Using the EXERCISE data file, we know from the earlier
analysis that the total effect of exercise frequency on weight loss is b1 = 1.75
and is statistically different from zero. See Figure 15.7, panel A.

In a parallel multiple mediator model with k mediators, we can estimate
the direct and indirect effects by regressing the dependent variable on the
independent variable and all the mediators in one regression and then each
of the mediators on the independent variable in k separate regressions with
X1 as the sole regressor. Covariates can be included in each of the equations,
as discussed in section 15.1.3. In the example in Figure 15.7, panel B, that
means estimating weight loss (Y) from exercise frequency (X1), food intake
(X2), and metabolism (X3):

Ŷ = b0 + b2X1 + b3X2 + b4X3 (15.9)

The regression coefficients using the EXERCISE data file are found in the
path diagram in Figure 15.7, panel B. The direct effect of exercise frequency
on weight loss is b2 = 1.046,SE = 0.422, t(6) = 2.476, p = .048. This is
statistically different from zero. Notice that this direct effect is different
than the direct effect in section 15.1.2, because that simpler model did not
include metabolism as a mediator, so it wasn’t being statistically controlled
when assessing exercise’s direct effect on weight loss.

From the model of the dependent variable we also get the partial effects
of the two mediators. In this example, b3 = −1.136 and b4 = 0.634. So
holding exercise and metabolism constant, an additional 1 unit of food
intake is related to a reduction in weight loss of 1.136 units (113.6 grams
per week). But a 1-unit increase in metabolism, holding food intake and
exercise constant, is associated with a 0.634-unit (63.4 grams per week)
increase in weight loss.

The indirect effects of exercise frequency on weight loss require two
regression coefficients each, one coming from the model of the dependent
variable in equation 15.9, and the other coming from a regression estimating
the mediator from the independent variable (and any covariates included
in the model of the total effect). The models of the mediators from the
independent variable are

X̂2 = b0 + b5X1 (15.10)

X̂3 = b0 + b6X1 (15.11)
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      Food
      intake
        (X2)

Weight
   loss     
    (Y) 

     Metabolism
            (X3)

  Exercise
frequency
       (X1)

b5 = 0.500
SE(b5) = 0.433

b6 = 2.000
SE(b6) = 0.550

b4 = 0.636
SE(b4) = 0.232

b3 = -1.136
SE(b3) = 0.294

b2 = 1.046
SE(b2) = 0.422

Weight
  loss     
   (Y)

  Exercise
frequency
       (X1) b1 = 1.750

SE(b1) = 0.361

      Food
      intake
        (X2)

Weight
   loss     
    (Y)

     Metabolism
            (X3)

  Exercise
frequency
       (X1)

b5 = -0.741
SE(b5) = 0.464

b6 = 2.000
SE(b6) = 0.550

b4 = 0.636
SE(b4) = 0.232

b3 = -1.136
SE(b3) = 0.294

b2 = 1.046
SE(b2) = 0.422

b7 = 0.621
SE(b7) = 0.183

Serial Multiple Mediator Model

Parallel Multiple Mediator Model

A

B

C

FIGURE 15.7. A parallel (panel B) and serial (panel C) multiple mediator model of the
effects of exercise frequency on weight loss. The total effect is depicted in panel A.
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In this example, b5 = 0.500 and b6 = 2.000, which are superimposed in
the path diagram in Figure 15.7, panel B. So an additional hour of exer-
cise translates into 0.500 units more food intake and 2.000 units higher
metabolism. These estimates, combined with the estimates of the effects of
the mediators on the dependent variable, give the indirect effects.

The indirect effect of X1 on Y through X2 is the product of the effect of
X1 on X2 (b5 from equation 15.10) and the effect of X2 on Y, holding all else
constant (b3 from equation 15.9). That is, b5b3 = (0.500)(−1.136) = −0.568.
So 1 hour of additional exercise per week seems to reduce weight loss by
0.568 units (56.8 grams per week) indirectly through its effect on increasing
food intake, which in turn lowers weight loss. The indirect effect of X1 on
Y through X3 is calculated similarly as the product of the effect of X1 on X3

(b6 from equation 15.11) and the effect of X3 on Y, holding all else constant
(b4 from equation 15.9). In this case, b6b4 = (2.000)(0.636) = 1.273. So an
hour of additional exercise is related to an increase in weight loss by 1.273
units (127 grams per week) by increasing metabolism rate, which in turn is
associated with greater weight loss.

Observe that, as promised, the total effect b1 is the sum of the direct
effect of X1 and the two indirect effects of X1 through X2 and X3. That
is, b1 = b2 + b5b3 + b6b4 = 1.046 + (−0.568) + 1.273 = 1.750. So the 175
gram per week weight loss due to an additional 1 hour of exercise is due
to its positive effects on increasing metabolism (the indirect effect through
metabolism of 1.273), as well as some other process not a part of the model
(the direct effect of 1.046). But some of that weight loss from exercise is
counteracted by increased food consumption, which lowers weight loss
(the indirect effect through food intake of −0.568).

We have already discussed inference about the direct and total effects.
Inference for the indirect effect can be undertaken using any of the meth-
ods discussed in section 15.1.5. Using the PROCESS macro for SPSS and
SAS, we generated 95% bootstrap confidence intervals for these indirect
effects using 5,000 bootstrap samples and found evidence of mediation by
metabolism (0.252 to 2.223) but not by food intake (−1.564 to 0.212). That is,
we can confidently conclude that the indirect effect through metabolism is
positive, but we can’t say definitively that the indirect effect through food
intake is different from zero.

15.2.2 Path Analysis for a Serial Multiple Mediator Model

The serial multiple mediator model differs from the parallel multiple me-
diator model only with the inclusion of a causal path between mediators.
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In a serial multiple mediator model with only two mediators, as in Figure
15.7, panel C, the only difference relative to the parallel multiple mediator
model is the inclusion of an effect of one mediator on the other. In this case,
this model allows for a causal effect of X3 on X2. So the three equations
required to estimate the direct and indirect effects are

Ŷ = b0 + b2X1 + b3X2 + b4X3 (15.12)

X̂2 = b0 + b5X1 + b7X3 (15.13)

X̂3 = b0 + b6X1 (15.14)

Notice that the equations for Y and X3 are the same in this serial multiple
mediator model relative to the parallel multiple mediator model. Because
the direct effect of X1 comes from the model of Y, it is unchanged by
connecting mediators into a causal chain, as can be seen in Figure 15.7,
panel C, which includes all of the regression coefficients for the model
derived from equations 15.12, 15.13, and 15.14. And of course the total effect
is not changed by configuring the causal connections between mediators,
because the total effect is calculated without regard to what mediators are
in the model or how they are interconnected.

The indirect effects of exercise frequency on weight loss, of which there
are three now, are computed by multiplying the constituent components
of each path in a chain linking X1 to Y. Starting first with the indirect
effect through metabolism only, this indirect effect is b6b4 = 2.000(0.636) =
1.273. Notice that this is the same as the corresponding indirect effect in the
parallel multiple mediator model, because the equations that yield b4 and
b6 are the same in the two models.

The indirect effect through food intake only is different from the parallel
multiple mediator model, because in this serial mediation model the effect
of exercise on food intake is estimated while controlling for metabolism.
That effect is b5 = −0.741, which is very different from the parallel multiple
mediator model. When metabolism is held constant, more frequent exercise
is associated with less food intake, not more, as in the parallel multiple
mediator model. When this negative effect of −0.741 is multiplied by
the negative partial effect of food intake on weight loss, b3 = −1.136, the
resulting indirect effect is b5b3 = −0.741(−1.136) = 0.843. So when the effect
of metabolism on food intake is held constant, the indirect effect of exercise
on weight loss through food intake is positive rather than negative, as it
was in the parallel multiple mediator model.
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The remaining indirect effect is the serial indirect effect that passes
first to metabolism, then to food intake, and then to weight loss. This
indirect effect is the product of the three constituent paths, b6b7b3 =

2.000(0.621)(−1.136) = −1.411. Through this mechanism, exercise decreases
weight loss in part by increasing metabolism, which then increases food
intake, which results in less weight loss.

As in the simple and parallel multiple mediator models, the total effect
is the sum of the direct and indirect effects. In this model, b1 = b2 + b6b4 +

b5b3 + b6b7b3 = 1.046 + 1.273 + (−1.411) + 0.843 = 1.750.
Inference about the indirect effect can be based on any of the methods

already discussed. The PROCESS macro for SPSS and SAS can estimate
this model and generate bootstrap confidence intervals for inference about
indirect effects. Using PROCESS, 95% bootstrap confidence intervals (using
5,000 bootstrap samples) through metabolism only, food intake only, and
both in serial, were 0.252 to 2.223, −0.058 to 1.628, and −2.540 to −0.315,
respectively. So we can definitively claim that the indirect effect through
metabolism alone is positive, and the indirect effect through metabolism
and food intake in serial is negative. But we cannot definitively claim that
the indirect effect through food intake alone is different from zero.

15.3 Extensions, Complications, and
Miscellaneous Issues

15.3.1 Causality and Causal Order

Mediation is by definition a causal process, so it is impossible to talk about
mediation in noncausal terms. Yet often our data collection efforts do
not generate data or results that allow us to make unequivocal causal
claims for at least some parts of a mediation system. We discussed some
of the relative advantages and disadvantages of experimentation through
random assignment compared to statistical control in Chapter 6. Random
assignment is a nice design feature to have in a study, but often it isn’t
possible. Even when it is, there are limits to the claims one can make from
randomized experiments. Statistical control can be used as a substitute
for experimental control of covariates, but one never knows if one has
controlled for the right covariates. This applies to mediation analysis as
well. And even if one has a sense for what things should be controlled and
what should not, the direction of causal order cannot always be established
in nonexperimental studies.
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In path analysis and mediation, things get even more complicated, be-
cause mediation involves a sequence of at least two causal relationships.
Suppose you have randomly assigned participants in a study to levels of the
independent variable, but the mediator and dependent variable are only
measured. In the presence of good experimental design, random assign-
ment to values of the independent variable allows for a causal inference
about the effect of the independent variable on the mediator and the depen-
dent variable, as well as the direction of causal order for those effects. But
this does not allow you to conclude that the mediator affects the dependent
variable. It could be that the dependent variable actually affects the me-
diator, meaning the dependent variable is actually the mediator, and your
proposed mediator is actually the effect rather than intermediate between
cause and effect. Although it is tempting to reconduct the analysis, flipping
the role of the mediator and the dependent variable to see what happens,
you will often find evidence of an indirect effect (and thus mediation) in
the reconfigured model. Furthermore, there is no way to determine which
configuration is correct in any absolute sense.

When the independent variable is not randomly assigned, you lose
the ability to make unequivocal claims about the direction of causal or-
der between the independent variable and the mediator and between the
independent variable and the dependent variable as well. Now direction
of causality and causal order can only be established through argument,
logic, and theory, or the combination of these. Of course, this is true for any
nonexperimental study, so this isn’t a disadvantage of mediation analysis
specifically.

Some argue that mediation analysis is inappropriate in such a design,
and some go to such extremes as calling it “futile” (Maxwell, Cole, &
Melissa, 2011). But we don’t believe that mediation analysis is any more
or less appropriate with nonexperimental data than it is with experimental
data. The kinds of conclusions we can reach with any statistical analysis are
always constrained in one way or another by the design of the study and the
manner of data collection. Mediation analysis can be a useful approach to
describing relationships and testing hypotheses, but connecting variables
together in a theoretical causal system and then constructing measures of
direct and indirect effects does not mean you can interpret the relationships
in causal terms. The same kinds of design and interpretation considerations
that complicate the interpretation of studies without random assignment
discussed in Chapter 6 apply to mediation analysis. But so too do the
limitations of random assignment.
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In short, questions about cause and causal order require difficult judg-
ments, and we may have seemed rather cavalier and loose in our use of
causal language in the examples in this chapter. In practice, you may ag-
onize for days over choices about how to properly order variables in your
research in a sensible causal sequence. We do not intend to imply in our
examples that the relationships are necessarily causal, or that it is easy
or even possible to answer questions about cause–effect using mediation
analysis. But mediation analysis can be used to estimate direct and indirect
effects in a purely mathematical sense. Whether these conclusions really
can be causal ones is not a judgment that statistical analysis can make for
you.

15.3.2 The Causal Steps Approach

In sections 15.1 and 15.2 we described how to calculate an indirect effect and
conduct an inference about whether the indirect effect is different from zero.
If an indirect effect is statistically different from zero, then this supports a
claim of mediation of the presumed causal variable on the proposed effect
variable by the putative mediator. This approach is consistent with most
modern perspectives on mediation analysis, but it differs from an approach
that is now outdated but remains very popular and that you will still see
being used, so it is worth discussing in brief.

Baron and Kenny (1986) popularized an approach to mediation analysis
that never involves the computation of an indirect effect, nor does it involve
any kind of statistical inference about the indirect effect. Their approach is
sometimes called the causal steps approach to mediation analysis. It relies
on a set of hypothesis tests about each path in the causal system and the
pattern of statistical significance or lack of significance for the total and
direct effects. Mediation is established by the causal steps or Baron and
Kenny method only if the total effect of a variable is statistically significant
and the paths that define an indirect effect (i.e., the effect of the independent
variable on the mediator and the effect of the mediator on the dependent
variable) are all different from zero by a hypothesis test or confidence
interval. The effect of the independent variable on the dependent variable
is said to be mediated completely by the mediator if all these conditions are
met, and the direct effect of the independent variable on the dependent
variable is not statistically significant. If all these conditions are met but
the direct effect of the independent variable is statistically significant, then
the effect is said to be partially mediated.
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We mention this approach because it is still widely used, but we con-
sider it to have historical relevance only. Most researchers who write and
publish about mediation analysis don’t recommend the use of the causal
steps approach and instead advocate quantifying the indirect effect and
conducting an inference about it rather than its constituent components.
The arguments against the causal steps approach include that it is rela-
tively lower in power, is inconsistent with the way science proceeds by
quantifying effects of interest and conducting an inference about those
quantities, and it relies on more inferential tests than is needed to test a me-
diation hypothesis. For a discussion of these arguments against the causal
steps approach, as well as a skeptical view of the concepts of complete and
partial mediation, see Hayes (2013).

15.3.3 Mediation of a Nonsignificant Total Effect

Mediation analysis can help to answer the question as to how an effect
operates. Implied in this question is that there is an effect operating. That
is, in practice, researchers often ask questions about mediation only when
it has been established that there is some effect to be mediated. In statis-
tical terms, this means that mediation analysis is only sensible if one has
evidence of a total effect of the independent variable on the dependent
variable. Absent evidence of such an effect (by a statistical significance or
confidence interval standard), there is no effect to be mediated, and thus
no point in conducting a mediation analysis.

But we disagree with this perspective and recommend not requiring
evidence of a total effect of the independent variable on the dependent
variable before estimating and testing indirect effects. The independent
variable can causally affect the dependent variable even if they are not
correlated. As Bollen (1989, p. 52) aptly states, “a lack of correlation does
not disprove causation.” Recall that the total effect of an independent
variable is the sum of the direct and indirect effect(s) of that independent
variable. There is no mathematical requirement that direct and indirect
effects be of the same sign. If they differ in sign, then they may add to
something very small, even zero, and not statistically significant by an
inferential test. Yet the indirect effect may be statistically different from
zero and perhaps even quite large.

As a concrete example, consider a study by Cole, Walter, and Bruch
(2008). They found no statistically significant relationship between the ex-
tent to which teams at an automobile parts manufacturing facility engaged
in dysfunctional behavior and the teams’ performance as measured by
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supervisor perceptions. Yet a mediation analysis was consistent with dys-
functional team behavior negatively affecting team performance indirectly
through its effect on the negativity of the work climate (which translated
to lower performance) as well as directly, with more dysfunctional team
behavior positively affecting team performance when the negativity of the
work climate was held constant. Both the indirect and direct effects of
dysfunctional team behavior on performance were statistically significant,
even though the total effect was not.

In complex models with more than one mediator between the indepen-
dent and dependent variable, indirect effects through different mediators
may be different in sign, and if the direct effect is weak, the result may be a
total effect near zero and not statistically significant. For example, Pitts and
Safer (2016) found no statistically significant relationship between combat
experience and depression in a sample of U.S. Army medics. Yet combat
experience had a positive indirect effect on depression through how threat-
ened the medics felt during those experiences, and a negative indirect effect
through the positivity of their view of their combat experience. Medics with
more combat experience perceived greater threat during those experiences,
which was positively related to depression (and hence a positive indirect
effect). But they also had a more positive view of the combat experience,
which was negatively related to depression (and hence a negative indirect
effect). There was no direct effect of combat experience on depression, and
when added to the two opposing indirect effects, the result was a small
total effect that was not statistically significant.

The point is that in any causal systems, the sum of the direct and indirect
effects of an independent variable—the total effect of that independent
variable—is an aggregation of multiple pathways of influence that may
work in opposing directions. Ignoring this and conditioning the hunt for an
indirect effect on evidence of a statistically significant total effect means you
will probably miss some interesting and perhaps even surprising, exciting,
and theoretically important results.

15.3.4 Multicategorical Independent Variables

We have seen that the indirect effect of an independent variable on a de-
pendent variable through a mediator can be calculated as a product of
two regression coefficients, one quantifying the effect of the independent
variable on the mediator, and the other quantifying the effect of the me-
diator on the dependent variable. But when the independent variable is
multicategorical, there is no single regression coefficient quantifying the
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effect of the independent variable on a mediator or the dependent variable.
Recall from Chapters 9 and 10 that it takes g − 1 regression coefficients to
represent a multicategorical variable’s effect when that variable consists of
g categories. The interpretation of these regression coefficients will depend
on how the multicategorical variable is represented by the coding system
used.

When the independent variable in a mediation analysis is a multicat-
egorical variable, there is no single indirect, direct, or total effect of that
variable but, rather, g − 1 relative indirect, direct, and total effects, terms
introduced by Hayes and Preacher (2014). They discuss how to test for
mediation when the independent variable is multicategorical. The logic
is similar to what we described in this chapter and involves the product
of regression coefficients relating the independent variable to the mediator
and the mediator to the outcome. We refer interested readers to their article
for a discussion of the mechanics of mediation analysis in this situation.

15.3.5 Fixing Direct Effects to Zero

If you are interested in mediation and have no basis for believing that an in-
dependent variable affects a dependent variable through any process other
than the one through the proposed mediator, should you just fix the direct
effect to zero? This would be accomplished by leaving the independent
variable out of the equation for the dependent variable that includes the
mediator or mediators (e.g., equations 15.2, 15.9, or 15.12).

For two reasons, we don’t believe this is a good idea. First, remember
that the total effect of the independent variable on the dependent variable
is the sum of the direct and indirect effects. By fixing the direct effect of the
independent variable to zero, you are forcing the indirect effect to equal
the total effect. If the direct effect is actually equal to zero, then this is not
a problem. But if you are wrong, then the indirect effect will be a biased
estimator of the true indirect effect. It is better to let the data derive the direct
effect rather than to fix it. Although the temptation to delete the direct effect
if it is not statistically significant may be strong, resist the temptation to do
so. A null hypothesis can never be proven true. Including a nonsignificant
direct effect in a model is no different than leaving a nonsignificant covariate
in the model, and we generally don’t recommend removing covariates from
a regression model just because they are not statistically significant (see
section 4.7.3 and 17.1.3 for our discussion of nonsignificant or unnecessary
covariates).
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The second reason we discourage fixing a direct effect to zero relies on
the fact that one interpretation of a direct effect is that it is the effect of
the independent variable on the dependent variable that operates through
some mediator that is not in the model. Most effects operate through
multiple mechanisms simultaneously, and probably through mediators that
are not in your model. Including the direct effect, even when it is not
theorized or statistically significant, results in a more realistic model that
doesn’t force these unmodeled mechanisms to manifest themselves entirely
in the other indirect effects you are estimating.

15.3.6 Nonlinear Effects

The path analysis algebra discussed in sections 15.1 and 15.2 is predicated
on the assumption of linearity in the relationships in the causal system
being modeled. We saw in Chapter 12 how regression analysis can be used
to model curvilinear relationships by, for example, including the square
of a regressor in a model. The estimation of direct and indirect effects
can be more complicated than as presented here when relationships are
modeled as curvilinear. An understanding of the algebra involved requires
a little background in calculus, so we refer the interested reader to Hayes
and Preacher (2010), who discuss mediation analysis involving nonlinear
relationships. Their discussion is restricted to simple mediation models,
though, in principle, the methods they discuss could be generalized to more
complex models with more than one mediator.

15.3.7 Moderated Mediation

In Chapters 13 and 14 we showed how a linear regression analysis can be
used to test for interaction between two regressors. Two variables X1 and
X2 interact when X1’s effect on Y depends on X2. By including the product
of X1 and X2 as a regressor along with X1 and X2, X1’s effect on Y becomes
a linear function of X2.

Linear interaction can be combined with mediation analysis to yield
a model of the effect of an independent variable on a dependent variable
through one or more mediators that depend on a moderator variable. If
the indirect effect of an independent variable depends on a moderator, then
it is said that the mediation is moderated, called moderated mediation. For
example, in the dysfunctional team behavior study mentioned in section
15.3.3, Cole et al. (2008) found that the indirect effect of dysfunctional team
behavior on team performance through the negative tone of the work cli-
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mate was larger among teams that were more expressive of their emotions.
In other words, this mechanism responsible for the negative indirect effect
was moderated by the emotional expressiveness of members of the team.

In this example, team expressiveness was a continuum, but the moder-
ator could also be dichotomous, such as a person’s biological sex, or some-
thing experimentally manipulated. For example, Witkiewitz and Bowen
(2010) studied the effect of depression on substance use indirectly through
the effect of increased craving, which in turn was positively related to later
substance use. But this indirect effect did not exist among people who
were given a kind of therapy that relied on techniques of meditation and
mindfulness.

Hayes (2013) coined the term conditional process analysis to refer to a data-
analytic strategy that focuses on quantifying and testing the contingencies
of mechanisms, as in these examples. There are many ways that media-
tion and moderation analysis can be analytically combined, depending on
where in the causal system the moderation is happening. Conditional pro-
cess analysis can be done with linear regression analysis, although special
tools or statistical programs (e.g., the PROCESS macro mentioned in section
15.1.6) are needed to conduct inferences about indirect effects and to test
whether an indirect effect is moderated. For a discussion of moderated me-
diation or conditional process analysis and the regression mathematics that
underlies it, see sources such as Edwards and Lambert (2007), Fairchild and
MacKinnon (2009), Hayes (2013, 2015), and Preacher, Rucker, and Hayes
(2007).

15.4 Chapter Summary

A relationship between two variables X and Y, whether causally estab-
lished through experimentation or merely assumed to be causal, can be
partitioned into two broad pathways of influence using path analysis. The
indirect effect of X on Y quantifies the amount that changing X changes Y
through a sequence of causal steps in which X causally influences a media-
tor variable, which in turn causally influences Y. An independent variable’s
direct effect quantifies the amount that changing X changes Y when all the
mediator or mediators in the model are held constant. The direct and in-
direct effects sum to give the total effect of X on Y. Inferential tests about
direct effects are available in almost any regression output. Inference about
indirect effects can be undertaken in a number of ways, including the Sobel
test or a Monte Carlo or bootstrap confidence interval. The latter two meth-
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ods usually require special code or tools and are not generally available in
most regression analysis routines found in commercial software.

Although mediation is a causal process, cause cannot be definitively
established merely through data analysis. So, although regression analysis
can be used to determine whether evidence is consistent with a mediation
process, it cannot determine whether the relationships are actually causal
ones. Mediation analysis can be extended beyond the simpler models dis-
cussed in this chapter, including models with multicategorical independent
variables and models that don’t assume linearity in the relationships be-
tween variables in the system. Mediation analysis can also be combined
with interaction to model mechanisms that are contingent or otherwise de-
pendent on other variables, also known as conditional process analysis or
the analysis of moderated mediation.





16
Detecting and Managing Irregularities

This chapter addresses the topic of regression diagnostics. Diagnostic
statistics are useful for identifying cases in an analysis that are “irreg-
ular” in some way. We introduce leverage, distance, and influence as
measures of irregularity and discuss how irregular cases may distort a
regression analysis and so are worth identifying prior to interpretation
of the results. We describe how diagnostic statistics can be used for
testing whether the assumptions of linear regression analysis are met,
introduce some ways of dealing with assumption violations, and discuss
how violations may affect the validity of the inferences one makes using
regression analysis.

All too many investigators discover clerical errors in their data, such as
inputting a person’s age or a response to a question on a survey incorrectly,
only after they have already spent hours on their data analysis and have
perhaps reached conclusions that are hard to erase from their minds. Or af-
ter publication, a critic may point out that the researcher’s main conclusion
depended entirely on one research participant who was very unusual and
perhaps should not have even been included. Some statistical techniques
designed for avoiding mishaps like these are the topic of this chapter. We
discuss some methods of detecting cases that are somehow “irregular,”
which we define later in a number of ways. We talk about what to do when
they are detected and methods you might consider employing if you are
worried about the effects such irregularities may have on the quality of the
inferences you report. We provide only a rough overview of these topics,
which can be quite complicated. A more extensive treatment of some of
the topics we discuss and others we don’t can be found in Berry (1993), Fox
(1991), and Kaufman (2013), among others.

479
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16.1 Regression Diagnostics

In the evolution of regression analysis, diagnostic statistics are relatively
new, having been developed mostly since 1975 or so. These statistics have
several purposes. First, they can help to detect clerical errors, such as
inputting a person’s height as 720 inches rather than 72, which can seriously
distort an entire analysis if not caught. Second, they can detect violations
of the secondary assumptions of homoscedasticity and normality. Third,
they can be used to examine data that are suspect for some reason, such
as questionnaire results from someone who appeared not to understand
directions, to determine whether those data are irregular in some way.

Diagnostic statistics can also be used to identify cases whose presence
in the analysis are greatly influencing the results. For this reason, they can
easily be misused. For instance, using some of the statistics and methods in
this chapter, a clinical psychologist could find that three people in a study,
if deleted from the analysis, could improve the apparent effectiveness of
a therapeutic method he or she developed. This discovery could lead the
psychologist to look at the files of these patients and find some rationale
for excluding them. But any tool can be misused, and diagnostic statistics
are an important part of regression analysis. The best protection against
misuse is to require authors to explain in detail the reasons for deleting any
cases and the ways in which those deletions affected the major conclusions.
Although you can be faulted for your decision to exclude cases, you can’t
be accused of misconduct or unethical behavior if you are open about what
you have done.

Diagnostic statistics may also occasionally detect violation of the pri-
mary assumption of linearity. But intuition suggests that they would not be
nearly as powerful for that purpose as the methods discussed in Chapter
12, and our own analyses confirm that conjecture. For example, in a small-
scale simulation study, we found that a test on the regression coefficient for
X2 to detect curvilinearity correctly detected real nonlinearity 98% of the
time, while an approach we describe in section 16.2.4 detected nonlinearity
only 33% of the time.

One of the best ways of detecting irregularities is to search for cases that
are “extreme” in one sense or another. Such cases are often called outliers,
though we confine that term to a particular type of extreme case.
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16.1.1 Shortcomings of Eyeballing the Data

When computers were in their infancy, one of the major arguments given
against their use in data analysis was that computer analysis made it easier
to overlook extreme or unusual cases, even when they reflect obvious errors
such as adult human weights of 16 or 1,600 pounds. Most likely, this is a
clerical error of some kind that should be fixed before data collection. One
simple way of catching extreme cases such as this is to scan the data file
with your eyes, just looking for things that seem amiss. This is easy to do
if the data file is small, but with large data sets with many variables, such
“eyeballing” of the data may miss important irregularities.

Statistical computer programs quickly met the objection mentioned
above by making it easy to identify the highest and lowest score on ev-
ery variable, so that such extreme cases can be called to the investigator’s
attention. We recommend that prior to conducting an analysis, you ask
your computer program to print the smallest and largest values of every
variable in the data. Doing this would condense information about extreme
cases for all the variables into one small output and make it easy to detect
problems, such as someone whose weight is 1,600 pounds or who is −4.5
years old. Such values in the data are likely to show up as the minimum
or maximum value for the variable. If you see something like this, fix it
or otherwise investigate the source of the problem. Maybe you or your
research assistant simply mistyped a weight when entering the data. Or if
the data were collected by a computer program, maybe there is a bug in
the program that generates incorrect data in certain circumstances.

Today’s computer programs allow us to go far beyond this basic step.
Using statistics discussed in this chapter we can detect irregularities that
could never be discovered by eyeballing the data or looking at maximums
and minimums. For instance, suppose your data file contains information
about employees at a particular company, and the records for one employee
in your data include the following information:

• Present salary: $30,000

• Hours worked per week: 20

• Starting salary: $20,000

• Hours worked per week on starting: 40

• Number of years worked: 2
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This case is very unusual, though it isn’t obvious how unless you think
carefully about it. Notice that the employee earns the equivalent of a full
time employee (40 hours per week) who makes $60,000 per year. But only
2 years ago, when the person was working full time, he or she was making
only $20,000, so the employee’s salary is three times what it was only 2 years
ago. Most people don’t get such large raises so quickly. Such an unusual
case may represent a clerical error or some other factor worth checking.
But ignoring any one of the five entries in this person’s file would make
the case appear normal. For instance, if “number of years worked” were
not shown, we might assume it was 10 or 20 instead of 2, and the case
would appear normal. A similar argument can be made about any of the
other entries. Only when all five entries are considered together is the
case identified as unusual. But if these five entries were scattered among
20 or 30 other entries about the same employee, it is highly unlikely that
eyeballing of the data matrix would reveal anything amiss. Nor would this
case likely be brought to our attention if we look only at the minimum and
maximum values across all the employees on all five of these variables.
Some regression diagnostic statistics can easily detect such cases.

16.1.2 Types of Extreme Cases

A case can be extreme or otherwise noteworthy in three major ways, all of
which can be quantified. A case has high leverage if its pattern of regressor
scores (ignoring Y) puts it far from most or all other cases. Speaking a bit
loosely, cases with the highest distance are those whose vertical distance
from the regression surface is greatest. Influence measures how much a
case’s presence in the analysis actually moves the regression surface. As
we see later, there is a sense in which influence is the product of leverage and
distance, so high influence requires both high leverage and high distance.

The distinctions among distance, leverage, and influence are illustrated
most easily in simple regression. Consider the data set in Figure 16.1.
Suppose the sample contains only the 37 cases represented with a solid
square. If you regressed Y on X for only these 37 cases, the resulting model
would be Ŷ = 4.0 + 0.0X. Now suppose you added case A to the data,
denoted with a hollow square in the figure, bringing the sample size to 38.
This case is extreme in the distribution of X. But if case A is included in
the analysis, the regression model is unaffected; it is denoted with the thin,
solid black line, and its equation is identical: Ŷ = 4.0 + 0.0X. This case is
high in leverage, low in distance, and low in influence.
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FIGURE 16.1. The influence of adding one case (represented with a hollow triangle, cir-
cle, or square) to a regression model containing 37 cases (represented with solid squares).

But now suppose you added only case B, denoted with the the hollow
triangle. It is unusual on Y but quite ordinary on X. If it were included
in the analysis, Ŷ = 4.160 + 0.0X, depicted with the dashed line. The
regression constant has changed slightly, but the regression coefficient for
X has not changed at all. This case is low in leverage, high in distance, and
low in influence.

Finally, suppose you added only case C, denoted with the hollow circle.
When it is included in the analysis, Ŷ = 3.372 + 0.184X, represented in
the figure with the solid dashed line. Case C is high in leverage, high in
distance, and high in influence. If leverage is potential to influence, then
case C has realized that potential, whereas case A has not.

Users of regression analysis often focus on residuals when looking for
extreme or influential cases, paying close attention to cases with large
residuals (i.e., large distance). But this example shows that residuals are
not necessarily the best way to identify influential cases, because cases that
influence a regression analysis can “hide” by shrinking their own residual.
Notice that case C pulls the regression line toward it, cutting its residual by
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about 20%. Better would be some kind of a statistic that quantifies a case’s
residual relative to what it would be if the case weren’t in the analysis.
There is a measure of this, and we discuss it.

Complicating your learning of regression diagnostics, terminology is
not standard, and there are many statistics in the literature that are not
aptly named. For example, there is a measure called Cook’s distance that we
discuss later, but it is really a measure of influence rather than distance. An-
other statistic, called Mahalanobis distance, is a measure of leverage, because
it quantifies how unusual a case’s pattern of regressor scores is.

Cases with high leverage are here called leverage points. A case high in
leverage has the potential to be influential, but it may not be. Cases high in
distance are here called outliers, though other writers often use this term to
describe any kind of extreme or unusual case. Cases high in influence are
here called influential cases or influential points.

Leverage differs qualitatively from distance, in that cases extreme in dis-
tance can invalidate statistical inference in regression. But extreme leverage
violates none of the standard assumptions of regression, because regression
analysis makes no assumption about the distribution of regressors.1 But
high-leverage cases can affect power and precision of estimation. Consider
a single dichotomous regressor such as sex. If a sample includes 90 men
and 10 women, the difference between men and women on Y is going to
be estimated with less precision than if the sample includes 50 men and 50
women. But the 10 women are going to be much higher in leverage than
the 90 men.

16.1.3 Quantifying Leverage, Distance, and Influence

There is a variety of different ways that leverage, distance, and influence
can be measured, depending on how you think about these concepts, and
we talk about only some of them. They are all interrelated in one way or
another.

Leverage. We start first with leverage, which we defined earlier as the
atypicalness of a case’s pattern of values on the regressors in the model.
A case in a data set may have quite ordinary values on the individual
regressors, but its combination of regressor values might be quite unusual.
For instance, being 55 and being pregnant each are not particularly unusual

1There is a common misconception that regression analysis assumes normally distributed
regressors. This is not true. We have seen that dichotomous variables can be used as
regressors, and ANOVA is just a special case of regression analysis with dichotomous
regressors. But dichotomous variables are by definition not normal.
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if you were to randomly sample people from a broad population, but if
pregnancy and age were both regressors in a regression model, then a 55-
year-old pregnant woman would have high leverage since this combination
would be very unusual in almost any sample (except perhaps a sample from
a population of older pregnant women).

Consider a single variable X1 used as a regressor in a simple regression
model Ŷ = b0 + b1X1. Quantify the discrepancy between X1 and X1 for case
i in standard deviations of X1, and then square this result. This is just the
squared standardized value of X1 for case i:

Z2
X1i
=

(
X1i − X1

sX1

)2

(16.1)

The farther case i’s X1 value is from the mean of X1, the larger is Z2
X1i

. Z2
X1i

cannot be negative, and it will be zero only if X1i = X1. Z2
X1i

is known as
the Mahalanobis distance for case i, which we denote as MDi, but it is really
a measure of leverage rather than distance as we have defined the terms.
Note that although we have introduced this statistic in the context of a
simple regression model, Y is not used in its computation at all.

As defined in equation 16.1, we might call MDi univariate Mahalonobis
distance, because it is a measure of case i’s atypicalness on a single variable.
But Mahalanobis distance can be defined more generally in a multivariate
form that considers a case’s atypicalness on a set of regressors. Suppose we
have a second variable X2, and we want to calculate case i’s atypicalness in
its pattern of values on X1 and X2 considered jointly. You might think we
could just calculate Z2

X2i
for X2 in a comparable way and then add it to Z2

X1i
to get a multivariate Mahalanobis distance that considers both X1 and X2.
The trouble with this reasoning is that if X1 and X2 are correlated, this sum
would contain some redundancy. The stronger the correlation between X1

and X2, the more likely a case is to be atypical on both, and this sum would
double-count part of the discrepancy. A preferred multivariate measure
would quantify case i’s atypicalness on X2 accounting or adjusting for the
correlation between X1 and X2.

Recall from section 2.4.2 that the residuals in a regression are uncorre-
lated with the regressor or regressors. Later, in section 3.2.2, we showed
that if we regress X2 on X1, then the residuals from this regression, X2.1, are
uncorrelated with X1, making X2.1 a measure of X2 that has been purified
of its linear relationship with X1. With these residuals calculated, we can
then quantify how atypical case i is on X2.1, the part of X2 independent of
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X1, using the same logic as above. Case i’s atypicalness on X2 controlling
for X1 is

Z2
X2.1i
=

⎛⎜⎜⎜⎜⎝X2.1i − X2.1

sX2.1

⎞⎟⎟⎟⎟⎠
2

(16.2)

but because X2.1 = 0 (residuals always have a mean of zero), equation 16.2
simplifies slightly to

Z2
X2.1i
=

(
X2.1i

sX2.1

)2

The farther case i’s X2.1 value is from zero, regardless of sign, the larger
is Z2

X2.1i
. Now we can add Z2

X1i
and Z2

X2.1i
to get MDi, the Mahalanobis

distance for case i on the set of regressors X1 and X2. The larger MDi, the
more atypical is case i’s pattern of values of X1 and X2.

You might wonder what would happen if we reversed the order of
computations above, starting first with X2 and then generating the residuals
from regressing X1 on X2 to generate X1.2. It turns out that this doesn’t
matter. MDi will be the same. We can then further extend this logic to
k regressors by adding successive values of Zji to those that come before,
i.e., Z2

X3.12i
, Z2

X4.123i
, and so forth. The resulting MDi calculated as the sum

of all these k values of Z2 will not be affected by the order of the partialing
process.

MDi will tend to be large for cases that are more distant from the center
of a multivariate space defined by the joint distribution of the k regressors.
But when statisticians use the term leverage in regression analysis, they are
often not talking about MDi but rather a different statistic hi, which is often
labeled case i’s hat value. It is difficult to talk about the computation of hi

without using matrix algebra, so we refer interested readers to Appendix
D where we provide the formula. It turns out that hi is perfectly linearly
correlated with MDi. That is, their correlation across all N cases is exactly
1. So we know the case highest on MDi is also highest on hi, the case that is
second highest on MDi is second highest on hi, and so forth. Unlike MDi,
which has no upper bound, hi is always between 1/N and 1. Furthermore,
h = (k + 1)/N. From now on, whenever we make specific references to
“leverage” in computations, we are referring to h and not MD. As we will
see, h appears in the computation of many regression diagnostics, so it has
more value in regression diagnostics analysis than MD.

In large data sets with more than a couple of regressors, there will often
be one or two cases with large values of MDi and hi that stand out in the
distribution relative to others. But in small samples, or when considering a
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small number of regressors, it would not be uncommon to find several cases
with large values. For instance, from the weight loss data set in Table 3.1,
the largest MDi calculated using exercise frequency and food intake is 2.500
and the largest hi is 0.378. But four of the 10 cases have these largest values.
So really they aren’t atypical at all. Thus, these aren’t perfect measures of
atypicalness, but they generally are sensitive to the concept as most people
would think about it.

Distance. Distance measures how far case i’s Y value deviates from
Ŷi. Cases with extreme distance are outliers. Such cases are more impor-
tant than leverage cases because a sufficiently extreme outlier represents a
violation of at least one of the standard assumptions of regression, while
leverage points do not. An outlier may or may not have high leverage.

Outliers can be the result of clerical errors, so it is always worth checking
that first. Assuming any outliers found are legitimate values, they may
suggest revisions to the model are needed. For instance, if 80% of the cases
in a sample were women and 20% were men, and most of the outliers were
men, this might mean you need different models for men and women,
and the predominance of women in the sample forces the model to fit the
women’s data. Thus, developing separate models for men and women,
perhaps through the methods discussed in Chapters 13 and 14, may be
appropriate. Or if there are too few men to develop a separate model for
men, a large number of male outliers may suggest that they be excluded
from the sample and that the conclusions of the model be applied only to
women.

The most obvious measure of distance is a case’s residual ei = Yi − Ŷi,
but residuals can be refined. Cases with high leverage tend to pull the
regression surface toward them more than other cases do, thereby shrinking
their own residual. So residuals can be adjusted for the case’s leverage. We
can define a leverage corrected residual as ei/

√
(1 − hi). Leverage-corrected

residuals are rarely actually used, but an interesting fact is that the square
of a leverage-corrected residual equals the amount SSresidual would drop if
case i were excluded from the analysis.

The expected value of the squared leverage-corrected residual is
TVar(Y.X), which is estimated by MSresidual. So leverage corrected resid-
uals can be standardized by dividing them by

√
MSresidual, as

stri =
ei√

(1 − hi)MSresidual
(16.3)
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In large samples, residuals transformed by equation 16.3 are normally dis-
tributed with a mean of zero and a standard deviation of one. An additional
transformation

tri = stri

√
dfresidual − 1

dfresidual − str2
i

results in residuals that are exactly t-distributed with dfresidual − 1 degrees
of freedom. We will refer to these as t-residuals.2 Because t-residuals
are exactly t-distributed, they are useful for testing some of the standard
assumptions of regression, as discussed in section 16.2. The transformation
of stri to tri does not change the relative ordering of the cases on these
measures of distance. Their rank correlation will be 1.

Earlier we said that cases with high leverage tend to pull the regression
surface toward them more than cases with low leverage, thereby shrinking
their own residuals. We also just said that tri quantifies distance for case i
in reference to its Ŷi when it is excluded from the analysis. It turns out hi

has a similar interpretation. Define ei as case i’s ordinary residual Yi − Ŷi

and define dei as Yi − Ŷi,not i, where Ŷi,not i is defined as in section 7.2.3, as
case i’s estimate of Y derived from the model estimated without case i. It
turns out that

hi =
dei − ei

dei

In words, hi equals the proportion by which case i lowers its own residual
by pulling the regression surface (i.e., the model that produces Ŷ for all
cases) toward itself. Consider, for instance, a case with a residual of 6,
meaning its Y is 6 points above its Ŷ. If that case’s residual would be 8
points above its Ŷ if it were excluded from the analysis, then that point’s
hi is (8 − 6)/8 = 0.25 since inclusion of the point has pulled the regression
surface 25% of the way toward the point. Thus, the highest possible value
of hi is 1. The lowest possible value is 1/N; a case exactly at the mean
on all regressors but above or below the mean on Y will not change any
regression coefficients, but it will pull the entire regression surface up or
down 1/Nth of the point’s distance from the surface’s previous location.
This may be the simplest single definition of hi, but it can’t be considered
the primary definition, because it obscures the important fact that hi is
computed without reference to Y. That is, hi is determined entirely by the

2Terminology is inconsistent in the literature and computer software. What we call t-
residuals other authors and some statistics programs call studentized residuals. A distinc-
tion is also made by some authors between internally studentized residuals and externally
studentized residuals. In our notation, these are stri and tri, respectively. SPSS produces
something it calls standardized residuals, but these are something different still.



Detecting and Managing Irregularities 489

regressors, not by Y. It also reduces to an indeterminate form when dei = 0,
but hi is just as precisely defined for such cases as for any other case. But
hi is not really a measure of distance, even though we have included this
manner of defining hi in this section.

Influence. The influence of a case is quantified by the extent to which its
inclusion changes the regression solution or some aspect of it, such as the
estimates it generates for Y. It is the cases that most change the regression
surface by their inclusion in the analysis that we are most concerned about
and wish to identify for further scrutiny. There are many ways one can
measure influence. We restrict our discussion here to how the inclusion of
case i changes Ŷ for all cases or how bj is changed by the inclusion of case i.
But these aren’t the only ways of quantifying influence; a case could have
little influence on a regression coefficient or Ŷ, but its presence in a model
could greatly influence R or SE(bj), for instance.

The standard measure of a case’s influence on the regression surface
was suggested by Cook (1977), and is here denoted Cooki. This measure
is inappropriately named Cook’s distance; Cook’s influence would be better.
Cooki is proportional to the sum of squared changes in values of Ŷ across all
cases when case i is deleted from the analysis. To be precise, let dij denote
the change in the value of case j’s residual when the residuals are rederived
after case i is deleted from the analysis. Then

Cooki =
ΣN

j=1d2
i j

k ×MSresidual

where k is the number of regressors. Thus, Cooki is a measure of the
amount values of Ŷ move when case i is deleted from the analysis. It can
be thought of as the product of a particular measure of distance and a
particular measure of leverage. The key formula is

Cooki = str2
i ×

hi

(1 − hi)(k + 1)

As discussed earlier, stri ranks cases in the same order as tri, the best
measure of distance from the regression surface. And all the rest of the
right side is a measure of leverage in that it ranks cases in the same order
as hi.

Some have stated that Cooki is distributed as F with k + 1 and N − k − 1
degrees of freedom. But, in fact, the mean of an F distribution is always
over 1, and values of Cooki are rarely found as high as 1. Also, the standard
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assumptions of regression do not require any particular distribution for hi,
but hi has a major effect on Cooki, so no general rule can be stated for the
distribution of Cooki.

In multiple regression we can distinguish between total influence and
partial influence. Whereas Cooki measures the influence of case i on the
entire regression model, as manifested by what it generates for Ŷ for each
and every case, partial influence measures a case’s influence on a specific
regression coefficient bj. If, say, 10 regressors include nine covariates and
one independent variable X1, then we may be more concerned about cases
that substantially affect b1 than about cases with high total influence. Thus,
if your focus is on a specific regressor j, you may be particularly concerned
about identifying cases that have a lot of influence on that specific bj, but
care little or not at all about how any case influences any of the other k − 1
regression coefficients or the regression constant.

A statistic called df betai quantifies how much case i influences a specific
regression coefficient. In a regression model with k regressors, there are
k+ 1 dfbeta values for each case, one for each regression coefficient and one
for the constant. We will denote the df betai for regressor j as DB(bj)i. It is
defined as

DB(bj)i = bj − bj,not i

where bj,not i is bj when case i is excluded from the analysis. For instance,
if bj = 1 but bj,not i = 0.25, then DB(bj)i = 0.75, meaning that including case
i in the analysis raises bj by 0.75. Large values of DB(bj)i relative to other
cases suggests that case i is having a big effect on the estimate of the Xj’s
partial relationship with Y. It can be shown that

DB(bj)i =
eiceij

N(1 − hi)Var(Xj)Tolj

where ceij is the residual for case i in the crosswise regression predicting Xj

from the other regressors.

16.1.4 Using Diagnostic Statistics

The analysis of regression diagnostics is as much art as science. The ultimate
objective is to flag any cases in the data that are unusual or extreme in
some fashion for closer scrutiny. Some authors provide rules of thumb for
deciding whether a certain diagnostic statistic is too large or offer ways of
testing hypotheses about whether a certain diagnostic is larger than you
would expect to observe by chance. These hypothesis tests and rules of
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thumb make assumptions about the distribution of various diagnostics,
but extreme cases may make those assumptions less tenable. So, with one
exception mentioned here and later in section 16.2, we recommend instead
a descriptive and holistic approach in which you look at the distribution
of each of the diagnostics, notice those that really stand out as unusual
relative to others, and see if there are some cases in the data that seem to
consistently come to your attention using various diagnostics.

We illustrate this approach using the data set in Table 16.1. The 12 cases
in the data represent two groups coded X1 = 0 and X1 = 1, such as an
experimental and a control condition, along with two numerical variables,
X2 and X3. The diagnostic statistics in Table 16.1 are generated from a
regression estimating Y from X1, X2, and X3.

As already mentioned, one of the first uses of diagnostic statistics is
to identify clerical errors or other problems that may have occurred at the
data entry or data generation stage of the research. We discussed the use
of leverage for this purpose, as cases with an unusual pattern of scores on
the regressors will often show up as high in leverage. A leverage measure
such as hi can be useful for the identification of such errors and supplement
what can be learned by looking at the minimum and maximum values. We
provided an example of how the minimum and maximum values may fail
to detect a case with an unusual pattern of values in section 16.1.1.

The data in Table 16.1 provide another illustration of how simple eye-
balling of the data or the use of maximum and minimum values can fail to
uncover extreme cases. In these data, the third case is highest in leverage,
with values of MDi and hi of 7.157 and 0.734, respectively. These values are
no less than 75% larger than the corresponding statistics for the case with
the next highest leverage. But only very careful examination shows that
the value of 11 for X2 is unusual not by itself but in relation to its X3 value.
Notice that all cases with relatively small values of X3 also have values of
X2 that are relatively small, and that this is true regardless of whether X1

is 0 or 1. But not so for case 3, which has quite a large value of X2 even
though this case’s X3 value is relatively small. So it doesn’t fit the pattern
of the association between X2 and X3. Yet examining case 3’s values of
X1, X2, and X3 individually reveals nothing extreme or unordinary about
this case, and 11 is neither the maximum nor the minimum value of X2 in
the data, so looking at the minimums and maximums would not flag this
case as unusual. Measures of leverage have flagged this case as worthy of
further attention. If these were your data, you might take a look at the data
collection records to see whether X2 was entered incorrectly for this case
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or otherwise examine your measurement system to see if something went
awry.

We might worry that case 3, because of its unusual pattern of values on
the regressors, may distort the regression surface in some way. Diagnostic
statistics can help identify whether this is so for case 3, or perhaps for
some other case in the data. Starting first with distance, cases with a
large discrepancy between Y and Ŷ can suggest a violation of one of the
assumptions of regression, such as normality or homoscedasticity. We
recommend the use of the t-residual as the best measure of distance rather
than relying on stri or ei. In section 16.2 we discuss a way of using the t-
residuals for testing whether one of the assumptions of regression has been
violated. For now, notice that case 3’s t-residual is not particularly large in
absolute value. We might be more concerned about case 8, with a t-residual
of 2.563. You would expect only 1 in 29 cases in a regression analysis to
have a t-residual this large or larger in absolute value if the assumptions
of regression have been met. So in a sample of only 12 cases, this residual
stands out as potentially unusual or uncommon to observe. But as will be
seen in section 16.2.4, we would want to correct this probability for the fact
that we have looked at 12 residuals rather than just 1 before claiming we
have violated an assumption. This should remind you of the multiple test
problem discussed in Chapter 11.

Remember that MDi and hi measures the atypicality of a case i’s pattern
of regressor values. Neither of these statistics is calculated in reference to
Y. It could be that the large residual observed for case 8 reflects some kind
of data entry error for Y. This would be worth checking. You could also
calculate MDi or hi while treating Y as if it were a regressor. This could
be accomplished by requesting your computer to produce one of these
leverage measures when regressing some other variable in the data set on
X1, X2, X3, and Y. The dependent variable could even be a set of random
numbers since the dependent variable is not used in the computation of
leverage. When we did so, we found that case 8’s leverage was not partic-
ularly large (though it was the second largest out of 12, it didn’t stand out
much from many of the other cases), thereby reducing our concern that its
large t-residual is due to a clerical or computational error of some kind.

A case can be influential in that it changes Ŷ a lot for all cases in the
data, or it could be influential in its effect on one or more of the regression
coefficients. The former is measured with Cooki and the latter with DB(bj)i.
Observe that case 3, our case with the highest leverage, has a tiny Cook value.
Notice as well that the regression coefficients and regression constant, as
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measured by the DB(bj) statistics, are barely affected at all by the inclusion
of case 3. It has very little influence. The inclusion of case 8 (the case with
the largest distance as well) has the biggest influence in shifting all cases’
Ŷ values around, because it has the largest value of Cook. Observe as well
that it has the largest DB(b1) in absolute value. Its value of DB(b1) = 0.945
means that b1 is 0.945 larger than it would be if this case were excluded
from the analysis. With the case included, b1 = 2.832, which means that
if this case were excluded, b1 = 1.887. If X1 coded a treatment or control
condition, then including this case makes the adjusted mean difference in
Y between the groups 0.945 units larger than it otherwise would be. But
note that this value of DB(b1) is not particularly large relative to some of the
other cases. Observe that cases 2 and 7 have values of DB(b1) that are not
much smaller than 0.945 in absolute value. And whether case 8 is included
or excluded does not influence whether we claim a statistically significant
partial association between X1 and Y in these data.

16.1.5 Generating Regression Diagnostics with Computer
Software

Most good regression programs have options for saving and displaying
various regression diagnostics for examination and analysis. Different pro-
grams use different labels in the code for generating the same statistic, so
take a close look at your program’s manual to make sure that you under-
stand what is being generated.

The SPSS command below will generate all the regression diagnostics
we have discussed in this chapter.

regression/dep=y/method=enter x1 x2 x3/

save pred resid dresid sresid sdresid cook mahal leverage dfbeta.

The options following the save command produce, respectively, Ŷi, ei,
dei, stri, tri, Cooki, MDi, hi − (1/N), and DB(bj)i. These diagnostics are
inserted into the data file, though not in this order. Note that SPSS produces
something called the “centered leverage” rather than hi. To convert centered
leverage to hi, add 1/N to the centered leverage. SPSS labels some of these
diagnostics differently than we have. For instance, what we are calling the
t-residual, SPSS calls the “studentized deleted residual.”

The SAS code below accomplishes something similar:
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proc reg data=chap16;

model y=x1 x2 x3/influence;

output out=ch16diag p=pred r=resid student=str rstudent=t

cookd=cook h=h;run;

proc print data=ch16diag;run;

This code produces a new file (named “ch16diag” in the code above) con-
taining values for each case for all regressors and Yi as well as Ŷi, ei stri, tri,
Cooki, and hi, and prints these values on the screen. The influence option
following the model command outputs (though does not save) DB(bj)i val-
ues, though these are expressed in standardized form, meaning standard
errors from the estimate of bj. See the SAS documentation for guidance.

STATA can also generate diagnostic statistics from a regression analysis.
For instance, the code below generates Ŷi, ei, hi, stri, tri, and standardized
DB(bj)i. The text prior to the comma provides a variable name for the diag-
nostics saved into the data file. The list command prints the diagnostics
on the screen.

regress y x1 x2 x3

predict pred,xb

predict resid,residuals

predict h,hat

predict str,rstandard

predict tr,rstudent

predict dbb1,dfbeta(x1)

predict dbb2,dfbeta(x2)

predict dbb3,dfbeta(x3)

list pred resid h str t dbb1 dbb2 dbb3

The RLM macro described in Appendix A will produce all the diagnos-
tics discussed in this chapter, except for the df beta values, by adding the
diagnose=1 option to the RLM command. The diagnose option also gener-
ates output showing the minimum and maximum values of the regressors
and the outcome, Ŷ, and a few of these diagnostics. See the documentation
in Appendix A.

16.2 Detecting Assumption Violations

In Chapter 4 we introduced the assumptions of linearity, normality, and ho-
moscedasticity. In this section we describe some approaches to detecting
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violations of these assumptions. These assumptions can be tested individ-
ually or they can be tested as a set, though testing them as a set provides
only the vague conclusion that an assumption is violated without specify-
ing which one.

16.2.1 Detecting Nonlinearity

Under the assumption of linearity, the expected value of the errors in es-
timation of Y for any combination of regressors is zero. Residuals can be
used to determine whether the linearity assumption is violated, but none
of the methods based on a residual analysis that you will find described
here or in other books is likely to be as good at detecting nonlinearity as
the methods discussed in Chapter 12.

In section 2.4.4 we provide an example of a nonlinear relationship,
depicted in Figure 2.7 and replicated here in this section in Figure 16.2,
panel A. The best-fitting line of the form Ŷ = b0+b1X is found superimposed
on the scatterplot. Notice that for both relatively large and relatively small
values of X, the residuals are predominantly negative, but for moderate
values of X, the residuals are predominantly positive. Figure 16.2, panel B,
depicts the t-residuals generated from Ŷ = 3.289 − 0.220X, the best-fitting
linear regression line, against X (the solid line in Figure 16.2, panel A).
Notice the obvious pattern, with negative residuals for extreme values of
X and positive residual in the middle of X. This kind of pattern, with
residuals that are systematically positive or negative in certain ranges of
the regressor, suggests that the relationship between X and Y is not well
described as linear. Figure 16.2, panel C, is a comparable plot of t-residuals
from the quadratic model Ŷ = 1.254 + 1.587X − 0.359X2. The quadratic
model itself is depicted with the dotted line in Figure 16.2, panel A. In
the scatterplot of t-residuals against X, there appears to be no systematic
tendency for residuals to be positive or negative in certain ranges of X,
suggesting that any nonlinearity that does exist in the relationship between
X and Y is well described by the quadratic model.

For models with more than one regressor, comparable plots of residuals,
such as those in Figure 16.2, can be generated with Ŷ on the X-axis. Alter-
natively, a residual scatterplot can be used to check for evidence of partial
nonlinearity. For instance, if you are concerned that the partial relationship
between X1 and Y is nonlinear when you control for X2, you can regress Y
on X1 and X2, generate the residuals from this regression, and then plot the
residuals against X1, looking for evidence of nonlinearity in the plot.
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FIGURE 16.2. A nonlinear relationship (panel A) and the t-residuals from a model without
(panel B) and with (panel C) the square of X as a regressor.

Intuition tells us that the conclusions we reach with an “eyeball” test of
nonlinearity should be treated with a grain of salt. Looking at scatterplots
such as these will tend to reveal only obvious nonlinearity, such as in this
example. More subtle nonlinear relationships, such as a shallow curve, are
not likely to be detected with the eye. There is also the possibility that your
brain may detect a pattern in what is really just a random dispersion of the
residuals in the plot. Systematic tests of nonlinearity described in Chapter
12 not only are superior, for they may detect nonlinearity we may not see,
but also protect us from misinterpreting random variation as nonlinearity.
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16.2.2 Detecting Non-Normality

Regression analysis assumes that the conditional distributions of Y are
normal or, equivalently, that the errors in estimation of Y are normally
distributed conditioned on the regressors. Some authors recommend con-
structing a histogram of the residuals (either ei or tri) and eyeballing the
histogram to see if you can detect evidence of non-normality. The two prob-
lems with this approach are just as described in the section on detecting
nonlinearity—that we often see non-normality that really is just random
variation, or we fail to see real non-normality when it exists. The eye is
good at detecting only obvious non-normality, just as it is good at detecting
only obvious nonlinearity. The second problem is that a histogram of the
residuals reflects only the marginal distribution of the errors in estimation,
ignoring the conditioning that is part of the assumption. The counter to
this concern is that if the marginal distribution of the errors in estima-
tion is non-normal, mostly likely so too is one or more of the conditional
distributions.

There are formal tests of non-normality of the errors in estimation that
one could apply. But they can detect non-normality that is trivial and not
likely to affect the accuracy of the inferences one is making with a regression
analysis. In Chapter 12 we discussed various transformations that can be
used to reduce nonlinearity in relationships that also can have the effect of
reducing non-normality in errors in estimation. But they carry with them
the disadvantage that transformed metrics may be harder to interpret, and
it can be perceived by potential critics as arbitrary and used in an attempt
to make results cleaner than they actually are.

Our perspective is that unless you see clear evidence of fairly extreme
non-normality in the residuals and have ruled out the existence of clerical
errors and highly influential cases using the methods discussed in section
16.1.3, don’t worry too much about all but extreme violations of normality.
It turns out the normality assumption is one of the least important of the
assumptions of regression for most of the widespread uses. You might
also consider verifying that your results replicate when using one of the
methods we discuss in section 16.3 that make weaker assumptions about
the errors in estimation. But if the non-normality is inherent in the system of
measurement of Y, such as the result of using a single-item ordinal response
scale (e.g., strongly disagree, disagree, agree, strongly agree) or small counts of
things (e.g., how many televisions a person has), consider learning about
one of the methods discussed in Chapter 18 designed for the modeling of
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ordinal, discrete, or count outcomes, which are non-normal by definition
or turn out to be so in most applications.

16.2.3 Detecting Heteroscedasticity

In most simple terms, homoscedasticity means that the conditional distri-
butions of Y have equal variances. The assumption is most easily described
in the context of simple regression and states that TVar(Y.X) is the same re-
gardless of X. Because the conditional distribution of Y is centered around
Ŷ, the assumption can also be expressed in terms of the variance of the
errors in estimation TVar(e.X). Figure 16.3, panel A, depicts a sample of 500
cases from a population regression model Ŷ = 5+ 0.25X with homoscedas-
tic errors. As can be seen, there is no apparent pattern in the distribution
of the residuals or, alternatively, the conditional distribution of Y given X.
The residuals appear roughly equally dispersed around the regression line.
It appears that the dispersion of Y given X is the same regardless of X.

In the description above, as well as what follows below, we can replace
X with Ŷ, which, of course, is a linear combination of k values of Xj, the
regressors in the model. That is, the assumption pertains to the conditional
distribution of Y for the linear combination of k values of Xj that is Ŷ.

Violation of this assumption is known as heteroscedasticity. The most
common type of heteroscedasticity occurs when TVar(Y.X), the true con-
ditional variance of Y given X, is largest for the highest or lowest values
of some regressor or combination of regressors, a situation we could call
ordinary heteroscedasticity. Figure 16.3, panel B, depicts such a situation,
where the variability of Y and therefore ei is larger for higher values of X or
Ŷ. Two alternative forms of heteroscedasticity are butterfly heteroscedas-
ticity, as in Figure 16.3, panel C, and inverse butterfly heteroscedasticity, as
in Figure 16.3, panel D. In butterfly heteroscedasticity, the conditional dis-
tribution of Y is larger at more extreme values of X or Ŷ, and in inverse
butterfly heteroscedasticity, variability in Y is largest in the middle of the
distribution of X or Ŷ.

In Figure 16.3 we place Y and X on the axes of the figures. But you
could replace the Ys with residuals to produce partial scatterplots (see, e.g.,
Figures 3.10 and 3.12). When testing the significance of the regression coef-
ficient for Xj or producing confidence intervals for Tbj, we would assume
partial homoscedasticity, meaning that the variance of the errors in the esti-
mation of Y when controlling for all regressors but Xj is uncorrelated with
Xj when holding all other regressors constant.
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FIGURE 16.3. Scatterplots and the linear regression of Y on X reflecting homoscedastic-
ity (panel A), ordinary heteroscedasticity (panel B), butterfly heteroscedasticity (panel C),
and inverse butterfly heteroscedasticity (panel D).

Heteroscedasticity can occur in a number of ways. One way is the
existence of an interaction involving one regressor and another variable that
may or may not be one of the regressors in the model. For instance, we could
imagine in Figure 16.3, panels B or C, drawing two lines relating X to Y, one
for group A and another for group B, that differ in slope but are opposite in
sign. By ignoring the existence of two subpopulations, each with a different
relationship between X and Y, and estimating a single regression coefficient
for X can produce a pattern of residuals or conditional distributions of Y
that look like those in panel B or C. Including an interaction in the model
can eliminate heteroscedasticity.
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A second situation that can produce heteroscedasticity occurs when the
population of interest is composed of two subpopulations, with one ranging
more widely than the other on all the variables. For instance, consider
natives born in a specific country and immigrants not born there. The
immigrants will typically be from many nations and continents, while the
natives by definition are from one. The immigrant subpopulation is likely to
be more heterogeneous on many variables than the native subpopulation.
When subpopulation A is more heterogeneous than subpopulation B on
all variables in the analysis, then the extremes of each regressor will be
dominated by group A, which also has a greater variance on Y than group
B. This will produce butterfly heteroscedasticity. It can be shown that when
a population consists of two equal-size bivariate normal populations, and
TSX and TSY are twice as large in one subpopulation as in the other but the
simple regression coefficients relating Y to X are equal, TSE(b1) is 17% larger
than the value calculated from the regression formula ordinarily used to
calculate SE(b1). This does not sound like much, but if the actual standard
error is 17% larger than what your calculations show, then the probability
of finding a significant association between X and Y when there is no real
association is nearly twice as high as the α-level being used for the test.

A third situation that can produce heteroscedasticity occurs when Y is
measured with less random error for certain cases than others that differ
on the regressors. We discuss random measurement error in section 17.2.
Suffice it to say now that random measurement error tends to increase
a variable’s variance relative to what it would be if that variable were
measured without random error. If people who score higher (or lower) on
X have their Y measured with more error, heteroscedasticity is the result.

Heteroscedasticity can also result when modeling discrete count out-
comes using ordinary least squares regression. If your dependent variable
were something like the number of times a person donated to political can-
didates in the last year, Y would be dominated by zeros and 1s, a few 2s,
fewer 3s, and so forth. In a least squares linear model of a count Y such
as this, the conditional variance of Y is typically positively correlated with
its expected value. That means the variance of the errors in estimation will
tend to be larger for people who are estimated by the model to donate more
often.

Heteroscedasticity does not bias regression coefficients. Rather, het-
eroscedasticity exerts its influence on inference in regression analysis pri-
marily through its effects on the estimates of the standard errors of the
regression coefficients. Ordinary and butterfly heteroscedasticity tend to
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result in estimates of standard errors that are too small. This produces
confidence intervals that are too narrow and hypothesis tests for regression
coefficients and TR that are invalid. Inverse butterfly heteroscedasticity
tends to result in estimates of standard errors that are too large. This pro-
duces confidence intervals that are too wide and hypothesis tests that are
lower in power than they otherwise would be if homoscedasticity were
met.

When a regressor is dichotomous, we can talk about the conditional
variance of Y in each of the two groups. Heteroscedasticity has its biggest
effect on the standard error for the regression coefficient for a dichotomous
regressor when the groups are different in size. When the smaller group is
more variable on Y, the standard error for the dichotomous regressor tends
to be underestimated, but when the smaller group is less variable on Y, the
standard error tends to be overestimated.

Given that the quality of our inferences in regression analysis are depen-
dent on the quality of our estimates of standard errors (since standard errors
determine confidence interval width and p-values), it is worth testing for
its existence so you can make an informed decision about how to proceed.
There are many tests of heteroscedasticity that have been described in the
regression analysis literature (e.g., Breusch & Pagan, 1979), and you may
be familiar with some from the ANOVA literature, such as Levene’s test.
These generally require some belief about the nature of the heteroscedas-
ticity (e.g., the variance in Y increases with X) or they make assumptions,
putting you in the awkward predicament of wondering whether the as-
sumptions of your test of assumptions are met.

Rather than describing these tests, of which there are several, we provide
a fairly simple method of testing for ordinary and butterfly heteroscedas-
ticity that can be conducted with any regression program that allows you
to generate and save t-residuals, as most do. The test relies on the fact that
under the standard assumptions of regression, E(tr2

i ), the variance of the
t-residuals, tri, is identical for all values on all regressors. So a significant
association between tr2

i and any regressor or set of regressors is evidence
for heteroscedasticity, and we can test for heteroscedasticity by testing the
independence of tr2

i from the regressors.
The form of this test we advocate requires normalizing tr2

i , which forces
its distribution to one approximately normal in form. This process involves
replacing the values of tr2

i with their rank position in the distribution, such
that the smallest squared t-residual gets a value of 1, the next smallest a
value of 2, and so forth, up to N. The rank order of ties can be determined
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arbitrarily, or they can each be assigned the mean rank for which they are
tied. Most statistical programs have a command for replacing scores with
their rank position in the distribution.

With these ranks derived, divide them all by N+1 and then replace these
with the value from the standard normal distribution that cuts off the lower
100× [rank/(N+1)]% of the normal distribution from the rest. These values
can be found with the help of Appendix C, or they can be derived by your
software. For example, if N = 19, then dividing the ranks 1 through 19 by
20 yields .05, .10, .15, and so forth, up to 0.95. From the standard normal dis-
tribution, these convert Z-scores of −1.645,−1.282,−1.036, . . . , 1.645. These
resulting normalized values or Z-scores are known as Van der Waerden
scores.

These Z-scores are roughly normally distributed, and under the as-
sumption of homoscedasticity they are independent of all the regressors.
So to test for ordinary heteroscedasticity, we regress these Z-scores on all the
regressors in the model and test the significance of the multiple correlation.
If R in this regression is statistically significant, then the homoscedasticity
assumption is violated. If you are particularly interested in certain regres-
sors, you would look at the t-statistic for those regression coefficients in
this regression with the Z scores as the dependent variable. A significant
regression coefficient implies partial heteroscedasticity.

This approach only tests for ordinary heteroscedasticity. You could
also test for butterfly or inverse butterfly heteroscedasticity by including
the squares of numerical regressors in this model at the same time. A
nonsignificant R would suggest no violation of the homoscedasticity as-
sumption, whereas a significant R could mean either ordinary, butterfly, or
inverse heteroscedasticity. But you could test collectively for any butter-
fly or inverse butterfly heteroscedasticity by testing all squared terms as a
set using the method described in section 5.3.3, or you could test for het-
eroscedasticity due to a specific variable by testing the significance of the
set defined as that variable’s unsquared and squared terms. If a variable’s
squared term is nonsignificant, you could drop it and reestimate the model,
examining the partial regression coefficient for that regressor as a test of
ordinary partial heteroscedasticity, while allowing for butterfly or inverse
butterfly heteroscedasticity involving other regressors that still have their
squared terms in the regression.

We illustrate by testing for heteroscedasticity in the self-censorship anal-
ysis from section 10.2.4. Recall in that example we estimated a person’s
willingness to self-censor from his or her age and shyness. Age was a mul-
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ticategorical variable with four ordinal age categories (Generation X, Gen-
eration Y, baby boomer, pre-baby boomer). In the code below we assume
that three indicator variables coding age cohort are already constructed and
held in variables d1, d2, and d3. The SPSS code below generates and nor-
malizes the squared t-residuals and regresses these normalized residuals
on age cohort, shyness, and the square of shyness.

regression/dep=wtsc/method=enter d1 d2 d3 shy/save sdresid.

compute trsq=sdr 1*sdr 1.

rank variables=trsq.

compute rtrsq=rtrsq/462.

compute z=idf.normal(rtrsq,0,1).

compute shysq=shy*shy.

regression/dep=z/method=enter d1 d2 d3 shy shysq.

In STATA, use

regress wtsc d1 d2 d3 shy

predict tr,rstudent

gen trsq=tr*tr

egen rtrsq=rank(trsq)

replace rtrsq=rtrsq/462

gen z=invnormal(rtrsq)

gen shysq=shy*shy

regress z d1 d2 d3 shy shysq

The SAS code below does the same analysis, assuming that the data file
containing the regressors and the t-residuals are in a file named “ch16diag.”
SAS has a special procedure built into PROC RANK for generating Van der
Waerden scores, which the code below utilizes.

data ch16diag;set ch16diag;trsq=t*t;shysq=shy*shy;run;

proc rank data=ch16diag normal=vw ties=mean out=ch16diag;

var trsq;run;

proc reg data=ch16diag;

model trsq=d1 d2 d3 shy shysq;run;

From this analysis, R = 0.135, F(5, 455) = 1.695, p = .134, meaning we fail
to reject the assumption of homoscedasticity. But this omnibus test doesn’t
preclude the possibility of partial heteroscedasticity. The regression coef-
ficient for the square of shyness was not statistically significant, meaning
no butterfly heteroscedasticity involving shyness. When the squared term
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was removed and the model reestimated, none of the regression coefficients
were statistically significant, nor was R,F(4, 456) = 2.104, p = .079. We also
looked for evidence of partial heteroscedasticity involving age by adding
the three indicator variables coding age to the model that already contained
shyness (only the linear term). The increase in R was not statistically sig-
nificant, F(3, 456) = 1.744, p = .157. Combined, these analyses support the
conclusion that the homoscedasticity assumption is met.

In the next section we describe a test on the whole set of standard as-
sumptions that can be performed by applying a Bonferroni correction to
the p-value of the highest t-residual. But that test is not nearly as power-
ful at detecting heteroscedasticity as the test we just described. In 1,000
bivariate samples of size 50 from artificial populations with butterfly het-
eroscedasticity, the test we describe next failed to discover the problem
in 371 samples, while the test described in this section failed in only six
samples.

16.2.4 Testing Assumptions as a Set

In the prior pages we described some methods for examining the plausibil-
ity of the assumptions of linear regression analysis. We can conduct a more
general test of the null hypothesis that none of the assumptions is violated
against the alternative that at least one is violated. Perhaps the simplest
method for detecting a violation of this set of assumptions relies on the
distribution of t-residuals. As discussed in section 16.1.3, these follow an
exact t-distribution under the standard assumptions of regression. Using
the t(dfresidual) distribution, one can derive a two-tailed p-value for tri.

The p-value for each t-residual is sometimes misinterpreted as testing
the null hypothesis that case i falls on the true regression line. If that were
so, then the proportion of significant t-residuals would approach 1 as N
increases since almost no cases in fact fall exactly on the true regression
line. But if the standard assumptions hold, we expect only 5% of the t-
residuals to be significant at the .05 level, no matter how large the sample.
The hypothesis tested using the p-value for each t-residual is actually that
Yi falls within a normal distribution of scores around the regression line.
But because the number of residuals is N, a Bonferroni correction should
be applied to the p-value for each tri to compensate for the fact that we are
doing N hypothesis tests in search of something statistically significant. So
the largest t-residual in absolute value is considered statistically significant
only if its significance level is below some chosen α-level, such as 0.05,
even after being multiplied by N. A statistically significant residual after
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this Bonferroni correction suggests that at least one of the assumptions of
regression is violated without specifying which one.

Most statistical packages have a command for generating the p-value for
a t-statistic, so this test is fairly easy to implement once you have generated
the t-residuals as discussed in section 16.1.5. Section 11.2.5 provides SPSS,
SAS, and STATA code for generating p from t. This test is implemented in
the RLM macro described in Appendix A. It provides output containing
the largest t-residual and its Bonferroni-corrected p-value.

Another test of the standard assumptions of regression does not rely so
heavily on individual t-residuals and may be considerably more powerful
for detecting any violation that affects many residuals somewhat without
affecting any single residual too greatly. In this test we pick some arbitrary
probability, count the number of t-residuals that are statistically significant
at this level (without a Bonferroni correction), and use the binomial distri-
bution to test whether this number is greater than would be expected by
chance. For instance, in a sample of 50 cases, by chance we would expect
five t-residuals to be statistically significant with a p-value of no greater
than .10. If we observe 11 such residuals, the binomial distribution tells
us that that the probability of observing so many is only .0094; this indi-
cates that at least one of the standard assumptions must be violated. The
binomial test is not perfectly accurate for this use, for it assumes that the N
residuals are statistically independent, and they are not quite independent.
But in tests we have run, the error is small.

16.2.5 What about Nonindependence?

We have not yet addressed the assumption of independence. The assump-
tion of independence pertains to the size of the errors in estimation—that
there is no relationship between the error in the estimation of Y for case i
and the error in estimation of Y for case j. This assumption can be harder
to test than other assumptions and is probably routinely violated. Nonin-
dependence can creep into a study in all kinds of ways if you aren’t careful
about your sampling, study design, and data collection procedure.

Nonindependence can have various effects on statistics from a regres-
sion analysis, but its effect on standard errors is one of the bigger concerns.
Research shows that violation of the independence assumption can result
in standard errors for regression coefficients that are too large or too small,
but in most circumstances the result will be underestimation. As a result,
confidence intervals will be too narrow and p-values inappropriately small
when this assumption is violated.
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To understand why, consider two studies identical in purpose but differ-
ent in method. Suppose you are interested in comparing men and women
in their attitudes toward a controversial social topic, such as gun control.
You decide to ask 200 people their attitudes by randomly visiting houses
in a city and asking the opinions of everyone at home at the time you visit.
Because some houses have more than one person in the home, you won’t
need to visit 200 houses, but this doesn’t change the fact that you will still
end up talking to 200 people. Once you have talked to 200 people, you can
then conduct a test comparing the attitudes of the men and women you
ask.

Now consider a variation on this method, where you actually visit 200
houses because you decided to talk to only one of the people living at
each house you visit. This may take more time than the variation of this
study just described, but at the end you’ll have 200 responses, and you can
compare the responses of men and women, just as in the prior version.

In both variants of this study, N = 200. But the latter study contains
more information about how men and women differ, because the responses
of the men and women are more likely to be independent, with the caveat
we describe later. Its effective sample size is 200 or nearly so, but the former
study’s effective sample size would be much smaller than 200. In the former
study, people living together are likely to have similar attitudes, because we
know that people influence each other, they selectively sort themselves into
social groups based on similarity in beliefs, and they are more likely to be
attracted to and partner with people who are like themselves. So if you were
to regress a person’s attitude about gun control on an indicator variable
coding sex in order to test for sex differences, the errors in estimation
of Y are not likely to be independent between people living in the same
house. But this is not a problem in the second version of the study, because
you have data from only one person in each house. The consequence is
that we would expect the standard error for sex to be smaller in the first
version of the study, because it is treating the 200 people as if they are
providing independent information about variability between people in
their attitudes. Although 200 people were asked about their attitudes, we
don’t have 200 independent measurements of those attitudes.

The problem with the analysis from the first version of the study is not
easily fixed after the fact without relying on more complicated regression
methods. Although you could include a set of indicator variables to code
the house a person lives in, this would consume many degrees of freedom
and could drastically lower the power of hypothesis tests.
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Earlier we said that the version of the study based on only a single per-
son interviewed at a selected house is more likely to produce independent
responses than if everyone at the house were interviewed. This is true,
but even then, nonindependence may exist. For instance, people living
on the same street may know each other, talk to each other, and influence
each other’s attitudes. So two people living on the same street may give
nonindependent responses even if they don’t live in the same house. Or
maybe people who are politically liberal are more likely to live on Equality
Street, whereas politically conservative people are more likely to live on
Liberty Street. Even if no one talks to his or her neighbors, the errors in
estimation of a person’s response may be related to errors in estimation for
people living on the same street.

Or suppose you were to randomly call 500 people living throughout the
United States to provide data on some variable of interest. This is common
in survey research and public opinion polling. Such a sampling plan might
seem like the epitome of a method that would satisfy the independence
assumption. But people living in the same state or city might be more
similar to each other on the variable you are measuring than people living
in different states. Technically, this is a violation of independence, although
researchers rarely do or even think much about it. And it is common in
experimental research to collect data from people in groups. For instance,
perhaps you are presenting stimuli to people on a computer screen, and to
save time, you recruit five people at a time and sit them in front of different
computers in the same room to collect data from them at the same time.
But are their responses likely to be independent? Perhaps, but suppose that
the dependent variable is affected by the temperature of the room. If the
temperature of the room fluctuates from day to day or even hour to hour,
this can produce nonindependence in the errors of estimation of Y between
subsets of people in the room at the same time their data were collected.
Obviously, if these people are allowed to interact during the study, this
can also produce nonindependence, especially if they talk about the study
itself, their responses to the questions, and so forth, as the data are being
collected.

Although you may not be able to completely avoid or eliminate non-
independence, you can at least be conscious of its possible existence and
try to reduce it through choices made about sampling and study design.
After the fact, it is hard to eliminate unless you have a good idea of where
it comes from. Of course, some methods you are already familiar with
are designed with nonindependence in mind. An example is the paired-
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samples t-test, which is designed for comparing the means of Y among
people who are “matched” and hence nonindependent. There are some
tests of independence that can be used for certain types of sampling and
research designs, and there are special analytical methods that are well
suited to modeling data that are likely to be nonindependent in some way,
such as multilevel modeling. For a discussion of some of these methods and
nonindependence more generally, as well as ways of quantifying nonin-
dependence, see Griffin and Gonzales (1995), Grawitch and Munz (2004),
Kenny and Judd (1986), Kenny, Mannetti, Pierro, Livi, and Kashy (2002),
Luke (2004), O’Connor (2004), and Raudenbush and Bryk (2002).

16.3 Dealing with Irregularities

Neither heteroscedasticity nor non-normality affects the expected values of
b0, bj, and MSresidual, so these statistics provide unbiased estimates of Tb0,
Tbj, and TVar(Y.X) even in the presence of these conditions. But hypothesis
tests and confidence intervals can be invalidated by violations of any of
the standard assumptions. Thus, you typically should do something about
cases suggesting violations of the standard assumptions.

But what do you do? There are many exceptions, but generally your
four options are correction, transformation, elimination, and robustifica-
tion. They are normally considered in that order. Correction refers simply
to the correction of clerical errors. Transformation means applying a log-
arithmic or other transformation to a variable—either a regressor or the
dependent variable—so that the case is no longer so extreme. Elimination
means eliminating the case from the sample. Robustification means replac-
ing the regression analysis by an alternate method less sensitive to extreme
cases. Correction of clerical errors needs no discussion here, and transfor-
mations were discussed in Chapter 12. In the rest of this section, we discuss
elimination and robustification.

When you eliminate a case simply because it is extreme in some sense,
you are essentially adding a major qualification to your conclusions. You
are admitting that the conclusions apply only to the subpopulation defined
as the population of cases that exclude extreme cases like the one or ones
you eliminated. At least four questions are left unanswered: (1) how the
studied subpopulation differs from the rest of the population, (2) how large
the included and excluded subpopulations are, (3) how the independent
variables relate to the dependent variable in the excluded subpopulation,
and (4) whether these relationships in the excluded subpopulation might
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be so large as to make the relationships in the studied subpopulation ir-
relevant. Nevertheless, an extreme score may be the major available clue
that a participant in a study did not understand the directions he or she
was given in a survey or experiment, or that the experimental manipula-
tion was done improperly for that one participant, or may in other ways
provide a defensible reason for discarding the participant’s data. Thus,
elimination may be a reasonable choice. This is especially true if post hoc
examination of the case reveals something odd about it—for instance, ev-
idence that a person did not understand experimental directions. But for
the reasons mentioned, elimination may sometimes be a reasonable choice
even without such evidence.

There are two general types of robust approach. One set of approaches
uses alternative methods for estimating the regression coefficients. The
other uses ordinary formulas for the regression coefficients but some alter-
native method for calculating significance levels or estimates of standard
errors. The former approaches essentially give less weight to outliers. This
raises fundamental questions about the purpose of the regression. After
all, down-weighting an outlier can lead to a regression solution that fails
to represent adequately the fact that such outliers do occasionally occur.
So we shall consider only the second approach, in which the investigator
uses ordinary regression formulas to derive the best-fitting model, but em-
ploys an alternative method to find standard errors, confidence intervals,
or p-values.

We consider four methods: heteroscedasticity-consistent standard er-
rors, the jackknife, bootstrapping, and permutation tests. All of these
are practical only with computers, but with the right software they take
anywhere from a few seconds to a few minutes on an ordinary personal
computer. None of these are panaceas for problems produced by various
irregularities such as assumption violations. Even these methods are non-
robust in certain circumstances too numerous and complicated to outline
here. Each has variants we do not describe to deal with some of the weak-
nesses of other variants. The point of our discussion below is to outline a
bit about how these methods work, not to describe all the forms they take
or offer recommendations as to the specific circumstances in which you
might choose to use them. Each of these methods has been heavily studied.
General overviews can be found in Edgington (1995), Efron and Tibshirani
(1993), Good (2001), Lunneborg (2000), and Rodgers (1999).
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16.3.1 Heteroscedasticity-Consistent Standard Errors

The formula for the standard error of a regression coefficient in section
4.4.3 that is implemented in most regression analysis programs assumes
homogeneity in the variance of the errors in estimation. This assumption
justifies the use of MSresidual in the numerator of the formula as an estimate
of the conditional variance of Y, which is assumed to be equal for all
combinations of regressors.

There is a family of heteroscedasticity-consistent (HC) standard error es-
timators for the regression coefficients that do not require this assumption.
They are known as sandwich estimators in the statistics literature, because
their formulas in matrix algebra look like a sandwich, with the matrix of val-
ues on the regressors as the “bread” and the residuals, usually squared and
possibly weighted in some fashion by each case’s leverage, serving as the
“meat.” They are called HC estimators, because unlike the usual OLS stan-
dard error estimator, which is biased and does not converge with increased
sample size to the proper value when the homoscedasticity-assumption
is violated, the HC estimators approach the correct value with increasing
sample size even in the presence of heteroscedasticity. In statistics, the
converging of an estimator to its correct value with increasing sample size
is a property called consistency.

Use of one of these standard errors does not require modifying the
mathematics to estimate the regression coefficients. Rather, the usual stan-
dard error estimator is simply replaced with a HC standard error estimator.
There are many forms HC estimators take, the earliest frequently attributed
to White (1980) and often called the White or Huber–White estimator and
denoted HC0. This early version has been improved into forms labeled
HC1, HC2, HC3, and HC4. They defy nonmathematical description. We
offer the formula for HC3 in matrix algebra form in Appendix D. Other-
wise, see Cribaro-Neto (2004), Hayes and Cai (2007), and Long and Ervin
(2000) for details about their computation and examples of application.

When heteroscedasticity is a concern, one of these estimators can pro-
vide more solid footing. But Long and Ervin (2000) make a case for the
regular use of one of these standard errors even when the homoscedasticity
assumption is met. This is because they tend to perform better when the ho-
moscedasticity assumption is violated, regardless of the form heteroscedas-
ticity takes, than the standard error estimator that assumes homoscedastic-
ity. Research shows HC3 and HC4 tend to work best. Importantly, these
standard error estimators work well even when the homoscedasticity as-
sumption is reasonable. Given that these estimators are easy to compute
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and are even available in some software packages (all these HC estimators
are available in the RLM macro for SPSS and SAS described in Appendix A;
STATA and SAS offer several of them as well), perhaps one day researchers
will rid themselves of the homoscedasticity assumption and use one of
these estimators for inference in regression analysis as a matter of routine.

16.3.2 The Jackknife

The jackknife, or jackknifing, was given its name by J. W. Tukey on the
grounds that it may not be the very best tool for anything at all, but it’s a
serviceable tool in a great many situations. To jackknife a statistic or a test,
divide the sample into g groups of equal size, where g is at least 10. In fact,
in practice g is frequently set to N, so each “group” contains only one case.
Then compute the statistic of interest after deleting group 1 from the sample;
then add group 1 back in, delete group 2, recompute the statistic; then add
group 2 back in, delete group 3, recompute the statistic; and continue in
this manner through all g groups. At the end of this process, you will have
g estimates of the statistic of interest. The standard deviation of these g
estimates can be used to compute the standard error of the original statistic.
Inference can then proceed in the usual way, by constructing a confidence
interval using this jackknife estimate of the standard error. Or you could
divide the observed statistic by this standard error and generate a p-value
for testing the null hypothesis that the corresponding parameter equals
zero using the normal distribution.

16.3.3 Bootstrapping

Like the jackknife method, the bootstrap method has been suggested for
inference for virtually any statistic. It is based on a simple idea documented
in Efron and Tibshirani (1993). If we make absolutely no assumptions about
the nature of the population distributions of the variables measured, then
the distribution of the measurements in the sample is in every respect the
best estimate of the population distribution. That is, if our sample size is
50, then our best assumption-free estimate of the population distribution
of the variables measured is that 1/50th of the cases are exactly like case
1, another 1/50th are exactly like case 2, and so on. We then draw, say, B
independent random “bootstrap samples” of size 50 from this imaginary
population, where B is some large number. This sampling of the original
data is done with replacement, so that the bootstrap sample data set does
not just reproduce the original data. We then compute the statistic(s) of
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interest in each of these bootstrap samples, giving us B estimates of the
corresponding parameter.

In one version of the bootstrap method, we then calculate the standard
deviation of all B values of each statistic and use that as the estimated stan-
dard error of that statistic. As with the jackknife, the normal distribution
is then ordinarily used to test hypotheses about the statistic or to find a
confidence interval. B does not need to be particularly large when using
bootstrapping in this way. Usually 100 or 200 bootstrap samples will do.

In the other version of the bootstrap we never compute a standard
error but base our inferences on the number of bootstrap samples yielding
statistics in various ranges. This requires a larger value of B—at least 1,000,
but more is better. For example, if bj is positive in the original sample, the
proportion of the bootstrap estimates of bj that yield negative values of bj

can serve as the significance level for testing the null hypothesis Tbj > 0.
Alternatively, a confidence interval for Tbj can be constructed by using the
percentiles of the distribution of B values of bj. For instance, for a 95%
confidence interval, the lower and upper endpoints are defined as the 2.5th
and 97.5th percentiles of the distribution of B bootstrap estimates of bj.

16.3.4 Permutation Tests

Consider a simple correlation rXY based on a sample of size N. Suppose
we were to take the N measurements of Y and randomly match them with
the N values of X and then recompute rXY. Imagine doing this 999 times,
so we have 1,000 values of rXY including the original one. Suppose we find
that the original correlation is the 28th-highest of all 1,000 values. We can
then say that if these X scores had been matched randomly with these Ys,
the probability is only 28/1,000, or .028, that the original correlation rXY

would have ranked so high. This value .028 is the one-tailed significance
level p for the obtained correlation; it is a permutation or randomization test
of random association. If we ignored the sign of rXY both in the original
data and in all 999 recomputed correlations, then a two tailed p-value is the
proportion of the absolute values of the 1,000 correlations that are at least
as large as the original absolute correlation.

In this example we held constant the order of measurements on X and
randomly reassigned values of Y to those X values. In multiple regression
we can hold constant the entire matrix of regressor scores, rescramble the
order of the Ys many times, and recompute R and all values of bj each
time for construction of p-values using the same approach as in the simpler
example.
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Rescrambling the Ys themselves is actually not as powerful as an alter-
native method. To see why, suppose b1 is high positive, and one person has
extremely high measurements on X1 and Y, but this person’s measurement
on Y is about what we would predict from his or her high measurement
on X1. This high Y will increase the variation across all the rescramblings
of every bj. This is as it should be for b1, but it will also be true for ev-
ery other bj tested. So in testing the unique contribution of any regressor
Xj, the most powerful procedure will generally be to use the portion of Y
independent of all regressors except Xj. This means we should use a dif-
ferent column of residuals for each Xj, and still another column for testing
R. Thus, we should altogether use (k + 1) different columns of Y-residuals
when constructing permutation tests for partial regression coefficients.

16.4 Inference without Random Sampling

In section 6.1.3 we mentioned briefly that valid statistical inferences may be
drawn without random sampling, and even without either random sam-
pling or random assignment. In an example presented there, we pondered
a statistical test about the change from one decade to another in the pro-
portion of female professors hired by a particular college. Or suppose a
club of 50 local businesspeople contains 30 retailers and 20 others. If 25
of the retailers but only 10 of the others vote to change the bylaws, it is
valid to perform a 2 × 2 test of independence in a cross-tabulation to test
for a nonchance association between vote and type of business. But, again,
there is no hint of either random assignment or random sampling from a
broader population. When used in this way, tests of association test the
null hypothesis of random association—the hypothesis that the association
observed between two variables is caused solely by chance.

Both these examples could be instances of nonsampling, because there is
no sampling at all. In the first example, we might study every professor ever
hired by the college, or in the second example, the entire membership of the
business club. But it is often difficult to distinguish between nonsampling
and nonrandom sampling. For instance, in the second example we might
think of the local club as a nonrandom sample of the population of members
of other business groups in that city or in the nation. The distinction
between nonsampling and nonrandom sampling is unnecessary, as well
as ambiguous since the types of conclusions we can draw are much the
same under both conditions. So the important distinction we must make is
between the presence and absence of random sampling.
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Nonrandom sampling and nonsampling are very common in both large-
scale and small-scale research. On a small scale, suppose an experimenter
posts an ad asking for volunteers to serve as participants in an experiment,
and uses the first 20 people who sign up. Those participants are not a
random sample from any broader population. But if the experimenter
assigns the 20 subjects randomly to conditions, then the experiment has
random assignment without random sampling. On a larger scale, many
behavioral scientists study the entire population of interest: Analysts at the
Educational Testing Service have data from all students who take College
Board tests, workers at the American Association of Medical Colleges have
data on every applicant to an American medical school, census analysts
have data from virtually the entire U.S. population, and so on.

Frick (1998) and Mook (1987) discuss how it is inappropriate to put
random sampling on a pedestal, thereby condemning all studies that fail
to include it inferior in some way. But others have argued that studies
that don’t include a random sampling component are “pseudoscientific”
(Potter, Cooper, & Dupagne, 1993). We agree with the former perspective.
Random sampling certainly has a role to play in the kind of inferences
we can make. But as Frick (1998) notes, we should distinguish between
inferences about process and inferences about populations. Most researchers
care about process inference: what is the process that generates the data
and the obtained result? They often care less or not at all about population
inference: does the result obtained reflect what would have been found if the
entire population could have been included in the study? Of course, some
people care very much about population inference. Public opinion pollsters
who generate poll results you read about in the news are an example. Their
business is founded on the importance of solid population inference. But
most researchers have different research goals than the typical pollster has.

When a significant association between two variables is found under
random sampling, it establishes both the replicability and meaningfulness of
the association. We say an association is meaningful if valid hypothesis
tests indicate that chance may be excluded from a list of the possible causes
of the association. We say the association is replicable if we can have
a certain confidence that a nonzero association will be observed again
under specifiable conditions, such as drawing a large second sample from
the same population. Finding a statistically significant association under
nonrandom sampling establishes the association as meaningful, though not
necessarily replicable. This at least allows us to speculate on the causes of
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the association, as in the previous examples concerning the college’s hiring
practices or the business club.

When there is random assignment without random sampling, as in the
example involving the signup sheet, we can go beyond such speculation.
Then the existence of a causal relation can be demonstrated, though its
generality or replicability is still unknown. In particular, if scores of a
treatment group are significantly above those of a control group, then you
have shown that the treatment increases at least some scores. This can be
a finding of some interest if the dependent variable is a trait thought to be
wholly beyond control, such as baldness—or if the independent variable is
thought to be imperceptible, such as infrared light or messages flashed on
a screen too fast to be seen consciously.

Conclusions of this sort can sometimes be generalized to a broader
population, even without random sampling. This is possible if it is assumed
that causation is unidirectional, meaning that exposure to the treatment
condition rather than the control does not lower anyone’s score on the
dependent variable. Then, even without random sampling, we have shown
that the treatment increases the population mean merely by demonstrating
that it raises at least some scores in the population but doesn’t lower any
scores.

16.5 Keeping the Diagnostic Analysis Manageable

At the level we have now reached in regression analysis, it may be clear
that statistical analysis is as much art as science, and not a set of mechanical
do and do-not rules. But some general suggestions on the conduct of
diagnostic analysis should be helpful.

We saw in Chapters 12, 13, and 14 that curvilinearity and interaction can
distort analyses that ignore them, and the same is true of the various kinds
of irregularities considered in this chapter. Thus, all these chapters concern
potential complications. When should you check for them? You cannot do
everything at once. There is no “right” order of checking for these com-
plications, any more than there is a right order of checking for problems
when you buy a used car. But there are three reasons for normally apply-
ing diagnostic methods before checking for unanticipated curvilinearity or
interaction. First, diagnostic methods can uncover clerical errors, and such
errors clearly should be detected as early as possible. Second, at least the
basic diagnostic methods are easier, and it is always sensible to do easier
things first. Third, experience suggests that diagnostic methods uncover
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complications more often than do tests for curvilinearity and interaction,
and you want to find any problems as soon as possible.

A diagnostic analysis always concerns a particular regression, so the
first step in a diagnostic analysis is to identify the regression analysis you
would conduct if there were no irregularities. The diagnostic analysis
should focus on that regression.

The next step is to choose particular diagnostic methods and tests. We
have described measures or tests for many types of irregularities involv-
ing leverage, distance, influence, partial influence, and several kinds of
heteroscedasticity. And examination of partial influence and partial het-
eroscedasticity can be done for each regressor. Thus, the number of possible
analyses may be large. You should not try to use every one of these tools
in every possible analysis. Rather, you should focus on the three major
goals of the diagnostic analysis: to check for clerical errors, to examine
previously suspect cases, and to test the standard assumptions of regres-
sion. To check for clerical errors, check the cases with the highest scores on
overall leverage, distance, and influence. Previously suspect cases should
be checked primarily for excessive influence—either total or in part—for
the most important regressors.

To test the standard assumptions of regression, nearly every analysis
should include the Bonferroni-corrected test on the highest t-residual. In
addition, tests for ordinary and butterfly heteroscedasticity described in
section 16.2.3 should be routinely conducted. The exception might be if
you choose to use a heteroscedasticity-consistent standard error estimator
for inference, but even then, it isn’t a bad idea to test for heteroscedasticity,
because its detection could reveal things about the model that could be
modified, such as including a missing interaction. And if the major focus
of the analysis is on a single regression coefficient bj, then pay special
attention to things that might affect the quality of the estimate of bj or
inference about Tbj. For any of these tests, absence of significance does not
prove the assumptions hold, but at least violations of the assumptions have
been given a chance to show themselves.

16.6 Chapter Summary

Regression diagnostics are used to detect unusual or irregular cases in
a data set and to test the assumptions of regression. Before taking any
regression analysis at face value, it is important to examine the data for
any irregularities, such as impossibly large or small values of regressors
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or the dependent variable or strange combinations of regressor values.
Often these represent clerical errors or other data collection problems, and
they should be fixed. But unusual cases may be hard to detect by merely
eyeballing the data in search of something strange. Diagnostic statistics that
measure leverage—the atypicality of a pattern of regressor values—can be
helpful in this task.

If a case’s value of Y is very far from Ŷ—the case’s distance—this may
represent a violation of one or more of the assumptions of regression anal-
ysis. The residuals, after a transformation, can be used to test whether the
assumptions of normality or heteroscedasticity have been violated using
one or more of the methods discussed in this chapter. Often, an assump-
tion violation will have no deleterious effects on the quality of the resulting
inference and conclusions reached, but you can never be sure, so it is worth
looking for assumption violations so you can make an informed decision
on what to do about it.

A case can also be highly influential, meaning that its presence in the
analysis is having a large effect on the regression results. Measures of
influence introduced in this chapter quantify the amount that the inclusion
of a case affects the estimates of Y for all cases in data, as well as how
a case changes the regression coefficients when it is included relative to
when it is excluded from the analysis. These influence measures should be
examined and appropriate action taken if a case appears to be distorting
a regression analysis, especially if its inclusion seems to work in favor of
a hypothesis you are advocating or claim is supported in the data. The
decision to include or exclude a case from an analysis should not be taken
lightly and needs to be justified. Most important is that you are open with
consumers of your research about what you have done.

Assumption violations can affect the validity of the inferences reached
with regression analysis or lower the power of hypothesis tests. It is worth
examining how robust one’s regression analysis is to assumption violations
by employing an alternative method, such as bootstrapping or the use
of heterscedasticity-consistent standard errors, to see if your conclusions
change using one of these alternative methods. This should certainly be
done when you have evidence that one or more of the assumptions has
been violated, but even if you don’t, evidence that an alternative method of
inference does not change one’s findings can be comforting to both yourself
and consumers of your research.



17
Power, Measurement Error, and
Various Miscellaneous Topics

This chapter touches on miscellaneous topics in regression analysis. We
first address matters of statistical power and some study design consid-
erations that can enhance the likelihood of finding effects that actually
exist. We then touch on measurement error, both in terms of what it is
and what effects it has on regression parameter estimates and hypothe-
sis tests. We end by describing various problems that can occasionally
arise in a regression analysis, such as missing data, rounding error, and
overcontrol.

17.1 Power and Precision of Estimation

The power of a statistical test is the probability of obtaining a statistically
significant effect if in fact an effect actually exists. We want power to be
high when we conduct a hypothesis test. If the power to detect an effect
is low, then a failure to reject the null hypothesis is uninformative about
whether such an effect actually exists. On the other hand, when power is
high, you can be more confident prior to conducting the analysis that if
there is an effect to detect, there is a good chance you will find it with the
hypothesis-testing procedure you are employing, and so the results of that
analysis will be more meaningful and informative.

We can also think about power from the perspective of precision of
estimation, although we wouldn’t use the word power in that context. Re-
sults are more informative when interval estimates about a parameter are
narrower. This should be obvious. It would be more informative and
meaningful if I were to claim that the percentage of people who experience
stress daily is between 55 and 75% than if I claimed it is somewhere be-
tween 35 and 95%. Whereas the former can be interpreted to mean that
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the majority of people do experience stress daily, the latter means that the
incidence of daily stress is somewhere between “the majority of people do
not” and ”most people do.”

An important applied problem in data analysis is sample size selection.
How large a sample is required in order to detect an effect of a certain size
with a certain likelihood or probability? If your sample size is too small to
detect an effect that may exist, there is little point to conducting the study
with such a small sample. You need more data to detect the effect. On the
other hand, scientists are usually operating under constraints in resources
such as time and money. It isn’t an efficient use of resources to collect more
data than one needs to answer the question satisfactorily. So we want our
samples to be big enough to detect effects that exist, but not so big that we
are wasting resources. Of course, if the data are handed to you free and
you’ve got lots of data, so much the better.

We don’t dedicate space here to the specifics of sample size determina-
tion or power computations. Power and sample size selection is a complex
problem with solutions that depend on so many things, and it often re-
quires lots of educated guesswork in order to get good estimates of power
and needed sample size. You will find entire books dedicated to the topic
of power (Cohen, 1988) and journal articles about power and sample size
in regression analysis (Algina & Moulder, 2001; Dupont & Plummer, 1998;
Faul, Erdfelder, Buchner, & Lang, 2009; Gatsonis & Sampson, 1989). Also,
freely available and commercially produced computer software exists to
do power and sample size calculations (e.g., G*Power and PASS; Faul, Erd-
felder, Lang, & Buchner, 2007). But here we talk about some principles in
regression analysis as they relate to power and sample size selection to help
guide your thinking.

17.1.1 Factors Determining Desirable Sample Size

A well-known but oversimplified rule of thumb for sample size selection is
that the sample size in a regression analysis should be at least 10 times the
number of regressors. Variations on this rule exist, but they all are based
on the ratio of sample size to regressors. As discussed in section 7.2.2, this
rule is quite satisfactory for prediction problems, when the focus is R or
shrunken R.

But the rules for prediction and causal analysis are very different. When
using regression for causal analysis, which typically focuses on regression
coefficients or related measures of partial association, the necessary sample
size depends heavily on the goals of the analysis. Specific conclusions (e.g.,



Power, Measurement Error, and Various Miscellaneous Topics 521

Tbj � 0) generally require larger samples than vague ones (e.g., TR � 0).
Accurate estimates of effects as expressed in the form of narrow confidence
intervals generally require larger samples than tests of null hypotheses
that effects are zero. Tests of interaction generally require larger samples
than tests for parameters in models without an interaction. Analyses with
collinearity involving independent variables require larger samples than
analyses with collinearity just among covariates or with no collinearity. At
one extreme, the null hypothesis that TR = 0 can often be tested powerfully
with a few dozen cases. At the other extreme, hundreds or even thousands
of cases might be needed to test for interaction effects, especially when
imbedded in models with several interactions. If one wants a simple rule
of thumb about sample size, we repeat what we articulated way back in
section 4.7.3: larger is generally better.

17.1.2 Revisiting the Standard Error of a Regression Coefficient

When using linear regression for causal analysis, the focus is usually on
measures of partial association for independent variables. Concerns about
power are thus directed toward whether one has sufficient power to deter-
mine whether an independent variable is uniquely related to Y when other
variables in the model are held constant. As discussed in section 4.5, if
Tbj = 0, then Tprj and Tsrj are also zero, and rejection of the null hypothesis
that Tbj = 0 necessarily leads to a rejection of the null hypotheses that Tprj

and Tsrj = 0. As the size of the p-value for a hypothesis test of a regression
coefficient is determined in part by SE(bj), anything that affects SE(bj) will
affect the power of a hypothesis test for all these measures of partial associ-
ation. In section 4.4.3 we discussed things that affect SE(bj), but we repeat
and expand on that discussion in this section in the context of statistical
power by examining the factors that affect power of hypothesis tests for
regression coefficients.

Equation 17.1 conveys the four components of SE(bj): MSresidual, N,
Var(Xj), and Tolj. Equation 17.1 is simply a re-expression of equation 4.3
with the addition of a square root, which makes it the equation for the
SE(bj) rather than its square.

SE(bj) =

√
MSresidual

N × Var(Xj) × Tolj
(17.1)

There is a positive relationship between a quantity expressed as a frac-
tion and the size of the numerator. As the numerator grows, so does that
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quantity, and as the numerator shrinks, so does the quantity. In equation
17.1, the only quantity in the numerator is MSresidual, which estimates the
variance of the errors in estimation. Remember that MSresidual is minimized
by the least squares criterion. If Y = Ŷ for every case in the data, then
MSresidual = 0. As the discrepancies between Y and Ŷ increase, MSresidual in-
creases. This means that the better the model fits the data (as manifested by
a smaller SSresidual, a smaller MSresidual, and a larger R), the smaller the stan-
dard errors for all of the regression coefficients, and the larger the power of
tests of the null hypothesis that Tbj = Tsrj = Tprj = 0.

This means that anything you can do to reduce the size of MSresidual
while not affecting the other quantities in equation 17.1 will result in an
increase in the power of hypothesis tests for both independent variables
and covariates. For example, including another regressor in the model
that is correlated with Y but uncorrelated with Xj will increase power of
the hypothesis test that Tbj = 0 and reduce the width of interval estimates
of Tbj = 0. We saw an example of that in section 6.3.1 when discussing
the benefits of controlling for a pretest in an experiment rather than using
a difference score. Hypothesis tests for regression coefficients and other
measures of partial association are also conducted with greater power when
Y is measured better, meaning with less random measurement error (i.e.,
higher reliability), because random measurement error increases MSresidual.
We discuss measurement error in section 17.2.

There is a negative relationship between a quantity expressed as a frac-
tion and the size of the denominator. As the denominator grows, then
the quantity shrinks, and as the denominator shrinks, the quantity grows.
In equation 17.1, there are three quantities in the denominator to address
with respect to their effect on statistical power: N, Var(Xj), and Tolj. These
are the sample size, the variance of regressor j, and regressor j’s tolerance,
respectively.

The presence of N in the denominator of equation 17.1 reflects what
is already well known. All other things being equal, statistical power of
hypothesis tests is larger in larger samples because increasing N shrinks
SE(bj) for all regressors. Although hardly worth discussing further, it is
worth emphasizing that almost anything that lowers power or increases the
width of confidence intervals can always be offset simply by increasing the
sample size. The exception would be something that makes a standard error
zero or infinite, such as MSresidual = 0, or when any regressor’s tolerance is
zero.
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Var(Xj) quantifies variation in regressor j, and as it is in the denominator
of equation 17.1, this means that if all other things in equation 17.1 are held
fixed, power can be increased for a test on Xj by increasing variability
in Xj. In the study design phase, this suggests that efforts should be
taken to sample in such a fashion that variability in Xj is maximized. As
discussed in section 2.3.1, restricting the range of measurement of Xj does
not affect bj, but it does affect its standard error and therefore statistical
power; specifically, it raises its standard error, lowers statistical power, and
widens confidence intervals for Tbj.

The remaining quantity in equation 17.1 is Tolj, regressor j’s tolerance.
Tolerance was discussed at length in section 4.4.4. Recall from that discus-
sion that tolerance quantifies the uniqueness of information in regressor j
relative to information contained in the other regressors: the proportion
of variability in regressor Xj not explained by a linear combination of the
other regressors. As the correlation between regressor j and the other re-
gressors increases, the tolerance of regressor j decreases. As a result, SE(bj)
increases, and the power of the hypothesis test for Tbj goes down. At its ex-
treme, when regressor j can be perfectly predicted by the other regressors,
SE(bj) is infinite and power for the hypothesis test of partial association
between Xj and Y is zero (and, in fact, the regression computations can’t
even be done).

The effect of intercorrelation between predictors on the power of hy-
pothesis tests of regression coefficients is perhaps the most vexing problem
for investigators using regression analysis. Including a regressor in a model
that is highly correlated with others will, all other things in equation 17.1
held fixed, lower the power of the hypothesis tests and increase the width
of confidence intervals for the regression coefficients of those regressors it
is highly correlated with through its effect on standard errors. But often
things we want to control for in linear regression analysis are highly corre-
lated with independent variables we most care about. Failing to control for
them opens us up to criticism that effects for those independent variables
we care most about are spurious. There is little that can be done about this
other than being thoughtful when choosing what variables to include in a
regression model.

“All other things in equation 17.1 held fixed” appears several times in
our discussion above. It is easier to talk about how changing one term
in equation 17.1 affects power under the condition that all other terms are
fixed. But in reality, things that change one term may change another
term in equation 17.1 in such a way that power is barely if at all affected.
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For example, sampling so as to ensure large variance in Xj can increase
power of hypothesis tests on Tbj, but it may also lower it by decreasing
the tolerance of Xj, as increasing the range of Xj may result in the other
regressors explaining more of the variance in Y than they otherwise would.

The fact that the effect of three of the four terms in equation 17.1 operate
in ways that may work against each other, but that changing one may be
a way of compensating for the effect of changing another, is one reason
why we are skeptical of rules of thumb such as the ratio of sample size to
regressors or whether variance inflation factors are too high. The negative
effects on power of one change can be offset by strategic design choices that
affect another factor that has positive effects on power.

The one term we exclude from this dance is N. Changing N generally
will not affect any of the other terms unless the sample size is very small
to start with. So we know that any negative effect of one term on power
of hypothesis tests can always be offset by increasing the sample size. So
sample size is always king when it comes to statistical power, and this is
one reason why the best rule of thumb for sample size selection is simply
that more is better.

We have emphasized how the power of hypothesis tests for measures
of partial association between Xj and Y are affected by the four compo-
nents that determine SE(bj). But these same things influence precision of
estimation. If you seek more precise interval estimates (i.e., narrower con-
fidence intervals), do those things discussed in this section that increase
power. Conversely, those things that decrease power have the correspond-
ing effect of increasing the width of confidence intervals, which means
decreasing the precision of estimation.

17.1.3 On the Effect of Unnecessary Covariates

We have seen that including a covariate correlated with Y but uncorrelated
with Xj can increase the power of the hypothesis test for Tbj and, by exten-
sion, Tprj and Tsrj. But if that covariate is correlated with Xj, then the effect
of its inclusion on power will depend on the balance of the effect of that
covariate on MSresidual and 1 − R2

j . Including it could raise power, it could
have no effect on power, or it could even reduce power.

But what about including a covariate that is not actually necessary?
By this, we mean a covariate that does not produce invalidity through
overcontrol (discussed in section 17.3.4) but which need not be included
because, unknown to the investigator, it actually has no effect on Y. In
such a circumstance, the expected effect of including that covariate on
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the power of the test for Xj’s effect is equivalent to the effect of randomly
discarding one case from the data or collecting data from one fewer research
participants. It would slightly raise MSresidual by subtracting one residual
degree of freedom from the model, just as would randomly discarding a
single case from the data.

17.2 Measurement Error

17.2.1 What Is Measurement Error?

Each variable in a regression analysis may be and often is measured with
some error. Even something as simple as a person’s height and weight
are rarely measured perfectly, and variables such as attitudes, skills, and
socioeconomic variables usually contain measurement error, sometimes in
substantial amounts.

Measurement error is not the same as sampling error. Sampling error
refers to the error in estimating means or other characteristics of the en-
tire population, usually resulting from the process of randomly sampling
from that population. Measurement error refers to the error in estimating
individual characteristics or features of those being measured, such as a
person’s extraversion, level of education, or knowledge of the political pro-
cess. If you were to take a test of intelligence offered by a commercial
testing firm, you wouldn’t care at all about the amount of sampling error
that exists in the company’s estimate of the average intelligence of people,
but you would care a lot about how well your test score reflects your actual
intelligence—the amount of measurement error that exists in the score you
are given. In large samples, we may have very little sampling error in our
estimates of parameters such as a population mean, but we may have lots
of measurement error in the individual measurements used to construct
that estimate.

In regression analysis, parameters such as Tbj are by definition unaf-
fected by sampling error, but they may be distorted by measurement error.
We could imagine a concept akin to the “true true regression weight,” per-
haps denoted TTbj, which is the parameter unaffected by both measurement
and sampling error. We do not use this notation, but merely mention it to
emphasize the point that the parameters that we have been discussing so
far acknowledge one source of error but not the other.

Measurement error may be either random or nonrandom. If men tend to
overreport their incomes on a questionnaire, whereas women underreport,
the nonrandom measurement error can obviously distort conclusions about
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the relative earnings of men and women. There is little we have to say in this
section about nonrandom measurement error except to note its seriousness,
so in our discussion we use the term measurement error to mean random
measurement error.

Measurement error has many sources, depending on what is being mea-
sured and how it is being measured. The idea is that even though a person’s
“true” score on some variable doesn’t change, repeated measurements of
that variable taken from that person will not all be the same, due to a variety
of forces operating on the person being measured and the measurement
instrument or procedure being used. For instance, if you were to take
a commercial test measuring your mathematical ability repeatedly, you
might score 90 today, 95 tomorrow, and 86 the day after. Presumably your
aptitude hasn’t changed—your true score is constant at least over a short
period—but your observed score varies. In this example, sources of random
measurement error would be the specific questions you were asked one
day rather than another, the amount of sleep you had the night before, the
temperature in the room when you were taking the test, and so forth. All
these things contribute to random measurement error, and they make any
single measurement—the observed score—less trustworthy as an estimate
of the true score.

A variable’s reliability is defined as the proportion of its variability in
observed scores that is attributable to variability in the true scores. The
estimation of reliability is a complex matter. The various corrections for
unreliability we present in this section assume you have a reasonable es-
timate of the reliability of the variable. For a discussion on the intricacies
of the measurement process, including the computation of reliability, con-
sult one of the many books available on psychometric theory, including
Anastasi (1976), Nunnally (1978), or Traub (1994).

17.2.2 Measurement Error in Y

We have seen that in causal analysis, bj estimates the direct effect of Xj on
the dependent variable Y. Thus, it is both important and fortunate that
Tbj, the parameter estimated by bj, is not affected at all by random mea-
surement error in Y. To see why this is so, think first about a single mean.
Even though random measurement error influences the measurements of
individual cases in the data, it will not change the mean of the population,
because if it is truly random, it will randomly raise half the scores and ran-
domly lower half the scores by the same amount. Therefore, measurement
error will not change a marginal (overall) mean and, by the same argument,
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it will not change conditional means. But the population regression sur-
face passes through those conditional means, so it too is unchanged. And
the position of this surface is determined by Tb0 and the values of Tbj, so
they must not change either. On the other hand, adding more and more
measurement error to Y would eventually lower TR, Tprj, and Tsrj to zero,
so these values are clearly affected by measurement error.

With these conclusions concerning population values, we are now ready
to consider the effects of measurement error on samples. We know that
E(bj) = Tbj; that is, bj is an unbiased estimator of the true regression weight.
Since measurement error does not change the true regression weight, bj is
still an unbiased estimator of the “true true” regression weight that would
exist with no measurement or sampling error. By the same argument, b0 is
still an unbiased estimator of Tb0. But R and values of prj and srj, which
are somewhat biased to begin with, are biased more by measurement error
in Y.

Random measurement error in Y does increase the standard error of
all bjs, and therefore lowers the statistical power of tests on the regression
weights. But the tests are still valid.

17.2.3 Measurement Error in Independent Variables

When regression analysis is used for prediction (of the variety discussed in
Chapter 7), random measurement error in regressors lowers R but does not
invalidate whatever predictive ability a regression model offers. That is,
when we are using regression for prediction, we need not assume absence
of measurement error.

In causal analysis, measurement error in an independent variable Xj

tends to lower bj toward zero and also to raise SE(bj). Both of these effects
result in a conservative bias, lowering the power of tests on bj and increasing
the width of confidence intervals. This means that a statistically significant
value of bj is not invalidated by measurement error in Xj since the effect of
that error is to make it harder to reject the null hypothesis.

17.2.4 The Biggest Weakness of Regression: Measurement Error
in Covariates

Measurement error in covariates has much more serious effects than mea-
surement error in independent or dependent variables. Random measure-
ment error in any regressor Xj changes the values of b, sr, and pr for all
other regressors in the direction they would be moved if Xj were omitted



528 Regression Analysis and Linear Models

from the regression. We cannot usually tell this direction by inspection, so
we often don’t know whether measurement error in covariates has raised
or lowered the values of bj, srj, or prj for the independent variables that we
care most about.

To see how this can work, consider the formula for b1 with two regres-
sors provided in section 3.4.5. Suppose that without measurement error
the three correlations among the variables are rYX1 = 0.3, rYX2 = 0.4, and
rYX1X2 = 0.5, and all standard deviations are 1. Then

b1 =
rYX1 − rYX2rX1X2

1 − r2
X1X2

× sY

sX1

=
0.3 − 0.4 × 0.5

1 − 0.52 × 1
1
= 0.133

Now suppose that measurement error in X2 lowers both correlations in-
volving X2 to half their correct value, so that we observe rYX2 = 0.2 and
rX1X2 = 0.25. Measurement error in X2, of course, will not affect sY, s1, or
rYX1 . Therefore, we calculate

b1 =
0.3 − 0.2 × 0.25

1 − 0.252 × 1
1
= 0.267

Measurement error in X2 has in this case doubled b1. In more complex
situations, we cannot easily predict either the size or the direction of the
change in any bj produced by measurement error in the other regressors.

17.2.5 Summary: The Effects of Measurement Error

We can list three possible effects of measurement error, in order of serious-
ness:

1. Least serious is to leave values of bj as unbiased estimates of Tbj but
to raise their standard errors SE(bj). This widens confidence intervals
and lowers the power of tests, but does not affect the validity of the
tests.

2. More serious is to introduce conservative bias into estimates of Tbj

while still leaving the tests on Tbj as valid tests.

3. Most serious is to introduce unknown bias into estimates of Tbj; this
simply invalidates tests on Tbj.
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Measurement error in Y has the first of these three effects, error in an
independent variable has the second, and error in covariates has the third.
These points were all developed in the preceding sections.

The effect of measurement error in covariates is certainly one of the
biggest weaknesses in regression analysis. But this should come as no sur-
prise, as a major purpose of regression analysis is to control for covariates,
and it cannot control for covariates well if the covariates are not measured
well. At its extreme, if a covariate is measured with total inaccuracy, so
that it is all just random error, then that covariate is not being controlled
at all. Thus, the result of measurement error is that we have less control
than we wish. In the next section, we discuss some partial solutions for the
problems created by random measurement error.

But before doing so, it is worth putting the seriousness of this problem
in context. Remember that we include covariates in a model because we
believe that the association between an independent variable Xj and de-
pendent variable Y is being distorted by the covariate. But as discussed
in section 6.1.1, there is an infinite number of possible covariates, and one
never knows whether the correct one has been controlled. If it has not,
then the hypothesis test on Xj is invalid because bj is not estimating Xj’s
actual effect. Yet users of regression analysis seem to accept never knowing
for certain whether the proper covariates are in the model. Not including
a covariate is like including that covariate but measuring it so badly that
its reliability is zero. So measurement error in covariates is not a bigger
problem than not controlling for the right covariates. Indeed, so long as the
covariate is measured with nonzero reliability, including this imperfectly
measured covariate in the model is better than not including it at all.

Furthermore, although it is easy to show the effects of measurement
error in simple models, its effect in more complex models with many re-
gressors is hard to predict with many covariates that are imperfectly mea-
sured. It is conceivable that the various biases cancel each other out to some
extent. Even if there is bias resulting from measurement error in covari-
ates, remember that measurement error in Xj will shrink bj toward zero,
and this can offset bias due to measurement error in covariates. Finally,
when Y is also measured with error, SE(bj) increases, making it hard to find
effects. So if the null hypothesis is true, measurement error in Y is going
to make it harder to find real effects. Tests are more conservative when
Y is measured with error, thereby reducing the likelihood of misreporting
effects as real that are solely attributable to bias created by measurement
error in covariates.
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Although regression has many weaknesses, it is not always apparent
how those weaknesses will influence one’s conclusions, if at all. Further-
more, all methods have their various weaknesses. Linear regression is still
a useful analytical tool, and we think its weaknesses are far offset by its
tremendous usefulness and versatility. It is not likely that science is going
to ban linear regression analysis because of its weaknesses. So it is worth
understanding for its own sake, and because it serves as a foundation for
more advanced methods that you will also find uses for in your research
life that may not suffer as much from these weaknesses.

17.2.6 Managing Measurement Error

Measurement error is one of the most important limitations of linear mod-
els. There are methods for accounting for its influence, and we discuss a few
of those methods in this section. All of these methods require some kind
of estimate of the reliability of measurement of a variable. Reliability in
theory is between 0 and 1, where 0 means that the observed measurements
are all random error, and 1 means that there is no random measurement
error at all. The proper estimation of reliability is not a simple task. There
are many ways of estimating reliability, and they generally produce differ-
ent estimates depending on the assumptions they make and how they are
calculated. All we say here is that a serious attempt to estimate reliability,
with awareness of these complexities, is likely to produce better estimates
than using values of 1 for reliability that are implicitly assumed when we
simply ignore the problem. In what follows we assume that we have ap-
propriate estimates of the reliability of the variables that we need. We shall
denote the reliability of Y by relY and the reliability of Xj as relj.

To correct for measurement error in Y, we can divide adjusted R or
values of prj or srj by

√
relY. This gives estimates of the corrected values of

TR, Tprj, and Tsrj—values that would exist if there were no measurement
error in Y. But values of bj are already unbiased estimators of Tbj, so they
should not be altered. And it can be shown that confidence intervals and
hypothesis tests on R, prj, srj, bj, or any other statistics need not and should
not be corrected for unreliability in Y. This unreliability genuinely raises
the standard errors of all those statistics, and those increased standard
errors should be taken into account when computing hypothesis tests or
confidence intervals.
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To correct an estimate of Tbj for measurement error in the corresponding
independent variable Xj, we can use the formula

Corrected estimate of Tbj =
bj

1 −
(

1−relj

N×Tolj/(N−k)

) (17.2)

This complex expression is derived as follows. Combining equation 2.5
with the ideas in section 3.2.2 gives the result

Tbj =
TCov(Y,unique portion ofXj)

TVar(unique portion ofXj)

It can be shown that the covariance between any two variables is not af-
fected by measurement error in either one, so that the numerator of this
fraction is unaffected by measurement error. But the denominator is in-
creased by measurement error. If we arbitrarily assume TVar(Xj) = 1
when measurement error exists, then removing measurement error would
lower that variance by (1 − relj). But this reduction comes entirely out
of TVar(unique portion ofXj), whose value before the reduction was TTolj.
Therefore, the ratio of the two values of TVar(unique portion ofXj)—after
and before the removal of measurement error—is [TTolj − (1 − relj)]/TTolj.
Dividing Tbj by this ratio corrects Tbj for measurement error. But when we
apply the conclusions of section 4.3.1 to the crosswise regression predicting
Xj from the other k − 1 regressors, we find that an unbiased estimator of
TTolj is N × Tolj/(N − k). Substituting this value for TTolj in the previous
ratio, and continuing in the natural way, gives equation 17.2.

To correct for measurement error in covariates, one can estimate the size
but not the standard errors or significance of partial regression coefficients
by multiplying the variances of all covariates by their reliabilities while
leaving all covariances unchanged, and by then deriving the regression
formulas in the usual way from the modified variance–covariance matrix.
The standard errors and statistical significance of partial regression coeffi-
cients can be estimated with the method provided by Fuller and Hidiroglou
(1978).

All of these methods of managing measurement error are applied to
the components that are used to construct regression statistics or to the
regression statistics themselves generated by a regression program. An
alternative approach is the use of a structural equation modeling program
such as LISREL, Mplus, or Amos. This is an entirely different approach to
estimating linear models that can disentangle sampling variance and mea-
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surement error if certain measurement requirements are met. Structural
equation modeling is beyond the scope of this book, but all researchers
who rely on regression methods should eventually develop some familiar-
ity with this type of modeling. Some resources on the topic include Byrne
(2012), Bollen (1989), and Kline (2015).

17.3 An Assortment of Problems

In this section we describe various problems that arise in regression anal-
yses. Some are less serious than you might imagine. Others are serious if
unattended to but have solutions that are often simple and acceptable. Still
others require supplementary analyses, such as checks for nonlinearities or
outliers (extreme measurements) that are described in other chapters. Still
other problems are best handled by more advanced or specialized statistical
methods detailed in other books. The purpose of this section is to convey
a general idea of the seriousness of various problems and the complexities
of their solutions without examining the more complex solutions in detail.
Some of these solutions we discuss elsewhere in the book.

17.3.1 Violations of the Basic Assumptions

The central assumptions of regression were mentioned in Chapter 4: lin-
earity, normality, homoscedasticity, and random sampling. Chapter 12
described methods for detecting nonlinearity and for transforming vari-
ables to make them satisfy the requirement of linearity. The assumption of
normality is relatively unimportant, especially in large samples. Chapter 16
describes procedures for detecting and correcting for deviations from ho-
moscedasticity. And section 16.4 shows that useful conclusions can some-
times be drawn even in the absence of random sampling. Thus, we are not
completely lost even when all four of the standard sampling assumptions
of regression are violated.

17.3.2 Collinearity

Collinearity has been discussed in various places in the book, including
sections 3.4.1, 4.4.4, 4.7.1, and 5.3.3. But one major problem left unsolved is
the problem of identifying collinear sets. When the number of regressors, k,
is large, there will frequently be several regressors with nonsignificant par-
tial relations to Y. But removing all these variables from the regression may
lower R significantly. This suggests strongly that the regressors contain one
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or more collinear sets. But which variables are in those sets, and which are
not? Knowing the answer allows us to be far more specific in our conclu-
sions. For instance, if income, education, and occupational status form a
collinear set that relates significantly to Y, you may be able to conclude that
Y is affected by SES. But if you merely know that these three variables are
among 10 heterogeneous variables whose removal significantly lowers R,
you cannot draw such a specific conclusion.

We can often tentatively identify collinear sets merely by inspecting
the matrix of correlations among the regressors or even looking at the
variable names. Variables that are highly correlated may be measuring
similar things, and they may even have similar names. But more elaborate
methods are available for more difficult problems.

Factor analysis is a method capable of discovering sets of regressors
highly correlated with each other because they are measuring something
similar. Factor analysis is too complex to explain here; whole books on fac-
tor analysis are available (e.g., Gorsuch, 1983; Kim & Mueller, 1978; Kline,
1994; Thompson, 2004). When variables are highly correlated because they
are measuring something in common, factor analysis can help the data an-
alyst to identify one or more things that highly correlated variables have in
common. This can help to guide changes in measurement decisions, such
as finding a way to aggregate variables that are measuring something in
common into a single measure. This often eliminates the collinearity.

All subsets regression is another approach that can be useful. We de-
scribed all subsets regression in section 7.3.2, although we did not recom-
mend its use for the prediction problems considered there. As described in
that section, all subsets regression can efficiently find R for every possible
subset of regressors. It was invented for the purpose of finding subsets of
few regressors yielding high values of R. But suppose we turn it around,
using it to find subsets of many regressors yielding values of R well below
the R found from the entire set. Such a situation suggests that the excluded
subset of variables is highly important. For instance, if a subset of seven
regressors out of 10 yields an R far below that found from the entire set of
10, it means that the excluded three regressors are highly important when
considered as a set. Running an all subsets regression generates all possible
values of R from combinations of the regressors, and we can then scan the
output to find low values of R associated with a large number of regressors.
Then the excluded variables are important as a set even though none may
be significant individually. Because all subsets regression examines every
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possible set of regressors, this method identifies without fail those sets of
regressors whose deletion most lowers R.

This method, however, does have a weakness related to regression to
the mean. When we scan many sets of regressors to identify the most
important sets, the sets so identified may not actually be as important as
they appear in the sample. Methods of dealing with multiple hypothesis
tests, discussed in Chapter 11, can deal with this problem.

17.3.3 Singularity

Singularity exists if one regressor has a perfect crosswise multiple correla-
tion of 1.0 when predicted from the other regressors. If that happens, some
regression programs will refuse to run even though the data would answer
the researcher’s questions if it were treated correctly. Other programs will
always run but will give answers that are often incorrect for causal analysis.
We tell how to avoid both these mishaps after describing some basic points
about singularity.

Singularity would occur if an educational researcher had measures of
verbal and mathematical skill and studied a model that included both of
these as regressors along with their sum. Or a sociologist might include
as regressors measures of educational attainment, income, and occupa-
tional prestige, plus an overall measure of SES that is a weighted sum of
those three variables. We saw in section 9.1.3 that singularity can also be
produced by including a dummy variable for every category of a multi-
categorical variable. Other instances of singularity might involve more
complex relationships.

If singularity exists in a set of regressors, there may still be regressors
not involved in the singularity. For instance, in any of the examples above
there may also be regressors of age and sex that are not involved in the
singularity. To deal with singularities we need to know something about
which variables are involved. We define a minimal singular set as the set
of variables actually involved in a singularity. Every variable in such a
set is perfectly predictable from the others in the set. In the educational
example just mentioned, we could write Sum = Verbal+Math, or Verbal =
Sum − Math, or Math = Sum − Verbal. Each of these equations perfectly
predicts scores on one of the variables from the other two. Similar equations
can be written for the other examples of singularity given above or for any
other instance of singularity. A two-variable minimal singular set can exist
only if the two variables correlate +1 or −1 with each other, but more
complex rules are needed to identify the variables in larger sets.
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A set of regressors may contain two or more minimal singular sets, and
relations among them may be complex. There may be two nonoverlapping
minimal singular sets, as when one set contains X2, X4, and X6, while
another contains X3, X5, and X8. Or the two sets may partially overlap,
as when one contains X1, X2, X3, and X4, while another contains X1, X2,
X5, and X6. A single set of variables can even have singularities in every
possible subset of three or more. For instance, if X3, X4, and X5 can all be
predicted perfectly from different linear functions of X1 and X2, then any of
those five variables can be predicted perfectly from any two others. If you
have studied permutations and combinations, you will know that could be
thought of as 10 different minimal singular sets since 5!/(2!3!) is the number
of combinations of five things taken three at a time, and that equals 10.

If singularity exists within a set of regressors, there is no unique solution
to the regression. To see why, consider the simple case in which X1 = X2 +

X3. Suppose we form some weighted composite of those three variables.
Suppose we then increase the weights of X2 and X3 by 1 each and lower
the weight of X1 by 1. Those increases for X2 and X3 are equivalent to
increasing the weight of X1 by 1. Therefore, the decrease for X1 will cancel
out the two increases, and the composite will be unchanged. In fact, there
are infinitely many ways we could change all three of the weights while
leaving the composite unchanged. Therefore, when we try to predict Y
from X1, X2, and X3, there is no one best composite, because there are
infinitely many different composites that give the same estimates of Y.

Regression programs deal with this in either of two ways. If singular-
ity is detected, some regression programs will stop without printing any
results, while others will delete as many regressors from the model as are
necessary to remove the singularities, using whatever algorithm or arbi-
trary rule to make the choice that it is programmed to use. We will call the
automatic removal approach ARRES for “Arbitrary Removal of Regressors
to Eliminate Singularity,” and we will call the former option non-ARRES.
ARRES may be perfectly satisfactory for pure prediction, but it can lead to
serious errors in causal modeling. An uninformed user studying causation
would likely accept ARRES output as the best possible output, and would
take the absence of output from a non-ARRES program to mean that no an-
swers are possible. Both of these are serious errors. The proper approach
is simpler for ARRES programs than for non-ARRES, so we’ll start with
that. For simplicity we’ll assume here that we’re working with just one
regression, not a path analysis model involving both direct and indirect
effects.
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To see why ARRES output should not simply be accepted, imagine that
we have three regressors—an independent variable and two covariates.
Suppose no two of the regressors correlate perfectly with each other, but
the three regressors form a minimal singular set. ARRES may drop out
one of the covariates, thus eliminating the singularity, and the program
will print results for the independent variable and the remaining covariate.
These results will imply to the user that the singularity has been “taken
care of.” But if an independent variable is in a minimal singular set, there
is actually no way to assess the effect of that variable on Y. Recall that any
regressor’s effect on Y is assessed by studying the relation between Y and
the component of that regressor independent of all covariates, and in this
case there is no such component. So the proper conclusion is that in this
data set, we cannot estimate the independent variable’s effect on Y.

But this problem arose only because the singular set included an inde-
pendent variable as well as covariates. If a minimal singular set includes
only covariates, and you drop only the variables that need to be dropped to
remove the singularity, you will be retaining all the nonredundant variance
in the covariates. Thus, dropping variables from a singular set produces no
problems so long as all the variables in the set are covariates. You will get
the same value of R and the same regression weights for the independent
variables, regardless of which covariates the ARRES program drops.

Some ARRES programs will drop regressors from minimal singular
sets in the reverse order that the user entered them into the model, so
variables entered last are dropped first. We’ll call this an “ordered” ARRES
program. You may be able to determine whether your ARRES program is
ordered by reading its manual, though this may not be documented. You
could also just play around with your program to figure out whether it
drops variables in any particular order when a singularity exists. If you
have an ordered program, you can enter all the covariates first and all the
independent variables last. Then any independent variable in a minimal
singular set with covariates will be eliminated from the analysis. That’s the
proper procedure for such variables, because your data allow you to reach
no conclusions about that variable’s effect on Y. Any removal of covariates
will do no damage because, as already mentioned, you will still be retaining
all nonredundant variance in covariates. Thus, ordered ARRES programs
will give proper estimates of the effects of the independent variables on
Y, provided you enter all covariates into the model before all independent
variables.
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You can still get the output you need with a nonordered ARRES pro-
gram, though it takes extra steps. For each independent variable, run
a crosswise regression predicting it from all the covariates. Any inde-
pendent variable in a minimal singular set with covariates will show a
crosswise multiple correlation of 1. You must abandon any such indepen-
dent variable until you have new data, for reasons just described. With
these variables removed, you can run the original model. All variables
automatically removed in that final run will be covariates, and for reasons
also just described, you will still get proper estimates of the effects of the
independent variables on Y.

We describe next what we believe to be the simplest way to proceed
with a non-ARRES program. Remember that a non-ARRES program won’t
run when there is a singularity. Temporarily ignoring the independent
variables, our first goal is to find the largest possible nonredundant set
of covariates. To do this, first predict Y from just the covariates. If this
regression runs, you know there is no singularity among covariates and
you have accomplished that first goal. If that regression fails to run, set
aside Y from your thinking for now and start a process in which you predict
one covariate from some or all of the others. If any regression runs and
yields R < 1, you know there are no singularities in any of the variables
involved in that regression. If a regression runs but yields R = 1, you know
there are no singularities among the regressors in that run because the
regression ran, but there is a singularity involving the predicted variable
because R was 1. If any variable in that regression was not involved
in the singularity, its regression weight will be exactly 0, because perfect
prediction was achieved without it. Those with nonzero weights were all
involved. This allows you to identify one minimal singular set, though
others may also exist. Some programs may not print the values of t for the
nonzero regression weights in this regression, because those values of t will
be infinite, but that lack of t-values doesn’t matter. If the regression fails
to run, you have learned that there is singularity within the regressors in
that run. By experimenting with various runs of this sort, you can typically
find fairly quickly all the minimal singular sets among the covariates. That
information will allow you to identify the largest possible nonredundant
set of covariates.

After accomplishing this goal, use this reduced set of covariates to
predict each of the independent variables separately. These regressions will
all run because you have removed any singularity within their regressors.
If any of these regressions yields R = 1, it means that this independent
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variable has no variance independent of the covariates, and in this data set
it is not possible to study that variable’s effect on Y. That variable must
therefore be set aside.

Finally, predict Y from the remaining independent variables and the
reduced set of covariates just described. If this regression fails to run, it
must be because of singularities among independent variables, since you
have eliminated all singularities involving covariates. You can apply some
of the procedures above to find these singularities. Ultimately you will
eliminate all singularities and a regression will run, predicting Y from some
or all of the independent variables and some or all of the covariates, though
not all of both those sets. This regression will give you the information you
need.

17.3.4 Specification Error and Overcontrol

Specification errors are errors in assumptions about which variables affect
which others. These assumptions are essential for causal analysis, when
the focus is on regression coefficients. They are irrelevant for prediction-
related problems, such as those addressed in Chapter 7, when the focus is
on the multiple correlation. The basic specification errors are undercontrol
and overcontrol.

Undercontrol is essentially the problem we have been considering since
the beginning of this book: failure to control relevant variables. In any sort
of causal analysis, we must assume that the regression includes all variables
affecting Y, or that those variables excluded that affect Y are uncorrelated
with those in the regression. This is simply saying we must control for all
necessary covariates.

We must also assume that Y does not affect any of the regressors. Inclu-
sion in the regression of a variable affected by Y is overcontrol. One part of
this requirement is obvious and another part is not. It is obvious that if we
want to interpret an association between Xj and Y as being due to the effect
of Xj on Y, then we must assume that the association is not produced by
the effect of Y on Xj. Thus, when interpreting any given partial regression
weight bj, we must assume that Y does not affect that particular regressor.

But the problem of overcontrol has a second, less obvious aspect. Even
when interpreting a single partial regression weight bj, we must assume
that Y does not affect any of the other regressors. Therefore, unnecessary
inclusion of extra covariates can raise the problem of overcontrol.

The problem of overcontrol can be be explained by an example. Suppose
we are interested in the effect of academic aptitude on study time. It might
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FIGURE 17.1. A graphical illustration of overcontrol.

be argued that naturally brighter students foresee professional careers that
require studious preparation, so those students study harder than others.
Contrariwise, it might be argued that bright students find that they can
obtain satisfactory grades without much study, so that they study less than
others. Both of these might be true, but it is still meaningful to ask which
effect is stronger. We can examine this question by seeing whether the
correlation between an aptitude measure X1 and study time Y is positive
or negative.

Suppose that, in fact, aptitude does not affect study time, so that
TrYX1 = 0. In a sample of 24 students, we might observe a scatterplot
that looks something like that in Figure 17.1. For the moment ignore the
numbers in scatterplot; just interpret the dots. The scatterplot clearly shows
a correlation of zero between aptitude and study time; that is, rYX1 = 0.

Maybe this is just one of several related questions we are researching,
and in the questionnaire measuring aptitude and study time we have also
measured each student’s GPA, so this is in our data file as an additional
variable. Because GPA is in our data anyway, we decide to go ahead and
control for it statistically; we include it in the regression of Y as X2.

Those numbers in the body of the scatterplot are these GPAs, X2. We
see that they are arranged much as we might expect; students high on both
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aptitude and study time have the highest GPAs, those low on both have the
lowest GPAs, and the intermediate GPAs are obtained by students high on
aptitude but low on study time, or high on study time but low on aptitude,
or intermediate on both.

The simplest way to see the effect of controlling for GPA is to consider
a simpler method of control: Select a subgroup of people who all have
the same GPA and observe the conditional correlation (the correlation in
that subgroup) between aptitude and study time. For instance, select all
the students with a GPA of 3.0. A glance at the scatterplot shows this
conditional correlation to be highly negative. This negative correlation is
what we would expect. Speaking loosely, it says that there are three kinds
of students getting intermediate GPAs of 3.0: those low on aptitude but
high on study time, those high on study time and low in aptitude, and
those intermediate on both. All other students have GPAs above or below
3.0. But notice that the same is true regardless of GPA. Holding constant
GPA, those relatively lower in study time tend to be relatively higher in
aptitude. Thus, we find a negative partial relationship between aptitude
and study time when GPA is controlled, even though we know that there
is no true relationship between aptitude and study time.

Figure 17.2 shows a path diagram depicting causal associations among
these variables. Our dependent variable of study time affects the “covari-
ate” of GPA, so controlling GPA is a specification error. One way to think
about the problem of overcontrol is to say that if Xj affects Y and Y affects
another regressor Xk, then by controlling Xk we are removing part of the
effect of Xj, and we do not want to do that.

The major factor leading a data analyst to overcontrol is that the very
word control sounds so good that controlling more variables would always
seem to be better. It is so easy to statistically control for many variables in
a regression analysis that one might simply control for as many things as
are available in the data. But, in fact, the decision to control or not control
each variable should be based on careful thought.

Some authors use the term overcontrol to refer to the small loss of statis-
tical power that results from the inclusion of each unnecessary covariate.
We prefer the meaning given in this section. Since undercontrol refers to a
potentially drastic loss of validity that can result from failure to control for
even one covariate, it is reasonable to use overcontrol to refer to a potentially
drastic loss of validity resulting from incorrectly controlling even one extra
variable, rather than to refer to a small loss of power from such control.
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FIGURE 17.2. Controlling for variables caused by the dependent variable results in over-
control.

There is a third form of overcontrol that results not when Y affects
a covariate in a regression but, rather, when Xj affects the covariate, al-
though it is appropriate to call this overcontrol a “problem” only in certain
circumstances. Suppose your interest was in knowing whether aptitude
affects GPA, and you decide to control for study time. If aptitude affects
study time, and study time affects GPA (as depicted in Figure 17.2), then
by controlling for study time you are removing a part of the process by
which aptitude affects GPA. The partial regression coefficient for aptitude
in this regression is estimating the direct effect of aptitude on GPA. If you are
interested in the direct effect, a concept we introduced in Chapter 15, that
is fine, and this is not overcontrol. Quite the contrary, this kind of control is
necessary to estimate the direct effect. But if you are interested in the total
effect of aptitude (i.e., the effect operating both directly on the dependent
variable and indirectly through a mediator), you’d be underestimating its
effect by controlling for the mediator. This would be a form of overcontrol.

17.3.5 Noninterval Scaling

Regression might seem to rely heavily on the assumption of equal-interval
scaling. Yet many of the scales researchers use are merely ordinal in nature.
An example would be responses to a 5-point attitude scale (e.g., level
of agreement with a statement), or a person’s evaluation of the quality
of food at a restaurant (poor, fair, average, good, great). It is common in
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the sciences for measures of personality, attitudes, and other things to be
constructed from an aggregation of more than one ordinal variable. A
common form of aggregation would be the use of the unweighted mean to
a set of questions with an ordinal response format. Or different items may
be given different weights prior to averaging them. Such aggregations are
typically treated like interval scales and used in regression analysis without
a second thought. We do not take a stand on the legitimacy of doing so,
noting only that it is somewhat controversial.

When an ordinal variable is the dependent variable and has only a few
values observed or possible, there are methods closely related to linear re-
gression analysis that are designed to appropriately handle such ordinal,
discrete variables. The linear regression model based on the least squares
criterion can give approximations, sometimes reasonably good ones, to
what more sophisticated methods can give. But given that methods de-
signed for ordinal dependent variables are well established in the literature
and implemented in most good statistics packages, learning them is a good
investment of time, but only after you have a good working understanding
of the material in this book. We briefly discuss some of these methods in
Chapter 18.

An ordinal variable with only a few measurement values can be used
as a regressor in a linear regression analysis if we think of it as a categorical
variable. Each scale point on the ordinal variable can be thought of as a
category rather than a quantity, and the method introduced in Chapter 9 can
be used. And we saw in Chapter 10 some coding systems for categorical
variables produce regression coefficients that contain information about
how Y changes as the measurements move up or down the ordinal scale.

Otherwise, the term equal-interval scaling is used in a number of ways.
A critic may say that a variable lacks equal-interval scaling, because a
scatterplot depicting its relationship with another variable exhibits some
kind of nonlinearity. Or the fact that the distribution is non-normal might
be cited. Or it may be argued that a variable’s units are not equal to each
other in importance. We can deal with all of these issues, but the solutions
have little to do with each other.

Chapter 12 describes tests for nonlinearity in a regression analysis and
transformations of regressors that can restore linearity. Section 16.2.2 dis-
cusses the detection of non-normality. Differences in importance of units
must be dealt with on a case-by-case basis. Suppose a high jumper is con-
sidering a new training regimen that may raise the best jumps from 6.5
to 7 feet but which may just as well produce minor strains that will lower
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performance to 6 feet; the jumper simply has to make a subjective judgment
about the relative importance of the two differences: between 6 and 6.5 feet
and between 6.5 and 7 feet. A gymnast rated on a subjective 10-point scale
must make exactly the same kind of judgment. Demonstrating a very risky
skill that improves a rating from 9 to 10 may or may not be worth the risk
relative to a somewhat less risky skill that improves a rating from 8 to 9. It is
totally irrelevant that the units of the high-jumper’s scale are equal-interval
in a simple physical sense while the units on the gymnast’s scale are not.
Similarly, conclusions based on regression must often be supplemented by
subjective judgments about the importance of effects predicted by the re-
gression, but the questions are the same whether or not the variables are
equal-interval in some mechanical sense.

17.3.6 Missing Data

The term missing data has more than one use. For example, we might worry
about some conditions in an experiment “missing data” when the number
of cases in the groups is not the same. But this is not a problem, and the
methods discussed in Chapters 9 and 10 for categorical variables make no
assumptions about equality of the sizes of the groups.

In regression analysis, the term refers to the situation in which there are
cases with data available on some regressors but missing on others. For
instance, a respondent to a survey may answer all the questions except for
those on income and marital status. Or participants in an experiment may
not respond to all the stimuli, or perhaps procedural or technical errors
produce some cases that are missing data on key variables.

We shall consider a few approaches to the problem of missing data, but
only briefly to give you an idea of the options. There are entire books dedi-
cated to missing data (e.g., Allison, 2001; Enders, 2010; Graham, 2012; Little
& Rubin, 2002) that discuss many of the available methods and their rela-
tive advantages and disadvantages. Good journal-article-length treatment
can be found by Graham (2009) and Schafer and Graham (2002). This is
an important topic, and since all researchers eventually confront the prob-
lem, we recommend developing some familiarity with these methods at
some point. We consider three methods here: pairwise deletion, listwise
deletion, and a few forms of imputation.

Pairwise deletion and listwise deletion are the simplest and best-known
approaches to the problem. In pairwise deletion, each covariance (the foun-
dation of regression computations) is calculated using those cases for which
data are available for the two variables involved. Thus, in principle, every
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covariance in the regression computations could be computed on a differ-
ent subset of cases. When a regression analysis is done using covariances
computed in this way, it can yield results that could never occur in a sin-
gle sample. Pairwise deletion generally can’t be recommended for linear
models.

By far the most common approach to missing data is listwise deletion:
deleting from the analysis any case for which any data are missing on any
of the variables in the analysis. Listwise deletion will distort estimated
means unless the data meet a rather strict assumption: that data are miss-
ing solely due to chance. But we are usually more interested in regression
coefficients than in means. For estimating regression coefficients, the valid-
ity of listwise deletion depends upon a much less strict assumption we call
the noncontribution of missingness. Little and Rubin (2002) call this the as-
sumption of random missingness, but this name doesn’t seem sufficiently
informative. The assumption is that missingness makes no contribution
to the prediction of Y independent of the regressors. To understand this
assumption more precisely, imagine for every regressor Xj a variable FXj ,
where F stands for “filled in”; that is, FXj is what Xj would be if all the miss-
ing data on Xj were magically and accurately filled in, as if they weren’t
missing at all. Imagine also a dummy variable MissXj which is 1 on cases
for which Xj is missing, and 0 otherwise. There are also variables FY and
MissY for Y. Then the crucial assumption of listwise deletion is that the
Miss variables make no contribution to the prediction of FY independent of
the FXj variables.

Why is this assumption necessary? Recall that controlling for any re-
gressor amounts to estimating the effects of other regressors in a subpopula-
tion of cases that all have the same values on the regressor being controlled.
One way of accomplishing that end would be an extreme form of exclusion
of cases—restricting the sample to a subsample of cases with the same value
on the regressor being controlled. Listwise deletion effectively controls the
Miss variables by this method. It deletes from the sample any case scoring
1 on any such variable, leaving only the cases scoring 0 on all. But if a
variable makes no independent contribution to Y, then controlling for it
does not change the slopes of other variables in the regression. Therefore,
controlling the Miss variables by listwise deletion does not affect the slopes
of the other regressors.

Listwise deletion also leaves the analysis undistorted if the Miss vari-
ables are uncorrelated with the Fj variables, but this condition is too rare
to be of much interest. On the other hand, it is often reasonable to assume
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the noncontribution of missingness. For instance, in a questionnaire study,
suppose that the Miss variables are determined primarily by secretiveness.
Then there may be a great many regression problems in which it is rea-
sonable to assume secretiveness has no relation to Y independent of the
regressors. Often secretiveness or missingness will be determined by the
regressors themselves. For instance, people with exceptionally high or low
incomes might be especially reluctant to report them. If income is one of
the regressors in the analysis, then it may be quite plausible to assume the
noncontribution of missingness.

Rather than discarding cases that are missing data, the missing data
can be imputed through a variety of methods. The goal of imputation
is to replace cases that are missing with reasonable guesses or estimates
as to what the missing data would be if they were not missing. One
simple procedure, mean imputation, is to replace cases that are missing on
a variable with the mean of that variable as computed from the cases not
missing. Regression imputation involves replacing data for missing cases
with estimates derived from a regression model estimating that variable
from other variables in the data using the cases that are not missing to
build the model. Hotdeck imputation replaces the missing data on a variable
for each case with the values on those variables that are observed in cases
that are similar to those missing (so-called “donor” cases), with “similar”
being defined in various ways.

Though fairly simple to implement, these imputation methods are dif-
ficult to recommend except when the amount of missing data is fairly small
(no more than 5 to 10% of cases) and even then arguments can be made
for avoiding them. Most important, standard errors tend to be under-
estimated when imputed data are treated as if they are real, producing
confidence intervals that are inappropriately narrow and hypothesis tests
that are invalid. Multiple imputation gets around this by constructing many
imputed data sets, each of which is analyzed. The various estimates (e.g.,
regression coefficients and standard errors) from each analysis are then fed
into an algorithm that generates a proper point estimate and standard error
that can be legitimately used for inference.

There are a few methods that don’t involve any kind of formal im-
putation but, instead, rely on estimates of means, variances, and covari-
ances using information that is available from the cases not missing. These
methods include the EM algorithm and Full Information Maximum Likelihood.
These are complex methods, but good books on missing data discuss their
mechanics and implementation in various software packages.
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17.3.7 Rounding Error

Many modern statistical programs carry their computations out to many
digits of accuracy. Yet surprisingly, rounding error can still occasionally
creep into computations. To illustrate this for yourself, trying running the
code below in SPSS.

data list free/d1.

begin data.

0

end data.

compute d1=10000000000000.5-10000000000000.4.

compute d2=(.6+.1)*10.

compute d3=(.7+.1)*10.

format all (F16.15).

execute.

This code does some fairly rudimentary computations. The first computa-
tion subtracts 10,000,000,000,000.4 from 10,000,000,000,000.5 and displays
the result in a variable in the data file named d1. The correct answer, of
course, is 0.1. But SPSS shows the answer as .099609375. The second com-
putation results in 7.000, which is what SPSS does generate for d2. The third
computation is almost identical to the second and should generate 8.000,
yet SPSS shows the answer is 7.9999999999. These apparent computational
errors are not unique to SPSS.

Most computing programs, including SAS, STATA, Excel, and others,
are susceptible to varying degrees to problems traceable to rounding error
due to the way that computers represent and store numbers. The problem
is usually exacerbated when doing mathematical operations with numbers
that are very large or small and very similar to each other, such as under
conditions of near singularity in regression analysis. They can also be a
problem with variables with small standard deviations or ranges relative to
the means. For this reason, extremely low tolerances in regression analysis
or when using a variable whose range is small relative to its mean should
prompt some consideration of the problem of rounding error.

You can test your preferred program’s vulnerability to rounding error
due to the second circumstance—small variability relative to the mean—by
asking it to construct the standard deviation of three numbers. Start with
the three numbers (10,000,000,001), (10,000,000,002), (10,000,000,003). Each
of these numbers contains nine zeros between the first and last digits. If
your program uses N − 1 in standard deviation computations, it should
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TABLE 17.1. Another Data Set Useful for Detecting Rounding Error in Regression

X1 X2 X3 Y

1 1 1 1
−1 −1 −1 −1

d 0 0 0
0 d 0 0
0 0 d 0

display 1 as the standard deviation. Now add the same number of zeros
between the first and last digits of all three numbers. With between nine
and 15 zeros, SPSS displayed 1 as the standard deviation. But with 16 zeros,
it gave a standard deviation of 1.1547, and with 17 zeros it gave a standard
deviation of 0.

Here is another way of testing your program’s vulnerability. Create a
data set such as that in Table 17.1, with the number of cases N equal to k+2,
where k is the number of regressors. In this table, k = 3. Set all variables
for all cases to 0, with the following exceptions. Set all variables including
Y for case 1 to 1, and set all variables including Y to −1 for case 2. For the
remaining cases, set regressor i − 2 to +d, where i is the case number.

Using this data file, regress Y on the k regressors. Rounding error in
most computations tends to increase as d approaches 0 since correlations
among regressors all approach 1, as does R. Some exact values using data
set up in this manner can be found in Table 17.2. Looking at your regression
program’s output, you can check how close your regression program comes
to generating these exact values. Try it for different values of d, making d
increasingly close to 0. You should not use only powers of .1 (e.g., .01, .001,
.0001, and so on), since some programs work better on those numbers than
on others.

Although no computer program can give accurate answers to all prob-
lems, it seems reasonable to expect a program to issue warnings when
rounding error is likely. Yet no commercial statistical packages do so. This
doesn’t mean that you shouldn’t trust the output your regression analysis
program generates. Most of the time things will be fine. But be aware
that it can happen even on well-established and widely respected and used
programs.
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TABLE 17.2. Formulas That Give Exact Answers Using the Data in Table 17.1

SSresidual = 2d2/(Nk + d2)

R2 = 1 − (
d2/(Nk + d2)

)
Overall F = N/d2

b1 = b2 = . . . = bk = N/(Nk + d2)

t1 = t2 = . . . = tk = N/
√

2N(k − 1) + 3d2

rXiXj = (2N − d2)/
(
2N + (N − 1)d2)

Tolj = 2d2N(N2 − 2N + d2)/
(
(2N + d2N − d2)(2N2 − 6N + 3d2)

)

17.4 Chapter Summary

The power of a test is the probability of it rejecting a false null hypothesis.
In regression analysis, the null hypotheses that investigators test usually
pertain to measures of multivariate association, such as TR and TSR, or the
partial relationship between a single regressor and Y, such as Tbj, Tprj, or
Tsrj. Deriving the power of a hypothesis test or determining the sample
size needed to detect an effect with sufficiently high probability can be a
complex task best left to computers. But understanding the factors that
affect the standard error of a regression coefficient facilitates study design
and planning choices that increase the likelihood of correctly rejecting false
null hypotheses and generating estimates that are more precise.

The presence of random measurement error is the norm rather than
the exception. Although almost anything can be measured, measuring
things well requires careful thought. Even well-established methods of
measuring personality, attitudes, opinions, and other things that scientists
routinely study yield data that contain random measurement error. Most
of our treatment of linear regression, up to this chapter, has ignored this.
The seriousness of the effects measurement error has on estimation and
inference in regression analysis depends on whether the measurement error
is in the independent variable, the dependent variable, or covariates. Least
serious is measurement error in the dependent variable, and most serious
is measurement error in covariates. Although random measurement error
is nearly unavoidable, there is no reason to panic. In complex models it is
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difficult to determine how disruptive, if at all, measurement error is to the
validity of one’s conclusions. Although it is best to manage measurement
error by minimizing it at the measurement phase, there are some statistical
techniques one can employ to compensate for its effects. Better still is the
use of structural equation modeling, a topic that is beyond the scope of this
book.

At some point you will encounter various problems we address in this
chapter, including the use of regressors that are very highly correlated or
that end up producing singularities, thereby preventing the estimation of
the desired model. Although it is tempting to control for any variable
you have available in the data, in this chapter we discussed why you
should give careful thought to the selection of covariates, so as to reduce
or avoid the problem of overcontrol. Missing data is a common problem
when conducting any kind of data analysis, and there are many methods
available, some better than others, for dealing with it when it is pervasive.
And even in these days of low-cost, fast computing technologies, rounding
errors can still creep into computations.





18
Logistic Regression and Other Linear
Models

In this closing chapter we discuss the application of principles of linear
regression to the analysis of a dichotomous dependent variable. We dis-
cuss the modeling of the probability of an event as the odds or logit of
the event and show how to calculate estimates of probabilities from a
linear combination of regressors. We describe the interpretation of lo-
gistic regression coefficients and various inferences, such as testing or
estimating the fit of the model. We close the book with a brief overview
of some other analytical methods based on the linear model and provide
references to sources for more information about these various exten-
sions of the linear model.

18.1 Logistic Regression

In every analysis we have discussed thus far, the dependent variable was
assumed to be or was treated as continuous in nature. But not all dependent
variables are continuous or even numerical. Sometimes we are interested
in modeling a dichotomous dependent variable, meaning that it can take
on only one of two possible values. For example, a person may or may not
be successful at a task, lose his or her job, or have a child before getting
married. A person may get a question right or wrong, or respond one
way as opposed to another way. A person may or may not die in a given
period, may or may not have a heart attack before age 50, or may or may
not completely recover from a surgical procedure or traumatic experience.
A company may or may not make a profit during a fiscal year, or a neuron
may or may not fire in a certain set of biological circumstances. Many
phenomena of interest to scientists are not continuous in nature.

551
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When analyzing dichotomous dependent variables, special modifica-
tions to the procedures described so far must be made. In this section we
discuss the application of the linear model to the analysis or prediction of a
dichotomous dependent variable from one or more regressors. The proce-
dure described here is known as logistic regression and is very closely related
to multiple regression. With a good understanding of multiple regression,
you will find that it does not take long to become comfortable with logistic
regression.

That said, our intention is not to make you an expert on logistic re-
gression after reading 19 pages. As we note in section 18.1.8, book-length
treatments exist on the topic. Our goal here is only to give you a brief
introduction so you can see the similarities and the differences between
logistic regression and ordinary linear regression and to prepare you for
more thorough and comprehensive study on your own.

18.1.1 Measuring a Model’s Fit to Data

One of the fundamental concepts of statistical inference is the consistency
between a model and a set of data. Even the most basic inferential tests can
be thought of as a comparison between a model and the data. For example,
for the independent samples t-test comparing two means, we set up a null
hypothesis that the population mean difference equals zero. When data are
collected, we reject the null hypothesis if the data are not consistent with it.
The p-value from the t-test is essentially a measure of consistency between
the data and the null hypothesis. We decide that fit is inadequate if p is less
than some predetermined α-level, the level of significance for the test.

Applied to regression analysis, we can think of the task a regression
program faces as one of maximizing the fit of the model to the data. The
consistency between the model and the data is measured by SSresidual, with
a value of zero indicating perfect fit. Any change to a model, such as by
adding a regressor, is evaluated by its ability to increase the consistency
between the model and the data as measured by SSresidual.

When we apply this concept to a dichotomous dependent variable,
our first step is to develop a means of measuring the consistency or lack
of consistency between the model and the data. Then, just as we try to
maximize consistency in linear regression by trying to minimize SSresidual,
we can fit a model to a dichotomous dependent variable by maximizing
the chosen measure of consistency.

In most general terms, we can think of the fit of the model in terms of
how likely it would be to observe the data actually observed if the model
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is correct. In the case of a dichotomous dependent variable, we can ask the
probability of the observed data if a certain model is correct. This is the
model’s likelihood. For instance, suppose that a particular model or theory
states that success at a task is determined primarily by practice at the task
rather than by just listening to lecturers talk about how to do it. Suppose
we applied this model to three people who vary in practice and exposure
to lectures on the topic, and this model predicts that the probabilities that
person A, B, and C will succeed at the task they are given are 0.6, 0.7, and
0.2, respectively. Now suppose that person A and person B actually do
succeed, and person C fails. If we think of success as a variable Y coded 1
for success and 0 for failure, then our three measurements of Y are 1, 1, and
0. We can now ask, if the model is correct (i.e., the model that generates
these three probabilities), what is the probability of observing these three
values of Y for these three people?

If we assume that the performances of these three people are indepen-
dent, then we can apply the multiplicative law of probabilities to figure
out this probability. According to the model, the probability of success for
person A was 0.6, the probability of success for person B was 0.7, and the
probability of failure for person C was 0.8 (remember the model asserts
the probability of person C’s success is 0.2, so the probability of his or her
failure is 0.8). The multiplicative law of independent events say that the
probability of all three of these things happening is the product of their
individual probabilities. So the probability of this set of results if the model
is correct is 0.6 × 0.7 × 0.8 = 0.336. This is the model’s likelihood.

But suppose a second model asserts that exposure to classroom lectures
is more important than practice, and when this model is applied to these
three people who vary in practice and exposure to lectures, it implies
the probabilities of success for person A, B, and C are 0.6, 0.8, and 0.1,
respectively. Using the logic above, the probability of observing Ys of 1, 1,
and 0 for these three people is 0.6 × 0.8 × 0.9 = 0.432. Since the observed
outcomes have a higher likelihood under this model than the first, we can
say that overall, the second model is more consistent with the data than the
first.

We can formalize the likelihood in the form of a likelihood function. Let
Yi be whether (1) or not (0) the event happens for case i, and let PEi be the
estimated probability of the event for case i from some model. Then case
i’s contribution to the likelihood or fit of the model is

Fiti = Yi × PEi + (1 − Yi) × (1 − PEi) (18.1)
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If the event does not happen for person i, then we have Yi = 0, so that
the first term in equation 18.1 equals zero and Fiti reduces to 1 − PEi. If
the event does happen for person i, then we have Yi = 1, so that the
second term equals zero and Fiti reduces to PEi. But PEi and 1 − PEi are
the probabilities the model calculates for the event happening and not
happening, respectively, for case i. Thus, whether the event happens or
not, Fiti equals the probability the model has assigned to the outcome that
is ultimately observed. Therefore, the model’s likelihood or consistency
with the data equals the product of the values of Fiti for all cases in the
data. We can express this as

Likelihood = ΠN
i=1Fiti (18.2)

where Π is the multiplication operation (as opposed to Σ, which denotes
addition).

Values of the likelihood can be extremely small, especially in large sam-
ples. For instance, if Fiti were 0.9 for each of 1,000 cases, the likelihood
would equal .91000 = 1.75 × 10−46. So we usually report the natural loga-
rithms of likelihood values. But because these are always negative (since a
likelihood must be less than 1, and the natural logarithm of a number less
than 1 is negative), the value usually reported by a computer doing logistic
regression is either −ln(likelihood) and denoted −LL, or twice this value
(and denoted −2LL), for which we would say “negative log likelihood“ or
“negative two log likelihood.” Formally,

−LL = −ΣN
i=1ln(Fiti) (18.3)

and −2LL is twice this. These values cannot be negative (which is nonin-
tuitive given that we call it the “negative log likelihood”). Generally, they
are positive and measure lack of fit between data and model; the smaller the
value of −LL or −2LL, the better the model fits the data. A value of zero for
−LL or −2LL means that model perfectly fits the data. Thus, −LL or −2LL is
like SSresidual in that it’s never negative, zero implies perfect fit, and smaller
positive values imply better fit. Also, like SSresidual, these values typically
increase with N.

18.1.2 Odds and Logits

Derivation of the likelihood requires a value of PEi estimated for each case
in the data. We can think of a probability as a kind of mean: a mean
of zeros and ones. For instance, if I have 10 males in my sample, six of
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whom have a college degree, then I might estimate the probability that a
male will get a college degree is 0.6. This is the mean of six ones and four
zeros. Given that a regression equation is a model of conditional means,
you might think we could just regress a dichotomous Y with values 1 and
0 on a set of regressors to generate an estimated probability of the event
as a function of the regressors. However, there are many reasons why we
should not do this. We focus on only one of these reasons, and that has
to do with the fact that a probability has to be between zero and one. A
weighted linear sum of regressors could generate a probability greater than
1, or less than 0. For instance, suppose we found that each 1-unit increase in
age increases the probability of some event by 0.05. Now suppose that the
probability of the event for a 40-year-old is 0.7. By this model, that means
that the probability for a 50-year-old would be 0.7+ (10× .05) = 1.2, and the
probability for a 20-year-old would be 0.7+ (−20× 0.05) = −0.3. Neither of
these “probabilities” can be such, as a probability must be between 0 and
1.

Consider a different version of this problem. Suppose we have two
dichotomous regressors, sex and training at some task. So we have men
and women in the sample who either have training or do not. Suppose we
find that among untrained people, 50% of men and 70% of women succeed
at the task; this is a difference of 20 percentage points. Now suppose that
the effect of sex on success does not depend on training. It very well could
be that the training increases success, such that perhaps 90% of trained men
succeed. But if sex differences in success do not depend on training, then
we might think therefore that 110% of women should succeed, which is
also an increase of 20 percentage points. But this can’t happen.

To model probabilities, we want to convert probabilities into something
that has no upper or lower bound, so that estimates from a linear model are
not larger or smaller than what is possible. We do this by modeling not the
probability of an event, but the log odds or logit of the event (pronounced
“low-jit”). Odds are similar to probabilities; odds simply repackage a
probability into a different metric. If the probability of an event is 0.5, then
this means that half of the time we expect the event to occur and half of the
time we expect it not to occur. So the odds of it happening are 1 to 1, or 1.
If the probability of an event occurring is 0.25, the odds of it occuring are
1 to 3 or 0.333. And if the probability if 0.75, then the odds are 3 to 1, or 3.
Odds are related to probabilities by the function

Oddsi =
PEi

1 − PEi
(18.4)
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Whereas a probability is bound between 0 and 1, odds are bound between
0 and positive infinity. So this doesn’t completely solve the problem. But
if we take the logarithm of an odds, then we have a number that can be
anywhere between plus and minus infinity. We call this log odds a logit. It
is defined as

logit(PEi) = ln
( PEi

1 − PEi

)
By modeling the log odds of an event—logit(PEi)—we don’t have to worry
about the model generating an estimate that is impossible. Importantly,
once we have estimated logit(PEi), we can convert it to a probability with
the function

PEi =
elogit(PEi)

1 + elogit(PEi)
(18.5)

Recall from section 12.4.1 that e is approximately 2.718828.
Now reconsider the problem with the trained and untrained men and

women. The success rates of men and women who are untrained are 0.5
and 0.7, respectively, in probability terms. These probabilities correspond
to 0 and .847 on the logit scale, which is a difference of 0.847. Now if
trained men had a probability of success of 0.90, this is a logit of 2.197.
If sex difference doesn’t depend on training, then on the logit scale, we’d
expect the logit for trained women to be 2.197 + 0.847 = 3.044. Using
equation 18.5, this corresponds to a probability of success of 0.955, which
satisfies the requirement that a probability must be between 0 and 1.

There is no proof that the logit scale is in any sense the best possible
scale for modeling probabilities. But it turns out to be useful, and it tends to
give reasonable results. Furthermore, there is a well-developed literature
in linear models for modeling logits and testing hypotheses about how
variables are related to the likelihood or probability of events occurring. So
it has become very popular.

18.1.3 The Logistic Regression Equation

In an ordinary linear model, the equation linking the regressors to the
dependent variable is

Ŷ = b0 + Σ
k
j=1bjXj

and the computer finds the values of b0 and k values of bj that maximize
the accuracy of estimations of Y by minimizing SSresidual. If we assume
that logit(PE) is linearly related to regressors, which turns out to be a fairly
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reasonable assumption much of the time, then we can express those logits
as a linear function

logit(PE) = b0 + Σ
k
j=1bjXj (18.6)

In equation 18.5, we expressed PE as a function of logit(PE), so substituting
equation 18.6 into equation 18.5 gives

PE =
eb0+Σ

k
j=1bjXj

1 + eb0+Σ
k
j=1bjXj

For any set of specified values of b0 and k values of bj, we can calculate
PE for each case and then use equation 18.3 to calculate the model’s fit to
the data. Those values that minimize −LL (or twice its value, −2LL) are
the values most consistent with the observed data. A logistic regression
program will find those values of b0 and bj as well as their standard errors.

18.1.4 An Example with a Single Regressor

To illustrate logistic regression, we use the data set (hypothetical) in Table
18.1 from a sample of 24 international companies studied by an organiza-
tional psychologist. The data file is available at this book’s web page at
www.afhayes.com and is named LEADER. A variable in the data file named
profit is set to 1 if the company made a profit last year; otherwise, profit
is set to zero. And each company was classified as large (size = 1) or small
(size = 0). The leadership ability of the chief executive officer (CEO, and
named ceo in the data) is also available from judgments provided by the
board of directors, where a higher rating corresponds to higher perceived
leadership ability.

A Single Dichotomous Regressor. Consider first whether there is a
difference between large and small companies in the probability of making
a profit. In these data, 90% of the large companies made a profit last year,
whereas only 14.3% of the small companies made a profit. If you think of
the “event” as having made a profit, then the estimated probability of this
event for a large company is 0.900, and the probability of this event for a
small company is 0.143.

A logistic regression analysis with profit status as the dependent vari-
able and size of the company as the sole independent variable yields a
model of the logit or log odds of making a profit from company size. Doing
so yields

Estimated logit = −1.792 + 3.989X1
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TABLE 18.1. Company Profit Status, Size, and Leadership Ability of the CEO

Company Profit Company Size CEO rating
Y X1 X2

1 1 1 3.4
2 0 0 2.7
3 0 0 3.2
4 1 1 2.7
5 1 1 3.4
6 1 1 3.8
7 1 1 4.2
8 1 1 3.4
9 0 1 3.7

10 1 1 4.1
11 1 1 4.5
12 1 0 4.3
13 1 0 4.8
14 0 0 3.2
15 0 0 2.6
16 0 0 2.9
17 0 0 3.4
18 0 0 3.1
19 0 0 2.4
20 0 0 2.7
21 1 1 2.1
22 0 0 4.3
23 0 0 2.3
24 0 0 3.2

The regression coefficient for company size is b1 = 3.989, which means that
the log odds of making a profit increase as X1 increases by 1 unit. This 1-
unit increase is the difference between the small (X1 = 0) and large (X1 = 1)
companies. It seems the log odds of making a profit are higher for larger
than smaller companies.

Applying this model to the two company sizes gives

Small companies: −1.792 + 3.989(0) = −1.792

Large companies: −1.792 + 3.989(1) = 2.197

as the estimated logit or log odds of making a profit for the two types of
companies. But the logit is a strange metric to use for discussing these



Logistic Regression and Other Linear Models 559

TABLE 18.2. Estimated Logit, Odds, and Probability of Making a Profit

CEO rating Logit Odds PE

1.0 −3.572 0.028 0.027
1.5 −2.853 0.058 0.055
2.0 −2.133 0.118 0.106
2.5 −1.414 0.243 0.196
3.0 −0.694 0.500 0.333
3.5 0.026 1.026 0.506
4.0 0.745 2.106 0.678
4.5 1.465 4.325 0.812
5.0 2.184 8.882 0.899

results. We can undo the log of the odds by raising e to the power of the
log odds, resulting in the odds of making a profit. Doing so yields

Small companies: e−1.792+3.989(0) = e−1.792 = 0.167

Large companies: e−1.792+3.989(1) = e2.197 = 9.000

as the odds for small and large companies. Alternatively, we could apply
equation 18.5 to get the estimated probabilities of making a profit. Doing
so generates

Small companies: e−1.792+3.989(0)

1+e−1.792+3.989(0) = 0.143

Large companies: e−1.792+3.989(1)

1+e−1.792+3.989(1) = 0.900

as the estimated probabilities, which are exactly what we calculated earlier.
So the logistic regression model has regenerated the observed probabilities.

A Single Numerical Regressor. No change to the mechanics is required
for a numerical regressor. Suppose we wanted to know whether a company
is more likely to make a profit if it is run by a CEO perceived as having
more leadership skills. Regressing the dependent variable of profit status
on the leadership ability of the CEO (X2) using logistic regression yields

Estimated logit = −5.011 + 1.439X2

The regression coefficient for leadership of the CEO is b1 = 1.439, which
means that the log odds of making a profit increase as X2 increases. It



560 Regression Analysis and Linear Models

FIGURE 18.1. Profit status and estimated probability of making a profit as a function of
CEO leadership ability.

seems the log odds of making a profit are higher in companies run by a
CEO perceived to be higher in leadership abilities.

Leadership ability is a continuous scale. This model generates many
logits, one for each possible value of X2. Table 18.2 contains the estimated
logits, odds, and probabilities of making a profit for different CEO ratings.
Figure 18.1 is a scatterplot of profit status against leadership rating, as well
as a plot of the estimated probabilities of making a profit applying equation
18.5. It is apparent that the likelihood of making a profit (whether measured
in terms of log odds, odds, or probabilities) goes up as the leadership ability
of the CEO increases.

18.1.5 Interpretation of and Inference about the Regression
Coefficients

In a logistic regression analysis, the logit is modeled as a linear function
of regressors. In models with only a single regressor, b0 is the estimated
logit when the regressor is equal to zero, and b1 is the estimated difference
in the logit between two cases that differ by 1 unit on the regressor. In
that sense, logistic regression coefficients are similar to ordinary regression
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coefficients. As the logit is positively related to the probability of the
event, a positive logistic regression coefficient for a regressor means that the
probability of the event increases with increases in the regressor, whereas
a negative logistic regression coefficient means that the probability of the
event decreases as the regressor increases.

A logistic regression program will produce a standard error of the lo-
gistic regression coefficient, as well as some kind of statistic and associ-
ated p-value for testing the null hypothesis of no association between the
probability of the event and the regressor. Some programs display this
as a t-statistic, others as a Z-statistic, both formed as ratios of the logis-
tic regression coefficient to its standard error. Still others report a Wald
statistic, which is just the square of this ratio. A confidence interval can
be constructed in the usual way as the point estimate plus or minus about
two standard errors, but this confidence interval usually doesn’t have any
meaningful interpretation, because the logit scale is not substantively mean-
ingful.

A transformation of a logistic regression coefficient is often applied
prior to interpretation. By raising e to the power of a logistic regression
coefficient, the result is an odds ratio. An odds ratio is just that—a ratio of
odds. To understand an odds ratio, consider the odds of making a profit for
small and large companies. We saw in section 18.1.4 that the odds of a profit
if the company is small are estimated as 0.167. But for large companies,
the estimated odds are 9.000. This ratio is 9.000/0.167, which is about 54 if
you account for rounding error in doing computations here to only three
decimal places. Recall that the regression coefficient for company size was
3.898. And notice that e3.898 = 54. This is the factor change in the odds of the
event as the regressor increases by 1 unit. When X1 = 0 (small company),
the odds of a profit is 0.167. When X1 increases by 1 unit (X1 = 1 for large
companies), the odds go up to 9.000. This is a multiplication of the odds
by 54.

Applying this to the example model of profit from CEO leadership
ability, b1 = 1.439, and e1.439 = 4.2. So we can say that an increase in 1 scale
point in the leadership ability of the CEO is associated with about a 4.2
factor increase in the odds of making a profit. Observe that this is true in
Table 18.2. For instance, for a CEO with a 2.0 rating, the estimated odds
of a profit is 0.118. But for a CEO with a 3.0 rating, the estimated odds is
0.500. The ratio of these odds is 4.2.

The odds ratio can be interpreted in this manner regardless of what
value in the distribution of the regressor serves as the baseline. For instance,
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notice in Table 18.2 that for a CEO with 4.0 rating, the odds of a profit are
about 4.2 times the odds of a CEO with a 3.0 rating making a profit. But
this ratio does not apply to probabilities. The constraints on a probability
being between zero and one mean that you can’t apply ratio approaches
such as this to evaluating the relative sizes of probabilities as the regressor
changes.

Confidence intervals can be generated in an odds ratio metric as well.
This is accomplished by raising e to the power of the upper and lower
bounds of the confidence interval for the logit. The result will be a confi-
dence interval for the true odds ratio.

What would happen if the logistic regression coefficient for a regressor
were zero? This would mean that there is no relationship between the
regressor and whether or not the event occurs or how likely the event is
to occur. If you raise e to the zero power, you get 1.00. That means that a
1-unit increase in the regressor changes the odds of the event by a factor of
1. But a factor change of 1 is not a change at all. If we multiply a number
by 1, we just get that number.

An odds ratio has a lower bound of 0 but no upper bound, but a logistic
regression coefficient can be negative. If a logistic regression coefficient is
negative, then the odds ratio is less than 1. This means that the odds of
the event is decreasing as the regressor increases, as is the probability. For
example, an odds ratio of 0.8 means that the odds of the event increases by
a factor of 0.8. But when you multiply a number by something between
0 and less than 1, you get a number smaller than the original number. So
an odds ratio of 0.80 translates into a decrease in the odds as the regressor
increases by 1 unit.

18.1.6 Multiple Logistic Regression and Implementation in
Computing Software

Logistic regression routines are available in most all software that conducts
ordinary regression analysis. We illustrate code to conduct logistic regres-
sion in SPSS, SAS, and STATA in the context of a multiple logistic regression
model, meaning a model with more than one regressor. Suppose, for in-
stance, we wanted to model the probability of a company making a profit
from both its size and the perceived leadership ability of the CEO. A logistic
regression command in SPSS to conduct such an analysis looks very much
like an ordinary regression command:
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Omnibus Tests of Model Coefficients

Chi-square df Sig.

Step 1 Step

Block

Model

19.413 2 .000

19.413 2 .000

19.413 2 .000

Model Summary

Step
-2 Log 

likelihood
Cox & Snell R 

Square
Nagelkerke R 

Square

1 13.691a .555 .741

Estimation terminated at iteration number 6 because parameter estimates changed by less than .001.a. 

Variables in the Equation

B S.E. Wald df Sig. Exp(B)

Step 1a size

ceo

Constant

4.624 1.718 7.244 1 .007 101.872

1.790 .962 3.459 1 .063 5.989

-8.149 3.799 4.600 1 .032 .000

Variable(s) entered on step 1: size, ceo.a. 

FIGURE 18.2. SPSS output from a multiple logistic regression analysis.

logistic regression profit/method=enter size ceo.

The equivalent command in SAS is

proc logistic data=leader descending;

model profit=size ceo/rsquare;

run;

and in STATA, use

logit profit size ceo

Figure 18.2 contains an abbreviated version of the output from SPSS. Before
discussing this model, it is worth pointing out a feature of SAS that can be
confusing if you aren’t aware of it. In SPSS and STATA, the numerically
largest value or code in the data for the dependent variable will be chosen as
the “event.” In this case, with no profit coded 0 and profit coded 1, making
a profit is the event. But SAS defaults to the lowest value as the event. This
means that the logistic regression coefficients and regression constant will
have the opposite signs in SAS than what SPSS and STATA give, unless
you specify descending as an option, as in the command above. This tells
SAS to treat the numerically highest code on the dependent variable as the
event, rather than the other way around.
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Under the output column labeled “B” can be found the logistic regres-
sion coefficients and constant. As can be seen, the model is

Estimated logit = −8.149 + 4.624X1 + 1.790X2

Using this model, the estimated odds and probabilities of a company mak-
ing a profit can be derived for a company of a given size (X1) whose CEO
is given a certain leadership rating by the board (X2). For example, for a
large company with a CEO rated 2.0 on leadership, the estimated odds of
making a profit are

e−8.149+4.624(1)+1.790(2) = e0.055 = 1.057

and the estimated probability is

e0.055

1 + e0.055 = 0.514

The logistic regression coefficients for size and sex are both positive
and statistically significant. These are partial logistic regression coefficients.
Each variable in the model serves as a statistical control when assessing the
partial association between Xj and the probability of event. So we can say
that holding the perceived leadership ability of the CEO constant, or controlling
for CEO leadership ability, large companies are more likely to make a profit
than small companies, because b1 is positive and statistically different from
zero. Further, we can say that the odds of a large company making a profit
are eb1 = e4.624 = 101.900 times the odds of a small company making a
profit (and note that this odds ratio is printed in the SPSS output under the
column labeled “Exp(B)” and is computed with a bit more precision than
our hand computation). But we can’t say the same thing in probability
terms, because the difference in the probabilities of making a profit for two
companies different in size but run by a leader with the same perceived
leadership ability will depend on the specific value of leadership chosen
when making the comparison. The estimated probability of the large com-
pany will always be larger than the estimated probability of the smaller
company, but we can’t say just how much larger without choosing a value
of perceived leadership ability.

We can also say that holding company size constant, companies run
by CEOs perceived as better leaders are more likely to make a profit.
More specifically, we can say that holding company size constant, two
companies run by CEOs who differ by 1 unit in perceived leadership abil-
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ity are estimated to differ in the odds of making a profit by a factor of
eb2 = e1.790 = 5.989. That is, the company run by the CEO 1 unit higher in
perceived leadership ability is estimated to be almost six times more likely
to make a profit. But as in the prior paragraph, in this statement, likely is a
reference to the relative odds and not probabilities. We can’t make such a
statement about probabilities. To talk about such a difference in probability
terms, you have to pick a company size and two values of CEO rating and
do the computations to get the estimated probabilities for these specific
cases.

18.1.7 Measuring and Testing the Fit of the Model

In section 18.1.1 we saw that when using the multiplicative law of prob-
abilities, we can quantify the fit of a set of estimated probabilities to the
observed data, and therefore the fit of a model that generates those proba-
bilities. Logistic regression generates an estimated probability of the event,
and the data include whether or not the event occurred for each case. So
a simple measure of fit is the Pearson correlation between the observed
values and the estimated probabilities. For a perfectly fitting model, the
correlation between PE and Y would be 1. In the two-regressor model of the
probability of a company making a profit in section 18.1.6, this correlation
is 0.826.

Although this seems intuitively reasonable, most regression programs
generate measures of fit that rely on the likelihood of the data. These
measures all rely on a comparison between the likelihood for the observed
model and a model that contains no regressors—the so-called constant-only
model. To understand this, imagine in this example that you didn’t know
a company’s size or the perceived leadership of its CEO. In that case, if
you wanted to estimate any randomly selected company’s probability of
making a profit, your best guess would be the proportion of companies in
the data available that made a profit. In this case, from the data in Table
18.1, you can see that 11 of the 24 companies made a profit. So 11/24 = 0.458
is a reasonable estimate of the probability of making a profit if you had no
other information available to you.

We could translate that probability into an odds using equation 18.4,
which would result in an odds of making a profit of 0.846. Translated yet
again into a logit, which is the natural logarithm of the odds, we have
−0.167. Thus, the constant only model of the probability of making a profit
would be

Estimated logit = −0.167
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This simple model has a likelihood, which can be generated using equation
18.2 and then converted into −LL with equation 18.3 or to −2LL by mul-
tiplying −LL by two. In this example, −LL = 16.552 and −2LL = 33.104.
To ease the discussion that follows, rather than referring to both values,
we will use the −2LL version and denote it −2LLc, where the “c” subscript
denotes “constant-only.” So −2LLc = 33.104.

Now consider the model of the probability of making a profit that
includes the size of the company and the CEO’s leadership rating. In
this example −2LL = 13.691. In SPSS, −2LL for the model is found in the
section of output under the heading “-2 Log Likelihood.” As can be seen,
SPSS reports 13.691. We will denote this −2LLm, so −2LLm = 13.691. Most
programs will display one of these statistics for the model being estimated.
Some will display both −2LLm and −2LLc in the same output.

There are two things that we can do with this information, keeping in
mind that for a perfectly fitting model, −LL = −2LL = 0. Since a better-
fitting model has −2LL closer to zero, and we know that a model that
excludes all regressors has a −2LL = −2LLc, we can ask how close −2LLm

is to 0 relative to −2LLc. If you think of −2LLc as a distance from zero,
this question can be phrased as how much of the distance between fit of
the constant-only model and a hypothetical perfectly fitting model has the
observed model “traveled?” This ratio is called the McFadden R2. It is
defined as

McFadden R2 =
−2LLc − (−2LLm)

−2LLc

which in this example is 0.586. This is sometimes called a “pseudo-R2”
because it is often interpreted like a squared multiple correlation between
the observed probabilities and the actual values of Y (which are 0 and 1 in
the data), but it isn’t quite the same thing as a squared multiple correlation
in reality. In fact, the square of the correlation between PEi and Yi in this
example is 0.8462 = 0.682.

Attempts have been made to improve the McFadden R2. One of these
is the Cox and Snell R2, defined as

Cox and Snell R2 = 1 − e−[−2LLc−(−2LLm)]/n

which in this example is 0.555. But a true R2 can be 1, yet it can be shown
that the Cox and Snell measure can’t quite achieve 1 in some situations. A
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correction for this is the Nagelkerke R2, which is the Cox and Snell measure
divided by its maximum possible value:

Nagelkerke R2 =
Cox and Snell R2

1 − e−(−2LLc)/n

which in this example is 0.741.
These three measures of fit can differ quite dramatically, as can be seen

in this example. Complicating matters, there are many other measures
of fit that will produce still different values than these. Different logistic
regression programs will display none, some, or all of these measures, and
they will not always label them the same. As can be seen in Figure 18.2,
SPSS provides the Cox and Snell and Nagelkerke R2 measures but not the
McFadden R2.

A second use of −2LLc and −2LLm is for testing a hypothesis about the
fit of a model. We saw in section 4.3.2 in ordinary regression that if there is
no relationship between any of the regressors and Y in the population, this
implies that all true regression coefficients for the regressors are equal to
zero or, alternatively, that TR = 0. An F-test was described in that section
for testing this hypothesis.

A comparable test exists in logistic regression. Under the null hy-
pothesis that all of the true logistic regression coefficients equal zero
(meaning the observed model fits no better than the constant-only model),
−2LLc − (−2LLm) follows a χ2 distribution on k degrees of freedom, where
k is the number of regressors. This is called a likelihood ratio test. Most
logistic regression programs will display this test. In SPSS, it can be found
in the section titled “Omnibus Tests of Model Coefficients” in the row
labeled “Model.” In the two-regressor example we’ve been discussing,
χ2(2) = 19.413, p < .001, where χ2 = −2LLc − (−2LLm). We can reject the
null hypothesis. There is a relationship between the probability of making
a profit and either company size, leadership of the CEO, or both. That is,
this model fits better than you would expect “just by chance.”

In section 5.3.3 we discussed a test for sets of regressors. That test was
used to determine whether adding one or more variables to a regression
model improves its fit. In logistic regression, the likelihood ratio test just
described can also be used to test whether adding additional regressors to
an existing model improves its fit. Suppose you are estimating a dichoto-
mous variable from three regressors X1, X2, and X3. Call the −2LL from
that model −2LLA, for “model A.” You want to know if adding X4, X5,
and X6 to model A significantly improves the fit of the model. Call this
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model B, which has −2LLB. In this example, −2LLA − (−2LLB) follows χ2

distribution on three degrees of freedom if the variables added to model
A to produce model B don’t improve the fit. This is equivalent to a test of
the null hypothesis that the true logistic regression coefficients for all the
variables added to model A to produce model B are equal to zero. More
generally, if you add k regressors to model A to produce model B, then
under the null hypothesis of no partial relationship between any of the k
regression coefficients added and the outcome when holding the variables
in model A constant, the difference in the −2LL is distributed as χ2 on k
degrees of freedom. Most logistic regression programs can conduct this
test and generate a p-value, or it can be done manually by estimating the
two models and comparing the difference in the −2LL values to entries in
a table of critical values of χ2(k), such as in Appendix C.

18.1.8 Further Extensions

In this book we have covered many topics in linear regression analysis
across 17 chapters, and we could write equivalent chapters on these var-
ious topics for logistic regression. Many of the same methods described
in this book have equivalent versions in logistic regression. For example,
multicategorical variables can be included as regressors in a logistic regres-
sion model using any of the coding schemes discussed in Chapters 9 and
10. Nonlinear models such as those described in Chapter 12 can be fit to
dichotomous dependent variables using logistic regression, as can models
with interactions using the techniques in Chapters 13 and 14. And there are
many diagnostic statistics in logistic regression similar to those discussed
in Chapter 16 that can be used for finding irregular cases, quantifying in-
fluence, and testing model assumptions. There are entire books dedicated
to logistic regression that discuss these topics, and with the background
you now have in linear regression and this brief introduction to logistic
regression, you should be prepared to tackle any of these topics, covered in
such sources as Allison (2012), Hosmer, Lemeshow, and Sturdivant (2013),
Jaccard (2001), Long (1997), Menard (2002), and Pampel (2000).

18.1.9 Discriminant Function Analysis

Discriminant function analysis is an older statistical technique that has
largely been replaced by logistic regression, which has fewer requirements
and assumptions. But you may need to read research that used discrim-
inant function analysis, so a few words about it seem appropriate here.
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Discriminant function analysis is used when the dependent variable Y is
dichotomous, but it assumes all regressors are continuous. Technically, it
assumes that within each group of cases defined by a common value of
Y, the distribution of all the regressors is multivariate normal, though the
tests are reasonably accurate even if that assumption is not exactly true. It
assumes that the regressor scores have the same pattern of standard devia-
tions and correlations in the two Y groups. Discriminant function analysis
can be used to make many of the same kinds of inferences as can be done
with logistic regression, such as calculating for each person the probability
of the event. It turns out that the significance tests on partial and total re-
lationships in discriminant function analysis are exactly the same as those
found when an ordinary regression program (not logistic regression) is
applied to a dichotomous Y. Discriminant function analysis computes a
linear function of the regressors called a discriminant function and derives
a curvilinear relationship between that function and the probability of the
event. That discriminant function turns out to correlate perfectly with the
Ŷ values you would find from applying ordinary regression analysis using
the dichotomous Y as the dependent variable. Those Ŷ values cannot be
interpreted as probabilities since they may be below 0 or above 1. But they
nevertheless correlate perfectly with the discriminant function, which can
be combined with a curvilinear formula to find probabilities.

18.1.10 Using OLS Regression with a Dichotomous Y

With a dichotomous variable Y, the conditional distributions of Y cannot
be normally distributed, because Y can have only two values. Thus, if we
used ordinary regression to estimate Y from one or more other variables,
the assumption of normality would be badly violated. This raises ques-
tions about the accuracy of any statistical inferences you can make using
linear regression analysis with a dichotomous dependent variable, such as
significance tests on individual regressors or on the regression model as
a whole. However, we mentioned in section 4.1.2 that the central limit
theorem says that the larger the sample size the less important it is that
conditional distributions be normal. This suggests that with large sample
sizes, these inferences might be valid. Also, suppose a researcher’s primary
interest is in the relationship between Y and one continuous independent
variable X1, and the other variables in the model are covariates. In that case,
the one inference of most interest concerns the partial relationship between
Y and X1. But if we are interested in the partial relationship between two
variables, the test is the same test regardless of which one is the depen-
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dent variable. If we instead thought of X1 as the dependent variable and
Y as a regressor, we would be studying the partial relationship between a
continuous dependent variable and a dichotomous independent variable,
and we know that regression includes no requirement that independent
variables be normally distributed. Thus, our test of interest might be rea-
sonably valid even with a fairly small sample. And even if both X1 and Y
are dichotomous, the ordinary regression test is pretty accurate with larger
samples. The same is true for the test on the regression as a whole. Thus,
even when Y is dichotomous, the most common inferences in ordinary
regression are often reasonably valid.

Suppose you have used ordinary regression analysis many times, and
you are thinking of conducting a logistic regression analysis for the first
time. The preceding argument suggests that applying your ordinary regres-
sion analysis to your data can give you a pretty good idea of the significance
of the regression as a whole and of individual partial relationships of in-
terest. If those relationships turn out to be nonsignificant and with large
p-values, then maybe you don’t need to bother learning logistic regression
analysis right now. But if they are significant, you may want to learn about
and run the logistic regression analysis to confirm it.

18.2 Other Linear Modeling Methods

Although linear regression analysis is a very versatile “data analytic sys-
tem” (Cohen, 1968), it can’t be used for every data problem you confront.
Yet the idea of modeling a dependent variable as a weighted sum of regres-
sors underlies may other statistical methods, and so the researcher familiar
with regression analysis can often use these other methods with only a little
bit of extra study. In this last section of the book, we offer brief descriptions
of some of these methods, along with some references you can explore to
further educate yourself.

18.2.1 Ordered Logistic and Probit Regression

Ordinary regression analysis is typically the method of choice when the
dependent variable is continuous or at least numerical, with many possible
values, and the measurement scale is interval in nature. We saw in section
18.1 that when the dependent variable is dichotomous and so has only
two possible values, logistic regression is appropriate. Between these two
extremes are discrete, ordinal dependent variables. Researchers often ask
participants to respond to a single question used as a dependent variable
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that has only a few response options and for which the response options
scale a quantity at only the ordinal level. Examples include level of agree-
ment (e.g., strongly disagree, disagree, neutral, agree, strongly agree), evaluation
(e.g., poor, fair, good, excellent), or frequency (e.g., never, a few times, usually,
always). Or a clinical psychologist might evaluate whether a patient has
improved since the start of therapy, not changed, or worsened. Although it
is not difficult to find people analyzing dependent variables such as these
with ordinary regression, and there is some debate about and research on
its appropriateness (see, e.g., Noreen, 1988; Taylor, West, & Aiken, 2006),
methods are available designed for dependent variables like these.

There are extensions of logistic regression that can be used for discrete
ordinal dependent variables. They take many forms and collectively go
by the name ordinal logistic regression, but all rely on the idea of modeling
the odds of the dependent variable taking one value rather than some
other value that is ordinally higher on the scale. There are many ways
this could be done. For instance, with a 3-point ordinal scale, you could
simultaneously model from one or more regressors the odds of giving
ordinal response 1 relative to response 2 or 3, as well as the odds of giving
ordinal response 2 relative to 3. Or you could model the odds of giving
response 1 rather than 2 and also the odds of giving response 2 rather than
response 3. By making certain assumptions, you can use a single logistic
regression coefficient to estimate how the odds of making an ordinally
higher response relative to a lower response as a regressor increases.

Ordinal regression doesn’t make any assumptions about the distribu-
tion of the ordinal dependent variable. If you are willing to assume that
the ordinal response categories reflect an underlying continuum that is
normally distributed, then probit regression can be used. If you think about
it, many ordinal scales are ordinal not because the underlying variable is
ordinal but because the researcher has forced a continuum into a set of
ordinal categories. For instance, if I ask you to evaluate the quality of a
restaurant using a 4-point ordinal scale, you are forced to translate your
feelings into one of the four response options. But people’s beliefs probably
don’t follow a discrete distribution but, rather, an underlying continuum.
It is only the measurement process that has made the response ordinal.

Once you feel comfortable with logistic regression, you should have no
trouble expanding your knowledge of linear modeling methods to ordinal
logistic or probit regression. There are several good books that cover these
and related methods, including Borooah (2001), Long (1997), and O’Connell
(2005). A single and very readable chapter on ordinal logistic regression



572 Regression Analysis and Linear Models

can be found in Orme and Combs-Orme (2009), and some journal articles
include Ananth and Kleinbaum (1997) and Valenta, Pitha, and Poledne
(2006).

18.2.2 Poisson Regression and Related Models of Count
Outcomes

A variable is a count if the smallest possible value is zero and only integers
can be observed. Examples include the number of times a person reports
having donated to a political campaign in the last year, how many comput-
ers a person owns, or how many symptoms of a particular psychological
disorder a person experiences. When a count variable is the dependent
variable in an analysis, sometimes it is acceptable to use regular regression
analysis, but in some circumstances ordinary regression analysis is not ap-
propriate. For example, consider our measure of political knowledge used
in the analysis reported in Chapter 12. Strictly speaking, that is a count
variable, because it was formed by adding up the number of questions that
a person was able to answer correctly. Yet most researchers wouldn’t be too
concerned about using ordinary regression for this, because the number of
things being counted is fairly large (there were 22 questions on the knowl-
edge test) and relatively few of the observations were on the very bottom
or top end of the scale (the mean was 11.3, and 80% of the measurements
were between 6 and 17).

But often it is the case that most of the observations are at the very
bottom or the very top of the distribution, and only a few of the possible
values are observed. For example, if you asked people how many car
accidents in the last 2 years they have been in, most people would say zero,
some would say one, very few would say two or three, and you aren’t
likely to find anyone who has been in four or more car accidents in the last
2 years unless he or she is in the business of crash-testing cars. A variable
like the number of children a person has would probably be similar, with
many zeros, ones, and twos, some threes, fewer fours, and relatively few
fives and higher. On the other end of the spectrum, if you asked a child
during the school year how many days in the last week he or she went to
school, almost all would say 5 days, a few might say 4, fewer would say 3,
and almost no children would report not having gone to school at all that
week.

Modeling dependent variables that are counts such as these, where there
are relatively few values observed and most cluster toward the bottom or
top end of the distribution, ordinary regression analysis is not the best,
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and sometimes not even a particularly good analytical choice. Statistical
methods based on the linear model are designed especially for modeling
discrete variables that are counts such as this. Examples include Poisson
regression and negative binomial regression, two methods that are very closely
related. Long (1997) offers a few chapters on this topic; an entire book
on the regression of count outcomes is available by Cameron and Trivedi
(2013); and see Coxe, West, and Aiken (2009) and Gardner, Mulvey, and
Shaw (1995) for readable journal-article-length treatments. A very readable
book chapter on these methods can be found in Orme and Combs-Orme
(2009).

18.2.3 Time Series Analysis

Time series analysis is superior to regression analysis for some inferential
purposes when the units of analysis are measured over many sequential
time periods, such as weeks, months, or years. The example on changes in
the population of the United States in section 2.4.4 illustrates this kind of
data. Time series data are particularly challenging, because they usually
violate the assumption of independence when ordinary regression analysis
methods are used. Typically, there is a component of a measurement at
time t that can be predicted from values of the dependent variable taken
at time t − 1, t − 2, and so forth, and this makes it challenging to get good
estimates of standard errors of regression coefficients.

The most popular time series method is based on something called the
autoregressive integrated moving average model, or ARIMA for short. ARIMA
modeling is quite common in economics and other fields in which data
are collected at regular intervals over extended periods of time, such as
economic indicators, company performance measured quarterly, and so
forth. But you can find examples of time series analysis in other fields such
as public health, criminology, and virtually anywhere else that relies on
statistics collected over time. Although ARIMA modeling is the standard
for modeling time series data, regression methods can be used with some
forms of time series data as well. There are many good books on the topic of
time series analysis from different approaches (e.g., Box, Jenkins, & Reinsel,
2008; Enders, 2009; Milhoj, 2013; Ostrom, 1990; Yaffee & McGee, 2000).

18.2.4 Survival Analysis

Survival analysis, also called event history analysis, is often used when the
dependent variable is the time or date at which an event occurs. An example
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would be a person’s death, when he or she is first married, how long after
completion of therapy a person relapses, or something less dramatic, such
as how long it takes a person to complete a task. One of the problems
with analyzing time to event is that sometimes the event doesn’t occur. For
instance, your dependent variable might be how many minutes it takes
a person to solve a moderately complex mathematics problem. But some
people may not actually finish the problem. In such cases, what should be
used as the value for the dependent variable? If you truncate it at some
value such as the amount of time elapsed before the participant was not
allowed to continue trying, then no distinction is being made between those
who actually do finish it in that time, those who might have eventually
finished it if given more time, and those who would never complete it
regardless of the amount of time they were given. This complicates time to
event analysis using ordinary regression methods.

Unlike in regression analysis, survival analysis allows for the possibility
that the event doesn’t occur for a particular case in the data set. For
such cases, there is no time of event, but they can still be used in the
analysis. Their dependent variable is called censored. For some kinds of
problems involving time, logistic regression can be used, such as when
time is measured discretely (e.g., whether or not the event occurred in
one of a few predetermined time periods). Otherwise, more specialized
procedures such as Cox regression are required. See Allison (2010, 2014), Box-
Steffensmeier and Jones (2004), and Hosmer, Lemeshow, and May (2008)
for book-length introductions to these methods, or individual chapters in
Singer and Willett (2003). A four-journal article series on survival analysis
can be found in the British Journal of Cancer (Bradburn, Clark, Love, &
Altman, 2003a, 2003b; Clark, Bradburn, Love, & Altman, 2003a, 2003b).

18.2.5 Structural Equation Modeling

Linear regression analysis can be thought of as a special form of structural
equation modeling (SEM), also known as covariance structure modeling. SEM
is more of a multifunctional tool, like a Swiss army knife, than a single
distinct method. Methods that can be thought of as forms of SEM include
simple path analysis, as discussed in Chapter 15, confirmatory factor anal-
ysis, latent growth modeling, latent class analysis, and many others. An
understanding of regression analysis is fundamental to mastering its more
general version as SEM.

Three features of SEM are worth noting that make it distinct from re-
gression and other methods discussed above. First, in ordinary regression
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analysis, there is only a single dependent variable being modeled. But in
SEM, you can model many dependent variables at once, and some of those
dependent variables can simultaneously be functioning as independent
variables or covariates in the same analysis. This allows for sets of relation-
ships to be modeled all at once to better understand complex processes,
including those that evolve over time.

Second, recall from section 17.2 that in ordinary regression analysis,
measurement error in independent and dependent variables can lower
power, and measurement error in covariates can bias the estimation of re-
gression coefficients. But SEM offers a means of dealing with problems due
to measurement error when variables are modeled as latent rather than
observed. In latent variable SEM, a variable can be represented by a set
of indicators that is modeled as caused by the latent variable. Examples
of indicators would be responses to specific questions on a test or attitude
survey. Rather than using a sum or average of responses to a set of ques-
tions, the covariation between the indicators is modeled as being caused
by a latent variable not actually observed in the data. The latent variables
can then be tied together in a linear model to examine how variables relate
to one another.

Third, whereas ordinary regression defines the “best” linear model as
the one that minimizes SSresidual, in SEM, you can choose from many defini-
tions of best, some of which are better suited to certain kinds of problems
than others. Unlike in ordinary regression analysis (and like logistic re-
gression, though we didn’t discuss this earlier), an SEM program may not
return the best solution for a given definition of best. That is because soft-
ware that does SEM attempts to find the solution iteratively, by proposing
one solution, quantifying its fit, and then modifying the solution repeat-
edly until further modification no longer improves fit by more than some
specified amount. But when such an iterative procedure is used, there is
no guarantee that the solution it prints is the best available.

Bollen (1989) is the classic but technical treatment of SEM. There are
many other books that are more applied in orientation (e.g., Kline, 2015;
Raykov & Marcoulides, 2006). Others worth exploring are dedicated to the
implementation of SEM in specific software programs such as Mplus and
AMOS (see, e.g., Byrne, 2009, 2012; Geiser, 2012).

18.2.6 Multilevel Modeling

It is common in some research for data to be collected from people or
other units that are “nested” in some fashion under different higher-level
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research units. For example, employees at a company are often organized
into certain functional areas, such as manufacturing, marketing, human
resources, and so forth. And school-age children reside in classrooms,
and classrooms reside in schools, which reside in districts. Or when you
measure somebody repeatedly over time on one or more variables, each
measurement at a given time point is nested under the person providing
the data.

Multilevel linear models are designed to properly handle problems that
are produced by nonindependence when such nesting exists in one’s data
and there is the possibility that values on the dependent variable may
differ systematically across higher-level organizational units. Multilevel
modeling can also be used to answer questions about how variables at one
level (e.g., the number of children in a classroom) influence the effects of
variables at other levels (e.g., how the sex of the child in that classroom
relates to his or her performance). This is because in multilevel analysis,
the data analyst is not forced to fix one variable’s effect to be the same across
all higher-level units.

To illustrate this idea, suppose a cognitive psychologist is interested in
examining how people come to understand certain concepts like “chair.”
The researcher might show a person 50 photographs of pieces of furniture
and ask the person to classify it as a chair or not, or to evaluate how
“chair-like” the piece is. Each piece of furniture may be quantified on a
variety of variables, such as size, number of legs, squareness, puffiness, and
so forth. In this example, the furniture pieces are level-1 units, and these
features of the furniture are level-1 regressors. And the dependent variable
of judgment of chair-likeness is also a level-1 variable. Level-2 regressors
might include the age of the participant, his or her sex, and perhaps his
or her score on a cognitive abilities test. Using multilevel modeling, we
could simultaneously examine the relationship between the dependent
variable and both level-1 and level-2 regressors, while also allowing the
values of level-2 regressors to influence the effect of level-1 regressors on
the dependent variable.

If there were 20 participants in this study, each of which gives 50 re-
sponses (one for each piece of furniture), we can’t just treat these like 1,000
independent data points. Doing so would ignore the fact that people prob-
ably differ tremendously from each other in how “chair-like” they perceive
furniture as being. This variation needs to be accounted for when modeling
responses to the dependent variable from the regressors such as size, num-
ber of legs, sex of the participant, his or her cognitive ability, and so forth.
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Or it could be that the relationship between a feature, such as number of
legs, is related to a judgment such as chair-likeness differently for different
types of people. Maybe the relationship between the regressor of number of
legs and the dependent variable is larger among people who are younger.
This might remind you of the concept of interaction discussed in Chap-
ters 13 and 14. If age (a level-2 variable) affected the relationship between
number of legs and judgments of chair-likeness (both level-1 variables), in
multilevel modeling this is called a cross-level interaction.

One important feature of multilevel modeling is the fact that the data
analyst has the flexibility to decide whether the effects of level-1 variables
on the dependent variable are fixed to be the same across level-2 research
units (called a fixed effect), or to vary randomly (called a random effect). Al-
ternatively, the analyst could allow the effect of level-1 variables to depend
on level-2 variables, as in the example just given.

Multilevel modeling procedures are built into many statistical pack-
ages such as SPSS, SAS, and STATA. There are also programs dedicated
to multilevel modeling such as HLM. And some programs often used for
SEM, such as Mplus, can also estimate multilevel models; some forms of
multilevel analysis can be set up as a structural equation model. Multilevel
analysis is, like SEM, a very versatile analytical tool, and you can spend
years studying it and only begin to thoroughly understand it. Good books
on the topic include the classic but more technical one by Raudenbush and
Bryk (2002). Others that are more applied in orientation include Bickel
(2007), Hox, Moerbeek, and Schoot (2002), and Luke (2004). Some broad
conceptual journal articles to get you started on multilevel modeling using
SPSS and SAS are available in Hayes (2006) and Singer (1998).

18.2.7 Other Resources

Learning new methods sometimes is made easier when it is structured in
the form of a class or seminar. Most universities offer courses in many
of the topics described here. If you are no longer a student or you don’t
have access to such courses at your own university or one nearby, there
is an entire industry dedicated to giving training to researchers in short
workshops or seminars lasting anywhere from a few hours to a few days
to a week. Providers come and go, but as of the writing of this book, you
will find a variety of courses on these and other topics offered by Statistical
Horizons (www.statisticalhorizons.com), StatsCamp (www.statscamp.org), and
the Global School in Empirical Research Methods (www.gserm.ch), among
many others.
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18.3 Chapter Summary

Linear modeling is far more versatile than what has been covered in the
first 17 chapters of this book. In this last chapter we briefly introduced
the application of the principles of linear modeling to the analysis of a
dichotomous dependent variable using logistic regression analysis. In lo-
gistic regression, the focus is on estimating the relationship between one
or more regressors and the likelihood of an event occurring. Although
we often think about “likelihood” in probability terms, logistic regression
instead models the log odds or logit of the event as a linear function of
regressors. Once the model of the logit is constructed, the model can be
used to produce estimates of the probability of event for any combination
of regressor scores. Using logistic regression, it is possible to assess the re-
lationship between one regressor while holding others constant, or to test
the contribution of a set of regressors to predicting the probability of the
event when variables in another set are held constant.

Logistic regression is only one variant on linear modeling. Linear mod-
els have many uses, and many statistical procedures that go by different
names and are used for various purposes are based on the linear model.
With an understanding of the fundamentals of linear regression analysis
covered in this book, you are now in a position to tackle some of its exten-
sions, including logistic and ordered logistic regression, survival analysis,
probit regression, time series analysis, Poisson and negative binomial re-
gression, multilevel modeling, and covariance structure modeling, among
many other methods.
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Appendix A
The RLM Macro for SPSS and SAS

RLM is a macro that conducts ordinary least squares regression analysis. It
is not intended to replace SPSS’s REGRESSION module or PROC REG or
PROC GLM in SAS; RLM is actually quite limited relative to what is built
into SPSS or SAS. But RLM has a few regression analysis features you will
not find in SPSS and SAS already, including some routines for probing inter-
actions, coding categorical variables, spline regression, dominance analysis,
testing assumptions, and inference without assuming homoscedasticity. It
makes simple some tasks that are quite complicated or tedious in SPSS
REGRESSION or SAS PROC REG and PROC GLM. It should be used as
a supplement to rather than a replacement for what comes with SPSS and
SAS.

This appendix describes how to install and execute RLM, how to set up
an RLM command, and it documents its many features. As RLM is modified
and features are added, supplementary documentation will be released at
www.afhayes.com. This documentation focuses on the SPSS version of RLM.
All features and functions described below are available in the SAS version
as well and work as described here, with minor modifications to the syntax.
A section devoted to SAS (see page 599), describes some of the differences in
syntax structure for the SAS version of RLM compared to what is described
below.

Preparing for Use

RLM can be used as either a command-driven macro or installed as a
custom dialog for setting up the model using SPSS’s point-and-click user
interface. When executed as a macro, the RLM.sps file (available from
www.afhayes.com) should first be opened as a syntax file. Once it has been
opened, execute the entire file exactly as is. Do not modify the code at
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all. Once the RLM.sps program has been executed, it can be closed and
the RLM command is available for use in any SPSS program. Running
RLM.sps activates the macro, and it will remain active so long as SPSS
remains open. The RLM file must be loaded and reexecuted each time
SPSS is opened in order to use the features of the RLM command. See
the “Examples” section starting on page 584 for how to set up an RLM
command in a syntax window.

To install RLM as a custom dialog into the SPSS menus, execute
RLM.spd (available from www.afhayes.com) by double-clicking it on the
desktop (SPSS 23 or earlier) or opening and installing it from within SPSS
under the Utilities (SPSS 23 or earlier) or Extensions → Utilities (SPSS 24
and later) menu. Administrative access to the machine on which RLM is
being installed is required when using a Windows operating system, and
you must execute SPSS as an administrator. Once successfully installed,
RLM will appear as a new menu item in SPSS nested under Analyze →
Regression. If you do not have administrative access, contact your local
information technology specialist for assistance in setting up administra-
tive access to the machine on which you wish to install RLM. Some options
available in the macro cannot be accessed through the dialog box. Installing
the dialog box does not automatically run RLM.sps. If you wish to use the
command syntax to execute an RLM command rather than the dialog box,
you still need to first load and execute RLM.sps.

Syntax Structure

RLM along with a variable following y= and at least one following x= are
required. Commands in brackets are optional. Brackets, parentheses, and
asterisks should not be included in the RLM command. “**” Denotes the
default argument when the option is omitted.

rlm y=yvar/x=xvarlist [/conf=ci(95**)]
[/stand=(0**)(1)]

[/covcoeff=(0**)(1)]

[/mod=(0**)(1)]

[/mcx=(1)(2)(3)(4)(5)(6)]

[/mcmod=(1)(2)(3)(4)(5)(6)]

[/mcfoc=(1)(2)(3)(4)(5)(6)]

[/center=(0**)(1)]

[/ptiles=(0**)(1)]

[/modval=mval]
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[/jn=(0**)(1)]

[/plot=(0**)(1)]

[/subsets=(0**)(1)]

[/dominate=(0**)(1)]

[/diagnose=(0**)(1)]

[/crossv=(0**)(1)]

[/spline=joint1,joint2,. . . ]
[/contrast=weight1,weight2,. . . ]
[/hc=(0)(1)(2)(3)(4)]

[/settest=nvar(0**)]
[/decimals=dec(F10.4**)].

Model Specification

An RLM command has only two required arguments:

• A single quantitative outcome variable yvar listed in the y= specifica-
tion (i.e., y=yvar), where yvar is the name of the variable in the data
functioning as the dependent variable Y in the model.

• At least one regressor xvarlist listed in the x= specification (i.e.,
x=xvarlist), where xvarlist is the name of one or more variables in
the data file. With the exception of the last or second to last variable, all
variables in xvarlistmust be dichotomous or a quantitative variable
with interval-level scaling properties. For multicategorical variables,
see the section below.

With these minimum specifications, RLM will conduct an ordinary least
squares regression estimating yvar from the variables in xvarlist and gen-
erate output such as the model R, adjusted R, standard error of estimate,
regression coefficients with standard errors, t- and p-values, and confidence
intervals, regression ANOVA summary table, and the zero order, partial,
and semipartial correlations. Various output and test options can be speci-
fied but are not required. Most options are toggled on or offwith a 0 (off) or
1 (on) as the argument for the option. Some options require an argument
other than 0 or 1, as described in various places in this documentation.

Although RLM has a number of error-trapping routines built in, it will
not catch all errors produced by improper formatting of an RLM command,
improper listing of variables and variable names, and so forth. Any errors
it has trapped will be displayed in an errors section of the RLM output.
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Errors it has not successfully trapped will appear as a long list of execution
errors that will be largely unintelligible.

RLM also has no features to detect singularities in the data matrix.
Singularities will generally appear in the output as a matrix inversion error.
When such an error appears, do not interpret any output. Some ways of
detecting singularities in a data matrix are are discussed in section 17.3.3.

Examples

rlm y=newlaws/x=media age alcuse neuro discuss/settest=3/dominate=1

/subsets=1/conf=90.

• Regresses newlaws on media, age, alcuse, neuro, and discuss.

• Conducts a test that the regression coefficients for alcuse, neuro, and
discuss are all zero. (settest=3)

• Conducts a dominance analysis. (dominate=1)

• Generates the multiple correlation for all subset models containing at
least one of the regressors. (subset=1)

• Generates 90% confidence intervals for all regression coefficients
rather than 95% intervals. (conf=90)

rlm y=votes/x=donate winner partyid/mcx=2/hc=3/covcoeff=1/stand=1.

• Regresses votes on donate, winner, and partyid .

• Specifies partyid as a multicategorical variable and uses sequential
coding of groups. (mcx=2)

• Employs the HC3 standard error estimator of the regression coeffi-
cients for inference. (hc=3)

• Prints the variance–covariance matrix of the regression parameter
estimates. (covcoeff=1)

• Provides the standardized regression coefficients. (stand=1)
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rlm y=mathprob/x=gender explms treat/mod=1/jn=1.

• Regresses mathprob on gender, explms, and treat and the product
of explms and treat. (mod=1)

• Implements the Johnson–Neyman technique for finding regions of
significance of the effect of explms on mathprob conditioned on treat.
(jn=1)

rlm y=know/x=educ attn sex age elab/mcfoc=1/decimals=F12.6/modval=4

/plot=1/hc=4.

• Regresses know on educ, attn, sex, age, elab and the product of age
and elab.

• Specifies that age is a multicategorical variable and uses indicator
coding to represent groups. (mcfoc=1)

• Generates a test of the effect of age on know when elab is equal to 4.
(modval=4)

• Allocates 12 characters to display of numbers and displays six deci-
mals places of accuracy after the decimal. (decimals=F12.6)

• Produces a table of estimated values of know for various combinations
of age and elab. (plot=1)

• Employs the HC4 standard error estimator of the regression coeffi-
cients for inference. (hc=4)

rlm y=happy/x=commit close desire/spline=3,6,12.

• Conducts a spline regression analysis, estimating happy from commit,
close, and desire.

• The spline segments are based on values of desire, with joints at the
points 3, 6, and 12 on the measurement scale. (spline=3,6,12)
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rlm y=turnout/x=frame euskept peffic risk/mod=1/center=1/ptiles=1.

• Regresses turnout on frame, euskept, peffic, risk , and the product
of peffic and risk . (mod=1)

• peffic and risk are mean-centered prior to analysis. (center=1)

• Generates the conditional effect of peffic on turnout at values of
risk corresponding to the 25th, 50th, and 75th percentiles of the
distribution of risk . (ptiles=1)

rlm y=jobsat/x=calling livecall/mcmod=3/center=1/plot=1.

• Regresses jobsat on calling, and livecall and a set of variables to
estimate the interaction between calling, and livecall.

• Specifies livecall as a multicategorical moderator variable and em-
ploys Helmert coding of groups. (mcmod=3)

• Produces a table of estimated values of jobsat for various combina-
tions of calling and livecall. (plot=1)

• Mean-centers calling prior to analysis. (center=1)

Standardized Regression Coefficients

Standardized regression coefficients are available as optional output in
RLM by specifying stand=1 in the RLM command line. By default, stan-
dardized regression coefficients are not displayed. When requested, they
will be found in the last column of the section of output showing the simple,
semipartial, and partial correlations, under the column heading “Stand.”

Covariance Matrix of Regression Coefficients

RLM will display the variance–covariance matrix of the regression coeffi-
cients by specifying covcoeff=1 in the RLM command line.

Level of Confidence for Confidence Intervals

By default confidence intervals are set to 95%. The level of confidence can
be changed with the conf option, setting the ci argument to the desired con-
fidence between 50 and 99.999. For instance, for 90% confidence intervals,
add conf=90 to the RLM command line.
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Regression Diagnostics

RLM will print and save various statistics for screening the data for various
irregularities and testing assumptions by specifying diagnose=1 in the
RLM command line. When this option is specified, the output will include
a table containing the minimum and maximum values of all variables
in the model, the minimum and maximum predicted value (Ŷ), residual,
and t-residual, as well as the smallest Bonferroni-corrected p-value for the
largest t-residual, with a case number identifier. RLM will also produce
a new data set containing all the variables in the model as well as each
case’s predicted value Ŷ, residual (e), deleted residual (de), Studentized
residual (str), t-residual (tri), Mahalanobis distance (MD), leverage (h), and
Cook’s distance (Cook). This can be used to examine or test various model
assumptions and identify unusual cases. For a discussion of these statistics
and various methods, see Chapter 16.

Shrunken R

RLM can produce three estimates of shrunken R. These include one based
on the Browne formula and the two leave-one-out estimates described in
section 7.2.2. To obtain these estimates, request them with the crossv
option, setting its toggle to 1 (i.e., crossv=1).

Heteroscedasticity-Consistent Standard Errors

By default, RLM uses the estimator for the standard errors of the regres-
sion coefficients described in section 4.4.3 (equation 4.3) that assumes ho-
moscedasticity of the errors in estimation. RLM can also generate standard
errors using the HC0, HC1, HC2, HC3, or HC4 heteroscedasticity-consistent
standard error estimators described in Cribaro-Neto (2004), Hayes and Cai
(2007), and Long and Ervin (2000). A heteroscedasticity-consistent stan-
dard error estimator is requested by setting the argument for the hc option
to 0, 1, 2, 3, or 4 (e.g., hc=3 generates the HC3 estimator). Any computation
that relies on the variance–covariance matrix of the regression coefficients
(e.g., regression coefficient standard errors) will automatically employ the
HC estimator when this option is requested, including the the Johnson–
Neyman method, tests of conditional effects in moderation analysis, test of
the significance of R and change in R2, and linear combinations of regression
coefficients. See section 16.3.1.
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All Subsets Regression

The subsets option in RLM conducts all subsets regression, discussed
in sections 7.3.2 and 17.3.2. When this option’s toggle is set to 1 (i.e.,
subsets=1), RLM generates output containing R for all possible models
containing at least one regressor. The output takes the form of a table with
the variable names at the top and models occupying the rows. The table
entries for each row contain zeros and ones under the variable name. A 1
in the column designates that the variable in that column is included in the
model. R is in the last column.

The number of possible models explodes as the number of regressors
increases, and computing time and memory requirements increase accord-
ingly. For this reason, all subsets regression is available only for models
that include 15 or fewer regressors. All subsets regression is not available
for models that specify moderation using the mod, mcmod, mcfoc options or
models with a variable specified as multicategorical using the mcx option.

Dominance Analysis

Dominance analysis is a method for determining the relative importance
of regressors in a model. Output from a dominance analysis is requested
by specifying dominate=1 in the RLM command line. The RLM macro
will display a dominance table, discussed in section 8.4. The entries in the
dominance table are the proportion of the possible subset models in which
the variable in the row contributes more to prediction accuracy than the
variable in the column. The diagonals of the dominance table are zero, and
the cells symmetrically located around the diagonal usually sum to one.

Dominance analysis is not available for models with interactions or
multicategorical variables. Thus, the dominate option is ignored when
used in conjunction with the mod, mcmod, mcfoc or mcx options. Dominance
analysis requires a lot of computations that require time and memory.
Consequently, dominance analysis is available only for models with 15 or
fewer regressors.

Spline Regression

RLM can conduct spline regression, discussed in section 12.3, wherein
separate linear models relating one variable to the outcome are estimated
between joints defined by user-specified values on the measurement scale
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of the variable defining the splines. Spline regression is conducted by using
the spline option, followed by a list of joint values separated by commas.
The joint values should be values on the measurement scale of the variable
listed last in xvarlist. For example, if age were listed last, then the option
spline=30,40,50would specify splines for the age variable, with the joints
defined at ages 30, 40, and 50. Up to 10 joints may be specified when using
the spline option. Joint locations must be listed in ascending order of
value, with no ties, and all spline segments must contain at least two cases.

The variable listed last in xvarlist cannot be multicategorical, and so
the spline option is incompatible with the mcx option. Spline regression is
also not available in a model with an interaction specified in the model using
the mod, mcfoc, or mcmod option or for use in conjunction with dominance
analysis, all subsets regression, or when using the settest option.

The features of the spline option cannot be accessed through the RLM
dialog box.

Multicategorical Regressors

Multicategorical regressors can be included in an RLM command using
any system for coding groups such as those described in Chapters 9 and
10. RLM has an option for automatically generating g − 1 variables repre-
senting one (and only one) multicategorical regressor coding g groups with
one of six coding systems. Such a multicategorical regressor must be listed
last in the list of variables in xvarlist. The coding system to be employed
is specified as the argument in the mcx option. The six options (with argu-
ment in parentheses) available are indicator coding (1), sequential coding
(2), Helmert coding (3), effect coding (4), weighted Helmert coding (5), and
weighted effect coding (6). These coding systems are described in Chapters
9 and 10. When the mcx option is employed, RLM will display a matrix of
the g − 1 codes used for each of the g groups at the top of the output.

A variable specified as multicategorical cannot contain more than 10
categories. RLM discerns the number of categories using the number
of unique numerical codes in the variable specified as multicategorical.
Dominance analysis and all subsets regression are not available when a
multicategorical variable is specified using the mcx option.

The examples below assume that the variable called “cond” represents
four groups coded in the data with the numbers 1, 3, 4, and 6.
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Indicator Coding

When the argument for mcx is set to 1, g − 1 indicator codes are used to
represent groups with the largest numerical code treated as the reference
category. Indicator coding is discussed in Chapter 9. The g − 1 indicator
codes will correspond to groups as coded in the multicategorical variable
in ascending sequential order. For example, mcx=1 implements the coding
system below:

cond D1 D2 D3

1 1 0 0
3 0 1 0
4 0 0 1
6 0 0 0

There is no option for changing which group is treated as the reference. If
you want to designate a different group as the reference group, recode the
multicategorical variable prior to using RLM so that the reference group
you desire is coded with the numerically largest code.

Sequential Coding

When the argument for mcx is set to 2, g − 1 sequential codes represent
groups. Sequential coding allows for the comparison of group j to the
group one ordinal position higher on the categorical variable. Sequential
coding is discussed in section 10.1.1. RLM will assume that the ascending
ordinality of the multicategorical variable corresponds to the ascending
sequence of arbitrary numerical codes in the multicategorical variable. For
example, mcx=2 implements the coding system below:

cond D1 D2 D3

1 0 0 0
3 1 0 0
4 1 1 0
6 1 1 1
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Helmert Coding

When the argument for mcx is set to 3, Helmert coding is used. Helmert
coding allows for the comparison of group j to all groups ordinally higher
on the categorical variable. Helmert coding is discussed in section 10.1.2.
RLM will assume that the ascending ordinality of the multicategorical vari-
able corresponds to the ascending sequence of arbitrary numerical codes in
the multicategorical variable. Helmert coding is also useful for setting up
certain orthogonal contrasts for a nominal multicategorical variable. For
example, mcx=3 implements the coding system below:

cond D1 D2 D3

1 −3/4 0 0
3 1/4 −2/3 0
4 1/4 1/3 −1/2
6 1/4 1/3 1/2

Effect Coding

When the argument for mcx is set to 4, effect coding is used, with the group
with the largest numerical code left out of the coding scheme. Effect coding
is discussed in section 10.1.3. The indicator variables correspond to the
groups in ascending sequential order in the coding of the multicategorical
variable. For example, mcx=4 implements the coding system below:

cond D1 D2 D3

1 1 0 0
3 0 1 0
4 0 0 1
6 −1 −1 −1

Weighted Helmert Coding

When the argument for mcx is set to 5, weighted Helmert coding is used,
with the weights determined by the sizes of the groups. Weighted Helmert
coding is discussed in section 10.3.2. RLM will assume that the ascending
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ordinality of the multicategorical variable corresponds to the ascending
sequence of arbitrary numerical codes in the multicategorical variable. For
example, assuming the sample sizes for the groups coded 1, 3, 4, and 6 are
20, 40, 30, and 10, respectively, mcx=5 implements the coding system below:

cond D1 D2 D3

1 −0.750 −0.125 −0.125
3 0.250 −0.625 −0.125
4 0.250 0.375 −0.375
6 0.250 0.375 0.625

Weighted Effect Coding

When the argument for mcx is set to 6, weighted effect coding is used,
with group with the largest numerical code left out of the coding scheme.
The weights are determined by the sizes of the groups coded with the
multicategorical variable. Weighted effect coding is discussed in section
10.3.1. For instance, if the sample sizes for the groups coded 1, 3, 4, and 6 in
the variable “cond” are 20, 40, 30, and 10, respectively, mcx=6 implements
the coding system below:

cond D1 D2 D3

1 1 0 0
3 0 1 0
4 0 0 1
6 −2 −4 −3

Linear Interaction

RLM can assist in the estimation of models that include linear moderation
of one variable’s effect on yvar by another variable in the model through a
set of options for specifying the interaction, probing it, and visualizing it.
There are numerous ways an interaction can be specified. All these methods
assume that the last two variables in xvarlist are the focal predictor and
moderator, respectively. When listing variables in the RLM command after
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x=, the moderator variable should be listed last, and the focal predictor
should be listed second to last. The moderator is the variable that you believe
is influencing or is otherwise related to the size of the focal predictor’s effect
on yvar.

To specify a linear interaction between the focal predictor and mod-
erator, use the mod option, setting its argument to 1 (i.e., mod=1). Except
as discussed in the section of this documentation titled ”Multicategorical
Variables and Interaction,” doing so will include the product of the focal
predictor and the moderator as an additional regressor in the model. The
user does not need to construct the product of these two variables in the
data, as RLM does all the necessary computations internally. It will not
add it to the data file. If the focal predictor or moderator is a multicategor-
ical variable rather than a dichotomous or continuous dimension, see the
“Multicategorical Variables and Interaction” section in this documentation.

Specifying an interaction generates additional output, including the
difference in R2 for the model with and without the product term. As
discussed in section 14.4.5, this test is mathematically equivalent to the
t-test for the the regression coefficient for the product. Additional output
provided by RLM will depend on other options specified for probing or
visualizing the interaction.

Dominance analysis and all subsets regression are not available when
specifying a model that includes an interaction. There are no options
implemented in RLM for interactions higher than second order.

Probing Interactions and Generating Conditional
Effects

In any model that specifies an interaction, RLM can produce estimates of the
conditional effect of the focal predictor at various values of the moderator—
so-called “simple slopes.” By default, when a moderator is dichotomous,
conditional effects of the focal predictor at the two values of the moderator
are generated. But when a moderator is quantitative, conditional effects
of the focal predictor are estimated by default at the sample mean of the
moderator, as well as plus and minus one standard deviation from the
moderator mean.

Three alternatives for probing interactions are available in RLM. For a
quantitative moderator, the ptiles option generates conditional effects at
the 25th, 50th, and 75th percentiles of the distribution of the moderator.
This option is available by setting the argument in the ptiles option to 1
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(i.e., ptiles=1). Unlike when the mean and ± one standard deviation from
the mean is used, these percentile values are guaranteed to be within the
range of the observed moderator variable data.

The second alternative is to request the conditional effect of interest at
a specific, single value of the moderator. This is accomplished through the
use of the modval option, setting the corresponding argument mval to the
value of the moderator at which you’d like the estimate of the conditional
effect of the focal predictor. For example, to generate an estimate of the
conditional effect of the focal predictor on yvar when the moderator is
equal to 3, append modval=3 to the RLM command. This option for probing
an interaction is not available in the custom dialog version of RLM. Only
one value of mval can be specified in a single run of RLM.

The third alternative implemented in RLM is the Johnson–Neyman
technique, requested by setting the argument in the jn option to 1 (i.e.,
jn=1). This approach identifies the value(s) on the moderator variable
continuum at which point (or points) the effect of the focal predictor on
yvar transitions between statistically significant and not, using the α-level
of significance as the criterion. By default, α = 0.05. This can be changed
using the conf option, setting the desired confidence to 100(1 − α). For
example, for α = 0.01, specify conf=99. In addition to identifying points of
transition, RLM produces a table to aid in the identification of the regions
of significance as well as information about the percentage of cases in the
data above (“% Above”) and below (“% Below”) the points of transition in
significance this procedure identifies. See section 14.3.2 for a discussion of
the Johnson–Neyman technique.

Multicategorical Variables and Interaction

By default, RLM assumes that the focal predictor and moderator are di-
chotomous and/or continuous when an interaction is specified using the
mod option described earlier. If the moderator is a multicategorical variable
coding membership in one of g groups, g > 2, it should be specified as such
using the mcx command, described in section earlier titled “Multicategor-
ical Regressors.” The combination of the mod=1 along with mcx estimates
a model that includes g − 1 product terms between the regressors coding
group and the focal predictor, along with a test of interaction using the
difference in R2 as the test statistic. RLM will also generate estimates of
the effect of the focal predictor on yvar in each of the g groups, along with
statistics for inference.
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An equivalent approach is the use of the mcmod option, which stands for
“multicategorical moderator.” The same six possible methods for coding
groups can be used with the mcmod option as are available for the mcx option.
A number 1 through 6 should be provided as the argument for mcmod. For
example, mcmod=2 tells RLM that the moderator variable is multicategorical
and to use sequential coding of groups. When the mcmod option is used, it
is not necessary to use the mod option, as the specification of mcmod in the
RLM command implies an interaction between the two variables listed last
in the x= list.

If the focal predictor is multicategorical, it should be specified as such
using the mcfoc option, which stands for “multicategorical focal predictor.”
Like the mcx and mcmod options, six coding options are available and the
option desired in the form of a number 1 through 6 should be provided.
For example, mcfoc=3 specifies that the focal predictor is multicategorical
and tells RLM to use Helmert coding of the k groups. The use of the mcfoc
implies a model with an interaction, so use of the mod option in the RLM
command line is not required.

When the focal predictor is specified as multicategorical, in addition
to a test of interaction using the difference in R2 as the test statistic, RLM
provides a test of differences between the estimated group means of yvar at
various values of the moderator and focal predictor. When the moderator
is dichotomous, two such tests are provided, one for each value of the
moderator. When the moderator is a continuum, these tests are conducted
for moderator values corresponding to the mean, a standard deviation
below the mean, and a standard deviation above the mean, unless the
ptiles or modval options are used to override this default.

The Johnson–Neyman method for probing an interaction is not available
when the focal predictor is specified as a multicategorical variable. Thus,
the jn option is ignored when used in conjunction with mcfoc.

The mcmod and mcfoc options cannot be used simultaneously in an RLM
command. A model with a multicategorical focal predictor and moderator
is an ANOVA or ANCOVA model. Use the GLM or UNIANOVA routines
in SPSS to estimate such a model.

When an interaction involves a multicategorical focal predictor or mod-
erator, the center option centers only the variable involved in the interac-
tion that is not multicategorical.
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Mean-Centering in Models with an Interaction

In models that include parameters for estimating interaction effects, the
user has the option of requesting RLM to mean-center variables used in the
construction of products of regressors prior to model estimation by setting
the argument in the center option to 1 (i.e., center=1). All output will be
based on the focal predictor and moderator in the mean-centered metric
(e.g., the regression coefficient for the focal predictor will be conditioned at
the mean of the moderator, and the conditional effects of the focal predictor
on yvar at values of the moderator will be based on values of the moderator
after mean-centering).

By default, variables used to form products are not mean-centered.
When mean-centering is requested, arguments of options used for esti-
mating conditional effects at specific values of the moderator(s) should be
values based on a mean-centered metric. For example, the RLM command

RLM y=smoking/x=anxiety surgery addict/mod=1/modval=1.5.

will produce the conditional effect of surgery on smoking when addict =
1.5, whereas the RLM command

RLM y=smoking/x=anxiety surgery addict/mod=1/modval=1.5/center=1.

produces the conditional effect of surgery on smoking when addict is 1.5
measurement units above the sample mean of addict.

In models with a multicategorical variable involved in the interaction
specified with the mcfoc or mcmod options, centering is not undertaken for
the multicategorical variable.

Visualizing Interactions

To help visualize an interaction, the plot option generates a table of es-
timated values of yvar from the model using various values of the focal
predictor and moderator. This table is generated by setting the argument
in the plot option to 1 (i.e., plot=1). Any covariates in the model are
set to their sample mean when deriving the estimated values in the table
generated. In the table, the estimated value of yvar is listed as “yhat.”
The table can be entered into the user’s preferred graphing program for
visualization.

The plot option also generates the estimated standard error of the
estimated values of yvar from the model. These are listed in the table
under the column labeled “se(yhat).”
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Inference for Sets of Regressors

RLM provides a test that all of the regression coefficients for a subset of the
regressors in the model are zero. By adding settest=nvars to the RLM
command, a test of the null hypothesis that the regression coefficients for
the last nvars regressors in the x= list are equal to zero is conducted. For
example, settest=3 conducts a test that the regression coefficients for the
last three regressors are equal to zero. This test take the form of an F-ratio
and is equivalent to a test of the null hypothesis that the last nvars variables
in the x= list do not improve the fit of the model as measured by the increase
in the squared multiple correlation when those variables are added. For a
discussion of this test, see section 5.3.3.

If the last variable in the x= list is specified as multicategorical using the
mcx option, then the set includes all of the variables coding group (i.e., if
the multicategorical variable codes g groups, then all g−1 variables coding
groups are included in the set). Thus, the numerator degrees of freedom
for the F-ratio, which usually is equal to nvars, will be larger when settest
is used in conjunction with mcx.

When the settest option is used in conjunction with the hc option,
the F-test for the set of regressors does not assume homoscedasticity and
instead relies on a heteroscedasticity-consistent variance–covariance matrix
for the regression coefficient estimates. For details on the computation of
the F-ratio in this case, see Hayes and Cai (2007).

The setttest option is implemented in the RLM dialog box in a section
of the box labeled “Variables in subset test.” The number selected here
chooses the last m regressors in the regressors box for inclusion in the test,
where m is a number between one and nine. For instance, by selecting “2,”
the last two variables in the “Regressors” box are included in the set, and
RLM produces a test of the null hypothesis that adding these two variables
to the model does not significantly improve its fit as quantified by the
increase in the multiple correlation that results when these two variables
are added. As discussed in section 5.3.3, this is equivalent to the null
hypothesis that the regression coefficients for both of these regressors are
equal to zero.

This test is not available in models that include an interaction.
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Inference for Linear Combinations of Regression
Coefficients

A regression model contains a regression constant and k regressors. RLM
can construct a weighted linear combination of these k + 1 estimates of
regression parameters, the standard error of the linear combination, and a
confidence interval for inference about its value. In addition, RLM provides
a test of the null hypothesis that the linear combination equals zero. The
linear combination is specified with the contrast option along with a set
of k + 1 weights for the regression coefficient and each of the regression
coefficients. For instance, from the example in section 4.6,

rlm y=wtloss/x=exercise food/contrast=1,3,7.

constructs estimated weight loss (Ŷ) for someone who exercises 3 days per
week and with a weekly food intake of 7 units. In addition to the estimate,
RLM produces SE(Ŷ), a confidence interval, and the two-tailed p-value for
testing the null hypothesis that the estimate equals zero.

When using the contrast option, the weights for each regression coef-
ficient must be in the same order as the regression coefficients appear in the
RLM output from top to bottom, with the weight for the regression constant
always listed first. The number of weights provided must be k + 1. Some
RLM options (mod, mcmod, and mcfoc) generate variables in the model that
do not appear in the RLM command line. Prior to specifying the weights,
run your RLM command without the contrast option so you will know
how many weights are needed and in what order they should be listed.

The contrast option can also be used to conduct an inference for the
difference between two regression coefficients in the model. For example,

rlm y=pknow/x=npnews natnews sex age/contrast=0,1,-1,0,0.

regresses pknow on npnews, natnews, sex, and age while generating a test
of equality of the regression coefficients for npnews and natnews, along
with the standard error of the difference and a confidence interval.

The features of the contrast option cannot be accessed through the
RLM dialog box.

Decimal Place Precision in Output

RLM generates numerical output to four decimals places of resolution
by default. This can be changed with the dec argument when using the
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decimals option. This argument is set to F10.4 by default, meaning num-
bers in the output will contain up to 10 characters, with four of these to the
right of the decimal. In this argument, Fa.b sets the number of characters
allocated to numbers to a and the number of decimal places to display to
the right of the decimal point to b. For example, decimals=F12.6 specifies
12 characters with six to the right of the decimal place. In the dec argument,
a should be larger than b.

Missing Data

A case will be deleted from the analysis if user- or system-missing on any of
the variables in yvar or xvars. There are no features in RLM for imputing
data or using more sophisticated missing data routines such as multiple
imputation or the EM algorithm.

Installation, Execution, and Syntax Modifications for
SAS Users

The SAS version of RLM functions similarly to the SPSS version, and most
of the instructions described in this appendix apply to the SAS version,
with only the minor modifications described below. Like the SPSS version,
the SAS version is a program file (RLM.sas), which when executed creates
a new command that SAS understands called %rlm. Once RLM.sas is
executed (without changing the file whatsoever), then the %rlm command
is available for use and the program can be closed. Once you close SAS,
you have to define the %rlm command by executing RLM.sas again. RLM

for SAS requires the PROC IML module. To determine whether you have
the PROC IML module installed, run the following commands in SAS:

proc iml;

print "PROC IML is installed";

quit;

When this code is executed, check the log for any errors, as well as your
output window for the text “PROC IML is installed.” Any errors in the log
or a failure to see this text suggests that PROC IML is not installed on your
version of SAS.

The syntax structure for RLM for SAS is almost identical to the SPSS
version. There are a few important exceptions:
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• The command name is %rlm rather than rlm.

• All parts of the command between %rlm and the ending of the com-
mand must be in parentheses. SAS commands ordinarily must end in
a semicolon (;). Though an %rlm command can end with a semicolon,
it is not required.

• The data file being analyzed must be specified in the command as
data=file, where file is the name of a SAS data file.

• Options and specifications must be delimited with a comma (,) rather
than a slash (/).

• When requesting regression diagnostics using the diagnose option,
specify the name of the file to store the diagnostic statistics following
the equals sign, as in diagnose=filename, where filename is any valid
SAS datafile name.

• Joint values and weights should not be separated by commas when
using the spline and contrast options, respectively.

• When specifying the number of decimal places in output using the
decimals option, the “F” should be left off the dec argument. For
example, to set 12 characters for numbers, with six after the decimal,
use decimals=12.6.

For example, suppose the data corresponding to the example on page 585
were stored in a SAS work file named POLITICS. The SAS version of the
RLM command corresponding to this example would be

%rlm (data=politics,y=know,x=educ attn sex age elab,mcfoc=1,

decimals=12.6,modval=4,plot=1,hc=3);

Notes

• In the SPSS version of RLM, variable names are restricted to eight
characters or fewer. If any of your variable names are longer than
eight characters, shorten them before using RLM.

• Do not use STRING formatted variables in any of your models. Doing
so will produce errors. All variables should be NUMERIC format.

• RLM ignores the variable “Measure” settings in SPSS set in the Vari-
able View pane (i.e., nominal, ordinal, scale).
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• The RLM procedure code cannot be imbedded in a syntax file with an
INCLUDE command in SPSS, but it can be called with an INSERT com-
mand. This eliminates the need to manually load and run RLM.sps
prior to execution of a set of commands that calls the RLM macro.
See the Command Syntax Reference available through the Help menu
in SPSS for details on the use of the INSERT command.





Appendix B
Linear Regression Analysis Using R

R is a programming language that is growing in popularity among scien-
tists. The R user’s attraction to R is attributable to its price (downloadable
for free from www.r-project.org), flexibility, and power. It is also known for
its steep learning curve. In this appendix, we illustrate some R commands
for linear regression analysis using only the functions that come with R
when it is downloaded. There are many freely available “packages” for R
that make some of the things discussed here easier or that produce output
in a more user-friendly format. This appendix is not intended as a stand-
alone guide to the use of R. Many books on the use of R as a programming
language, graphics production system, and data analysis tool are available,
and the Internet is filled with advice from users assisting other users.

The command below reads the text version of the EXERCISE file, first
used in Chapter 3 and available on this book’s web page at www.afhayes.com.
The code specifies that the file is stored on the computer’s C drive in a
folder named “data.”

health<-read.table(file="C:\\data\\exercise.txt",header=TRUE)

Once executed, the result is a “data frame” named health. The
header=TRUE line tells R that the variable names are at the top of the data
file. To make sure the data were read correctly, we can print it to the screen
by typing the data frame object name

health

which results in the following appearing on the output screen after
execution:

603
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id exercise food metab sex wtloss

1 1 0 2 15 0 6

2 2 0 4 14 0 2

3 3 0 6 19 0 4

4 4 2 2 15 1 8

5 5 2 4 21 1 9

6 6 2 6 23 0 8

7 7 2 8 21 1 5

8 8 4 4 22 1 11

9 9 4 6 24 0 13

10 10 4 8 26 0 9

In section 3.2.1 we conducted a regression analysis estimating weight
loss from exercise frequency and food intake. A linear regression with
wtloss as the dependent variable and exercise and food as regressors is
conducted with the lm command. We tell R that the results will be stored
in an object named model1 and that the variables should be pulled from
the health data frame by appending health$ to the beginning of variable
names.

model1<-lm(health$wtloss∼health$exercise+health$food)

Note that variable names are case sensitive in R, so make sure you
follow case consistently. A variable named wtloss is different than one
named WTLOSS which is different from one named Wtloss.

The summary command shows the results of the regression analysis
held in the model1 object:

summary(model1)

Call:

lm(formula = health$wtloss ˜ health$exercise + health$food)

Residuals:

Min 1Q Median 3Q Max

-2 -1 0 1 2

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.0000 1.2749 4.706 0.002193 **
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health$exercise 2.0000 0.3333 6.000 0.000542 ***

health$food -0.5000 0.2520 -1.984 0.087623 .

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 1.512 on 7 degrees of freedom

Multiple R-squared: 0.8376, Adjusted R-squared: 0.7912

F-statistic: 18.05 on 2 and 7 DF, p-value: 0.001727

Standardized regression coefficients aren’t produced by R unless you
ask for them. Use scale to generate standardized regression coefficients.

lm(scale(health$wtloss)scale∼(health$exercise)+scale(health$food))
Call:

lm(formula = scale(health$wtloss) ˜ scale(health$exercise) +

scale(health$food))

Coefficients:

(Intercept) scale(health$exercise) scale(health$food)

8.240e-17 9.872e-01 -3.265e-01

The standardized regression coefficients are in scientific notation in this
output.

It can be a nuisance to have to tell R the data frame that the variables are
held in for every command, and when you do, the data frame appears in all
output appended to all variable names, which can make for messy output.
When executing a set of commands applied to the same data frame, you
can eliminate this requirement and pretty up the output with the command

attach(health)

Having executed the attach command, we no longer have to spec-
ify the data frame source for the variables in future commands (which we
will not in all that follows). Now the regression command can be rewritten
and executed as

model1<-lm(wtloss∼exercise+food)

A table containing the sums of squares and other statistics found in
a regression ANOVA summary table for the results in the model1 object is
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generated with the anova command:

anova(model1)

which generates as output

Analysis of Variance Table

Response: wtloss

Df Sum Sq Mean Sq F value Pr(>F)

exercise 1 73.5 73.500 32.1562 0.000758 ***

food 1 9.0 9.000 3.9375 0.087623 .

Residuals 7 16.0 2.286

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Confidence intervals for the regression coefficients stored in the model1
object are produced with the confint command. The level of confidence
desired can be specified, as in

confint(model1,level=0.95)

2.5 % 97.5 %

(Intercept) 2.985316 9.01468433

exercise 1.211792 2.78820808

food -1.095829 0.09582931

Residuals can be extracted from the model1 object and saved as a new
variable. Listing a variable by itself prints its contents to the screen:

resid<-residuals(model1)

resid

1 2 3 4 5 6 7 8 9 10

1 -2 1 -1 1 1 -1 -1 2 -1

The numbers 1 through 10 identify the case numbers. The estimates of Y
from the model (i.e., Ŷ) can be extracted and printed similarly:

yhat<-fitted(model1)

yhat
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1 2 3 4 5 6 7 8 9 10

5 4 3 9 8 7 6 12 11 10

The residuals and predicted values can be appended to the health data
and then printed to the screen with

health<-data.frame(health,resid,yhat)

health

id exercise food metab sex wtloss resid yhat

1 1 0 2 15 0 6 1 5

2 2 0 4 14 0 2 -2 4

3 3 0 6 19 0 4 1 3

4 4 2 2 15 1 8 -1 9

5 5 2 4 21 1 9 1 8

6 6 2 6 23 0 8 1 7

7 7 2 8 21 1 5 -1 6

8 8 4 4 22 1 11 -1 12

9 9 4 6 24 0 13 2 11

10 10 4 8 26 0 9 -1 10

Various functions are available for regression diagnostics. For example,
leverage and t-residuals can be constructed using

hat<-hatvalues(model1)

tres<-rstudent(model1)

and then appended to the health data frame:

health<-data.frame(health,hat,tres)

health

id exercise food metab sex wtloss resid yhat hat tres

1 1 0 2 15 0 6 1 5 0.377778 0.818520

2 2 0 4 14 0 2 -2 4 0.266667 -1.761661

3 3 0 6 19 0 4 1 3 0.377778 0.818520

4 4 2 2 15 1 8 -1 9 0.350000 -0.798936

5 5 2 4 21 1 9 1 8 0.127778 0.680531

6 6 2 6 23 0 8 1 7 0.127778 0.680531

7 7 2 8 21 1 5 -1 6 0.350000 -0.798936

8 8 4 4 22 1 11 -1 12 0.377778 -0.818520
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9 9 4 6 24 0 13 2 11 0.266667 1.761661

10 10 4 8 26 0 9 -1 10 0.377778 -0.818520

Partial and semipartial correlations can be calculated from residuals by
correlating them, as discussed in section 3.3. It is not necessary to construct
a new variable containing the fitted values to calculate the residuals, as
the fitted values can be constructed by imbedding an lm command inside
a mathematical operation. For instance, to construct the residuals from a
model estimating weight loss from exercise, try

residy<-wtloss-fitted(lm(wtloss∼exercise))

The residuals estimating food intake from exercise frequency would
be constructed similarly:

residx<-food-fitted(lm(food∼exercise))

Pearson’s coefficient of correlation is produced with the cor com-
mand. For instance, the partial correlation between weight loss and food
intake controlling for exercise frequency is the Pearson correlation between
residy and residx, generated with

cor(residy,residx)

[1] -0.6

and the semipartial correlation is Pearson’s correlation between wtloss
and residx:

cor(wtloss,residx)

[1] -0.3022756

Mathematical transformations to variables are easily undertaken. For
instance, if you wanted to substract 2 from all values in the variable food ,
use

food<-food-2

though this would be dangerous, because it would replace all val-
ues of food in the data with their new values. It might be safer to create a
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new variable foodt, as in

foodt<-food-2

Or suppose you wanted to test for linear interaction between food
intake and exercise using the methods discussed in Chapter 13. A new
variable that is the product of food intake and exercise can be created using

foodexer<-food*exercise

and now this product foodexer included as an additional predictor
of weight loss in a regression model along with food intake and exercise
frequency.

In section 5.3.3 we discussed tests of multivariate partial association.
In the example in that discussion, we examined whether factors in one’s
control (food intake and exercise) explain variation in weight loss when
controlling for factors not in one’s control (sex and metabolism). The test is
undertaken by examining the change in R2 when food intake and exercise
are added to a model of weight loss that already includes metabolism and
sex. In R, this is accomplished by estimating the two models and storing
their results in separate objects, named model2 and model3 in the code
below:

model2<-lm(wtloss∼metab+sex)
model3<-lm(wtloss∼metab+sex+exercise+food)

The two models are then compared with an F test with the anova
command, listing the object containing the results from the model with
fewer regressors first:

anova(model2,model3)

Analysis of Variance Table

Model 1: wtloss ˜ metab + sex

Model 2: wtloss ˜ exercise + food + metab + sex

Res.Df RSS Df Sum of Sq F Pr(>F)

1 7 51.766

2 5 6.797 2 44.969 16.539 0.006248 **

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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R is widely respected for its graphics and data visualization capabilities.
A simple scatterplot depicting the relationship between weight loss (on
the Y-axis) and food intake (on the X-axis) is produced by the plot option.

plot(y=wtloss,x=food)

This very minimalist scatterplot produced by the above code can be
embellished in many ways. For example, the code below adds options for
labeling the axes, specifies the range of values to place on the axes, superim-
poses a regression line on the plot, and changes the symbol used in the plot.

plot(y=wtloss,x=food,xlim=c(0,10),ylim=c(0,14),xlab="Food

intake",ylab="Weight loss",pch=15)

abline(lm(wtloss∼food),lwd=2)

With practice and the assistance of a good book or a knowledgeable
friend to guide you, you can produce very nice publication-quality
graphics in R, with little if any extra editing outside of the R program.
Indeed, the majority of the figures in this book were created entirely with
R. For example, Figure 3.1 was created from the exercise data file using the
R code below:

mark<-c(15,15,15,21,21,21,21,17,17,17)

plot(y=wtloss,x=food,xaxs="i",yaxs="i",pch=mark,xlim=c(0,10),

ylim=c(0,15),xlab=expression(’Food intake (X’[2]*’)’),

ylab="Pounds lost (Y)",cex=1.2)

legend.txt<-c(as.expression(bquote(X[1]∼"= 0 hours of exercise
per week ")),as.expression(bquote(X[1]∼"= 2 hours of
exercise per week ")),as.expression(bquote(X[1]∼"= 4 hours
of exercise per week ")))

legend("topleft",legend=legend.txt,bty="o",cex=0.8,

pch=c(15,21,17))
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Statistical Tables

C.1 Right-Tail Normal Probabilities

C.2 Critical Values of t

C.3 Critical Values of F

C.4 Critical Values of Chi-Square

C.5 Fisher’s r-to-Z Transformation
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TABLE C.1. Right-Tail Normal Probabilities

Table entries are the proportion of the area in the normal distribution to the right of
the Z-score computed as the sum of the bold entries to the top and left. For instance,
the second entry in the final column shows that the right-tailed area is .4247 when Z
= 0.19. Table entries were generated with the IDF.NORMAL function in SPSS.

Z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 .5000 .4960 .4920 .4880 .4840 .4801 .4761 .4721 .4681 .4641
0.1 .4602 .4562 .4522 .4483 .4443 .4404 .4364 .4325 .4286 .4247
0.2 .4207 .4168 .4129 .4090 .4052 .4013 .3974 .3936 .3897 .3859
0.3 .3821 .3783 .3745 .3707 .3669 .3632 .3594 .3557 .3520 .3483
0.4 .3446 .3409 .3372 .3336 .3300 .3264 .3228 .3192 .3156 .3121
0.5 .3085 .3050 .3015 .2981 .2946 .2912 .2877 .2843 .2810 .2776
0.6 .2743 .2709 .2676 .2643 .2611 .2578 .2546 .2514 .2483 .2451
0.7 .2420 .2389 .2358 .2327 .2296 .2266 .2236 .2206 .2177 .2148
0.8 .2119 .2090 .2061 .2033 .2005 .1977 .1949 .1922 .1894 .1867
0.9 .1841 .1814 .1788 .1762 .1736 .1711 .1685 .1660 .1635 .1611
1.0 .1587 .1562 .1539 .1515 .1492 .1469 .1446 .1423 .1401 .1379
1.1 .1357 .1335 .1314 .1292 .1271 .1251 .1230 .1210 .1190 .1170
1.2 .1151 .1131 .1112 .1093 .1075 .1056 .1038 .1020 .1003 .0985
1.3 .0968 .0951 .0934 .0918 .0901 .0885 .0869 .0853 .0838 .0823
1.4 .0808 .0793 .0778 .0764 .0749 .0735 .0721 .0708 .0694 .0681
1.5 .0668 .0655 .0643 .0630 .0618 .0606 .0594 .0582 .0571 .0559
1.6 .0548 .0537 .0526 .0516 .0505 .0495 .0485 .0475 .0465 .0455
1.7 .0446 .0436 .0427 .0418 .0409 .0401 .0392 .0384 .0375 .0367
1.8 .0359 .0351 .0344 .0336 .0329 .0322 .0314 .0307 .0301 .0294
1.9 .0287 .0281 .0274 .0268 .0262 .0256 .0250 .0244 .0239 .0233
2.0 .0228 .0222 .0217 .0212 .0207 .0202 .0197 .0192 .0188 .0183
2.1 .0179 .0174 .0170 .0166 .0162 .0158 .0154 .0150 .0146 .0143
2.2 .0139 .0136 .0132 .0129 .0125 .0122 .0119 .0116 .0113 .0110
2.3 .0107 .0104 .0102 .0099 .0096 .0094 .0091 .0089 .0087 .0084
2.4 .0082 .0080 .0078 .0075 .0073 .0071 .0069 .0068 .0066 .0064
2.5 .0062 .0060 .0059 .0057 .0055 .0054 .0052 .0051 .0049 .0048
2.6 .0047 .0045 .0044 .0043 .0041 .0040 .0039 .0038 .0037 .0036
2.7 .0035 .0034 .0033 .0032 .0031 .0030 .0029 .0028 .0027 .0026
2.8 .0026 .0025 .0024 .0023 .0023 .0022 .0021 .0021 .0020 .0019
2.9 .0019 .0018 .0018 .0017 .0016 .0016 .0015 .0015 .0014 .0014
3.0 .0013 .0013 .0013 .0012 .0012 .0011 .0011 .0011 .0010 .0010
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TABLE C.2. Critical Values of t

Table entries are t-values that cut off the upper (one-tailed) or extreme (two-tailed) p
proportion of the t(df ) distribution from the rest. Table entries were generated with
the IDF.T function in SPSS.

One-tailed p-value

.10 .05 .025 .01 .005 .0025 .001 .0005 .00025 .0001

Two-tailed p-value

df .20 .10 .05 .02 .01 .05 .002 .001 .0005 .0002

10 1.372 1.812 2.228 2.764 3.169 3.581 4.144 4.587 5.049 5.694
15 1.341 1.753 2.131 2.602 2.947 3.286 3.733 4.073 4.417 4.880
20 1.325 1.725 2.086 2.528 2.845 3.153 3.552 3.850 4.146 4.539
25 1.316 1.708 2.060 2.485 2.787 3.078 3.450 3.725 3.996 4.352
30 1.310 1.697 2.042 2.457 2.750 3.030 3.385 3.646 3.902 4.234
35 1.306 1.690 2.030 2.438 2.724 2.996 3.340 3.591 3.836 4.153
40 1.303 1.684 2.021 2.423 2.704 2.971 3.307 3.551 3.788 4.094
45 1.301 1.679 2.014 2.412 2.690 2.952 3.281 3.520 3.752 4.049
50 1.299 1.676 2.009 2.403 2.678 2.937 3.261 3.496 3.723 4.014
55 1.297 1.673 2.004 2.396 2.668 2.925 3.245 3.476 3.700 3.986
60 1.296 1.671 2.000 2.390 2.660 2.915 3.232 3.460 3.681 3.962
65 1.295 1.669 1.997 2.385 2.654 2.906 3.220 3.447 3.665 3.942
70 1.294 1.667 1.994 2.381 2.648 2.899 3.211 3.435 3.651 3.926
75 1.293 1.665 1.992 2.377 2.643 2.892 3.202 3.425 3.639 3.911
80 1.292 1.664 1.990 2.374 2.639 2.887 3.195 3.416 3.629 3.899
85 1.292 1.663 1.988 2.371 2.635 2.882 3.189 3.409 3.620 3.888
90 1.291 1.662 1.987 2.368 2.632 2.878 3.183 3.402 3.612 3.878
95 1.291 1.661 1.985 2.366 2.629 2.874 3.178 3.396 3.605 3.869

100 1.290 1.660 1.984 2.364 2.626 2.871 3.174 3.390 3.598 3.862
110 1.289 1.659 1.982 2.361 2.621 2.865 3.166 3.381 3.587 3.848
120 1.289 1.658 1.980 2.358 2.617 2.860 3.160 3.373 3.578 3.837
130 1.288 1.657 1.978 2.355 2.614 2.856 3.154 3.367 3.571 3.828
140 1.288 1.656 1.977 2.353 2.611 2.852 3.149 3.361 3.564 3.820
150 1.287 1.655 1.976 2.351 2.609 2.849 3.145 3.357 3.558 3.813
200 1.286 1.653 1.972 2.345 2.601 2.839 3.131 3.340 3.539 3.789
300 1.284 1.650 1.968 2.339 2.592 2.828 3.118 3.323 3.519 3.765
400 1.284 1.649 1.966 2.336 2.588 2.823 3.111 3.315 3.510 3.754
500 1.283 1.648 1.965 2.334 2.586 2.820 3.107 3.310 3.504 3.747

1000 1.282 1.646 1.962 2.330 2.581 2.813 3.098 3.300 3.492 3.733
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TABLE C.3. Critical Values of F

Table entries are F values that cut off the upper p proportion of the
F(d f 1, d f 2) distribution from the rest. Table entries were generated
with the IDF.F function in SPSS.

p-value

df 2 .100 .050 .025 .010 .005 .0025 .001

df 1 = 1

10 3.285 4.965 6.937 10.044 12.826 16.036 21.040
15 3.073 4.543 6.200 8.683 10.798 13.133 16.587
20 2.975 4.351 5.871 8.096 9.944 11.940 14.819
30 2.881 4.171 5.568 7.562 9.180 10.889 13.293
40 2.835 4.085 5.424 7.314 8.828 10.411 12.609
50 2.809 4.034 5.340 7.171 8.626 10.138 12.222
75 2.774 3.968 5.232 6.985 8.366 9.789 11.731

100 2.756 3.936 5.179 6.895 8.241 9.621 11.495
200 2.731 3.888 5.100 6.763 8.057 9.377 11.155
500 2.716 3.860 5.054 6.686 7.950 9.234 10.957

1000 2.711 3.851 5.039 6.660 7.915 9.187 10.892

df 1 = 2

10 2.924 4.103 5.456 7.559 9.427 11.572 14.905
15 2.695 3.682 4.765 6.359 7.701 9.173 11.339
20 2.589 3.493 4.461 5.849 6.986 8.206 9.953
30 2.489 3.316 4.182 5.390 6.355 7.365 8.773
40 2.440 3.232 4.051 5.179 6.066 6.986 8.251
50 2.412 3.183 3.975 5.057 5.902 6.770 7.956
75 2.375 3.119 3.876 4.900 5.691 6.497 7.585

100 2.356 3.087 3.828 4.824 5.589 6.365 7.408
200 2.329 3.041 3.758 4.713 5.441 6.175 7.152
500 2.313 3.014 3.716 4.648 5.355 6.064 7.004

1000 2.308 3.005 3.703 4.626 5.326 6.028 6.956

df 1 = 3

10 2.728 3.708 4.826 6.552 8.081 9.833 12.553
15 2.490 3.287 4.153 5.417 6.476 7.634 9.335
20 2.380 3.098 3.859 4.938 5.818 6.757 8.098
30 2.276 2.922 3.589 4.510 5.239 5.999 7.054
40 2.226 2.839 3.463 4.313 4.976 5.659 6.595
50 2.197 2.790 3.390 4.199 4.826 5.466 6.336
75 2.158 2.727 3.296 4.054 4.635 5.222 6.011

100 2.139 2.696 3.250 3.984 4.542 5.105 5.857
200 2.111 2.650 3.182 3.881 4.408 4.936 5.634
500 2.095 2.623 3.142 3.821 4.330 4.838 5.506

1000 2.089 2.614 3.129 3.801 4.305 4.805 5.464
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TABLE C.3. Critical Values of F (continued)

p-value

df 2 .100 .050 .025 .010 .005 .0025 .001

df 1 = 4

10 2.605 3.478 4.468 5.994 7.343 8.888 11.283
15 2.361 3.056 3.804 4.893 5.803 6.796 8.253
20 2.249 2.866 3.515 4.431 5.174 5.967 7.096
30 2.142 2.690 3.250 4.018 4.623 5.253 6.125
40 2.091 2.606 3.126 3.828 4.374 4.934 5.698
50 2.061 2.557 3.054 3.720 4.232 4.753 5.459
75 2.021 2.494 2.962 3.580 4.050 4.525 5.159

100 2.002 2.463 2.917 3.513 3.963 4.415 5.017
200 1.973 2.417 2.850 3.414 3.837 4.257 4.812
500 1.956 2.390 2.811 3.357 3.763 4.166 4.693

1000 1.950 2.381 2.799 3.338 3.739 4.136 4.655

df 1 = 5

10 2.522 3.326 4.236 5.636 6.872 8.288 10.481
15 2.273 2.901 3.576 4.556 5.372 6.263 7.567
20 2.158 2.711 3.289 4.103 4.762 5.463 6.461
30 2.049 2.534 3.026 3.699 4.228 4.776 5.534
40 1.997 2.449 2.904 3.514 3.986 4.470 5.128
50 1.966 2.400 2.833 3.408 3.849 4.297 4.901
75 1.926 2.337 2.741 3.272 3.674 4.078 4.617

100 1.906 2.305 2.696 3.206 3.589 3.973 4.482
200 1.876 2.259 2.630 3.110 3.467 3.822 4.287
500 1.859 2.232 2.592 3.054 3.396 3.734 4.176

1000 1.853 2.223 2.579 3.036 3.373 3.706 4.139

df 1 = 6

10 2.461 3.217 4.072 5.386 6.545 7.871 9.926
15 2.208 2.790 3.415 4.318 5.071 5.891 7.092
20 2.091 2.599 3.128 3.871 4.472 5.111 6.019
30 1.980 2.421 2.867 3.473 3.949 4.442 5.122
40 1.927 2.336 2.744 3.291 3.713 4.144 4.731
50 1.895 2.286 2.674 3.186 3.579 3.976 4.512
75 1.854 2.222 2.582 3.052 3.407 3.763 4.237

100 1.834 2.191 2.537 2.988 3.325 3.662 4.107
200 1.804 2.144 2.472 2.893 3.206 3.515 3.920
500 1.786 2.117 2.434 2.838 3.137 3.430 3.813

1000 1.780 2.108 2.421 2.820 3.114 3.402 3.778
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TABLE C.3. Critical Values of F (continued)

p-value

df 2 .100 .050 .025 .010 .005 .0025 .001

df 1 = 7

10 2.414 3.135 3.950 5.200 6.302 7.564 9.517
15 2.158 2.707 3.293 4.142 4.847 5.616 6.741
20 2.040 2.514 3.007 3.699 4.257 4.850 5.692
30 1.927 2.334 2.746 3.304 3.742 4.194 4.817
40 1.873 2.249 2.624 3.124 3.509 3.902 4.436
50 1.840 2.199 2.553 3.020 3.376 3.737 4.222
75 1.798 2.134 2.461 2.887 3.208 3.529 3.955

100 1.778 2.103 2.417 2.823 3.127 3.429 3.829
200 1.747 2.056 2.351 2.730 3.010 3.286 3.647
500 1.729 2.028 2.313 2.675 2.941 3.203 3.542

1000 1.723 2.019 2.300 2.657 2.919 3.176 3.508

df 1 = 8

10 2.377 3.072 3.855 5.057 6.116 7.328 9.204
15 2.119 2.641 3.199 4.004 4.674 5.404 6.471
20 1.999 2.447 2.913 3.564 4.090 4.648 5.440
30 1.884 2.266 2.651 3.173 3.580 4.001 4.581
40 1.829 2.180 2.529 2.993 3.350 3.713 4.207
50 1.796 2.130 2.458 2.890 3.219 3.551 3.998
75 1.754 2.064 2.366 2.758 3.052 3.346 3.736

100 1.732 2.032 2.321 2.694 2.972 3.248 3.612
200 1.701 1.985 2.256 2.601 2.856 3.107 3.434
500 1.683 1.957 2.217 2.547 2.789 3.025 3.332

1000 1.676 1.948 2.204 2.529 2.766 2.998 3.299

df 1 = 9

10 2.347 3.020 3.779 4.942 5.968 7.140 8.956
15 2.086 2.588 3.123 3.895 4.536 5.235 6.256
20 1.965 2.393 2.837 3.457 3.956 4.487 5.239
30 1.849 2.211 2.575 3.067 3.450 3.847 4.393
40 1.793 2.124 2.452 2.888 3.222 3.563 4.024
50 1.760 2.073 2.381 2.785 3.092 3.402 3.818
75 1.716 2.007 2.289 2.653 2.927 3.199 3.561

100 1.695 1.975 2.244 2.590 2.847 3.103 3.439
200 1.663 1.927 2.178 2.497 2.732 2.963 3.264
500 1.644 1.899 2.139 2.443 2.665 2.882 3.163

1000 1.638 1.889 2.126 2.425 2.643 2.855 3.130
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TABLE C.3. Critical Values of F (continued)

p-value

df 2 .100 .050 .025 .010 .005 .0025 .001

df 1 = 10

10 2.323 2.978 3.717 4.849 5.847 6.987 8.754
15 2.059 2.544 3.060 3.805 4.424 5.097 6.081
20 1.937 2.348 2.774 3.368 3.847 4.355 5.075
30 1.819 2.165 2.511 2.979 3.344 3.720 4.239
40 1.763 2.077 2.388 2.801 3.117 3.438 3.874
50 1.729 2.026 2.317 2.698 2.988 3.279 3.671
75 1.685 1.959 2.224 2.567 2.823 3.078 3.416

100 1.663 1.927 2.179 2.503 2.744 2.982 3.296
200 1.631 1.878 2.113 2.411 2.629 2.844 3.123
500 1.612 1.850 2.074 2.356 2.562 2.764 3.023

1000 1.605 1.840 2.061 2.339 2.541 2.737 2.991

df 1 = 11

10 2.302 2.943 3.665 4.772 5.746 6.861 8.586
15 2.037 2.507 3.008 3.730 4.329 4.982 5.935
20 1.913 2.310 2.721 3.294 3.756 4.245 4.939
30 1.794 2.126 2.458 2.906 3.255 3.615 4.110
40 1.737 2.038 2.334 2.727 3.028 3.335 3.749
50 1.703 1.986 2.263 2.625 2.900 3.177 3.548
75 1.658 1.919 2.170 2.494 2.736 2.977 3.295

100 1.636 1.886 2.124 2.430 2.657 2.881 3.176
200 1.603 1.837 2.058 2.338 2.543 2.744 3.005
500 1.583 1.808 2.019 2.283 2.476 2.664 2.906

1000 1.577 1.798 2.006 2.265 2.454 2.638 2.874

df 1 = 12

10 2.284 2.913 3.621 4.706 5.661 6.754 8.445
15 2.017 2.475 2.963 3.666 4.250 4.884 5.812
20 1.892 2.278 2.676 3.231 3.678 4.151 4.823
30 1.773 2.092 2.412 2.843 3.179 3.525 4.001
40 1.715 2.003 2.288 2.665 2.953 3.246 3.642
50 1.680 1.952 2.216 2.562 2.825 3.089 3.443
75 1.635 1.884 2.123 2.431 2.661 2.890 3.192

100 1.612 1.850 2.077 2.368 2.583 2.795 3.074
200 1.579 1.801 2.010 2.275 2.468 2.658 2.904
500 1.559 1.772 1.971 2.220 2.402 2.578 2.806

1000 1.552 1.762 1.958 2.203 2.380 2.552 2.774
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TABLE C.4. Critical Values of Chi-Square

Table entries are χ2 values that cut off the upper p proportion of the χ2(df )
distribution from the rest. Table entries were generated with the IDF.CHISQ
function in SPSS.

p-value

df .100 .050 .025 .010 .005 .0025 .001

1 2.706 3.841 5.024 6.635 7.879 9.141 10.828
2 4.605 5.991 7.378 9.210 10.597 11.983 13.816
3 6.251 7.815 9.348 11.345 12.838 14.320 16.266
4 7.779 9.488 11.143 13.277 14.860 16.424 18.467
5 9.236 11.070 12.833 15.086 16.750 18.386 20.515
6 10.645 12.592 14.449 16.812 18.548 20.249 22.458
7 12.017 14.067 16.013 18.475 20.278 22.040 24.322
8 13.362 15.507 17.535 20.090 21.955 23.774 26.124
9 14.684 16.919 19.023 21.666 23.589 25.462 27.877

10 15.987 18.307 20.483 23.209 25.188 27.112 29.588
11 17.275 19.675 21.920 24.725 26.757 28.729 31.264
12 18.549 21.026 23.337 26.217 28.300 30.318 32.909
13 19.812 22.362 24.736 27.688 29.819 31.883 34.528
14 21.064 23.685 26.119 29.141 31.319 33.426 36.123
15 22.307 24.996 27.488 30.578 32.801 34.950 37.697
16 23.542 26.296 28.845 32.000 34.267 36.456 39.252
17 24.769 27.587 30.191 33.409 35.718 37.946 40.790
18 25.989 28.869 31.526 34.805 37.156 39.422 42.312
19 27.204 30.144 32.852 36.191 38.582 40.885 43.820
20 28.412 31.410 34.170 37.566 39.997 42.336 45.315
22 30.813 33.924 36.781 40.289 42.796 45.204 48.268
24 33.196 36.415 39.364 42.980 45.559 48.034 51.179
26 35.563 38.885 41.923 45.642 48.290 50.829 54.052
28 37.916 41.337 44.461 48.278 50.993 53.594 56.892
30 40.256 43.773 46.979 50.892 53.672 56.332 59.703
32 42.585 46.194 49.480 53.486 56.328 59.046 62.487
34 44.903 48.602 51.966 56.061 58.964 61.738 65.247
36 47.212 50.998 54.437 58.619 61.581 64.410 67.985
38 49.513 53.384 56.896 61.162 64.181 67.063 70.703
40 51.805 55.758 59.342 63.691 66.766 69.699 73.402
45 57.505 61.656 65.410 69.957 73.166 76.223 80.077
50 63.167 67.505 71.420 76.154 79.490 82.664 86.661
55 68.796 73.311 77.380 82.292 85.749 89.035 93.168
60 74.397 79.082 83.298 88.379 91.952 95.344 99.607
65 79.973 84.821 89.177 94.422 98.105 101.600 105.988
70 85.527 90.531 95.023 100.425 104.215 107.808 112.317
75 91.061 96.217 100.839 106.393 110.286 113.974 118.599
80 96.578 101.879 106.629 112.329 116.321 120.102 124.839
85 102.079 107.522 112.393 118.236 122.325 126.195 131.041
90 107.565 113.145 118.136 124.116 128.299 132.256 137.208
95 113.038 118.752 123.858 129.973 134.247 138.288 143.344

100 118.498 124.342 129.561 135.807 140.169 144.293 149.449
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TABLE C.5. Fisher’s r-to-Z Transformation

Table entries are the Fisher Z-values corresponding to the correlation that is the sum
of the bold values in the row and column in which that Z-value resides. For instance,
the last entry on this page shows that Z = 0.863 when r = 0.698.

.000 .002 .004 .006 .008 .010 .012 .014 .016 .018

.00 0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018

.02 0.020 0.022 0.024 0.026 0.028 0.030 0.032 0.034 0.036 0.038

.04 0.040 0.042 0.044 0.046 0.048 0.050 0.052 0.054 0.056 0.058

.06 0.060 0.062 0.064 0.066 0.068 0.070 0.072 0.074 0.076 0.078

.08 0.080 0.082 0.084 0.086 0.088 0.090 0.092 0.094 0.096 0.098

.10 0.100 0.102 0.104 0.106 0.108 0.110 0.112 0.114 0.117 0.119

.12 0.121 0.123 0.125 0.127 0.129 0.131 0.133 0.135 0.137 0.139

.14 0.141 0.143 0.145 0.147 0.149 0.151 0.153 0.155 0.157 0.159

.16 0.161 0.163 0.165 0.168 0.170 0.172 0.174 0.176 0.178 0.180

.18 0.182 0.184 0.186 0.188 0.190 0.192 0.194 0.196 0.199 0.201

.20 0.203 0.205 0.207 0.209 0.211 0.213 0.215 0.217 0.219 0.222

.22 0.224 0.226 0.228 0.230 0.232 0.234 0.236 0.238 0.241 0.243

.24 0.245 0.247 0.249 0.251 0.253 0.255 0.258 0.260 0.262 0.264

.26 0.266 0.268 0.270 0.273 0.275 0.277 0.279 0.281 0.283 0.286

.28 0.288 0.290 0.292 0.294 0.296 0.299 0.301 0.303 0.305 0.307

.30 0.310 0.312 0.314 0.316 0.318 0.321 0.323 0.325 0.327 0.329

.32 0.332 0.334 0.336 0.338 0.341 0.343 0.345 0.347 0.350 0.352

.34 0.354 0.356 0.359 0.361 0.363 0.365 0.368 0.370 0.372 0.375

.36 0.377 0.379 0.381 0.384 0.386 0.388 0.391 0.393 0.395 0.398

.38 0.400 0.402 0.405 0.407 0.409 0.412 0.414 0.417 0.419 0.421

.40 0.424 0.426 0.428 0.431 0.433 0.436 0.438 0.440 0.443 0.445

.42 0.448 0.450 0.453 0.455 0.457 0.460 0.462 0.465 0.467 0.470

.44 0.472 0.475 0.477 0.480 0.482 0.485 0.487 0.490 0.492 0.495

.46 0.497 0.500 0.502 0.505 0.508 0.510 0.513 0.515 0.518 0.520

.48 0.523 0.526 0.528 0.531 0.533 0.536 0.539 0.541 0.544 0.547

.50 0.549 0.552 0.555 0.557 0.560 0.563 0.565 0.568 0.571 0.574

.52 0.576 0.579 0.582 0.585 0.587 0.590 0.593 0.596 0.599 0.601

.54 0.604 0.607 0.610 0.613 0.616 0.618 0.621 0.624 0.627 0.630

.56 0.633 0.636 0.639 0.642 0.645 0.648 0.650 0.653 0.656 0.659

.58 0.662 0.665 0.669 0.672 0.675 0.678 0.681 0.684 0.687 0.690

.60 0.693 0.696 0.699 0.703 0.706 0.709 0.712 0.715 0.719 0.722

.62 0.725 0.728 0.732 0.735 0.738 0.741 0.745 0.748 0.751 0.755

.64 0.758 0.762 0.765 0.768 0.772 0.775 0.779 0.782 0.786 0.789

.66 0.793 0.796 0.800 0.804 0.807 0.811 0.814 0.818 0.822 0.825

.68 0.829 0.833 0.837 0.840 0.844 0.848 0.852 0.856 0.860 0.863
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TABLE C.5. Fisher’s r-to-Z Transformation (continued)

.000 .002 .004 .006 .008 .010 .012 .014 .016 .018

.70 0.867 0.871 0.875 0.879 0.883 0.887 0.891 0.895 0.899 0.904

.72 0.908 0.912 0.916 0.920 0.924 0.929 0.933 0.937 0.942 0.946

.74 0.950 0.955 0.959 0.964 0.968 0.973 0.978 0.982 0.987 0.991

.76 0.996 1.001 1.006 1.011 1.015 1.020 1.025 1.030 1.035 1.040

.78 1.045 1.050 1.056 1.061 1.066 1.071 1.077 1.082 1.088 1.093

.80 1.099 1.104 1.110 1.116 1.121 1.127 1.133 1.139 1.145 1.151

.82 1.157 1.163 1.169 1.175 1.182 1.188 1.195 1.201 1.208 1.214

.84 1.221 1.228 1.235 1.242 1.249 1.256 1.263 1.271 1.278 1.286

.86 1.293 1.301 1.309 1.317 1.325 1.333 1.341 1.350 1.358 1.367

.88 1.376 1.385 1.394 1.403 1.412 1.422 1.432 1.442 1.452 1.462

.90 1.472 1.483 1.494 1.505 1.516 1.528 1.539 1.551 1.564 1.576

.92 1.589 1.602 1.616 1.630 1.644 1.658 1.673 1.689 1.705 1.721

.94 1.738 1.756 1.774 1.792 1.812 1.832 1.853 1.874 1.897 1.921

.96 1.946 1.972 2.000 2.029 2.060 2.092 2.127 2.165 2.205 2.249

.98 2.298 2.351 2.410 2.477 2.555 2.647 2.759 2.903 3.106 3.453



Appendix D
The Matrix Algebra of Linear
Regression Analysis

Advanced readers of this book may be interested in the matrix algebra
underlying linear regression analysis. This appendix describes how the
regression coefficients, standard errors, and various other statistics in re-
gression analysis are calculated in matrix algebra form.

Let X be a N × (k+1) data matrix containing the values of the k regressors
in the columns for cases in the rows, including a column of 1’s for the
regression constant, and let y be a N × 1 column vector containing values
of the dependent variable. For the exercise data in Table 5.1, with weight
loss as the dependent variable,

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 2 15 0
1 0 4 14 0
1 0 6 19 0
1 2 2 15 1
1 2 4 21 1
1 2 6 23 0
1 2 8 21 1
1 4 4 22 1
1 4 6 24 0
1 4 8 26 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6
2
4
8
9
8
5

11
13
9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where the regressor data are in the order exercise, food intake, metabolism,
and sex in the columns of X after the first column of 1’s representing the
regressioning constant. The least squares constant and regression coef-
ficients, including the regression constant, are produced with the matrix
expression

621
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b = (X’X)−1X’y

which results in a (k + 1) × 1 vector b

b =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.967
1.151

−1.133
0.600

−0.404

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
containing the regression constant as the first entry and the regression
coefficients for exercise, food intake, metabolism, and sex in that order.

Estimates of Y from the model are calculated as

ŷ = Xb

which yields

ŷ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5.761
2.895
3.627
7.659
8.991
8.327
4.458

11.892
11.229
10.161

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
With ŷ calculated, residuals can be calculated as

e = y − ŷ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6
2
4
8
9
8
5

11
13
9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5.761
2.895
3.627
7.659
8.991
8.327
4.458

11.892
11.229
10.161

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.239
−0.895

0.373
0.341
0.009

−0.327
0.542

−0.892
1.771

−1.161

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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and the residual sum of squares as

SSresidual = e’e

which produces 6.797. Dividing SSresidual by the residual degrees of freedom
N − k − 1 results in MSresidual, which for this model is 6.797/5 = 1.359.

The expression
Σ =MSresidual(X’X)−1

is the (k+1) × (k+1) variance–covariance matrixΣ of the regression constant
and regression coefficients

Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

11.938 1.401 0.600 −0.855 −1.251
1.401 0.257 0.075 −0.111 −0.197
0.600 0.075 0.100 −0.062 −0.006
−0.855 −0.111 −0.062 0.068 0.069
−1.251 −0.197 −0.006 0.069 0.755

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The square root of the diagonal elements ofΣ is a k+1 vector of standard

errors of the regression constant and the k regression coefficients:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3.455
0.507
0.316
0.261
0.869

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The “hat matrix” H places a significant role in regression algebra. It is
defined as:

H = X(X’X)−1X’

and is an N ×N matrix

Ĥ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.476 0.247 0.197 · · · −0.001 0.031 −0.109
0.247 0.544 0.170 · · · −0.128 0.064 0.026
0.197 0.170 0.424 −0.074 0.039
0.147 0.243 −0.155 0.047 −0.104
...

−0.272 0.128 0.185 −0.110 0.118
−0.001 −0.128 −0.174 0.183 0.096

0.031 0.064 −0.074 · · · 0.183 0.445 0.392
−0.109 0.026 0.039 · · · 0.096 0.392 0.467

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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The H matrix is referred to as a hat matrix because it puts hats on y. That
is,

ŷ = Hy =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5.761
2.895
3.627
7.659
8.991
8.327
4.458

11.892
11.229
10.161

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and so H can be used to generate estimates of Y without formally calculating
the regression coefficients b. The diagonal of H is an N × 1 vector h of
leverage values hi, one for each case in the data:

h =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

.476

.544

.424

.548

.580

.320

.780

.417

.445

.467

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
These leverage values can be used in a number of ways. For instance,
the squared standard errors in the diagonal of Σ are “best” only when
homoscedasticity is met. An alternative standard error estimator that
doesn’t assume homoscedasticity is calculated by using each case’s hi to
adjust the residuals to construct a “heteroscedasticity-consistent” variance–
covariance matrix. The HC3 estimator mentioned in section 16.3.1 and
implemented in the RLM macro documented in Appendix A is

ΣHC3 = (X′X)−1X′diag

⎡⎢⎢⎢⎢⎣ e2
i

(1 − hi)2

⎤⎥⎥⎥⎥⎦X(X′X)−1
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which in these data results in

ΣHC3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

15.584 1.735 .930 −1.069 −2.492
1.735 .435 .067 −.119 −.718
.930 .067 .237 −.109 .221

−1.069 −.119 −.109 .085 .082
−2.492 −.718 .221 .082 2.343

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The square root of the diagonal elements of ΣHC3 are the HC3 standard
errors of the regression coefficients in b:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3.948
.659
.487
.292

1.531

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
More matrix expressions for various regression-analysis and statistics-

related computation can be found in Searle (1982).
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relations among statistics and, 78–80, 

79f
Visualizing interactions, 596. See also 

Interactions

W

Wald statistic, 561
Warped surface, 384–385, 385f
Weighted contrasts, 304–308. See also 

Contrasts
Weighted effect coding, 301t, 592
Weighted group coding, 298–308, 299t, 

301t, 302t. See also Coding systems
Weighted Helmert coding, 300–304, 301t, 

302t, 591–592. See also Helmert coding
Weighted means, 307
Weighted sum of means, 289–290
Weighted tests, 336–337

Y

Y-intercept, 20, 23–24, 99–100. See also 
Intercept; Regression constant b0

Z

Z scores, 503
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