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vii

Multiple Regression and Beyond is designed to provide a conceptually oriented introduction to 
multiple regression along with more complex methods that fl ow naturally from multiple regres-
sion: path analysis, confi rmatory factor analysis, and structural equation modeling. Multiple 
regression (MR) and related methods have become indispensable tools for modern social science 
researchers. MR closely implements the general linear model and thus subsumes methods, such 
as analysis of variance (ANOVA), that have traditionally been more commonplace in psycho-
logical and educational research. Regression is especially appropriate for the analysis of nonex-
perimental research, and with the use of dummy variables and modern computer packages, it is 
often more appropriate or easier to use MR to analyze the results of complex quasi-experimental 
or even experimental research. Extensions of multiple regression—particularly structural equa -
tion modeling (SEM)—partially obviate threats due to the unreliability of the variables used in 
research and allow the modeling of complex relations among variables. A quick perusal of the full 
range of social science journals demonstrates the wide applicability of the methods.

Despite its importance, MR-based analyses are too often poorly conducted and poorly 
reported. I believe one reason for this incongruity is inconsistency between how material is 
presented and how most students best learn.

Anyone who teaches (or has ever taken) courses in statistics and research methodology 
knows that many students, even those who may become gifted researchers, do not always 
gain conceptual understanding through numerical presentation. Although many who teach 
statistics understand the processes underlying a sequence of formulas and gain conceptual 
understanding through these formulas, many students do not. Instead, such students often 
need a thorough conceptual explanation to gain such understanding, after which a numeri-
cal presentation may make more sense. Unfortunately, many multiple regression textbooks 
assume that students will understand multiple regression best by learning matrix algebra, 
wading through formulas, and focusing on details.

At the same time, methods such as structural equation modeling (SEM) and confirma-
tory factor analysis (CFA) are easily taught as extensions of multiple regression. If structured 
properly, multiple regression flows naturally into these more complex topics, with nearly 
complete carry-over of concepts. Path models (simple SEMs) illustrate and help deal with 
some of the problems of MR, CFA does the same for path analysis, and latent variable SEM 
combines all the previous topics into a powerful, flexible methodology.

I have taught courses including these topics at four universities (the University of Iowa, 
Virginia Polytechnic Institute & State University, Alfred University, and the University of 
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Texas). These courses included faculty and students in architecture, engineering, educational 
psychology, educational research and statistics, kinesiology, management, political science, 
psychology, social work, and sociology, among others. This experience leads me to believe 
that it is possible to teach these methods by focusing on the concepts and purposes of MR 
and related methods, rather than the derivation and calculation of formulas (what my wife 
calls the “plug and chug” method of learning statistics). Students generally find such an 
approach clearer, more conceptual, and less threatening than other approaches. As a result 
of this conceptual approach, students become interested in conducting research using MR, 
CFA, or SEM and are more likely to use the methods wisely.

THE ORIENTATION OF THIS BOOK

My overriding bias in this book is that these complex methods can be presented and learned 
in a conceptual, yet rigorous, manner. I recognize that not all topics are covered in the depth 
or detail presented in other texts, but I will direct you to other sources for topics for which 
you may want additional detail. My style is also fairly informal; I’ve written this book as if I 
were teaching a class.

Data

I also believe that one learns these methods best by doing, and the more interesting and rel-
evant that “doing,” the better. For this reason, there are numerous example analyses through-
out this book that I encourage you to reproduce as you read. To make this task easier, the Web 
site that accompanies the book (www.tzkeith.com) includes the data in a form that can be 
used in common statistical analysis programs. Many of the examples are taken from actual 
research in the social sciences, and I’ve tried to sample from research from a variety of areas. 
In most cases simulated data are provided that mimic the actual data used in the research. 
You can reproduce the analyses of the original researchers and, perhaps, improve on them.

And the data feast doesn’t end there! The Web site also includes data from a major federal 
data set: 1000 cases from the National Education Longitudinal Study (NELS) from the National 
Center for Education Statistics. NELS was a nationally representative sample of 8th-grade stu-
dents first surveyed in 1988 and resurveyed in 10th and 12th grades and then twice after leav-
ing high school. The students’ parents, teachers, and school administrators were also surveyed. 
The Web site includes student and parent data from the base year (8th grade) and student data 
from the first follow-up (10th grade). Don’t be led astray by the word Education in NELS; the 
students were asked an incredible variety of questions, from drug use to psychological well-
being to plans for the future. Anyone with an interest in youth will find something interesting 
in these data. Appendix A includes more information about the data at www.tzkeith.com.

Computer Analysis

Finally, I fi rmly believe that any book on statistics or research methods should be closely related 
to statistical analysis software. Why plug and chug—plug numbers into formulas and chug out 
the answers on a calculator—when a statistical program can do the calculations more quickly 
and accurately with, for most people, no loss of understanding? Freed from the drudgery of 
hand calculations, you can then concentrate on asking and answering important research ques-
tions, rather than on the intricacies of calculating statistics. This bias toward computer calcu-
lations is especially important for the methods covered in this book, which quickly become 
unmanageable by hand. Use a statistical analysis program as you read this book; do the exam-
ples with me and the problems at the end of the chapters, using that program.

Which program? I use SPSS as my general statistical analysis program, and you can get 
the program for a reasonable price as a student in a university (approximately $100–$125 
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per year for the “Grad Pack” as this is written). But you need not use SPSS; any of the com-
mon packages will do (e.g., SAS or SYSTAT). The output in the text has a generic look to it, 
which should be easily translatable to any major statistical package output. In addition, the 
website (www.tzkeith.com) includes sample multiple regression and SEM output from vari-
ous statistical packages.

For the second half of the book, you will need access to a structural equation modeling 
program. Fortunately, student or tryout versions of many such programs are available online. 
Student pricing for the program used extensively in this book, Amos, is available, at this writ-
ing, for approximately $50 per year as an SPSS add-on. Although programs (and pricing) 
change, one current limitation of Amos is that there is no Mac OS version of Amos. If you 
want to use Amos, you need to be able to run Windows. Amos is, in my opinion, the easiest 
SEM program to use (and it produces really nifty pictures). The other SEM program that 
I will frequently reference is Mplus. We’ll talk more about SEM in Part 2 of this book. The 
website for this text has many examples of SEM input and output using Amos and Mplus.

Overview of the Book

This book is divided into two parts. Part 1 focuses on multiple regression analysis. We begin 
by focusing on simple, bivariate regression and then expand that focus into multiple regres-
sion with two, three, and four independent variables. We will concentrate on the analysis 
and interpretation of multiple regression as a way of answering interesting and important 
research questions. Along the way, we will also deal with the analytic details of multiple 
regression so that you understand what is going on when we do a multiple regression analysis. 
We will focus on three different types, or fl avors, of multiple regression that you will encoun-
ter in the research literature, their strengths and weaknesses, and their proper interpretation. 
Our next step will be to add categorical independent variables to our multiple regression 
analyses, at which point the relation of multiple regression and ANOVA will become clearer. 
We will learn how to test for interactions and curves in the regression line and to apply these 
methods to interesting research questions.

The penultimate chapter for Part 1 is a review chapter that summarizes and integrates 
what we have learned about multiple regression. Besides serving as a review for those who 
have gone through Part 1, it also serves as a useful introduction for those who are interested 
primarily in the material in Part 2. In addition, this chapter introduces several important 
topics not covered completely in previous chapters. The final chapter in Part 1 presents two 
related methods, logistic regression and multilevel modeling, in a conceptual fashion using 
what we have learned about multiple regression.

Part 2 focuses on structural equation modeling—the “Beyond” portion of the book’s 
title. We begin by discussing path analysis, or structural equation modeling with measured 
variables. Simple path analyses are easily estimated via multiple regression analysis, and 
many of our questions about the proper use and interpretation of multiple regression will 
be answered with this heuristic aid. We will deal in some depth with the problem of valid 
versus invalid inferences of causality in these chapters. The problem of error (“the scourge of 
research”) serves as our jumping off place for the transition from path analysis to methods 
that incorporate latent variables (confirmatory factor analysis and latent variable structural 
equation modeling). Confirmatory factor analysis (CFA) approaches more closely the con-
structs of primary interest in our research by separating measurement error from variation 
due to these constructs. Latent variable structural equation modeling (SEM) incorporates 
the advantages of path analysis with those of confirmatory factor analysis into a powerful 
and flexible analytic system that partially obviates many of the problems we discuss as the 
book progresses. As we progress to more advanced SEM topics we will learn how to test for 
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interactions in SEM models, and for differences in means of latent constructs. SEM allows 
powerful analysis of change over time via methods such as latent growth models. Even when 
we discuss fairly sophisticated SEMs, we reiterate one more time the possible dangers of 
nonexperimental research in general and SEM in particular.

CHANGES TO THE SECOND EDITION

If you are coming to the second edition from the fi rst, thank you! There are changes through-
out the book, including quite a few new topics, especially in Part 2. Briefl y, these include:

Changes to Part 1

All chapters have been updated to add, I hope, additional clarity. In some chapters the exam-
ples used to illustrate particular points have been replaced with new ones. In most chapters I 
have added additional exercises and have tried to sample these from a variety of disciplines.

New to Part 1 is a chapter on Logistic Regression and Multilevel Modeling (Chapter 10). This 
brief introduction is not intended as an introduction to these important topics but instead as 
a bridge to assist students who are interested in pursuing these topics in more depth in subse-
quent coursework. When I teach MR classes I consistently get questions about these methods, 
how to think about them, and where to go for more information. The chapter focuses on using 
what students have learned so far in MR, especially categorical variables and interactions, to 
bridge the gap between a MR class and ones that focus in more detail on LR and MLM.

Changes to Part 2

What is considered introductory material in SEM has expanded a great deal since I wrote the 
first edition to Multiple Regression and Beyond, and thus new chapters have been added to 
address these additional topics.

A chapter on Latent Means in SEM (Chapter 18) introduces the topic of mean structures 
in SEM, which is required for understanding the next three chapters and which has increas-
ingly become a part of introductory classes in SEM. The chapter uses a research example to 
illustrate two methods of incorporating mean structures in SEM: MIMIC-type models and 
multi-group mean and covariance structure models.

A second chapter on Confirmatory Factor Analysis has been added (Chapter 19). Now 
that latent means have been introduced, this chapter revisits CFA, with the addition of latent 
means. The topic of invariance testing across groups, hinted at in previous chapters, is cov-
ered in more depth.

Chapter 20 focuses on Latent Growth Models. Longitudinal models and data have been 
covered in several places in the text. Here latent growth models are introduced as a method 
of more directly studying the process of change.

Along with these additions, Chapter 17 (Latent Variable Models: More Advanced Topics) 
and the final SEM summary chapter (Chapter 21) have been extensively modified as well.

Changes to the Appendices

Appendix A, which focused on the data sets used for the text, is considerably shortened, with 
the majority of the material transferred to the web (www.tzkeith.com). Likewise, the infor-
mation previously contained in appendices illustrating output from statistics programs and 
SEM programs has been transferred to the web, so that I can update it regularly. There are 
still appendices focused on a review of basic statistics (Appendix B) and on understanding 
partial and semipartial correlations (Appendix C). The tables showing the symbols used in 
the book and useful formulae are now included in appendices as well. 
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This book is designed to provide a conceptually oriented introduction to multiple regres
sion along with more complex methods that flow naturally from multiple regression: path 
analysis, confirmatory factor analysis, and structural equation modeling. In this introduc
tory chapter, we begin with a discussion and example of simple, or bivariate, regression. For 
many readers, this will be a review, but, even then, the example and computer output should 
provide a transition to subsequent chapters and to multiple regression. The chapter also 
reviews several other related concepts, and introduces several issues (prediction and expla
nation, causality) that we will return to repeatedly in this book. Finally, the chapter relates 
regression to other approaches with which you may be more familiar, such as analysis of 
variance (ANOVA). I will demonstrate that ANOVA and regression are fun damentally the 
same process and that, in fact, regression subsumes ANOVA.

As I suggested in the Preface, we start this journey by jumping right into an example and 
explaining it as we go. In this introduction, I have assumed that you are fairly familiar with 
the topics of correlation and statistical significance testing and that you have some familiar
ity with statistical procedures such as the t test for comparing means and analysis of vari
ance. If these concepts are not familiar to you a quick review is provided in Appendix B. This 

1
Introduction 

Simple (Bivariate) Regression
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appendix reviews basic statistics, distributions, standard errors and confidence intervals, 
correlations, t tests, and ANOVA.

SIMPLE (BIVARIATE) REGRESSION

Let’s start our adventure into the wonderful world of multiple regression with a review of sim
ple, or bivariate, regression; that is, regression with only one influence (independent variable) 
and one outcome (dependent variable).1 Pretend that you are the parent of an adolescent. 
As a parent, you are interested in the influences on adolescents’ school performance: what’s 
important and what’s not? Homework is of particular interest because you see your daughter 
Lisa struggle with it nightly and hear her complain about it daily. A quick search of the Internet 
reveals conflicting evidence. You may find books (Kohn, 2006) and articles (Wallis, 2006) criti
cal of homework and homework policies. On the other hand, you may find links to research 
suggesting homework improves learning and achievement (Cooper, Robinson, & Patall, 2006). 
So you wonder if homework is just busywork or is it a worthwhile learning experience?

Example: Homework and Math Achievement

The Data

Fortunately for you, your good friend is an 8thgrade math teacher and you are a researcher; 
you have the means, motive, and opportunity to find the answer to your question. Without 
going into the levels of permission you’d need to collect such data, pretend that you devise a 
quick survey that you give to all 8thgraders. The key question on this survey is:

Think about your math homework over the last month. Approximately how much time 
did you spend, per week, doing your math homework? Approximately ____ (fill in the blank) 
hours per week.

A month later, standardized achievement tests are administered; when they are available, 
you record the math achievement test score for each student. You now have a report of aver
age amount of time spent on math homework and math achievement test scores for 100 
8thgraders.

A portion of the data is shown in Figure 1.1. The complete data are on the website that 
accompanies this book, www.tzkeith.com, under Chapter 1, in several formats: as an SPSS 
System file (homework & ach.sav), as a Microsoft Excel file (homework & ach.xls), and as an 
ASCII, or plain text, file (homework & ach.txt). The values for time spent on Math Home
work are in hours, ranging from zero for those who do no math homework to some upper 
value limited by the number of free hours in a week. The Math Achievement test scores have 
a national mean of 50 and a standard deviation of 10 (these are known as T scores, which 
have nothing to do with t tests).2

Let’s turn to the analysis. Fortunately, you have good data analytic habits: you check basic 
descriptive data prior to doing the main regression analysis. Here’s my rule: Always, always, 
always, always, always, always check your data prior to conducting analyses! The frequencies 
and descrip tive statistics for the Math Homework variable are shown in Figure 1.2. Reported 
Math Home work ranged from no time, or zero hours, reported by 19 students, to 10 hours 
per week. The range of values looks reasonable, with no excessively high or impossible val
ues. For example, if someone had reported spending 40 hours per week on Math Homework, 
you might be a lit tle suspicious and would check your original data to make sure you entered the 
data correctly (e.g., you may have entered a “4” as a “40”). You might be a little surprised that 
the average amount of time spent on Math Homework per week is only 2.2 hours, but this 
value is certainly plausible. (As noted in the Preface, the regression and other results shown 



Math Homework Math Achievement

54

4 53
53

56
2

30
1  

54
37
49
55
50
45
44
60

0           
53

0
56

2
0
4
0

59
0

49
0
3
0
4
7
3
1
1
0 36
3

22
1

(Data Continue............................)

Figure 1.1 Portion of the Math Homework and Achievement data. The complete data are on the 
website under Chapter 1.

MATHHOME Time Spent on Math Homework per Week

.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00

10.00

19
19
25
16
11
6
2
1
1

100

19.0
19.0
25.0
16.0
11.0
 6.0
 2.0
 1.0
 1.0

100.0

19.0
19.0
25.0
16.0
11.0
 6.0
 2.0
 1.0
 1.0

100.0

19.0
38.0
63.0
79.0
90.0
96.0
98.0
99.0

100.0

Valid

Total

Frequency Percent Valid Percent
Cumulative

Percent

Statistics

MATHHOME Time Spent on Math Homework per Week
N 100

0
2.2000
2.0000

2.00
1.8146
3.2929

.00
10.00

220.00

Valid
Missing

Mean
Median
Mode
Std. Deviation
Variance
Minimum
Maximum
Sum

Figure 1.2 Frequencies and descriptive statistics for Math Homework.
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are portions of an SPSS printout, but the information displayed is easily generalizable to that 
produced by other statistical programs.)

Next, turn to the descriptive statistics for the Math Achievement test (Figure 1.3). Again, 
given that the national mean for this test is 50, the 8thgrade school mean of 51.41 is reason
able, as is the range of scores from 22 to 75. In contrast, if the descriptive statistics had shown 
a high of, for example, 90 (four standard deviations above the mean), further investigation 
would be called for. The data appear to be in good shape. 

The Regression Analysis

Next, we conduct regression: we regress Math Achievement scores on time spent on Homework 
(notice the structure of this statement: we regress the outcome on the influence or influences). 
Figure 1.4 shows the means, standard deviations, and correlation between the two variables. 

Figure 1.3 Descriptive statistics for Math Achievement test scores.

Descriptive Statistics

127.37611.286151.410075.00 5141.0022.0053.00100

100

MATHACH Math
Achievement Test Score

Valid N (listwise)

VarianceStd. DeviationMeanSumMaximumMinimumRangeN

Figure 1.4 Results of the regression of Math Achievement on Math Homework: descriptive statistics 
and correlation coefficients.

Descriptive Statistics

51.4100

2.2000

11.2861

1.8146

100

100

MATHACH Math
Achievement Test Score
MATHHOME Time
Spent on Math
Homework per Week

Mean Std. Deviation N

Correlations

1.000 .320

.320 1.000

. .001

.001 .

100 100

100 100

Pearson Correlation

Sig. (1-tailed)

N

MATHACH
Math

Achievement
Test Score

MATHHOME
Time Spent

on Math
Homework
per Week

MATHACH Math
Achievement Test Score
MATHHOME Time
Spent on Math
Homework per Week

MATHACH Math
Achievement Test Score
MATHHOME Time
Spent on Math
Homework per Week

MATHACH Math
Achievement Test Score
MATHHOME Time
Spent on Math
Homework per Week
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The descriptive statistics match those presented earlier, without the detail. The corre lation 
between the two variables is .320, not large, but certainly statistically significant (p < .01) 
with this sample of 100 students. As you read articles that use multiple regression, you may 
see this ordinary correlation coefficient referred to as a zeroorder correlation (which dis
tinguishes it from first, second, or multipleorder partial correlations, topics dis cussed in 
Appendix C).

Next, we turn to the regression itself; although we have conducted a simple regres sion, the 
computer output is in the form of multiple regression to allow a smooth transition. First, 
look at the model summary in Figure 1.5. It lists the R, which normally is used to des ignate 
the multiple correlation coefficient, but which, with one predictor, is the same as the simple 
Pearson correlation (.320).3 Next is the R2, which denotes the variance explained in the out
come variable by the predictor variables. Homework time explains, accounts for, or predicts 
.102 (proportion) or 10.2% of the variance in Math test scores. As you run this regression 
yourself, your output will probably show some additional statistics (e.g., the adjusted R2); we 
will ignore these for the time being. 

Is the regression, that is, the multiple R and R2, statistically significant? We know it is, 
because we already noted the statistical significance of the zeroorder correlation, and this 
“multiple” regression is actually a simple regression with only one predictor. But, again, we’ll 
check the output for consistency with subsequent examples. Interestingly, we use an F test, as 
in ANOVA, to test the statistical significance of the regression equation:

F
ss df

ss df
regression regression

residual residual

=
/

/

The term ssregression stands for sums of squares regression and is a measure of the variation 
in the dependent variable that is explained by the independent variable(s); the ssresidual is the 
vari ance unexplained by the regression. If you are interested in knowing how to calculate 
these values by hand, turn to Note 4 at the end of this chapter; here, we will use the values 
from the statistical output in Figure 1.5.4 The sums of squares for the regression versus the 

Model Summary

.320a .1021

Model R R Square

a. Predictors: (Constant), MATHHOME Time
 Spent on Math Homework per Week

a. Predictors: (Constant), MATHHOME Time Spent on Math Homework per Week
b. Dependent Variable: MATHACH Math Achievement Test Score

ANOVAb

Regression

Residual

Total

1
Model

1291.231

11318.959

12610.190

Sum of
Squares

1

98

99

df

1291.231

115.500

Mean Square

11.180

F

.001a

Sig.

Figure 1.5 Results of the regression of Math Achievement on Math Homework: statistical significance 
of the regression.
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residual are shown in the ANOVA table. In regression, the degrees of freedom (df) for the 
regression are equal to the number of independent variables (k), and the df for the residual, 
or error, are equal to the sample size minus the number of independent variables in the equa
tion minus 1 (N − k − 1); the df are also shown in the ANOVA table. We’ll doublecheck the 
numbers:

F =

=

=

1291 231 1

11318 959 98
1291 231

115 500
11 179

. /

. /
.

.
.

which is the same value shown in the table, within errors of rounding. What is the probabil
ity of obtaining a value of F as large as 11.179 if these two variables were in fact unrelated 
in the population? According to the table (in the column labeled “Sig.”), such an occurrence 
would occur only 1 time in 1,000 (p = .001); it would seem logical that these two variables 
are indeed related. We can doublecheck this probability by referring to an F table under 1 
and 98 df; is the value 11.179 greater than the tabled value? Instead, however, I suggest that 
you use a computer program to calculate these probabilities. Excel, for example, will find the 
probability for values of all the distributions discussed in this text. Simply put the calculated 
value of F (11.179) in one cell, the degrees of freedom for the regression (1) in the next, 
and the df for the residual in the next (98). Go to the next cell, then click on Insert, Function, 
and select the category of Statistical and scroll down until you find FDIST, for F distribution.

Click on it and point to the cells containing the required information. Alternatively, you 
could go directly to Function and FDIST and simply type in these numbers, as was done in 
Figure 1.6. Excel returns a value of .001172809, or .001, as shown in the Figure. Although I 
present this method of determining probabilities as a way of doublechecking the computer 
output at this point, at times your computer program will not display the probabilities you 
are interested in, and this method will be useful.

Figure 1.6 Using Excel to calculate probability: statistical significance of an F (1,98) of 11.179.
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There is another formula you can use to calculate F, an extension of which will come in 
handy later:

F
R k

R N k
=

− − −

2

21 1

/

( ) /( )

This formula compares the proportion of variance explained by the regression (R2) with 
the proportion of variance left unexplained by the regression (1 − R2). This formula may 
seem quite different from the one presented previously until you remember that (1) k is 
equal to the df for the regression, and N − k − 1 is equal to the df for the residual, and (2) the 
sums of squares from the previous formula are also estimates of variance. Try this formula to 
make sure you get the same results (within rounding error).

I noted that the ssregression is a measure of the variance explained in the dependent variable 
by the independent variables, and also that R2 denotes the variance explained. Given these 
descriptions, you may expect that the two concepts should be related. They are, and we can 
calculate the R2 from the ssregression: R

ss

ss
regression

total

2 = . We can put this formula into words: There is 

a certain amount of variance in the dependent variable (total variance), and the independent 
variables can explain a portion of this variance (variance due to the regression). The R2 is a 
proportion of the total variance in the dependent variable that is explained by the indepen
dent variables. For the current example, the total variance in the dependent variable, Math 
Achievement (sstotal), was 12610.190 (Figure 1.5), and Math Homework explained 1291.231 
of this variance. Thus,

R
ss

ss
regression

total

2

1291 231

12610 190
102

=

=

=

.

.
.

and Homework explains .102 or 10.2% of the variance in Math Achievement. Obviously, R2 
can vary between 0 (no variance explained) and 1 (100% explained).

The Regression Equation

Next, let’s take a look at the coefficients for the regression equation, the notable parts 
of which are shown in Figure 1.7. The general formula for a regression equation is Y = 
a + bX + e, which, translated into English, says that a person’s score on the dependent vari
able (in this case, Math Achievement) is a result of a con stant (a), plus a coefficient (b) 
times his or her value on the independent variable (Math Homework), plus error. Values 
for both a and b are shown in the second column of the table in Figure 1.7 (Unstan
dardized Coefficients, B; SPSS uses the uppercase B rather than the lower case b). a is 
a constant, called the intercept, and its value is 47.032 for this homework–achievement 
example. The intercept is the predicted score on the dependent variable for someone with a 
score of zero on the independent variable. b, the unstandard ized regression coefficient, is 
1.990. Because we don’t have a direct estimate of the error, we’ll focus on a different form 
of the regression equation: Y' = a + bX, in which Y' is the pre dicted value of Y. The com
pleted equation is Y' = 47.032 + 1.990X, meaning that to predict a person’s Math Achieve
ment score we can multiply his or her report of time spent on Math Homework by 1.990 
and add 47.032. Thus, the predicted score for a student who does no homework would 
be 47.032, the predicted score for an 8thgrader who does 1 hour of homework is 49.022  
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(1 × 1.990 + 47.032), the predicted score for a student who does 2 hours of homework is 
51.012 (2 × 1.990 + 47.032), and so on.

Several questions may spring to mind after these last statements. Why, for example, would 
we want to predict a student’s Achievement score (Y') when we already know the student’s 
real Achievement score? The answer is that we want to use this formula to summarize the 
relation between homework and achievement for all students at the same time. We may also 
be able to use the formula for other purposes: to predict scores for another group of students 
or, to return to the original purpose, to predict Lisa’s likely future math achievement, given 
her time spent on math homework. Or we may want to know what would likely happen if 
a student or group of students were to increase or decrease the time they spent on math 
homework.

Interpretation

But to get back to our original question, we now have some very useful information for Lisa, 
contained within the regression coefficient (b = 1.99), because this coefficient tells us the 
amount we can expect the outcome variable (Math Achievement) to change for each 1unit 
change in the independent variable (Math Homework). Because the Homework variable is 
in hours spent per week, we can make this statement: “For each addi tional hour students 
spend on Mathematics Homework every week, they can expect to see close to a 2point 
increase in Math Achievement test scores.” Now, Achievement test scores are not that easy to 
change; it is much easier, for example, to improve grades than test scores (Keith, Diamond
Hallam, & Fine, 2004), so this represents an important effect. Given the standard deviation 
of the test scores (10 points), a student should be able to improve his or her scores by a stan
dard deviation by studying a little more than 5 extra hours a week; this could mean moving 
from averagelevel to highaveragelevel achievement. Of course, this proposition might be 
more interesting to a student who is currently spending very little time studying than to one 
who is already spending a lot of time working on math homework.

The Regression Line

The regression equation may be used to graph the relation between Math Homework and 
Achievement, and this graph can also illustrate nicely the predictions made in the previous 
paragraph. The intercept (a) is the value on the Y (Achievement) axis for a value of zero for 
X (Homework); in other words, the intercept is the value on the Achievement test we would 
expect for someone who does no homework. We can use the intercept as one data point for 
drawing the regression line (X = 0, Y = 47.032). The second data point is simply the point 
defined by the mean of X (Mx = 2.200) and the mean of Y (My = 51.410). The graph, with 
these two data points highlighted, is shown in Figure 1.8. We can use the graph and data to 

Coefficientsa

47.032

1.990

1.694

.595 .320

27.763

3.344

.000

.001

43.670

.809

50.393

3.171

Intercept (Constant)
MATHHOME Time
Spent on Math
Homework per Week

Model

1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients 

t

95% Confidence Interval for B

a. Dependent Variable: MATHACH Math Achievement Test Score

Sig. Lower Bound Upper Bound

Figure 1.7 Results of the regression of Math Achievement on Math Homework: Regression 
Coefficients.
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check the calculation of the value of b, which is equal to the slope of the regression line. The 
slope is equal to the increase in Y for each unit increase in X (or the rise of the line divided by 
the run of the line); we can use the two data points plotted to calculate the slope:

b
rise

run

M a

M
y

x

= =
−

−

=
−

=

0

51 410 47 032

2 200
1 990

. .

.
.

Let’s consider for a few moments the graph and these formulas. The slope represents the 
predicted increase in Y for each unit increase in X. For this example, this means that for each 
unit—in this case, each hour—increase in Homework, Achievement scores increase, on aver
age, 1.990 points. This, then, is the interpretation of an unstandardized coefficient: It is the 
predicted increase in Y expected for each unit increase in X. When the independent variable 
has a meaningful metric, like hours spent studying Mathematics every week, the interpre
tation of b is easy and straightforward. We can also generalize from this groupgen erated 
equation to individuals (to the extent that they are similar to the group that generated the 
regression equation). Thus the graph and b can be used to make predictions for others, such 
as Lisa. She can check her current level of homework time and see how much payoff she 
might expect for additional time (or how much she can expect to lose if she studies less). The 
intercept is also worth noting; it shows that the average Achievement test score for stu dents 
who do no studying is 47.032, slightly below the national average.

Because we are using a modern statistical package, there is no need to draw the plot of the 
regression line ourselves; any such program will do it for us. Figure 1.9 shows the data points 
and regression line drawn using SPSS (a scatterplot was created using the graph feature; see 
www.tzkeith.com for examples). The small circles in this figure are the actual data points; 

Figure 1.8 Regression line for Math Achievement on Math Homework. The line is drawn through the 
intercept and the joint means of X and Y.
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notice how variable they are. If the R were larger, the data points would cluster more closely 
around the regression line. We will return to this topic in a subsequent chapter.

Statistical Significance of Regression Coefficients

There are a few more details to study for this regression analysis before stepping back and 
further considering the meaning of the results. With multiple regression, we will also be 
interested in whether each regres sion coefficient is statistically significant. Return to the table 
of regression coefficients (Figure 1.7), and note the columns labeled t and Sig. The values 
corresponding to the regression coefficient are simply the results of a t test of the statistical 
significance of the regression coefficient (b). The formula for t is one of the most ubiquitous 
in statistics (Kerlinger, 1986):

t =
statistic

standard error of thestatistic
, or, in this case,

t
b

SEb

= = =
1 990

595
3 345

.

.
. .

As shown in Figure 1.7, the value of t is 3.344, with N − k − 1 degrees of freedom (98). 
If we look up this value in Excel (using the function TDIST), we find the probability of 
obtaining such a t by chance is .001171 (a twotailed test) rounded off to .001 (the value 
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Figure 1.9 Regression line, with data points, as produced by the SPSS Scatter/Dot graph command.
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shown in the table). We can reject the null hypothesis that the slope of the regression line 
is zero. As a general rule of thumb, with a reasonable sample size (say 100 or more), a t of 
2 or greater will be statistically significant with a probability level of .05 and a twotailed 
(nondirectional) test.

This finding of the statistical significance of the regression coefficient for Homework does 
not tell us anything new with our simple regression; the results are the same as for the F test 
of the overall regression. You probably recall from previous statistics classes that t2 = F. Here 
t2 indeed does equal F (as always, within errors of rounding). When we progress to multiple 
regression, however, this will not be the case. The overall regression may be significant, but 
the regression coefficients for some of the independent variables may not be statistically 
significant, whereas others are significant.

Confidence Intervals

We calculated the t previously by dividing the regression coefficient by its standard error. The 
standard error and the t have other uses, however. In particular, we can use the standard error 
to estimate a confidence interval around the regression coefficient. Keep in mind that b is an 
estimate, but what we are really interested in is the true value of the regression coefficient (or 
slope, or b) in the population. The use of confidence intervals makes this underlying think
ing more obvious. The 95% confidence interval is also shown in Figure 1.7 (.809 to 3.171) 
and may be interpreted as “there is a 95% chance that the true (but unknown) regression 
coefficient is somewhere within the range .809 to 3.171” or, perhaps more accurately, “if we 
were to conduct this study 100 times, 95 times out of 100 the b would be within the range 
.809 to 3.171.” The fact that this range does not include zero is equivalent to the finding that 
the b is statistically significant; if the range did include zero, our conclusion would be that we 
could not say with confidence that the coefficient was different from zero (see Thompson, 
2002, for further information about confidence intervals).

Although the t tells us that the regression coefficient is statistically significantly differ
ent from zero, the confidence interval can be used to test whether the regression coefficient 
is different from any specified value. Suppose, for example, that previous research had 
shown a regression coefficient of 3.0 for the regression of Math Achievement on Math 
Homework for high school students, meaning that for each hour of Homework students 
completed, their Achievement increased by 3 points. We might reasonably ask whether our 
finding for 8thgraders is inconsistent; the fact that our 95% confidence interval includes 
the value of 3.0 means that our results are not statistically significantly different from the 
high school results.

We also can calculate intervals for any level of confidence. Suppose we are interested in the 
99% confidence interval. Conceptually, we are forming a normal curve of possible b’s, with 
our calculated b as the mean. Envision the 99% confidence interval as including 99% of the 
area under the normal curve so that only the two very ends of the curve are not included. 
To calculate the 99% confidence interval, you will need to figure out the numbers associated 
with this area under the normal curve; we do so by using the standard error of b and the t 
table. Return to Excel (or a t table) and find the t associated with the 99% confidence inter
val. To do so, use the inverse of the usual t calculator, which will be shown when you select 
TINV as the function in Excel. This will allow us to type in the degrees of freedom (98) and 
the probability level in which we are interested (.01, or 1 − .99). As shown in Figure 1.10, the 
t value associated with this probability is 2.627, which we multiply times the standard error 
(.595 × 2.627 = 1.563). We then add and subtract this product from the b to find the 99% 
confidence interval: 1.990 ± 1.563 = .427 − 3.553. There is a 99% chance that the true value 
of b is within the range of .427 to 3.553. This range does not include a value of zero, so we 
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know that the b is statistically significant at this level (p < .01) as well, and we can determine 
whether our calculated b is different from values other than zero, as well. 

To review, we calculated the confidence intervals as follows:

1. Pick a level of confidence (e.g., 99%).
2. Convert to a probability (.99) and subtract that probability from 1 (1 − .99 = .01).
3. Look up this value with the proper degrees of freedom in the (inverse) t calculator or a 

t table. (Note that these directions are for a twotailed test.) This is the value of t associ
ated with the probability of interest.

4. Multiply this t value times the standard error of b, and add and subtract the product 
from the b. This is the confidence interval around the regression coefficient.

The Standardized Regression Coefficient

We skipped over one portion of the regres sion printout shown in Figure 1.7, the standardized 
regression coefficient, or Beta (b). Recall that the unstandardized coefficient is interpreted as 
the change in the outcome for each unit change in the influence. In the present example, the 
b of 1.990 means that for each 1hour change in Homework, predicted Achievement goes up 
by 1.990 points. The b is interpreted in a similar fashion, but the interpretation is in standard 
deviation (SD) units. The b for the present example (.320) means that for each SD increase 
in Homework, Achievement will increase, on average, by .320 standard deviation, or about a 
third of a SD. The b is same as the b would be if we standardized both the independent and 
dependent variables (converted them to zscores).

It is simple to convert from b to b, or the reverse, by taking into account the SDs of each 
variable. The basic formula is:

β= b
SD

SD
x

y

 or b
SD

SD
y

x

= β .

So, using the data from Figures 1.3 and 1.6, β=

=

1 990
1 815

11 286
320

.
.

.
.

.

Figure 1.10 Using Excel to calculate a t value for a given probability level and degrees of freedom.
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Note that the standardized regression coefficient is the same as the correlation coefficient. 
This is the case with simple regression, with only one predictor, but will not be the case when 
we have multiple predictors (it does, however, illustrate that a correlation coefficient is also a 
type of standardized coefficient).

With a choice of standardized or unstandardized coefficients, which should you inter pret? 
This is, in fact, a point of debate (cf., Kenny, 1979, chap. 13; Pedhazur, 1997, chap. 2), but my 
position is simply that both are useful at different times. We will postpone until later a dis
cussion of the advantages of each and the rules of thumb for when to interpret each. In the 
meantime, simply remember that it is easy to convert from one to the other.

REGRESSION IN PERSPECTIVE

Relation of Regression to Other Statistical Methods

How do the methods discussed previously and throughout this book fit with other methods 
with which you are familiar? Many users of this text will have a background in analytic meth
ods, such as t tests and analysis of variance (ANOVA). It is tempting to think of these methods 
as doing something fundamentally different from regression. After all, ANOVA focuses on 
dif ferences across groups, whereas regression focuses on the prediction of one variable from 
others. As you will learn here, however, the processes are fundamentally the same and, in fact, 
ANOVA and related methods are subsumed under multiple regression and can be considered 
special cases of multiple regression (Cohen, 1968). Thinking about multiple regression may 
indeed require a change in your thinking, but the actual statistical processes are the same.

Let’s demonstrate that equivalence in two ways. First, most modern textbooks on ANOVA 
teach or at least discuss ANOVA as a part of the general linear model (Howell, 2010; Thomp
son, 2006). Remember formulas along the lines of Y = µ + b + e, which may be stated verbally 
as any person’s score on the dependent variable Y is the sum of the overall mean µ, plus varia
tion due to the effect of the experimental treatment (b), plus (or minus) random variation 
due to the effect of error (e).

Now consider a simple regression equation: Y = a + bX + e, which may be verbalized as 
any person’s score on the dependent variable is the sum of a constant that is the same for all 
individuals (a), plus the variation (b) due to the independent variable (X), plus (or minus) 
random variation due to the effect of error (e). As you can see, these are basically the same 
formulas with the same basic interpretation. The reason is that ANOVA is a part of the gen
eral linear model; multiple regression is virtually a direct implementation of the general 
linear model.

Second, consider several pieces of computer printout. The first printout, shown in Fig
ure 1.11, shows the results of a t test examining whether boys or girls in the National Edu
cation Longitudinal Study (NELS) data score higher on the 8thgrade Social Studies Test 
(Appendix A and the website www.tzkeith.com provide more information about the NELS 
data; the actual variables used were BYTxHStd and Sex_d). We will not delve into these 
data or these variables in depth right now; for the time being I simply want to demonstrate 
the consistency in findings across methods of analysis. For this analysis, Sex is the indepen
dent variable, and the Social Studies Test score is the dependent variable. The figure shows 
that 8thgrade girls score about a half a point higher on the test than do 8thgrade boys. 
The results suggest no statistically significant differences between boys and girls: the t value 
was .689, and the probability that this magnitude of difference would happen by chance 
(given no difference in the population) was .491, which means that this difference is not at 
all unusual. If we use a conventional cutoff that the probability must be less than .05 to be 
considered statistically significant, this value (.491) is obviously greater than .05 and thus 
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Group Statistics
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51.14988

51.58123

10.180993

9.155953

Male

Female

Social Studies
Standardized Scores

N Mean Std. Deviation

Independent Samples Test

.689 959 .491 -.431346 .626385Social Studies
Standardized Score

t df Sig. (2-tailed)
Mean

Difference
Std. Error
Difference

t-test for Equality of Means

Figure 1.11 Results of a t test of the effects of sex on 8thgrade students’ social studies achievement 
test scores.

ANOVA Table
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90265.31
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1
959
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Squares df
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Figure 1.12 Analysis of variance results of the effects of sex on 8thgrade students’ social studies 
achievement test scores.

Regressiona

.431 .626 .022 .689 .491SEX

Model

1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

a. Dependent Variable: Social Studies Standardized Score

Figure 1.13 Results of the regression of 8thgrade students’ social studies achievement test scores 
on sex.

would not be considered statistically significant. For now, focus on this value (the probability 
level, labeled Sig.) in the printout. 

The next snippet of printout (Figure 1.12) shows the results of a oneway analysis of 
variance. Again, focus on the column labeled Sig. The value is the same as for the t test; the 
results are equivalent. You probably aren’t surprised by this finding because you remember 
that with two groups a t test and an ANOVA will produce the same results and that, in fact, 
F = t2. (Check the printouts; does F = t2 within errors of rounding?) 

Now, focus on the third snippet in Figure 1.13. This printout shows some of the results 
of a regression of the 8thgrade Social Studies Test score on student Sex. Or, stated differ
ently, this printout shows the results of using Sex to predict 8thgrade Social Studies scores. 
Look at the Sig. column. The probability is the same as for the t test and the ANOVA: .491! 
(And check out the t associated with Sex.) All three analyses produce the same results and 
the same answers. The bottom line is this: the t test, ANOVA, and regression tell you the 
same thing. 
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Another way of saying this is that multiple regression subsumes ANOVA, which sub sumes 
a t test. And, in turn, multiple regression is subsumed under the method of structural equa
tion modeling, the focus of the second half of this book. Or, if you prefer a pictorial represen
tation, look at Figure 1.14. The figure could include other methods, and portions could be 
arranged differently, but for our present purposes the lesson is that these seemingly different 
methods are, in fact, all related. 

In my experience, students schooled in ANOVA are reluctant to make the switch to 
multiple regression. And not just students; I could cite numerous examples of research by 
academics in which ANOVA was used to perform an analysis that would have been better 
conducted through multiple regression. Given the example previously, this may seem rea
sonable; after all, they do the same thing, right? No. Regression subsumes ANOVA, is more 
general than ANOVA, and has certain advantages. We will discuss these advantages briefly, 
and we will return to them as this book progresses.

Explaining Variance

The primary task of science, simply put, is to explain phenomena. In the social sciences, we 
ask such questions as “Why do some children do well in school, while others do poorly?” or 
“Which aspects of psychological consultation produce positive change?” We wish to explain 
the phenomena of school performance or consultation outcome. At another level, however, 
we are talking about explaining variation: variation in school performance, such that some 
children perform well, while others do not, and variation in consultation outcome, with some 
consultees solving their presenting problem and learning a great deal versus those who make 
little progress. In medicine or nursing we may ask why some patients comply with postopera
tive instructions and some do not. Here, we wish to explain variation in patient compliance.

And how do we seek to explain this variation? Through variation in other variables! We 
may reason that children who are more motivated will perform better in school, whereas 

Structural Equation Modeling

Multiple
Regression MANOVA Confirmatory

Factor Analysis

Simple
Regression

ANOVA
ANCOVA

t-Test

Figure 1.14 Relations among several statistical techniques. ANOVA may be considered a subset of 
multiple regression; multiple regression, in turn, may be considered a subset of structural equation 
modeling.
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those who are less motivated will not. In this case, we seek to explain variation in school 
performance through variation in motivation. In the consultation example, we may reason 
that consultants who go through the proper sequence of steps in the identification of the 
problem will be more successful in producing positive change than consultants who sim
ply “wing it.” Here we have posited variation in consultation implementation as explaining 
variation in consultation outcome. In nursing, we may reason that a combination of visual 
and verbal instructions will produce better compliance than verbal instructions alone. In this 
example, we are assuming that variations in instructions will produce variations in postop
erative compliance.

Advantages of Multiple Regression

Our statistical procedures analyze variation in one variable as a function of variation in 
another. In ANOVA, we seek to explain the variation in an outcome, or dependent, vari
able (e.g., consultation success) through variation in some treatment, or independent vari
able (e.g., training versus no training of consultants in problem identification). We do the 
same using regression; we may, for example, regress a measure of school performance (e.g., 
achievement test scores from high to low), our dependent variable, on a measure of academic 
motivation (with scores from high to low), our independent variable. One advantage of mul
tiple regres sion over methods such as ANOVA is that we can use either categorical indepen
dent variables (as in the consultation example), or continuous variables (as in the motivation 
example), or both. ANOVA, of course, requires categorical independent variables. It is not 
unusual to see research in which a continuous variable has been turned into categories 
(e.g., a highmotiva tion group versus a lowmotivation group) so that the researcher can 
use ANOVA in the analy sis rather than regression. Such categorization is generally wasteful, 
however; it discards variance in the independent variable and leads to a weaker statistical test 
(Cohen, 1983).5

But why study only one possible influence on school performance? No doubt many plau
sible variables can help to explain variation in school performance, such as students’ apti tude, 
the quality of instruction they receive, or the amount of instruction they receive (Carroll, 1963; 
Walberg, 1981). What about variation in these variables? This is where the multiple in multi
ple regression (MR) comes in; with MR we can use multiple independent variables to explain 
vari ation in a dependent variable. In the language of MR, we can regress a dependent variable 
on multiple independent variables; we can regress school performance on measures of motiva
tion, aptitude, quality of instruction, and quantity of instruction, all at the same time. Here is 
another advantage of MR: It easily incorporates these four independent variables; an ANOVA 
with four independent variables would tax even a gifted researcher’s interpretive abilities.

A final advantage of MR revolves around the nature of the research design. ANOVA is 
often more appropriate for experimental research, that is, research in which there is active 
manipulation of the independent variable and, preferably, random assignment of subjects to 
treatment groups. Multiple regression can be used for the analysis of such research (although 
ANOVA is often easier), but it can also be used for the analysis of nonexperimental research, 
in which the “independent” variables are not assigned at random or even manipulated in 
any way. Think about the motivation example again; could you assign stu dents, at random, 
to different levels of motivation? No. Or perhaps you could try, but you would be deluding 
yourself by saying to normally unmotivated Johnny, “OK, Johnny, I want you to be highly 
motivated today.” In fact, in this example, motivation was not manip ulated at all; instead, we 
simply measured existing levels of motivation from high to low. This, then, was nonexperi
mental research. Multiple regression is almost always more appropriate for the analysis of 
nonexperimental research than is ANOVA.



INTRODUCTION: SIMPLE (BIVARIATE) REGRESSION • 19

We have touched on three advantages of multiple regression over ANOVA:

1. MR can use both categorical and continuous independent variables,
2. MR can easily incorporate multiple independent variables;
3. MR is appropriate for the analysis of experimental or nonexperimental research.

OTHER ISSUES

Prediction Versus Explanation

Observant readers will notice that I use the term “explanation” in connection with MR (e.g., 
explaining variation in achievement through variation in motivation), whereas much of 
your previous experience with MR may have used the term “prediction” (e.g., using motiva
tion to predict achievement). What’s the difference?

Briefly, explanation subsumes prediction. If you can explain a phenomenon, you can pre
dict it. On the other hand, prediction, although a worthy goal, does not necessitate explana
tion. As a general rule, we will here be more interested in explaining phenomena than in 
predicting them.

Causality

Observant readers may also be feeling queasy by now. After all, isn’t another name for non
experimental research correlational research?6 And when we make such statements as “moti
vation helps explain school performance,” isn’t this another way of saying that moti vation is 
one possible cause of school performance? If so (and the answers to both questions are yes), 
how can I justify what I recommend, given the one lesson that everyone remem bers from his 
or her first statistics class, the admonition “Don’t infer causality from corre lations!”? Aren’t I 
now implying that you should break that one cardinal rule of introductory statistics?

Before I answer, I’d like you to take a little “quiz.” It is mostly tongueincheek, but designed 
to make an important point.

Are these statements true or false?

1. It is improper to infer causality from correlational data.
2. It is inappropriate to infer causality unless there has been active manipulation of the 

independent variable.

Despite the doubts I may have planted, you are probably tempted to answer these state
ments as true. Now try these:

3. Smoking increases the likelihood of lung cancer in humans.
4. Parental divorce affects children’s subsequent achievement and behavior.
5. Personality characteristics affect life success.
6. Gravity keeps the moon in orbit around Earth.

I assume that you answered “true” or “probably true” for these statements. But if you did, 
your answers are inconsistent with answers of true to statements 1 and 2! Each of these is 
a causal statement. Another way of stating statement 5, for example, is “Personality charac
teristics partially cause life success.” And each of these statements is based on observational 
or correlational data! I, for one, am not aware of any experiments in which Earth’s gravity 
has been manipulated to see what happens to the orbit of the moon!7 And do you think you 
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could randomly assign personality characteristics in an effort to examine subsequent life 
success?

Now, try this final statement:

7. Research in sociology, economics, and political science is intellectually bankrupt.

I am confident that you should and did answer “false” to this statement. But if you did, this 
answer is again inconsistent with an answer of true to statements 1 and 2. True experiments 
are relatively rare in these social sciences; nonexperimental research is far more common.

The bottom line of this little quiz is this: whether we realize it or not, whether we admit 
it or not, we often do make causal inferences from “correlational” (nonexperimental) data. 
Here is the important point: under certain conditions, we can make such infer ences validly 
and with scientific respectability. In other cases, such inferences are invalid and misleading. 
What we need to understand, then, is when such causal inferences are valid and when they 
are invalid. We will return to this topic later; in the meantime, you should mull over the 
notion of causal inference. Why, for example, do we feel comfortable making a causal infer
ence when a true experiment has been conducted, but may not feel so in nonexperimental 
research? These two issues—prediction versus explanation and causality—are ones that we 
will return to repeatedly in this text.

REVIEW OF SOME BASICS

Before turning to multiple regression in earnest, it is worth reviewing several fundamentals, 
things you probably know, but may need reminders about. The reason for this quick review 
may not be immediately obvious, but if you store these tidbits away, you’ll find that occa
sionally they will come in handy as you learn a new concept.

Variance and Standard Deviation

First is the relation between a variance and a standard deviation; the standard deviation is 
the square root of the variance: SD V=  or V = SD2. Why use both? Standard deviations are 
in the same units as the original variables; we thus often find it easier to use SDs. Vari ances, 
on the other hand, are often easier to use in formulas and, although I’ve already promised 
that this book will use a minimum of formulas, some will be necessary. If noth ing else, you 
can use this tidbit for an alternative formula to convert from the unstandardized to the stan

dardized regression coefficient: β= b V
V

x

y

Correlation and Covariance

Next is a covariance. Conceptually, the variance is the degree to which one variable varies 
around its mean. A covariance involves two variables and gets at the degree to which the two 
variables vary together. When the two variables vary from the mean, do they tend to vary 
together or independently? A correlation coefficient is a special type of covariance; it is, in 
essence, a standardized covariance, and we can think of a covariance as an unstan dardized 

correlation coefficient. As a formula, rxy
CoV

V V

CoV

SD SD
xy

x y

xy

x y
= = . Just as with standardized and 

unstandardized regression coefficients, if we know the standard deviations (or variances) 
of the variables, we can easily convert from covariances (unstandardized) to correlations 
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(standardized) and back. Conceptually, you can think of a correlation as a covariance, but 
one in which the variance of X and Y are standardized. Sup pose, for example, you were to 
convert X and Y to zscores (M = 0, SD = 1) prior to calcu lating the covariance. Since a 
z score has a SD of 1, our formula for converting from a covariance to a correlation then 
becomes rxy

CoV

x
xy=

1 1
 when the variables are standardized.

In your reading about multiple regression, and especially about structural equation mod
eling, you are likely to encounter variance–covariance matrices and correlation matri ces. 
Just remember that if you know the standard deviations (or variances) you can easily con
vert from one to another. Table 1.1 shows an example of a covariance matrix and the cor
responding correlation matrix and standard deviations. As is common in such presentations, 
the diagonal in the covariance matrix includes the variances. 

WORKING WITH EXTANT DATA SETS

The data used for our initial regression example were not real but were simulated. The data 
were modeled after data from the National Education Longitudinal Study (NELS), a portion 
of which are on the website (www.tzkeith.com) that accompanies this book.

Already existing, or extant, data offer an amazing resource. For our simulated study, we 
pretended to have 100 cases from one school. With the NELS data included here, you have 
access to 1,000 cases from schools across the nation. With the full NELS data set, the sample 
size is over 24,000, and the data are nationally representative. The students who were first 
surveyed in 8th grade were followed up in 10th and 12th grades and then twice since high 
school. If the researchers or organization that collected the data asked the ques tions you are 
interested in, then why reinvent the wheel only to get a small, local sample?

Table 1.1 Example of a Covariance Matrix and the Corresponding Correlation Matrix. For the Covari
ance Matrix, the Variances Are Shown in the Diagonal (thus it is a VarianceCovariance Matrix); the 
Standard Deviations Are Shown Below the Correlation Matrix.

Sample Covariances

Matrix Block Similarities Vocabulary

Matrix 118.71
Block 73.41 114.39
Similarities 68.75 62.92 114.39
Vocabulary 73.74 64.08 93.75 123.10

Sample Correlations

Matrix Block Similarities Vocabulary

Matrix 1.00
Block 0.63 1.00
Similarities 0.59 0.55 1.00
Vocabulary 0.61 0.54 0.79 1.00
SDs 10.90 10.70 10.70 11.10
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The potential drawback, of course, is that the researchers who initially collected the data 
may not have asked the questions in which you are interested or did not ask them in the best 
possible manner. As a user of extant data, you have no control over the questions and how 
they were asked. On the other hand, if questions of interest were asked, you have no need to 
go collect additional data.

Another potential problem is less obvious. Each such data set is set up dif ferently and may 
be set up in a way that seems strange to you. Extant data are of variable quality; although the 
NELS data are very clean, other data sets may be quite messy and using them can be a real 
challenge. At the beginning of this chapter I mentioned good data analysis habits; such habits 
are especially important when using existing data.

An example will illustrate. Figure 1.15 shows the frequency of one of the NELS variables 
dealing with Homework. It is a 10thgrade item (the F1 prefix to the variable stands for first 
followup; the S means the question was asked of students) concerning time spent on math 
homework. Superficially, it was similar to our pretend Homework variable. But note that the 
NELS variable is not in hour units but rather in blocks of hours. Thus, if we regress 10th
grade Achievement scores on this variable, we cannot interpret the result ing b as meaning 
“for each additional hour of Homework . . . .” Instead, we can only say something about each 
additional unit of Homework, with “unit” only vaguely defined. More importantly, notice 
that one of the response options was “Not taking math class,” which was assigned a value 
of 8. If we analyze this variable without dealing with this value (e.g., recoding 8 to be a 
missing value), our interpretation will be incorrect. When work ing with extant data, you 
should always look at summary statistics prior to analysis: fre quencies for variables that have 
a limited number of values (e.g., time on Homework) and descriptive statistics, including 
minimum and maximum, for those with many values (e.g., Achievement test scores). Look 

F1S36B2 TIME SPENT ON MATH HOMEWORK OUT OF SCHL

0 NONE
1 1 HOUR OR LESS
2 2-3 HOURS
3 4-6 HOURS
4 7-9 HOURS
5 10-12 HOURS
6 13-15 HOURS
7 OVER 15 HOURS
8 NOT TAKING MATH
Total
96 MULTIPLE
RESPONSE
98 MISSING
System
Total

141
451
191
97
16
8
2
6

34
946

8

19
27
54

1000

14.1
45.1
19.1
9.7
1.6
.8
.2
.6

3.4
94.6

14.9
47.7
20.2
10.3
1.7
.8
.2
.6

3.6
100.0

14.9
62.6
82.8
93.0
94.7
95.6
95.8
96.4

100.0

.8

1.9
2.7
5.4

100.0

Valid

Missing

Total

Frequency Percent Valid Percent
Cumulative

Percent

Figure 1.15 Time spent on Math Homework from the first followup (10th grade) of the NELS data. 
Notice the value of 8 for the choice “Not taking math class.” This value would need to be classified as 
missing prior to statistical analysis.
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for impossible or out of range values, for values that need to be flagged as missing, and for 
items that should be reversed. Make the necessary changes and recordings, and then look at 
the summary statistics for the new or recoded variables. Depending on the software you use, 
you may also need to change the value labels to be consistent with your recoding. Only after 
you are sure that the variables are in proper shape should you proceed to your analyses of 
interest.

Some of the variables in the NELS file on the accompanying website have already been 
cleaned up; if you examine the frequencies of the variable just discussed, for example, you 
find that the response “Not taking math class” has already been recoded as missing. But 
many other variables have not been similarly cleaned. The message remains: always check 
and make sure you understand your variables before analysis. Always, always, always, always, 
always check your data!

SUMMARY

Many newcomers to multiple regression are tempted to think that this approach does some
thing fundamentally different from other techniques, such as analysis of variance. As we have 
shown in this chapter, the two methods are in fact both part of the general linear model. In 
fact, multiple regression is a close implementation of the general linear model and subsumes 
meth ods such as ANOVA and simple regression. Readers familiar with ANOVA may need 
to change their thinking to understand MR, but the methods are fundamentally the same.

Given this overlap, are the two methods interchangeable? No. Because MR subsumes 
ANOVA, MR may be used to analyze data appropriate for ANOVA, but ANOVA is not appro
priate for analyzing all problems for which MR is appropriate. In fact, there are a number of 
advantages to multiple regression:

1. MR can use both categorical and continuous independent variables.
2. MR can easily incorporate multiple independent variables.
3. MR is appropriate for the analysis of experimental or nonexperimental research.

We will primarily be interested in using multiple regression for explanatory, rather than 
predictive, purposes. Thus, it will be necessary to make tentative causal inferences, often 
from nonexperimental data. These are two issues that we will revisit often in subsequent 
chapters, in order to distinguish between prediction and explanation and to ensure that we 
make such inferences validly.

This chapter reviewed simple regression with two variables as a prelude to multiple 
regression. Our example regressed Math Achievement on Math Homework using simulated 
data. Using portions of a printout from a common statistical package, we found that Math 
Homework explained approximately 10% of the variance in Math Achievement, which is 
statistically significant. The regression equation was Achievementpredicted = 47.032 + 1.990 
Homework, which suggests that, for each hour increase in time spent on Math Home work, 
Math Achievement should increase by close to 2 points. There is a 95% chance that the “true” 
regression coefficient is within the range from .809 to 3.171; such confidence intervals may 
be used to test both whether a regression coefficient differs significantly from zero (a stan
dard test of statistical significance) and whether it differs from other values, such as those 
found in previous research.

Finally, we reviewed the relation between variances and standard deviations (SD V= ) 
and between correlations and covariances (correlations are standardized covari ances). Since 
many of our examples will use an existing data set, NELS, a portion of which is included on 
the website for this book, we discussed the proper use of exist ing, or extant, data. I noted that 
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good data analytic habits, such as always examining the variables we use prior to complex 
analysis, are especially important when using extant data.

EXERCISES

Think about the following questions. Answer them, however tentatively. As you progress in 
your reading of this book, revisit these questions on occasion; have your answers changed?

1. Why does MR subsume ANOVA? What does that mean?
2. What’s the difference between explanation and prediction? Give a research example of 

each. Does explanation really subsume prediction?
3. Why do we have the admonition about inferring causality from correlations? What is 

wrong with making such inferences? Why do we feel comfortable making causal infer
ences from experimental data but not from nonexperimental data?

4. Conduct the regression analysis used as an example in this chapter (again, the data are 
found on the website under Chapter 1). Do your results match mine? Make sure you 
understand how to interpret each aspect of your printout.

5. Using the NELS data (see www.tzkeith.com), regress 8thgrade Math Achievement 
(ByTxMStd) on time spent on Math Homework (ByS79a). Be sure that you examine 
descriptive information before you conduct the regression. How do your results com
pare with those from the example used in this chapter? Which aspects of the results can 
be compared? Interpret your findings: what do they mean?

Notes

1 Although I here use the terms independent and dependent variables to provide a bridge between 
regression and other methods, the term independent variable is probably more appropriate for 
experimen tal research. Thus, throughout this book I will often use the term influence or predic
tor instead of indepen dent variable. Likewise, I will often use the term outcome to carry the same 
meaning as dependent variable.

2 Throughout this text I will capitalize the names of variables, but will not capitalize the constructs 
that these variables are meant to represent. Thus, Achievement means the variable achievement, 
which we hope comes close to achievement, meaning the progress that students make in academic 
subjects in school.

3 With a single predictor, the value of R will equal that of r, with the exception that r can be negative, 
whereas R cannot. If r were −.320, for example, R would equal .320.

4 If you are interested, here is how to calculate ssregression and ssresidual by hand (actually, with the help of 
Excel). Use the “homework & ach.xls” version of the data. Use the sum and power function tools in 
Excel to calculate

∑ = ∑ −
∑

x X
X

N
2 2

2( )
,

∑ = ∑ −
∑

y Y
Y

N
2 2

2( )
, and

 ∑ = ∑ −
∑ ∑






xy

N
2

2

XY
( X)( Y)

, where the capital X and Y refer to the raw scores. ssregression is then: 

ss
xy

x
regression =

∑
∑

2

2  . And ssresidual is ss y ssresidual regression= ∑ −2
. You should calculate the same values 

as shown in the output in Figure 1.5. These and other methods of calculation are shown in more 
depth in Pedhazur (1997). 

5 You can, however, analyze both categorical and continuous variables in analysis of covariance, a 
topic for a subsequent chapter.
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6 I encourage you to use the term nonexperimental rather than correlational. The term correlational 
research confuses a statistical method (correlations) with a type of research (research in which 
there is no manipulation of the independent variable). Using correlational research to describe 
nonexperimental research would be like calling experimental research ANOVA research.

7 Likewise, researchers have not randomly assigned children to divorced versus intact families to see 
what happens to their subsequent achievement and behavior, nor has anyone assigned personality 
charac teristics at random to see what happens as a result. The smoking example is a little trickier. 
Certainly, ani mals have been assigned to smoking versus nonsmoking conditions, but I am confi
dent that humans have not. These examples also illustrate that when we make such statements we 
do not mean that X is the one and only cause of Y. Smoking is not the only cause of lung cancer, nor 
is it the case that everyone who smokes will develop lung cancer. Thus, you should understand that 
causality has a probabilistic meaning. If you smoke, you will increase your probability of develop
ing lung cancer.



26

2
Multiple Regression

Introduction

A New Example: Regressing Grades on Homework and Parent Education 27
The Data 27
The Regression 27
Interpretations 33
Figural Representation 34

Questions 35
Controlling for . . . 35
b versus b  36
Comparison Across Samples 38

Direct Calculation of β and R2 41
Summary 42
Exercises 42

Notes 43

Let’s return to the example that was used in Chapter 1, in which we were curious about 
the effect on math achievement of time spent on math homework. Given our finding of a 
statistically significant effect, you might reasonably have a chat with your daughter about 
the influence of homework on achievement. You might say something like “Lisa, these 
data show that spending time on math homework is indeed important. In fact, they show 
that for each additional hour you spend on math homework every week, your achieve-
ment test scores should go up by approximately 2 points. And that’s not just grades  
but test scores, which are more difficult to change. So, you say you are now spending 
approximately 2 hours a week on math homework. If you spent an additional 2 hours per 
week, your achievement test scores should increase by about 4 points; that’s a pretty big 
improvement!”1 

Now, if Lisa is anything like my children, she will be thoroughly unimpressed with any 
argument you, her mere parent, might make, even when you have hard data to back you 
up. Or perhaps she’s more sophisticated. Perhaps she’ll point out potential flaws in your 
reasoning and analyses. She might say that she cares not one whit whether homework affects 
achievement test scores; she’s only interested in grades. Or perhaps she’ll point to other vari-
ables you should have taken into account. She might say, “What about the parents? Some of 
the kids in my school have very well educated parents, and those are usually the kids who 
do well on tests. I’ll bet they are also the kids who study more, because their parents think 
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it’s important. You need to take the parents’ education into account.” Your daughter has in 
essence suggested that you have chosen the wrong outcome variable and have neglected what 
we will come to know as a “common cause” of your independent and dependent variables. 
You suspect she’s right.

A NEW EXAMPLE: REGRESSING GRADES ON  
HOMEWORK AND PARENT EDUCATION

Back to the drawing board. Let’s take this example a little further and pretend that you devise 
a new study to address your daughter’s criticisms. This time you collect information on the 
following:

1. 8th-grade students’ overall Grade-point average in all subjects (on a standard 100-
point scale).

2. The level of Education of the students’ parents, in years of schooling (i.e., a high school 
graduate would have a score of 12, a college graduate a score of 16). Although you 
collect data for both parents, you use the data for the parent with the higher level of 
education. For students who live with only one parent, you use the years of schooling 
for the parent the student lives with.

3. Average time spent on Homework per week, in hours, across all subjects.

The data are in three files on the Web site (www.tzkeith.com), under Chapter 2: chap2, hw 
grades.sav (SPSS file), chap2, hw grades.xls (Excel file), and chap2, hw grades data.txt (DOS 
text file). As in the previous chapter, the data are simulated.

The Data

Let’s look at the data. The summary statistics and frequencies for the Parent Education vari-
able are shown in Figure 2.1. The figure also shows the frequencies displayed graphically in 
a histogram (I’m a big fan of pictorial depictions of data). As shown, parents’ highest level 
of education ranged from 10th grade to 20 years, suggesting a parent with a doctorate; the 
average level of education was approximately 2 years beyond high school (14.03 years). As 
shown in Figure 2.2, students reported spending, on average, about 5 hours (5.09 hours) 
on homework per week, with four students reporting spending 1 hour per week and one 
reporting 11 hours per week. Most students reported between 4 and 7 hours per week. The 
frequencies and summary statistics look reasonable. The summary statistics for students’ 
GPAs are shown in Figure 2.3. The average GPA was 80.47, a B minus. GPAs ranged from 
64 to 100; again, the values look reasonable. 

The Regression

Next we regress students’ GPA on Parent Education and Homework. Both of the explana-
tory variables (Homework and Parent Education) were entered into the regression equation 
at the same time, in what we will call a simultaneous regression. Figure 2.4 shows the inter-
correlations among the three variables. Note that the correlation between Homework and 
Grades (.327) is only slightly higher than was the correlation between Math Homework and 
Achievement in Chapter 1. Parent Education, however, is correlated with both time spent 
on Homework (.277) and Grade-point average (.294). It will be interesting to see what the 
multiple regression looks like.
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Figure 2.1 Descriptive statistics for Parent Education for 8th-graders.
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Figure 2.2 Descriptive statistics for Homework Time for 8th-graders.



Figure 2.3 Descriptive statistics for the outcome variable, Grade Point Average, for 8th-graders.
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Multiple R

Figure 2.5 shows the multiple correlation coefficient (denoted as a capital R, a value of .390, 
and sometimes referred to as the “mult R”). Also shown is the squared multiple correlation, 
R2, of .152, which shows that the two explanatory variables, Homework and Parent Educa-
tion level, together explain 15.2% of the variance in students’ GPAs.

Are you surprised that the R is not larger? Perhaps you expected that R might equal the 
sum of the correlations of the two explanatory variables with GPA (i.e., .294 + .327)? You 
cannot add correlation coefficients in this way, but you can sometimes add variances, or r2’s. 
But when you try adding variances, you find that R r r2 2 2≠ +ParEdGPA HWork GPA; that is, .152 ≠ 

.2942 + .3272. Why not? The short answer is that R2 is not equal to the sum of the r2’s because 
the two explanatory variables are also correlated with each other. Ponder why that might be 
while we look at the remainder of the regression results. 

The ANOVA table, also shown in Figure 2.5, shows that the regression is statistically sig-
nificant F(2, 97) = 8.697, p < .001. What does that mean? It means that taken together, in 
some optimally weighted combination, Homework and Parent Education level predict or 
explain students’ Grades to a statistically significant degree. (We will examine what is meant 
by an “optimally weighted combination” in the next chapter.) 

Either of the two formulas from Chapter 1 for calculating F will work with multiple 
regression:

F
ss df

ss df
regression regression

residual residual
=

/

/
 or F R k

R N K
=

− − −

2

21 1
/

( )/( )
 Recall that the df for the regression is equal 

to k, which is equal to the number of independent (predictor) variables, in this case 2. 
The df for the residual is equal to the total N, minus k, minus 1 (97). Try both of these 
formulas to make sure your answer is the same as that shown in the figure (within errors 
of rounding).
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Figure 2.5 Model summary and test of statistical significance of the regression of Grades on Parent 
Education and Homework.
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Regression Coefficients

Next we turn to the regression coefficients (Figure 2.6). With simple regression, there was 
only one b, and its probability was the same as that of the overall regression equation. The 
corresponding b was equal to the original correlation. All this changes with multiple inde-
pendent variables. With multiple regression, each independent variable has its own regres-
sion coefficient; the b for Parent Education is .871, and the b for Time Spent on Homework 
is .988; the intercept is 63.227. 

The regression equation is Y = 63.227 +.871X1 + .988X2 + error or, for predicted Grades, 
Grades(predicted) = 63.227 + .871ParEd + .988HWork.

We could use this formula to predict any participant’s GPA from his or her values on Home-
work and Parent Education. If a student spends 5 hours per week on homework and one of the 
parents completed college (16 years of education), his or her predicted GPA would be 82.103. 

With multiple regression, we can test each independent variable separately for statis-
tical significance. It is not unusual, especially when we have a half-dozen or so variables 
in the regression equation, to have a statistically significant R2 but to have one or more 
independent variables that are not statistically significant (an example is shown in Chapter 
4). For the present case, note that the t (t = b/seb) associated with Parent Education is 2.266 
(p = .026), and the 95% confidence interval for the b is .108 − 1.633. The fact that this range 
does not include zero tells us the same thing as the significance level of b: for a probability 
level of .05, the variable Parent Education is a statistically significant predictor of GPA. The 
regression coefficient (.871) suggests that, for each additional year of parental schooling, 
students’ GPA will increase by .871, or close to one point on the 100-point GPA scale, once 
time spent on homework is taken into account.

Of greater interest is the regression coefficient for time spent on Homework, .988, which 
suggests that for each additional hour spent studying per week GPA should increase by close 
to 1 point (controlling for Parent Education). To increase GPA by 5 points, a student would 
need to spend a little more than 5 extra hours a week studying, or about an extra hour every 
night. As shown in the figure, this value is also statistically significant (p = .007).

You might wonder which of these two variables, Parent Education or Homework, has a 
stronger effect on Grades? You may be tempted to conclude that it is Homework, based on 
a comparison of the b’s. You would be correct, but for the wrong reason. The Parent Educa-
tion and Homework variables have different scales, so it is difficult to compare them. The b 
for Parent Education pertains to years of schooling, whereas the b for Homework pertains 
to hours of homework. If we want to compare the relative influence of these two variables 

Coefficientsa

63.227 5.240 12.067 .000 52.828 73.627

.871 .384 .220 2.266 .026 .108 1.633

.988 .361 .266 2.737 .007 .272 1.704

(Constant)

PARED  Parents'
Education (Highest)

HWORK  Average
Time Spent on
Homework per Week

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized 
Coefficients

t Sig. Lower Bound Upper Bound

95% Confidence Interval for B

Dependent Variable: GRADES  Grade Point Averagea. 

Figure 2.6 Unstandardized and standardized regression coefficients for the regression of Grades on 
Parent Education and Homework.
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we need to compare the β’s, the standardized regression coefficients. When we do, we see 
that Homework (β = .266) is indeed a slightly more powerful influence on GPA than is Par-
ent Education (β = .220). Each standard deviation increase in Homework will lead to .266 
of a SD increase in Grades, whereas a standard deviation increase in Parent Education will 
result in .220 of a SD in Grades. Let’s postpone asking whether this difference is statistically 
significant.2

As an aside, think about which of these two findings is more interesting. I assume most 
of you will vote for the homework finding, for the simple reason that homework time is 
potentially manipulable, whereas parent education is unlikely to change for most students. 
Another way of saying this is that the homework finding has implications for intervention, 
or school or home rules. Still another way to make a similar point is to note that our original 
interest was in the effect of homework on GPA, and we included the variable Parent Educa-
tion in the analysis as a background or “control” variable.

Interpretations

Formal

Let’s consolidate the interpretation of these findings and then move on to discuss several 
other issues. Our first, formal interpretation might be something along these lines:

This research was designed to determine the influence of time spent on homework 
on 8th-grade students’ Grade-point averages (GPAs), while controlling for parents’ 
level of education. Students’ 8th-grade GPAs were regressed on their average time 
spent on homework per week and the higher of their parents’ levels of education. The 
overall multiple regression was statistically significant (R2 = .152, F[2, 97] = 8.697,  
p < .001), and the two variables (Homework and Parent Education) accounted for 15% 
of the variance in Grades. Each of the two independent variables also had a statistically 
significant effect on Grades. The unstandardized regression coefficient (b) for Parent 
Education was .871 (t[97] = 2.266, p = .026), meaning that for each additional year 
of parents’ schooling, students’ Grades increase by .871 points, controlling for time 
spent on homework. Of more direct interest was the b associated with time spent on 
Homework (b = .988, t[97] = 2.737, p = .007). This finding suggests that, for each hour 
students spend on Homework per week, their Grade-point average will increase by 
.988 points, controlling for parent education. 

Although I have written this interpretation as it might appear in a journal, an example this 
simple would not be accepted for publication. It is included to illustrate the interpretation of 
regression results, however. Note that my interpretation has focused on the unstandardized 
coefficients; that is because the metrics for all three variables in this example are meaningful 
(more on this later).

We should take this interpretation a step further and discuss in English what these find-
ings mean.

These results suggest that homework is indeed an important influence on students’ 
grades and that this effect holds even after students’ family backgrounds (parent educa-
tion) are taken into account. Students who want to improve their grades may do so by 
spending additional time on homework. These findings suggest that each additional 
hour spent per week should result in close to a 1-point increase in students’ overall GPA.
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Real World

I believe that it is important also to be able to provide a real-world (versus statistical) inter-
pretation of these findings, in addition to the one that uses all the proper jargon. So, for 
example, here is how you might interpret these findings to a group of parents:

I conducted research to determine the influence on their grades of the time middle 
school students spend on homework. I also considered the students’ parents’ level of 
education as a background variable. As you might expect, the results indicated that 
parents’ education indeed had an effect on students’ grades. Parents with more educa-
tion had students who earn higher grades. This may be related to the educational envi-
ronment they provide or numerous other reasons. What is important, however, is that 
homework also had a strong and important effect on grades. In fact, it had a slightly 
stronger effect than did parent education levels (readers note that this interpretation 
is based on the βs). What this means is that students—no matter what their back-
ground—can perform at a higher level in school through the simple act of spending 
additional time on homework. The findings suggest that, on average, each additional 
hour per week spent on homework will result in a close to 1-point increase in overall 
grade-point average. So, for example, suppose your daughter generally spends 5 hours 
per week on homework and has an 80 average. If she spent an additional 5 hours per 
week on homework—or an additional 1 hour per weekday evening—her average 
should increase to close to 85. Please note that these are averages, and the effect of 
homework will vary for individual students.

Since our initial reason for completing this study was because of concerns about your 
daughter, you should develop an interpretation for her, as well. You might say something like:

You were right, Lisa, about parent education being important. Our new research shows 
that parents with higher education do indeed have children who earn higher grades in 
school. But homework is still important, even when you take parents’ education into 
account. And homework is important for your grades in addition to test scores. Our 
new research shows that for each additional hour you spend per week on homework, 
your GPA should increase, on average, by close to 1 point. That may seem like a lot of 
work, but think about it: if you spend 2 hours on homework every night instead of 
1 hour, your GPA should increase by close to 5 points. And that’s your overall GPA, for 
the entire grading period, not just one test. It might be worth a try.

Figural Representation

As I mentioned earlier in the chapter, I am a big fan of pictorial representations of data 
and of analyses. Figure 2.7 shows one such method for displaying regression results pic-
torially. This path diagram, or path model, shows the variables in the multiple regression 
in rectangles. Arrows, or paths, are used to signify regression coefficients (in this case, the 
βs), and the curved, double-headed arrow between the two predictor variables represents 
the correlation between them. As noted, this model shows the standardized coefficients; it 
would also be possible to use the unstandardized regression coefficients (in which case we 
would include the covariance, rather than the correlation, between the Parent Education 
and Homework Time). We will develop such models in much more depth in Part 2, but they 
are introduced here because they will prove useful for understanding aspects of multiple 
regression.
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QUESTIONS

Controlling for . . .

For many of the interpretations listed previously, you will notice remarks like “their Grade-
point average will increase by .988 points, controlling for Parent Education” or “once variable X 
is taken into account.” What do these statements mean? At the most basic level, we add these 
clarifications to indicate that we have taken into account variables other than the single pre-
dictor and single outcome that are being interpreted and thus differentiate this interpretation 
from one focused on zero-order correlations or simple, bivariate regression coefficients. The 
two (simple regression coefficient and multiple regression coefficient) are rarely the same, and 
the MR coefficients will often be smaller.

Another variation of these statements is “Grade-point average will increase by .988 points, 
within levels of parent education.” Consider if we were to regress Grades on Homework 
for students with parents with 10th-grade educations, and then for those whose parents 
completed the 11th grade, then for those whose parents completed high school, and so on, 
through students whose parents completed doctoral degrees. The .988 we calculated for the 
regression coefficient is conceptually equivalent to the average of the regression coefficients 
we would get if we were to conduct all these separate regressions.

Of course “control” in this nonexperimental research is not the same as control in the case 
of experimental research, where we may assign people who have a college education to one 
versus the other treatment, thus actually controlling which treatment they receive. Instead, 
we are talking about statistical control. With statistical control, we essentially take into 
account the variation explained by the other variables in the model. We take into account 
the variation explained by Parent Education when examining the effect of Homework on 
Grades, and we take into account the variation due to Homework when examining the effect 
of Parent Education on Grades.

I confess that I have mixed feelings about appending “controlling for . . .” to such inter-
pretive statements. On the one hand, these qualifications are technically correct and pro-
vide a sense of the other variables taken into account. On the other hand, if we are correct 
in our interpretation, that is, discussing the effect of homework on GPA, then effects are 
effects, regardless of what else is “controlled.” Said differently, if we have controlled for the 
proper variables, then this is indeed a valid estimate of the effect of homework on GPA. If 
we have not controlled for the proper variables, then it is not a valid estimate. Figuring out 
the proper variables is an issue that we will return to repeatedly in this book and will finally 
resolve in the beginning chapters of Part 2. At any rate, perhaps these kinds of qualifications 

Parents’
Education

.277

Homework
Time

Grades

.220

.266

Figure 2.7 Multiple regression results displayed as a path model.
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(“controlling for . . .”) are more appropriate for a formal interpretation of results and less so 
for the English and real-world interpretations. If so, however, then it should be understood 
that for any interpretation that does not include a qualification like “controlling for x,” we are 
also saying, perhaps under our breath, “assuming that I have included the correct variables 
in my regression equation.” Again, what we mean by effects and when we are correct in such 
interpretations are topics that we will return to repeatedly in this book.

This discussion makes obvious the chief advantage of multiple, over simple, regression: 
it allows us to control for other relevant variables. When you conduct nonexperimental (or 
even experimental) research and try to tease out the effect of one variable on another, you 
will often be asked questions along the lines of “OK, but did you take into account (control 
for) variable x?” We opened this chapter with such a question from Lisa, who argued that we 
needed to take parent education into account. Multiple regression allows you to take these 
other variables into account, to control for them statistically. The hard part is figuring out 
which variables need to be controlled! The other big advantage of multiple regression over 
simple regression is that, by controlling for additional variables, we increase the variance 
we are able to explain in the dependent variable; we are able to explain the phenomenon of 
interest more completely. This advantage was also illustrated with the current example.

Partial and Semipartial Correlations

The preceding discussion has focused on the effect of one variable on another while taking 
a third variable into account. It is also possible to control for other variables without mak-
ing assumptions about one variable influencing, affecting, or predicting another. That is, it 
is possible to calculate correlations between two variables, with other variables controlled. 
Such correlations are termed partial correlations and can be thought of as the correlation 
between two variables with the effects of another variable controlled, or removed, or “par-
tialed” out. We could, for example, calculate the partial correlation between homework and 
grades, with the effects of parent education removed from homework and grades. We could 
have several such control variables, calculating, for example, the partial correlation of home-
work and grades while controlling for both parent education and previous achievement.

It is also possible to remove the effects of the control variable from only one of the two 
variables being correlated. For example, we could examine the correlation of homework (with 
parent education controlled) with grades. In this example, the effects of parent education are 
removed only from the homework variable, not the grades variable. This variation of a cor-
relation coefficient is called a semipartial correlation. It is also referred to as a part correlation.

Although I will mention partial and semipartial correlations at several points in this text, 
they are not discussed in detail in the text itself but rather in Appendix C. There are several 
reasons for this decision. First, the topic is somewhat of a detour from the primary topic 
of Part 1, multiple regression. Second, in my experience, different instructors like to fit this 
topic in at different places in their lectures. Putting the material in Appendix C makes such 
placement more flexible. Third, although the topic fits better conceptually in Part 1, I think 
that partial and semipartial correlations are much easier to explain and understand with ref-
erence to the figural, or path, models that are used throughout the text but that are explained 
in depth in the beginning chapters of Part 2. Feel free to turn to Appendix C at any point that 
you want to learn more about part and partial correlations, however.

b versus ß

Believe it or not, the choice of interpreting the unstandardized versus the standardized 
regression coefficient can be controversial. It need not be. Briefly, b and β are both useful, but 



MULTIPLE REGRESSION: INTRODUCTION • 37

for different aspects of interpretation. As our examples have already illustrated, b can be very 
useful when the variables have a meaningful scale. In the present example, Homework time 
is measured in hours per week, and everyone is familiar with a standard 100-point grade 
scale. Thus, it makes a great deal of sense to make interpretations like “each hour increase in 
Homework per week should result in a .988-point increase in overall Grade-point average.” 
Very often, however, the scales of our independent or dependent variables, or both, are not 
particularly meaningful. The test score metric used in Chapter 1 is probably not that familiar 
to most readers, except possibly measurement specialists who encounter T scores often. And 
the scale of the Parent Education variable used in the present example, although logical, is 
not very common; a much more common scale might be something along the lines of 1 = 
did not graduate from high school; 2 = high school graduate; 3 = some college; 4 = college 
graduate; and so on. This scale may be better from a measurement standpoint in dealing 
with cases such as someone who attends college for 6 years but never completes a degree, 
but it is not a readily interpretable metric. We will encounter many other variables without a 
meaningful metric. In these cases, it makes little sense to interpret b: “each 1-point increase 
in X should result in a 4-point increase in Y.” What does a 1-point increase in X mean? What 
does a 4-point increase in Y mean? When the variables of interest do not have a meaningful 
metric, it makes more sense to interpret β: “each standard deviation increase in X should 
result in a .25-standard deviation increase in Y.”

As we have already seen, β is generally our interpretive choice when we want to com-
pare the relative importance of several variables in a single regression equation. Different 
variables in a regression equation generally have different metrics, so it makes no sense to 
compare unstandardized regression coefficients; it is like comparing apples to oranges. The 
standardized coefficients place all variables on the same metric (standard deviation units) 
and thus may be compared in a qualitative manner. Of course, if the independent variables 
in a regression equation used the same metric, the b’s for each could be compared, but this 
situation (variables sharing the same metric) is not very common.3

Often we are interested in the policy implications of our regression analyses. Using the 
present example, you want to give Lisa advice about the likely impact of completing more 
homework. More broadly, you may want to urge the local school board to encourage teach-
ers to increase homework demands. When you are interested in making predictions about 
what will happen (“if you spend 5 more hours a week on homework . . .”) or are interested 
in changing or intervening in a system, or are interested in developing policy based on the 
findings of a regression analysis, then b is probably a better choice for interpretation if the 
variables have a meaningful metric.

Finally, we may want to compare our regression results with those from previous research. 
We may, for example, want to compare the effect of Homework in this example with the 
apparent effect of Homework in a published study. To compare across samples or populations, 
b is more appropriate. The reason for this rule of thumb is that different samples likely have 
different distributions for the same variables. If you measure Homework time in 8th grade 
and 4th grade, it is likely that the means and standard deviations for Homework will differ in 
the two grades. These differences in distributions—notably the standard deviations—affect 
the β’s, but not the b’s. To get an intuitive understanding of this point, look at the regression 
line shown in Figure 2.8. Assume that the b, which is the slope of the regression line, is .80 
and that the β is also .80. (How could this be? The SD’s of the independent and dependent 
variables are equal.) Now assume that we remove the data in the areas that are shaded. With 
this new sample, the b could remain the same; the regression line remains the same, just 
shorter, so its slope remains the same. But what about the β? Obviously, the SD of the inde-
pendent variable has decreased because we discarded all data from the shaded area. The SD 
of the dependent variable will also decrease but not as much as the SD of the independent 
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variable. Suppose the new SD’s are 7 for X and 9 for Y. Now recall from Chapter 1 how we can 
convert b to β β: = b SD

SD
x

y
; the b remained the same, but the β changed. To return to the origi-

nal point: to compare regression results across two different samples or studies, b is more 
appropriate (given that the variables are measured on the same scale for the two samples). 
These rules of thumb are summarized in Table 2.1. 

Again, you may read or hear strong defenses for the routine interpretation of b versus β, 
or vice versa. Just remember that with knowledge of the SD’s of the variables you can easily 
convert from one to another. Both are useful; they simply are useful for different purposes. 

Comparison Across Samples

I have mentioned comparison of regression coefficients across samples or studies. As an 
example, we might ask whether the effect of Homework on Grades in this chapter is con-
sistent with the estimate we calculated in Chapter 1 examining the effect of Homework on 
achievement. Unfortunately, these two analyses used different dependent variables (Math 
Achievement test scores versus overall GPA), making such comparisons difficult. Instead, 
let’s pretend that we redo the research, asking the same questions, on a sample of high school 
students. The descriptive statistics for this sample are shown in Figure 2.9, and the results of 
the multiple regression for this sample are shown in Figure 2.10. 
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Figure 2.8 Effect of a change in variability on the regression coefficients. The figure shows the regression 
line from the regression of a hypothetical dependent variable on a hypothetical independent variable.

Table 2.1 Rules of Thumb for When to Interpret b versus ß

INTERPRET b:
When the variables are measured in a meaningful metric
To develop intervention or policy implications
To compare effects across samples or studies

INTERPRET β:
When the variables are not measured in a meaningful metric
To compare the relative effects of different predictors in the same sample
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Descriptive Statistics

81.5348 7.46992 100
13.8300 2.04028 100
6.9800 2.14608 100

GRADES
PARED
HWORK

Mean
Std.

Deviation N

Correlations

1.000 .191 .354
.191 1.000 .368
.354 .368 1.000

. .028 .000
.028 . .000
.000 .000 .
100 100 100
100 100 100
100 100 100

GRADES
PARED
HWORK
GRADES
PARED
HWORK
GRADES
PARED
HWORK

Pearson Correlation

Sig. (1-tailed)

N

GRADES PARED HWORK

Figure 2.9 Descriptive statistics and correlations among variables for high school students. 

Model Summary

.360a .130 .112 7.03925
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), HWORK, PAREDa. 

ANOVAb

717.713 2 358.856 7.242 .001a

4806.452 97 49.551
5524.165 99

Regression
Residual
Total

Model
1

Sum of
Squares df Mean Square F Sig.

Predictors: (Constant), HWORK, PAREDa. 

Dependent Variable: GRADESb. 

Coefficientsa

176.97792.06000.833.41188.4489.96
.258 .373 .071 .692 .490 -.482 .998

1.143 .355 .328 3.224 .002 .440 1.847

(Constant)
PARED
HWORK

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig. Lower Bound Upper Bound
95% Confidence Interval for B

Dependent Variable: GRADESa. 

Figure 2.10 Regression output for the Homework example for high school students. 

Note the b associated with Homework in this new regression: 1.143, representing an 
estimate of the effect of time spent on homework on grades for high school students. The 
two estimates—1.143 for high school students versus .988 for 8th-graders earlier in this 
chapter—are obviously different, but are the differences statistically significant? There are 
several ways we might make this comparison. The easiest is to use the confidence intervals. 
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Phrase the question this way: Is the present estimate of 1.143 (the value for the high school 
sample) statistically significantly different from our earlier estimate of .988? Look at the 95% 
confidence interval for the regression coefficient for the 8th-grade sample (Figure 2.6): .272 
to 1.704. The value of 1.143 falls within this range, so we can confidently say that our current 
value is not statistically different from our previous estimate. 

Another way of making this determination is the good old t test. To ask whether our 
current value is different from some value other than zero, we make a minor change in the 
formula: t

b
SEb

= − value
, where value represents the other value to which we wish to compare b 

(Darlington, 1990, chap. 5). For the present example, the formula would be

t =
−

=−

. .

.
.

988 1 143

361
429

Using our rule of thumb (t’s of 2 or greater are significant; ignore whether t is positive or 
negative), we again see that the high school value is not statistically significantly different at 
the .05 level from the value estimated for 8th-graders. Or, using the TDIST function in Excel, 
we see that this t would happen commonly by chance alone (p = .669, two-tailed, with 97 df; 
just use the value .429, without the negative sign, in Excel).

Note that this test compares our 8th-grade estimate, with confidence intervals, to a spe-
cific value. It is also possible to compare the two regression estimates, considering the stan-
dard errors of both. The formula

z
b b

SE SEb b

=
−

+
1 2

2 2

1 2

can be used to compare regression coefficients from two separate (independent) regres-
sion equations (Cohen & Cohen, 1983, p. 111). It doesn’t matter which b goes first; it’s easiest 
to make the larger one b1. For the current example,

z =
−

+

=

=

1 143 988

355 361

155

256

306

2 2

. .

. .

.

.

.

You can look this z value up in Excel (using the function NORMSDIST, for standard nor-
mal distribution). You will need to subtract the value returned (.620) from 1.0, for a prob-
ability of .38. The two regression coefficients are not statistically significantly different. Once 
more, note the difference in orientation between these comparisons. The first compared a 
coefficient to a specific number, taking that number as a given. It asked if the current esti-
mate of the regression coefficient is different from a specific value. The second asks whether 
two regression coefficients are statistically significantly different.

Cautions

Having gone through this illustration, we might be tempted to compare our results from 
this chapter with those from Chapter 1 using simple regression. I would not make this 
comparison because the two analyses used different dependent variables. In Chapter 1, our 
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conclusion was that each additional hour of (math) Homework led to a 2- point increase in 
math achievement test scores. In this chapter, our conclusion was that each additional hour 
of Homework led to a 1-point increase in Grades. Although Grades and test scores are cer-
tainly related, they are not the same thing; a 1-point increase in Grades is not the same as a 
1-point increase in test scores.

In this example, I would be tempted instead to make a qualitative, rather than statistical, 
interpretation based on the standardized coefficients (β’s), despite our rules of thumb. On 
the one hand, the two values are from separate regressions with different samples. On the 
other hand, at least with standardized coefficients, we have a chance of interpreting the same 
scale (standard deviation units). The β for Homework from Chapter 1 was .320; here it is 
.266. These values do not seem that different, so maybe the results are consistent after all.

DIRECT CALCULATION OF b AND R2

So far we have shown how to convert b to β and the reverse, but how could you calculate 
these values directly? We will focus on the direct calculation of β because it is instructive, 
and because it will be useful later in the book. It is fairly easy to calculate β with only two 
independent variables:

β1
1 2 12

12
21

=
−

−

r r r

r
y y  and β2

2 1 12

12
21

=
−

−

r r r

r
y y

Let’s apply this formula to the 8th-grade Homework example:

βhwork
grades hwork grades pared pared hwork

pared hwo

=
−

−

r r r

r

. . .

.1 rrk
2

Note that the β of Homework on Grades depends, in part, on the simple correlation 
between Homework and Grades. But it also depends on the correlation between Parent Edu-
cation and Grades and the correlation between Homework and Parent Education. Calculate 
the β:

βhwork =
− ×
−

=

=

. . .

.
.

.
.

327 294 277

1 277
246

923
267

2

which is, within errors of rounding, the same as the value calculated by SPSS (.266). From β 
we can calculate b:

b
SD

SD
y

x

=

=

=

β

.
.

.
.

266
7 623

2 055
987

which again is equivalent to the value from SPSS. The important thing to keep in mind is that 
the value for each β (and b) depends not only on the correlation between the independent and 
dependent variable but also on all the other correlations among the variables in the model. This 
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is why one way to interpret the regression coefficients is a statement like this: Homework had 
a strong effect on Grades, even when parents’ level of education was controlled. The regression 
coefficients take the other variables into account; thus, don’t be tempted to interpret them as if 
they were correlations. At the same time, note that it would be computationally challenging to 
calculate regression coefficients in this manner with a half-dozen or so variables!

Likewise, it is worth noting various formulas for calculating R2.To calculate R2 from the 
sums of squares, 

R2 = ssregression/sstotal 

To calculate R2 using b's, R r ry y y12
2

1 1 2 2= +β β . 

To calculate R2 from the correlations,

R
r r r r r

rY
y y y y

⋅ =
+ −

−12
2 1

2
2

2
1 2 12

12
2

2

1
.

Note, as we discovered at the beginning of this chapter, R2 is not equal to the sum of the 
two r2’s; instead, it is reduced by a certain extent. Simply note for now that this reduction is 
related to the correlation between the two independent variables, r12.

SUMMARY

This chapter introduced multiple regression, with two independent variables and one depen-
dent variable. We conducted a regression designed to determine the effect of time spent on 
homework on grade-point average, controlling for parents’ level of education. The regres-
sion equation was statistically significant. Unlike simple regression, with multiple regression 
it is possible for the overall regression to be statistically significant but to have some inde-
pendent variables be nonsignificant. Here, however, the regression coefficients showed that 
each variable—Parent Education and time spent on Homework—had an effect on students’ 
GPAs. We interpreted the findings from a variety of orientations. Because all the variables 
in the equation used a meaningful scale, we focused our interpretation primarily on the 
unstandardized regression coefficients.

We examined how to calculate many of the important statistics in multiple regression for 
this simple example: β, b, and R2.We discussed the pros and cons of interpreting standardized 
versus unstandardized regression coefficients. Both standardized and unstandardized coeffi-
cients are useful, but they serve different purposes. Unstandardized coefficients (b) are most 
useful when the variables are measured in a meaningful metric (e.g., hours of homework), 
when we wish to compare effects across studies, and when we are interested in develop-
ing policy or intervention implications from our research. Standardized coefficients (β) are 
more useful when the variables are not measured in a meaningful metric or when we are 
interested in comparing the relative importance of different predictors in the same regres-
sion equation. Rules of thumb for the use of regression coefficients are shown in Table 2.1.

Make sure you understand completely the topics presented in this chapter, because they 
form the foundation for much of the rest of the book. In the next chapter, we will delve 
deeper into this fairly simple multiple regression example.

EXERCISES

1. Conduct the Homework analysis from this chapter yourself.
2. Conduct a similar analysis using the NELS data set. Try regressing FFUGrad (GPA in 

10th Grade) on BYParEd (Parents’ Highest Level of Education) and F1S36A2 (Time Spent 
on Homework out of School). Be sure to check descriptive statistics. Notice the scales 
for the independent variables. The dependent variable is the average of respondents’  
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Grades in English, math, science, and social studies; for each of these subjects, the scale 
ranges from 1 = mostly below D to 8 = mostly A’s.

3. Interpret the results of the regression in Exercise 2. Should you interpret the b’s or the 
β’s? Why would it be inappropriate to compare these results statistically with those 
presented in this chapter? Qualitatively, are the results similar to those presented with 
our simulated data?

4. The examples in this chapter suggest that students’ home environments may affect 
their school performance. You may wonder, however, whether it is the educational 
environment of the home that is important or if it is the financial resources of the 
home that are important. The file “exercise 4, grades, ed, income.sav” has simulated 
data that will allow a test of this question. (The data are on the Web site [www.tzkeith.
com] under Chapter 2. Also included are Excel and plain text versions of the data.) 
Included are measures of grade-point average (Grades, a standard 100-point scale), 
parents’ highest level of education (ParEd, in years), and family income (Income, in 
thousands of dollars). Regress Grades on Parent Education and Family Income. Be sure 
to also check the summary statistics. Is the overall regression statistically significant? 
Are both variables—Parent Education and Family Income—statistically significant 
predictors of students’ Grades? Interpret the results of this regression. Interpret both 
the unstandardized and the standardized regression coefficients. Which interpretation 
is more meaningful, the b’s or the β’s? Why? Which home variable appears to be more 
important for students’ school performance?

Notes

1 A reader felt uncomfortable with this individual interpretation of regression results, especially 
given the smallish R2. Yet I think that translation of research results to the individual level is often 
among the most useful things we can do with them. The results of this hypothetical research were 
both meaningful and statistically significant and therefore (in my opinion) ripe for interpretation. 
Keep in mind, however, that not everyone feels comfortable on this point.

2 As you progress through the chapter, you may be tempted to use the b’s and their standard errors 
for such a comparison. These are good instincts, but it will not work, because the b’s are in different 
metrics. Some programs will produce standard errors of the β’s that could be useful.

3 Although β is the most common metric for comparing the relative influence of the variables in 
a regression equation, it is not the only possible metric, nor is it without its problems (especially 
when the independent variables are highly correlated). Darlington (1990, chap. 9), for example, 
argued for the use of the semipartial correlations, rather than β, as measures of the relative impor-
tance of the independent variables. Yet β works well for most analyses, and it fulfills this role better 
than do other statistics that are commonly produced by statistics programs. We will continue to 
focus on β as providing information about the relative influence of different variables, at least for 
the time being. As already noted, partial and semipartial correlations are discussed in Appendix C.
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In this chapter we will delve into a little more detail about multiple regression and explain 
some concepts a little more fully. This chapter probably includes more formulas than in 
any other, but I will try to explain concepts several different ways to ensure that at least one 
explanation makes sense to every reader. The chapter is short, but if math and statistics do 
not come easily to you, you may need to read this chapter more than once. Your perseverance 
will pay off with understanding!

WHY R2 ≠ r 2 + r 2

I noted in the last chapter that, as a general rule, R2 is not equal to r2 + r2 and briefly men-
tioned that this was due to the correlation between the independent variables. Let’s explore 
this phenomenon in more detail. To review, in the example used in the beginning of Chap-
ter 2, r2 HWork•Grades = .3272 = .107, and r2 ParEd•Grades = .2942 = .086.

The R2 from the regression of GPA on Homework and Parent Education was .152. Obvi-
ously, .152 ≠ .107 + .086. Why not? We’ll approach this question several different ways. First, 
recall one of the formulas for R2:
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Note that the squared multiple correlation depends not only on the correlation between 
each independent variable and the dependent variable but also on the correlation between 
the two independent variables, r12, or, in this case rHWork•ParEd, a value of .277.

3
Multiple Regression

More Detail
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Next, look at Figure 3.1. The circles in the figure represent the variance of each variable 
in this regression analysis, and the areas where the circles overlap represent the shared vari-
ances, or the r2’s, among the three variables. The shaded area marked 1 (including the area 
marked 3) represents the variance shared by Grades and Homework, and the shaded area 
marked 2 (including the area marked 3) represents the variance shared by Parent Education 
and Grades. Note, however, that these areas of overlap also overlap each other in the doubly 
shaded area marked 3. This overlap occurs because Homework and Parent Education are 
themselves correlated. The combined area of overlap between Homework and Grades and 
between Parent Education and Grades (areas 1 and 2) represents the variance of Grades 
jointly accounted for by Homework and Parent Education, or the R2. As a result of the joint 
overlap (3), however, the total area of overlap is not equal to the sum of areas 1 and 2; area 3 
is counted once, not twice. In other words, R2 is not equal to r2 + r2. 

Using this logic, it follows that if the correlation between the two independent variables is 
zero then R2 will equal r2 + r2. Such a situation is depicted in Figure 3.2, where the area of 

Figure 3.1 Venn diagram illustrating the shared variance (covariance) among three variables. The 
shaded areas show the variance shared by each independent variable with the dependent variable. Area 
3 shows the variance shared by all three variables.

21

3

Homework

Grades

Parent Education

Figure 3.2 Venn diagram illustrating the shared variance among three variables. In this example, there 
is no correlation (and no shared variance) between the two independent variables.

21

Homework

Grades

Parent Education
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overlap is indeed equal to the sum of areas 1 and 2, because the two independent variables do 
not themselves overlap. Likewise, turning to the formula for R2, you can see what happens 
when r12 is equal to zero. The formula is
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When zero is substituted for r12, 
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Let’s double-check. Figure 3.3 shows the results of the regression of Grades on Homework 
and Parent Education in the (unlikely) event that the correlation between Homework and 
Parent Education is zero (the data are simulated). Note that the correlations between Parent 

Figure 3.3 Multiple regression results when there is no correlation between the two independent 
variables.
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Education and Grades (.294) and between Homework and Grades (.327) are the same as in 
Chapter 2, but that the correlation between Parent Education and Homework is now zero. 
And consistent with our reasoning above, R2 now equals r2 + r2.

R r rGrades HWork ParEd Grades ParEd Grades HWork⋅ ⋅ ⋅ ⋅= +

=

2 2 2

193 29. . 44 327

193 193

2 2+
=

.

. .

Also note that when the independent variables are uncorrelated, the b’s are again equal  
to the correlations (as with simple regression). The reason why is, of course, that the formula  
for b,

β1
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reduces to b1 = ry1 when r12 = 0.
Figure 3.4 shows this regression in path format. Notice the correlation of zero between 

the two independent variables. With this lack of relation between the two variables, the stan-
dardized coefficients are the same as the correlations and the R2 = r2 + r2.

To reiterate, the R2 depends not only on the correlations of the independent variable with 
the dependent variable, but also on the correlations among the independent variables. As a 
general rule, the R2 will be less than the sum of the squared correlations of the independent 
variables with the dependent variable.1 The only time R2 will equal r2 + r2 is when the inde-
pendent variables are uncorrelated, and this happens rarely in the real world.

PREDICTED SCORES AND RESIDUALS

It is worth spending some time examining more detailed aspects of multiple regression, 
such as the residuals and the predicted scores. Understanding these aspects of regression 
will help you more completely understand what is going on in multiple regression and also 
provide a good foundation for topics that we will cover later.

Among other things, residuals (the error term from the regression equation) are useful for 
diagnosing problems in regression, such as the existence of outliers, or extreme values. We will 
address the use of residuals for diagnostic purposes in Chapter 9.

Parents’
Education

.000

.193

Homework
Time

Grades

.294

.327

Figure 3.4 Path representation of the effects of Parents’ Education and Homework on Grades when 
there is a correlation of zero between the two predictors. Note that the standardized regression coef-
ficients are the same as their correlations with Grades.
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In Chapter 2 we saw how to use the regression equation to predict an individual’s score 
on the outcome. Simply plug a person’s values for the two independent variables (i.e., Parent 
Education and Homework time) into the regression equation and you get the person’s pre-
dicted grade-point average. So, using the first regression equation from the previous chapter, 
an 8th-grade student who reports 5 hours of homework per week, and with a parent educa-
tion level of 16 (four years of college), would have a predicted GPA of 82.103. We also may 
be interested in the predicted outcomes for everyone in our data set. In this case, it is simple 
to have our statistics program calculate the predicted scores as a part of the multiple regres-
sion analysis. In SPSS, for example, simply click on the Save button in multiple regression and 
highlight Predicted Values; Unstandardized (see Figure 3.5). While we’re at it, we’ll also ask 

Figure 3.5 Generating predicted values and residuals in SPSS.
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for the unstandardized residuals. In SAS, you can get predicted values and residuals using an 
OUTPUT statement. 

I again regressed Grades on Parent Education and Homework using the 8th-grade data 
from Chapter 2, but this time saved the predicted scores and residuals. Figure 3.6 shows 
Grades (first column) and the Predicted Grades (PredGrad) for the first 34 cases of our 
Homework & Grades data from Chapter 2. Note that for some students we predict higher 
grades based on the regression equation than they actually earned, whereas for other students 
their actual grades were higher than their predicted grades. Obviously, the prediction is not 
exact; in other words, there is error in our prediction.

The third column in this figure shows the residuals from this regression (Resid_1). What 
are the residuals? Conceptually, the residuals are what is left over or unexplained by the 
regression equation. They are the errors in prediction that we noticed when comparing the 
actual versus predicted Grades. Remember one form of the regression equation (with two 

Figure 3.6 Partial listing comparing Grades (Y), Predicted Grades (Y'), and the residuals as output by 
the computer program, and the error term as computed by subtraction (Y−Y').

GRADES PREDGRAD RESID_1 ERROR_1

78.00 76.52082 1.47918 1.47918
79.00 81.34282 –2.34282 –2.34282
79.00 75.53297 3.46703 3.46703
89.00 79.48435 9.51565 9.51565
82.00 80.12053 1.87947 1.87947
77.00 78.49651 –1.49651 –1.49651
88.00 79.48435 8.51565 8.51565
70.00 77.50866 –7.50866 –7.50866
86.00 81.22560 4.77440 4.77440
80.00 80.35498 –.35498 –.35498
76.00 78.14484 –2.14484 –2.14484
72.00 79.48435 –7.48435 –7.48435
66.00 76.63804 –10.63804 –10.63804
79.00 79.36713 –.36713 –.36713
76.00 75.88464 .11536 .11536
80.00 86.56656 –6.56656 –6.56656
91.00 84.18914 6.81086 6.81086
85.00 83.08407 1.91593 1.91593
79.00 82.44789 –3.44789 –3.44789
82.00 78.37928 3.62072 3.62072
94.00 81.57727 12.42273 12.42273
91.00 79.60157 11.39843 11.39843
80.00 80.35498 –.35498 –.35498
73.00 82.33067 –9.33067 –9.33067
77.00 78.61373 –1.61373 –1.61373
76.00 82.09622 –6.09622 –6.09622
84.00 76.63804 7.36196 7.36196
81.00 82.09622 –1.09622 –1.09622
97.00 87.03545 9.96455 9.96455
80.00 82.21344 –2.21344 –2.21344
74.00 82.09622 –8.09622 –8.09622
83.00 87.15267 –4.15267 –4.15267
78.00 80.47220 –2.47220 –2.47220
64.00 84.94254 –20.94254 –20.94254
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independent variables): y = a + bX1 + bX2 + e. In this equation, the residuals are equal to e, 
the error term from the regression.

Remember also the other form of the regression equation, using the predicted scores on Y 
(symbolized as Y′), in this case the predicted grades: Y′ = a + bX1 + bX2. We can subtract this 
formula from the first formula to figure out how to solve for e, the residuals:

Y a bX bX e

Y a bX bX

Y Y e

= + + +

− ′ = + +
− ′ =

1 2

1 2

Thus, in the present example, the residuals are simply the predicted grades subtracted 
from the actual grades. The final column in Figure 3.6 (Error_1) shows the results of 
Y − Y′, in which I simply subtracted the predicted grades from actual grades. Notice that this 
error term is identical to the residuals (RESID_1). The residuals are what are left over after 
the predicted outcome variable is removed from the actual outcome variable; they are the 
inaccuracies, or errors of prediction. Another way of thinking of the residuals is that they 
are equivalent to the original dependent variable (Grades) with the effects of the indepen-
dent variables (Parent Education and Homework) removed.

REGRESSION LINE

With simple regression, we can also understand the predicted scores and residuals using the 
regression line. With simple regression, we can find the predicted scores using the regression 
line: find the value of the independent variable on the X-axis, go straight up to the regression 
line, and then find the value of the dependent variable (Y-axis) that corresponds to that point 
on the regression line. The regression line, with simple regression, is simply a line connect-
ing the predicted Y’s for each value of X. With multiple regression, however, there are multiple 
regression lines (one for each independent variable). But wait; if the regression line is equiva-
lent to the predicted scores, then the predicted scores are equivalent to the regression line. 
In other words, with multiple regression, we can, in essence, get an overall, single regression 
line by plotting the predicted scores (X-axis) against the actual scores (Y-axis). This has been 
done in Figure 3.7, which includes both the regression line of the plot of predicted versus 
actual GPA, and each data point. 

First note that the r2 (.152, shown in the lower right of Figure 3.7) from the regression of 
Grades on Predicted Grades (with Grades predicted by Homework and Parent Education) is 
identical to the R2 from the multiple regression of Grades on Homework and Parent Educa-
tion (.1521), further evidence that this can be thought of as the overall regression line for our 
multiple regression of Grades on Homework and Parent Education. This finding also points to 
another way of thinking about R2: as the correlation between Y and predicted Y (Y′).

If the line represents the predicted Grades, then the deviation of each actual Grade (each 
data point) from the line represents what? The residuals—if you subtract the value (on the 
Y-axis) of the regression line from the value of each data point (on the Y-axis), you will find 
the same values for the residuals as shown in Figure 3.6. Again, this is simply Y − Y′. You can see 
this most easily by focusing on the data point in the lower-right corner of the graph, defined 
as X = 84.94 and Y = 64. This is also the final data point in Figure 3.6. Follow the line from 
this point to the regression line and then over to the Y-axis. The value on the Y-axis is also 
84.94. The residual is thus 64 − 84.92 = −20.94, also the same value shown for the residual 
in Figure 3.6. (Here’s an extra-credit question for you: since in this figure every point on the 
regression line has the same values for both the X- and the Y-axes, what is the value for b? 
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Remember that b is the slope of the regression line.) It is also possible to depict the residuals 
in a path display of regression results, as is done in Figure 3.8. There, the small circle labeled 
r1 represents the residual. A circle is used rather than a rectangle to indicate that we don’t  
have actual measures of the residuals in our original data set. We could (and just have) gen-
erated estimates of the residuals, but these are a product of our regression, not a part of our 
original data. In the framework of path models (Part 2), this is an “unmeasured” variable, 
and you can think of it as all other influences on Grades other than the two variables (Parent 
Education and Homework) shown in the model. This depiction will come in handy when 
you learn about partial and semipartial correlations (Appendix C).

Figure 3.7 Plot, with regression line, of Grades (Y) versus Predicted Grades (Y').
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Figure 3.8 Figural (path) display of residuals. The variable r1 is in a circle rather than a rectangle to 
show that it is an unmeasured variable. Such variables are explored in depth in Part 2.
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LEAST SQUARES

Recall that I said in Chapter 2 that the two independent variables were “optimally weighted.” 
What does this mean? Why not just weight each of the two variables by ½ to predict GPA; 
in other words, why not just standardize the two independent variables, average them, and 
use that composite to predict GPA using simple regression? Or why not weight them in some 
other logical combination? The reason is that the prediction will not be as good, as accurate. 
The explained variance (R2) will not be as high, and the unexplained variance (1 − R2) will 
be higher. Another way of saying this is to state that the regression line shown in Figure 3.7 
is the best fitting of all possible (straight) lines that could be drawn through these data points.

So what does best fitting mean? Again, it means the line that minimizes the error of predic-
tion, or the unexplained variance. Take a look at the line again. Suppose you were to measure 
the distance from each data point to the regression line and subtract from it the corresponding 
point from the regression line. This is what we just did for a single data point (84.94, 64), and 
we found that these are the same as the residuals. These are the errors in prediction. If you 
were to sum these values, you would find that they summed to zero; the positive values will 
be balanced by negative values. To get rid of the negative values, you can square each residual 
and then sum them. If you do this, you will find that the resulting number is smaller than for 
any other possible straight line. This best fitting line thus minimizes the errors of prediction; 
it minimizes the squared residuals. You will sometimes hear simple or multiple regression 
referred to as least squares regression or OLS (ordinary least squares) regression. The reason is 
that the regression weights the independent variables so as to minimize the squared residuals, 
thus least squares.

Figure 3.9 displays descriptive statistics for some of the variables we have been discuss-
ing: Grades (Y), Predicted Grades (Y′), and the Residuals. Also shown are descriptive statistics 
for the squared Residuals (ResidSq). Note that the means and sums for Grades and Predicted 
Grades are the same. The Predicted Grades have a narrower range (73.91 to 87.15) than do the 
actual Grades (64 to 100) and a smaller variance (8.84 compared to 58.11), which should be 
obvious when looking at the figure that shows the regression line (Figure 3.7). The Y-axis on 
the figure has a much wider range than does the X-axis. Note that the sum of the residuals 
is zero. Note also the sum of the squared residuals: 4878.17. As mentioned in the previous 
paragraph, the regression line minimizes this number; any other possible straight line will result 
in a larger value for the sum of the squared residuals. If you turn back to Chapter 2, you can 
compare this number to the Sum of Squares for the residual in Figure 2.4; they are the same 
(4878.17). The residual sums of squares is just that: the sum of the squared residuals.

Descriptive Statistics

100 64.00 100.00 8047.00 80.4700 58.110

100 73.90895 87.15267 8047.000 80.47000 8.836

100 -20.94254 14.18684 .00000 -8.8E-15 49.274

100 .01 438.59 4878.17 48.7817 4431.695

100

GRADES  Grade Point
Average

PREDGRAD 
Unstandardized Predicted
Value

RESID_1 
Unstandardized Residual

RESIDSQ

Valid N (listwise)

N Minimum Maximum Sum Mean Variance

Figure 3.9 Descriptive statistics for Grades, Predicted Grades, the residuals, and the squared residuals.
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I argued that the independent variables are weighted so that this sum of squared residuals is 
minimized and the R2 is maximized. In our current example, Parent Education was weighted 
.220 (the standardized regression coefficient), and Homework was weighted by .266, close to 
a 50/50 ratio. What would happen if we chose a different weighting? Perhaps, for some reason, 
you believe that Parent Education is not nearly as important as Homework for explaining 
Grades. Therefore, you decide to weight Parent Education by .25 versus .75 for Home-
work when predicting Grades. This solution may be satisfying in other ways, but the result-
ing prediction is not as accurate and is more error laden. Using the least squares solution of 
multiple regression in Chapter 2, we explained 15.2% of the variance in Grades (R2 = .152). 
If, however, you regress Grades on a composite that weighted Parent Education by .25 and 
Homework by .75, our logically determined solution, you will find that this solution explains 
slightly less variance in Grades: 14% (see Figure 3.10). As noted previously, the error variance 
(residual sum of squares) was 4878.171 using the least squares solution. In contrast, using 
this 25/75 solution, the sum of squared residuals is larger: 4949.272 (Figure 3.10). The least 
squares, multiple regression, solution minimized the residual, or error, sums of squares and 
maximized the R2, or the variance in Grades explained by Parent Education and Homework. 
As a result (and given the adherence to necessary assumptions), the estimates produced by 
the least squares solution will be the best possible estimates and the least biased (meaning the 
most likely to reproduce the population values).

Perhaps it is obvious that the variability of points around the regression line is closely 
related to the accuracy in prediction. The closer the data points in Figure 3.7 cluster around 
the regression line, the less error involved in prediction. In addition, the closer the data points 
are to the regression line, the more likely the regression is to be statistically significant, 
because this lowered variability will reduce the variation in residuals. The value of F depends, 
in part, on the variability in the residuals:

F
SS df

SS df
= regression regression

residual residual

/

/

In addition, the variability in the residuals is related to the standard error of the regression 
coefficient (seb), which is used to calculate the statistical significance of b (t = b/seb).

Model Summary

.374 .140 .131 7.1065
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

ANOVAb

803.638 1 803.638 15.913 .000
4949.272 98 50.503
5752.910 99

Regression
Residual
Total

Model
1

Sum of
Squares df Mean Square F Sig.

Dependent Variable: GRADES  Grade Point Averageb. 

Figure 3.10 Regression results with Parent Education weighted at 25% and Homework weighted at 
75%. Note that the R2 decreases, and the sum of squared residuals increases.
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REGRESSION EQUATION = CREATING A COMPOSITE?

These last few sections hint at a different way of conceptualizing what happens in multiple 
regression. We saw under Predicted Scores and Residuals that we could create a single 
score, the predicted dependent variable (in this case, predicted Grades), that functions the 
same way in a simple regression analysis as do the multiple independent variables in a mul-
tiple regression analysis. We saw, for example, that the R2 from multiple regression is the 
same as r2 between Y and Y′. We hinted in the section Least Squares that we could also create 
such a single independent variable by weighting the multiple independent variables. Is it 
therefore possible to use this weighting method to create a single independent variable that 
matches the predicted score?

The answer is yes. Instead of weighting the standardized Homework and Parent Educa-
tion variables by .75 and .25, we could have weighted them by b’s from the multiple regres-
sion equation (.266 and .220) to create a composite. Even more directly, we could create a 
composite using the unstandardized values of Homework and Parent Education, weighting 
each according to its b from the multiple regression in Chapter 2 (.988 and .871, respec-
tively). Either of these approaches would have created a composite of Homework and Parent 
Education that predicted Grades just as well as did our predicted Grades variable and just as 
well as did the original Homework and Parent Education variables.

I am not suggesting that you do this in practice; the multiple regression does it for 
you. Instead, you should understand that this is one way of thinking about how multiple 
regression works: MR provides an optimally weighted composite, a synthetic variable, of 
the independent variables and regresses the dependent variable on this single compos-
ite variable. This realization will stand you in good stead as you ponder the similarities 
between multiple regression and other statistical methods. In fact, this is what virtually all 
our statistical methods do, from ANOVA to structural equation modeling. “All statistical 
analyses of scores on measured/observed variables actually focus on correlational analy-
ses of scores on synthetic/latent variables derived by applying weights to the observed 
variables” (Thompson, 1999, p. 5). Thompson goes on to note—tongue in cheek—what 
you may have long suspected, that we simply give these weights different names (e.g., 
factor loadings, regression coefficients) in different analyses so as to confuse graduate 
students.

ASSUMPTIONS OF REGRESSION AND REGRESSION DIAGNOSTICS

Given the conceptual nature of this book, I have just touched on the issues of residuals 
and least squares regression. Analysis of residuals is also a useful method for detecting vio-
lations of the assumptions underlying multiple regression and outliers and other problems 
with data. I want to postpone discussion of the assumptions underlying regression until 
you have a deeper understanding of how to develop, analyze, and interpret regression 
analyses. These assumptions are presented in Chapter 9 as an important topic and one 
worthy of additional study. Likewise, we will postpone discussion of the regression diag-
nostics until that time, along with diagnosis of other potential problems in regression 
(e.g., multicollinearity).

It is worth noting that residuals have other uses, as well. Suppose, for example, that you 
were studying student performance on a test across various age levels, but wanted to remove 
the effects of age from consideration in these analyses. One possible solution would be to 
regress the test scores on age and use the residuals as age-corrected test scores (e.g., Keith, 
Kranzler, & Flanagan, 2001). Darlington (1990) discussed using residuals for other research 
purposes.
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SUMMARY

This chapter has focused on some of the nitty-gritty of multiple regression analysis, includ-
ing the nature of R2 compared to r2, the conceptual and statistical meaning of predicted 
scores and residuals, and the method by which multiple regression produces the “optimal” 
prediction. We found that R2 depends not only on the original correlation of each indepen-
00dent variable with the dependent variable but also on the correlations of the independent 
variables with each other. As a result, R2 is usually less than the sum of the r2’s and only equals 
the sum of the r2’s when the independent variables are themselves uncorrelated. Likewise, the 
b’s are not equivalent to and are usually smaller than the original r’s. Only when the correla-
tions among the independent variables are zero do the b’s equal the r’s.

Residuals are the errors in prediction of a regression equation and the result of subtract-
ing the predicted scores on the dependent variable (predicted via the regression equation) 
from the actual values of participants on the dependent variable. Multiple regression works 
to minimize these errors of prediction so that the residual sums of squares, the sum of 
the squared residuals, is the smallest possible number. For this reason, you will sometimes 
see regression referred to as least squares regression. One way of thinking about multiple 
regression is that it is creating a synthetic variable that is an optimally weighted composite 
of the individual variables and using it to predict the outcome. This composite, weighting 
each independent variable by its regression weight, is then used to predict the outcome 
variable.

Do not be overly worried if all the concepts presented in this chapter are not crystal 
clear; opaque will do for now! I do encourage you, however, to return to this chapter 
periodically as you become more familiar and fluent in multiple regression; I believe this 
chapter will make more sense each time you read it and will also deepen your understand-
ing of other topics.

EXERCISES

1. Use the Grades, Parent Education, and Homework example from Chapter 2; make 
sure you can reproduce the residual analyses from this chapter (i.e., those summa-
rized in Figures 3.6, 3.7, and 3.9). Output residuals and predicted scores, and examine 
their descriptive statistics and correlations with Grades and each other. Make sure you 
understand why you obtain the relations you find.

2. Create a composite variable weighting Parent Education and Homework by their 
regression weights as found in Exercise 1. Regress Grades on this composite. Note that 
you can weight the original variables using the unstandardized regression weights, or 
you can first standardize Parent Education and Homework (convert them to z-scores) 
and then weight them by the appropriate b’s. How do the R2 and sums of squares 
compare to the multiple regression results?

3. Now try creating a composite that weights the Parent Education and Homework by 
some other values (e.g., 25% and 75%). Note that to do this you will need to standard-
ize the variables first. What happens to the R2 and sum of squared residuals?

4. Reanalyze the regression of Grades on Parent Education and Family Income from 
Chapter 2 (Exercise 4). Output the unstandardized predicted values and residuals. 
Compute the correlation between Grades and Predicted Grades. Is the value the same 
as the R from the multiple regression? Explain why it should be. Create a scatterplot 
of Predicted Grades with Grades, along with a regression line. Pick a data point in the 
raw data and note the actual value for Grades, Predicted Grades, and the Residual. Is 
the residual equal to Grades minus Predicted Grades? Now find the same data point on 
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the scatterplot and mark the value on the graph for that person’s Grades and Predicted 
Grades. Show graphically the residual.

Note

1 If the two independent variables are negatively correlated with each other, but correlate positively 
with the dependent variable, R2 will actually be larger than r2 + r2. The b’s will also be larger than 
the r’s. This phenomenon may be considered a form of what is called statistical suppression. Sup-
pression is discussed in more detail in several sources (e.g., Cohen et al., 2003, chap. 3; Pedhazur, 
1997, chap. 7; Thompson, 1999, 2006, chap. 8).
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This chapter will present two more examples of multiple regression, one using three inde-
pendent variables and the other, four. The intent is to increase your comfort with conduct-
ing and interpreting multiple regression and to solidify the concepts presented so far. You will 
see that the addition of explanatory variables makes the regression no more difficult, with 
the exception that you have more to discuss when explaining the results. We will use these 
examples to confront several looming issues.

THREE PREDICTOR VARIABLES

Let’s take our homework example a little further. Suppose that you become interested in 
the effects of homework completed in school versus the effects of homework completed 
out of school. I actually did become interested in this topic thanks to our children. When 
we would ask them if they had homework to complete, they began to respond “I did it 
in school.” Our response, in turn, was “that’s not homework, that’s schoolwork!” Beyond 
our little parent–child exchanges, I began to wonder if “homework” completed in school 
had the same effects on learning and achievement as homework completed at home. 
The results of this research are described in Keith, Hallam, and Fine (2004); the research 
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used structural equation modeling, rather than multiple regression, but MR could have 
been used.

At any rate, suppose that you share at least some of my interest in this topic (we will switch 
to other examples in subsequent chapters). We will use the NELS data to examine the rela-
tive effects of homework completed in school versus homework completed out of school  
on students’ grades. Our research question is something along these lines: does homework 
completed in school have the same effect on high school students’ grades as homework com-
pleted out of school? To answer the question, we regress Grades on a measure of time spent 
on Homework In School and a measure of time spent on Homework Out of School. As in 
the previous example, we control for Parents’ level of Education. Grades (FFUGrad) in this 
example are an average of students’ 10th-grade grades in English, Math, Science, and Social 
Studies. Parent Education (BYParEd) is the education level of the father or mother (which-
ever is higher) for each student. The Homework variables are students’ 10th-grade reports 
of the amount of time they spend, on average, per week doing homework, across subjects, In 
School (F1S36A1) and Out of School (F1S36A2). All variables are included in your copy of 
the NELS data; you should examine the descriptive statistics for all these variables and should 
also examine the frequencies of each predictor variable. It is good practice to run the multiple 
regression analysis, too! It might also be worth rereading Appendix A and its discussion of the 
NELS data set. The figural representation of the regression model is shown in Figure 4.1.

Figure 4.2 shows the frequencies of the independent variables. Notice that the scales of 
these variables are different from those in previous chapters. In the current example, Parent 
Education ranges from a value of 1, representing “Did not finish High School,” up to a value 
of 6, representing an advanced graduate degree (PhD, MD, etc.). The Homework variables 
are no longer hours but rather chunks of hours, ranging from 0 (No homework) to 7 (Over 
15 hours per week). Figure 4.3 shows the descriptive statistics for the dependent variable, 
10th-grade (First Follow-Up) Grade Average. Its scale has also changed, from the common 0 
to 100 scale to a 1 to 8 scale, with 1 representing low grades and 8 representing high grades. 
The NELS developers had justifiable reasons for scaling these variables in this manner, but 
the variables no longer have the nice logical scales (e.g., years or hours) from the previous 
examples. This deficiency is more than made up for, in my opinion, by the fact that these are 
real and nationally representative data, whereas the previous examples had used simulated 
data. Figure 4.4 shows the correlations among these variables. 

Parents’
Education

Homework
In School

FFU
Grades

Homework
Out of School

Figure 4.1 Multiple regression example in path format.



BYPARED  PARENTS’ HIGHEST EDUCATION LEVEL

97 9.7 9.7 9.7
181 18.1 18.1 27.8
404 40.4 40.4 68.3
168 16.8 16.8 85.1

86 8.6 8.6 93.7
63 6.3 6.3 100.0

999 99.9 100.0
1 .1

1000 100.0

1  did not finish HS
2  HS Grad or GED
3  lt 4 year degree
4  college grad
5  M.A. or equiv.
6  PhD., M.D. or other
Total

Valid

8  missingMissing
Total

Frequency Percent Valid Percent
Cumulative

Percent

F1S36A2  TIME SPENT ON HOMEWORK OUT OF SCHOOL

63 6.3 6.7 6.7
232 23.2 24.6 31.3
264 26.4 28.0 59.3
168 16.8 17.8 77.1

80 8.0 8.5 85.6
66 6.6 7.0 92.6
31 3.1 3.3 95.9
39 3.9 4.1 100.0

943 94.3 100.0

7 .7

17 1.7
33 3.3
57 5.7

1000 100.0

0  NONE
1  1 HOUR OR LESS
2  2-3 HOURS
3  4-6 HOURS
4  7-9 HOURS
5  10-12 HOURS
6  13-15 HOURS
7  OVER 15 HOURS
Total

Valid

96  MULTIPLE
RESPONSE
98  MISSING
System
Total

Missing

Total

Frequency Percent Valid Percent
Cumulative

Percent

F1S36A1  TIME SPENT ON HOMEWORK IN SCHOOL

76 7.6 8.1 8.1
341 34.1 36.5 44.6
242 24.2 25.9 70.5
158 15.8 16.9 87.4

42 4.2 4.5 91.9
37 3.7 4.0 95.8
14 1.4 1.5 97.3
25 2.5 2.7 100.0

935 93.5 100.0

9 .9

23 2.3
33 3.3
65 6.5

1000 100.0

0  NONE
1  1 HOUR OR LESS
2  2-3 HOURS
3  4-6 HOURS
4  7-9 HOURS
5  10-12 HOURS
6  13-15 HOURS
7  OVER 15 HOURS
Total

Valid

96  MULTIPLE
RESPONSE
98  MISSING
System
Total

Missing

Total

Frequency Percent Valid Percent
Cumulative

Percent

Figure 4.2 Frequencies for the independent variables in the three-predictor MR example.
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Regression Results

Figure 4.5 shows some of the results of the regression analysis. As you can see, the three vari-
ables, Parent Education, time spent on Homework In School, and time spent on Homework 
Out of School explained 15.5% of the variance in students’ 10th-grade GPA (R2 = .155), and 
the overall regression equation was statistically significant (F[3, 905] = 55.450, p < .001). The 
third table in the figure, however, shows that not all the variables are important in this regres-
sion. In fact, Parent Education had a substantial and statistically significant effect on Grades 
(b = .271, b = .234, p < .001), as did time spent on Homework Out of School (b = .218, b = 
.256, p < .001). In contrast, the effect of time spent on Homework In School was tiny and 
was not statistically significant (b = .012, b = .012, p = .704. (When you do this regression 
yourself, you may get a value of 1.16E-02 in the b column. Don’t panic; the coefficient is 
simply displayed as an exponential number; move the decimal point two places to the left, 
that is, .0116.) Note also the 95% confidence intervals for unstandardized coefficients. The 
CI for Homework In School encompasses zero; again, we cannot reject the hypothesis that 
the population value is different from zero. 

The results are fairly similar to those we found using the simulated data in Chapter 2 
(which were, of course, designed to mimic reality). Focusing on the b’s, we conclude that 
each standard deviation increase in time spent on Homework Out of School led to a .256 SD 
increase in GPA, with Parent Education and In-School Homework controlled. Each addi-
tional SD in Parent Education resulted in a .234 SD increase in student GPA (controlling for 
Homework). As noted previously, the scales of the three independent variables (Homework 
and Parent Education) are not particularly meaningful. Parent Education ranged from 1 
(did not finish high school) to 6 (PhD, MD, or other doctoral degree). The two Homework 
variables had values that ranged from 0, for “None” as the average amount of time spent on 
Homework per week, to 7 for “over 15 hours per week.” Because the scales for these vari-
ables do not follow any naturally interpretable scale, such as years for Education or hours for 

Descriptive Statistics

950 1.00 8.00 5.6661 1.4713 2.165
950

FFUGRAD  ffu grades
Valid N (listwise)

N Minimum Maximum Mean
Std.

Deviation Variance

Figure 4.3 Descriptive statistics for the dependent variable Grades.

Correlationsa

1 .096 .323 .304
. .004 .000 .000

.096 1 .275 .059

.004 . .000 .075

.323 .275 1 .271

.000 .000 . .000

.304 .059 .271 1

.000 .075 .000 .

Pearson Correlation
Sig. (2-tailed)
Pearson Correlation
Sig. (2-tailed)

Pearson Correlation
Sig. (2-tailed)
Pearson Correlation
Sig. (2-tailed)

FFUGRAD  ffu grades

F1S36A1  TIME SPENT ON
HOMEWORK IN SCHOOL

F1S36A2  TIME SPENT ON
HOMEWORK OUT OF SCHOOL

BYPARED  PARENTS' HIGHEST
EDUCATION LEVEL

FFUGRAD 
ffu grades

F1S36A1 
TIME SPENT

ON
HOMEWORK
IN SCHOOL

F1S36A2 
TIME SPENT

ON
HOMEWORK

OUT OF
SCHOOL

BYPARED 
PARENTS'
HIGHEST

EDUCATION
LEVEL

Listwise N=909a. 

Figure 4.4 Correlations among the independent and dependent variables.
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Homework, the b’s are not readily interpretable. We could say “each unit of Homework Time 
Out of School resulted in a .218-point increase in GPA,” but this would not tell us much, 
because we would then need to explain what a “unit” increase in Homework meant. Likewise, 
it does not help that the scale used for Grades is nontraditional, as well (it ranges from 1, 
“Mostly below D” to 8 “Mostly A’s”). When the scales of the variables are in a nonmeaning-
ful metric, it makes more sense to interpret standardized regression coefficients, b’s, than it 
does to interpret unstandardized regression coefficients, or b’s. You should still report both, 
however, along with standard errors or confidence intervals of the b’s. Such a practice will 
allow comparability with other studies using similar scales.

Interpretation

Assuming that you trusted these findings as reflecting reality, how might you interpret them 
to parents, or to high school students? The important finding, the finding of primary inter-
est, is the difference in the effects of In-School versus Out-of-School Homework. Parent 
Education was used primarily as a control variable that was included to improve the accu-
racy of our estimates of the effects of the Homework variables on GPA (see the original 
reasoning for including this variable in Chapter 2); its interpretation is of less interest. With 
these caveats in mind, I might interpret these finding as follows (a real world interpretation):

As you may know, many high school students complete a part or all of their homework 
while in school, whereas others complete all or most of their homework at home or 

Figure 4.5 Results of a multiple regression with three independent variables.

Model Summaryb

.394a .155 .152 1.3500
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), F1S36A2  TIME SPENT ON
HOMEWORK OUT OF SCHOOL, BYPARED 
PARENTS' HIGHEST EDUCATION LEVEL, F1S36A1
TIME SPENT ON HOMEWORK IN SCHOOL

a. 

Dependent Variable: FFUGRAD  ffu gradesb. 

ANOVA

303.167 3 101.056 55.450 .000
1649.320 905 1.822
1952.486 908

Regression
Residual
Total

Model
1

Sum of
Squares df Mean Square F Sig.

Coefficientsa

805.4779.3000.733.13531.242.4

.271 .037 .234 7.375 .000 .199 .343

.012 .031 .012 .379 .704 -.048 .072

.218 .028 .256 7.780 .000 .163 .273

(Constant)

BYPARED  PARENTS'
HIGHEST EDUCATION
LEVEL

F1S36A1  TIME SPENT
ON HOMEWORK IN
SCHOOL

F1S36A2  TIME SPENT
ON HOMEWORK OUT
OF SCHOOL

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig. Lower Bound Upper Bound

95% Confidence Interval for B

Dependent Variable: FFUGRAD  ffu gradesa. 
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out of school. Some do a little of both. I was interested in whether these two types 
of homework—in school versus out of school—were equally effective in producing 
learning. To find out, I conducted research to examine the relative influence of time 
spent on homework in school and out of school on high school students’ grades in 
school. I also took the education of the parents into account. The results suggest that 
these two types of homework indeed have different effects. Homework completed In 
School had virtually no effect on students’ Grades. In contrast, Homework com-
pleted Out of School, presumably at home, had a fairly strong effect on Grades; stu-
dents who completed more Homework Out of School achieved higher Grades, even 
after the Education level of their parents was taken into account. I encourage you to 
encourage your high schoolers to complete their homework at home rather than in 
school. If they do, that homework is likely to show an important payoff in their grades: 
the more homework they complete, the higher their grades are likely to be.

Again, this explanation would be worthwhile if you believed that these results explained 
the relations among these variables; as you will see, the findings from our next regression will 
create doubts about this. This explanation also side steps an important question: why does 
homework completed outside of school have an effect on GPA while homework completed 
in school does not? I can think of at least two possibilities. First, it may be that the process 
of doing homework out of school requires a greater degree of initiative and independence 
and that initiative and independence, in turn, improve grades. Second, it may be that when 
students complete homework in school that homework is essentially displacing instructional 
time, thus resulting in no net gain in time spent on learning. These possibilities are explored 
further in the research article (Keith et al., 2004), and you may have other ideas why this 
difference exists. These possible reasons for the difference are all testable in future research!

RULES OF THUMB: MAGNITUDE OF EFFECTS

Another issue that I should address is the criteria by which I argued that some effects were 
“tiny,” whereas others were “substantial.” One criticism of much research in psychology is 
that many researchers focus on and report only statistical significance, ignoring the magni-
tude of effects (Cohen, 1994; Thompson, 1999). There is a growing consensus in psychology 
that researchers should report and interpret effect sizes in addition to statistical significance, 
and many journals now require such reporting (American Psychological Association, 2010). 
One advantage of multiple regression is that its statistics focus naturally on the magnitude 
of effects. R2 and regression coefficients (b) can certainly be tested for their statistical signifi-
cance. But R, R2 and the regression coefficients (especially b) are scales that range from low to 
high, from zero to 1.0 for R and R2 (and b usually, although not always, ranges between ±1), 
and thus it is natural to focus on the magnitude of these effects. So, what constitutes a large 
versus a small effect? Although there are general rules of thumb for a variety of statistics (e.g., 
Cohen, 1988), it is also the case that Cohen and others have urged that each area of inquiry 
should develop its own criteria for judging the magnitude of effects.

Much of my research focuses on the influences on school learning, influences like home-
work, parent involvement, academic coursework, and so forth. Based on my research and 
reading in this area, I use the following rules of thumb for judging the magnitude of effects 
on learning outcomes (e.g., achievement, Grades). I consider b’s below .05 as too small to 
be considered meaningful influences on school learning, even when they are statistically sig-
nificant. b’s above .05 are considered small but meaningful; those above .10 are considered 
moderate, and those above .25 are considered large (cf. Keith, 1999). Using these criteria, the 
b associated with time spent on Homework Out of School is large, whereas the b associated 
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with time spent on Homework In School would be considered tiny, even if it were statisti-
cally significant. Keep in mind, however, that these rules of thumb apply to research on 
learning and achievement, and that I have little idea how well they generalize to other areas. 
You will need to use your and others’ expertise in your own area of research to develop simi-
lar guidelines.

Regression findings can also be converted easily to other measures of effect size, notably 

Cohen’s f 2 via the formula f R
R

2

1

2

2=
−

. A common rule of thumb for f 2 is that .02 represents 

a small effect, .15 a medium effect, and .35 a large effect (Cohen et al., 2003, p. 95). These 
authors also recommend that researchers develop rules of thumb for their own substantive 
areas of research, however. We will discuss f 2 in more detail in chapter 5.

TESTING THE DIFFERENCE BETWEEN TWO  
REGRESSION COEFFICIENTS

In Chapter 2 we compared the magnitude of regression coefficients from two different equa-
tions. We also compared, qualitatively, the magnitude of two standardized coefficients from a 
single regression equation (Parent Education versus Homework), but postponed conducting 
a statistical comparison. We will do so now. Interestingly, this is a topic that I get asked about 
often in class, but few regression books address.

Note the regression results shown in Figure 4.5. Studying the b’s, you might note that 
Out-of-School Homework had a slightly larger standardized effect on Grades than did Par-
ent Education. You might also reasonably wonder whether the effect for Homework was 
statistically significantly larger than the effect for Parent Education. Here is a simple way to 
make such comparisons (derived from postings on sci-tech.archive.net and allexperts.com).

First, standardize the two variables you want to compare, in this case BYParEd and 
F1S36A2. An easy way to do so in SPSS is to ask for descriptive statistics and click the box to 
save standardized versions of these variables (see Figure 4.6). Next, create two new composite 
variables, one that is the sum of the two new standardized variables, and one that is the dif-
ference between the two:

sum_pe_hw_z=zbypared+zf1s36a2 and
dif_pe_hw_z=zbypared-zf1s36a2

Figure 4.6 Saving standardized values (z-scores) of Parent Education and Out-of-School Homework 
(in SPSS).
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(here I have used the convention, from SPSS, that standardized versions of variables have 
the same names preceded by a z).

Second, re-conduct the regression, but substitute the two new composite variables instead 
of the variables from which they were created. That is, in the current example, regress 10th-
grade GPA on In-School Homework, the Parent Education\Out-of-School Homework 
summed variable, and the Parent Education\Out-of-School Homework difference variable. 
The statistical significance of the coefficient associated with the difference between these two 
standardized variables (diff_pe_hw_z) is a test of the statistical significance of the difference 
between their standardized effects.

The relevant output from this regression is shown in Figure 4.7. Note that the model sum-
mary and the ANOVA table, showing the R2 and its statistical significance, are identical to 
those for the earlier regression (Figure 4.5). In the table of coefficients, however, the coeffi-
cient associated with the difference between the two variables (diff_pe_hw_z) is not statisti-
cally significant. This means that the difference between these (standardized) variables is not 
statistically significant. Thus, while it appears that the effect of Out-of-School Homework is 
slightly larger than the effect of Parent Education (Figure 4.4), that difference is not statisti-
cally significant.

FOUR INDEPENDENT VARIABLES

Our next example will also continue our exploration of the effects of time spent on homework 
on high school students’ achievement. The purpose of this example is twofold. First, it will 
extend our analyses to an example with four independent variables; you should feel quite com-
fortable with this extension by now, because the analysis and interpretation are very similar to 
those completed previously. Second, however, this extension of our example will erect a few 

Model Summary

.394a .155 .152 1.34998
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

a. Predictors: (Constant), dif_pe_hw_zParent Education–
Out HW Difference, sum_pe_hw_zParent Education–Out
HW Sum, f1s36a1 TIME SPENT ON HOMEWORK IN SCHOOL
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1649.320
1952.486

3
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101.056 55.450 .000
1.822

Regression
Residual
Total
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1

Sum of
Squares df Mean Square F Sig.

Coefficientsa

5.644

.012

.360

-.015

.077

.031

.029

.038

.012

.391

-.012

72.913

.379

12.506

-.392

.000

.704

.000

.695

5.492

-.048

.303

-.089

5.796

.072

.416

.059

(Constant)

f1s36a1 TIME SPENT ON
HOMEWORK IN SCHOOL

sum_pe_hw_zParent
Education--Out HW Sum

dif_pe_hw_zParent
Education--Out HW
Difference

Model
1

B Std. Error
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Coefficients

Beta
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Coefficients

t Sig. Lower Bound Upper Bound
95% Confidence Interval for B

a. Dependent Variable: ffugrad ffu grades

Figure 4.7 Testing the difference between two regression coefficients from the same regression 
equation.
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speed bumps in the merry analysis and interpretation road I have been leading you down. You 
should be troubled by the differences in these results and those presented previously. And 
although we will eventually resolve these problems, this example should begin to illustrate the 
importance of theory and thought in multiple regression analysis. On to the example.

Another Control Variable

For our previous examples, we have added a variable representing Parent Education to our 
regressions to “control,” to some extent, students’ family backgrounds. Our reasoning went 
something like this: parents who value education for themselves likely value education for 
their children, as well. Such parents are likely to emphasize learning, schooling, and study-
ing more than are parents who place a lower value on education (Walberg, 1981, referred to 
such an orientation as the “curriculum of the home”). As a result, children in such homes  
are likely to spend more time studying; they are also likely to earn higher grades. I noted pre-
viously that we needed to include Parent Education in the regression because, if our specula-
tion about the effects of Parent Education is correct, it is a potential common cause of both 
Homework and Grades.

What about other potential common causes? It seems likely that students’ academic apti-
tude, or ability, or previous achievement might also function in this manner. In other words, 
doesn’t it seem likely that more able students should not only earn higher grades but might 
also be inclined to spend more time studying? If so, shouldn’t some measure of students’ 
prior achievement be included in the regression as well?

Our next multiple regression example is designed with this speculation in mind. In it, I 
have regressed students’ 10th-grade GPA (FFUGrade) on both In-School (F1S36A1) and Out-
of-School Homework (F1S36A2), as in the previous example. Also included is a measure of 
Parents’ highest level of Education (BYParEd), again as in the previous example. This new 
regression, however, also includes a measure of students’ Previous Achievement (BYTests), an 
average of students’ scores on a series of academic achievement tests in Reading, Mathemat-
ics, Science, and Social Studies administered in the 8th grade. This new regression, then, tests 
the effects on Grades of In-School Homework versus Out-of-School Homework, while con-
trolling for Parents’ highest levels of Education and students’ Previous Achievement.

Regression Results

Descriptive statistics and the results of the multiple regression are shown in Figures 4.8 
and 4.9. As shown in Figure 4.8, the linear combination of the variables representing par-
ents’ education, previous achievement, time spent on in-school homework, and the time 
spent on out-of-school homework accounted for 28.2% of the variance in 10th-grade GPA  
(R2 = .282), which appears to be quite an improvement over the 15.5% of the variance 
explained by the previous multiple regression (in subsequent chapters we will learn how to 
test this change in R2 for statistical significance). The overall regression, as in the previous 
example, is statistically significant (F[4, 874] = 85.935, p < .001).1 Everything seems to be in 
order.

Trouble in Paradise

When we focus on Figure 4.9, however, we are led to different conclusions than in our previ-
ous analysis. Parents’ Education level and time spent on Homework Out of School still had 
statistically significant effects on Grades, but the magnitude of these effects are very differ-
ent. In the previous example, the unstandardized and standardized regression coefficients 
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Figure 4.8. Multiple regression with four independent variables: descriptive statistics and model summary.
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Figure 4.9 Multiple regression with four independent variables: regression coefficients.
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associated with Parent Education were .271 and .234, and now they are .091 and .079, respec-
tively. Indeed, all the coefficients changed, as shown in Table 4.1, with the addition of the new 
independent variable.

What this means is that the conclusions we draw from these regressions will also be 
very different. Focusing on the variables of primary interest (the two Homework variables), 
we conclude from the three-independent-variable multiple regression that Homework time 
Out of School had a large effect on Grades, using my rules of thumb, but in the four-variable 
regression, we conclude that Homework had only a moderate effect on Grades. The effect of 
In-School Homework was small and not statistically significant in both analyses, although 
the sign switched from positive to negative. What is going on? Were all our conclusions from 
the earlier analysis erroneous? (You may be tempted to conclude that we should instead focus 
only on statistical significance, since the same variables remain statistically significant versus  
not statistically significant in the two regressions. This conclusion is incorrect, however, 
because it is not always the case that the same variables will remain statistically significant 
with the addition of new independent variables.)

You should be troubled by this development. It suggests that our conclusions about the 
effects of one variable on another change depending on which other variables are included 
in our analyses. Focusing on the three-variable regression, you would conclude that each 
additional unit (whatever it is) of time spent on Homework out of school results in a .218-
point increase in GPA. If you believe the four-variable regression, however, you might argue 
that each additional unit of time spent on Homework out of school results in a .158-point 
increase in GPA. Which conclusion is correct?

This example illustrates a danger of multiple regression as illustrated so far: The regression 
coefficients will often (although not always) change depending on the variables included in our 
regression equation. This development certainly does not argue for the scientific respectability 
of our findings, however, nor does it bode well for the scientific respectability of multiple 
regression! If our conclusions change depending on the variables we include in our analy-
ses, then knowledge and conclusions depend on our skill and honesty in selecting variables 
for analysis. Research findings should be more constant and less ephemeral if they are to 

Table 4.1 Comparison of Regression Coefficients for the Three-Variable versus Four-Variable Mul-
tiple Regression

Variable Three independent variables Four independent variables

b

(SEb)

b b

(SEb)

b

Parent Education .271

(.037)

.234 .091

(.037)

.079

Previous Achievement – – .068

(.006)

.402

In-School Homework .012

(.031)

.012 –.012

(.029)

–.013

Out-of-School Homework .218

(.028)

.256 .158

(.027)

.186
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form the basis for understanding, knowledge, and theory. Furthermore, this change in find-
ings and conclusions means that, to some extent, we can find what we want by choosing the 
variables to include in our regression. Want to find that Parent Education has a moderate 
to strong effect on GPA? Don’t include previous achievement in your analysis. Want to con-
clude, instead, that Parent Education only has a small effect? Then do include a measure of 
previous achievement in your regression.

It may be small comfort if I tell you that this danger is not entirely a result of multiple 
regression, per se. Instead, it is a danger in most nonexperimental research, whatever sta-
tistical technique is used for analysis. This conundrum is one reason that many researchers 
argue against making causal conclusions from nonexperimental research: the results change 
depending on the variables analyzed. Of course, an admonition against nonexperimental 
research means that much scientific inquiry is simply not possible, because many worthy 
scientific questions—and especially questions in the behavioral sciences—are simply not 
testable through other means. This danger is also one reason that many researchers focus on 
prediction rather than explanation. We may be on slightly more stable ground if we make 
statements like “when GPA was regressed on Parent Education and Homework In and Out 
of School, Homework Out of School and Parent Education were statistically significant pre-
dictors of GPA, whereas Homework In School was not.” Such a predictive conclusion avoids 
the implied causal connection in my statements (e.g., that time spent on Homework Out of 
School has a strong effect (as in cause and effect) on Grade-point average). But a focus on 
prediction rather than explanation is also scientifically less valuable; it does not allow us to 
use our findings for the development of theory or to change the status quo. If all we can con-
clude is that homework predicts achievement, then we cannot legitimately encourage chil-
dren, parents, or teachers to use homework as a method of improving learning. Intervention 
thinking requires causal thinking! (cf. Tufte, 2001) Causal thinking, in turn, requires careful 
thought and knowledge of previous research and theory.

COMMON CAUSES AND INDIRECT EFFECTS

Fortunately, there is a resolution to this dilemma. Ironically, the solution requires additional, 
more formal, causal thinking, rather than less, and will be dealt with in depth in the begin-
ning of Part 2. In the meantime, I will present a brief preview of what is to come, enough, I 
hope, to quell your fears to some extent.

Figure 4.10 shows a model of the thinking underlying our four-independent-variable 
multiple regression, with the arrows or paths in the model representing the presumed influ-
ence of one variable on another. We have been using such models from the beginning of our 
regression journey. A more detailed model is shown in Figure 4.11. The explicitness of this 
model may seem surprising, but it should not; most of the paths simply present in figural 
form my earlier explanations concerning the reasons for the variables included in the mul-
tiple regression. The inclusion of the four independent variables in the multiple regression 
implies that we believe these variables may affect Grades and that we want to estimate the 
magnitude of these effects; it makes sense, then, to include paths representing these possible 
effects in the model. This portion of the model is implied, whether we realize it or not, every 
time we conduct a multiple regression analysis. Recall that we included the variables Par-
ent Education and Previous Achievement in our regression because we thought that these 
variables might affect both Grades and Homework, and thus the paths from these variables 
to the two Homework variables make sense as well. This reasoning accounts for all the paths 
except two: the path from Parent Education to Previous Achievement and the arrow from 
In-School Homework to Out-of-School Homework. Yet it makes sense that if Parent Educa-
tion affects Grades it should affect achievement as well. My reasoning for drawing the path 
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FFU
Grades

Parents
Education

Previous
Achievement

Homework
In School

Homework
Out of School

Figure 4.10 MR with four independent variables, in figural (path) format.

Figure 4.11 A more complete version of the four independent variable path model. This model makes 
explicit the presumed ordering of the independent variables.

FFU
Grades

Homework 
In School

c
a

d

b

Parent 
Education

Previous 
Achievement

Homework 
Out of School

from In School to Out-of-School Homework is that students who complete homework in 
school will take home homework that is not completed in school. Although not discussed 
here, most of these decisions are also supported by relevant theory.

The paths labeled a and b make explicit what we mean by a common cause: Our model 
assumes that Previous Achievement affects Grades directly (path a) and that it also affects 
Homework completed out of school (path b). If so, and if both of these paths are statistically 
significant and meaningful, then Previous Achievement must be included in the model to 
get an accurate estimate of the effects of Out-of-School Homework on Grades. To interpret 
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regression coefficients as effects, all common causes of the presumed cause and the presumed 
effect must be included in the model. If they are not, then the regression coefficients will be 
inaccurate estimates of the effects; in many cases, they will be overestimates of these effects. 
This, then, was the reason for the drop in the apparent effect of Out-of-School Homework 
on Grades from the three-independent-variable regression to the four-independent-variable 
regression: Previous Achievement, a common cause of both Homework and Grades, was 
erroneously excluded from the three-independent-variable model. With this common cause 
included in the model, we get smaller and more accurate estimates of effects.

If you include in the regression a variable that logically is prior to Homework Out of 
School and Grades, but is not a common cause of Homework and Grades, the regression 
weight for Out-of-School Homework will not change. That is, a variable that affects only 
Out-of-School Homework but not Grades will not change the Homework regression coef-
ficient. Likewise, a variable that affects Grades but not Out-of-School Homework will not 
change the Homework regression coefficient.2

There is a different reason for the drop in the apparent effects of Parent Education on 
Grades (from b = .271 to b = .091) in moving from the first to the second multiple regression. 
A portion of the effect we initially attributed to the effect of Parent Education on Grades now 
appears as an indirect effect. In our current model, Parent Education affects Previous Achieve-
ment (path d), and Previous Achievement affects Grades. Thus Parent Education affects 
Grades indirectly through Previous Achievement. Another way of saying this is that Previous 
Achievement partially mediates the effect of Parent Education on Grades. When we discuss 
structural equation modeling and path analysis, we will learn how to calculate these indirect 
effects, and you will find that for both models the total effects of Parent Education on Grades 
are the same. For now, just remember that it is not necessary to include mediating effects for 
multiple regression to provide accurate estimates of effects, but that the regression coefficients 
from simultaneous regression (the type of multiple regression we are currently doing) only 
focus on direct, not mediating, effects. In Chapter 5 we will see that another type of multiple 
regression, sequential regression, can be used to focus on total effects. We will discuss media-
tion more completely in Chapter 8, and more completely still in Part 2 of the text.

To reiterate, to interpret regression coefficients as the effects of one variable on another, 
the common causes of the presumed cause and presumed effect must be included in the 
regression. If your regression does include these common causes, you can indeed make such 
interpretations (well, there are a few other assumptions that we will deal with later in Chap-
ter 9). You can thus rest somewhat easier, because this requirement, although difficult, is not 
impossible to satisfy. In contrast, it is not necessary to include intervening variables in your 
regression, although you should keep in mind that, if you do include mediating variables 
between your presumed cause and presumed effect, your regression results are estimating 
only a portion of the total effect of one variable on another. We will deal with these topics 
more extensively in the next chapter and at the beginning of Part 2 of this book.

THE IMPORTANCE OF R2?

As we switched from a regression with three independent variables to one with four, we 
also noted that the R2 increased; we explained more variance in students’ GPAs. As you will 
discover in your reading, some researchers make much of the size of R2 and try to explain as 
much variance as possible in any given regression. I do not, and with a little reflection on the 
previous few sections, you may understand why. It is relatively easy to increase R2; just add 
more variables to the regression that predict the outcome. In the current example, we could 
add previous GPA to the regression, which would likely lead to another healthy increase in 
the variance explained, and we might also add a measure of motivation, assuming that it, 
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too, should increase the variance explained in students’ Grades. But recall that our primary 
interest in these regressions was to understand the effects of In-School and Out-of-School 
Homework on Grades. Indeed, it makes sense to add variables to the regression if these vari-
ables are common causes of Homework and Grades. In contrast, given our purpose, it makes 
little sense to add variables to the regression if they are not common causes of Homework 
and Grades. Thus, although we can inflate the R2 by adding to the regression variables that 
affected students’ Grades (but not Homework), such additions serve little purpose other 
than inflating the R2; they will not help us to better understand the effects of Homework 
on Grades. We can also increase R2 by adding intervening variables between Homework 
and Grades, but unless our interest is in understanding the indirect effects of Homework on 
Grades, this addition will also make little sense.

It is tempting to think that the more variance you have explained the closer you have 
come to understanding and explaining some phenomenon. But this is true only if you have 
included the proper variables in your regression. It is also tempting to think that if you find 
a high R2 you must have included the proper variables in your regression. This is also not 
necessarily the case. Suppose you regress students’ High School GPAs on their college GPAs. 
You will likely get a fairly high R2, but college grades do not influence High School grades 
(you have confused cause and effect). You have not explained the phenomenon. Or perhaps 
you decide to regress reading proficiency of elementary students on their shoe size. Again you 
would likely get a high R2, but you have not explained reading skill, nor have you chosen the 
right variables for your regression. The high R2 is the result of a spurious association (there 
is a common cause of reading proficiency and shoe size: growth or age). The high R2 did not 
assure that you chose the correct variables for inclusion in the regression.

Should you then ignore R2? No, of course not, and we have not done so here. My point 
is simply this: yes, other things being equal, the higher the R2 the better, but a high R2 is 
generally not the most important criterion if we are conducting regression for the purposes 
of explanation. What I suggest is that you make sure that R2 is reasonable, which depends 
on the constructs you are studying and requires some knowledge of research in this area. For 
the dependent variable of Grades, for example, I generally expect to explain 25% or so of 
the variance in Grades, and our four-independent-variable regression is consistent with this 
expectation. If we are focusing on achievement test scores, I expect a higher R2, whereas if 
our dependent variable is self-concept, I expect to explain less variance. Some phenomena 
are easier to explain than others; more reliable dependent variables should also lead to more 
explained variance. Likewise, prior to interpretation you should make sure the other regres-
sion results are reasonable. Suppose in the Grades–Homework regression used in this chap-
ter you found a negative regression coefficient associated with Previous Achievement. That 
result is so implausible that I likely would not interpret the findings no matter how high the 
R2 and certainly not without additional investigation.

Are you surprised that I think it’s reasonable to explain only 25% of the variance in Grades? 
This means that 75% of the variance in Grades is unexplained! I have several responses. 
First, yes, it’s difficult to explain human behavior; we are unpredictable creatures. To put it 
differently, you’d probably be insulted if I declared that I could predict your behavior with 
a high degree of accuracy. If I rattle off the influences of your grades and tell you that I can 
predict your future grades very accurately from these variables, you might even feel angry 
or defeated. When you think of it this way, you might thus be relieved that we are explaining 
only 25% of the variance in Grades. Or, as Kenny put it, “human freedom may then rest in the 
error term” (i.e., the unexplained variance) (1979, p. 9).

I should also note for the benefit of those more familiar with ANOVA that we will gener-
ally consider explaining 25% of the variance in a dependent variable as a large effect size in 
an ANOVA. “A good rule of thumb is that one is fooling oneself if more than 50% of the 



72 • MULTIPLE REGRESSION

variance is predicted” (Kenny, 1979, p. 9). It happens, but not often. When it does happen, 
it’s often the case that we have analyzed longitudinal data with the same variable measured 
at two points in time (as both the dependent and an independent variable). Finally, I should 
note that others place a greater emphasis on R2 than I do. Ask the instructor teaching your 
class: What’s his or her position on the importance of R2?

PREDICTION AND EXPLANATION

Let’s spend a little more time on a topic that we have broached a few times so far: the dis-
tinction between prediction and explanation. The underlying purpose of our research for 
purposes of prediction or explanation has important implications for how we choose the 
variables for regression, conduct the analysis, and interpret the results. As you will see in 
Chapter 5, some methods of multiple regression are better suited for one purpose than 
another. I am assuming that most readers will be interested in using multiple regression 
for explanatory purposes, and most of my examples have been set up accordingly. Many 
researchers blur these two purposes, however, and I may have done the same in previous 
chapters. It is time, however, to make the distinction sharper.

In most of the examples so far, we have been interested in the effects, or influences, of one 
or more variables on an outcome. Such an interest denotes an explanatory purpose; we want 
to explain, partially, how an effect comes about, and we use our independent, or explana-
tory, variables to accomplish this purpose. The explanatory intent of these examples is further 
revealed in our interpretations; we talk of the effects of homework, for example, on grades. 
Even more revealing, we discuss the probable results if students were to increase the time they 
spent on homework. Such an interpretation reveals a clear inference of cause and effect, and 
such an inference is the essence of explanation.

It is also possible to use multiple regression for the purpose of prediction. You may be an 
admissions officer of a college interested in predicting, in advance, which applicants to your 
college are most likely to perform well in school so that you can accept these students and 
reject those who are likely to perform poorly. In such an example, you have no real interest in 
explanation and no interest in making cause and effect interpretations. Your only interest is in 
making as accurate a prediction as is possible from the various predictor variables available 
to you. If prediction is your goal, you will want to maximize the R2 (in contrast to our earlier 
discussion).

As discussed previously in this chapter, if your interest is in explanation, you need to 
choose the variables for the regression equation very carefully. In addition to the dependent 
and independent variables of primary interest, your regression should include any likely com-
mon causes of these variables. At the same time, you should refrain from including any irrel-
evant variables (unless you wish to demonstrate that they are not common causes), because 
they are likely to dilute your power and muddy your findings. Because of the care needed in 
choosing the variables to include in an explanatory regression analysis, the researcher needs 
a firm grounding in relevant theory and previous research. Theory and previous research go 
far in telling you which variables should be included in such regressions.

If your interest is in prediction, however, you have much less need to fret over your selec-
tion of variables. Certainly, a knowledge of theory and previous research can help you maxi-
mize successful prediction, but it is not critical. In fact, if your purpose is simple prediction, 
then you could even use an “effect” to predict a “cause.”

An example will help illustrate this point. Intelligence (or aptitude or previous achieve-
ment) commonly appears in theories of school learning as an important influence on stu-
dents’ learning. Thus, explanatory regressions with achievement tests, grades, or some 
other measure of learning as an outcome often include a measure of one of these constructs 
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(intelligence, aptitude, etc.). It would make little sense to include a measure of grades as 
an independent variable in a regression analysis attempting to explain intelligence, because 
the analysis would reverse the “cause” and the “effect.” If our interest were only in predicting 
intelligence, however, including grades among the predictors would be perfectly acceptable. 
If grades made prediction more accurate, why not use them?

As noted previously, many researchers confuse these purposes, and thus don’t think through 
the variables carefully when conducting an explanatory regression or end up using an approach 
more suited to prediction, when their real interest is in explanation. Even worse, it is not 
unusual for a researcher to set up and conduct a prediction-oriented regression, but then  
interpret the results in an explanatory fashion. For example, I have seen researchers speak 
of prediction throughout a research article, carefully eschewing any sort of causal language. 
But then, in the discussion, the researchers argue that programs or interventions are needed to 
change the level of a variable from their study to effect change in the outcome, and such an 
argument is predicated on causal, explanatory thinking. This bait and switch, while presumably 
unintentional, is poor practice and may lead to wildly erroneous conclusions (think about an 
erroneous, explanatory interpretation of our previous prediction example). Don’t fall prey to 
this bait and switch in your own research or in reading the research of others. Be clear as to 
whether your purpose is explanatory or predictive, choose your method accordingly, and inter-
pret your findings properly.3

SUMMARY

This chapter extended the example used in previous chapters to illustrate multiple regres-
sion with three and four independent variables. First, we regressed Grades on Parent Educa-
tion, time spent on In-School Homework, and time spent on Out-of-School Homework. 
The results suggested that Out-of- School Homework had a strong effect on Grades, whereas 
In-School Homework had no such effect. In the second example, we added another variable 
to the regression, students’ Previous Achievement. In this regression, Homework Out of 
School had only a moderate effect on Grades. As we have seen, the analysis and interpretation 
of these examples were very similar to those in earlier chapters. We can easily add additional 
independent variables, with straightforward analysis and interpretation.

We made a disturbing discovery, however: the regression coefficients changed in magnitude 
as we added new variables to the multiple regression equation. I argued that there may be two 
reasons for such changes: first, if a common cause of a presumed cause and a presumed effect 
is included in a regression, the regression coefficients will change from those found when such 
a variable is excluded from the regression. Second, if an intervening variable is included in a 
regression between the presumed cause and the presumed effect, the regression coefficients 
will change in magnitude, because the regression coefficients focus only on direct effects. 
The first reason for the change in the regression coefficients constitutes a serious error in the 
analysis, but the second does not.

I discouraged a fixation on R2, as well as a temptation to maximize R2. We should include 
the relevant variables and not load up our regressions with irrelevant variables. You might, in 
fact, reasonably be suspicious when you obtain R2’s above .50.

These problems and concerns only apply to regression for which you are interested in 
explanation, that is, when you are interested in the magnitude of the effect of one variable 
on another. They are less applicable when your chief interest is in the simple prediction of 
one variable from a group of others. I have argued, however, that such simple prediction is 
scientifically less appealing, because it does not allow you to think in terms of theory, inter-
ventions, policy, or changes to the status quo. One thing you must not do is to pretend you 
are interested in simple prediction but then switch to an explanatory conclusion (e.g., if you 
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spent more time on homework out of school, your grades would likely improve). Unfor-
tunately, such bait and switch tactics are depressingly common in the research literature. I 
have also argued that it is necessary to think causally to understand what is happening in 
explanatory analyses; path diagrams are a useful heuristic aid to such thinking. We will use 
such diagrams throughout this text to explicate important concepts. We will cover these 
topics in more detail in Part 2; for now, we will continue to focus on the proper analysis and 
interpretation of multiple regression. You have no doubt noticed that there are several topics, 
including prediction and explanation, understanding which variables should be included in 
a regression, and the proper interpretation of regression coefficients, that we will revisit on a 
regular basis. I believe these issues are important to introduce early to get you thinking about 
them. We will revisit them as your knowledge increases and eventually resolve them.

EXERCISES

1. If you have not done so already, conduct the two multiple regression analyses presented 
in this chapter. Compare your results to mine. Analyze the descriptive statistics for the 
variables used (e.g., means, standard deviations, variances, minimum and maximum 
for all variables, frequency distributions of Parent Education, Homework In School, 
and Homework Out of School) to make sure you understand the metric of the vari-
ables. Provide a formal, English, and real-world (e.g., to parents) interpretation of the 
findings.

2. Does the size of an adolescent’s family influence his or her self-esteem? Does TV view-
ing affect self-esteem? Using the NELS data, regress 10th-graders’ Self-Concept scores 
(F1Cncpt1) on Parent Education (BYParEd), Achievement (BYTests), Family Size 
(BYFamSiz), and TV Time (create a composite by calculation of the mean of BYS42A 
and BYS42B). Check the variables to make sure that you understand their metric 
(F1Cncpt1 has positive and negative values because it is a mean of z scores; positive 
scores represent more positive self-concept). Clean up the data, as needed, and run the 
multiple regression. Interpret your findings. Do any of your findings surprise you? Are 
you willing to interpret the regression coefficients as effects? Why or why not?

3. Does age affect eating disorders in women? Tiggemann and Lynch (2001) studied 
the effect of women’s body image on eating disorders across the life-span. The file 
labeled “Tiggeman & Lynch simulated.sav” includes a simulated version of some of 
the variables from this research (the data are also contained in an Excel file and a text 
file with the same name, but the extension “.xls” or “.dat”). The variables in the file 
are Age (21 to 78), the extent to which the women habitually monitored their bodies 
and how it looked (Monitor), the extent to which the women felt shame when their 
bodies did not look the way they expected (Shame), the extent to which women felt 
anxiety about their bodies (Anxiety), and the extent to which the women endorsed 
eating disorder symptoms (Eat_Dis). Is the correlation between age and eating dis-
orders statistically significant? When you regress eating disorders on Age and these 
other variables (Monitor, Shame, and Anxiety), does age have an effect on eating dis-
orders? Which of these variables are most important for explaining eating disorders? 
Interpret your findings.

4. Conduct a multiple regression on four or five variables of your choice. Look through 
the NELS data and find a variable you are interested in explaining. Pick several inde-
pendent variables you think may help in explaining this dependent variable. Examine 
descriptive statistics for these variables and frequencies for variables with a limited 
number of response options to make sure you understand their scales. Clean up the 
data as needed; that is, make sure the variables are coded in the proper order and that 
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missing values are dealt with properly (e.g., “Don’t know” responses are coded as miss-
ing, rather than as a value that will be analyzed). Conduct the multiple regression and 
interpret the results. Are there any threats to your analysis and interpretation (e.g., 
neglected likely common causes)?

5. Do all those advertisements you see for drugs affect your perceptions of risk for disease? 
Park and Grow (2008) questioned whether exposure to direct-to-consumer advertising 
for antidepressants affected people’s perceptions of the prevalence of depression and 
their own risk of depression. The file “depression advertising.sav” includes a simu-
lated version of some of the variables used in Park & Grow’s research. The file includes 
data from 221 (simulated) undergraduate students enrolled in introductory advertis-
ing classes. The variables in the file are Age (in years), Experience (whether they knew 
people with and treated for depression, the sum of 3 questions each coded 1 [no] or 
2 [yes]), Familiarity with advertisements for depression drugs (a sum of familiarity on 
a 1 to 7 scale for six antidepressant ads, with high scores representing greater famil-
iarity), perceived Prevalence of depression (students’ perceptions of U.S. prevalence 
of depression, in percentages, so that a high score represents a higher estimate of the 
prevalence of depression), and Risk, students’ perceptions of their own risk of suffer-
ing from depression in their lives (percentage). Examine descriptive statistics for these 
variables to make sure they are reasonable (given the brief description of each). The 
key variables are perceived Risk and Familiarity with advertising. What is the correla-
tion between these two variables; are they related? Regress Risk on Familiarity, while 
controlling for Age, Experience, and Prevalence. Does familiarity with antidepressant 
advertising affect perceived Risk of depression? Which variable is most important for 
explaining perceived Risk? Provide a formal, English, and real world interpretation of 
your findings. 

6. This exercise is designed to explore further the nature of common causes, and what 
happens when non-common causes are included in a multiple regression. We will 
begin our analysis of these data here, and will return to them in Part 2 when we have 
the tools to explore them more completely. There are two data files for this exercise, 
both including variables labeled X1 X2 X3 and Y1. In both files, the three X variables 
are intercorrelated, but variable X2 is not a common cause of variables Y1 and X3. For 
the data in the first file (common cause 1.sav), variable X2 has no effect on Y1. In the 
second file (common cause 2.sav), variable X2 has no effect on variable X3. For “com-
mon cause 1.sav” regress variable Y1 on variables X1 X2 and X3. Next, regress variable 
Y1 on just X1 and X3. Compare the regression coefficients for variable X3 in the first 
versus the second analysis. Did it change substantially? Now do the same analysis for 
“common cause 2.sav.” Again, does the coefficient for variable X3 change from the first 
to the second regression? Discuss the meaning of these findings in class.

Notes

1 You may—and should—wonder about the substantial change in degrees of freedom. In the previ-
ous example, we had 3 and 905 degrees of freedom, with 3 degrees of freedom for the regression 
of Grades on three independent variables (df = k = 3) and 905 df for the residual (df = N − k − 1 
= 909 − 3 − 1 = 905). Now we have 4 and 874 df. The 4 makes sense (df = k = 4), but the 874 does 
not. The reason is due to our treatment of missing data. All large-scale surveys have missing data, 
as does NELS. In these regressions I have used listwise deletion of missing data, meaning that any 
person who had any missing data on any one of the five variables in the analysis was not included 
in the analysis. Apparently, some students who had complete data when four variables were used 
(Grades, Parent Education, Homework In School, and Homework Out of School) had missing 
data for the new variable Previous Achievement. When this new variable was added, our sample 
size (using listwise deletion) decreased from 909 to 879, so our new residual degrees of freedom 
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equals 879 − 4 − 1 = 874. Listwise deletion is the default treatment of missing data in SPSS and 
most other programs, but there are other options as well. Better options for dealing with missing 
data are discussed in Part 2 of this book.

2 To demonstrate why this is so, I need to skip ahead to some concepts presented in Part 2, Chap-
ter 11. Our formula for calculating b from correlations e g r r r ry y. ., β1 1 2 12 12

21= − −



( )/( )  will not 

work because we are talking about effects, not correlations, equal to zero. Thus, you can either take 
these statements on faith for now or continue with this note. Focus on the model shown in Figure 
4.12, a much simplified version of the model from Figure 4.11. The variables of primary inter-
est are Homework Out of School (Homework) and Grades. The variable labeled X is a potential 
common cause of Homework and Grades. The paths are equivalent to b’s. The path c is equal to 
the regression weight for Homework when Grades is regressed on X and Homework, and the path 
b is equal to the regression weight for X for this same regression. We will see in Chapter 11 that  
rGrades . Homework = c + ab. But if X has no effect on Grades (the first way by which X would not be a 
common cause), then b = 0, and, as a result, rGrades . Homework = c. In other words, in this case the b is 
the same as the r. This means that when X affects Homework but not Grades the b for Homework 
from the regression of Grades on Homework and X will be the same as the correlation between 
Grades and Homework. Recall from Chapter 1 that b is equal to r when there is only a single 
independent variable. Thus my comment “a variable that affected only Out-of-School Homework 
but not Grades would not change the Homework regression coefficient.” My second statement 
was “a variable that affected Grades but not Out-of-School Homework would not change the 
Homework regression coefficient.” In this case the path a would be equal to zero. Using the same 
formula as above rGrades . Homework = c + ab , if a were equal to zero, then rGrades . Homework = c again. 
If X has no effect on Homework, then with the regression of Grades on Homework and X, the 
regression coefficient for Homework will be the same as if X were not included in the regression. 
If a variable is not a common cause of Homework and Grades, then its inclusion in the regression 
will not change the regression coefficients. 

3 To some extent, these distinctions overlap those made by Huberty (2003) between multiple correla-
tion analysis and multiple regression analysis.

X

Homework

Grades

a

b

c

Figure 4.12 Simplified version of Figure 4.7, used to demonstrate what happens to regression coef-
ficient equations in the absence of common causes.
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The type of multiple regression that we have been using so far in this book is one of three 
major types or flavors of multiple regression, commonly called simultaneous or forced entry 
regression. In this chapter, we will compare simultaneous regression to two other types of 
multiple regression, sequential (hierarchical) regression and stepwise regression. As you will 
see, the different types of multiple regression serve different purposes and have different 
interpretations and different strengths and weaknesses.

We will analyze one problem several different ways to illustrate the differences in the three 
regression approaches. Suppose you are interested in the effect of self-perceptions on some aspect 
of academic performance. Specifically, you are interested in achievement in Social Studies. We 
will use the NELS data and the 10th-grade achievement standardized scores on the History, Civ-
ics, and Geography (or Social Studies) test (F1TxHStd). For measures of self-perceptions, the 
examples will use a short measure of 10th-grade self-esteem (F1Cncpt2), made up of seven items 
such as “I feel I am a person of worth, the equal of other people” and “On the whole, I am satisfied 
with myself.” The items were reversed, if necessary, so that high scores represented higher self-
esteem. The items were converted to z scores and then averaged to create the composite. (NELS 
also includes another self-esteem variable, labeled F1Cncpt1, which uses fewer items than does 
the F2Cncpt2 composite that we are using.) Also included in the regressions is a short measure of 
locus of control (F1Locus2), a measure of the degree to which people believe they control their 
own destiny (an internal locus of control) versus the extent to which they believe external forces 
control them (an external locus). Sample items include “In my life, good luck is more important 
than hard work for success” and “Every time I try to get ahead, something or somebody stops me.” 
F1Locus2 included six items, with higher scores representing a more internal locus of control.

In the regressions, we will also include two control variables in the spirit of our previous 
discussion of the importance of including common causes in our analyses. Instead of parent 
education level, we turn to a broader socioeconomic status (SES) variable (BySES). This SES 
variable includes a measure of the parents’ level of education, but also includes measures of 
the parents’ occupational status and family income. BySES is a mean of z-scores of these items. 
Such SES variables are common in regression analyses of educational outcomes, although 
they may go by the name of Family Background, rather than SES. We will call this variable 
SES for now; remember, however, that it is much more than a measure of income. Students’ 
Grade-Point Average from grades 6 to 8 (ByGrads), on a standard 4.0 scale, was included in 
the regressions as a measure of students’ previous academic performance. Descriptive statis-
tics for the five variables are shown in Figure 5.1, and the correlation matrix of the variables 
is shown in Table 5.1. The path model version of the regression set-up is shown in Figure 5.2. 

Figure 5.1 Descriptive statistics for the NELS variables used in the chapter.

Descriptive Statistics

923 28.94 69.16 50.9181 9.9415 98.834

1000 -2.414 1.874 -3.1E-02 .77880 .607

983 .5 4.0 2.970 .752 .566

941 -2.30 1.35 3.97E-02 .6729 .453

940 -2.16 1.43 4.70E-02 .6236 .389

887

F1TXHSTD 
HIST/CIT/GEOG
STANDARDIZED
SCORE
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SOCIO-ECONOMIC
STATUS COMPOSITE
BYGRADS  GRADES
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F1CNCPT2 
SELF-CONCEPT 2
F1LOCUS2  LOCUS
OF CONTROL 2
Valid N (listwise)

N Minimum Maximum Mean
Std.
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Table 5.1 Intercorrelations among 10th-Grade Social Studies Test Score, Parent SES, Previous GPA, 
Self-Esteem, and Locus of Control

Variables F1TxHStd BySES ByGrads F1Cncpt2 F1Locus2

F1TxHStd 10th-Grade Standardized Test 1.000
BySES Socioeconomic Status 

Composite
.430 1.000

ByGrads Grades Composite .498 .325 1.000

F1Cncpt2 Self-Concept 2 Composite .173 .132 .167 1.000

F1Locus2 Locus of Control 2 Composite .248 .194 .228 .585 1.000

Figure 5.2 Path representation of the simultaneous regression of Social Studies Achievement on SES, 
Previous Grades, Self-Esteem, and Locus of Control.

Achievement

SES

Previous
Grades

Self-Esteem

Locus of
Control

SIMULTANEOUS MULTIPLE REGRESSION

The Analysis

In the type of multiple regression we have been using so far, all the independent variables 
were entered into the regression equation at the same time, thus the label simultaneous 
regression. This type of regression is also referred to as forced entry regression, because all 
variables are forced to enter the equation at the same time, or standard multiple regression. 
The simultaneous multiple regression results are shown in Figure 5.3. These are the type of 
results you are used to looking at, so we will not spend much time with them. First, we focus 
on the R and the R2 and their statistical significance; the four explanatory variables in com-
bination account for 34% of the variance in 10th-grade Social Studies test scores. The overall 
regression is statistically significant (F = 112.846 [4, 882], p < .001). The next step is to focus 
on the unstandardized regression coefficients, their statistical significance and confidence 
intervals, and the standardized regression coefficients. From this portion of Figure 5.3, you 
can see that all of the variables except Self-Esteem have a statistically significant effect on 
the Social Studies test score. SES and previous Grades have a strong effect, whereas Locus of 
Control has a small to moderate effect.
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Purpose

Simultaneous regression is primarily useful for explanatory research to determine the extent 
of the influence of one or more variables on some outcome. In the present example, we 
could use simultaneous regression to determine the extent of the influence of Self-Esteem 
and Locus of Control on social studies achievement, while controlling for SES and previous 
academic performance. Simultaneous regression is also useful for determining the relative 
influence of each of the variables studied; indeed, it may be the best method for making 
this determination. As noted in the previous chapter, simultaneous regression estimates the 
direct effects of each independent variable on the dependent variable.

Because explanation subsumes prediction, however, simultaneous regression can also be 
used to determine the extent to which a set of variables predicts an outcome and the relative 
importance of the various predictors. For the current example, we can examine the b’s to 
conclude that previous Grades is the best predictor among this set of variables, followed by 
SES and Locus of Control. Simultaneous regression can also be used to develop a prediction 
equation; for the current example, the b’s could be used in an equation with a new sample of 
students to predict 10th-grade social studies achievement. 

What to Interpret

In simultaneous multiple regression, the R2 and associated statistics are used to determine the 
statistical significance and importance of the overall regression. The regression coefficients 

Figure 5.3 Simultaneous regression of Social Studies test scores on SES, Previous Grades, Self-Esteem, 
and Locus of Control.

Model Summary
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are used to determine the magnitude of effect of each variable (controlling for the other vari-
ables) and, as we have seen, can be used to make policy or intervention recommendations. 
Such recommendations are particularly useful when the variables used have a meaningful 
metric (unlike the current example), using the unstandardized regression coefficients. The 
standardized coefficients are useful for determining the relative importance of each explana-
tory variable.

Strengths and Weaknesses

As we will see, simultaneous MR is very useful when the goal of research is explanation, 
because of the ability to focus on both the overall effect of all variables and the effect of 
each variable by itself. The regression coefficients are useful for making predictions con-
cerning what would happen if interventions or policy changes were made (e.g., how much 
would achievement increase if one were able to effect a change in locus of control from 
external to internal), and the standardized coefficients can provide information concern-
ing the relative importance of various influences. If one has used theory and previous 
research to choose the variables to include in the regression, simultaneous regression can 
indeed provide estimates of the effects of the independent on the dependent variables. We 
have already broached the primary weakness of simultaneous MR: the regression coeffi-
cients can change, perhaps drastically, depending on the variables included in the regres-
sion equation.

SEQUENTIAL MULTIPLE REGRESSION

Sequential (also called hierarchical) regression is another common method of multiple 
regression and, like simultaneous regression, is often used in an explanatory manner. We 
will spend considerable time discussing the method, its interpretation, strengths, and weak-
nesses. This discussion will also point toward similarities and differences with simultaneous 
regression. We will end with a summary of this presentation.

The Analysis

With sequential multiple regression, the variables are entered into the regression equation 
one at a time, in some order determined in advance by the researcher. For our current exam-
ple, I entered SES into the equation in the first block, then previous GPA in the second block, 
then Self-Esteem, and finally Locus of Control. 

The primary results of interest are shown in Figure 5.4. The first table in the figure 
shows that the variables were entered in four blocks (rather than one) and the order of 
entry of the variables. The second portion of the figure provides the statistics related to 
each block of the sequential regression. With sequential regression, instead of focusing 
on the regression coefficients, we often focus on the change in R2 (DR2) to determine 
whether a variable is important and to test the statistical significance of each variable in 
the equation.

SES was the first variable entered, and the DR2 associated with SES was .185 (.185 minus 0,  
because no variance was explained prior to the entry of SES into the equation). With the entry 
of previous Grades in the equation, the R2 increased to .328, so DR2 for previous Grades is 
.143 (.328 − .185), and the addition of Self-Esteem increased the variance explained by .5% 
(DR2 = .005), and so on.
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Are these increases in explained variance statistically significant? The formula we use is a 
simple extension of one of our earlier formulas:

F
R R k k

R N k
=

− −
− − −

12
2

1
2

12 1

12
2

121 1

/

/( )

In other words, we subtract the R2 from the equation with fewer variables from the R2 
with more variables (DR2). This is divided by the unexplained variance (from the equation 
with more variables). The numerator uses the change in degrees of freedom (which is often 
1), and the denominator uses the degrees of freedom for the equation with more variables. 
As in the earlier simultaneous regression, N = 887.

We’ll use the formula to calculate the F associated with the final step of the sequential 
multiple regression:
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Figure 5.4 Sequential regression of Social Studies test scores on SES, Previous Grades, Self-Esteem, 
and Locus of Control.
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which matches the value shown in the figure (7.918), within errors of rounding. In other 
words, the addition of Locus of Control to the equation leads to an increase in R2 of .006, 
or a 6/10 of 1% increase, in explained variance. This seemingly tiny increase in variance 
explained is statistically significant, however (F = 7.918 [1, 882], p = .005).

Of course, we can also test the overall regression equation, with all variables entered, for 
statistical significance. The overall R2 = .339, F = 112.846 [4, 882], p < .001, which is the same 
result we got with the simultaneous regression.

Comparison to Simultaneous Regression

It will be instructive to compare the results of our sequential regression to those of the simul-
taneous regression using the same variables (Figures 5.3 versus 5.4). One of the most striking 
differences is that for the simultaneous regression Self-Esteem was not statistically significant, 
whereas for the sequential regression it was statistically significant (DR2 = .005, F = 6.009 [1, 
883], p = .014).Why do we get different answers with the different methods? The second dif-
ference is that the magnitude of effects, as suggested by the DR2’s in the sequential regression, 
seems so different and so much smaller than the effects suggested by the b’s in the simultane-
ous regression. In the simultaneous regression, for example, we found a small to moderate 
effect for Locus of Control on the Achievement tests (b = .097), but in the sequential regres-
sion, Locus of Control accounted for only a .6% increase in the variance explained in Social 
Studies achievement, a seemingly minuscule amount. We will deal with the first problem (sta-
tistical significance) first and with the second issue (magnitude of effects) following.

The Importance of Order of Entry

As you will soon discover, the statistical significance (and the apparent magnitude of effect) 
of the variables in a sequential regression depends on their order of entry into the equation. 
Look at Figure 5.5. In this sequential regression, the first two variables were entered in the 
same order, but Locus of Control was entered at step 3 and Self-Esteem at step 4. With this 
order of entry, the Self-Esteem variable was again not statistically significant (p = .663). The 
primary reason that Self-Esteem was statistically significant in one sequential regression and 
not the other is, of course, the difference in variance accounted for by Self-Esteem in one 
regression versus the other (DR2 = .005 in Figure 5.4 versus .001 in Figure 5.5). 

Next, focus on Figure 5.6. For this regression, the order of entry into the sequential regres-
sion was Locus of Control, Self-Esteem, previous Grades, and SES. Notice the drastic change 
in the variance accounted for by the different variables. When entered first in the regression 
equation, SES accounted for 18.5% of the variance in Achievement (Figures 5.3 and 5.4), but 
when entered last, SES only accounted for 7.2% of the variance (Figure 5.6). The bottom line 
is this: with sequential multiple regression, the variance accounted for by each independent 
variable (i.e., DR2) changes depending on the order of entry of the variables in the regression 
equation. Because the DR2 changes depending on order of entry, variables will sometimes 
switch from being statistically significant to being not significant, or vice versa. Again, we 
have encountered a disconcerting discrepancy.

If the order of entry makes such a big difference in sequential regression results, what then 
is the correct order of entry? A cynical, unethical answer might be to enter the variables you 
want to show as important first in the regression equation, but this is an indefensible and 
inferior solution. What are the options? What was my thinking for various orders of entry 
in Figures 5.4 through 5.6? One common and defensible solution is to input the variables in 
order of presumed or actual time precedence. This was my thinking for the first example. SES, 
a parent variable largely in place when many children are born, should logically precede the 



Figure 5.5 Sequential regression of Social Studies test scores on SES, Previous Grades, Locus of 
Control, and Self-Esteem. With sequential regression, the order of entry of the variables affects their 
apparent importance.
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Figure 5.6 Sequential regression of Social Studies test scores on Locus of Control, Self-Esteem, Previ-
ous Grades, and SES. Again, the order of entry makes a big difference in the apparent effects of the 
variables with sequential regression.

Model Summary
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student variables, measured in 8th and 10th grades. Previous Grades, from grades 6 through 
8, is prior to both Self-Esteem and Locus of Control measured in 10th grade. Self-Esteem and 
Locus of Control are a little more difficult, but it seems to me that conceptions of one’s worth 
should come about and thus be causally prior to conceptions of internal versus external 
control. It would also be possible to argue that one’s conception of internal versus external 
control may be prior to feelings of self-worth, reasoning that was operationalized in the sec-
ond sequential regression example of Figure 5.5. Beyond actual time precedence and logic, 
previous research can also help make such decisions. I know of one study that tested these 
competing hypotheses, and it supported either a reciprocal relation or self-esteem as prior to 
locus of control (Eberhart & Keith, 1989).

For Figure 5.6, variables were entered in possible reverse time precedence, with strikingly 
different findings. And there are undoubtedly other methods for deciding the order of entry: 
perceived importance, background variables versus variables of interest, static versus manipu-
lable variables, and so on. But again, which method is correct? And why is order so important?

Why Is Order of Entry So Important?

One way of understanding why different orders of entry make such a difference in findings 
is through a return to Venn diagrams. Figure 5.7 shows the relations among three hypotheti-
cal variables: a dependent variable Y, and two independent variable X1 and X2. The areas of 
overlap represent the shared variance among the three variables. The shaded area of overlap 
marked 1 (including area 3) represents the variance shared by X1 and Y, and the shaded area 
marked 2 (including area 3) represents the variance shared by X2 and Y. But these variances 
overlap, and area 3 represents the variance shared by all three variables. It is the area of dou-
ble shading (3) that is treated differently depending on the order of entry of the variables in 
sequential regression. If X1 is entered first into the equation to predict Y, this variance (area 1 
and area 3) is attributed to variable X1. When variable X2 is added, the DR2 is equal to area 2 
(excluding area 3). In contrast, if Y is first regressed on variable X2, then both areas 2 and 
3 will be attributable to variable X2, and when variable X1 is subsequently added, only the 

Figure 5.7 Venn diagram illustrating why the order of entry is so important in sequential regression. 
The variance shared by all three variables (area 3) is attributed to whichever variable is first entered 
in the MR.
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variance of area 1 (excluding area 3) will be attributed to it. This heuristic aid helps explain 
why order of entry makes a difference, but the question of which order is correct is still not 
answered.

Total Effects 

It is again useful to turn to path diagrams to further understand why we get a difference 
depending on order of entry and to help us to understand the proper order of entry. Fig-
ure 5.8 shows a model that represents the ordering used for the initial sequential analysis 
(Figure 5.4). As discussed in previous chapters, the regression coefficients from the simulta-
neous multiple regression in fact are estimates of the direct paths, or direct effects, to the final 
outcome, Social Studies Achievement. These paths are marked a, b, c, and d, and we could 
simply insert the standardized or unstandardized coefficients from the simultaneous regres-
sion (Figure 5.3) in place of these letters. Simultaneous regression estimates the direct effects 
in such models.

But we chose a particular order of entry in the sequential regression. SES was entered first, 
then Previous Grades, then Self-Esteem, and then Locus of Control. This ordering is repre-
sented in two ways in Figure 5.8: first, in the left-to-right sequencing of the variables, and 
second, by the dashed arrows from one variable to the next suggesting that SES comes first, 
followed by Previous Grades, and so on.

Figure 5.9 shows an even more complete representation of our sequential regression. 
The model still includes the direct effects (paths a through d), and, as we will see, these are, 
in fact, estimated in the last block of the sequential regression. Note that this model, unlike 
those in previous chapters, also includes indirect pathways from earlier to later variables. 
That is, there are also indirect effects in this model. Thus, in addition to the possible direct 
effect of Self-Esteem on Achievement (path a), Self-Esteem also has an indirect effect on 
Achievement, through Locus of Control, symbolized by the heavier arrows in the figure 
(paths e and d). If we were to estimate path e, we could actually multiply path e times 
path d to produce an estimate of this indirect effect. And we could also sum the direct and 
indirect effects of Self-Esteem on Achievement to estimate the total effect of Self-Esteem 
on Achievement.

Figure 5.8 Path representation of a sequential regression. The model shows the sequencing of the first 
sequential regression (the regression in Figure 5.4).
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As it turns out, sequential multiple regression estimates the variance accounted for by 
these total effects. (Note that the DR2’s do not estimate the total paths directly but rather the 
variance attributable to these total effects.) Thus the reason that sequential multiple regres-
sion may give us one answer concerning the importance of different variables and simulta-
neous multiple regression a different answer is that they focus on two different aspects of the 
multiple regression. Simultaneous regression focuses on estimates of direct effects, whereas 
sequential regression focuses on the variance accounted for by total effects.

Variables entered first in a sequential regression have larger effects, other things being 
equal, than do variables entered later in the equation, because there are many more (indirect) 
ways variables entered early can affect the final outcome. Thus SES, for example, seems to 
have a relatively large effect when entered first in a sequential regression, because it can thus 
affect Social Studies Achievement through Grades, Self-Esteem, and Locus of Control.

Armed with this understanding, the question of the proper order of entry becomes 
clearer. Whether we realize it or not, any time we use sequential regression in an explana-
tory manner, we have implied a model such as that shown in Figure 5.9! The proper order 
of entry is the order implied by our models, assuming those models are set up correctly. 
Thus, if you use sequential regression, you had better first spend some time thinking 
through the model that underlies your analysis. If you do not think through your model 
correctly, your analysis will produce inaccurate estimates of the effects of one variable on 
another. When variables are entered prematurely, sequential regression will overestimate 
their effects. The effects of variables that are entered later than they should be in the analy-
sis will be underestimated. If you use sequential regression, you should be prepared to 
defend the model underlying this regression. As you read the results of others’ sequential 
regressions, you should sketch out the models underlying these regressions to make sure 
they are reasonable.

Problems with R2 as a Measure of Effect

We have discussed the problem of variables changing in apparent importance depending 
on their order of entry in a sequential regression. Let’s now return to our second concern: 
why do all the effects in sequential regression appear so much smaller than in simultane-
ous regression (e.g., Figure 5.3 versus 5.4)? The reason, of course, is that in simultaneous 

Figure 5.9 A more complete version of the initial sequential regression model.
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regression we focus on the regression coefficients as the measure of the importance of 
effects, whereas with sequential regression, we focus on the DR2’s, the increments to the 
explained variance, as indicators of the importance of effects. And although variances have 
a number of desirable properties—variances are easy to work with in formulas, and they 
are a familiar metric—explained variance is a very stingy measure of the effect of one vari-
able on another (Rosenthal & Rubin, 1979). There are many possible examples of this tru-
ism. For example, everyone knows the importance of smoking on lung cancer; smoking is 
one of the primary causes of lung cancer. How much variance, then, do you think smoking 
explains in lung cancer: 30%? 50%? No matter what your answer, you will be surprised: 
smoking explains 1% to 2% of the variance in lung cancer (Gage, 1978)! The point is not 
that smoking is unimportant; the point is that this seemingly small amount of variance is 
important.

What statistic comes closer to representing “importance” than R2? Darlington (1990) sug-
gested using the unsquared metric, rather than the squared metric. It does make a differ-
ence. A multiple correlation of .40 is twice as large as a multiple correlation of .20, but if we 
squared these correlations, the first accounts for four times the variance as the second (.16 

versus .04). In sequential multiple regression, the unsquared counterpart to DR2 is ∆R2  

(which is not the same as DR). ∆R2 , as it turns out, is equal to what is known as the semi-
partial correlation of Y with X, controlling for the other variables in the equation. Conceptu-
ally, a semipartial correlation is the correlation of Y with X1, with the effects of X2, X3, and so 
on, removed from X1. It may be symbolized as sry(1.23), with the parentheses showing that the 
effects of X2 and X3 are removed from X1 but not from Y. (Partial and semipartial correla-
tions are presented in more depth in Appendix C.) Turning to the sequential regression from 

Figure 5.4, the ∆R2 ’s will equal .430, .378, .071, and .077 for SES, Grades, Self-Esteem, and 
Locus of Control. These values are at least a little more consistent with the b’s from Figure 
5.e than are the DR2’s.

There is another reason for preferring ∆R2  to DR2 (and R to R2, and r to r2, and 
so on): these unsquared coefficients generally come closer to representing most defini-
tions of “importance” than do the squared coefficients (Darlington, 1990). Darlington 
provided several useful examples. To use one example (Darlington, p. 212), suppose I ask 
you to flip two coins, a dime and a nickel. If either coin comes up heads, I will pay you 
the amount of that coin (10 cents or 5 cents). Over a long series of coin flips, you will 
earn 5 cents 25% of the time (i.e., nickel = heads, dime = tails), 10 cents 25% of the time, 
15 cents 25% of the time, and nothing 25% of the time (dime and nickel both = tails). 
Obviously, the dimes are twice as important in determining your earnings as the nickels, 
since dimes are worth twice as much as nickels. If you conduct a multiple regression of 
this problem, regressing your earnings on the results of each coin (heads = 1 and tails =  
0; these are examples of dummy variables to be discussed in later chapters), the DR2 asso-
ciated with dimes will not be twice as large as that associated with nickels, but four times 

as large (DR2 for nickels = .20, DR2 for dimes = .80). The ∆R2 ’s put importance back 

in the proper metric, however. The ∆R2  associated with dimes (.894) is, in fact, twice 
as large as that associated with nickels (.447). These data are summarized in Table 5.2. 
In sequential multiple regression (and in other types of regression), the unsquared coef-
ficient generally provides a better indicator of importance than does the squared coef-

ficient. We will still test the statistical significance of DR2, but if we are interested in 

comparing the magnitude of effects, we will use ∆R2 .1

Dimes are twice as important as nickels in determining the amount of money received; 

∆R2  demonstrates this importance, but R2 does not.
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Cohen’s f 2 as a Measure of Effect

As noted in Chapter 4, f 2 is another common measure of effect size. Just as R2 may be con-
verted to f 2, so may DR2: 
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Note, of course, that f 2, because it is a squared metric, suffers from the same problems as 
a measure of “importance” as does DR2.

Other Uses of Sequential Regression

There are other ways of conducting sequential multiple regression; the method I have out-
lined here is, in my experience, far and away the most common method. You may also see this 
method referred to as variance partitioning (Pedhazur, 1997) or sequential variance decom-
position (Darlington, 1990).

Interpretation of Regression Coefficients

It is also possible to use regression coefficients from each step of the sequential regression as 
estimates of the total effects of each variable on the outcome. In this case, we would use the b 
or b associated with the variable entered at that step as the estimate of the total effect, ignoring 
the coefficients for variable entered at earlier steps in the equation. For example, Figure 5.10 
shows a table of such coefficients as generated by SPSS. The relevant coefficients are in italic 
boldface; these are the coefficients that I would report in a write-up of the research, perhaps 
accompanied by a table such as Table 5.3. I have rarely seen this approach used outside of path 
analysis, however, so we will discuss it in more detail when we get to that topic (see Chapter 11). 

Block Entry

It is possible to enter groups of variables in blocks, or groups of variables, as well as one at a 
time. A primary reason for entering variables in blocks might be to estimate the effect of a 
type or category of variables on the outcome. Using our current example, we might be inter-
ested in the effect of the psychological variables together, and above and beyond the effect of 
the background variables, on Achievement. If this were our interest, we could enter the two 
background variables sequentially, followed by the two psychological variables in a block. 
(It would also be possible to enter the two background variables in one block and the two 
psychological variables in a second block.) The statistical significance of the resulting DR2 
associated with the second block could be examined to determine whether these psycho-

logical variables explained statistically significantly more variance, and the resulting ∆R2  

Table 5.2 Comparison of DR2 versus ∆R2  as Measures of the Importance of Effects

Measure of Importance Importance of Nickels Importance of Dimes

DR2 .200 .800

∆R2 .447 .894



Table 5.3 Total Effects of SES, Previous Grades, Self-Esteem, and Locus of 
Control on 10th-Grade Social Studies Achievement, Estimated through 
Sequential Regression

Variable b (SEb) ß

SES 5.558 (.392)a .430
Previous Grades 5.420 (.395)a .400
Self-Esteem 1.016 (.414)b .069
Locus of Control 1.554 (.552)a .097

ap < .01.
bp < .05.

Figure 5.10 Sequential regression used to estimate the total effects of each variable on the outcome. 
The italicized boldface coefficients are estimates of total unstandardized and standardized effects.

Coefficientsa

51.090 .299 170.745 .000

5.558 .392 .430 14.167 .000

34.793 1.218 28.561 .000

3.875 .377 .300 10.280 .000

5.420 .395 .400 13.724 .000

35.138 1.223 28.734 .000

3.798 .377 .294 10.068 .000

5.291 .397 .391 13.318 .000

1.016 .414 .069 2.451 .014
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could be examined to determine the relative importance of the effect of these psychological 
variables. Some of the output from such an analysis is shown in Figure 5.11. These results 
suggest that the two psychological variables, in combination, are important for Social Studies 
Achievement (the example will be interpreted in more detail later in this chapter). In essence, 

Coefficientsa

51.090 .299 170.745 .000

5.558 .392 .430 14.167 .000

000.165.82812.1397.43

3.875 .377 .300 10.280 .000

5.420 .395 .400 13.724 .000

000.189.82622.1715.53

3.690 .378 .285 9.772 .000

5.150 .399 .380 12.910 .000

.218 .501 .015 .436 .663

1.554 .552 .097 2.814 .005

(Constant)
BYSES 
SOCIO-ECONOMIC
STATUS COMPOSITE
(Constant)
BYSES 
SOCIO-ECONOMIC
STATUS COMPOSITE
BYGRADS  GRADES
COMPOSITE
(Constant)
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SELF-CONCEPT 2
F1LOCUS2  LOCUS
OF CONTROL 2
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1

2

3

B Std. Error

Unstandardized
Coefficients

Beta t Sig.

Dependent Variable: F1TXHSTD  HIST/CIT/GEOG STANDARDIZED SCOREa. 

Model Summary

.430a .185 .185 200.709 1 885 .000

.573b .328 .143 188.361 1 884 .000

.582
c
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Sig. F
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Change Statistics
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COMPOSITE

b. 
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c. 
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b. 
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Figure 5.11 Self-Concept and Locus of Control entered as a block in a sequential regression.
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this example illustrates one possible combination of sequential and simultaneous regression. 
Another possible reason for entering variables in blocks is if you were unsure of the proper 
order of some of your variables. Using our current example, if we could not decide whether 
Self-Esteem should follow or precede Locus of Control, we might enter the two variables in 
the same block.

Unique Variance

Another use of sequential regression is for researchers who wish to isolate the unique variance 
in a dependent variable accounted for by each variable in a regression, after taking all other 
variables into account. Return to the Venn diagram in Figure 5.5. If you are interested in the 
unique variance attributable to a variable, you will be interested in variance associated with 
area 1 (excluding area 3) as the unique variance attributable to variable X1 and the variance 
associated with area 2 (excluding area 3) as the unique variance of variable X2. Conceptu-
ally, this approach is like conducting a series of sequential regressions, entering each variable 
last in one of these equations. In practice, isolating the unique variance for a variable can be 
accomplished this way, but there are simpler methods. If your primary interest is the statisti-
cal significance of each unique variance, it is simpler to conduct a simultaneous regression. 
The statistical significance of the regression coefficients is equal to the statistical significance 
of the DR2’s with each variable entered last in the regression equation. You can demonstrate 
this to yourself by comparing the statistical significance for the DR2 from the last variable 
entered in Figures 5.4 through 5.6 with that of the regression coefficients from Figure 5.3. 
So, for example, with the simultaneous regression, Self-Esteem had a probability of .663. 
When entered last in a sequential regression (Figure 5.5), Self-Esteem had a probability of 
.663. Likewise, in Figure 5.3, the t associated with Self-Esteem was .436; in Figure 5.5, the  
F was .190 (recall that t2 = F). Compare the t and p associated with SES in Figure 5.3 with the 
F and p associated with SES when it was entered last in a sequential regression (Figure 5.6). 
The equivalence of the statistical significance of variables in simultaneous regression with 
variables entered last in sequential regression will prove useful in later chapters.

If you are interested in the values of ∆R2  for each variable when entered last in the 
regression equation, recall that these are equal to the semipartial correlations. Thus, if your 
computer program produces them, you can conduct a simultaneous regression requesting 
the semipartial correlations (also called part correlations). The last column of the table in 
Figure 5.12, for example, shows the semipartial correlations of each variable with the Social 

Figure 5.12 Semipartial (part) correlations of each variable with the Social Studies Achievement 
outcome. Semipartial correlations are equal to R2  with each variable entered last in a sequential 
regression.

Coefficientsa

000.189.82622.1715.53

3.690 .378 .285 9.772 .000 .430 .313 .268
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1.554 .552 .097 2.814 .005 .248 .094 .077
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Studies test, controlling for all other variables (SPSS labels these as part correlations). If the 
program you use does not easily produce semipartial correlations but you want information 
about unique variance, you can get this information by conducting a series of sequential 
regressions, entering, in turn, each variable last in the equation. I will refer to this approach 
as sequential unique regression. 

Interactions and Curves

Finally, we can use sequential regression to test for interactions and curves in the regression 
line by adding these terms last in a sequential regression. This is a common use and one we 
will discuss in later chapters.

Interpretation

Throughout this book, I’ve interpreted the results of a number of simultaneous regressions. 
Here is a brief interpretation of a sequential regression, one that also illustrates a plausible 
use of the methodology. For this analysis, we’ll use the analysis and output from Figure 5.11. 
Here’s a possible interpretation:

The purpose of this research was to determine whether students’ psychological charac-
teristics have an effect on high school students’ social studies achievement, even after 
controlling for the effects of relevant background variables. To accomplish this pur-
pose, students’ scores on a 10th-grade standardized social studies (history, citizenship, 
geography) were regressed on SES, previous (8th grade) Grades, and two psychological 
variables, Locus of Control and Self-Esteem, using a sequential multiple regression 
analysis.

The results of the analysis are shown in Table 5.4. The first background variable 
entered in the regression, SES, resulted in a statistically significant increase in explained 
variance (DR2 = .185, F[1, 885] = 200.709, p < .001), as did the second background 
variable entered into the regression equation, Previous Grades (DR2 = .143, F[1, 884] = 
188.361, p < .001). Of greater interest are the results of the third step of the sequential 
regression. In this step, the psychological variables of Locus of Control and Self-Esteem 
were entered as a block. As shown in the table, these psychological variables explained a 
statistically significant increase in the variance of Achievement (DR2 = .010, F[2, 882] =  
6.987, p = .001). These findings suggest that personal, psychological variables may 
indeed be important for students’ high school achievement. If so, focusing on high 
school students’ psychological well-being may be important for their achievement as 
well as their wellbeing.

Table 5.4 Effects of SES, Previous Grades, Self-Esteem, and Psychologi-
cal Characteristics on 10th- Grade Social Studies Achievement

Block DR2 Probability

1 SES .185 <.001

2 Previous Grades .143 <.001
3  Locus of Control and  

Self-Esteem
.010 .001
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In this interpretation, I could have included in the table the semipartial correlations (or 

∆R2 ) or the b’s from each block, but without a discussion and interpretation of total 

effects, I think these statistics would be more misleading than illuminating. It is not uncom-
mon for researchers to report also the b’s from the final step of the regression. 

Summary: Sequential Regression

Analysis

With sequential regression, variables are added one at a time or in blocks. The order of entry 
of the variables should be consistent with an underlying causal model, or the results will not 
provide accurate estimates of the effects of the variables on the outcome.

Purpose

The primary purpose of sequential regression is explanation. A researcher is interested in 
determining which variables are important influences on some outcome. Given the ade-
quacy of the underlying causal model, one can also use sequential regression to determine 
the extent of the total influence of each variable on the outcome. This use requires the 
use of some of the b’s or the b’s from each block in the analysis, however, rather than the 
more common use of DR2; it will be presented in more detail in Part 2 when we discuss 
path analysis (Chapter 11). Sequential unique regression can also be used to determine 
the unique contribution of each variable to some outcome, after controlling for the other 
variables in a model.

Sequential regression can also be used in the service of prediction, for example, to 
determine which variables are statistically significant predictors of some outcome. You 
may also be interested in rank ordering the importance of predictors. In this case, order of 
entry makes a difference, so the best approach is to add each variable last in the equation 
to determine its unique contribution to the prediction (sequential unique regression). For 
both of these purposes, however, simultaneous regression may accomplish the same goals 
more simply. The danger of using sequential regression for prediction is that you or the 
readers of your research may be sorely tempted to interpret the results in an explanatory 
fashion. Remember that any time you start thinking along the lines of “this means that if 
we were to increase X, then Y would increase” you have crossed the line from prediction 
to explanation.

What to Interpret

In sequential regression, we generally focus on the statistical significance of the change in 
explained variance (DR2) as the measure of the statistical significance of each variable. It is 
common to see DR2 also used as an indicator of the importance of each variable, but, as we 

have seen, ∆R2  is a better measure of importance. In addition, any reference to the relative 
importance of variables in sequential regression is implicitly or explicitly based on a causal 
model. It is also possible to interpret the regression coefficients associated with the variables 
entered at each block of a sequential regression.

The exception to the rule that sequential regression requires an implicit causal model is 
when each variable is added last to the equation to determine each variable’s unique contri-
bution to the outcome variable (sequential unique regression). This approach is analogous 
to simultaneous regression.
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Strengths

If based on a defensible model, sequential regression can provide good estimates of the 
total effects of a series of variables on some outcome (although examining b or b rather 
than DR2). Sequential regression, with its focus on change in explained variance, may 
be more comfortable than simultaneous regression for those more familiar with ANOVA 
methods. Sequential regression is useful for determining whether some new variable 
improves the prediction of some outcome over and above an existing set of variables; we 
will use sequential regression in this fashion to test the statistical significance of interac-
tion terms and curve components.

Weaknesses

Sequential regression will give different estimates of the importance of variables in the 
regression depending on the order of entry of these variables. Other things being equal, 
variables entered earlier in a sequential regression will appear more important than those 
entered later. This is because sequential regression estimates total effects, including indi-
rect effects through variables entered later in an analysis. If not based on an implicit, 
reasonable model sequential regression can give misleading estimates of effects. In my 
experience, the use of such models underlying sequential regression is rare. Sequential 
regression will underestimate effects entered too late and overestimate the effects of vari-
ables entered too early.

Conclusion

As you can see, I have suggested fairly constrained uses for sequential multiple regression: 
testing the statistical significance of curves and interactions (discussed in more detail in 
Chapters 7 and 8), testing whether single variables or blocks of variables are important addi-
tions to a regression equation, and for calculating total effects within a causal model (dis-
cussed in more detail in Part 2). Simultaneous regression is generally my default regression 
approach for most problems. Why, then, have I spent so much time on the topic? The pri-
mary reason is that, depending on your area of research interest, you may encounter sequen-
tial regression commonly in your research reading. Unfortunately, many such presentations 
will use sequential regression poorly and in ways I have argued against in this chapter. I have 
here tried to present the most common uses of sequential regression and explain why some 
are appropriate and others are not. Given the overlap between simultaneous and sequential 
regression, it is also possible to use sequential regression as your default method, and this 
may well be the norm in your area of research. The important point is to understand how the 
two methods relate to one another and the degree to which they focus on different aspects 
of the regression approach.

STEPWISE MULTIPLE REGRESSION

In your reading, you may encounter a multiple regression variation called stepwise regres-
sion (or one of its variations, e.g., forward selection or backward elimination). Unlike forced 
entry or sequential regression, stepwise multiple regression should be used only for pre-
diction. Unfortunately, because of its apparent ease, stepwise regression is often used in 
attempts at explanation. I will admonish you over and over not to make this mistake and will 
generally discourage the use of stepwise methods. The presentation of stepwise regression 
will follow the format used for sequential regression, with an extended discussion followed 
by a summary.
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The Analysis

Stepwise multiple regression is similar to sequential regression in that predictor variables 
are entered one at a time in a sequential order. The difference is that with stepwise multiple 
regression the computer chooses the order of entry, rather than the researcher.

Figure 5.13 shows the primary output from a stepwise regression using the variables and data 
used throughout this chapter. Previous Grades were entered at step 1, SES at step 2, and Locus of 
Control at step 3. Note from the model summary table that each of these additions to the equa-
tion resulted in a statistically significant increase in DR2. Self-Esteem, in contrast, was not added 
to the equation because its addition would not have led to a statistically significant increase in R2.

Figure 5.13 Stepwise regression of Social Studies Achievement on SES, Previous Grades, Self-Esteem, 
and Locus of Control.

Variables Entered/Removed a

BYGRADS  GRADES
COMPOSITE .

Stepwise (Criteria:
Probability-of-F-to-enter <= .050,
Probability-of-F-to-remove >= .100).

BYSES  SOCIO-ECONOMIC
STATUS COMPOSITE .

Stepwise (Criteria:
Probability-of-F-to-enter <= .050,
Probability-of-F-to-remove >= .100).

F1LOCUS2  LOCUS OF
CONTROL 2 .

Stepwise (Criteria:
Probability-of-F-to-enter <= .050,
Probability-of-F-to-remove >= .100).

Model
1

2

3

Variables Entered
Variables
Removed Method

Dependent Variable: F1TXHSTD  HIST/CIT/GEOG STANDARDIZED SCOREa. 

Model Summary

.498a .248 .247 .248 291.410 1 885 .000

.573b .328 .327 .080 105.682 1 884 .000

.582c .338 .336 .010 13.797 1 883 .000

Added to the Model
Previous Grades
SES
Locus of Control

R R Square
Adjusted
R Square

R Square
Change F Change df1 df2

Sig. F
Change

Change Statistics

Predictors: (Constant), BYGRADS  GRADES COMPOSITEa. 

Predictors: (Constant), BYGRADS  GRADES COMPOSITE, BYSES  SOCIO-ECONOMIC STATUS COMPOSITEb. 

Predictors: (Constant), BYGRADS  GRADES COMPOSITE, BYSES  SOCIO-ECONOMIC STATUS COMPOSITE,
F1LOCUS2  LOCUS OF CONTROL 2

c. 

ANOVAd

21357.16 1 21357.164 291.410 .000a

64860.76 885 73.289
86217.92 886
28283.26 2 14141.630 215.781 .000b

57934.66 884 65.537
86217.92 886
29174.59 3 9724.864 150.536 .000c

57043.33 883 64.602
86217.92 886

Regression
Residual
Total
Regression
Residual
Total
Regression
Residual
Total

Model
1

2

3

Sum of
Squares df Mean Square F Sig.

Predictors: (Constant), BYGRADS  GRADES COMPOSITEa. 

Predictors: (Constant), BYGRADS  GRADES COMPOSITE, BYSES 
SOCIO-ECONOMIC STATUS COMPOSITE

b. 

Predictors: (Constant), BYGRADS  GRADES COMPOSITE, BYSES 
SOCIO-ECONOMIC STATUS COMPOSITE, F1LOCUS2  LOCUS OF CONTROL 2

c. 

Dependent Variable: F1TXHSTD  HIST/CIT/GEOG STANDARDIZED SCOREd. 
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How Are Variables Added to the Equation?

As shown in the last column of the table labeled Variables Entered/Removed, variables are 
entered into the equation if the probability associated with the DR2 is less than .05. If this 
were the only way variables could be included in the equation, we would call this forward 
entry (stepwise) regression. It is also possible, however, that the variance of a variable entered 
at one step of the equation is reproduced by that of several variables entered in later steps 
of the equation. If this occurs (it does not in the current example) and the p associated with 
the earlier-entered variable increased to .10 or greater, this variable would be dropped from 
the regression equation. This is, of course, more likely in problems with many possible pre-
dictor variables. If this were the only approach to be used (i.e., all variables entered and the 
statistically not significant ones dropped), we would be conducting a backward elimination 
(stepwise) regression. The term stepwise regression usually refers to a combination of these 
two methods, but is also used to refer to the forward entry method alone. The probability 
values for entry and removal can be changed. It is also possible to limit the number of steps; 
we could have set a maximum of two steps, for example, thus allowing only Grades and SES 
to enter the equation.

How Does the Program Decide What Variable to Add at Each Step?

The first variable to enter is the variable with the largest correlation with the outcome vari-
able. In the current example, Grades had the largest correlation with Social Studies Achieve-
ment and was the first variable to enter the equation. The program then calculates the 
semipartial correlation of each remaining variable with the outcome, controlling for the 
variable(s) already in the equation, and the variable with the largest semipartial correlation 
with the outcome is entered next. In the current example, SES had the largest semipartial 
correlation with Social Studies, after controlling for Grades. Said differently, the variable that 
will lead to the largest increase in DR2 will be added next to the regression equation. The 
program then continues to cycle through these steps—add a variable, compute semipartial 
correlations of the excluded variables controlling for the entered variables—until no more 
excluded variables fulfill the requirement for entry, or the maximum number of steps is 
reached. Since we know that the squared semipartial correlations are equal to the DR2, this 
process is the same as calculating the possible DR2 for each variable at each step.

Danger: Stepwise Regression Is Inappropriate for Explanation

This sounds great, doesn’t it? No more need to do the hard work of thinking through mod-
els, no more embarrassment if these models are proved wrong! All you have to do is decide 
which variables to include in the analysis, not which are important. Just let the computer 
decide! There are no substitutes for the hard work, however. Stepwise regression may indeed 
help you determine a useful subset of variables for predicting some outcome (and we will 
even question this statement later), but that is all. Stepwise regression cannot tell you which 
variables influence some outcome; to decide this, you must start with a defensible, theory 
and research-derived notion of the plausible influences on some outcome, what we have 
been calling a model. Even with such a model, what a proper, explanatory, regression analysis 
reveals is the extent of the influence of one variable on another, given the adequacy of your 
model. In other words, an implicit or explicit model is required for explanatory interpreta-
tion of multiple regression, and such models do not come from statistics programs, but from 
knowledge of theory and research on a topic, combined with careful thought.

Perhaps the answer is to start with an informal explanatory model, one that includes the 
important, relevant variables, and then conduct a stepwise regression. This technique does 
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not help either, since stepwise regression does nothing to tell you the proper order of the vari-
ables in the model. Yes, stepwise regression orders the variables but only in reference to the 
degree to which the variables sequentially explain variance. This ordering may be entirely dif-
ferent from the causal ordering of variables. Note that the stepwise results in Figure 5.13 don’t 
tell us the proper time precedence of the variables (compare the results in Figure 5.13 with the 
model in Figure 5.9). And we can get even more ridiculous. We could just as easily regress Pre-
vious Grades on SES, self-perceptions, and 10th-grade Social Studies Achievement, and the 
stepwise regression would dutifully tell us that Social Studies achievement was the best single 
predictor of Grades, followed by SES, and so on, even though our predictor (Social Studies 
Achievement) happened after the criterion (Grades)! The bottom line is this: stepwise regres-
sion results do not help us understand how variables affect an outcome. For these reasons, 
methodologists routinely condemn stepwise regression as an explanatory method: “variables 
mindlessly enter into the analysis in the absence of theory and the results, therefore, are theo-
retical garbage” (Wolfle, 1980, p. 206). To make this point in class, I tell my students, tongue 
in cheek, that stepwise regression is a tool of the devil. Do not use stepwise regression if you 
wish to understand the influence of a group of variables on an outcome; do not use stepwise 
regression if you wish to make policy or intervention recommendations based on your results.

A Predictive Approach

What can stepwise regression tell you, then? Stepwise regression can tell you which subset 
of a group of predictors may be used to predict some criterion. It may be used to develop 
an equation to predict some criterion, using a given group of predictors. Stepwise regression 
may be used for prediction. Several examples will help illustrate these points. One of the 
most common uses of regression for prediction is in selection. Suppose, for example, you are 
a college admissions officer and want to improve your accuracy in admitting students who 
will do well at your college. Suppose further that you have a number of predictors available: 
high school grades, rank in class, SAT or ACT scores, participation in academic clubs and 
athletics, even personality measures. You could develop a prediction equation using your 
current student body by regressing students’ current GPAs on this information, and you 
could then use this prediction equation as an aid in selecting new students. This equation 
will look just like the equations we developed earlier in this book:

Grades predicted  HSGrades HSRank SAT1 2 3( )= + = + + +⋅⋅⋅a b b b

Note that this example illustrates the use of simultaneous regression in the service of 
prediction. But suppose further that it is difficult to collect all this information, and it would 
be more cost effective if you could predict almost as well using fewer predictors. In this case, 
stepwise regression might be a method of reducing the number of variables in the equation 
while still improving prediction accuracy over the status quo.

Psychologists often use individually administered tests to select participants for a treat-
ment (e.g., special education services or participation in intervention programs). These tests 
are expensive and time consuming. If shorter versions could be developed with little loss 
of reliability or validity, we might consider this a worthwhile trade-off. If so, you could use 
stepwise regression to find out which 4 of the 10 subtests, for example, best predicted the 
overall score on the test. Future selection could then use the generated equation to predict 
the overall score from these 4 tests.

Note that for these examples of prediction, theories and models are unimportant. The 
admissions officer does not care which of these variables affect college success; she only cares 
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that the prediction improves the admissions process. The psychologist who is searching for 
a valid, but shorter version of a test of intelligence does not care why subtests help in the 
prediction of the total score. Indeed, he would probably be willing to use an achievement 
test to aid in prediction, even though relevant theory would argue that intelligence affects 
achievement, rather than the reverse. Likewise, if you could develop a reliable method for 
predicting the future price of a stock or which horse would win a race, you probably would 
not care why your equation worked (at least until it stopped working). If our goal is simply 
prediction, the theoretical relation of the predictors to the criterion does not matter. What 
is important, however, is that we are not subsequently tempted to interpret our predictive 
results in an explanatory fashion. The college admissions officer is therefore not justified 
in telling a potential applicant that if he raises his High School GPA this, in turn, will likely 
improve his subsequent college GPA.

Cross-Validation

Just as the researchers in these examples don’t care why the variables enter the equation in 
stepwise regression, neither does the program “care” why variables enter the equation. The 
variance that a predictor accounts for in a criterion may be reliable, valid variation, or it 
may be due to error, or chance variation. In other words, stepwise regression capitalizes on 
chance. As a result, the accuracy of prediction, as measured by the variance explained in the 
criterion by the predictors, or R2, is likely to be inflated. Likewise, the regression coefficients 
used in subsequent prediction may be less accurate than is acceptable.

One way of exploring and improving such prediction is through a method called cross-
validation. In this method, one sample is used to develop the regression equation, which is 
then cross-validated on a second sample. The two samples can be separate samples from the 
same population, or one larger sample split at random. The regression equation from the 
first sample is used to create a composite, a weighted predicted criterion score, for the second 
sample (e.g., via a “compute” statement in SPSS). This is similar to the composite variable 
creation we did in Chapter 3. This predicted criterion is then correlated with the actual 
criterion in the second sample. If this correlation is considerably smaller than the R from 
the initial equation, it means that the equation does not generalize and is therefore suspect. 
Double cross-validation is also possible, in which each sample is used to generate an equa-
tion that is then tested in the other sample. If the cross-validation is successful (the r for the 
second regression is close to the R from the first regression), it is common to combine the 
two samples to generate even more stable regression weights.

We could split our NELS data set into two samples of 500. For the first exploratory sample, 
we could use stepwise regression to predict Social Studies Achievement from SES, Grades, 
Self-Esteem, and Locus of Control. The generated regression equation could then be used to 
create a composite predicted Social Studies Achievement score in the second, or crossvalida-
tion, sample. We could then compare the correlation of this composite with actual Social 
Studies Achievement in the cross-validation sample with the value of the R for the explor-
atory sample. If the two were close, we could have confidence that the b’s in Figure 5.13 can 
be used in another sample to predict the Social Studies Achievement score. It is also common 
to split the samples in a ratio of two-thirds (exploratory) and one-third (cross-validation).2

Obviously, cross-validation requires a larger sample (or second samples). Ironically, the 
way to ensure that regression weights are stable, that equations generalize, is through large 
samples and fewer predictors. This, then, should be another major lesson of stepwise regres-
sion: use large samples and relatively few predictors. Unfortunately, this advice often runs 
counter to the use of stepwise regression in practice.
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Adjusted R2

Just as R2 is likely to be smaller in a new sample, it is also likely to be smaller in the population 
than in the sample. There are a number of methods for estimating the population R2 from 
the sample R2. A common formula is:

R R
k R

N k
adjusted
2 2

21

1
= −

−
− −

( )

If you do the calculations, you will see this is the “adjusted R2” reported in the table in Fig-
ure 5.13 (and it appears to be the one used by most computer programs). It is also possible to 
estimate, from a single sample, the expected R2 that you get if you cross-validate with another 
sample (see Darlington, 1990, Chap. 6 for example; also see Raju, Bilgic, Edwards, and Fleer, 
1999, for a comparison of methods). The point I want to make is this: the R2 we would likely 
get in the population and the one that we would likely get upon cross-validation depend on 
sample size and the number of predictors used. Other things being equal, your results will be 
more stable with larger samples and fewer predictors.

I should note that neither of these issues, cross-validation or adjusted R2, apply only to 
stepwise regression or even to regression in the service of prediction. Although less common, 
we could just as easily and fruitfully cross-validate explanatory regression results. Indeed, 
such cross-validation can be considered a form of replication, both of which should be con-
ducted more commonly than they are.

Additional Dangers

I hope I have succeeded in convincing you that you should not use stepwise regression in 
explanatory research. Unfortunately, there are also dangers when using stepwise regression 
in the service of prediction. I will outline a few of them briefly here; for a more complete 
treatment, see Thompson (1998).

Degrees of Freedom

At each step in stepwise regression, the program examines all variables in the set of predictors, 
not just the variable added in that step. The degrees of freedom for the regression and residual 
should recognize this use of the data, but computer programs generally print degrees of free-
dom as if only one variable had been considered, ignoring all the variables that were considered 
but not entered into the equation. In other words, the degrees of freedom for every step of 
the regression shown in Figure 5.13 should be 4 and 882, because four variables were either 
entered or evaluated at every step (and these same dfs apply to the final equation, even though 
only three variables were used in the final equation). The result of such adjustments is that the 
actual F values are smaller than that listed on most printouts. Likewise, the adjusted R2 should 
take into account the total number of predictors used. If sample size is small and the number of 
predictors large, the actual adjusted R2 may be much smaller than that shown on the printout.

Not Necessarily the Best Predictors

Stepwise regression is commonly used when the researcher wishes to find the best subset of 
predictors to accomplish the prediction (indeed, this was the reasoning behind my predic-
tion examples above). Yet, because of the way stepwise regression works, entering one vari-
able at a time, the final set of predictors may not even be the “best” subset. That is, it may not 
be the subset with the highest R2. Thompson illustrates this point nicely (1998).
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Lack of Generalizability

More than other regression methods, stepwise regression is especially likely to produce coef-
ficients and equations that generalize poorly to other samples or situations. Cross-validation 
is especially important for stepwise regressions.

Alternatives to Stepwise Regression

In my experience, most researchers who use stepwise regression are interested in finding 
which variables are “most important,” in some vague sense, for the outcome. If one digs 
deeper, it usually turns out that the intended purpose is explanatory in nature. As we have 
already discussed, simultaneous regression or sequential regression are more appropriate for 
explanation.

In cases where prediction is the goal, stepwise regression may be acceptable. As noted by 
Cohen and colleagues (2003, pp. 161–162), the problems of stepwise regression become less 
severe when the researcher is interested only in prediction, the sample size is large and the 
number of predictors relatively small, and the results are cross-validated. Even in these cases, 
there may be better alternatives.

I have already argued that both simultaneous and sequential regression can be used for 
prediction. If a researcher is interested in developing an equation from a set of predictors, 
this can be obtained via simultaneous regression. If used for purposes of prediction, one 
could enter variables in a sequential regression based on the ease of obtaining them, using 
the coefficients from the final equation to develop the prediction equation.

Even when one simply wants to get the “best” subset of predictors from among a larger 
group, there are alternatives. All subsets regression, for example, will test all possible subsets 
of a set of predictors to determine which subset offers the best prediction. Say you want the 
best 10 out of 25 predictors for some outcome; all subsets regression will likely give you this 
information more accurately than will stepwise regression. This method is one of the options 
for variable selection in SAS (MaxR). It can be conducted manually in other statistical pro-
grams by using a series of regressions and comparing the variance explained by all possible 
subsets of variables.

One final caveat concerning my disdain for stepwise regression: occasionally you may 
encounter research that used sequential regression, but referred to it as stepwise regression. 
Presumably this confusion occurs because the variables were added in steps (here I have 
tried to use the verbiage “blocks” rather than “steps” when referring to sequential regres-
sion to avoid this confusion). Referring to sequential regression as stepwise regression is not 
common usage, but I see it on occasion. Thus you will need to read the research details to 
determine for sure which method was used. But don’t assume it was really sequential regres-
sion; many researchers use stepwise regression when simultaneous or sequential regression 
would be a better approach.

Summary: Stepwise Regression

Analysis

In stepwise regression, variables are added one at a time. The order of entry of the variables 
is controlled by the statistics program; the variable that will lead to the largest increase in 
DR2 is entered at each step. If an earlier variable becomes statistically not significant with the 
addition of later variables, it can be dropped from the equation.
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Purpose

The primary purpose of stepwise regression is prediction. It is often used to select a subset of 
available variables that provides efficient prediction of some criterion. Stepwise regression 
should not be used when you want to understand the effect of a group of variables on some 
outcome (explanation).

What to Interpret

The statistical significance associated with the change in variance explained (DR2) is the pri-
mary focus with stepwise regression. You may also use the produced regression coefficients 
(b’s) in subsequent prediction equations.

Strengths

Stepwise regression may be useful when you have a large number of possible predictors and 
don’t know which you should keep and which you should discard (of course you should also 
have a large N). Stepwise regression can help you reduce the number of predictors and still 
predict the outcome efficiently. It is tempting to think that stepwise regression’s ability to 
choose predictors, thus allowing you to avoid a lot of difficult thinking, is a strength of this 
method. I believe it is, instead, a weakness.

Weaknesses

It should be obvious that I am no fan of stepwise regression. It should not be used for explan-
atory research and, if it is used in this manner, the results will likely be useless. Stepwise 
regression can be used for predictive research, but even then other approaches may be more 
productive. I believe there are few uses for this method.

Why spend time discussing this method when I and many others discourage its use? 
In my experience, the use of stepwise regression, although diminishing, is still all too 
common. And this assessment is not confined to the areas of research with which I am 
most familiar. As part of the preparation for this chapter, I conducted a series of literature 
searches for the word stepwise, and it was amazing how often the term showed up in con-
nection with stepwise regression. It appears stepwise regression is common in all areas of 
psychology that use regression, in education, other social sciences, and even medicine. I 
present, but condemn, stepwise regression because you are likely to encounter it in your 
reading. I want to discourage you from using the method, however, so I do not present an 
interpretation here.

THE PURPOSE OF THE RESEARCH

This chapter introduced two new flavors of multiple regression, sequential and stepwise 
regression, and compared them to simultaneous regression and to each other. We focused on 
the method of analysis, interpretation, purpose, strengths, and weaknesses of each method. 
The three general regression approaches, their purposes, strengths, and weaknesses, are sum-
marized in Table 5.5.

Now, the important question: How should you decide which approach to use? The first 
step is careful thinking about your purpose in conducting the research. What do you want 
to be able to say about your findings; how do you plan to use them? An examination of your 
intended purpose will first help you understand whether you are interested in explanation or 
in prediction. Following this decision, you can focus on more specific questions to help you 
make an informed choice as to the most appropriate method.
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Explanation

Are you interested in understanding some phenomenon? Do you want to be able to explain 
how something comes about? Do you wish to make policy recommendations based on 
your research? Do you want to be able to provide information on what variables should be 
changed to maximize some worthwhile outcome? Do you want to describe the likely effects 
of increasing (or decreasing) a variable?

If any of these questions describe your research focus, then you are primarily interested in 
the goal of explanation, and either simultaneous regression or sequential regression may be 
an appropriate method. As a general rule, I find simultaneous regression more often useful 
than sequential regression, but this is, in part, personal preference. There is also considerable 
overlap between the two methods and the information they provide (more so than most 
researchers realize). They do have distinct advantages and disadvantages for different prob-
lems, however.

I have argued that explanatory research implies a causal model and that you will be on 
much firmer ground if you think through this causal model prior to conducting research. 
One way that simultaneous and sequential regression differ is that they focus on different 
portions of this implied model. Simultaneous regression estimates the direct effects from 
this model, whereas sequential regression focuses on the total effects. As a result, the order of 
the variables in the model and in the regression is very important for sequential regression, 
but unimportant for simultaneous regression. The practical upshot of this difference is that 
if you are confident about which variables should appear in your model, but less sure about 
their ordering, simultaneous regression will be more appropriate. If you are confident in the 
ordering, either approach can be used, depending on whether your interest is in direct or 
total effects. In Part 2 of this book we will focus on estimating both direct and total effects 
in a single model.

Are you interested in the effects of one variable on another, for example, so that you can 
make statements about what happens if we change a key variable (as in our earlier home-
work–achievement examples)? If so, the unstandardized regression coefficients from simulta-
neous regression are probably your primary interest. The b’s from simultaneous regression 
can be used to determine the relative importance of the variables in the model.

Are you interested in the unique variance accounted for by a variable? Said differently, per-
haps you wonder if a variable is important, after controlling for some already existing vari-
ables. Sequential regression is the common method for answering these types of questions, 
although, as we have seen, simultaneous regression can provide the same information.

Prediction

If your primary interest is prediction, you have more options, including all three methods of 
multiple regression. I encourage you to spend some time thinking through this basic ques-
tion, however, because it is often the case that researchers assume they are interested in pre-
diction when, if fact, their real interest is in explanation. Don’t be guilty of the bait and 
switch (i.e., suggesting that you are only interested in prediction but then switching to an 
explanatory interpretation in your discussion of findings)!

Are you simply interested in generating a prediction equation for a set of variables? In 
this case, the regression coefficients from simultaneous regression should work well. Are you 
interested in whether a new variable improves prediction over and above that offered by a 
given set of predictors? Either sequential or simultaneous regression will work.

Or are you interested in finding a smaller subset of predictors that works well? If so, is it 
possible to rank order them on some relevant criteria (e.g., ease of cost of obtaining measures 
of these predictors)? If you can accomplish such rank ordering, sequential regression may 
be your best bet, with the ranking providing you information on the order of entry. If not, if 
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you simply have a group of variables from which you want a smaller subset for prediction, 
stepwise regression may fit the bill (but all subsets regression would probably work better).

COMBINING METHODS

This chapter has necessarily focused on three methods as distinct categories of multiple 
regression. It is also quite possible to combine the approaches, however. We already broached 
this topic in the discussion of sequential regression, when we added two variables (simul-
taneously) in one step of a sequential analysis. Other combinations are possible, as well. We 
could force one group of variables into a regression equation and then use stepwise regres-
sion to choose one additional variable from several possibilities. Blocks of variables can be 
added at every step of a sequential regression.

The important lesson, whatever your approach, is to make sure you understand thor-
oughly your intent in conducting the research. Once you have this understanding, make sure 
that your regression method allows you to fulfill your purpose.

SUMMARY

In this chapter we expanded our repertoire of MR methods. The method that we have been 
using for MR so far—simultaneous or forced entry regression—is, in fact, one of several 
types of MR. Other methods include sequential (or hierarchical) MR and stepwise MR. With 
simultaneous MR, all variables are entered into the regression equation at the same time. The 
overall R2 and the regression coefficients are generally used for interpretation. The b’s and b ’s 
in simultaneous regression represent the direct effects of the variables on the outcome, with 
the other variables in the equation taken into account. Simultaneous regression is very use-
ful for explanatory research and can provide estimates of the relative effects of the variables 
on the outcome. Simultaneous regression can also be used for prediction, in which case the 
standardized regression coefficients estimate the relative importance of the predictors. The 
primary weakness of simultaneous regression is that the regression coefficients may change 
depending on the variables entered in the regression.

In sequential or hierarchical multiple regression, variables are entered in steps or blocks 
predetermined by the researcher; time precedence is a common basis for such order of entry. 
The change in R2 from one step to the next is generally used to test the statistical significance 

of each variable, and ∆R2  may be interpreted as the measure of the relative importance of 
each variable’s total effect (given the correct order of entry of the variables). The regression 
coefficients from each step of the regression may be interpreted as the total effects of each 
variable on the outcome, if the variables have been entered in accordance with a theoretical 
model. A variation, sequential unique MR, is used to determine whether one or several vari-
ables are important (explain additional variance) after taking an original set of variables into 
account. This form of sequential regression is commonly used to test the statistical signifi-
cance of interactions and curves in the regression line. Sequential regression may be useful 
for explanation, if the variables are entered in accordance with theory; it can also be used to 
determine if a variable is useful in prediction. The primary weakness of sequential regres-
sion is that the DR2 changes depending on the order of entry of the variables, and thus it 
can over- or underestimate the importance of variables, depending on the order of entry of 
variables in the regression.

In stepwise multiple regression and its variations, variables are also entered one at a time, 
but the computer program chooses the order of entry based on the degree to which each 
variable increases DR2. Although this solution may seem to avoid problems in simultane-
ous or sequential regression in determining the “importance” of variables, it does not. The 
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reason that stepwise regression does not help in determining the importance of variables is 
because using DR2 as a measure of the importance of variables is predicated on the assump-
tion that the variables have been entered in the correct order. It would be circular reasoning 
(and a statistical version of the logical fallacy of begging the question) to also use DR2 to 
determine the order of entry. For this reason, stepwise regression should not be used for 
explanation. Stepwise regression is only appropriate when the purpose is prediction and, 
even then, simultaneous and sequential regression may be more appropriate. DR2 and its 
statistical significance are the primary focus of interpretation in stepwise regression. If used 
to develop a prediction equation, the b’s from the final regression equation will also be used.

It is also possible, and indeed common, to combine these methods. In the next few chap-
ters, for example, we will combine simultaneous and sequential regression to test for interac-
tions and curves. The chapter ended with a plea that you thoroughly understand your purpose 
for using multiple regression. This purpose, in turn, will help you decide which method or 
methods of MR you should use.

EXERCISES

1. Choose an outcome variable from NELS and four or five variables you think may help 
explain this outcome. Conduct a simultaneous regression, a sequential regression, and 
a stepwise regression using your variables. Provide an appropriate interpretation of 
each regression. Make sure you understand and can explain any differences in the three 
solutions.

2. Pair with a classmate; analyze his or her variables from Exercise 1 in your own sequen-
tial regression. Did you both choose the same ordering? Make sure you can explain to 
your partner the reasons for choosing your ordering. Draw a “model” that explains the 
ordering you chose for your problem.

3. In an interesting study of a controversial topic, Sethi and Seligman studied the effect of 
religious fundamentalism on optimism (1993). Think about this problem: are religious 
fundamentalists likely to be less optimistic or more so than those with a more “liberal” 
religious orientation? Perhaps fundamentalists have a strict and stern religious orien-
tation that will lead to greater pessimism (and thus less optimism). Or perhaps those 
with more fundamentalist views decide to let God worry about the problems of the 
world, thus leading to a more optimistic view. What do you think?

 The files titled “Sethi & Seligman simulated” (there are SPSS, Excel, and text [.dat] 
files) are designed to simulate the Sethi & Seligman data from a MR perspective.3 The 
primary variables of interest are Fundamentalism (coded so that a high score repre-
sents high religious fundamentalism, a low score religious liberalism) and Optimism 
(high score = optimistic, low score = pessimistic). Also included are several measures 
of religiosity: the extent of influence of religion in one’s daily life (Influenc), reli-
gious involvement and attendance (Involve), and religious hope (Hope). It may be 
important to control for these variables in examining the effect of Fundamentalism 
on Optimism.

 Regress Optimism on these variables, using both simultaneous and sequential regres-
sion. For the sequential regression, design your regression to determine whether Fun-
damentalism affects Optimism above and beyond the effects of Involvement, Hope, 
and Influence. Could you get the same information from the simultaneous regression? 
Interpret your results.

4. Use a library research database (e.g., PsycINFO, Sociological Abstracts, ERIC, Google 
Scholar) to find an article in your area of interest that used stepwise regression in the 
analysis. Read the article: are the authors more interested in prediction or explanation? 
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Pay special attention to the Discussion: do the authors make inferences from their 
regression that if a predictor variable were increased or reduced then people would 
change on the outcome? Was stepwise regression appropriate? Would some other 
method have been more appropriate?

5. This exercise is designed to show differences in findings depending on whether you use 
simultaneous or sequential regression, and depending on the order of entry in sequential 
regression. Angela Duckworth and Martin Seligman (2005) were interested in the effects 
of self-discipline on students’ academic performance. They measured the self-discipline 
(degree of self-regulation and lack of impulsiveness across multiple domains) of 154 
eighth-graders in the Fall, and used that to predict (or was it explain?) final GPA in the 
Spring. Also controlled were students’ IQs and their previous GPA, also measured in the  
Fall. The data are in the file “Duckworth Seligman sim data.sav”; the data are simulated 
but are designed to produce results consistent with the findings of the original study.
a.  Conduct a simultaneous regression of GPA on IQ, previous GPA (Pre_GPA), and 

self-discipline (Self). Which variables are important in explaining GPA? In particu-
lar, how important are IQ and self-discipline?

b.  Conduct a sequential regression of GPA on these same variables. For this regression, 
enter IQ, Self, and Pre_GPA, in that order. Draw the causal model implied by this 
regression. Using ∆R2  and the b for each variable (as it is entered), note the rela-
tive importance of the variables. Again, focus in particular on IQ and self-discipline.

c.  Conduct another sequential regression on these same variables. This time the order 
of entry should be IQ, Pre_GPA, and Self. Draw the causal model implied by this 
regression. Compare these results to the results from step b, with particular attention 
to the self-discipline variable.

d.  Explain the reason for the differences in the “importance” of the variables from the 
different regressions.

Notes

1 In fact, Darlington recommends that semipartial correlations (also known as part correlations) be 
used to compare the effects of different variables in simultaneous regression, as well, and instead of 
b’s. You can request that semipartial correlations be produced as part of the output for some com-
puter programs, but others do not routinely provide them. Semipartial correlations can be calcu-

lated from the values of t given for each regression coefficient, however: sr t
R

N ky 1 234

21

1⋅( ) =
−
− −

 

(Darlington, 1990, p. 218). Thompson (2006) argues for the interpretation of structure coefficients 
in addition to the b’s. Structure coefficients are equal to the correlation of each predictor variable 
with the outcome, divided by the multiple correlation coefficient: rstructure=ryx/R. A conversion of 
the original bivariate correlation, the structure coefficient tells us something about whether each 
predictor is related to the outcome when other variables are not controlled. In contrast, the b’s tell 
us something about whether each predictor is related to the outcome when the other variables are 
controlled.

2 I have greatly simplified the issue of cross-validation and recommend additional reading if you use 
the methodology. There are actually a number of different formulas for estimating the true R2 and 
the likely cross-validation R2; Raju and colleagues (1999) compared these empirically. Even more 
interesting, this and other research suggests that equal weighting of predictors often produces bet-
ter cross-validations than do those based on MR estimates!

3 In the original study, members of nine religious groups were categorized into a Fundamentalist, 
Moderate, or Liberal categorical variable and the results analyzed via ANOVA. For this MR simula-
tion, I instead simulated a continuous Fundamentalism variable. The results, however, are consis-
tent with those in the original research. I used simulation provided by David Howell as the starting 
point for creating my own simulation data (www.uvm.edu/~dhowell/StatPages/Examples.html). 
Howell’s Web pages have numerous excellent examples.
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Our analyses to this point have focused on explaining one continuous dependent variable 
by regressing it on one or more continuous independent variables. In Chapter 1, however, I 
argued that a major advantage of multiple regression is that it can be used to analyze both 
continuous and categorical independent variables. We begin our analysis of categorical inde-
pendent variables in this chapter.

Categorical variables are common in research. Sex, ethnic origin, religious affiliation, region 
of the country, and many other variables are often of interest to researchers as potential influ-
ences or control variables for a multitude of possible outcomes. We may be interested in the 
effects of sex or ethnic origin on children’s self-esteem or in the effects of religious affiliation 
or place of residence on adults’ voting behavior.1 Yet these variables are substantively different 
from the variables we have considered in our MR analyses to this point. Those variables—
Homework, SES, Locus of Control, and so on—are continuous variables, ranging from low 
(e.g., no homework) to high (e.g., 15 hours of homework). Variables such as sex or ethnic ori-
gin have no high or low values, however. Certainly we can assign “boys” a value of 0 and “girls” 
a value of 1, but this assignment makes no more sense than assigning boys a value of 1 and girls 
a value of 0. Likewise, we can assign values of 1, 2, 3, and 4 to Protestant, Catholic, Jewish, and 
other religions, respectively, but any other ordering will make just as much sense. These vari-
ables each use a nominal, or naming, scale; names make more sense for the values of the scales 
than do numbers. How, then, can we analyze such variables in multiple regression analysis?
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DUMMY VARIABLES

Simple Categorical Variables

As it turns out, we can analyze such categorical variables by creating a series of scales in 
which we assign values of 1 for membership in a category and values of 0 for nonmember-
ship. Thus, our initial coding of the sex variable (boys = 0, girls = 1) can be thought of as 
a “girl” variable, with membership coded as 1 and nonmembership (i.e., boys) coded as 0. 
Such coding is called dummy coding, creating a dummy variable.2

Figure 6.1 shows the results of a t test comparing the 8th-grade reading achievement of 
girls and boys using the NELS data. For this analysis, I recoded the existing sex variable (Sex, 
boys = 1, girls = 2) into NewSex, with boys = 0 and girls = 1. The average score for boys on 
the Reading test was 49.58 versus 52.62 for girls. This difference of 3 points is relatively small; 
measures of effect size, for example, are d = .304, and h2 = .023. Nevertheless, the difference 
is statistically significant (t = 4.78, df = 965, p < .001); girls score statistically significantly 
higher on the 8th-grade Reading tests than do boys. 

Now turn to Figure 6.2. For this analysis, I regressed the 8th-grade Reading test score on 
the NewSex dummy variable. As you can see by comparing Figure 6.2 with Figure 6.1, the 
results of the regression are identical to those of the t test. The t associated with the NewSex 
regression coefficient was 4.78, which, with 965 degrees of freedom, is statistically significant 
(p < .001).

These figures include additional information, as well. Note that the R2 is equal to the h2 
I reported above (.023); in fact, h2 is a measure of the variance accounted for in a dependent 
variable by one or more independent variables (i.e., R2). In other words, the h2 commonly 
reported as a measure of effect size in experimental research is equivalent to the R2 from 
MR. Turn next to the table of coefficients in Figure 6.2. Recall from Chapter 1 that the 
intercept (constant) is equal to the predicted score on the dependent variable for those par-
ticipants with a score of zero on the independent variable(s). When dummy coding is used, 
the intercept is the mean on the dependent variable for the group coded 0 on the dummy 
variable. When dummy variables are used to analyze the results of experimental research, 
the group coded 0 is often the control group. In the present example, boys were coded 0; 
thus the mean Reading score for boys is 49.58. With dummy coding, the b, in turn, repre-
sents the deviation from the intercept for the other group; in the present example, then, 

Group Statistics

464 52.61781 9.83286 .45648

503 49.58206 9.90667 .44172

NEWSEX  Sex
1.00  Female

.00  Male

BYTXRSTD  READING
STANDARDIZED
SCORE

N Mean
Std.

Deviation
Std. Error

Mean

Independent Samples Test

4.778 965 .000 3.03576 .63540 1.78884 4.28268
BYTXRSTD  READING
STANDARDIZED
SCORE

t df Sig. (2-tailed)
Mean

Difference
Std. Error
Difference Lower Upper

95% Confidence
Interval of the

Difference

t-test for Equality of Means

Figure 6.1 t test analyzing Reading test score differences for boys and girls.
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girls (the group coded 1) scored 3.04 points higher on the Reading test than did boys (the 
group coded 0). Again, the results match those of the t test.

More Complex Categorical Variables

The same technique works with more complex categorical variables, as well. Consider a 
question about religious affiliation. We could ask “What is your religious affiliation?” and 
then list the possibilities, as shown in the top of Table 6.1. Alternatively we could ask a series 
of four questions, with yes or no answers, to get the same information, as shown in the bot-
tom of Table 6.1. The two methods are equivalent. If you considered yourself to have some 
other religious affiliation than those listed, you would choose the final option for the first 
method or simply answer no to each question for the second method. Essentially, we do 
something similar to analyze categorical variables in multiple regression by changing them 
into a series of yes or no, or dummy, variables. An example research study will illustrate the 
coding and analysis of dummy variables; we will then use the same study to illustrate other 
possible coding methods.

False Memory and Sexual Abuse

Considerable controversy surrounds adult self-reports of previous childhood sexual abuse: 
do such reports always represent valid, but repressed, memories, or are they false memories 
(cf., Alexander et al., 2005; Lindsay & Read, 1994)? Bremner, Shobe, and Kihlstrom (2000) 
investigated memory skills in women with self-reported sexual abuse and posttraumatic 
stress disorder (PTSD). Briefly, women who had and had not been sexually abused as chil-
dren were read lists of words and were later given a list of words, including words they had 

Model Summary

.152a .023 .022 9.87132
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), NEWSEX  Sexa. 

ANOVAb

2224.300 1 2224.300 22.827 .000a

94032.55 965 97.443
96256.85 966

Regression
Residual
Total

Model
1

Sum of
Squares df Mean Square F Sig.

Predictors: (Constant), NEWSEX  Sexa. 

Dependent Variable: BYTXRSTD  READING STANDARDIZED SCOREb. 

Coefficientsa

49.582 .440 112.650 .000 48.718 50.446
3.036 .635 .152 4.778 .000 1.789 4.283

(Constant)
NEWSEX  Sex

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig. Lower Bound Upper Bound
 95% Confidence Interval for B

Dependent Variable: BYTXRSTD  READING STANDARDIZED SCOREa. 

Figure 6.2 Regression of Reading test scores on Sex. The results are the same as for the t test.
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Table 6.1 Two Different Methods of Asking (and Coding) Religious Affiliation

What is your religion?

1. Protestant
2. Catholic
3. Jewish
4. Islam
5. Other (or none)

Are you: Yes No

Protestant? 1 0
Catholic? 1 0
Jewish? 1 0
Muslim? 1 0

Report

FALSEPOS  percent of false positives

94.6000 20 10.3791
68.0500 20 39.3800
63.5500 20 27.9143
75.4000 60 31.2395

GROUP  group membership
1.00  Abused, PTSD women
2.00  Abused, Non-PTSD women
3.00  Non-abused, non-PTSD women
Total

Mean N
Std.

Deviation

Figure 6.3 Descriptive statistics for the false memory data.

heard along with words implied by, but not included on, the original lists (“critical lures,” or 
false positives). Figure 6.3 shows the (simulated) percentage of these false positives remem-
bered by Abused women with PTSD, Abused women without PTSD, and Nonabused, non-
PTSD women.3 The data are also on the Web site (“false memory data, 3 groups.sav” or 
“false.txt”). As the figure shows, Abused, PTSD women falsely recognized more words not 
on the list than did non-PTSD and Nonabused women; in fact, they “recalled” almost 95% 
of the false critical lures as being on the lists. The differences are striking, but are they statisti-
cally significant?

ANOVA and Follow-Up

The most common way of analyzing such data is through analysis of variance. Such an 
analysis is shown in Figure 6.4. As the figure shows, there were indeed statistically signifi-
cant differences in the percentages of false recalls across the three groups (F = 6.930 [2, 57],  
p = .002). Although not shown in the figure, the difference across groups represented a 
medium to large effect size (h2 = .196), one that would presumably be apparent to a careful 
observer (cf. Cohen, 1988).

Also shown in Figure 6.4 are the results of Dunnett’s test, which is a post hoc test used to 
compare several groups to one group, usually several experimental groups to a single con-
trol group. Here our interest was to compare Abused women (with and without PTSD) to 
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women who had not been abused. As shown in the figure, Abused, PTSD women had statisti-
cally significantly more false positives than did women who were not abused, but the differ-
ence between Abused (Non-PTSD) and Nonabused women was not statistically significant.

Regression Analysis with Dummy Variables

Our real interest, of course, is not in the ANVOA tables but in how to conduct such an anal-
ysis via multiple regression; the ANOVA is included for comparison purposes. The three 
groups may be considered a single, categorical variable with three categories: 20 partici-
pants form the Abused, PTSD group, coded 1; 20 participants form the Abused, Non-PTSD 
group, coded 2; and so on. We need to convert the categorical Group variable into dummy 
variables.

To include all the information contained in a single categorical variable, we need to cre-
ate as many dummy variables as there are categories, minus 1. The example includes three 
categories, or groups, so we need to create two (g—1) dummy variables. Each dummy vari-
able should represent membership in one of the groups. Table 6.2 shows how I translated 
the original single categorical variable into two dummy variables. The first dummy vari-
able, AbusePTS (meaning Abused, PTSD) has values of 1 for members of the Abused, PTSD 
group, and thus contrasts members of this group with all others. The second dummy variable 

Table 6.2 Converting a Group Variable with Three Categories into Two Dummy Variables

Group AbusePTS No_PTSD

1 Abused, PTSD 1 0
2 Abused, Non-PTSD 0 1
3 Nonabused, Non-PTSD 0 0

Figure 6.4 Analysis of variance of the false memory data, with Dunnett’s test as a follow-up.

ANOVA

FALSEPOS  percent of false positives

11261.70 2 5630.850 6.930 .002
46316.70 57 812.574
57578.40 59

Between Groups
Within Groups
Total

Sum of
Squares df Mean Square F Sig.

Multiple Comparisons

Dependent Variable: FALSEPOS  percent of false positives
Dunnett t (2-sided)a

31.0500* 9.0143 .002 10.6037 51.4963

4.5000 9.0143 .836 -15.9463 24.9463

(J) GROUP  group
membership
3.00  Non-abused,
non-PTSD women
3.00  Non-abused,
non-PTSD women

(I) GROUP  group
membership
1.00  Abused,
PTSD women
2.00  Abused,
Non-PTSD women

Mean
Difference

(I-J) Std. Error Sig. Lower Bound Upper Bound
95% Confidence Interval

The mean difference is significant at the .05 level.*. 

Dunnett t-tests treat one group as a control, and compare all other groups against it.a. 
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(No_PTSD) is coded so that members of the Abused, Non-PTSD group were coded 1, while 
all other participants were coded 0. The actual computer manipulations to create these 
dummy variables can be accomplished in SPSS via RECODE or IF commands, and similar 
commands in other programs. 

You may wonder why there is no third dummy variable that compares the Nonabused, 
Non-PTSD group with the other two groups. But such a third dummy variable is not needed; 
it would be redundant. Consider that in multiple regression we examine the effect of each 
variable, with the other variables in the equation held constant. If we regress the proportion 
of false positives on only the first dummy variable, our results will highlight the comparison 
of Abused, PTSD participants against the other two groups. We will use multiple regression, 
however, and control for the second dummy variable at the same time, which means the first 
dummy variable will show the effect of Abuse and PTSD, while controlling for Abuse, Non-
PTSD. The result is that in the multiple regression the first dummy variable will contrast 
the Abused, PTSD group with the Nonabused (and Non-PTSD) group, whereas the second 
dummy variable will compare the Abused, Non-PTSD with the Nonabused group. We will 
return to this question (the number of dummy variables) later in the chapter.

Figure 6.5 shows a portion of the data. It is always a good idea to check the raw data after 
recoding or creating new variables to make sure the results are as intended. Figure 6.5 shows 
that the two dummy variables were created correctly. 

For the multiple regression, I regressed the percentage of false positives on these two 
dummy variables; the results are shown in Figure 6.6, where these two variables account for 
19.6% of the variance in the number of false positives. This R2 (.196) matches the h2 from the 
analysis of variance. Likewise, the F associated with the regression (6.930 [2, 57], p = .002) 
matches that from the ANOVA. 

Post Hoc Probing

The regression coefficients, also shown in Figure 6.6, may be used to perform post hoc com-
parisons. As in the simpler example, the intercept (constant) provides the mean score on the 
dependent variable (percentage of false positives) for the group that was assigned zeros for 
both dummy variables. Again, this is often the “control” group and, in this case, is the mean 

GROUP

1.00
1.00
1.00
1.00
1.00

2.00
2.00
2.00
2.00
2.00

3.00
3.00
3.00
3.00

ABUSE PTS

1.00
1.00
1.00
1.00
1.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

NO_PTSD

.00

.00

.00

.00

.00

1.00
1.00
1.00
1.00
1.00

.00

.00

.00

.00

Figure 6.5 Portions of the false memory data showing the Group variable converted into two dummy 
variables, AbusePTS and No_PTSD.
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score for those participants who were neither abused nor suffered from PTSD (M = 63.55). 
The regression coefficients, in turn, represent the deviations from this mean for each of the 
other two groups. Women who were abused and suffer from PTSD had an average of 94.60 
false positives (63.55 + 31.05), and abused, non-PTSD women had an average of 68.05 false 
positives (63.5 + 4.50). Compare these calculations of the mean scores for each group with 
those shown in Figure 6.3.

Dunnett’s Test

The t’s associated with the dummy variables can be used in several ways. First, we can use 
them for Dunnett’s test, as we did with the ANOVA. To do so, you need to ignore the prob-
abilities associated with the t’s on the printout; instead look up those values of t in Dun-
nett’s table in a statistics book that contains a variety of such tables (e.g., Howell, 2010; 
Kirk, 1995), or search for it online, e.g., “table Dunnett’s test.” The critical values for three 
treatment groups and 60 degrees of freedom (the closest value in the table to the actual 
value of 57 df) are 2.27 (a = .05) and 2.90 (a = .01) (two-tailed test, Table E.7, Kirk, 1995). 
Thus, the regression results are again identical to those from the ANOVA: the data suggest 
that Abused, PTSD participants have statistically significantly more false memories of words 
than do nonabused women, whereas the difference between Abused and Nonabused women 
without PTSD is not statistically significant.

Why not simply use the probabilities associated with the t’s in Figure 6.6? And why do 
these probabilities differ from those shown in Figure 6.4? Simply put, Dunnett’s test takes 
into account the number of comparisons made in an effort to control the total family-wise 
error rate. Recall that if you conduct, for example, 20 t tests, each with an error rate of .05, 
you would likely find one of these comparisons to be statistically significant by chance alone. 

Model Summary

.442a .196 .167 28.5057
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), NO_PTSD  Abused, non-PTSD
vs other, ABUSEPTS  Abused, PTSD vs other

a. 

ANOVAb

11261.70 2 5630.850 6.930 .002a

46316.70 57 812.574
57578.40 59

Regression
Residual
Total

Model
1

Sum of
Squares df Mean Square F Sig.

Predictors: (Constant), NO_PTSD  Abused, non-PTSD vs other, ABUSEPTS 
Abused, PTSD vs other

a. 

Dependent Variable: FALSEPOS  percent of false positivesb. 

Coefficientsa

63.550 6.374 9.970 .000 50.786 76.314

31.050 9.014 .472 3.445 .001 12.999 49.101

4.500 9.014 .068 .499 .620 -13.551 22.551

(Constant)
ABUSEPTS  Abused,
PTSD vs other
NO_PTSD  Abused,
non-PTSD vs other

Model
1

B Std. Error

Unstandardized
Coefficients

Beta t Sig. Lower Bound Upper Bound
95% Confidence Interval for B

Dependent Variable: FALSEPOS  percent of false positivesa. 

Standardized 
Coefficients

Figure 6.6 Multiple regression analysis of the false memory data using the two dummy variables.
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Many post hoc tests control for this increase in family-wise error rate resulting from multiple 
comparisons, and Dunnett’s test is one such post hoc comparison. The probabilities associ-
ated with the t’s in the regression do not take the family-wise error rate into account, but 
when we look up the t’s in Dunnett’s table, we do take these error rates into account.4

Other Post Hoc Tests

We could also simply focus on the t’s and associated probabilities in the regression output, 
uncorrected for the family-wise error. Given the statistical significance of the overall regres-
sion, this procedure is equivalent to the Fisher least significant difference (LSD) post hoc 
procedure. Alternatively, we can use the Dunn–Bonferroni procedure to control the family-
wise error rate. That is, we set the overall alpha to .05 and decide to make two comparisons. 
We would then look at the probabilities associated with each dummy variable and count any 
with p < .025 (.05/2) as statistically significant. With the current example, all three approaches 
(Dunnett, multiple t tests, and Dunn–Bonferroni) give the same answer, although with dif-
ferent levels of probability. This will not always be the case. The Dunn–Bonferroni procedure 
is more conservative (meaning that it is least likely to be statistically significant) than is the 
use of multiple t tests, among the most liberal procedures. Dunnett’s test is more conserva-
tive than the LSD procedure but is fundamentally different in that it only makes a subset of 
all possible comparisons.

What if we were interested in the third possible comparison, whether the difference 
between Abused, PTSD and Abused, Non-PTSD participants was statistically significant? 
Using the regression results, you can calculate the mean difference between the two results 
(94.60 − 68.05 = 26.55). As long as the n’s in each group are the same, the standard error 
of this difference is the same for all three possible comparisons; as shown in Figure 6.6, 
the standard error is 9.014.5 Thus the t associated with a comparison of the AbusePTS and 
the No_PTSD groups is 26.55/9.014 = 2.95 (p = .005). We then either use this value in an 
LSD-type post hoc comparison or compare it to a = .0167 (.05/3) in a Dunn–Bonferroni 
comparison. In either case, we conclude that abused women with PTSD also have statistically 
significantly more false memories of words than do abused women without PTSD. Try con-
ducting an ANOVA on these data, followed by both the LSD and Dunn–Bonferroni post hoc 
analyses to check the accuracy of these statements. Of course, to make this final comparison 
in MR, you could also simply redo the dummy coding making, for example, group 1 the 
comparison group to find this final comparison.

Demonstration of the Need for Only g—1 Dummy Variables

I argued earlier that we only need g—1 dummy variables because this number of dummy 
variables captures all the information contained in the original categorical variable. In the 
present example, we only need two dummy variables to capture all the information from the 
three categories used in the research. You may be skeptical that g—1 dummy variables indeed 
include all the information of the original categorical variable, but we can demonstrate that 
equivalence easily. To do so, I regressed the original Group variable used in the ANOVA 
analysis against the two dummy variables that I claim capture all the information contained 
in that Group variable. If the two dummy variables do indeed include all the information 
from the original categorical variable, then the dummy variables should account for 100% of 
the variance in the Group variable; R2 will equal 1.0. If, however, a third dummy variable is 
needed to contrast the three groups, then the R2 should equal something less than 1.0.

Figure 6.7 shows the results of such a multiple regression: the two created dummy vari-
ables do indeed explain all the variation in the original categorical variable. Thus, we only 
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need g—1 dummy variables to correspond to any categorical variable (indeed, if we use g 
dummy variables, our MR would encounter problems).

Was Multiple Regression Necessary?

Now, was there any reason to use multiple regression to analyze the results of this research? 
No; for this problem, it would be easier to analyze the data using ANOVA. The simple exam-
ple is included for several reasons, however. First, it is important to understand the continu-
ity between multiple regression and ANOVA. Second, you may well encounter or develop 
more complex experimental designs in which it makes more sense to conduct the analysis 
via MR than ANOVA. Third, you need to understand how to analyze categorical variables in 
MR as a foundation for conducting MR analyses that include both categorical and continu-
ous variables.

This final reason is, I think, paramount. Most of us will likely rarely use MR to analyze 
either simple or complex experimental data. We will, however, use MR to analyze a mix of 
continuous and categorical variables. A thorough understanding of the analysis of categori-
cal variables provides a foundation for this type of analysis.

OTHER METHODS OF CODING CATEGORICAL VARIABLES

There are other methods of coding categorical variables besides dummy coding. We will 
review a few of these briefly. What is important to keep in mind is that these different meth-
ods all lead to the same overall outcome (i.e., the same R2 and level of statistical significance). 
In other words, the model summary and ANOVA table will be the same across the methods. 
Different methods, however, can produce differences in the coefficients, in part because the 
comparisons being made are different. I will use our current example to illustrate several 
other methods of coding categorical variables.

Effect Coding

Effect coding is another method of coding categorical variables so that they can be ana-
lyzed in multiple regression. In dummy coding one group ends up being assigned zeros  

Figure 6.7 Multiple regression demonstrating the need for only g—1 dummy variables. These dummy 
variables explain 100% of the variance of the original Group variable.

Variables Entered/Removed b

NO_PTSD  Abused, non-PTSD vs other,
ABUSEPTS  Abused, PTSD vs othera . Enter

Model
1

Variables Entered
Variables
Removed Method

All requested variables entered.a. 

Dependent Variable: GROUP  group membershipb. 

Model Summary

1.000a 1.000 1.000 .0000
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), NO_PTSD  Abused, non-PTSD
vs other, ABUSEPTS  Abused, PTSD vs other

a. 
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on all dummy variables (the control or contrast group). Effect coding is similar in that there 
is this same contrast group, but with effect coding this group is assigned –1 on both effect 
variables, rather than 0. The contrast group is usually the last group, or may be the group for 
which you are least interested in making comparisons (Cohen et al., 2003).

Table 6.3 shows effect coding for the three groups for the Abuse/PTSD example. For the 
first effect variable, the Abused/PTSD group is coded 1 and all other groups are scored 0, 
except for the final group, which is scored –1. (In this example, these “all other groups” only 
includes 1 group, Abused/Non-PTSD, but if we had, say, 6 groups and 5 effect coded vari-
ables, 4 groups would be coded 0 on this first effect variable.) For the second effect variable, 
the Abused, Non-PTSD group was coded 1 and all other groups were coded 0, except for the 
final group, which was coded –1. 

Figure 6.8 shows the results of the regression of the percentage of false positives on the 
two effect variables. The same percentage of variance was accounted for as in the previous 
regression (19.6%), with the same resulting F and probability. The only differences show up 
in the table of coefficients.

Table 6.3 Converting a Group Variable with Three Categories into Two 
Effect Coded Variables

Group Effect 1 Effect 2

1 Abused, PTSD 1 0
2 Abused, Non-PTSD 0 1
3 Nonabused, Non-PTSD −1 −1

Model Summary

.442a .196 .167 28.5057
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), EFFECT_2, EFFECT_1a. 

ANOVAb

11261.70 2 5630.850 6.930 .002a

46316.70 57 812.574
57578.40 59

Regression
Residual
Total

Model
1

Sum of
Squares df Mean Square F Sig.

Predictors: (Constant), EFFECT_2, EFFECT_1a. 

Dependent Variable: FALSEPOS  percent of false positivesb. 

Coefficientsa

75.400 3.680 20.489 .000 68.031 82.769
19.200 5.204 .506 3.689 .001 8.778 29.622
-7.350 5.204 -.194 -1.412 .163 -17.772 3.072

(Constant)
EFFECT_1
EFFECT_2

Model
1

B Std. Error

Unstandardized
Coefficients

Beta t Sig. Lower Bound Upper Bound
95% Confidence Interval for B

Dependent Variable: FALSEPOS  percent of false positivesa. 

Standardized 
Coefficients

Figure 6.8 Multiple regression analysis of the false memory data using two effect coded variables.
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Why the differences? The intercept and b’s highlight different comparisons for effect than 
for dummy coding. Recall that the intercept is the predicted score on the dependent variable 
for those with a score of zero on all independent variables. But with effect coding no group 
is coded zero on all the effect variables. With effect coding, the intercept (constant) shown 
in Figure 6.8 is the grand mean of all three groups on the dependent variable (percentage of 
false positives). The intercept, representing the grand, or overall, mean is 75.40; note that this 
value is the same as the overall mean listed in Figure 6.3. The b’s, in turn, are the deviation for 
each group from the grand mean. The b associated with the first effect variable, representing 
the first group, was 19.20, and the mean for this group on the dependent variable was 94.60 
(75.40 + 19.20). The mean for the second group was 68.05 (75.40 + [−7.35]). If we want to 
find the mean score for the third group, we simply sum the two b’s (19.20 + [−7.35] = 11.85) 
and change the sign (−11.85). This is the deviation of the third group from the grand mean, 
so the mean of group 3 is 63.55 (75.40 + [−11.85]). The reason why is because the intercept 
is the grand mean, and each b represents each group’s deviation from the mean. The three 
deviations from the mean must sum to zero, and thus the third deviation has the same abso-
lute value as the sum of the other two deviations but with a reversed sign. This way the three 
deviations do sum to zero (19.20 − 7.35 − 11.85 = 0).

The t’s in this coding method represent the statistical significance of the difference between 
each group and the overall mean. That is, does each group differ at a statistically significant 
level from all other groups? This is an uncommon post hoc question, but it may be of interest 
in some applications. It is possible, of course, to calculate other post hoc comparisons using 
the group means (cf. Pedhazur, 1997, Chap. 11). 

Recall that in earlier chapters I discussed ANOVA as a part of the general linear model, 
with formulas like Y = µ + b + e. This formula may be stated as follows: any person’s score 
on the dependent variable Y is the sum of the overall mean µ , plus (or minus) variation due 
to the effect of the treatment (b), plus (or minus) random variation due to the effect of error 
(e). We would interpret the regression equation (Y = a + bX + e) using effect coding in the 
exact same manner: a person’s score on the dependent variable is the sum of the overall mean 
(a), plus (or minus) variation due to their group, plus (or minus) random variation due to 
error. One advantage of effect coding is that it illustrates nicely the general linear model in 
analysis of variance.

Criterion Scaling

Suppose you have a large number of categories for a categorical variable and are only inter-
ested in the overall effects of the categorical variable, not any subsequent post hoc com-
parisons. As an example, the controversial book More Guns: Less Crime (Lott, 2010) made 
extensive use of multiple regression. One categorical independent variable of interest was the 
50 states, which could be represented by 49 dummy variables. There is an easier way to take 
the various states into account, however, through a method called criterion scaling.

With criterion scaling, a single new variable is created to replace the g—1 dummy vari-
ables. For this single variable, each member of each group is coded with that group’s mean 
score on the dependent variable. Thus, for the present example, using the group means dis-
played in Figure 6.3, all members of the Abused, PTSD group are assigned a score of 94.60 
on this new variable, whereas members of the Abused, Non-PTSD group are assigned values 
of 68.05, and so on. Figure 6.9 shows a portion of the data following the creation of this cri-
terion scaled variable (Crit_Var). 

The dependent variable, percentage of false positive memories, was regressed on Crit_Var, 
and the results are shown in Figure 6.10. Note that the explained variance is identical to the 
previous printouts. Also note, however, that the F and its associated probability are different 
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Figure 6.9 Portions of the false memory data showing the group variable converted into a single cri-
terion coded variable.

FALSEPOS

55.00
93.00
89.00
98.00
96.00

100.00
100.00
16.00
7.00

73.00
61.00

100.00
61.00
27.00
10.00
96.00

GROUP

1.00
1.00
1.00
1.00
1.00

2.00
2.00
2.00
2.00
2.00
2.00

3.00
3.00
3.00
3.00
3.00

CRIT_VAR

94.60
94.60
94.60
94.60
94.60

68.05
68.05
68.05
68.05
68.05
68.05

63.55
63.55
63.55
63.55
63.55

Model Summary

.442a .196 .182 28.2589
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), CRIT_VARa. 

ANOVAb

11261.70 1 11261.700 14.102 .000a

46316.70 58 798.564
57578.40 59

Regression
Residual
Total

Model
1

Sum of
Squares df Mean Square F Sig.

Predictors: (Constant), CRIT_VARa. 

Dependent Variable: FALSEPOS  percent of false positivesb. 

Figure 6.10 Multiple regression results using criterion coding. The ANOVA table needs to be cor-
rected for the proper degrees of freedom.

(and incorrect). When criterion scaling is used, the degrees of freedom associated with the 
criterion scaled variable will be incorrect. Even though we have collapsed g—1 dummy vari-
ables into a single criterion scaled variable, this variable still represents the g groups in the 
original categorical variable, and the df associated with it should be g—1. In the present 
example, Crit_Var still represents three groups, and the df for the regression should still be 2 
(and not 1). And because the df for the regression is incorrect, the df for the residual is incor-
rect, and the F is incorrect as well. The bottom line is that when you use criterion scaling you 
need to recalculate F using the printed sums of squares but the corrected degrees of freedom. 
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UNEQUAL GROUP SIZES

For the PTSD example used in this chapter, there were equal numbers of women in each of 
the three PTSD/Abuse groups. In the real world of research, however, there are often differ-
ent numbers of participants in different levels of an independent variable; unequal n’s are 
especially common in nonexperimental research. Naturally occurring groups (ethnic group 
membership, religious affiliation) rarely conform to our research desire for equal numbers 
from each group (the variable sex is sometimes an exception, since this variable is close to 
evenly split at many ages). If we conduct our research by simply sampling from the popula-
tion, our samples will reflect this difference in sample sizes across groups. Even in experi-
mental research, where participants are assigned at random to different groups, we have 
participants who drop out of the research, and this participant mortality often varies by 
group. The result is unequal sample sizes by group.6

As you will see, having equal numbers in groups makes it easier to interpret the results of 
the regression. An example from NELS will illustrate the differences.

Family Structure and Substance Use

Does family structure affect adolescents’ use of dangerous and illegal substances? Are adoles-
cents from intact families less or more likely to use alcohol, tobacco, and drugs? To examine 
these questions, I analyzed the effect of Family Structure (coded 1 for students who lived 
with both parents, 2 for students who lived with one parent and one guardian or step-parent, 
and 3 for students who lived with a single parent) on Substance use, a composite of students’ 
reports of their use of cigarettes, alcohol, and marijuana.7 The descriptive statistics for the 
two variables are shown in Figure 6.11. As you would expect, there were unequal numbers of 
students from households with two parents, a single parent, and so on. The Substance Use 
variable was a mean of z scores, with negative scores representing little use of substances and 
positive scores representing more common use of substances. 

FAMSTRUC  Family Structure

677 67.7 69.7 69.7

118 11.8 12.1 81.8

177 17.7 18.2 100.0

972 97.2 100.0

28 2.8

1000 100.0

1.00  Two-parent family

2.00  One parent, one
guardian

3.00  Single-parent family

Total

Valid

SystemMissing

Total

Frequency Percent Valid Percent
Cumulative

Percent

Descriptive Statistics

855 -.81 3.35 -.0008 .77200

855

SUBSTANC  Use of
alcohol, drugs, tobacco

Valid N (listwise)

N Minimum Maximum Mean Std. Deviation

Figure 6.11 Descriptive information about the Family Structure and Substance Use variables created 
using the NELS data.
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Descriptive Statistics

Dependent Variable: SUBSTANC  Use of alcohol, drugs, tobacco

-.0585 .72621 597

.1196 .76153 94

.1918 .93617 142

.0043 .77554 833

FAMSTRUC  Family
1.00  Two-parent family

2.00  One parent, one
guardian

3.00  Single-parent family

Total

Mean Std. Deviation N

Tests of Between-Subjects Effects

Dependent Variable: SUBSTANC  Use of alcohol, drugs, tobacco

8.594 2 4.297 7.252 .001 .017

491.824 830 .593

500.418 832

Source
FAMSTRUC

Error

Corrected Total

Type III Sum
of Squares df Mean Square F Sig.

Partial Eta
Squared

Family Structure

–0.1

0.0

0.1

0.2

0.3

M
ea

n
 S

u
b

st
an

ce
 U

se

Two-parent
family

One parent,
one guardian

Single-parent
family

Figure 6.12 Analysis of Variance of the effects of family structure on adolescents’ use of dangerous 
substances.

Figure 6.12 shows the results of an ANOVA using Substance Use as the dependent variable 
and Family Structure as the independent variable. As the figure shows, the effect of Family 
Structure was statistically significant (F[2, 830] = 7.252, p = .001), although the effect was 
small (h2 = .017). The graph in the figure shows the mean levels of Substance Use by group: 
students from intact families are less likely, on average, to use substances than are those from 
families with one parent and one guardian, and students from families with one parent and 
one guardian are less likely to use substances than those from single-parent families.
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Post hoc tests (Fisher’s LSD, Dunn–Bonferroni, and Dunnett’s test) are shown in Fig-
ure 6.13. According to the LSD procedure, the differences between students from intact 
families and those from single-parent and parent–guardian families were both statistically 
significant. The difference between parent–guardian and single-parent families was not sta-
tistically significant. The comparison between students from two-parent and single-parent 
families was the only statistically significant difference according to the Dunn–Bonferroni 
post hoc comparison. For Dunnett’s test, two-parent families were used as the reference 
(or “control”) group. Dunnett’s test also suggested that students from single-parent homes 
use statistically significantly more substances than those from two-parent homes, but that the 
difference between two-parent and parent–guardian homes was not statistically significant. 

Before reading further, take a minute to consider how you could analyze these data using 
MR. Consider how you would convert Family Structure into dummy variables (and how 
many dummy variables you would need). How would you convert Family Structure into 
effect variables? I present the results of such regressions only briefly but ask you to delve 
more deeply into the analyses in Exercise 2.

Dummy Variable Coding and Analysis

Two dummy variables are needed to capture the information contained in the three catego-
ries of the Family Structure variable. Table 6.4 shows my conversion of the Family Structure 
variable into two dummy variables. As in the Dunnett comparison, I used two-parent fami-
lies as the reference group for comparison with other family structures. Thus two-parent 
families are coded zero on both dummy variables. It seems to me that our primary questions 
of interest in such an analysis will be whether other family structures are comparable to two-
parent families. The first dummy variable (Step) contrasts students from parent–guardian 
families with those from two-parent families, and the second dummy variable (Single) con-
trasts students from single-parent families with those from two-parent families.

Multiple Comparisons

Dependent Variable: SUBSTANC  Use of alcohol, drugs, tobacco

-.1780* .08542 .037 -.3457 -.0103

-.2503* .07187 .001 -.3914 -.1092

.1780* .08542 .037 .0103 .3457

-.0723 .10236 .480 -.2732 .1286

.2503* .07187 .001 .1092 .3914

.0723 .10236 .480 -.1286 .2732

-.1780 .08542 .112 -.3829 .0269

-.2503* .07187 .002 -.4227 -.0779

.1780 .08542 .112 -.0269 .3829

-.0723 .10236 1.000 -.3178 .1733

.2503* .07187 .002 .0779 .4227

.0723 .10236 1.000 -.1733 .3178

.1780 .08542 .073 -.0132 .3692

.2503* .07187 .001 .0894 .4112

(J) Family Structure
2.00  One parent, one
guardian

3.00  Single-parent family

1.00  Two-parent family

3.00  Single-parent family

1.00  Two-parent family

2.00  One parent, one
guardian

2.00  One parent, one
guardian

3.00  Single-parent family

1.00  Two-parent family

3.00  Single-parent family

1.00  Two-parent family

2.00  One parent, one
guardian

1.00  Two-parent family

1.00  Two-parent family

(I) Family Structure
1.00  Two-parent family

2.00  One parent, one
guardian

3.00  Single-parent family

1.00  Two-parent family

2.00  One parent, one
guardian

3.00  Single-parent family

2.00  One parent, one

3.00  Single-parent family

LSD

Bonferroni

Dunnett t (2-sided)a

Mean
Difference

(I-J) Std. Error Sig. Lower Bound Upper Bound

95% Confidence Interval

Based on observed means.

The mean difference is significant at the .05 level.*. 

Dunnett t-tests treat one group as a control, and compare all other groups against it.a.

Figure 6.13 Post hoc analyses of the effect of three types of family structures on substance use.
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Figure 6.14 shows the results of a MR of Substance Use on these two dummy variables. The 
two Family Structure dummy variables accounted for 1.7% of the variance in Substance Use 
(R2 = h2 = .017). Given the large sample, this value was statistically significant (F[2, 830] = 
7.252, p = .001). The values match those from the ANOVA.

Next, focus on the table of coefficients shown in Figure 6.14. The intercept (constant) is 
equal to the mean score on Substance Use for the contrast group, the group coded zero in 
both dummy variables, that is, students from two-parent families. As in the earlier example, 
the b’s represent the deviation for each group from the mean of the contrast group. So, for 
example, students from single-parent families had mean Substance Use scores of .1918 (Fig-
ure 6.12). From the table of regression coefficients in Figure 6.14, we can calculate the mean 
score on the dependent variable for students from single-parent families as −.058 + .250 = 
.192, the same value, within errors of rounding.

The interpretation of the t values and their statistical significance is the same as in the 
earlier example. We could look up the t values in a Dunnett’s table and find that the Sin-
gle dummy variable was statistically significant, whereas the Step dummy variable was not. 
These finding are also consistent with the findings from the ANOVA and suggest that stu-
dents from single-parent families use statistically significantly more dangerous substances 

Table 6.4 Converting the Family Structure Variable into Two 
Dummy Variables

Group Step Single

1 Two-parent family 0 0
2 One parent, one guardian 1 0
3 Single-parent family 0 1

Model Summary
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Figure 6.14 Analysis of the Substance Use data using multiple regression with dummy variables.
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than do students from two-parent families but that the difference between parent–guardian 
families and two-parent families is not statistically significant.

We can also use the t values and their associated statistical significance as the basis for 
a series of LSD or Dunn–Bonferroni post hoc comparisons. Using Fisher’s LSD, we would 
simply use the statistical significance of the t’s as listed in the MR output. We would conclude 
that students from both single-parent and parent–guardian families are more likely to use 
dangerous substances than those from traditional two-parent families.

It would be easy to calculate the b associated with the third possible comparison, that between 
single-parent and parent–guardian families. We know the means for the two groups. If one 
of these groups was used as the comparison group (e.g., the Parent–Guardian group), the b  
for the other group (the Single-parent group) would be equal to the difference between these 
two means. That is, Single–(Parent–Guardian) = .1918 − .1196 = .0722. Unfortunately, with 
unequal sample sizes, the standard errors associated with each group are different (you can see 
this by comparing the standard errors associated with Single and Step in the table of coefficients 
in Figure 6.14). You can calculate the standard error for this comparison using the formula

SE MS
n nb r= × +











1 1

1 2

.

The MSr is the mean square for the residual from the ANOVA table in Figure 6.14, and the 
n’s are the sample sizes for the two groups (the single-parent and parent–guardian groups). 
For this comparison, SEb is equal to .102. The value for t (t = b/SEb) is .705, and the prob-
ability of obtaining this t by chance alone is .481. Note that this is the same value for the 
standard error and significance shown in the LSD post hoc comparisons in Figure 6.13. This 
comparison shows no statistically significant differences in substance use for students from 
single-parent compared to parent–guardian families. You should perform these calculations 
yourself to make sure you get the same results that I did.

If you don’t trust yourself to make these calculations by hand, it is easy to get these same 
results by rerunning the MR. Simply create new dummy variables using the parent–guardian 
group as the reference group and conduct the regression using these dummy variables. The 
dummy variable associated with the comparison between the single-parent group and the 
parent–guardian group should provide the same standard error, t, and p as we calculated 
above. Whichever method you use, you can use these same t and p values to make post 
hoc comparisons using a Dunn–Bonferroni correction. For example, you can set the overall 
family-wise error rate at .05, meaning that each of three comparisons will need to have a 
probability of less than .0167 (α= .05

3 ) to be considered statistically significant.

Effect Variable Coding and Analysis

With effect coding, one group is assigned values of –1 for all effect coded variables. As shown 
in Table 6.5, I chose to make two-parent families the group assigned –1’s because this is the 
group I am least interested in contrasting to the average. Figure 6.15 shows the results of the 

Table 6.5 Converting the Family Structure Variable into Two Effect-Coded Variables

Group Step_eff Single_eff

Two-parent family –1 –1
One parent, one guardian 1 0
Single-parent family 0 1
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regression of Substance Use on the two effect coded variables, Single_eff (for single-parent 
families) and Step_eff (for parent–guardian families).

With unequal numbers in the three groups, the interpretation of the multiple regression 
is only slightly different from the interpretation with equal n’s. With equal sample sizes, 
the intercept is equal to the overall mean, across groups, on the dependent variable. With 
unequal sample sizes, the intercept is equal to the mean of means, or the unweighted means 
of the three groups. In other words, average the three means shown in Figure 6.12 without 
respect to the differences in the n’s of the three groups: (−.0585 + .1196 + .1918)/3 = .0843. 
As before, the b’s are the deviation from the mean for the group coded 1 in the effect variable. 
Thus, the mean on Substance Use for students from single-parent families is .084 + .108 = 
.192. Again, you will delve deeper into this analysis in Exercise 2.

ADDITIONAL METHODS AND ISSUES

There are still additional methods for coding simple or complex categorical variables. Like 
the methods illustrated here, the various methods produce the same overall results, such as 
R2 and its statistical significance, but enable different contrasts among the different levels 
of the categorical variable. Orthogonal or contrast coding produces orthogonal contrasts 
among the levels of the categorical variable (usually an a priori rather than a post hoc test). 
Sequential coding can be used to compare categories that can be ranked in some way, nested 
coding can be used to compare categories within categories, and there are other possible 
coding schemes beyond these. In addition, we can have multiple categorical variables, as in a 
factorial design, and can test for possible interactions among these variables. We will discuss 
testing for interactions in the next chapter.

Which method of coding should you use? I expect that in most cases our interest in cat-
egorical variables will be to include such variables in a regression analysis along with other, 
continuous variables. Very often, these categorical variables will be “control” variables, which 
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Figure 6.15 Multiple regression of Substance Use differences for students from three family types 
using effect-coded variables.
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we need to take into account in our regression but are not of central interest. Sex, region of 
the country, and ethnic origin often are used in regression analyses as such control variables. 
Under these circumstances, the simple methods of coding presented here are sufficient, and 
simple dummy coding will often work well. Dummy coding is also useful if you have an obvi-
ous contrast group (such as a control group) to which you wish to compare other groups.

Effect coding is useful when you wish to compare each group with the overall mean of 
all groups. Suppose, for example, you were interested in whether self-esteem differed across 
different religious groups. If you wanted to determine whether each religious group dif-
fered from the average, overall level of self-esteem, effect coding is a good choice for coding 
the religion variable. Criterion scaling is especially useful for categorical variables that have 
numerous categories. Other books may be consulted for further information about some of 
the more complex coding schemes mentioned (e.g., Cohen et al., 2003; Darlington, 1990; 
Pedhazur, 1997).

SUMMARY

This chapter introduced the analysis of categorical variables in multiple regression. Categori-
cal, or nominal, variables are common in research, and one advantage of MR is that it can 
be used to analyze continuous, categorical, or a combination of continuous and categorical 
independent variables.

With dummy coding, a common method of dealing with categorical variables in MR 
analyses, the categorical variable is converted into as many dummy variables as there are 
group categories, minus one (g—1). Thus, if the categorical variable includes four groups, 
three dummy variables are needed to capture the same information for analysis in MR. Each 
such dummy variable represents membership (coded 1) versus nonmembership (coded 0) 
in some category. The contrast group has a value of zero on all dummy variables. As a simple 
example, a Sex variable could be converted into a dummy variable in which girls are assigned 
1 and boys assigned 0; thus the variable represents membership in the category girls. As 
shown in the chapter, the results of an analysis of the effects of a categorical independent 
variable (in the example used here, abuse and posttraumatic stress) on a continuous depen-
dent variable are the same whether analyzed via ANOVA or MR. The F associated with the 
two procedures is the same, and the effect size h2 from ANOVA is identical to the R2 from 
MR. The table of coefficients from the MR may be used to perform post hoc comparisons 
using several different post hoc procedures.

Dummy coding is not the only method of dealing with categorical variables so that they 
can be analyzed in MR. With effect coding, one group, often the final group or a less inter-
esting group, is assigned values of –1 on all effect coded variables; in contrast, with dummy 
coding this group is assigned all zeros. Effect coding contrasts each group’s mean on the 
dependent variable with the grand mean. For criterion scaling, each group is assigned its 
mean value on the dependent variable as its value on a single criterion scale. So, for example, 
if boys achieved an average score of 50 on a reading test and girls a score of 53, a criterion 
scaled version of the Sex variable will assign all boys a value of 50 and all girls a value of 53 
in a regression of Reading test scores on Sex. Criterion scaling is useful when there are many 
categories, because only one variable is needed, rather than g—1 variables. When criterion 
scaling is used, however, you must correct the ANOVA table produced by the regression 
because the df will be incorrect (the df still equals g—1). The interpretation of the intercept 
and regression coefficients for these three methods of coding is summarized in Table 6.6. 

Although it is possible to analyze the results of simple and complex experiments in which 
all independent variables are categorical using multiple regression, it is generally easier to 
do so via ANOVA. A more common use of categorical variables (and dummy and other 
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coding) in MR analysis is when categorical variables are analyzed in combination with con-
tinuous variables in nonexperimental research. A researcher might want to control for Sex, 
for example, in an analysis of the effects of achievement on self-esteem. This analysis of both 
categorical and continuous variables in MR is the focus of the next chapter. Before analyz-
ing both types of variables, however, it is necessary to understand how to analyze categorical 
variables in MR; the present chapter thus served as an introduction to this topic.

EXERCISES

1. The file “false memory data, 4 groups.sav” (or, .xls, or “false2.txt”), available on the 
Web site (www.tzkeith.com), includes the false memory simulated data analyzed in this 
chapter, plus data from a fourth group, men who were neither abused nor suffered from 
PTSD (the four groups from Bremner et al., 2000). For comparison purposes, analyze 
the data via ANOVA, with follow-up via Fisher’s LSD test, the Dunn–Bonferroni pro-
cedure, and Dunnett’s test (with men as the control group).
a. Convert the group variable into g—1, or three, dummy variables and analyze the 

data with MR. Use the table of coefficients to conduct the three post hoc procedures. 
Compare the results with the ANOVA.

b. Convert the group variable into three effect coded variables and analyze the data with 
MR. Compare the results with the ANOVA and with the dummy coded solution.

c. Convert the group variable into a single criterion scaled variable and conduct the 
MR using it. Correct the ANOVA table from the MR for the proper degrees of free-
dom and compare the results with the other analyses of the same data.

2. Conduct the analyses of the effect of Family Structure on students’ Substance Use as out-
lined in this chapter using the NELS data. This is one of the more complex exercises you 
will do, because it requires the creation of several new variables. It is also probably one of 
the more realistic examples. I suggest you team up with a classmate as you work on it.
a. Create the Family Structure and Substance Use variables (see note 7). Examine 

descriptive statistics for each variable, and compute means and standard deviations 
of Substance Use by Family Structure.

b. Create dummy variables contrasting students from two-parent families with those 
from parent–guardian families and those from single-parent families. Regress Sub-
stance Use on these dummy variables. Interpret the overall regression. Use the table 
of coefficients to conduct post hoc testing. Make sure you compare single-parent 
families to parent–guardian families.

Table 6.6 Interpretation of Intercepts and Regression Coefficients Using Different Methods of Coding 
Categorical Variables

Coding method Intercept b

Dummy Mean on the dependent variable of the 
reference group (the group coded zero 
on all dummy variables)

Deviation from the mean for 
the group coded 1

Effect Unweighted mean, or mean of the 
means of the groups on the dependent 
variable

Deviation from the unweighted 
mean by the group coded 1

Criterion Not of interest Not of interest
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c. Create effect variables with two-parent families as the group coded –1 on all vari-
ables. Regress Substance use on these effect variables and interpret the regression 
results.

d. Convert the Family Structure variable into a single criterion scaled variable and con-
duct the MR using it. Correct the ANOVA table from the MR for the correct degrees 
of freedom and compare the results with the other analyses of the same data.

3. The file “homework experiment data.sav” (or “homework experiment.xls”) includes 
data from a simulated experiment in which children were given different types of 
homework. Sixth graders were randomly assigned to one of three groups (the Type 
variable in the data): group 1 was assigned drill sheet-derived homework in Social 
Studies at least three times per week. Group 2 was assigned practice homework (home-
work designed to practice the important concepts from that day’s lesson in Social Stud-
ies), also at least 3 times per week. Group 3 was assigned extension homework on the 
same schedule. Extension homework is designed to extend the lesson taught in school, 
often with additional content. At the end of six weeks students were administered a 
standardized measure of sixth-grade Social Studies achievement (M=50, SD=10).
a. Consider drill homework to be the norm. Analyze the results of this experiment 

using dummy coding, and comparing the other two types of homework with this 
norm.

b. Analyze the experiment using effect coding. Which group did you choose as the 
contrast group (the group with −1s for the effect-coded variables)? Explain why.

Notes

1 For now, we will postpone exploring what it means to say that sex affects self-esteem or religious 
affiliation influences voting behavior. We will address this issue in the next chapter.

2 Why the name “dummy” variables? Dummy means a stand-in, representation, a copy. Think of a 
store mannequin, rather than the derogatory slang usage of dummy.

3 The actual study included other measures of memory, an additional group (Nonabused, non-PTSD 
men) and unequal n’s across groups. The data presented here are simulated, but are designed to 
mimic those in the original article (Bremner et al., 2000).

4 This discussion should make it obvious that our normal interpretation of the t’s associated with 
regression coefficients does not make adjustments for the number of comparisons. Darlington 
(1990, p. 257) noted that normal multiple regression practice falls under the “Fisher Protected t” 
method, whereby if the overall R2 is statistically significant we can make all the individual com-
parisons represented by the t tests of each regression coefficient. Our discussion of post hoc tests 
and correcting for error rates is intended as a brief introduction only. Darlington is an excellent 
resource for more information about multiple comparison procedures in MR.

5 If there are different numbers of cases for each category, the standard errors of the b’s will differ for 
each comparison.

6 Astute readers will recognize that the PTSD example is actually an example of nonexperimental 
research, since women were not assigned to the different groups but were sampled from preexisting 
groups. In the actual research, there were unequal numbers of participants in each category (Brem-
ner et al., 2000).

7 Both variables were created from other NELS variables. Substance use (Substance) was the mean of 
variables F1S77 (How many cigarettes smoked per day), F1S78a (In lifetime, number of times had 
alcohol to drink), and F1S80Aa (In lifetime, number of times used marijuana). Because these vari-
ables used different scales, they were standardized (converted to z scores) prior to averaging. Family 
Structure (FamStruc) was created from the existing NELS variable FamComp (Adult composition 
of the household). FamComp was coded 1 = Mother & father, 2 = Mother and male guardian, 3 = 
Female guardian and father, 4 = Other two-adult families, 5 = Adult female only, and 6 = Adult male 
only. For Family Structure, category 1 was the same as for FamComp, categories 2 and 3 were com-
bined, categories 5 and 6 were combined, and category 4 was set to a missing value.
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You should now have a firm grasp on how to analyze continuous variables using multiple 
regression, along with a new appreciation of how to analyze categorical variables in MR. 
In this chapter we will combine these two types of variables to analyze both categorical 
and continuous variables in a single MR. Our discussion starts with the straightforward 
analysis of both types of variables in a single multiple regression. We then turn to focus on 
the addition of interactions to such analyses. Specific types of interactions between con-
tinuous and categorical variables are often of particular interest to psychologists and other 
social science researchers: aptitude–treatment interactions and bias in the predictive valid-
ity of tests. We cover examples of such analyses. In the next chapter we will expand our 
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discussion of interactions to cover interactions of two continuous variables and the analysis 
of potential curvilinear effects.

SEX, ACHIEVEMENT, AND SELF-ESTEEM

Much has been written about differences in self-esteem among adolescents; research and con-
ventional wisdom suggests that girls’ self-esteem suffers, compared to boys, during adoles-
cence (Kling, Hyde, Showers, & Buswell, 1999). Will we find self-esteem differences between 
10th-grade boys and girls in the NELS data? Will any differences persist once we take 
into account previous achievement?

To address these questions, I regressed 10th-grade self-esteem scores (F1Cncpt2) on Sex 
(Female) and Previous Achievement (ByTests). (Question: is it necessary to include ByTests 
for the regression to be valid?) Sex was converted into a dummy variable, Female, coded 0 
for boys and 1 for girls. For this analysis, I also converted the existing Self-Esteem variable 
(which was a mean of z scores) into T scores (M = 50, SD = 10); the new variable is named 
S_Esteem in subsequent figures (it is not in the NELS data on the Web site, but you can 
easily create it1).

Figure 7.1 shows the basic descriptive statistics for the variables in the regression. All sta-
tistics are consistent with the intended coding of the variables. Figure 7.2 shows some of the 
results of the simultaneous regression of Self-Esteem on Achievement and Female.

The interpretation of the regression is straightforward and consistent with our previ-
ous such interpretations. The two independent variables explained 2.6% of the variance in 
Self-Esteem, which, although small, is statistically significant (F = 12.077 [2, 907], p < .001). 
Achievement had a moderate, statistically significant, effect on Self-Esteem. The Female 
dummy variable was also statistically significant, and its negative sign (b = −2.281) means 

Figure 7.1 Descriptive statistics for the regression of Self-Esteem on Sex (female) and Previous 
Achievement.
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that girls indeed scored lower than boys on the measure of Self-Esteem, even after control-
ling for Achievement (with the variable named Female it is easy to recall that the variable was 
coded so that boys = 0 and girls = 1). The value for the unstandardized regression for the 
Female variable suggests that girls scored, on average, 2.28 points lower than did boys (after 
Achievement is controlled). Concerning our question of interest, the findings suggest that 
10th-grade girls do have slightly but statistically significantly lower self-esteem than do boys 
at the same grade level (although the findings do not help us understand why this difference 
exists).

In Chapter 6 we focused on the meaning of the intercept and the b’s using dummy vari-
ables. For the present example, with one categorical and one continuous variable, the inter-
cept was 43.924. As in previous examples, the intercept represents the predicted Self- Esteem 
for those with a value of zero on each predictor variable. Thus the intercept represents the 
predicted Self-Esteem score of boys (coded zero) with a score of zero on the Achievement 
test. The intercept is not particularly useful in this case, however, since the actual range of 
the achievement test was only approximately 29 to 70, with no scores of zero. The b for 
Female of –2.281 means, again, that girls scored an average of 2.28 points lower than boys 
on the Self-Esteem measure. This integration of categorical and continuous variables is 
straightforward.

Figure 7.3 displays these results in path form. Unstandardized coefficients are used 
because they are generally more useful with dummy variables. The –2.281 means that for 
each one unit increase (going from being a boy, coded 0, to being a girl, coded 1), Self-Esteem 
decreases by 2.281 points. The coefficient for the curved, double-headed arrow is the covari-
ance, the unstandardized version of a correlation (see Chapter 1).

Figure 7.2 Simultaneous regression results: Self-esteem on Female and Previous Achievement.
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INTERACTIONS

As you will discover in this section, it is also possible using MR to test for potential interac-
tions between categorical and continuous variables (and also between several categorical 
variables or several continuous variables). Interactions are those instances when the effect 
of one variable depends on the value of another variable. In experimental research, we may 
find that the effect of a treatment depends on the sex of the participant; a cholesterol drug 
may be more effective in lowering the cholesterol of males than females, for example. To use 
an example from earlier chapters, we may find that homework is more effective for students 
with high levels of academic motivation compared to those with lower levels of motivation. 
In other words, the effect of one variable (homework) depends on the value of another vari-
able (academic motivation).

What might such interactions look like? In our previous example, we found that 10th- 
grade girls had slightly, but statistically significantly, lower self-esteem than did boys in the 
same grade. Previous Achievement also had an apparent effect on 10th-grade Self-Esteem. 
Could it be, however, that there are different effects for achievement on self-esteem for boys as 
compared to girls? For example, perhaps girls’ self-image is closely related to their school per-
formance, with higher achievement leading to higher self-esteem. In contrast, it may be that 
achievement works differently for boys and that their self-esteem is unrelated to their school 
performance. Speaking as the father of three sons, I find this latter possibility fairly plausible.

This type of differential relation between achievement and self-esteem is illustrated 
(in an exaggerated way) in Figure 7.4. In the figure, the two lines represent the possible 
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Figure 7.3 Figural (path) display of the effects of Sex and Achievement on the Self-Esteem of 10th- 
graders.

Figure 7.4 Graphic display of a possible interaction between Sex and Achievement on Self-Esteem.
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regression lines from the regression of Self-Esteem on Achievement for boys and girls, 
respectively. Such graphs are an excellent way to understand interactions. The graph also 
illustrates that interactions occur when the slope of the regression line for one inde-
pendent variable (Achievement) differs depending on the value of the other indepen-
dent variable (Sex). Again, the graph illustrates a potential interaction between Sex and 
Achievement in their effects on Self-Esteem: for girls, Achievement has a strong effect 
on Self-Esteem, whereas it has no effect for boys. There are several ways to describe such 
an interaction. We could say that Sex and Achievement interact in their effect on Self-
Esteem; that Achievement has differential effects on Self-Esteem depending on the Sex 
of the student; that Achievement has stronger effects on the Self-Esteem of girls than of 
boys; or that Sex moderates the effect of Achievement on Self-Esteem (cf. Baron & Kenny, 
1986). A colleague of mine notes that most interactions can be described using the phrase 
“it depends.” Does achievement affect self-esteem? It depends; it depends on whether you 
are a boy or a girl.

Methodologists often distinguish between ordinal and disordinal interactions. Inter-
actions in which the regression lines cross within the effective range of the independent 
variable are often referred to as disordinal interactions. Figure 7.4 illustrates a disordi-
nal interaction; the two lines cross within the effective range of the independent variable 
(Achievement). With an ordinal interaction, the lines representing the effects do not cross 
within the effective range of the independent variable. Figure 7.16 illustrates an ordinal 
interaction.

Testing Interactions in MR

We test such interactions in multiple regression by creating cross-product variables and test-
ing whether these cross-product terms are statistically significant when added to the regres-
sion equation. Cross-product terms are created by multiplying the two variables of interest 
(Cohen, 1978); in this case we would create the cross product by multiplying the Female 
variable and the Achievement variable.2 Although this product term will work as an interac-
tion term, there are statistical and interpretive advantages to first centering the continuous 
variables prior to multiplication (Aiken & West, 1991; Cohen et al., 2003; Darlington, 1990) 
These include the reduction in unnecessary collinearity and the creation of a zero point 
for the continuous scales that do not already have one. The advantages of centering will be 
illustrated in the following examples. Centering is most easily accomplished by subtracting 
the mean score of the variable from that variable (e.g., using a compute statement in SPSS), 
thus resulting in a new variable with a mean of zero and a standard deviation equal to the 
original standard deviation.

Centering and Cross Products: Achievement and Sex 

For the current example, in which the interest was testing the possible interaction between 
Sex and Achievement on Self-Esteem, I created two new variables. Ach_Cent was created as 
a centered version of the base year achievement tests by subtracting the mean for ByTests 
(51.5758, as shown in Figure 7.1) from each person’s score on ByTests. Thus, students with 
an original achievement score of, for example, 30 will have a score of –21.5758 on Ach_Cent, 
whereas those with an original score of 70 will have a score of 18.4242 on Ach_Cent. Sex_
Ach, the cross product, was created by multiplying Female (the sex dummy variable) and 
Ach_Cent.

Figure 7.5 shows the descriptive statistics for these new variables; as you can see,  
the mean of Ach_Cent is effectively zero (it is actually –.00005). Also shown in the figure are 
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the correlations among the variables. The centered variable has the same correlations with the  
other variables as does the original, uncentered variable (Figure 7.1). The interaction term 
(Sex_Ach), however, correlates at different levels with components (the Female and Achieve-
ment variables) than does an interaction created from a noncentered variable. For example, 
an interaction term built on the uncentered Achievement variable would have correlated 
.975 with Female, whereas the interaction term built on the centered Achievement variable 
correlated .048 with Female (Figure 7.5). The very high correlation between these two pre-
dictor variables is termed collinearity or multicollinearity. Collinearity can result in strange 
coefficients and large standard errors and make interpretation difficult. As noted by Cohen 
and colleagues, centering does not eliminate collinearity but reduces unnecessary collin-
earity (2003). The topic and effects of multicollinearity will be discussed in more depth in 
Chapter 9.

The MR Analysis 

To test the statistical significance of the interaction, Self-Esteem was first regressed on Female 
and Achievement (centered). These variables were entered using simultaneous multiple 
regression, a step similar to the first example from this chapter, but this was also the first step 
in a sequential multiple regression. As shown in Figure 7.6, these variables accounted for 
2.6% of the variance in Self-Esteem (the same as in Figure 7.2). In the second block in this 
sequential regression, the interaction term (Sex_Ach) was added to the equation. As shown, 
the addition of the interaction term did not lead to a statistically significant increase in R2 
(DR2 = .001, F[1, 906] = 1.218, p = .270). This means that the interaction is not statistically 
significant: the interaction term does not help explain Self-Esteem beyond the explanation 
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Figure 7.5 Descriptive statistics for the test of a possible interaction between Sex and Achievement in 
their effects on Self-Esteem. 
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provided by Female and Achievement. We cannot reject the null hypothesis that Achievement 
has the same effect for girls as for boys. Thus, contrary to our speculation, there appears to 
be no differential effect for Achievement on the Self-Esteem of girls as compared to boys; 
Achievement has the same magnitude of effect on boys’ and girls’ achievement. 

How, you may wonder, does this method of testing an interaction relate to our graphi-
cal display of an interaction, such as that shown in Figure 7.4? The figure essentially shows 
separate regression lines for boys and girls, but we have not conducted separate regressions 
for the two groups. The method of testing an interaction illustrated here is equivalent to con-
ducting separate regressions for boys and girls. We could, for example, regress Self-Esteem 
on Achievement separately for boys and girls and then compare the regression coefficients 
for Achievement for boys versus girls. If the interaction is statistically significant, these coef-
ficients will be very different for boys versus girls; in Figure 7.4, for example, the regression 
coefficient for girls will be large and statistically significant, whereas the coefficient for boys 
will be small and not statistically significant. The fact that the interaction in the current 
example is not statistically significant means that, in fact, the regression lines for boys and 
girls are parallel. (The lines are parallel but not identical because the intercepts differ. This 
difference is not tested in the interaction term, which simply tests whether the lines are paral-
lel.) The addition of an interaction term to the model is equivalent to testing separate models 
for different groups. The method of testing a cross product does this in one step, however, 
and also tests the statistical significance of the interaction.

Interpretation

Given that the interaction was not statistically significant, I would focus my interpretation 
on the coefficients from the first step of the multiple regression, prior to the addition of the 
interaction term. I would certainly report that the interaction was tested for statistical sig-
nificance, as shown previously, and found lacking but then would turn my interpretation to 
the equation without the interaction term, as shown in Figure 7.7. With the centering of the 
Achievement variable, the intercept for the regression equation has changed. The intercept 
still represents the predicted Self-Esteem score for someone with zeros on each independent 
variable, but with centering a score of zero on the Achievement test represents the overall 
mean of Achievement for these students. Thus, the intercept now represents the predicted 
Self-Esteem score for boys who score at the mean (for the total sample) on the Achievement 
test (this ease of interpretation is an advantage of centering). The regression coefficients are 

Figure 7.6 Test of the interaction between Sex (Female) and Achievement in their effects of Self-Esteem.

Model Summary

.161a .026 .026 12.077 2 907 .000
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Predictors: (Constant), ACH_CENT  BY achievement, centered, Female sex as dummy
variable

a. 

Predictors: (Constant), ACH_CENT  BY achievement, centered, Female sex as dummy
variable, SEX_ACH  Sex by Achieve interaction

b. 
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the same as shown in Figure 7.2, because centering does not change the standard deviations 
of the variables [and b = β (SDy)/(SDx)]. Here’s a potential interpretation of these findings:

This research had two purposes. First, we were interested in the effect of sex on 10th-
grade students’ self-esteem. In particular, we tested whether girls have lower self-esteem 
in 10th-grade than do boys, after controlling for prior achievement. Previous research 
has suggested that achievement has differential effects on the self-esteem of boys ver-
sus girls (not really, I just made this up)—that achievement influences the self-esteem 
of girls but not boys. The second purpose of this research was to test for this possible 
differential effect.

Self-Esteem was regressed on Sex and prior Achievement to address the first pur-
pose of this research. A cross-product term (Sex × Achievement) was added next to 
the model to test the possible interaction between Sex and Achievement in their effects 
on Self-Esteem (cf. Aiken & West, 1991; Cohen, 1978); the Achievement variable was 
centered.

Sex and prior Achievement together accounted for 2.6% of the variance in 10th-
grade Self-Esteem (F[2, 907] = 12.077, p < .001). The interaction was not statistically 
significant, however (DR2 = .001, F[1, 906] = 1.218, p = .270), suggesting that Achieve-
ment has the same effect on the Self-Esteem of both boys and girls.

The regression coefficients in Table 7.1 show the extent of the influence of Sex 
(Female) and Achievement on Self-Esteem. The effect of Sex on Self-Esteem was 
indeed statistically significant, and girls scored, on average, 2.28 points lower on the 
Self-Esteem scale than did boys, even after prior Achievement was controlled statisti-
cally. This effect of Sex can be considered a small to moderate effect. Although these 
results show that adolescent girls have lower self-esteem than do boys, the results do 
not illuminate why this may be so or what aspect of being a girl as opposed to a boy 
leads to lower self-esteem. Achievement also had a moderate and statistically signifi-
cant effect on subsequent Self-Esteem. Thus, Achievement appears to have the same 
effect on the Self-Esteem of boys and girls and this effect is of moderate magnitude and 
statistically significant for both groups.

Coefficientsa
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B Std. Error
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95% Confidence Interval for B

Dependent Variable: S_ESTEEMa. 

Standardized 
Coefficients

Figure 7.7 Regression coefficients: effects of Female and Achievement on Self-Esteem.

Table 7.1 Effects of Sex and Achievement on the Self-Esteem of 10th Graders

Variable β b (SEb) p

Sex (Female) −.114 −2.281 (.658) .001
Achievement .121 .139 (.038) < .001
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This example illustrates the basic method of testing interactions in multiple regression. 
And, although I have introduced the method in the context of an interaction between a cat-
egorical and a continuous variable, the method is the same for testing interactions between 
continuous variables (as illustrated in the next chapter) or between categorical variables. 
The example also illustrates the simple fact that such interactions are not very common in 
nonexperimental research, especially with small to medium sample sizes. There are several 
reasons for the infrequent finding of interactions in nonexperimental research. First, the 
nature of testing for interactions focuses on the unique effects attributable to the interac-
tion after the variation due to the original variables has been statistically removed (e.g., in a 
sequential regression). Second, it is also the case that measurement error (unreliability and 
invalidity) reduces the statistical power to detect interactions in MR (Aiken & West, 1991); 
the unreliability of the interaction term is a product of the unreliability of both its compo-
nents. As a result, tests of interactions in MR are simply less sensitive than tests to detect 
main effects. Third, simulation research has shown that when the assumption of homogene-
ity of error variances across groups is violated (such assumptions will be discussed in more 
detail in Chapter 9), the power to detect interactions can vary considerably. This variability 
can be especially problematic when sample sizes vary across groups (Alexander & DeShon, 
1994). Finally, “it may be that substantial interaction simply does not often exist in the real 
world” (Darlington, 1990, p. 320). For these reasons, I recommend testing for interactions 
primarily when testing specific hypotheses. That is, I do not recommend testing all pos-
sible interactions but instead testing those suggested in previous research or those designed 
to answer specific research questions. So, for example, in their examination of the effects 
of parent involvement, homework, and TV viewing on achievement, Keith, Reimers, Feh-
rmann, Pottebaum, and Aubey (1986) tested the interaction between TV viewing and ability 
because previous research had suggested the presence of such an interaction (this example is 
discussed in more detail in the next chapter). Adequate to large sample sizes are also needed 
(Alexander & DeShon, 1994).

A STATISTICALLY SIGNIFICANT INTERACTION

Another example will illustrate a statistically significant interaction. Based on theory, previ-
ous research, or even persuasive argument, we might suspect that achievement interacts with 
students’ ethnic origin (rather than sex) in its effect on subsequent self-esteem. Just as we 
speculated for boys versus girls, we might speculate that achievement has a positive effect on 
the self-esteem of white youth but little or no effect on the self-esteem of youth from vari-
ous minority groups. To test this hypothesis, the Race variable in the NELS data was recoded 
into a new minority-majority (Minority) variable with white non-Hispanic students coded 
0 and members of all other ethnic groups coded 1. Minority and a centered version of the 
Achievement variable (Ach_Cen2) were multiplied to create an Ethnic origin by previous 
Achievement cross-product term.

Does Achievement Affect Self-Esteem? It Depends

Figure 7.8 shows some of the results of the sequential regression to test the significance of 
the interaction. In the first block, Self-Esteem was regressed on Ethnic origin (Minority) and 
previous Achievement (Ach_Cen2); in the second step, the Ethnic–Achievement interaction 
term was entered (Eth_Ach). The addition of the interaction term resulted in a statistically 
significant increase in variance explained (DR2 = .008, F[1, 896] = 7.642, p = .006); in other 
words, the interaction is statistically significant.
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Understanding an Interaction

Given a statistically significant interaction, what does it mean? Probably the easiest way to 
understand an interaction (in multiple regression or ANOVA) is to graph it. Recall that an 
interaction between a categorical and continuous variable in multiple regression represents 
different regression coefficients for the two (or more) groups. When we say that Achievement 
and Ethnicity interact in their effect on Self-Esteem, we mean that Achievement has different 
effects on the Self-Esteem for (in this example) minority and non-minority White adolescents. 
These different effects mean the regression coefficients (b’s) associated with Achievement will 
be different for the two groups if we conduct separate regressions (Self-Esteem regressed on 
Achievement) for minority and White youth. Different regression coefficients further mean 
that the slopes of the regression lines will be different for the two groups (because the b is the 
slope of the regression line). What we need, then, is a graph of the regression lines of Self- 
Esteem on Achievement for minority youth and white youth separately.

Fortunately, it is relatively easy to produce such graphs using standard statistical analysis 
programs. Figure 7.9 shows such separate regression lines for minority and majority youth, 
(created using the SPSS Scatterplot command, followed by some touch-up). As shown in the 
graph, it indeed appears that Achievement has a positive effect on the Self-Esteem of white 
non-Hispanic youth, but that it has little effect, or perhaps a small negative effect, on the Self-
Esteem of minority group youth. If these findings are correct, they suggest that improving 
the achievement of white adolescents will result in increased self-esteem. For minority youth, 
however, it appears that increased achievement will result in no increases in self-esteem.

Further Analysis

We are now faced with additional questions; although we know that the interaction is statis-
tically significant, and we have an understanding of the nature of the interaction, we don’t 
know whether the effects of Achievement on Self-Esteem are statistically significant for the 
two groups. This lack of clarity is especially obvious when looking at the regression line for 
minority students; does Achievement have no statistically significant effect on Self-Esteem 
for minority students, or does it actually have a negative effect? To investigate further, we 
can easily conduct the two separate regression analyses represented by the regression lines 
in Figure 7.9 (this is similar to conducting a test of simple main effects in ANOVA to probe 
a statistically significant interaction). If we conduct separate regressions, we find that the 
regression of Self-Esteem on Achievement was statistically significant for white adolescents 
but not statistically significant for minority youth.

Figure 7.8 Test of the interaction between Ethnic origin and Achievement in their effects on Self-
Esteem using sequential regression.
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It is also possible to calculate the coefficients for these separate regression equations from 
the coefficients from the overall regression including the interaction term (Figure 7.10). This 
figure shows the lower half of the table of coefficients from the multiple regression (once the 
cross-product has been entered into the regression). The intercept for the regression with 
the interaction term included is equivalent to the intercept for a separate regression of Self-
Esteem on Achievement for the group coded zero. Thus, the intercept for the regression of 
Self-Esteem on Achievement for white students is 49.250. The intercept for the group coded 
1 is equal to the overall intercept plus the coefficient for the minority categorical (dummy-
coded) variable (49.250 + 1.627 = 50.877). So, if we were to conduct separate regressions, the 
intercept for minority students would be 50.877 and the intercept for majority students would 
be 49.250. Likewise, the b for Achievement in a separate regression for the group coded zero is 
equal to the b for Achievement for the overall regression with the interaction term. Thus, the 
b for white students is the same as the b for Achievement (Ach_cen2) in Figure 7.10 (.230). The 

Figure 7.9 Regression lines illustrating the interaction of Ethnic origin and Achievement in their 
effects on Self-Esteem.
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Figure 7.10 Regression coefficients: effects of Ethnic origin, Achievement, and their interaction on 
Self-Esteem.
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b for minority students (the group coded 1), in turn, is equal to the b for Achievement from 
Figure 7.9 plus the b associated with the interaction term (.230 + [–.237] = –.007). Thus, if 
we were to conduct separate regressions for majority and minority youth, the equation for 
minority youth would be Self-Esteempredicted = 50.877 – .007 Achievement, and the equation 
for majority students would be Self-Esteempredicted = 49.250 + .230 Achievement. These inter-
pretations of the various coefficients are summarized in Table 7.2. Try conducting separate 
regressions of Self-Esteem on Achievement by ethnic origin to see if your results match these. 
It is also possible to calculate the statistical significance of these separate regression coefficients 
from the overall regression output, but these calculations are more involved (see Aiken &  
West, 1991, for more information); it is generally easier to simply conduct the separate 
regressions. (For more information, caveats, and a method of coding that also tests the sta-
tistical significance of the separate regression equations, see the website www.tzkeith.com .)

Extensions and Other Examples

Note that I have illustrated the simplest of examples, one with a single continuous variable 
and a single categorical variable; the categorical variable also included only two categories. 
Extensions are straightforward. We could easily have included several other variables in the 
analysis, such as students’ SES, or their sex as well as their ethnic origin. We could have 
included interaction terms with these variables as well (e.g., Achievement × SES or Sex × 
Ethnic Origin). Recall, however, that I earlier recommended that you not conduct a “fishing 
expedition” for interactions but only include those terms that you are specifically inter-
ested in testing and have some reason to test (e.g., to test a specific hypothesis). Likewise, 
we could have left the ethnic origin variable as a multicategorical variable (Asian–Pacific 
Islander, Hispanic, black not Hispanic, white not Hispanic, and American Indian–Alaskan 
Native), in which case we would have needed to create four dummy variables and four inter-
action terms (each dummy variable multiplied times the centered achievement variable). 
These four interaction terms would then have been added in one block in the second step of 
a sequential regression to test the statistical significance of the interaction. The essentials of 
the analysis would be the same in these cases.

You should be aware that social scientists may use different terms (other than interaction) 
for this process. The most common term you will likely encounter is testing for moderation. 
Thus in the present example, we could say that we tested whether Ethnic Origin moderated 
the effect of Achievement on Self-Esteem. Other terms are also possible. For example, Krivo 
and Peterson (2000) investigated whether the variables that affect violence (homicide rate) 

Table 7.2 Using the Regression Coefficients from the Overall Regression to Develop Separate Regres-
sion Equations by Group when there is a Significant Interaction between a Categorical and Continu-
ous Variable. All Coefficients are from the Block that Includes the Cross-Product

Coefficient Interpretation
Intercept Intercept for the group coded zero
Regression coefficient for the dummy 
variable

Difference in intercept for the other group

Regression coefficient for the 
continuous variable

Regression coefficient (slope) for the group 
coded zero

Regression coefficient for the cross-
product

Difference in the regression coefficient 
(slope) for the other group
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have the same magnitude of effect for African Americans and whites. In other words, the 
authors tested whether ethnic origin interacted with a series of influences in their effects on 
violence, but they did not label these as tests of potential interactions. Yet anytime research-
ers suggest a difference in magnitude on effects (b’s) across groups, they are, in fact, suggest-
ing a potential interaction between a categorical and continuous variable(s). This example 
is interesting in a number of other ways as well. To test the primary questions, the authors 
conducted separate regressions across groups, rather than using a series of interaction terms, 
presumably because they were interested in the potential interaction of all variables with 
Race. The authors (correctly) used the unstandardized coefficients to compare the influences 
across groups. Within the separate models for African American participants, however, the 
authors added several interaction (cross-product) terms and labeled them as such.

Testing Interactions in MR: Summary

As a review, these are the steps involved in testing for an interaction in multiple regression:

1. Center the continuous variable expected to interact with a categorical variable by creat-
ing a new variable in which the mean of this variable is subtracted from each person’s 
score on the variable.

2. Multiply the centered variable by the dummy variable(s) to create cross-product (inter-
action) terms (other types of coding, such as effect coding, can also be used, although 
the interpretation will be different).

3. Regress the outcome variable on the independent variables of interest using simultane-
ous regression. Use the centered versions of relevant variables, but exclude the interac-
tion terms.

4. Add, in a sequential fashion, the interaction term(s). Check the statistical significance 
of the DR2 to determine whether the interaction is statistically significant. If the DR2 
is statistically significant, graph the interaction. Follow up by calculating the separate 
regression equations for each group, or by conducting separate regressions for each 
level of the categorical variable.

5. If the DR2 is not statistically significant, interpret the findings from the first portion of 
the multiple regression (before the addition of the interaction term).

SPECIFIC TYPES OF INTERACTIONS BETWEEN CATEGORICAL  
AND CONTINUOUS VARIABLES

Several specific types of interactions between categorical and continuous variables are often 
of interest in psychology, education, public policy, and other social sciences. A psycholo-
gist may be interested in whether a psychological test is biased against minority students in 
predicting various outcomes. More broadly, a policy maker may be interested in whether 
women are underpaid compared to men with the same level of experience and productivity. 
An educator may be interested in whether an intervention is more effective for teaching chil-
dren who have high aptitude in some area versus those with lower aptitude in the same area. 
Each example can be examined via multiple regression by testing for an interaction between 
a categorical and a continuous variable.

Test (and Other) Bias

Psychological, educational, and other tests should be unbiased and fair for all people who 
take them. One type of bias to be avoided is bias in predictive validity; in other words, if a 
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test is designed to predict some related outcome, it should predict that outcome equally well 
for all groups to which it may be given. The Scholastic Aptitude Test (SAT), for example, is 
designed, in large part, to determine which students will do well in college and which will 
not, and thus colleges use the SAT to select students based on its predictive power. If the SAT 
were a better predictor of college GPA for girls than for boys, then a potential student would 
have a differential chance of being selected for a given college based on sex, which should 
be irrelevant. In this case, we would be justified in saying that the SAT was biased. Likewise, 
an intelligence test may be used to select children for participation (or nonparticipation) in 
a program for gifted students. If the intelligence test is a better predictor for White than for 
minority students, the test is biased.3

Psychometric researchers can evaluate this type of bias using multiple regression. In essence, 
what we are saying is that a biased test has different regression lines for the groups (males and 
females, majority and minority); we can therefore conceive of bias in predictive validity as a 
problem of the possible interaction of a categorical (e.g., male versus female) and a continuous 
variable (e.g., the SAT) in their effect on some outcome (e.g., college GPA). Let’s flesh out this 
example a little more fully, after which we will turn to a research example of predictive bias.

Predictive Bias 

Assume you are in charge of admissions for a selective college and that one type of informa-
tion you use to select students is their scores on the SAT. Figure 7.11 shows your likely, albeit 
exaggerated, expectation of the relation between the SAT and college GPA. Based perhaps 
on data collected during a period of open admissions, you know that students with low SAT 
scores generally perform poorly in your college, whereas those with high SAT scores gener-
ally go on to perform well, with high grades in most courses. In addition, the graph shows 
that this ability of the SAT to predict future GPA is equal for males and females. If you decide 
to use a cutoff, for example, of 1000, you will be equally fair (or unfair) to both males and 
females. The females you accept with a SAT of, for example, 1200, will likely perform at the 
same level at your college as males with a score of 1200.

Figure 7.12, however, shows a different possibility. In this example, the regression lines 
are parallel, but the line for females is higher than that for males. What this means is that if 
you, as the admissions officer, use the common regression line (not taking into account sex) 

Figure 7.11 Possible regression lines: the SAT predicts College GPA equally well for boys and girls.
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you will in essence treat males and females differently. Using a cutoff of 1000 for admissions, 
you will end up selecting a group of males who will likely perform at a lower level than the 
females, while rejecting females who will likely perform as well or better than the males. Fol-
low the dotted line vertically from the point on the X-axis representing a SAT score of 1000 
up to the regression line for males and then horizontally across to the Y-axis. As you can see, 
a cutoff of 1000 on the SAT means you will be admitting males for whom their predicted 
college GPA is about 1.75. Yet, in this made-up example, you could admit females scoring 
around 500 on the SAT who will likely achieve at that same level in college (a GPA of 1.75). 
If you use the common regression line (instead of separate regression lines) to make admis-
sions decisions, you have discriminated against females who scored above 500 but below 
1000. If this is the case, the SAT will be biased when used for such purposes. This type of bias 
is termed intercept bias because the intercepts for the two groups are substantially different. 

Figure 7.13 shows yet another possibility, in which the slopes for the regression line for 
males and females are different. As shown, the SAT has a steeper slope in predicting college 
GPA for males than for females. This example illustrates slope bias. In this example, the use 
of the common regression line will be biased against either males or females, depending 
on where we drew the SAT cutoff for admission. At a value of 800, our admissions will be 

Figure 7.12 Possible regression lines: intercept bias in the use of the SAT to predict College GPA.
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Figure 7.13 Possible regression lines: slope bias in the SAT in its prediction of College GPA for boys 
and girls.
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biased against females, because we would not admit some qualified females (those expected 
to perform as well as some of the males admitted). If the cutoff were 1200, however, the use 
of the common regression line (instead of separate regression lines) will be biased against 
males, because some of the males rejected would likely perform as well or better than some 
of the females accepted. In some sense, slope bias is more problematic than intercept bias. 
With intercept bias we can have faith that our selection is fair if we use separate regression 
lines for the two groups. With slope bias, however, even if we use separate regression lines, 
our prediction is often simply better for one group than another.

Research Example: Investigating Test Bias 

One common duty of school psychologists is to assess children who are having learning 
or behavioral problems in school, with the assessment results being used, along with other 
information, to develop interventions to ameliorate these problems. One possible outcome 
of such assessment is placement in a special education program. Curriculum-based assess-
ment (CBA), or measurement (CBM), is a method of assessment in which a student’s cur-
riculum materials are used in assessing the student. For a reading CBM, for example, the 
psychologist might have a student read passages from his or her reading textbook and count 
the number of words read correctly in 2 minutes. One advantage of CBM is that the mea-
sures are short and can be repeated frequently, even several times a week. CBMs, therefore, 
are especially useful for determining whether an academic intervention is working.

Although there is ample evidence that CBMs can be reliable and valid (Shinn, 1989), 
there is little research addressing potential bias in CBMs. Kranzler, Miller, and Jordan (1999) 
examined a set of reading CBMs for potential racial–ethnic and sex bias in predictive valid-
ity. Their research included children in grades 2 through 5, and used reading CBMs to pre-
dict Reading Comprehension scores on the California Achievement Test (CAT). Their results 
suggested possible intercept bias (for race–ethnicity) at grade 4, and both intercept (for sex 
and race–ethnicity) and slope bias (for sex) at grade 5.

The data set “Kranzler et al simulated data.sav” or “Kranzler.txt” includes data designed 
to simulate those reported in Kranzler and colleagues (1999) for boys and girls in grade 5. 
We will use these simulated data to go through the steps needed to test for predictive bias. 
Figure 7.14 shows the summary statistics for the total sample and for boys and girls in the 
sample. 

The multiple regression to test for bias in predictive validity is similar to the more 
generic test for interactions between categorical and continuous variables. In the first step, 
CAT scores were regressed on Sex (coded 1 for boys and 0 for girls) and the predictor 
variable, centered Reading CBM scores. In the second step, a CBM (centered) by Sex cross 
product was added to the regression equation to test for a possible interaction (i.e., slope 
bias) between Sex and CBM. The basic results of the multiple regression are shown in 
Figure 7.15.

The regression of CAT Reading Comprehension on Reading CBM, Sex, and the interac-
tion term was statistically significant (R2 = .763, F = 103.177 [3, 96], p < .001). Furthermore, 
the addition of the Sex by CBM cross product led to a statistically significant increase in 
explained variance (DR2 = .067 [1, 96], p < .001), meaning that the interaction between Sex 
and CBM scores was statistically significant. This statistically significant interaction, in turn, 
suggests that Reading CBMs (in these simulated data) may indeed show sex-related slope 
bias for 5th-graders when predicting Reading Comprehension. (Note that the same story is 
told by the statistically significant b for the cross product in the second half of the table of 
coefficients: b = .915, t = 5.217, p < .001.)
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Figure 7.14 Descriptive data for the Kranzler et al. (1999) simulated data.
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For the next step, given the statistically significant interaction, I graph the interaction to 
understand it more completely, as well as conduct separate regressions, by Sex, to determine 
whether Reading CBMs are worthwhile predictors for both groups. Although we know that 
the slopes and the b’s are different for the two groups, it might be that CBMs are significant 
predictors for both groups but are simply better for one group compared to the other. The 
graph is shown in Figure 7.16, and it suggests that Reading CBMs are strongly related to 
Reading Comprehension for 5th-grade boys but are not as good predictors for 5th-grade 
girls. This interpretation of the graph is confirmed by the results of the separate regressions 
of Reading Comprehension on Reading CBMs for girls and boys, partial results of which are 
shown in Figure 7.17. The regression of Reading Comprehension was statistically significant 
for boys but not for girls. The results thus suggest that Reading CBMs are excellent predic-
tors of Reading Comprehension for boys (r = .693, r2 = .480), but poor predictors for girls. 
In other words, Reading CBMs appear valid for boys, but not for girls at this age (remember 
these are simulated data). 

Return to Figure 7.15 to review what all the coefficients in the table of coefficients mean. 
For the bottom portion of the table (the portion that includes the interaction term):

1. The constant, or intercept, represents the value, on the predicted dependent variable, 
for the group coded 0, for a value of zero on the continuous (centered) independent 
variable. On the graph, this represents the predicted CAT score (632.065) for girls who 
have a score of zero on the centered CBM score. The centered CBM score, in turn, rep-
resents the overall mean of the original CBM variable.
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2. The coefficient for Sex represents the change in intercept for the group scored 1 on the  
dummy variable. Thus, the predicted CAT score for boys scoring at the mean on  
the CBM variable is 156.110 points higher than for girls.

3. The coefficient for the continuous variable represents the slope of the regression line 
for those with a score of 0 on the dummy variable. Thus, the slope of the regression of 
CAT on centered CBM for girls is .058.

4. The coefficient for the interaction term is the change for the regression line for the 
group scored 1 on the dummy variable. Thus, a separate regression line for boys will 
have a slope of .973. (.915 + .058). Compare these values with the values shown for 
the intercepts and slopes using separate regressions (Figure 7.17); they should match 
within errors of rounding.

Should you interpret the statistically significant coefficient associated with Sex in the 
presence of an interaction? Maybe. On the one hand, with the centered continuous variable, 
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Figure 7.15 Regression results for the simulated Kranzler et al. (1999) predictive bias study.
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Figure 7.16 Plot of the regression lines for boys and girls illustrating slope bias in CBMs.

Figure 7.17 Separate regressions of the California Achievement Test on CBMs for boys and girls.
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this value suggests the presence of sex differences (at the mean of the CBM scores) on the 
dependent variable in addition to slope bias. On the other hand, you may recall from pre-
vious exposure to ANOVA the rule of thumb that one should interpret main effects very 
cautiously if there is an interaction. (To complicate the matter further, as you will see in 
the exercises, the statistical significance of the difference in intercepts can also depend on 
whether the continuous variable was centered or not). I suggest examining the graph again 
to help make this decision (Figure 7.16). For these data, it seems obvious that, even with the 
differences in slope taken into account, the regression line for boys is generally higher than 
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that for girls. Focus also on Figure 7.18, which shows the separate regression lines for boys 
and girls along with the common regression line. To return to our original entrance into the 
discussion of bias, if we use the common regression line for prediction, we will generally 
underestimate the CAT performance of boys, but overestimate the CAT performance of girls. 
Thus, in this case, I believe it makes sense to focus on the differences in intercepts even with 
the statistically significant interaction. It is also obvious, however, that this over- and under-
prediction becomes larger the better these children are in reading (slope bias). In this case, I 
will likely focus on both phenomena. In contrast, if the graphs looked more like those shown 
in Figure 7.13, there is no generalized difference in intercepts, and the primary story is that 
of slope bias. Thus, I probably would not interpret a difference in intercepts in the presence 
of differences in slope (although for Figure 7.13 there will likely be no statistically significant 
differences in intercepts). To summarize, if the primary story told by the data and the graph 
is one of differences in slope, then I will not interpret a difference in intercepts in the pres-
ence of an interaction. In contrast, if it is clear from the analyses and graphs that there are 
differences in the elevations of the regression lines above and beyond the differences in slope, 
I believe you should interpret the differences in intercepts in the presence of a significant 
interaction. We will return to this issue when we discuss aptitude treatment interactions, 
where this discussion may make more sense.

In contrast, if we had found no slope bias in this example (a statistically nonsignificant 
interaction), we would have focused on the first step of the regression equation, without 
the interaction term, to determine whether there was a difference in intercepts for the two 
groups (the top half of the table of coefficients). This would have been evidence for intercept 
bias, by itself.

Suppose our bias research focused on more than two groups; we will then have more than 
one dummy variable. We can determine whether intercept bias exists in this case by adding 
the dummy variables in a block, in a combination simultaneous and sequential regression. 

Figure 7.18 Plot of the regression lines for boys and girls for the CBM data. Also shown is the com-
mon regression line.
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For example, in the first block we enter the continuous variable; in the second block, the 
dummy variables representing the categorical variables; and in the third block, the set of 
interaction terms.

Predictive Bias: Steps

Let me summarize the steps for investigating predictive bias using multiple regression (sum-
marized, with modifications, from Pedhazur, 1997, chap. 14):

1. Determine whether the variance accounted for by the regression including all three 
terms (the categorical variable, the continuous variable, and the interaction) is statisti-
cally significant and meaningful. If not, it makes little sense to proceed. If R2 is mean-
ingful, go to step 2.

2. Determine whether the interaction is statistically significant. The most general method 
for doing so is to conduct a simultaneous regression using the categorical and continuous 
variable and then sequentially add the cross-product (interaction) term(s). If DR2 for the 
cross product is statistically significant, then the interaction between the categorical and 
continuous variable is statistically significant; in the context of predictive bias, this sug-
gests the presence of slope bias. If the interaction is statistically significant, go to step 3. If 
the interaction is not statistically significant (suggesting a lack of slope bias), go to step 4.

3. Graph the interaction and conduct separate regressions for each group (e.g., boys and 
girls) of the outcome variable on the continuous variable. These steps will help you 
determine the nature of the interaction and the slope bias. Stop. (And see www.tzkeith.
com for a caveat.)

4. Determine whether the continuous variable is statistically significant across groups 
(without the cross-product term in the equation). You can do this in two ways. You 
can regress the outcome on the categorical variable and then add the continuous vari-
able to the regression equation, focusing on DR2 and the associated test of statistical 
significance. Alternatively, you can focus on the statistical significance of the b associ-
ated with the continuous variable with the categorical variable in the equation (in the 
present example, the b associated with CBM in the top of the table of coefficients in 
Figure 7.15). If the continuous variable is statistically significant, meaning that the test 
is a valid predictor of the outcome across groups, go to step 5. If not, meaning a lack of 
predictive validity across groups, go to step 6.

5. Determine whether the intercepts are different for the groups with the continuous vari-
able in the equation. Most generally, you could regress the outcome on the continuous 
variable, sequentially adding the categorical variable(s) and focus on the DR2 and its 
statistical significance. In the present example, with only two categories and one dummy 
variable, we could garner the same information by focusing on the statistical signifi-
cance of the b associated with the categorical variable (Sex) in the top half of the table 
of coefficients shown in Figure 7.15. A difference in intercepts suggests intercept bias, 
whereas no difference suggests a lack of intercept bias. If there is no intercept or slope 
bias, then a single regression equation functions equally well for all groups; go to step 6.

6. Determine whether the groups differ without the continuous variable in the equation. 
Regress the outcome on the categorical variable alone and check for statistical signifi-
cance. If the categorical variable is statistically significant, this means that the groups 
have different means, which does not constitute bias.

Before proceeding to the next section, I should note that findings of slope bias (like find-
ings of more general interactions of categorical and continuous variables) are relatively 
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uncommon (Jensen, 1980). I also know of no other evidence suggesting slope bias for CBMs, 
although, as already noted, little research has been conducted concerning bias in curriculum-
based assessment; I know of one other study suggesting no such bias (Hintze, Callahan, 
Matthews, Williams, & Tobin, 2002). The current example was chosen because it does illus-
trate this special type of interaction and because it was a well-executed, well-written study.

Although I have discussed the narrow issue of bias in predictive validity here, it is also 
worth noting that this methodology extends to other types of bias beyond test bias. Sup-
pose, for example, you were interested in the existence and nature of pay disparities between 
male and female college professors. Whether such disparities represent bias is also address-
able through multiple regression using continuous and categorical variables. You could, for 
example, regress Salaries on variables representing experience, productivity, and sex, as well 
as cross-product terms (Sex by Experience, Sex by Productivity). Differences in slopes and 
differences in intercepts across groups would suggest inequities in salaries (cf. Birnbaum, 
1979). Finally, it is worth noting that such testing for predictive bias provides an incom-
plete, and perhaps misleading, answer to the question of whether a test (or other measure) 
is a biased predictor of some outcome. A more complete test would involve first establish-
ing measurement invariance (see Chapter 19) and then testing for invariance in prediction 
within that model. Indeed, it is possible to have real bias without it showing up in tests 
such as conducted here, or the reverse (Borsboom, 2006; Millsap, 2007; Wicherts & Millsap, 
2009).

Aptitude–Treatment Interactions

Psychologists and educators often develop interventions and treatments with the belief that 
the effectiveness of these interventions depends, in part, on the characteristics of those receiv-
ing the interventions. Children may be placed in different reading groups (high, medium, 
low) based on their prior reading achievement with the belief that one teaching method is 
more effective with one group, whereas another method is more effective with another. A 
psychologist may use one type of therapy with clients who are depressed, but believe a differ-
ent approach is more effective for those without depression. These are examples of potential 
Aptitude–Treatment Interactions (ATIs), also known as Attribute–Treatment Interactions 
(ATIs) or Trait–Treatment Interactions (TTIs). Whatever the terminology, ATIs are interac-
tions between some characteristic of the individual with a treatment or intervention so that 
the treatments have differential effectiveness depending on the characteristics, attributes, 
traits, or aptitudes of the person. These attributes can generally be measured on a continuous 
scale (e.g., reading skill, depression), whereas the treatments are often categorical variables 
(e.g., two different reading approaches, two types of therapy).

ATIs are, then, generally an interaction between a categorical and continuous variable. 
Thus, they are properly tested using multiple regression in the same way we test for potential 
predictive bias, by testing the statistical significance of a cross-product term. An example will 
illustrate.

Verbal Skills and Memory Strategies

Do children with lower verbal reasoning skills profit more from learning different mem-
orization methods than do children with good verbal reasoning skills? For example, will 
children with lower verbal reasoning skills be more accurate in memorization if they use 
a visual mapping strategy as a memory aid (as opposed to a verbal rehearsal strategy)? In 
contrast, will children with higher verbal reasoning skills show greater accuracy using a 
verbal rehearsal memorization strategy? To answer these questions, you could develop an 
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experiment to test for this possible attribute–treatment interaction. You could, for example, 
assess children’s verbal reasoning skills, rank ordering the children based on their scores on 
the verbal reasoning measure. Take the first pair of students (the one with highest score and 
the one with the second highest score) and assign one (at random) to the verbal rehearsal 
group and one to the visual matching group. Continue with each pair of children, down 
through the lowest scoring child and the second lowest scoring child, assigned at random to 
one group or the other. Children in the verbal rehearsal group are taught to memorize things 
(e.g., words, lists, colors) using a memory strategy based on verbal rehearsal, while those in 
the visual mapping group are taught a memory strategy in which they memorize by visual-
izing the placement of the objects to be memorized in stops in a map.

“ATI Data.sav” is a data set designed to simulate the possible results of such an experi-
ment (the data are loosely based on Brady & Richman, 1994). If our speculation is correct, 
the verbal rehearsal strategy should be effective for children with high verbal skills, and the 
visual mapping strategy should be more effective for children with lower verbal skills. The 
data are plotted in Figure 7.19; it certainly appears that our speculation is correct: there is an 
interaction between the attribute (Verbal Reasoning) and the treatment (type of Memory 
Strategy) in their effect on Visual Memory skills. Let’s test the statistical significance of the 
interaction (I displayed the graph prior to the testing of the interaction to give you a sense 
of the data). 

The process of testing for an ATI is the same as testing for predictive bias. Visual Mem-
ory (measured by having the child recall an increasing number of color chips, expressed 
as a T score) was regressed on Memory Strategy (verbal rehearsal, coded 0, or visual map-
ping, coded 1) and Verbal Reasoning (T score, centered) in a simultaneous regression. In 
a second step, the cross product (Memory Strategy multiplied by Verbal Reasoning) was 
added sequentially to the regression to test for the statistical significance of the interaction. 

Figure 7.19 Plot of regression lines illustrating an aptitude treatment interaction. Verbal Reasoning is 
the aptitude, and type of Memory Strategy taught is the treatment.
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Relevant portions of the printout are shown in Figure 7.20. We can use the same basic steps 
for evaluating the results that we used for our analyses of bias, although the interpretation is 
slightly different.

Steps for Testing for ATIs

1. Is the overall regression meaningful? R2 is indeed meaningful and statistically signifi-
cant (R2 = .280, F[3, 96] = 12.454, p < .001).We go to step 2.

2. Is the interaction term statistically significant? The addition of the cross-product term 
to the regression equation resulted in a statistically significant increase to DR2 (.280, 
F[1, 96] = 37.332, p < .001), suggesting the statistical significance of the interaction. In 
the context of ATIs, this suggests that the Attribute–Treatment Interaction is statisti-
cally significant. In the current example, the finding of an interaction suggests that the 
two memory strategies are indeed differentially effective depending on the verbal skills 
of the children (go to step 3).

3. Follow up the statistically significant interaction. The interaction is already graphed in 
Figure 7.19. Separate regressions (not shown) showed that Visual Memory regressed 
on Verbal Reasoning was statistically significant for both groups (both treatments). For 
those trained in verbal rehearsal as a memory strategy, the slope (b) of the regression 
line shown in the figure was .514 (b = .514, t [48] = 4.153, p < .001). For those in the 
visual mapping group, the slope was negative (b = −.544, t [48] = 4.492, p < .001). What 
do these findings mean (assuming they represent real, rather than simulated, data)? 

Figure 7.20 Regression of Visual Memory on an aptitude (Verbal Reasoning), a treatment (Memory 
Strategy), and their interaction.
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One way to interpret the findings is that for children taught to use verbal rehearsal to 
memorize lists verbal reasoning skills are useful, but for those taught to use visual maps 
as a memory aid verbal reasoning ability is a hindrance to effective memorization. I 
don’t find this interpretation particularly helpful. Instead, a more useful interpreta-
tion is that visual mapping strategies are more effective for children with difficulties 
in verbal reasoning, whereas verbal rehearsal memory strategies appear more useful 
for students with good verbal reasoning skills. For students with average-level verbal 
reasoning skills, the approaches appear equally effective. Stop.

4. Had the interaction not been statistically significant, we would have gone to step 4 in 
the previous (Steps: predictive bias) list (the statistical significance of the continuous 
variable), followed by step 5 (the statistical significance of the categorical variable). In 
the context of ATIs, the statistical significance of the continuous variable and the cat-
egorical variable are analogous to tests of the main effects in ANOVA. 

Although multiple regression is ideal for the analysis of ATIs, its use is much too uncom-
mon. Faced with the example above, many researchers try to fit the data into a classic 
ANOVA design by categorizing the continuous variable. That is, the researcher not familiar 
with this proper analysis of ATIs might place anyone scoring below the median on the ver-
bal reasoning scale in a “low verbal” group and anyone above the median in a “high verbal” 
group, analyzing the data with a 2 by 2 Analysis of Variance. This approach, at minimum, 
ignores and discards variation in the continuous variable, thus reducing the power of the 
statistical analysis. Unfortunately, in my experience this improper approach is more com-
mon than is the more proper, more powerful MR approach outlined here. Be warned: you 
now know better.

The search for ATIs is most common in psychology and education; indeed, much of spe-
cial education is predicated on the assumption that ATIs are important. Children with learn-
ing problems are sometimes placed in different classes (e.g., classes for children with mild 
intellectual disabilities versus classes for children with learning disabilities) based in part on 
the assumption that different teaching methods should be used with the two groups. But 
these designs are applicable to other research areas as well. Are two different types of psy-
chotherapy (treatment) differentially effective for depressed versus nondepressed (attribute) 
clients? Is one management style (treatment) more effective with less productive (attribute) 
employees, with a different style being more effective with more productive employees? ATI 
designs have wide applicability. For more information, Cronbach and Snow (1977) is the 
definitive source on ATIs and their analysis.

ANCOVA

Suppose you are interested in the effectiveness of Internet-based instruction in research 
methodology. Is, for example, an Internet-based research course as effective as traditional 
face to face instruction? One way of studying this problem would be via a classic pretest–post-
test control group design. That is, you might assign, at random, students entering a course 
in research methodology to an online course versus a traditional classroom course. Because 
you believe the effectiveness of the coursework may depend, in part, on participants’ prior 
knowledge, you give participants a pretest on research methodology knowledge. After the 
course completion, participants are given another measure of knowledge of research meth-
odology. One straightforward method of analysis of the results of this experiment would be 
through analysis of covariance (ANCOVA), where the pretest serves as the covariate, and 
assignment to the Internet versus regular coursework is the independent variable of interest. 
ANCOVA is used to examine the effects of course type on research knowledge, controlling 



154 • MULTIPLE REGRESSION

for participants’ prior knowledge of research methodology. ANCOVA serves to reduce error 
variance by controlling for participants’ individual differences and thus provides a more 
sensitive statistical test than does a simple ANOVA.

I hope that it is obvious that ANCOVA can also be conceived as a multiple regression 
analysis with a continuous and a categorical variable. MR subsumes ANCOVA; if you analyze 
these same data using a simultaneous multiple regression, your results will be the same as 
those from the ANCOVA. There is, however, an advantage to analysis via MR. One assump-
tion underlying analysis of covariance is that the regression lines of the dependent variable 
on the covariate are parallel for the different groups (e.g., Internet versus traditional course). 
In other words, ANCOVA assumes but does not generally test for, the nonexistence of an 
interaction between the independent (or categorical) variable and the covariate (continu-
ous variable). It might well be that Internet-based instruction is more effective for students 
with strong prior knowledge but less effective for students whose prior research knowledge 
is weak. If this is the case, a graph of your findings might look something like Figure 7.21, 
which is simply one more illustration of an interaction between a categorical and continu-
ous variable. Obviously, you can test this assumption using multiple regression, using the 
same method explained throughout this chapter, whereas most software packages ignore the 
interaction in ANCOVA.4 

One way of thinking about ATIs and ANCOVAs is this: If the interaction is not statistically 
significant in an ATI design, you can think of it as being a simple ANCOVA analysis. If in a 
pretest–posttest design the pretest (covariate) interacts with the treatment, you can consider 
it an ATI design and analyze it accordingly.

CAVEATS AND ADDITIONAL INFORMATION

“Effects” of Categorical Subject Variables

In this chapter and elsewhere, I have discussed the effects of variables such as Sex and Ethnic 
origin on outcomes such as Self-Esteem. Yet I hope it is obvious that these types of variables 
and others (e.g., rural and urban, region of the country, and religious affiliation) are very 
broad categories and can mean many different things. If we say that Sex affects Self-Esteem, 
what does this mean? That the biological differences between boys and girls result in differ-
ent levels of self-esteem? Or that the way boys and girls are socialized results in differences in 
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Figure 7.21 A potential interaction in a pretest–posttest control group design.
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self-esteem? Or some other of the myriad of differences that are associated with being a boy 
or a girl? We just don’t know (although when we discuss testing for indirect effects in struc-
tural equation modeling, you will have a tool that you can use to investigate some of the pos-
sibilities). All it means, really, is that something about being a boy versus being a girl results 
in differences in self-esteem. Similarly, if we say that sex and achievement interacted in their 
effects on self-esteem or that achievement had different effects on self-esteem for boys versus 
girls, we will be left to speculate about the many possible reasons that such an interaction 
might happen and what it might mean. “Big” categorical variables like Sex and Ethnic origin 
carry a lot of baggage, and sometimes, when we discover an interaction between them and 
some other variable, we are confronted with many new questions about meaning.

Some methodologists see this as a major problem. I don’t. I think it’s okay to say that sex 
affects self-esteem, as long as you know that this statement means “there is something—we 
don’t know what—about being a boy versus being a girl that results in differences in self-
esteem.” Likewise, I think it is fine to say that Ethnic origin and Achievement interact in 
their effects on Self-Esteem, as long as you know that what this means is for some reason—
unknown at this point—achievement has a different effect on self-esteem for adolescents of 
one group versus another. Understand the meaning behind such statements and then maybe 
the next step can be hypothesizing and testing why such effects come about.

Interactions and Cross Products

In an earlier footnote, I discussed the distinction between cross-product terms and interac-
tions. Strictly speaking, the partialed cross product (controlling for the two variables used in 
the cross product) is an interaction term. Of course, these variables are controlled when all 
are entered into a multiple regression equation, either simultaneously or sequentially (the 
cross product entered last), so many researchers use the terms interchangeably.

Further Probing and Figural Display of Statistically Significant Interactions

Suppose, as in several of the examples in this chapter, you find a statistically significant inter-
action between a categorical variable and a continuous variable. How can you explore that 
interaction in more depth? Here I have suggested graphing the interaction and then con-
ducting separate regressions across the different categories of the categorical variable. Yet 
further exploration is possible. You might be interested in knowing whether the regression 
lines are statistically significantly different for a specific value of the continuous variable. 
In our ATI example, you might wonder for a student with a verbal score of 10 whether the 
two approaches are really different or not. You may also be interested in the regions of sig-
nificance; in other words, the point at which the two lines become statistically significantly 
different.

These are worthwhile topics, but they are beyond the scope of this text. Some references 
given throughout this chapter provide additional detail for how to probe a significant inter-
action in more depth than is discussed here (Aiken & West, 1991; Cohen et al., 2003; Cron-
bach & Snow, 1977; Darlington, 1990; Pedhazur, 1997). Some of the procedures are relatively 
complex. If you are faced with an interaction that requires more complex probing, I recom-
mend these sources.

It is relatively easy, however, to develop a less formal sense of answers to these kinds of 
questions, using the graphing features of common statistical programs. Figure 7.22, for 
example, shows another version of the graph of the ATI example originally shown in Fig-
ure 7.19. In this version, however, I asked for the 95% confidence interval around the two 
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regression lines, which provides at least a general sense of where, at what points, the lines 
become significantly different from one another.

Throughout this text I have illustrated regressions in figural form using path models. 
How, you might wonder, should we illustrate the types of interactions covered in this chap-
ter, that is, interactions between categorical and continuous variables in their effect on some 
outcome? One common way of illustrating interactions, or moderation, is via a display like 
that shown in Figure 7.23. This model, a figural representation of the test of the interaction 
between Ethnic Origin and Achievement on Self-Esteem (our first statistically significant 
interaction), has a path drawn from Ethnic background to the path from Achievement to 
Self-Esteem. This conceptual model suggests that Ethnic origin influences (or moderates) 
the effect of Achievement on Self-Esteem. Such a model conveys the essence of an interaction 
(does Achievement influence Self-Esteem? it depends on one’s Ethnic Origin) but generally 
are not used to display results, that is, they generally don’t have numbers attached.

Another way to display the findings in path form is shown in Figure 7.24. This model 
shows the coefficients from the final block of the regression (Figure 7.10). These are the 
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Figure 7.22 Regression lines for the ATI analysis, with 95% confidence intervals.

Figure 7.23 One way of illustrating an interaction between Ethnic Origin and Achievement in their 
effect on Self-Esteem.
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unstandardized coefficients. A final method of displaying the results of a statistically sig-
nificant interaction in path form is shown in Figure 7.25. This method (standardized coef-
ficients this time), suggests no effect for Achievement on Self-Esteem for minority students 
but substantial effects for majority students. This method of display is analogous to the post-
hoc follow-up we have been conducting following the finding of a statistically significant 
interaction.

The web site for this book (www.tzkeith.com) includes additional resources for the topic 
of testing for interactions for categorical and continuous variables, including an illustration 
of the use of effect coding for the bias example. Also illustrated is a method for testing the 
statistical significance of the separate regression equations (post-hoc probing) in a single 
regression.

Ethnic
(Minority)

Achievement
Self-

Esteem

Achievement
by Ethnic

r1

-1.043

25.797

.230

-.237

1.627

-.801

Figure 7.24 Path illustration of regression results for an interaction between a categorical and a con-
tinuous variable.

Figure 7.25 Another method of displaying moderation (interaction) results in path format.
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SUMMARY

In this chapter we focused on the analysis of categorical and continuous variables in the 
same multiple regression. Our first example examined the effect of Sex and Achievement on 
adolescents’ Self-Esteem. As the example illustrated, analyses including both categorical and 
continuous variables are analytically and conceptually little different from those including 
only continuous variables. When the categorical variable is a single dummy variable, the 
b associated with it represents the difference, on the dependent variable, between the two 
groups, controlling for the other variables in the equation.

It is possible to test for interactions between variables by multiplying the two variables 
that may interact and entering this cross-product term in the regression equation along 
with the two original variables. It is desirable to center any continuous variables used to 
create such a cross product by subtracting the mean of that variable from each person’s 
score on the variable. The DR2 (if sequential regression is used) or the t associated with 
the cross product term (if simultaneous regression is used with a single cross product) is 
used to test the statistical significance of the interaction. The same procedure works to test 
the interaction between two categorical variables, two continuous variables, or a categorical 
variable and a continuous variable. This chapter illustrated several examples of interactions 
between categorical and continuous variables. We found no statistically significant interac-
tion between Sex and Achievement in their effect on Self-Esteem but did find a statistically 
significant interaction between Ethnic origin and Achievement on Self-Esteem. Graphs and 
separate regressions across groups were used to probe the statistically significant interaction. 
It appears that Achievement affects Self-Esteem for White adolescents, but not adolescents 
from various minority groups. In answer to the question “Does Achievement affect Self-
Esteem?” we would need to answer “It depends. . . .” The phrase “it depends” is generally a 
clue that we are describing the presence of an interaction. Interactions are not common in 
nonexperimental research.

A few specific research questions are best conceived of as interactions between categori-
cal and continuous variables. These include investigations of predictive bias and attribute or 
aptitude treatment interactions (ATIs). Examples were given of each, using simulated data 
designed to mimic previous research. Analysis of covariance (ANCOVA) can also be con-
sidered as a multiple regression analysis involving both continuous (the covariate) and cat-
egorical (the treatment or independent variable) variables. One potential advantage of using 
MR to analyze ANCOVAs is that it is simple to test for an interaction between the covariate 
and the treatment, whereas this is simply assumed for most ANCOVAs.

I noted that it is loose usage to discuss the “effects” of broad, existing categorical vari-
ables, such as Sex, on various outcomes, because of all the things that may be subsumed 
under the meaning of such categorical variables. My belief is that such usage is acceptable 
if you are clear as to the meaning. Likewise, a cross product is not strictly an interaction 
term, even though it is used to test for an interaction, but many people use these terms 
interchangeably. Finally, I discussed several additional sources for more detail on testing for 
interactions in MR.

EXERCISES

1. Conduct the first three examples used in this chapter that used the NELS data: the 
regression of Self-Esteem on Sex and Achievement, the same analysis with the addition 
of an Achievement by Sex cross product, and the regression of Self-Esteem on Ethnic 
origin, Achievement, and an Ethnic by Achievement cross product. Make sure your 
results match those presented in the chapter.
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2. Use the “Kranzler et al simulated data.sav” (or “Kranzler et al simulated.xls” or “Kran-
zler. txt”) data set found on the Web site (www.tzkeith.com). Center the CBM scores 
and create a Sex by CBM cross product using the centered variable. Conduct an analysis 
for predictive bias using the centered data. Do the results match those presented here? 
Try conducting the analysis using the uncentered data (and cross product based on 
uncentered data), as was done in Kranzler et al. (1999). Compare the coefficients and 
correlations from the two analyses. Would your interpretation be the same? You should 
find that the intercepts are not statistically significantly different without centering 
(and in the presence of the cross product), but that they are different using the centered 
continuous variable and the interaction term created from the centered continuous 
variable. Compare the two printouts; see if you can develop a sense of why this differ-
ence occurs. (Hint: I recommend you focus on graphs obtained using both centered 
and uncentered data. It is also worth focusing on the correlation matrices and then the 
standard errors of the regression coefficients. Reread the section discussing the advan-
tages of centering.)

3. Is the NELS math test biased against girls? Conduct an analysis of predictive bias using 
the base year test (ByTxMStd) and Sex, with 10th-grade Math GPA as the outcome 
(F1S39a). Make sure you convert Sex into a dummy variable and center the Math test 
score.

4. The file “ATI Data b.sav” (or the Excel or plain text versions of these data) includes 
another, perhaps more realistic, simulated data set for the attribute–treatment inter-
action problem illustrated in the chapter. Perform an ATI analysis and interpret the 
results.

5. The file “ancova exercise.sav” includes simulated data for the ANCOVA example pre-
sented in the chapter (see also the Excel or plain text versions of this file). This was 
a pretest–posttest two-group design in which 60 students registered for a course in 
research methodology were assigned, at random, to a traditional version of the class or 
an Internet version of the class. All students attended an orientation session in which 
they were given a pretest of their research knowledge. The posttest scores are students’ 
grades for the class. Analyze the results of the experiment using multiple regression 
analysis. Test for the presence of an interaction between the pretest and the treatment 
(type of class). Conduct any needed follow-up. Conduct an ANCOVA and compare the 
results of this analysis with those of the multiple regression.

6.  Kristen Alexander and colleagues were interested in whether the impact of a traumatic 
event (child sexual abuse) predicts (explains) one’s subsequent memory of that event 
(Alexander et al., 2005). In that study the researchers were interested in whether the 
severity of posttraumatic stress disorder symptoms helped explain how accurate abuse 
victims were in recalling the details of their abuse 12-21 years later. The file “Alexander 
et al abuse.sav” includes data designed to simulate some of the important variables 
in that study. The outcome variable Ncorrect is the number of details of the abuse 
recalled correctly. Sex was coded 0 for male victims, 1 for female; Support was the 
presence of maternal support for abuse disclosure (0=no, 1=yes); MTE was whether 
their sexual abuse was the most traumatic event they every experienced (0=no, 1=yes); 
NPTSD was the number of criteria for posttraumatic stress disorder currently met. The 
NPTSD scale ranged from 0 to 9 in the simulated data, and included criteria such as 
re-experiencing events and impairment in daily life. Use multiple regression to deter-
mine whether these variables are important in explaining memory accuracy (Ncor-
rect). Test for an interaction between MTE and NPTSD in their effect on Ncorrect. 
Conduct needed followup analyses (e.g., graphing and separate regressions). Explain 
your findings, in English; that is, what do these results mean?
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7.  Do fathers’ aspirations influence children? Do fathers’ aspirations have differential 
effects for boys versus girls? Using the NELS data and multiple regression, test whether 
father’s educational aspirations for their children (ByS48a) have any effect on their 
eighth grade children’s GPAs (ByGrads). Also test whether sex (Sex) moderates the 
effect of father’s aspirations on Grades. You should also control for family background 
characteristics (BySES) in this analysis. Note: you should treat the aspiration variable 
as a continuous variable; no modifications are needed to it. Treat boys as the reference 
group. Conduct any needed pre-analyses and any needed follow-up analyses. What do 
your analyses show? Are fathers’ aspirations important? Are they important for both 
boys and for girls? Are they more important for one sex versus the other? Focus on the 
final table of coefficients from your overall regression. Which line in the output shows 
the intercept for the boys? Which line in the output shows the difference in intercept 
for girls?

Notes

1 For example, in SPSS, you could create this variable from a z-score version of the original 
scale by: 1. Convert F1Cncpt2 into a z score, e.g., using a DESCRIPTIVES command, and 2. 
Creating a T-score version of this new composite using a compute statement: COMPUTE 
S_Esteem=((ZF1Cncpt2*10)+50).

2 These cross products are often referred to as interaction terms. Strictly speaking, this multiplication 
of the two variables should be referred to as a cross-product term, rather than an interaction term. 
To create a pure interaction term, we need to remove the variance attributable to the categorical 
and continuous variables from the cross product (e.g., regress the cross product on the categorical 
and continuous variables and save the residuals as an interaction variable). The testing process is 
identical, however, and I will generally use the terms cross product and interaction interchangeably. 
Of course, the effects of these variables are also removed in the MR regression analysis when they 
are entered simultaneously or prior to the cross product.

3 Note that predictive bias is only one of several types of potential bias. It is also referred to as the 
regression model of bias, or Cleary’s definition of test bias, after the late T. Anne Cleary who expli-
cated the nature of bias in prediction (Cleary, 1968). My purpose here is not the exhaustive discus-
sion of test bias but to illustrate one instance of the wide applicability of testing interactions in 
regression. For more information on the topic of test bias, one classic source is Jensen (1980). As 
noted at the end of this section, this type of analysis is by no means an exhaustive test of bias.

4 Depending on the software you use, it is possible to test for interactions of an independent vari-
able with a covariate in an ANCOVA analysis (it is possible in SPSS, for example). Testing for such 
interactions is not very common in my experience, however.
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As noted in Chapter 7, it is possible to have interactions between two or more continuous 
variables in their effect on some outcome. This chapter will discuss such interactions, as well 
as regression in which there is a curve in the regression line. As we will see, such curves can 
be considered cases in which a variable interacts with itself in its effect on some outcome 
variable.

INTERACTIONS BETWEEN CONTINUOUS VARIABLES

Conceptually, there is little difference between testing an interaction between two con-
tinuous variables and testing an interaction between a categorical and continuous vari-
able. Although the probing of a statistically significant interaction is slightly more complex 
when both variables are continuous, the basic steps are the same. With two continuous 
variables, both variables are centered, and then the centered variables are multiplied to 
create a cross-product term. The outcome variable is regressed on the two centered con-
tinuous variables (plus any other variables you wish to take into account) in a simulta-
neous regression. In a second, sequential step, the cross-product (interaction) term is 
entered into the regression. If the addition of the cross product leads to a statistically 
significant increase in R2, the interaction is statistically significant. An example will illus-
trate the process.
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Effects of TV Time on Achievement

In Chapter 7 I mentioned research testing for an interaction between TV viewing and ability 
in their effects on achievement (Keith et al., 1986). The primary purpose of this study was 
to assess and compare the effects of parent involvement, homework, and TV viewing on 
achievement. Previous research, however, had suggested that TV viewing may interact with 
Ability in their effects on Achievement (Williams, Haertel, Haertel, & Walberg, 1982). TV 
viewing appears to have a negative effect on achievement, but the extent of the effect may 
depend on the ability level of the student watching TV (remember, “it depends” often signals 
an interaction). Specifically, TV viewing may be especially detrimental for high-ability youth 
and less detrimental for low-ability youth (Williams et al.). Keith et al. (1986) sought to test 
the possible interaction between hours spent watching TV and intellectual Ability on ado-
lescents’ academic Achievement. Another common way of phrasing our interest would be to 
ask whether ability moderates the effect of TV viewing on Achievement. 

The Data: Centering and Cross Products 

The data sets “tv ability interact2.sav,” “tv ability interact2.xls,” and “tv_abil.txt” include 
500 cases of data designed to simulate the results of Keith et al. (1986). Variables in the 
data set include Ability (a composite of six verbal and non-verbal tests, each with a mean of 
100 and a SD of 15), TV (average time per day, in hours, spent watching TV), and Achieve 
(an Achievement composite of Reading and Math, expressed as a T score). Also included 
is the background variable SES (in z-score format: a combination of parents’ educational 
attainment, parents’ occupational status, family income, and possessions in the home). From 
these data, I created centered versions of the two continuous independent variables of inter-
est (TV_Cen and Abil_Cen) and the cross product of the centered TV and Ability variables 
(TV×Abil). The descriptive statistics for these variables are shown in Figure 8.1. 

You may wonder why I did not create and use cross products reflecting interactions 
between TV viewing and SES, or between SES and Ability, and so on. Recall that in Chap-
ter 7 I argued that you should only test specific interactions, those designed to test specific 
hypotheses of interest in research, rather than wholesale testing of all possible interactions. 

Descriptive Statistics

500 -2.84 3.12 .1099 1.01568

500 75.00 130.00 100.4040 9.47504
500 0 8 4.01 1.754

500 -25.40 29.60 .0000 9.47504

500 -4.01 3.99 .0000 1.75445

500 -74.53 58.37 -2.9192 16.46830

500 29.00 75.00 50.0960 8.71290

500

SES  Familty Background

ABILITY  Ability
TV  TV Time, weekdays
ABIL_CEN  Ability
(centered)
TV_CEN  TV Time,
weekdays (centered)
TVXABIL  TV by Ability
crossproduct
ACHIEVE  Achievement
Test Score
Valid N (listwise)

N Minimum Maximum Mean
Std.

Deviation

Figure 8.1 Descriptive statistics for the “tv ability interact.sav” data.
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The current example exemplifies this approach by testing only the interaction of interest and 
suggested by previous research.

The Regression 

Achievement was regressed on SES, Ability (centered), and TV viewing (centered) in a simul-
taneous regression, with the Ability–TV cross product in a second, sequential step. Some of 
the regression results are shown in Figure 8.2. As shown in the model summary, the initial 
three independent variables accounted for 51% of the variance in Achievement (F[3, 496] 
= 172.274, p < .001), and the addition of the Ability–TV cross product explained an addi-
tional 4.4% of the variance in Achievement, a statistically significant increase (F[1, 495] = 
49.143, p < .001). The interaction between ability and time spent watching TV is statistically 
significant. 

The table of coefficients, also shown in Figure 8.2, provides additional information 
about the effects of TV viewing on Achievement. As shown in the top portion of the table, 
prior to consideration of the cross product, each independent variable had a statistically 
significant effect on Achievement. Indeed, Ability had a large effect on Achievement (more 
able students achieve at a higher level), SES had a moderate effect (more advantaged stu-
dents achieve at a higher level), and TV viewing had a small to moderate negative effect on 
Achievement. Other things being equal, the more time adolescents spend watching TV, the 
lower their academic achievement. The lower portion of the table again shows the statistical 
significance of the interaction.

Figure 8.2 Regression results testing for an interaction between time spent watching TV and Ability 
in their effects on Achievement.

Model Summary

.714a .510 .510 172.274 3 496 .000

.745b .555 .044 49.143 1 495 .000

Model
1
2

R R Square
R Square
Change F Change df1 df2

Sig. F
Change

Change Statistics

Predictors: (Constant), TV_CEN  TV Time, weekdays (centered), SES  Familty
Background, ABIL_CEN  Ability (centered)

a. 

Predictors: (Constant), TV_CEN  TV Time, weekdays (centered), SES  Familty
Background, ABIL_CEN  Ability (centered), TVXABIL  TV by Ability crossproduct

b. 

Coefficientsa

49.937 .275 181.324 .000 49.396 50.479

1.442 .294 .168 4.909 .000 .865 2.020

.561 .032 .610 17.794 .000 .499 .623

-.423 .159 -.085 -2.655 .008 -.737 -.110

49.616 .267 185.892 .000 49.092 50.140

1.373 .281 .160 4.892 .000 .822 1.925

.555 .030 .604 18.427 .000 .496 .614

-.278 .154 -.056 -1.806 .072 -.580 .024

-.113 .016 -.213 -7.010 .000 -.144 -.081

(Constant)
SES  Familty
Background
ABIL_CEN  Ability
(centered)
TV_CEN  TV Time,
weekdays (centered)
(Constant)
SES  Familty
Background
ABIL_CEN  Ability
(centered)
TV_CEN  TV Time,
weekdays (centered)
TVXABIL  TV by
Ability crossproduct

Model
1

2

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig. Lower Bound Upper Bound
95% Confidence Interval for B

Dependent Variable: ACHIEVE  Achievement Test Scorea.
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Probing an Interaction between Continuous Variables 

With interactions between categorical and continuous variables, it is relatively easy to probe 
the interaction through graphing, because one variable already represents a limited number 
of categories. These categories can thus be plotted as separate lines in a graph of the depen-
dent variable on the other (continuous) independent variable, and separate regression can be 
run across the different categories. It is slightly more complex to investigate further a statisti-
cally significant interaction between two continuous variables. I will outline several methods 
by which you can get a sense of the nature of interactions between continuous variables and 
will briefly mention methods for more complete post hoc probing of such interactions.

One relatively easy method of getting a sense for such interactions involves converting (for 
the purposes of follow-up) one continuous variable into a limited number of ordered catego-
ries and conducting the same sorts of analyses that we used when one variable was categorical. 
For the current example, I converted the Ability variable into a new, trichotomized Ability 
variable (Abil_3, which is also included in the data set). On this new Abil_3 variable, a value of 
1 included approximately the lowest 33% of participants (on the Ability variable). The middle 
third of participants on the Ability variable was coded 2 on Abil_3. The top third of those on 
Ability was assigned a value of 3 on the Abil_3 variable. Thus scores of 1, 2, and 3 on the Abil_3 
variable represent low, middle, and high ability, respectively. We can then use this trichotomized 
version of the Ability variable to graph the interaction and to conduct separate regressions.

Figure 8.3 shows three separate regression lines for the regression of Achievement on TV 
time for these three levels of Ability (SES is not taken into account in the graph). The graph 
clearly shows the nature of the interaction. It appears that TV viewing is considerably more 
detrimental for the achievement of high-ability youth than for other youth, in that each 
additional hour spent viewing TV appears to result in considerably lowered achievement for 
high-ability youth. In contrast, for students of average or lower ability, TV viewing seems to 
have little effect on their achievement. The results are consistent with previous research on 

Figure 8.3 One method of exploring an interaction between continuous variables: regression of 
Achievement on TV for three levels of Ability.
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the effects of TV viewing (e.g., Williams et al., 1982). Although not shown here, we could 
continue our post-hoc probing by using the trichotomized version of the Ability variable 
in separate regressions. In regressions of Achievement on SES and TV time, TV time was 
statistically significant, large, and negative for high ability students (b = −.371), not statisti-
cally significant for those of average ability (−.081), and statistically significant and positive 
for low ability youth (.165). This latter finding suggests that TV viewing may have a slightly 
positive effect on the achievement of low ability youth!

It is also possible to plot mean Achievement scores by levels of time spent on TV and (tri-
chotomized) Ability (cf. Keith et al., 1986), as was done in Figure 8.4, to get a general sense of 
the nature of the interaction. This method of graphing is a potential alternative to the use of 
separate regression lines. Although this approach has some advantages—the variation in the 
lines is interesting—these lines represent means, not regression lines, and thus the nature of 
the difference in regression lines is less obvious. Also note that this procedure will only work 
if there are a limited number of possibilities for the independent variable being plotted on 
the X-axis, or the samples are large, or both. The present example fulfills these requirements, 
because there are only eight levels of the TV viewing variable. 

It is also possible to calculate the regression equation for any given value of Ability using 
the overall regression equation by substituting the desired values of Ability in the equation. 
The regression equation is

Achievepredicted = 49.616 + 1.373SES + .555Ability—.278TV—.113TV × Ability.

What values should be substituted? Common values are –1 SD, the mean, and +1 SD on the 
continuous independent variable (Aiken & West, 1991; Cohen & Cohen, 1983). In the present 
analysis, these would be values of approximately –9, 0, and 9 on the centered Ability variable 
(the mean and SD are shown in Figure 8.1). Other values are also possible, including clinically 
relevant values or commonly used cutoffs. So, for example, if you are especially interested in 

Figure 8.4 Mean levels of Achievement for different levels of TV viewing and Ability.
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the implications of this research for low-ability students, you will probably want to calculate a 
regression equation for students whose ability is a standard deviation or more below the mean.

If you substitute values of 9, 0, and –9 for Ability (and in the Ability by TV interaction) in 
the above equation, you generate three new equations. The equation for high-ability youth is

Achievepredicted = 49.616 + 1.373 (0) + .555 (9) − .278TV − .113TV(9).

Again, for this equation, +9 was substituted for Ability wherever it occurred in the overall 
regression equation. I also substituted a value of zero for SES (the population mean) to sim-
plify the equations. The equation is simplified as

Achievepredicted  = 49.616 + 4.995 − .278TV − 1.01TV  
= 54.611 − 1.29TV.

For middle-ability youth, a value of zero is substituted for Ability. The regression equation is

Achievepredicted  = 49.616 + 1.373 (0) + .555 (0) − .278TV − .113TV (0)  
= 49.616 − .278TV

For low-ability youth, a value of –9 is substituted, resulting in this regression equation:

Achievepredicted  = 49.616 + 1.373 (0) + .555 (−9) − .278TV − .113TV (−9)  
= 49.616 − 4.995 − .278TV + 1.017TV  
= 44.621 + .739TV

These, then, are the regression equations for the regression of Achievement on TV time for 
high-, middle-, and low-ability youth. These equations can then be plotted (Figure 8.5) to 
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Figure 8.5 Using the overall regression equation to plot the effects of TV on Achievement for different 
levels of Ability.
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demonstrate the nature of the interaction. Although slightly more complex than the other 
methods outlined, this method has the advantage of being based on the original regression 
equation (rather than three new equations). In addition, it is possible to test the statistical 
significance of the slopes of the calculated regression equations. This topic is beyond the 
scope of this book but is presented in detail in Aiken and West (1991) and Cohen and col-
leagues (2003), who also show how to calculate the new equations and test their statistical 
significance using a statistical analysis program.

To reiterate, there are several possibilities for exploring, through graphing, a statistically 
significant interaction with two continuous variables. They are (in reverse order):

1. Use the original regression equation to graph lines for different levels of one continu-
ous variable. You can substitute, for example, values representing +1 SD, the mean, and 
–1 SD for one interacting variable to develop three regression equations representing 
participants who have high, medium, and low values on this variable.

2. Divide the sample into categories (e.g., lowest, middle, and high categories) on one 
of the interacting variables. Alternatively, you could make this division at +1 SD, the 
mean, and –1 SD. Plot a line for each category showing the mean level of the dependent 
variable for each level of the other interacting variable. This procedure requires large 
samples and a limited number of levels of the other interacting variable.

3. Divide the sample into categories (e.g., lowest, middle, and high categories) on one 
interacting variable. Alternatively, you could make this division at +1 SD, the mean, 
and –1 SD, or other clinically significant values. Plot a regression line, with the out- 
come variable regressed on the other interacting variable, for each category.

Points to Consider 

Several aspects of these examples are worth noting. First, you should consider which con-
tinuous variable to categorize. We could have focused just as easily on high, medium, and 
low levels of TV viewing instead of high, medium, and low ability. In this case, our graph 
would have shown the regression of Achievement on Ability for low, medium, and high 
levels of TV viewing. Such a presentation strikes me as considerably less useful than the one 
presented; it would, for example, provide little illumination for parents wondering whether 
they should worry about their children’s TV consumption. Basically, the way you choose to 
graph and analyze such interactions should depend on the questions you are interested in 
addressing. Different presentations answer different questions, so you should be clear about 
the questions you want to address and set up your graphs and additional analyses appropri-
ately. You can often get a clue as to the variable to categorize by our original interest. Here 
we wondered whether ability moderated the effect of TV viewing on Achievement. Thus it 
makes sense to plot Achievement against TV viewing, with separate lines for the moderat-
ing variable, Ability.

Second, note that for the graphs I used the original metric of TV viewing, rather than the 
centered metric. Either will work, but since the metric of TV viewing is meaningful (hours 
per day), I didn’t want to waste the interpretive advantages of this metric. If I were graphing 
a variable without such a meaningful metric, say self-esteem, I would probably choose the 
centered version of the variable.

Third, you may wonder if I have here adopted a practice that I previously criticized: the 
mind-set that sometimes leads researchers to categorize continuous variables so that they 
may be analyzed by AVOVA. Here, however, I seem to be advocating such categorization. Note, 
however, that I did not categorize Ability prior to the test of the interaction. The continuous 
variable was only converted to categories after a statistically significant interaction was found 
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and as an aid to probing the nature of this interaction. My harsh criticism of categorizing 
continuous variables prior to analysis still stands.

MODERATION, MEDIATION, AND COMMON CAUSE

This chapter and the previous one have focused on interactions in multiple regression. As 
noted, interactions can go by another label, moderation. I want to briefly draw the distinc-
tion between moderation and two other concepts we have discussed throughout this portion 
of the book, mediation and common cause (see especially Chapter 4). I hope these three 
concepts are clear in your mind, but, in my experience, students often confuse the nature of 
these three concepts and how they show up in multiple regression. Perhaps what is confusing 
is that these concepts all involve the influence of one variable on another, and how that effect 
is changed by a third variable.

Moderation

Moderation means the same thing as interaction. When we say that ability moderates 
the effect of TV viewing on achievement, this is the same as saying that ability and TV 
viewing interact in their effect on achievement. Likewise, it is equivalent to saying that 
the effect of TV viewing differs for different levels of ability or that TV viewing has dif-
ferent effects for those of high ability versus those of low ability. Said differently, the 
magnitude of the effect of TV viewing on achievement differs for different levels of abil-
ity. Because regression coefficients represent the slope of the regression line, moderation 
is often described as differences in slopes across groups. Interactions, or moderation, can 
often be described using the statement “it depends.” If you found, for example, that sex 
moderated the effect of motivation on achievement, and someone were to ask you about 
the effect of motivation on achievement, you would need to use the words “it depends . . . 
it depends on whether you are a boy or a girl.” When you hear the term “moderated 
regression,” it simply means to test for moderation–interaction using the regression pro-
cedures outlined in these chapters. Another way of describing moderation is to think of 
the phrase “different slopes for different folks,” a phrase that may be easy to remember if 
you like classic rock and R&B.

As noted in Chapter 7, there are several ways of illustrating moderation using path dia-
grams. Figure 8.6 shows that the variable Group membership moderates the effect of Influ-
ence on Outcome, in that the magnitude of the effect of Influence on Outcome changes 
depending on Group membership. 

Figure 8.6 One method of illustrating moderation. Group membership moderates the effect of Influ-
ence on Outcome.

Outcome
large effect

Influence
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Outcome
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Figure 8.7 illustrates another method of displaying moderation. Here, the diagram illus-
trates that Group membership affects—moderates—the extent of the influence of Influence 
on Outcome. Finally, Figure 8.8 illustrates this same moderation example via regression lines 
drawn for the two groups. Like Figure 8.6, this graph illustrates that Influence has a large 
effect on Outcome for Group 1 but a small effect for Group 2.

Mediation

The term mediation means the same thing as an indirect effect. When we say that moti-
vation affects achievement through homework, this is the same as saying that motivation 
has an indirect effect on achievement through homework or that homework mediates the 
effect of motivation on achievement. We can describe this relation by explaining that more 
motivated students complete more homework and that homework, in turn, increases their 
achievement. Thus mediation is useful for understanding how an effect comes about. If I tell 
you that academic motivation influences achievement, you may wonder how. Mediators are 
attempts to explain how: motivation affects achievement by affecting time spent on home-
work; more motivated students complete more homework, and that homework, in turn, 
improves achievement.

We can also explain this mediation, or indirect effect, via a diagram such as that shown 
in Figure 8.9. Although we have discussed mediation or indirect effects, we have not really 
discussed how to test for mediation using multiple regression. In the classic article on this 
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Figure 8.7 A second method of illustrating moderation: Group membership moderates (affects) the 
effect of influence on outcome.
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Figure 8.8 Moderation illustrated via regression lines for Group 1 and Group 2.
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topic, Baron and Kenny (1986) showed that mediation can be assumed to exist under the 
following conditions:

1. In a regression of Outcome on Influence (using the labels from Figure 8.9), the effect 
of Influence on Outcome is statistically significant. This regression does not include the 
mediating variable.

2. The regression of the Outcome on the Mediator results in a statistically significant effect.
3. The regression of Outcome on both Influence and the Mediator results in a reduction 

in the effect of Influence from step 1. In other words, the effect represented by path c in 
Figure 8.9 is smaller than would be the effect without the Mediator in the regression.

Complete mediation exists when the addition of the Mediator to the regression reduces the 
coefficient c to zero; partial mediation exists when the effect is simply reduced.

More directly, what is being evaluated in a test of mediation is the magnitude and statisti-
cal significance of the indirect effect of Influence on Outcome through Mediator. To deter-
mine whether the mediation is statistically significant, we need to calculate the statistical 
significance of the indirect effect (path a times b in Figure 8.9). Here is a common way to do 
so within the context of multiple regression:

1. Regress Outcome on Influence and Mediator. Note the (unstandardized) regression 
coefficients and standard errors for Influence (path c) and Mediator (path b).

2. Regress Mediator on Influence. Note the regression coefficient and its standard error 
(path a).

3. Calculate the indirect effect by multiplying the coefficient associated with path a times 
that associated with path b.

4. Calculate the standard error of the indirect effect, and compare the indirect effect to its 
standard error (statistical significance) or use the standard errors to create confidence 
intervals around the indirect effect.

The only tricky part of this series of steps is Step 4, calculating the SE of the indirect effect. 
The most common way of doing so is via what is known as the Sobel test (Sobel, 1982) 
using the standard errors associated with the regression coefficients. As of this writing, Kris 
Preacher at Vanderbilt University has an excellent Web page that will perform the calcula-
tions for you interactively (http://quantpsy.org/sobel/sobel.htm). All you need to do is to 
type in the regression coefficients and their standard errors (or the t values). The website 
provides a great discussion of mediation (including reasons why the Sobel test is often not 
the best option for testing mediation).

Figure 8.9 Mediation illustrated
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Outcome
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Much has been written about mediation in the years since the Baron and Kenny (1986) 
article (see MacKinnon, 2008; MacKinnon, Lockwood, Hoffman, West, & Sheets, 2002; 
Shrout & Bolger, 2002). As you might guess from my (and others’) reliance on path diagrams 
to explain mediation, it is most easily understood within the context of path and structural 
equation models. Indeed, most structural equation modeling programs easily calculate indi-
rect effects and their statistical significance using a better method (bootstrapping) than dis-
cussed here. For this reason, we will delve deeper into the topic in Part 2.

Common Cause

A common cause is a variable that affects both a presumed influence and its presumed out-
come. If the coefficients represented by paths a and c in Figure 8.9 are both statistically signif-
icant, the variable Influence is a common cause of the Mediator and the Outcome. Common 
causes may also be referred to as confounding variables, or the “third variable problem.” 
As noted in Chapter 4, important common causes must be included in a regression for the 
regression coefficient to provide valid estimates of the effect of one variable on another. If an 
important common cause is neglected in an analysis, the regression coefficients will be mis-
leading estimates of the effects of one variable on another. Analyses in which such common 
causes are not included are sometimes referred to as misspecified analyses or models. We will 
spend considerable time on the issue of common causes in Part 2.

In my experience, it is not unusual for people to confuse common causes with modera-
tion. When faced with a problem like that illustrated in Figure 8.10, sometimes a budding 
researcher will (often vaguely) posit that the Group variable “interacts” with the other vari-
ables in their effects. But this model does not illustrate interaction (moderation). If Group 
indeed affects both Variable 1 and Variable 2, it is a common cause. To use ANOVA-type 
lingo, Figure 8.10 illustrates Group having main effects on both Variable 1 and Variable 2, 
whereas moderation is analogous to an interaction in ANOVA.

A Comment on Language

It is not uncommon, at least in my reading, to see researchers say they are testing whether 
a variable mediates the relation (or relationship) between one variable and another. This 
use of the word relation or relationship, rather than effect or influence, no doubt grows 
out of a desire to avoid causal language in nonexperimental research. But if you examine 
the language more closely, it really is messy and adds confusion rather than clarity. Media-
tion is based on and requires causal thinking. Mediation is all about one variable affecting 
another via an intermediary variable. It is difficult, if not impossible, to conceive of media-
tion without an effect. In contrast, the use of the word relationship muddies the underlying 
thinking. Which is the presumed influence, and which is the effect? Relationship implies a 

Variable 1

Variable 2

Group

Figure 8.10 This example is not an illustration of moderation.
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correlation, an agnosticism about which variable we think of as the influence and which we 
think of as the effect. It implies that either variable could be the assumed influence and either 
the effect, when, by conducting a regression of one variable on others, we have implicitly 
assumed that one variable is, in some sense of the word, affected by others. Mediation think-
ing requires causal thinking! Non-causal language confuses mediation thinking. I encourage 
you to say that you are testing whether a variable mediates the effect (or presumed effect) of 
one variable on another, for example, whether homework mediates the effect of motivation 
on learning.

I would argue that moderation thinking also requires causal thinking and is made clearer 
through the use of causal language. Suppose I say that I am testing whether sex moder-
ates the relation between motivation and achievement. If the word “relation” implies cor-
relation, what does this mean? Is it even possible? It probably is (e.g., different correlations 
for different groups) but usually means something different from what is intended by this 
imprecise wording. Again, we are really interested in whether sex moderates the presumed 
effect of motivation on achievement; whether sex and motivation interact in their effect on 
achievement. The use of noncausal language confuses rather than illuminates and should, in 
my opinion, be avoided. Moderation thinking requires causal thinking, and avoiding causal 
language leads to confusion rather than clarity. We should not pretend that we are uninter-
ested in the potential effect of one variable on another if, in fact, that is exactly what we are 
interested in.

Perhaps my cavalier use of causal language makes you feel uncomfortable. Or perhaps you 
agree with me but respond “I see your point, but my advisor (or my reviewers) won’t let me 
use that kind of language; they insist on relation rather than influence or effect.” One pos-
sible compromise is to add a paragraph explaining what we actually mean by such language 
when it is first introduced. Something like:

It is important to note that the data used in this research are nonexperimental in 
nature; there will be no (nor could there be) experimental manipulation of academic 
motivation to determine its subsequent effect on achievement. As a result, it should be 
understood that all statements that discuss the “effect” of one variable on another, or 
that focus on variables that “explain” an outcome are dependent on the validity of the 
regression model. In other words, if the model is a reasonable representation of real-
ity, the estimates resulting from the model indeed show the extent of the influence of 
one variable on another. If the model is not a reasonable representation of reality, the 
estimates are not accurate estimates of those effects.

Once again, we will explore these topics, and especially what makes a model valid, more 
completely in Part 2 of this text.

One final note: when we really are talking about a non-causal relation, which is cor-
rect, “relation” or “relationship?” One of my early research texts was the excellent “Founda-
tions of Behavioral Research” by Fred Kerlinger (1986). Kerlinger argued that people have 
relationships, whereas variables have relations (p. 58n). That explanation has always made 
sense to me.

CURVILINEAR REGRESSION

All the regression lines we have encountered so far have been straight lines. Indeed, as you 
will see in Chapter 9, linearity is one of the basic assumptions of regression. But it is also 
possible for a regression line to have curves in it. As an example, think of the likely relation 
of anxiety to test performance. If you have no anxiety at all about an upcoming exam, you 
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likely will not study for it nor take it very seriously while it is being administered; the likely 
result is that you will not perform particularly well on the exam. At the other end of the 
anxiety spectrum, if you are extremely anxious about the same exam, your high anxiety will 
also likely inhibit your performance. Some middle level of anxiety should be most beneficial: 
enough anxiety to motivate you to study and perform well, but not so high as to interfere 
with your performance. If this expectation about anxiety and test performance is accurate 
(Teigen, 1995), the proper graph of test performance on anxiety might look something like 
that shown in Figure 8.11. 

Using normal linear regression, we would likely explain none of the variance in test per-
formance based on anxiety; the regression line would be straight and flat. But it is possible 
to take into account possible curves in the regression line. How? Recall how we described 
the results of interactions by saying “it depends.” If asked to describe the effect of anxiety on 
test performance, we need to use this same language. What type of effect does anxiety have 
on test performance? It depends; it depends on the level of anxiety. For low levels of anxiety, 
anxiety has a positive effect on test performance, whereas for high levels of anxiety, anxiety 
has a negative effect on test performance. If the use of the term “it depends” signals a possible 
interaction, then in essence what we are saying is that anxiety interacts with itself in its effects 
on test performance. And if a curve in a regression line can be described as the interaction 
of a variable with itself on another variable, then the method of analysis also becomes clear: 
multiply the two variables that interact—in this case, multiply anxiety times anxiety—and 
enter the cross product in the regression equation following the original variable. Let’s turn 
to real data to illustrate the method.

Curvilinear Effects of Homework on GPA

We have examined in several ways the effect of homework on achievement and grades. But 
doesn’t it seem likely that homework’s effect on learning should be curvilinear? Certainly, 
homework improves learning, but don’t you think that there will be diminishing returns 
for each additional hour of homework completed? In other words, shouldn’t the payoff for 
learning be greater when going from zero to 1 hour per week than when going from, say, 10 
to 11 hours per week? In fact, research on homework suggests exactly this type of curvilinear 
relation: there are diminishing returns for the effects of homework on learning (cf. Cooper, 
1989; Fredrick & Walberg, 1980).

20

30

40

50

60

70

80

T
es

t 
P

er
fo

rm
an

ce

HighAverageLow

Anxiety

Figure 8.11 Curvilinear effect: test performance as a function of Anxiety.



174 • MULTIPLE REGRESSION

The Data: Homework and Homework Squared 

This expectation for diminishing returns for homework is in fact built into the NELS data, 
at least to some extent. Look at the values of the homework variable, shown in Figure 8.12. 
Note that for lower values of homework the increment is 1 hour or less (e.g., from zero hours 
to 1 hour or less), whereas for later values the increment is greater (e.g., a value of 6 is used 
to describe 13, 14, or 15 hours of homework). This compression of the homework scale at 
the upper end may take some of the likely curvilinear effect of homework on learning into 
account. We’ll see here if the effect is still curvilinear. 

Let’s be a little more explicit: we will test the effect of time spent on out of school Homework 
in grade 10 on students’ 10th-grade GPA. We are interested in testing for possible curvilinear 
effects for Homework, so we will use both the Homework variable and a Homework-squared 
variable in the regression. Just as in our tests for interactions, we will first center the continu-
ous Homework variable prior to squaring it and will use centered Homework and centered 
Homework squared in the regression. We will also control for students’ family background, or 
Socioeconomic Status, and Previous Achievement, with the thinking that SES and Previous 
Achievement may affect both Homework and subsequent Grades.

Figure 8.13 shows the descriptive statistics and correlations for the variables used 
in the analysis. All these variables are included in your version of the NELS data, except 
two: HW_Cen and HW_Sq. HW_Cen is the centered version of the Homework vari-
able, created by subtracting the mean of F1S36A2 from F1S36A2 [e.g., compute Hw_
Cen=(F1S36A2-2.544642857143)]. HW_Sq was created by squaring HW_Cen. Note the 
correlation between HW_Sq and HW_Cen: .582. Had we not centered the Homework vari-
able prior to squaring it, the correlation between Homework and Homework squared would 
have been .953.

Tenth-grade GPA was regressed on SES, Previous Achievement, and HW_Cen in one 
block, and HW_Sq was sequentially added in a second block in the regression. Note that 
we could just as easily have added all variables in a single block to determine the statistical 
significance of the curve in the regression line (using the t test of the HW_Sq regression 
coefficient).1

Figure 8.12 The scale of the Homework time variable in NELS.

F1S36A2  TIME SPENT ON HOMEWORK OUT OF SCHOOL

63 6.3 6.7 6.7
232 23.2 24.6 31.3
264 26.4 28.0 59.3
168 16.8 17.8 77.1

80 8.0 8.5 85.6
66 6.6 7.0 92.6
31 3.1 3.3 95.9
39 3.9 4.1 100.0

943 94.3 100.0

7 .7

17 1.7
33 3.3
57 5.7

1000 100.0

0  NONE
1  1 HOUR OR LESS
2  2-3 HOURS
3  4-6 HOURS
4  7-9 HOURS
5  10-12 HOURS
6  13-15 HOURS
7  OVER 15 HOURS
Total

Valid

96  MULTIPLE
RESPONSE
98  MISSING
System
Total

Missing

Total

Frequency Percent Valid Percent
Cumulative

Percent
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The Regression

Figure 8.14 shows the results of the multiple regression. As shown in the Model Summary, the 
addition of the HW_Sq term to the regression resulted in a statistically significant increase in 
the variance explained by the regression (DR2 = .008, F = 10.366 [1, 891] p = .001). There is 
a statistically significant curve in the regression line. Of course, the statistical significance of 
the HW_Sq variable in the lower half of the table of coefficients leads to the same conclusion.

Graphing the Curve

The curved regression line is shown in Figure 8.15 (created by specifying a quadratic fit line 
as chart option in SPSS’s scatterplot command; SES and Previous Achievement are not con-
trolled in this graph). Our findings are consistent with previous research, and it appears our 
speculation was correct: for lower levels of homework, grades improve fairly quickly for each 
unit increase in homework, but these increases quickly flatten out; so for students already 
completing substantial amounts of homework, a unit increase in homework has little or no 
effect on GPA. This initial graph uses the centered homework variable, but the regression line 
using the uncentered data is shown in Figure 8.16. Note that the two graphs are essentially 
the same, with the only difference being the scale of the X-axis.

Note the shape of the regression line: primarily upward, with a convex shape. This shape 
is also revealed by the regression coefficients in the bottom half of the table of coefficients in 
Figure 8.14. The positive coefficient for HW_Cen suggests the general upward trend of the 
regression line, whereas the negative coefficient for the curve component (HW_Sq) suggests 
the gradually flattening, convex shape. In contrast, if there were a negative coefficient for 
the independent variable that would suggest a generally downward trend to the regression 

Figure 8.13 Descriptive statistics for the variables used in the curvilinear regression example.

Descriptive Statistics

5.6866 1.4726 896

2.17E-02 .77097 896

51.8150 8.7000 896

-1.5E-13 1.7110 896

2.9243 4.3862 896

FFUGRAD  ffu grades
BYSES 
SOCIO-ECONOMIC
STATUS COMPOSITE
BYTESTS  8th-grade
achievement tests (mean)
HW_CEN  Homework out
of school, centered
HW_SQ  Homework
centered, squared

Mean
Std.

Deviation N

Correlations

1.000 .311 .494 .325 .097

.311 1.000 .467 .285 .134

.494 .467 1.000 .304 .138

.325 .285 .304 1.000 .582

.097 .134 .138 .582 1.000

Pearson Correlation

FFUGRAD 
ffu grades

BYSES
SOCIO-

ECONOMIC 
STATUS

COMPOSITE

BYTESTS 
Eighth grade
achievement
tests (mean)

HW_CEN 
Homework

out of school,
centered

HW_SQ 
Homework
centered,
squared



Figure 8.14 Regression results testing for a curvilinear effect of Homework on GPA.

Model Summaryc

.531a .282 .282 116.543 3 892 .000

.538b .290 .008 10.366 1 891 .001

Model
1
2

R R Square
R Square
Change F Change df1 df2

Sig. F
Change

Change Statistics

Predictors: (Constant), HW_CEN  Homework out of school, centered, BYSES 
SOCIO-ECONOMIC STATUS COMPOSITE, BYTESTS  8th-grade achievement tests
(mean)

a. 

Predictors: (Constant), HW_CEN  Homework out of school, centered, BYSES 
SOCIO-ECONOMIC STATUS COMPOSITE, BYTESTS  8th-grade achievement tests
(mean), HW_SQ  Homework centered, squared

b. 

Dependent Variable: FFUGRAD  ffu gradesc. 

Coefficientsa

2.115 .290 7.296 .000 1.546 2.683
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Figure 8.15 Plot of the curvilinear effect of Homework on 10th-grade GPA, using the centered Home-
work variable.
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line, and a positive coefficient for the squared independent variable would suggest a concave 
shape. These relations between regression coefficients and the regression line are summa-
rized in Table 8.1. Given this description, what do you think the coefficients associated with 
Figure 8.11 might be? The coefficient for Anxiety would be zero, and the coefficient for anxi-
ety squared would be negative.

Controlling for Other Variables

In the multiple regression, we controlled for SES and Previous Achievement when examining 
the linear and curvilinear effect of homework on GPA, but SES and Previous Achievement 
were not considered in the graphs. It is also possible to take SES and Previous Achievement 
into account in these graphs. Recall in our discussion of residuals we found that residuals 
could be considered as the dependent variable with the effects of the independent variables 
removed. In the present case we are interested in plotting the effects of homework on GPA, 
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Figure 8.16 Another plot of the curvilinear effect of Homework on 10th-grade GPA, using the origi-
nal Homework variable. 

Table 8.1 Relation between Regression Coefficients in a Curvilinear Regression and the Trend and 
Shape of the Regression Line

Coefficient Associated with: What it Describes Is the Value

Positive Negative

Unsquared variable Trend of the regression line Upward trend Downward trend

Squared variable (curve 
component)

Shape of the regression line Concave shape Convex shape
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Figure 8.17 Plot of the curvilinear effect of Homework on 10th-grade GPA; SES and Previous 
Achievement are also controlled.

with the effects of Previous Achievement and SES removed from GPA. Thus, we can easily 
regress GPA on SES and Previous Achievement, saving the residuals, which now represent 
GPA with SES and Previous Achievement taken into account. Figure 8.17 shows the curvi-
linear regression line for GPA, with SES and Previous Achievement removed, on Homework. 
The variable now labeled 10th-Grade GPA (SES, Ach removed) is, in turn, the saved residuals 
from the regression of GPA on SES and Previous Achievement. 

Testing Additional Curves

Is it possible to have more than one curve in the regression line? Yes; for example, consider 
the possible effects of student employment during the school year on achievement. It may 
be that working a few hours a week is actually beneficial to student achievement, but that 
as students work beyond these few hours, their achievement suffers (this describes one 
curve in the regression line). Beyond a certain number of hours, however, additional hours 
may have no effect, and therefore the line would flatten out (where the slope changes from 
negative to flat describes another curve). Figure 8.18 illustrates such a possibility (cf. Quirk, 
Keith, & Quirk, 2001).

To test for additional curves, we simply test additional powers of the independent 
variable. To test for one curve in the regression line, we add the centered independent 
variable squared (a quadratic term) to the regression equation. To test for two curves, we 
additionally add a cubed version of the centered independent variable to the equation; 
to test for three curves, we add the independent variable to the fourth power, and so on. 
Figure 8.19 shows some of the results from the regression of GPA on the control vari-
ables, Homework, Homework squared, and Homework cubed. As shown, the cubic term 
entered at the third step was not statistically significant. There is only one curve in the 
regression line, and the shape of the regression line was adequately graphed in previous 
figures. It may be worthwhile to test such higher-order terms until statistical nonsignifi-
cance is found.
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There are other methods of transforming data beyond the power transformations (X- 
squared, X-cubed, etc.) discussed in this chapter. For example, logarithmic transformations 
are possible, as are square root transformations. According to Cohen and colleagues (2003, 
p. 221), one major reason for such transformations is to simplify the relation between the 
predictor and outcome variables. For example, it is common to use a logarithmic transforma-
tion of income in regression rather than income, per se. Other reasons involve dealing with 
threats to regression assumptions: homoscedasticity and normal distributions of residuals 
(these topics are discussed in Chapter 9). Finally, for complex nonlinear models, there is the 
method of nonlinear regression that can go well beyond the simple modeling of curves in a 
regression line that we are able to accomplish with ordinary multiple regression.
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Figure 8.18 Graph of a regression line with two curves. These curves can be tested by adding variables 
representing Employment-squared and Employment-cubed to the regression equation.

Model Summary
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Model

1
2
3

R R Square
R Square
Change F Change df1 df2

Sig. F
Change

Change Statistics

Predictors: (Constant), HW_CEN  Homework out of school, centered, BYSES 
SOCIO-ECONOMIC STATUS COMPOSITE, BYTESTS  8th-grade achievement tests
(mean)

a. 

Predictors: (Constant), HW_CEN  Homework out of school, centered, BYSES 
SOCIO-ECONOMIC STATUS COMPOSITE, BYTESTS  8th-grade achievement tests
(mean), HW_SQ  Homework centered, squared

b. 

Predictors: (Constant), HW_CEN  Homework out of school, centered, BYSES 
SOCIO-ECONOMIC STATUS COMPOSITE, BYTESTS  8th-grade achievement tests
(mean), HW_SQ  Homework centered, squared, HW_CUBE  Homework centered, cubed

c. 

Figure 8.19 Testing for two curves in the regression equation.
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As with interactions in multiple regression, curves in regression lines are relatively rare, 
especially regression lines with more than one curve. As with interactions, it may be that 
curvilinear effects are rare or that straight lines are simply reasonably good approximations 
in most cases. It is also the case, however, that these tests are less often statistically significant 
because of their lower power. In addition, unusual data points can sometimes trick you into 
thinking you have a curve in your regression line. You should always inspect your data for 
such anomalies. These outliers will be discussed in more detail in Chapter 9.

SUMMARY

This chapter extended our discussion of testing for interaction in multiple regression to 
interactions involving continuous variables. Simulating data from published research, we 
regressed Achievement on Ability, time spent in leisure TV viewing, and a cross product 
of TV and Ability to determine whether TV viewing interacts with Ability in its effect on 
Achievement. The findings indeed suggested the presence of an interaction. We discussed 
several methods for exploring the nature of such interactions. First, we divided the Ability 
variable into three categories and graphed regression lines of Achievement on TV viewing 
for these three levels of Ability. Second, we plotted mean levels of Achievement by each level 
of TV and Ability. Third, we used the overall regression equation and substituted values 
representing low, medium, and high ability (–1 SD, the mean, and +1 SD) into the equation 
to generate three regression equations. These three equations were also plotted to explore 
the nature of the interaction. These methods should help you understand and describe the 
nature of any interaction that you do find.

We introduced regression lines including curves in this chapter, as well, and conceptual-
ized such curve components as an interaction of a variable with itself in its influence on some 
outcome. Returning to an earlier example, we showed that Homework may, in fact, have a 
curvilinear effect on GPA, such that each additional hour spent on homework has a smaller 
effect on GPA than did the previous hour. We uncovered this curvilinear effect by adding a 
Homework-squared variable to the regression equation and testing its statistical significance. 
Higher-order terms (e.g., Homework cubed) could be added to test for additional curves in 
the regression line. Again, graphs were used to understand the nature of the curvilinear effect. 

In this chapter we also clarified the concepts of moderation, mediation, and common 
cause. In my experience, these three concepts are often confused, so it is worthwhile to spend 
a little time making sure you understand the differences. Moderation is another term for 
interaction, and is used to describe the situation where the magnitude of the effect of one 
variable on another depends on a third variable. The use of the language “it depends” is a 
hint that we are likely talking about moderation. Chapters 7 and 8 focused on moderation 
with categorical (Chapter 7) and continuous (Chapter 8) variables. Mediation is another 
term for indirect effect, and is useful for describing how an effect comes about. How does 
motivation affect achievement? Perhaps more motivated students complete more home-
work, and it is that homework, in turn, that raises achievement. Here, we have posited that 
homework may mediate the effect of motivation on achievement. The chapter also explained 
how to test the statistical significance of a mediated effect, although you will find this is easier 
to do using structural equation modeling programs (as shown in Part 2 of this text). We first 
introduced the topic of indirect effects/mediation in Chapter 4, and will return to it in Part 
2. Common causes are variables that affect both your presumed cause and your presumed 
effect. They must be included in a regression or path model for the regression coefficients 
to provide accurate estimates of effects. The topic of common causes has been touched on 
throughout the text so far, and will continue to be a topic of interest as we continue. They 
were discussed in this chapter to make sure that you understand how they differ from mod-
eration and mediation.
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EXERCISES

1. If you have not done so already, conduct the multiple regression testing the interaction 
of TV and Ability on Achievement conducted earlier in this chapter. Compare your 
results to mine. Make sure you are able to correctly center the variables and create the 
interaction term. Try the different methods for graphing the interaction. The data are 
on the Web site (tzkeith.com) (“tv ability interact2.sav,” “tvability interact2.xls,” and 
“tv_abil.txt”).

2. Conduct a similar analysis using the NELS data. Try using F1S45A as the measure of 
time spent watching TV and a mean of the 10th-grade test scores (F1TxRStd, F1TxM-
Std, F1TxSStd, F1TxHStd) as the outcome. Because NELS did not include measures of 
ability, test the interaction of TV and Previous Achievement (ByTests). Also control for 
base year SES (BySES). Is the interaction statistically significant? Graph the interaction 
(or the lack of an interaction). How do you account for the differences between these 
findings and those from Exercise 1?

3. Conduct the multiple regression testing the curvilinear effect of Homework on Grades 
conducted earlier in this chapter. Compare your results to mine. Make sure you are able 
to correctly center the variables and create the Homework squared term. Graph the 
curved regression line.

4. Does TV viewing have a curvilinear effect on Grades? Spend a few minutes thinking 
about this question. If you believe TV viewing has such an effect, what do you think 
will be the shape of the regression line: negative and concave; negative and convex? Use 
NELS to test this question. Use F1S45A as a measure of TV viewing and FFUGrad as a 
measure of 10th-grade GPA. Also control for SES and Previous Achievement (BySES 
and ByTests).

5. Use a literature research database to find an article in an area of interest to you with the 
word mediation in either the title or the abstract. Read the abstract to make sure the 
term mediation refers to statistical mediation (rather than, say, legal mediation). Read 
the article. Do the authors also refer to mediation as an indirect effect? How do they test 
for mediation? Do they use steps similar to those described in this chapter, or do they 
use structural equation modeling? Do you understand the test that was used?

6. Search for an article in your area of interest with the words moderation or moderated 
regression in the title or abstract. Read the abstract to make sure regression was used. 
Read the article. Is moderation also referred to as an interaction? Which variables inter-
act? Were they continuous or categorical? Did the authors use techniques like those 
described in Chapter 7 and this chapter? Were the variables of interest centered prior 
to creating a cross product? Was the article understandable in light of this chapter and 
Chapter 7?

Note

1 Technically, because there are additional independent variables, we are not testing for a curve in a 
line but rather a curve in a regression plane.
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You should now have a reasonably complete, conceptual understanding of the basics of mul-
tiple regression analysis. This chapter will begin by summarizing the topics covered in Part 1. 
I will touch on some issues that you should investigate and understand more completely to 
become a sophisticated user of MR and will close the chapter with some nagging problems 
and inconsistencies that we have discussed off and on throughout Part 1 (and will try to 
resolve in Part 2).

SUMMARY

“Standard” Multiple Regression

For social scientists raised on statistical analyses appropriate for the analysis of experi-
ments (ANOVA and its variations), multiple regression often seems like a different animal 
altogether. It is not. MR provides a close implementation of the general linear model, of 
which ANOVA is a part. In fact, MR subsumes ANOVA, and as shown in several places in 
this portion of the book, we can easily analyze experiments (ANOVA-type problems) using 
MR. The reverse is not the case, however, because MR can handle both categorical and con-
tinuous independent variables, whereas ANOVA requires categorical independent variables. 
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Those with such an experimental background may need to change their thinking about the 
nature of their analyses, but the underlying statistics are not fundamentally different. In my 
experience, this transition to MR tends to be more difficult for those with a background in 
psychology or education; in other social sciences, such as sociology and political science, 
experimentation (i.e., random assignment to treatment groups) is less common. Even in 
psychology and education the trend increasingly appears to be to focus on the general lin-
ear model, and multiple regression, early in students’ research training, so the sometimes-
difficult transition I mention here may not apply to you.

In early chapters we covered how to calculate the fundamental statistics associated with 
multiple regression. More practically, we discussed how to conduct, understand, and inter-
pret MR using statistical analysis programs. R is the multiple correlation coefficient, and R2 
the squared multiple correlation. R2 is an estimate of the variance explained in the dependent 
variable by all the multiple independent variables in combination; an R2 of .2 means that 
the independent variables jointly explain 20% of the variance in the dependent variable. In 
applied social science research, R2’s are often less than .5 (50% of the variance explained), 
unless some sort of pretest is included as a predictor of some posttest outcome, and R2’s of 
.10 are not uncommon. A high R2 does not necessarily mean a good model; it depends on the 
dependent variable to be explained. R2 may be tested for statistical significance by comparing 
the variance explained (regression) to the variance unexplained (residual) using an F table, 
with degrees of freedom equal to the number of independent variables (k) and the sample 
size minus this number, minus 1 (N—k—1).

R2 provides information about the regression as a whole. The MR also produces infor-
mation about each independent variable alone, controlling for the other variables in the 
model. The unstandardized regression coefficients, generally symbolized as b (or sometimes 
as B), are in the original metric of the variables used, and the b can provide an estimate of 
the likely change in the dependent variable for each 1-unit change in the independent vari-
able (controlling for the other variables in the regression). For example, Salary, in thousands 
of dollars a year, may be regressed on Educational Attainment, in years, along with several 
other variables. If the b associated with Educational Attainment is 3.5, this means that for 
each additional year of schooling salary would increase, on average, by 3.5 thousand dollars 
per year. The b is equal to the slope of the regression line. The b’s may also be tested for sta-
tistical significance using a simple t test ( )t b

SEb
= , with the df equal to the df residual for the 

overall F test. This t simply tests whether the regression coefficient is statistically significantly 
different from zero. More interestingly, it is also possible to determine whether the b differs 
from values other than zero, either using a modification of the t test or by calculating the 
95% (or 90%, or some other level) confidence interval around the b’s. Suppose, for example, 
that previous research suggests that the effect of Educational Attainment on Salary is 5.8. If 
the 95% CI around our present estimate is 2.6 to 4.4, this means that our present estimate is 
statistically significantly lower than are estimates from previous research. The use of confi-
dence intervals is increasingly required by journals (see, for example, American Psychologi-
cal Association, 2010).

We can also examine the standardized regression coefficients associated with each inde-
pendent variable, generally symbolized as b. b’s are in standard deviation units, thus allowing 
the comparison of coefficients that have different scales. A b of .30 for the effect of Educa-
tional Attainment on Salary would be interpreted as meaning that each standard deviation 
increase in Educational Attainment should result in a .30 SD average increase in Salary.

The standardized and unstandardized regression coefficients serve different purposes and 
have different advantages. Unstandardized coefficients are useful when the scales of the inde-
pendent and dependent variables are meaningful, when comparing results across samples 
and studies, and when we wish to develop policy implications or interventions from our 
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research. Standardized coefficients are useful when the scales of the variables used in the 
regression are not meaningful or when we wish to compare the relative importance of vari-
ables in the same regression equation.

The regression analysis also produces an intercept or constant. The intercept represents 
the predicted score on the dependent variable when all the independent variables have a 
value of zero. The regression coefficients and the intercept can be combined into a regres-
sion equation (e.g., Ypredicted = intercept + b1X1 + b2X2 + b3X3), which can be used to predict 
someone’s score on the outcome from the independent variables.

The regression equation, in essence, creates an optimally weighted composite of the 
independent variables to predict the outcome variable. This composite is weighted so 
as to maximize the prediction and minimize the errors of prediction. We can graph this 
prediction by plotting the outcome (Y-axis) against the predicted outcome (X-axis). The 
spread of data points around the regression line illustrates the accuracy of prediction 
and the errors of prediction. Errors of prediction are also known as residuals and may be 
calculated as outcome scores minus predicted outcome scores. The residuals may also be 
considered as the outcome variable with the effects of the independent variables statisti-
cally removed.

Explanation and Prediction

MR may serve a variety of purposes, but these generally fall under one of two broad cat-
egories: prediction or explanation. If our primary interest is in explanation, then we are 
interested in using MR to estimate the effects or influences of the independent variables on 
the dependent variable. Underlying this purpose, whether we admit it or not, is an interest 
in cause and effect. To estimate such effects validly, we need to choose carefully the variables 
included in the regression equation; it is particularly important that we include any common 
causes of our presumed cause and presumed effect. An understanding of relevant theory and 
previous research can help one choose variables wisely. Throughout this text, I have assumed 
that in most instances we are interested in using MR in the service of explanation, and most 
of the examples have had an explanatory focus.

In contrast, MR may also be used for the general purpose of prediction. If prediction 
is our goal, we are not necessarily interested in making statements about the effect of one 
variable on another; rather, we only want to be as accurate as possible in predicting some 
outcome. A predictive purpose is often related to selection; a college may be interested in pre-
dicting students’ first-year GPAs as an aid in determining which students should be admit-
ted. If prediction is the goal, the larger the R2 the better. One does not need to worry about 
common causes, or even cause and effect, if one’s interest is in prediction, and thus variable 
selection for prediction is less critical. It may even be perfectly acceptable to have an “effect” 
predicting a “cause” if prediction is the goal. Theory and previous research can certainly 
help you choose the variables that will predict your outcome successfully, but they are not 
critical to the interpretation of your findings as they are when MR is used for explanation. 
If your interest is in prediction, however, you must refrain from making statements or com-
ing to conclusions about the effects of one variable on another (an explanatory purpose). 
It is unfortunately common to see research in which the purpose is supposedly prediction, 
but then when you read the discussion you find explanatory (causal) conclusions are being 
made. Any time you wish to use MR to make recommendations for intervention or change 
(if we increase X, Y will increase), your primary interest is in explanation, not prediction. 
Explanation subsumes prediction. If you can explain a phenomenon well, then you can gen-
erally predict it well. The reverse does not hold, however; being able to predict something 
does not mean you can explain it.
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Three Types of Multiple Regression

There are several types, or varieties, of multiple regression. The type of MR used in the ear-
lier chapters of this book is generally referred to as simultaneous, or forced entry, or standard 
multiple regression. In simultaneous regression, all independent variables are entered into 
the regression equation at the same time. The regression coefficients and their statistical 
significance are used to make inferences about the importance and relative importance of 
each variable. Simultaneous regression is useful for explanation or prediction. When used 
in an explanatory context, the regression coefficients from simultaneous regression provide 
estimates of the direct effects of each independent variable on the outcome (taking the other 
independent variables into account); this is one of this method’s major advantages. Its chief 
disadvantage is that the regression coefficients may change depending on which variables are 
included in the regression equation; this disadvantage is related to the exclusion of relevant 
common causes or the presence of intervening or mediating variables.

In sequential, or hierarchical, regression, each variable [or group or block of variables] is 
entered separately into the regression equation, sequentially, in an order determined by the 
researcher. With sequential regression, we generally focus on DR2 from each step to judge the 
statistical significance of each independent variable. DR2 is a stingy and misleading estimate 
of the importance of variables, however; the square root of DR2 provides a better estimate 
of the importance of each variable (given the order of entry). Order of entry is critical with 
sequential regression because variables entered early in the sequential regression will appear, 
other things being equal, more important than variables entered later. Time precedence and 
presumed causal ordering are common methods for deciding the order of entry. The regres-
sion coefficients for each variable from the block in which it enters a sequential regression 
may be interpreted as the total effect of the variable on the outcome, including any indirect 
or mediating effects through variables entered later in the regression. To interpret sequential 
regression results in this fashion, variables must be entered in their correct causal order. 
Causal, or path, models are useful for both sequential and simultaneous regression and have 
been used to illustrate regression models and results throughout Part 1 of this text; they will 
be explored in more depth in Part 2. Sequential regression may be used for explanation or 
prediction. An advantage is that it can provide estimates of the total effects of one variable 
on another, given the correct order of entry. A chief disadvantage is that the apparent impor-
tance of variables changes depending on the order in which they are entered in the sequential 
regression equation.

Simultaneous and sequential regression may be combined in various ways. One combina-
tion is a method sometimes referred to as sequential unique regression. It is commonly used 
to determine the “unique” variance accounted for by a variable or a group of variables, after 
other relevant variables are accounted for. In this method, the other variables are entered 
in a simultaneous block, and a variable or variables of interest are entered sequentially in 
a second block. If a single variable is of interest, simultaneous regression may be used for 
the same purpose; if the interest is in the variance accounted for by a block of variables, this 
combination of simultaneous and sequential regression should be used. We made extensive 
use of this sort of combination of methods when we tested for interactions and curves in the 
regression line.

A final general method of multiple regression is stepwise regression and its variations. 
Stepwise regression operates in a similar fashion to sequential regression, except that the com-
puter program, rather than the researcher, chooses the order of entry of the variables; it 
does so based on which variable will lead to the greatest single increment in DR2 at each 
step. Although this solution seems a blessing—it avoids lots of hard thinking and potentially 

embarrassing statements about causal ordering—it is not. Using DR2 or ∆R2  as a measure 
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of the importance of variables is predicated on the assumption that the variables have been 
entered in the regression equation in the proper order. To also use DR2 to determine the 
order of entry thus requires circular reasoning. For this reason, stepwise methods should 
be used only for prediction, not explanation. In the words of my friend Lee Wolfle, stepwise 
regression is “theoretical garbage” (1980, p. 206), meaning that its results will mislead rather 
than inform if you try to use it in explanatory research. And, in fact, stepwise regression may 
not be a particularly good choice even for prediction. If your interest is simply selecting a 
subset of variables for efficient prediction, stepwise regression may work (although I still 
wouldn’t recommend it); large samples and cross-validation are recommended. Whatever 
method of MR you use, be sure you are clear on the primary purpose of your research and 
choose your regression method to fulfill that purpose.

Categorical Variables in MR

It is relatively easy to analyze categorical, or nominal, variables in multiple regression. One 
of the easiest ways is to convert the categorical variable into one or more dummy variables. 
With dummy variables, a person is assigned a score of 1 or 0, depending on whether the 
person is a member of a group or not a member. For example, the categorical variable sex 
can be coded so that males are scored 0 and females 1, essentially turning it into a “female” 
variable on which those who are members of the group (females) receive a score of 1 and 
those who are not members (males) receive a score of 0. For more complex categorical 
variables, multiple dummy codes are required. We need to create as many dummy variables 
as there are categories, minus 1 (g—1). When a categorical variable has more than two cat-
egories, thus requiring more than one dummy variable, one group will be scored 0 on all the 
dummies; this is essentially the reference group, or often the control group. When dummy 
variables are analyzed in MR, the intercept is equal to the mean score on the dependent 
variable for the reference group, and the b’s are equal to the mean deviations from that 
group for each of the other groups.

We demonstrated that MR results match those of ANOVA when the independent vari-
ables are all categorical: the F from the two procedures is the same, and the effect size h2 
from ANOVA is equal to the R2 from MR. The coefficients from MR may be used to perform 
various post hoc procedures. There are other methods besides dummy coding for coding 
categorical variables for analysis in MR; we illustrated effect coding and criterion scaling. 
The different methods will provide the same overall results, but different contrasts from the 
regression coefficients.

Categorical and Continuous Variables, Interactions, and Curves

Our primary interest in discussing the analysis of categorical variables in MR was as prepara-
tion for combining categorical and continuous variables together in MR analyses. Analyses 
including both categorical and continuous variables are conceptually and analytically little 
different from those including only continuous variables. It is also possible to test for inter-
actions between categorical and continuous variables. To do so, we centered the continuous 
variable and created a new variable that was the cross product of the dummy variable and 
the centered continuous variable. If there are multiple dummy variables, then there will also 
be multiple cross products. These cross products are then entered as the second, sequential 
step in a regression following the simultaneous regression with all other independent vari-
ables (including the categorical and continuous variables used to create the cross products). 
The statistical significance of the DR2 associated with the cross products is the test of the 
statistical significance of the interaction. With multiple dummy variables, and thus multiple 
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cross products, the DR2 associated with the block of cross products is used to determine the 
statistical significance of the interaction.

Given the presence of a statistically significant interaction, the next step is to graph the 
interaction to provide an understanding of its nature, perhaps followed by separate regres-
sions across the values of the categorical variable or other post hoc probing. Tests of predic-
tive bias and attribute–treatment interactions are specific examples of analyses that should 
use this MR approach. ANCOVA can also be considered as MR with categorical and continu-
ous variables, but researchers using MR can also test for possible interactions between the 
covariate and the treatment.

It is equally possible to test for interactions between two continuous variables in MR. The 
same basic procedure is used: the continuous variables are centered and multiplied, and this 
cross product is entered sequentially in a regression equation. Follow-up of this type of inter-
action may be a little more difficult, but the first step again is generally to graph the interaction. 
Several methods were discussed for graphing and exploring interactions between continuous 
variables. All types of interactions are often well described using the phrase “it depends.”

A special type of interaction between continuous variables is when a variable interacts 
with itself, meaning that its effects depend on the level of the variable. For example, we found 
that the effect of homework depends on the amount of homework being discussed; home-
work has a stronger effect on achievement for fewer hours of homework than for higher 
levels of homework. This type of interaction shows up as curves in the regression line. We 
test for curves in the regression line by multiplying a variable times itself and then entering 
this squared variable last in a combined simultaneous–sequential regression. We can test for 
more than one curve by entering additional product terms (variable-cubed, to the fourth 
power, etc.). Again, graphs were recommended as a method for understanding the nature of 
these curvilinear effects.

Moderation, Mediation, and Common Cause

Interactions in multiple regression also go by the name of “moderation.” To say that sex 
moderates the effect of self-concept on achievement means the same thing as saying that sex 
and self-concept interact in their effect on achievement, or that self-concept has differential 
effects on achievement by sex. Why do we use different terms to mean what is essentially the 
same thing? Thompson’s contention that we do so to “confuse the graduate students” seems 
as plausible as any other (Thompson, 2006, p. 4). The term moderation is sometimes con-
fused with that of mediation. Mediation describes the process by which one variable has an 
indirect effect on another variable through another mediating variable. If homework medi-
ates the effect of motivation on achievement, this means that motivation affects homework, 
which in turn affects achievement. In Chapter 8 we discussed common steps for testing for 
mediation in multiple regression, but also noted that it is much easier to understand and test 
for mediation in the context of path analysis and SEM (as in Part 2). Fewer writers discuss 
the issue of common cause (and there are also several terms used to discuss this concept). 
A common cause is a variable that affects both our presumed influence and our presumed 
outcome; such variables must be included in multiple regression for the results to provide 
valid estimates of “effects.” It is not unusual to see and hear this concept confused with that 
of moderation. When you hear researchers vaguely state that two variables likely interact in 
some way, pay attention. Do they really mean interaction/moderation? Or are they really 
talking about a potential common cause? Again, this is a topic that becomes clearer with the 
presentation of path diagrams (as used in Chapter 8) and is an important topic in Part 2 of 
this book.
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ASSUMPTIONS AND REGRESSION DIAGNOSTICS

We have postponed discussion of several important topics until you had a more complete 
understanding of multiple regression and how to conduct and interpret results of multiple 
regression analyses. Now it is time to discuss assumptions underlying our multiple regres-
sions, as well as how to diagnose various problems that can affect regression analyses and 
what to do about these problems. References are given to sources that provide more detail 
about these topics.

Assumptions Underlying Regression

What assumptions underlie our use of multiple regression? If we are to be able to trust 
our MR results and interpret the regression coefficients, we should be able to assume the 
following:

1. The dependent variable is a linear function of the independent variables.
2. Each person (or other observation) should be drawn independently from the popula-

tion. Recall one general form of the regression equation: Y = a + bX1 + bX2 + e. This 
assumption means that the errors (e’s) for each person are independent from those of 
others.

3. The variance of the errors is not a function of any of the independent variables. The 
dispersion of values around the regression line should remain fairly constant for all 
values of X. This assumption is referred to as homoscedasticity.

4. The errors are normally distributed.

The first assumption (linearity) is the most important. If it is violated, then all of the 
estimates we get from regression—R2, the regression coefficients, standard errors, tests 
of statistical significance—may be biased. To say the estimates are biased means that 
they will likely not reproduce the true population values. When assumptions 2, 3, and 
4 are violated, regression coefficients are unbiased, but standard errors, and thus sig-
nificance tests, will not be accurate. In other words, violation of assumption 1 threatens 
the meaning of the parameters we estimate, whereas violation of the other assumptions 
threatens interpretations from these parameters (Darlington, 1990, p. 110). Assump-
tions 3 and 4 are less critical, because regression is fairly robust to their violation (Kline, 
1998). The violation of assumption 4 is only serious with small samples. We have already 
discussed methods of dealing with one form of nonlinearity (curvilinearity) and will 
discuss here and later methods for detecting and dealing with violations of the other  
assumptions.

In addition to these basic assumptions, to interpret regression coefficients as the effects of 
the independent variables on the dependent variable, we need to be able to assume that the 
errors are uncorrelated with the independent variables. This assumption further implies the 
following:

5. The dependent variable does not influence any of the independent variables. In other 
words, the variables we think of as causes must in fact be the causes, and those that we 
think of as the effects must be the effects.

6. The independent variables are measured without error, with perfect reliability and 
validity.

7. The regression must include all common causes of the presumed cause and the pre-
sumed effect (Kenny, 1979, p. 51).
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We have already discussed assumptions 5 and 7 and will continue to develop them further 
in Part 2. Assumption 6 is a concern, because in the social sciences we rarely have perfect mea-
surement. Again, we will discuss the implications of violation of this assumption in Part 2. 
There are a number of very readable, more detailed explanations of these seven assumptions. 
Allison (1999), Berry (1993), and Cohen and colleagues (2003) are particularly useful.

Regression Diagnostics

Here and in earlier chapters I noted that a good habit in any data analysis is to examine the 
data to make sure the values are plausible and reasonable. Regression diagnostics take this 
examination to another level and can be used to probe violations of assumptions and spot 
impossible or improbable values and other problems with data. In this section I will briefly 
describe regression diagnostics, illustrate their use for the data from previous chapters, and 
discuss what to do with regression diagnostic results. I will emphasize a graphic approach.

Diagnosing Violations of Assumptions

Nonlinearity 

In Chapter 8, we examined how to deal with nonlinear data by adding powers of the inde-
pendent variable to the regression equation. In essence, by adding both Homework and 
Homework2 to the regression equation, we turned the nonlinear portion of the regression 
line into a linear one and were thus able to model the curve effectively using MR.

This approach thus hints at one method for determining whether we have violated the 
assumption of linearity: If you have a substantive reason to suspect that an independent 
variable may be related to the outcome in a curvilinear fashion, add a curve component 
(variable2) to the regression equation to see whether this increases the explained variance.

The potential drawback to this approach is that the curve modeled by variable2 may not 
adequately account for the departure from linearity. Therefore, it is useful to supplement this 
approach with a more in depth examination of the data using scatterplots. Rather than plot-
ting the dependent variable of interest against the independent variable, however, we will plot 
the residuals against the independent variables; the residuals should magnify departures from 
linearity. Recall that the residuals represent the predicted values of the dependent variable 
minus the actual values of the dependent variable (Y ′ − Y). They are the errors in prediction.

To illustrate, we will use the example from Chapter 8 that was used to illustrate testing for 
curves in MR: the regression of Grades on SES, previous Achievement, and time spent on 
Homework out of school. The addition of a Homework2 variable was statistically significant, 
indicating (and correcting) a departure from linearity in the regression. Let’s see if we can 
pick up this nonlinearity using scatterplots.

I reran the initial regression (without the Homework2 variable and using the original 
uncentered metric) and saved the residuals (regression programs generally allow you to save 
unstandardized residuals as an option). Figure 9.1 shows the plot of the residuals against the 
original variable Homework. Note the two lines in the graph. The straight, horizontal line is 
the mean of the residuals. The line should also represent the regression line of the residuals 
on Homework. That line would be horizontal because the residuals represent Grades with 
the effects of Homework (and the other independent variables) removed. Because Home-
work has been removed, it is no longer related to the residuals. Recall that when two variables 
are unrelated our best prediction for Y is its mean for all values of X. The regression line is 
thus equal to the line drawn through the mean of the residuals. The other, almost straight 
line is what is called a lowess (or loess) fit line, which represents the nonparametric best fitting 
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line, one that does not impose the requirement of linearity. Most computer programs can 
easily add this line to a regression scatterplot. 

If there is no departure from linearity in the data, we would expect the lowess line  
to come close to the regression line; Cohen and colleagues note that the lowess  
line should look like “a young child’s freehand drawing of a straight line” (2003, p. 111). 
With a significant departure from linearity, you would expect the lowess line to be 
curved, something more similar to the curvilinear regression lines shown in Chapter 8 

Figure 9.1 Plot of the unstandardized residuals against one independent variable (Homework). The 
lowess line is fairly straight.

Time Spent on Homework out of School

86420–2

U
n

st
an

d
ar

d
iz

ed
 R

es
id

u
al

4

2

0

–2

–4

Figure 9.2 Plot of unstandardized residuals against the predicted Grades (a composite of the inde-
pendent variables).
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(e.g., Figure 8.15) but without the upward slope. The lowess line in this plot indeed 
approaches the straight regression line. Figure 9.2 shows another useful plot: the residu-
als and the predicted values for the Grades dependent variable. Recall in Chapter 3 that 
we demonstrated that the predicted Y is an optimally weighted composite of the inde-
pendent variables. It is, then, a variable that represents all independent variables in com-
bination. Again, the lowess line comes close to the regression line and does not suggest 
a departure from linearity.

In this example, the test of the addition of a curve component (Chapter 8) was more suc-
cessful in spotting a departure from linearity than was the inspection of data through scat-
terplots. This will not always be the case, and thus I recommend that you use both methods if 
you suspect a violation of this assumption. If theory or inspection suggests a departure from 
linearity, a primary method of correction is to build nonlinear terms into the regression (e.g., 
powers, logarithms). The method is discussed in Chapter 8; see also Cohen and colleagues 
(2003) and Darlington (1990) for more depth.

Nonindependence of Errors

When data are not drawn independently from the population, we risk violating the 
assumption that errors (residuals) will be independent. As noted in the section on multi-
level modeling in the next chapter, the NELS data, with students clustered within schools, 
risks violation of this assumption. Violation of this assumption does not affect regression 
coefficients but does affect standard errors. When clustered as described, we risk under-
estimating standard errors and thus labeling variables as statistically significant when they 
are not. This danger is obviated, to some degree, with large samples like the NELS data 
used here, especially when we are more concerned with the magnitude of effects than with 
statistical significance.

Are the residuals from the regression of Grades on SES, Previous Achievement, and 
Homework nonindependent? Is there substantial variation within schools? Unfortunately, 
this assumption is difficult to test with the NELS data included on the Web site because, with 
the subsample of 1000 cases, few of the schools had more than one or two students. There-
fore, I used the original NELS data and selected out 414 cases from 13 schools. I conducted 
a similar regression analysis (Grades on SES, Previous Achievement, and Homework) and 
saved the residuals.

One way to probe for the violation of this assumption is through a graphing technique 
called boxplots. The boxplots of residuals, clustered by schools, are shown in Figure 9.3. The 
center through each boxplot shows the median, with the box representing the middle 50% 
of cases (from the 25th to the 75th percentile). The extended lines show the high and low 
values, excluding outliers and extreme values. For the purpose of exploring the assumption 
of independence of errors, our interest is in the variability of the boxplots. There is some 
variability up and down by school, and thus this clustering may indeed be worth taking into 
account. Another, quantitative test of the independence of observations uses the intraclass 
correlation coefficient, which compares the between-group (in this case, between-schools) 
variance to the total variance (for an example, see Stapleton, 2006). The intraclass correla-
tion could be computed on the residuals or on a variable (e.g., Homework) that you suspect 
might vary across schools.

One option for dealing with a lack of independence of errors is to include categorical 
variables (e.g., using criterion scaling; see Chapter 6) that take the clustering variable into 
account. Another option is the use of multilevel or hierarchical linear modeling, discussed 
briefly in the next chapter. This assumption can also be violated in longitudinal designs in 
which the same tests or scales are administered repeatedly. We will deal with this issue briefly 
in Part 2.



192 • MULTIPLE REGRESSION

Homoscedasticity

We assume that the variance of errors around the regression line is fairly consistent across 
levels of the independent variable. In other words, the residuals should spread out con-
sistently across levels of X. Violation of this assumption affects standard errors and thus 
statistical significance (not the regression coefficients), and regression is fairly robust to its 
violation. Scatterplots of residuals with independent variables or predicted values are also 
helpful for examining this assumption.

Return to Figure 9.1, the scatterplot of Homework with the Residuals from the regression 
of Grades on SES, Previous Achievement, and Homework. Although the residuals are spread 
out more at lower levels of homework than at upper levels, the difference is slight; visual 
inspection suggests that heteroscedasticity (the opposite of homoscedasticity) is not a prob-
lem. A common pattern of heteroscedasticity is a fan shape with, for example, little variabil-
ity at lower levels of Homework and large variability at higher levels of Homework. Butterfly 
shapes are also possible (residuals constricted around the middle level of Homework), as is 
the opposite shape (a bulge in the middle).

Focus again on Figure 9.2. Notice how the residuals bunch up at higher levels of the 
Predicted Y; the plot has something of a fan shape, narrowing at upper levels of the pre-
dicted values. Do these data violate the assumption of homoscedasticity? To test this pos-
sibility, I collapsed the predicted Grades into five equal categories so that we can compare 
the variance of the residuals at each of these five levels. The data are displayed in Fig-
ure 9.4 as both a bar chart and table. As shown in the table, for the lowest category of pre-
dicted values, the variance of the residuals was 2.047, versus .940 for the highest category. 
There is a difference, but it is not excessive. One rule of thumb is that a ratio of high to 
low variance of less than 10 is not problematic. Statistical tests are also possible (Cohen 
et al., 2003).

Figure 9.3 Boxplots of residuals, grouped by the school from which NELS students were sampled. The 
data are 414 cases from the full NELS data.
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Normality of Residuals

The final assumption we will deal with is that the errors, or residuals, are normally distrib-
uted. What we are saying with this assumption is that if we plot the values of the residuals 
they will approximate a normal curve. This assumption is fairly easily explored because most 
MR software has tools built in to allow such testing.

Figure 9.5 shows such a plot: a bar graph of the residuals from the NELS regression of 
Grades on SES, Previous Achievement, and Homework (this graph was produced as one of 
the plot options in regression in SPSS). The superimposed normal curve suggests that the 
residuals from this regression are indeed normal. Another, more exacting, method is what is 
known as a q–q plot (or, alternatively, a p–p plot) of the residuals. A q–q plot of the residu-
als shows the value of the residuals on one axis and the expected value (if they are normally 
distributed) of the residuals on the other. Figure 9.6 shows the q–q plot of the residuals from 
the Grades on SES, Previous Achievement, Homework regression. If the residuals are nor-
mally distributed, the thick line (expected versus actual residuals) should come close to the 
diagonal straight line. As can be seen from the graph, the residuals conform fairly well to the 
superimposed straight line. The reason this method is more exact is that it is easier to spot a 
deviation from a straight line than a normal curve (Cohen et al., 2003). Some programs (e.g., 
SPSS) produce a p–p plot of the residuals as an option in multiple regression. A p–p plot 

Figure 9.4 Comparison of the variance of residuals for different levels of predicted Grades.
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Figure 9.5 Testing for the normality of residuals. The residuals form a nearly normal curve.
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uses the cumulative frequency and is interpreted in the same fashion (looking for departures 
from a straight line). 

Excessive heteroscedasticity and nonnormal residuals can sometimes be corrected through 
transformation of the dependent variable. Eliminating subgroups from the regression may 
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also be useful. Finally, there are alternative regression methods (e.g., weighted least squares 
regression) that may be useful when these assumptions are seriously violated (see Cohen  
et al., 2003, and Darlington, 1990, for more information).

Diagnosing Data Problems

Regression diagnostics for spotting problematic data points focus on three general char-
acteristics: distance, leverage, and influence. Conceptually, how would you spot unusual 
or problematic cases, commonly referred to as outliers or as extreme cases? Focus on 
Figure 9.7, a reprint of the earlier Figure 3.7. The figure is a byproduct of the regression 
of students’ Grades on Parent Education and Homework. Recall that we saved the vari-
able Predicted Grades, which I demonstrated was an optimally weighted composite of the 
two independent variables, weighted so as to best predict the outcome. The figure shows 
students’ GPA plotted against their Predicted GPAs. Note the case circled in the lower 
right of the figure. This case is among the farthest from the regression line; this is one 
method of isolating an extreme case, called distance. Leverage refers to an unusual pat-
tern on the independent variables and does not consider the dependent variable. If you 
were using homework in different academic areas to predict overall GPA, it would not be 
unusual to find a student who spent 1 hour per week on math homework nor would it 
be unusual to find a student who spent 8 hours per week on English homework. It would 
likely be unusual to find a student who combined these, who spent only 1 hour per week 
on math while spending 8 hours per week on English. This case would likely have high 
leverage. Because leverage is not calculated with respect to the dependent variable, the 
graph shown here may not be informative as to leverage; a graph of the two independent 
variables may be more useful (as we will soon see). The final characteristic of interest is 

Figure 9.7 Predicted versus actual Grades plot from Chapter 3. The circled case is a potential extreme 
case, a long distance from the regression line.
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influence. As the name implies, a case that has high influence is one that, if removed from 
the regression, results in a large change in the regression results. Cases with high influence 
are those that are high on both distance and leverage. The circled case would likely fit this 
description as well. If it were deleted from the regression, the regression line would likely 
be somewhat steeper than it is in the figure. 

Distance

Common measures of distance are derived from the residuals. In Figure 9.7, the residual for 
the circled case is the point on the regression line above the case (approximately 85) minus 
the actual value of the case (64). This definition matches well the conceptual definition of 
distance given previously.

In practice, the unstandardized residuals are less useful than are standardized versions 
of residuals. Table 9.1 shows some of the cases from this data set. The first column shows 
the case number, followed by the dependent variable Grades and the two independent 
variables Parent Education and Homework. Column five shows the Predicted Grades 
used to create the graph in Figure 9.7. The remaining columns show various regression 
diagnostics. The first row of the table shows the names assigned these variables in SPSS, 
under which I have included a brief explanation. Column six, labeled ZRE_1, shows the 
standardized residuals, which are the residuals standardized to approximately a normal 
distribution. Think of them like z scores, with values ranging from 0 (very close to the 
regression line) to ±3 or more. The next column (SRE_1) represents the standardized 
residuals converted to a t distribution (the t distribution is also referred to as Student’s 
t, hence the S), which are generally called the studentized or t residuals. The advantage 
of this conversion is that the t residuals may be tested for statistical significance (see 
Darlington, 1990, p. 358). In practice, however, researchers often simply examine large 
positive or negative standardized or studentized residuals or, with reasonable sample size, 
those greater than an absolute value of 2 (with very large samples, there may be many of 
these).

The cases shown in Table 9.1 were chosen for display because they have high values for 
distance, leverage, or influence. As shown in the table, cases 34 (–3.01) and 83 (2.06) show 
high values for studentized residuals.

Figure 9.8 shows the same plot of Predicted and actual Grades, with a few of the cases 
identified. Note the case that was originally circled is case number 34, the highest negative 
studentized (and standardized) residual. As can be seen, case 83, with a high positive stan-
dardized residual, is also far away from the regression line. It might be worth investigating 
these cases with high residuals further to make sure that they have been coded and entered 
correctly. 

Leverage

Leverage gets at the unusualness of a pattern of independent variables, without respect to the 
dependent variable. The column in Table 9.1 labeled LEV_1 provides an estimate of lever-
age (this measure is also often referred to as h). Leverage ranges from 0 to 1, with an average 
value of (k + 1)/ n (k = number of independent variables); twice this number has been sug-
gested as a rule of thumb for high values of leverage (Pedhazur, 1997, p. 48). Case 16 in the 
table had the highest value for leverage (.098), followed by cases 36 (.088) and 32 (.084). Both 
these values are higher than the rule of thumb would suggest:
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As can be seen in Figure 9.8, you might suspect that case 16 was unusual from a visual dis-
play (because it is on one edge of the graph), but case 36 is right in the middle of the graph. 
Recall, however, that leverage does not depend on the dependent variable. Figure 9.9 shows a 
plot of the two independent variables. Cases 16, 36, and 32 are outside the “swarm” of most 
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Figure 9.8 Plot from Figure 9.7 with several noteworthy cases highlighted.

Figure 9.9 Leverage illustrated.
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of the cases; they indeed represent an unusual combination of independent variables. These 
cases may also be worth checking. 

Influence

Influence means what the name suggests: a case that is highly influential on the intercept or 
the regression line. The column labeled Coo_1 (for Cook’s Distance) in Table 9.1 provides 
values of an estimate of influence; cases with large values are worth inspecting. The cases 
with the largest Cook’s D values were cases 34 (.115) and 83 (.081). The regression plane 
would move the most if these cases were omitted.

Most computer programs also compute estimates of partial influence (as in influence, 
with the effects of the other independent variables accounted for). The DF Betas, standard-
ized, listed in the last three columns are estimates of partial influence. The first of these 
columns (SDB0_1) pertains to the regression intercept, the second (SDB1_1) to the first 
independent variable (Parent Education), and the third (SDB2_1) to the second indepen-
dent variable (Homework). The values shown are the change in each parameter, if a par-
ticular case were removed. A negative value means that the particular case lowered the value 
of the parameter, whereas a positive value means that the case raised the parameter. So, for 
example, case 34 had standardized DF Beta values of .457, –.429, and –.169. Case 34 served to 
raise the intercept and lower the regression coefficient for Parent Education and Homework. 
Although the unstandardized DF Betas are not shown in Table 9.1, they were 2.29, –.158, and 
–.058. If you run the regression without case 34, you will find that the intercept reduces by 
2.29, the Parent Education b increases by .158, and the Homework b increases by .058.

An inspection of the standardized DF Betas showed large negative values by case 83 for 
the intercept (–.416) and large positive value for case 34 (.457). These two cases were also 
very influential for the Parent Education regression coefficient, although reversed: case 34 
(–.429), case 83 (.405). The partial influence values for the Homework variable were consid-
erably smaller. Cases 21 and 29 had the highest values (.334 and .335).

Uses

What do these various regression diagnostics tell us? In the present example, cases 34 and 
83 showed up across measures; it would certainly be worth inspecting them. But inspect-
ing them for what? Sometimes these diagnostics can point out errors or misentered data. A 
simple slip of the finger may cause you to code 5 hours of homework as 50. This case will 
undoubtedly show up in the regression diagnostics, thus alerting you to the mistake. Of 
course, a simple careful inspection of the data will likely spot this case as well! Think about 
the example I used initially to illustrate leverage, however, someone who reports 1 hour of 
Math Homework and 8 hours of English Homework. This case will not show up in a simple 
inspection of the data, because these two values are reasonable and, taken by themselves, only 
become curious when taken together. The case will likely be spotted in an analysis of both 
leverage and influence; we might well discover that errors were made in entering this datum 
as well.

If there are not obvious errors for the variables spotted via regression diagnostics, then 
what? In our present example, cases 34 and 83, although outliers, are reasonable. A check of 
the raw data shows that case 34 had well-educated parents, higher than average homework, 
but poor grades. Case 83 simply had an excellent GPA and higher than average homework. 
On further investigation, I might discover that case 34 had a learning disability, and I might 
decide to delete this case and several other similar cases. Or I might decide that the varia-
tion is part of the phenomenon I am studying and leave case 34 in the analysis. Another 
option is additional analysis. If a number of outliers share characteristics in common and are 
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systematically different from other cases, it may suggest that a different regression is needed 
for these participants or the advisability of including an interaction term in the analysis (e.g., 
Disability Status by Parent Education). It might also suggest the inclusion of an important 
common cause (e.g., disability status affecting both time spent on homework and subse-
quent grades).

Obviously, unless clear-cut errors are involved, considerable judgment is involved in the 
inspection of regression diagnostics. Note that deletion of case 34 will increase the regression 
weight for Homework; if I did delete this case, I will need to be sure that my deletion is based 
on a concern about its extremity rather than a desire to inflate the apparent importance of 
my findings. If you do delete cases based on regression diagnostics, you should note this in 
the research write-up and the reasons for doing so. With the present example and after exam-
ining cases with high values on all the regression diagnostics, I would first double-check each 
of these values against the raw data but would likely conclude in the end that all the cases 
simply represented normal variation. I would then leave the data in their present form.

Again, I have barely scratched the surface of an important topic; it is worth additional 
study. Darlington (1990, chap. 14), Fox (2008), and Pedhazur (1997) each devote chapters to 
regression diagnostics and are worth reading.

Multicollinearity

I mentioned briefly when discussing interactions the potential problem of multicollinearity 
(also called collinearity). Briefly, multicollinearity occurs when several independent vari-
ables correlate at an excessively high level with one another or when one independent vari-
able is a near linear combination of other independent variables. Multicollinearity can result 
in misleading and sometimes bizarre regression results.

Figure 9.10 shows some results of the regression of a variable named Outcome on two 
independent variables, Var1 and Var2. The correlations among the three variables are also 
shown. The results are not unusual and suggest that both variables have positive and statisti-
cally significant effects on Outcome. 

Now focus on Figure 9.11. For this analysis, the two independent variables correlated at 
the same level with the dependent variable as in the previous example (.3 and .2). However, 
in this example, Var1 and Var2 correlate .9 with each other (versus .4 in the previous exam-
ple). Notice the regression coefficients. Even though all variables correlate positively with  

Figure 9.10 Regression of Outcome on Var1 and Var2. The results are reasonable.
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one another, Var1 seems to have a positive effect on Outcome, whereas Var2 has a negative 
effect. As noted previously, multicollinearity can produce strange results such as these; standard-
ized regression coefficients greater than 1 are also common. Notice also that the standard 
errors of the b’s are also considerably larger for the second example than for the first. Mul-
ticollinearity also inflates standard errors; sometimes two variables will correlate at similar 
levels with an outcome, but one will be a statistically significant predictor of the outcome, 
while the other will not, as a result of multicollinearity. 

Conceptually, multicollinearity suggests that you are trying to use two variables in a 
prediction that overlap completely or almost completely with one another. Given this defi-
nition, it makes intuitive sense that multicollinearity should affect standard errors: the 
more that variables overlap, the less we can separate accurately the effects of one versus 
the other. Multicollinearity is often a result of a researcher including multiple measures 
of the same construct in a regression. If this is the case, one way to avoid the problem is 
to combine the overlapping variables in some way, either as a composite or, as is done in 
Part 2, using the variables as indicators of a latent variable. Multicollinearity is also often 
a problem when researchers use a kitchen-sink approach: throwing a bunch of predictors 
into regression and using stepwise regression, thinking it will sort out which are important 
and which are not.

Given the example, you may think you can spot multicollinearity easily by examining the 
zero-order correlations among the variables, with high correlations alerting you to potential 
problems. Yet multicollinearity can occur even when the correlations among variables are 
not excessive. A common example of such an occurrence is when a researcher, often inadver-
tently, uses both a composite and the components of this composite in the same regression. 
For example, in Figure 9.12 I regressed BYTests on grades in each academic area, in addition 
to a composite Grades variable (BYGrads). Notice the results: the overall R2 is statistically 
significant, but none of the predictors is statistically significant. In this example, the largest 
individual correlation was .801, however, not overly large. The zero-order correlations are 
not always useful in spotting collinearity. 

How can you avoid the effects of multicollinearity? Computer programs provide, on 
request, collinearity diagnostics. Such statistics are shown in Figures 9.10 through 9.12. Tol-
erance is a measure of the degree to which each variable is independent of (does not overlap 
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Figure 9.11 Regression of Outcome on Var1 and Var2 when Var1 and Var2 are very highly correlated 
(collinear). The results are puzzling, and the interpretation will likely be misleading.
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with) the other independent variables (Darlington, 1990). Tolerance can range from 0 (no 
independence from other variables) to 1 (complete independence); larger values are desired. 
The variance inflation factor (VIF) is the reciprocal of tolerance and is “an index of the 
amount that the variance of each regression coefficient is increased” over that with uncor-
related independent variables (Cohen et al., 2003, p. 423). Small values for tolerance and 
large values for VIF signal the presence of multicollinearity. Cohen and colleagues (2003, 
p. 423) note that a common rule of thumb for a large value of VIF is 10, which means that 
the standard errors of b are more than three times as large as with uncorrelated variables 

10 3 16=( ). , but that this value is probably too high. Note that use of this value will lead 

to an inspection and questioning of the results in Figure 9.12, but not those in Figure 9.11.
Values for the VIF of 6 or 7 may be more reasonable as flags for excessive multicollinearity 
(cf. Cohen et al., 2003). These values of the VIF correspond to tolerances of .10 (for a VIF of 
10), .14 (VIF of 7), and .17 (VIF of 6), respectively.

Factor analysis of independent variables and “all subsets” regression can also be useful 
for diagnosing problems. When you get strange regression results, you should consider and 
investigate multicollinearity as a possible problem. Indeed, it is a good idea to routinely 
examine these statistics. A method known as ridge regression can be used when data are 
excessively collinear.

Figure 9.12 Another cause of multicollinearity. A composite and its components are both used in the 
regression.
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Obviously, I have just touched the surface of this important topic; it is worth additional 
study. Pedhazur (1997) presents a readable, more detailed discussion of the topic, as does 
Darlington (1990, chaps. 5, 8).

SAMPLE SIZE AND POWER

“How large a sample do I need?” Anyone who has advised others on the use of multiple 
regression (or any other statistical method) has heard this question more times than he or 
she can count. This question may mean several things. Some who ask it are really asking, “Is 
there some minimum sample size that I can’t go below in MR?” Others are looking for a rule 
of thumb, and there is a common one: 10 to 20 participants for each independent variable. 
Using this rule, if your MR includes 5 independent variables, you need at least 50 (or 100) 
participants. I’ve heard this rule of thumb many times but have no idea where it comes from. 
We will examine it shortly to see if it has any validity for the types of MR problems we have 
been studying. Finally, more sophisticated researchers will ask questions about what sample 
size they need to have a reasonable chance of finding statistical significance.

I hope you recognize this final version of the question as one of the power of MR. I have 
alluded to power at several points in this text (e.g., in the discussion of interactions in MR), 
but, as you will see, we have really sidestepped the issue until this point by our use of the 
NELS data. With a sample size of 1000, we had adequate power for all the analyses con-
ducted. You can’t always count on sample sizes in the thousands, however, so let us briefly 
turn to the issue of power and sample size.

Briefly, power generally refers to the ability correctly to reject a false null hypothesis. It 
is a function of the magnitude of the effect (e.g., whether Homework has a small or a large 
effect on Grades); the alpha, or probability level chosen for statistical significance (e.g., .05, 
.01, or some other level); and the sample size used in the research. Likewise, the necessary 
sample size depends on effect size, chosen alpha, and desired power. The needed sample size 
increases as desired power increases, effect size decreases, and alpha gets more stringent (i.e., 
as the probability chosen gets smaller). Common values for power are .8 or .9, meaning that 
given a particular effect size one would like to have an 80% or 90% chance of rejecting a 
false null hypothesis of no effect. Like alpha, and despite conventions, power levels should be 
chosen based on the needs of a particular study.

This short section is, of course, no treatise on power analysis. What I do plan to do here 
is to examine power and sample size for the rule of thumb given previously, as well as some 
of the examples we have used in this book, to give you some sense of what sorts of sample 
sizes are needed with the kinds of problems used in this book. Fortunately, there are some 
excellent books on power analysis, including Cohen’s classic book on the topic (1988). The 
2010 text by Aberson also looks thorough, and Cohen and colleagues (2003) text is useful 
on this topic as well and many others; for experimental research, I found Howell’s (2010) 
introduction to power especially clear. If you intend to conduct research using MR (or other 
methods), I recommend that you read further on this important issue. You should and can 
also have access to a program for conducting power analysis. The examples that follow use 
G*Power 3.1 (Faul, Erdfelder, Buchner, & Lang, 2009; Faul, Erdfelder, Lang, & Buchner, 
2007), a free power analysis program available for download (www.psycho.uni-duesseldorf.
de/abteilungen/aap/gpower3, or just search for “GPower”). I have also used SamplePower 
from SPSS, and the PASS (Power Analysis and Sample Size) program from NCSS (www.ncss.
com); they also are easy to use and work well. 

First, let’s examine several of the examples in this text. In Chapter 4, we regressed GPA in 
10th grade on Parent Education, In School Homework, and Out of School Homework in a 
simultaneous regression. The R2 for the overall regression was .155, with a sample size of 909. 
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What sort of power did we have with this simultaneous regression? According to G*Power, 
this example had a power of 1.0 (for this and the other examples, I will assume an alpha of 
.05) for the overall regression. In other words, given the information previously, we had a 
100% chance of correctly rejecting a false null hypothesis. Figure 9.13 shows the relevant 
screen shot. We are interested in an F test (Test Family), and are interested in the overall 
regression (e.g., the statistical significance of the overall R2), so choose “Fixed model . . . R2 
deviation from zero.” G*Power uses f 2 as its measure of effect size, but it is easy to convert R2 
and DR2 into f 2 (see chapters 4 and 5); indeed, G*Power will do these calculations for you, as 
shown on the smaller right-hand screen (to get this screen, click on the “Determine” button 
under “Input Parameters.”). The figure also shows the results.

These findings are for a post-hoc power analysis; that is, we conducted the regression and 
then wondered what the power was. Much more useful for most researchers is an a priori 
power analysis, in which we plan the research and then calculate the needed sample size to 
have a good chance of rejecting a false null hypothesis. With these three variables and an R2 
of .155, we will have a power of .8 with 64 participants and a power of .9 with 82 participants. 
Figure 9.14 shows a graph of power (Y-axis) as a function of sample size, given an alpha of 
.05 and an R2 of .155.

We often are interested in the power of the addition of one variable or a block of variables 
to the regression equation, with other variables (background variables or covariates) con-
trolled. For example, in Chapter 5 we considered the sequential regression in which we added 
Locus of Control and Self-Esteem to the regression, with SES and Previous Grades already 

Figure 9.13 Power analysis for the overall regression of GPA on Parent Education, In-School Home-
work, and Out-of-School Homework from Chapter 4.
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in the equation. The R2 with two variables in the equation was .328, and the psychological 
variables added another .010 to the R2. What sort of power was associated with this block? 
Given the sample size of 887, this final block in the regression had a power of .92; given this 
information, we had a 92% chance to reject correctly a false null hypothesis of no effect for 
the psychological variables. Given these same numbers, a sample size of 641 (see Figure 9.15) 
would be needed for a power .80 and sample size of 841 for a power of .90 for this block. The 
top of Figure 9.15 shows the input values for G*Power; the lower portion shows the sample 
size graph.

Consider the regressions in which we added interaction terms to the regression. In Chap-
ter 7 we tested the interaction of Previous Achievement and Ethnic origin in their possible 
effect on Self-Esteem. The categorical and continuous variable accounted for 2% of the vari-
ance in Self-Esteem, and the cross product added another .8% (which I will round off to 1%) 
to the variance explained, with a sample size of approximately 900. In this example, the test 
of the interaction term had a power of .86 (post hoc) and .80 power would be achieved with 
a sample size of 764 (a priori). Although the test of the interaction has lower power than the 
initial variables, with this sample size we still had adequate power to examine the statistical 
significance of the interaction.

Figure 9.14 Power to detect a statistically significant R2 as a function of sample size. This figure refers 
to the same regression as Figure 9.13, both from Chapter 4.



Figure 9.15 Power analysis for DR2 for one of the sequential regressions from Chapter 5.



ASSUMPTIONS, DIAGNOSTICS, POWER AND PROBLEMS • 207

Finally, consider the 10 to 20 participants per independent variable rule of thumb. Let’s 
model this on some of the other regressions discussed here. Suppose four independent vari-
ables account for 20% of the variance in the outcome (f 2 = .25), a value that seems reason-
able given our examples. Will a sample size of 40 to 80 produce adequate power? Forty cases 
will produce a total power of only .65, but 80 cases will result in a power of .95. The relevant 
graph is shown in Figure 9.16. If the R2 for these four variables was .30 (f 2 = .43) instead of 
.20, then the power associated with 40 cases is .89 (no graph shown). Suppose instead that 
you were interested in the power associated with one variable that increased the R2 by .05 
above an R2 = .20 (Df 2 = .067) from the first four variables in the regression. You will need 
a sample size of 120 to have a power of .80 for this final variable (see Figure 9.17). It appears 
that this rule of thumb, although sometimes accurate, will produce low power in many real-
world research problems.1

In real-world research, you should, of course, conduct these power calculations prior to 
the research to make sure you collect data on the needed number of participants. You will 
not know the exact effect size but can generally estimate effect sizes from previous research 
and your knowledge of relevant theory in the area. Most programs use R2 or DR2 as the mea-
sure of effect size, or the easily calculable f 2 or Df 2 (as in the previous examples). You can, 
of course, get estimates of DR2 if researchers have used sequential regression or by squaring 

Figure 9.16 Power as a function of sample size for R2 = .20 (f 2 = .25). The example illustrates potential 
problems with a common rule of thumb for sample size in multiple regression.
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the semipartial correlations (which you can calculate using t values, if necessary). If you have 
no previous research to go on, you can use common rules of thumb (e.g., R2’s of .01, .09, 
and .25; f 2’s of .02, .13, and .35 represent small, medium, and large effects in the social sci-
ences; Cohen et al., 2003). A medium effect size is generally recognized as one noticeable to 
a knowledgeable observer (Howell, 2010).

As you plan your own research, I encourage you to investigate power more completely and 
spend some time estimating the sample size you will need in your research (assuming you 
are not using a large data set like NELS). You don’t want to be filled with regrets after having 
conducted the research and finding nothing of statistical significance and then wishing that 
you had collected data from 10, or 100, additional participants! 

PROBLEMS WITH MR?

Let’s revisit some of the interpretive problems we’ve dealt with throughout this part of the 
book. I conducted three multiple regressions of high school Achievement on Family Back-
ground (SES), Intellectual Ability, Academic Motivation, and Academic Coursework in high 
school. Our interest is in the effects of these variables on students’ high school achievement. 
We will briefly examine the results of a simultaneous, a sequential, and a stepwise multi-
ple regression, with a focus on the different conclusions we can reach using the different 

Figure 9.17 Power as a function of sample size for DR2 = .05 (with 1 – R2 = .75).
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methods. Because our primary interest is in the differences across methods, I won’t define 
the variables in any more detail. The data are taken from Keith and Cool (1992), however, 
if you are interested in learning more. For this example, rather than simulating the data, I 
have conducted the regressions using a portion of the correlation matrix as presented in the 
article. The file “problems w MR 3.sps” illustrates how to conduct a MR using a correlation 
matrix in SPSS. You may want to save or print this file; it’s a useful method and one you can 
use to reanalyze any published correlation matrix.

Figure 9.18 shows the primary results from a simultaneous MR of Achievement on the 
four explanatory variables. The regression is statistically significant, and over 60% of the 
variance in Achievement is explained by these four variables (R2 = .629). The table of coef-
ficients in the figure provides information about the relative influence of the variables. All 
the variables appear important, with the exception of Academic Motivation. The effects of 
Motivation appear very small (b = .013) and are not statistically significant. Motivation, it 
seems, has no effect on high school Achievement. Turning to the other variables and based 
on the b’s, Ability appears the most important influence, followed by high school Course-
work; both effects were large. Family Background, in contrast, had a small but statistically 
significant effect on Achievement. 

Figure 9.19 shows the same data analyzed via sequential MR. For this problem, the explan-
atory variables were entered in the order of presumed time precedence. Parents’ background 
characteristics generally come prior to their children’s characteristics; Ability, a relatively sta-
ble characteristic from an early age, comes prior to the other student characteristics; Motiva-
tion determines in part the courses students take in high school; and these courses, in turn, 
determine in part a high school student’s Achievement. Thus, achievement was regressed on 
Family Background, then Ability, then Motivation, and finally Coursework. Relevant results 
of this regression are shown in Figure 9.19. 

There are several differences in these results and those from the simultaneous MR. What 
is more disturbing is that we will likely come to different conclusions depending on which 
printout we examine. First, with the sequential regression and focusing on the statistical sig-
nificance of DR2 for each step, it now appears that Academic Motivation does have a statisti-
cally significant effect on Achievement (DR2 = .009, F[1, 996] = 19.708, p < .001). Second, 

Figure 9.18 Simultaneous regression of Achievement on Family Background, Ability, Motivation, and 
Academic Coursework.
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Figure 9.19 Sequential regression results for the same data.
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although we still conclude that Ability was the most important variable, we now conclude 

that Family Background was second in importance ( ∆R2 = .620, .417, .251, .095, for Abil-
ity, Family Background, Coursework, and Motivation, respectively; of course this rank order 
would stay the same if we were to focus on DR2 instead).

Figure 9.20 shows the results from a stepwise regression of these same variables. Again, 
Academic Motivation appears unimportant, because it never entered the regression equation. 

Figure 9.20 Stepwise regression of Achievement on the same four school learning variables. 
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And again, the order of “importance” changed. In the stepwise regression, Ability entered 
the equation first, followed by Coursework, followed by Family Background. The stepwise 
regression thus seems to paint yet another picture of the importance of these variables for 
Achievement. 

How do we resolve these differences? First, we can ignore the results of the stepwise regres-
sion, because this is an explanatory problem and stepwise regression is not appropriate for 
explanatory research. But we still have the differences between the simultaneous and the 
sequential regressions, both of which are appropriate for explanation.

We have touched on these differences in previous chapters. As noted primarily in Chap-
ter 5, simultaneous regression focuses the direct effects of variables on an outcome, whereas 
sequential regression focuses on total effects. Thus, the two approaches may well produce 
different estimates, even when they are based on the same underlying model and even when 
one interprets the same statistics. Table 9.2 shows the relevant regression coefficients from 
Figures 9.18 (simultaneous regression) and 9.19 (sequential regression). For the sequential 
regressions, the coefficients are from the step at which each variable was entered (shown in 
italic boldface in the table of coefficients in Figure 9.19). Note the differences in the coef-
ficients; many of the differences are large. Family Background, for example, has an effect of 
.069 (standardized) in the simultaneous regression versus .417 in the sequential regression.

Again, these differences are not so startling if we know that the simultaneous regression 
focuses on direct effects versus total effects for sequential regression. But many users of mul-
tiple regression seem unaware of this difference. Likewise, many users of MR seem unaware 
that their regression, when used for explanatory purposes, implies a model and that this 
model should guide the analysis. The model that underlies these regressions is shown in Fig-
ure 9.21, and it can be used to illustrate the differences in coefficients between simultaneous 
and sequential regression. The simultaneous regression estimates the direct effects, labeled a, 
b, c, and d in the figure. The sequential regression estimates aspects of the total effects. Thus 
for the variable motivation, the coefficient for Motivation is the direct effect of Motivation 
on Achievement (path b) plus the indirect effect of Motivation on Achievement through 
Academic Coursework (path e times path a). 

In Part 2 of this book we will develop such models in considerably more detail and, along 
the way, gain a deeper understanding of MR and our current difficulties in interpretation. 
Even if you are using this book for a class in MR only and focusing on Part 1 only, I urge 

Table 9.2 Regression Coefficients from the Simultaneous versus Sequential Regression of Achieve-
ment on Family Background, Ability, Academic Motivation, and Academic Coursework.

Variable Simultaneous Regression Sequential Regression

Family Background .695 (.218) 4.170 (.288)
.069 .417

Ability .367 (.016) .454 (.015)
.551 .682

Academic Motivation .013 (.021) .095 (.021)
.013 .095

Academic Coursework 1.550 (.120) 1.550 (.120)
.310 .310

Note: The first row for each variable shows the unstandardized coefficient followed by the standard error (in parentheses). 
The second row shows the standardized coefficient.
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you to read Part 2 (at least the first two chapters). I think you will find they help you resolve 
many of the issues that have vexed us in our use and interpretation of multiple regression. 
If nothing else, these chapters will give you a more complete heuristic aid in understanding 
MR results.

EXERCISES

1. Return to the first regression we did with the NELS data. Regress 10th-grade GPA (FFU-
Grad) on Parent Education (BYParEd) and Time Spent on Homework Out of School 
(F1S36A2) (see the exercises in Chapter 2). Save the unstandardized residuals and pre-
dicted values. Use the residuals to test for linearity in the Homework variable and for the 
overall regression. Are the residuals normally distributed? Is the variance of the errors 
consistent across levels of the independent variables (to conduct this final analysis, I 
suggest you reduce the Predicted Grades variable into a smaller number of categories)?

2. Rerun the regression; save standardized and studentized residuals, leverage, Cook’s Dis-
tance, and standardized DF Betas. Check any outliers and unusually influential cases. 
Do these cases look okay on these and other variables? What do you propose to do? 
Discuss your options and decisions in class. (To do this analysis, you may want to create 
a new variable equal to the case number [e.g., COMPUTE CASENUM=$CASENUM 
in SPSS]. You can then sort the cases based on each regression diagnostic to find high 
values, but still return the data to their original order.)

3. Do the same regression, adding the variable BYSES to the independent variables (BYP-
arEd is a component of BYSES). Compute collinearity diagnostics for this example. Do 
you note any problems?

Note

1 Two slightly more sophisticated rules of thumb are N > 50 + 8k for calculating the N needed for 
adequate power in an overall regression and > 104 + k for the testing the statistical significance of 
a single variable (with k representing the number of independent variables). Green (1991) evalu-
ated these and other rules of thumb and, although they work somewhat better than the simple 
N > 10k rule mentioned in this chapter, they also fall short, because they do not take effect sizes into 
account. Indeed, the second rule would underestimate the sample size needed for the final example 
given here. Green also developed several additional rules of thumb that take effect size into account 
and are therefore more useful. I recommend you use a power analysis program rather than rules of 
thumb, but this article is still worth reading

Figure 9.21 Model underlying the simultaneous and sequential regressions of Achievement on Family 
Background, Ability, Academic Motivation, and Academic Coursework.
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This chapter will focus on two methods that are similar to multiple regression—logistic 
regression and multilevel modeling (aka hierarchical linear modeling)—but that require 
specialized analysis with something other than the linear regression procedures in gen-
eral statistics programs. These are methods you are likely to encounter in your reading, 
so it is useful to have a conceptual understanding of them. Logistic regression is use-
ful when the dependent variable you are interested in is dichotomous (or categorical 
with more than two categories). Multilevel modeling takes into account the often-nested 
or clustered nature of our data, such as children within schools, or individuals within 
families.

The intent of this chapter is not to teach you how to conduct such analyses. Instead, here 
I hope to illustrate these methods from a now-familiar multiple regression orientation. The 
chapter will use an example of each method with a brief look at the output from the analysis 
and what it means. You won’t be adept at the methods after reading this chapter, but I hope 
that you will have a conceptual understanding of them and an idea of where you can go to 
learn more. As a result I hope when you do encounter these methods either in your reading 
or in subsequent coursework that you will have a mental schema in place that will help you 
understand them more fully.
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LOGISTIC REGRESSION

In all our regression examples in this book, the outcome variable has been continuous. 
Achievement test scores, Grades, Self-Esteem ratings, and so on, are all continuous variables.

Starting in Chapter 6 we spent considerable time discussing how to use dummy and effect 
coding to analyze categorical independent variables. But what do you do when you have a 
categorical dependent variable? Logistic regression is one method of dealing with this prob-
lem. It is most commonly used to predict a dichotomous dependent variable from multiple 
continuous or continuous and categorical independent variables. Let’s illustrate the method 
with an example.

Predicting Optimism Versus Pessimism

I created an Optimism composite variable as the average of a series of questions about stu-
dents’ outlook toward the future (F1S64A through F1S64K): “Think about how you see the 
future. What are the chances that:

You will graduate from high school?
You will go to college?
You will have a job that pays well?
You will be able to own your own home?
You will have a job that you enjoy doing?
You will have a happy family life?
You will stay in good health most of the time?
You will be able to live wherever you want in the country?
You will be respected in your community?
You will have good friends you can count on?
Life will turn out better for you than it has for your parents?”

Possible answers ranged from 1 (very low) to 3 (about 50–50) to 5 (very high). Students 
with high scores on the composite had a fairly optimistic view of the future, whereas those 
with low scores were more pessimistic about the future. This composite is used in its con-
tinuous form in Appendix C on Partial and Semipartial correlation. For illustration of logis-
tic regression I divided this continuous variable into an Optimism/Pessimism dichotomous 
variable. Students who had an average rating of less than 4 were categorized as pessimistic, 
whereas those with an average rating of 4 or higher were categorized as optimistic (4 cor-
responded to an answer of “high” on each item). This dichotomization seems reasonable, as 
many people think of this a categorical variable anyways. But we will discuss this dichotomi-
zation more, later. As shown in Figure 10.1, using this categorization, about 36% of the NELS 
sample would be classified as pessimistic versus 64% optimistic. 
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Figure 10.1 Breakdown of the optimistic/pessimistic dichotomy.
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Suppose you were interested in predicting whether high school students were more likely 
to be optimistic or pessimistic. What variables might you use? I picked two of our old 
standbys: Family Background, or SES, as referenced by the NELS variable BYSES, and 8th-
grade achievement test scores (BYTests). My thinking is that students who come from more 
advantaged backgrounds (higher on the BYSES variable), and who achieve at a higher level 
are more likely to be optimistic about the future than those who are lower on these two 
variables.

Two other composites were created and used in the prediction. Substance was a measure 
of self-reported substance use in 10th grade, and was a composite of F1S77 (How many 
cigarettes smoked per day), F1S78 (In lifetime, number of times had alcohol to drink), and 
F1S80aa (In lifetime, number of times used marijuana). Religious was the average of F1S82 
(How often attend religious services) and F1S83 (Thinks is a religious person). All these 
items were measured in 10th grade, and were converted to z-scores prior to averaging. It 
seems likely that students who report lower substance use and higher levels of religiosity 
should be more likely to be optimistic than those who report more substance use and lower 
levels of religiosity. We will see if these predictions are accurate. Histograms for all variables 
are shown in Figure 10.2.

Multiple Regression Analysis

Other than the dichotomous dependent variable, this sounds like a standard multiple regres-
sion-type analysis: predict, or explain, a dependent variable from four independent vari-
ables. We could indeed treat it like a multiple regression and regress the optimism/pessimism 
variable on those four predictors. Some of the output from this analysis is shown in Fig-
ure 10.3. As shown in the Figure, the four IVs explained about 12% of the variance in the 
dichotomous optimism/pessimism outcome variable, and this was statistically significant 
(F (4, 799) = 28.288, p < .001). In addition, each of the four independent variables was sta-
tistically significant, with (judging by the bs) religiosity, SES, and 8th-grade achievement all  
having moderate effects, and substance use having a small but statistically significant nega-
tive effect. Higher achieving, more advantaged, and more religious students were more likely 
to be optimistic than were their peers who were lower on these scales, and 10th-graders who 
used substances like tobacco, alcohol, and marijuana were more likely to be pessimistic than 
were their peers who did not use (or used less of) these substances. 

Problems with the MR Analysis

What is wrong with this analysis? It works and is interpretable, correct? Yet there are reasons 
why a MR approach is not the best one. First, the magnitude of the correlations between the 
dichotomous dependent variable and the independent variables depends, in part, on the 
split used in the dichotomization, with the maximum correlation decreasing as we depart 
from a 50/50 split (this is actually more of a criticism of turning a continuous variable into 
a categorical one, and we will return to it at the end of this section). And, of course, the 
multiple regression results, including R2 and all of the regression coefficients, depend on the 
correlations of the dependent variable with the independent variables (see Chapter 3). So, 
for example, with the variables used in the regression shown in Figure 10.3, 35.5% of stu-
dents were classified as pessimistic versus 64.5% optimistic. With this dichotomization, the 
correlation between BYTests and the optimism/pessimism dichotomous variable was .210. 
If, however, we had used a value of 3 on the original (continuous) optimism scale as the cut-
point for creating a dichotomy, the pessimistic/optimistic split would have been 2.9/97.1%. 
The correlation of this version of the DV with BYTests would be .172. 
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Figure 10.2 Histograms of independent and dependent variables from the logistic regression example.
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In Chapter 9 we discussed the assumptions underlying multiple regression and various 
ways to test those assumptions. Another reason the MR approach is not the best way to deal 
with the prediction of a categorical dependent variable is that we violate many of those 
assumptions. Look at the graphs shown in Figure 10.4. The first graph shows a scatterplot of 
the optimism/pessimism dichotomous variable regressed on the unstandardized predicted 
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Figure 10.3 Results of a multiple regression with the dichotomous optimism dependent variable.
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value from the MR. Recall from Chapters 3 and 9 that this predicted value is a linear combi-
nation of the four independent variables, so this scatterplot represents the regression of the 
DV against the combined IVs. Note that all data points are clustered at the top or the bottom 
of the Y axis, and this is because the dependent variable can only take on two possible values: 
0 or 1. The scatterplot shows the regression line, as in many previous scatterplots. I hope it 
is clear that the linear fit line is not the best possible line among these data points; that is, a 
nonlinear relation could produce a better fit. The second graph shows a scatterplot of the 
regression standardized residuals against the predicted values, with a Loess fit line. In chapter 
9 we saw how to use this fit line to assess the linearity assumption of multiple regression. This 
loess line certainly shows a considerable deviation from a straight line, suggesting a violation 
of this important assumption. In fact, a nonlinear fit line, an ogive, would be a better fitting 
line for these data; such a line is shown in Figure 10.5.

Another assumption for regression discussed in Chapter 9 is that the errors, or residuals, 
will be normally distributed. Figure 10.6 shows two graphs that can be used to probe this 
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Figure 10.4 Graphs demonstrating the non-linear relation between optimism/pessimism and its pre-
dictors, and suggesting that ordinary multiple linear regression is not a good analysis option.
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assumption. The top graph shows a histogram of the residuals from the multiple regression 
using these data. This multimodal plot clearly departs from a normal distribution. The lower 
part of the figure shows a P-P plot of the residuals. Normally distributed residuals would 
cluster around the straight diagonal line. Again, there is a clear departure from normality, 
and again, it appears that an ordinary MR with these data leads to some clear violations of 
the assumptions for regression. 

Logistic Regression: Transforming the Dependent Variable to Log Odds

Also noted in Chapter 9 was that sometimes such assumption violations could be addressed 
via a transformation of the variables involved. That is one way of thinking about what happens 
in a logistic regression. In logistic regression (LR), instead of focusing on the dichotomous 
dependent variable, we focus the odds of that variable. Thus we ask what are the odds of being 
pessimistic or optimistic given a particular set of values for the independent variables? We have 
not discussed odds in this text, but it is a concept that is likely at least a little familiar to most of 
us, and especially anyone who likes to gamble. Odds are related to probability, and are calcu-
lated as the probability of an event happening divided by the probability of it not happening. 
In this case, the odds would be calculated as the probability of being optimistic divided by the 
probability of being pessimistic (for a given set of values for the independent variables).

Odds ratios are easy to interpret, but keep in mind that they are different from, but related 
to, probability. An odds ratio of 2 means that the odds are doubled, whereas one of .5 means 
that the odds are halved. In the current example, the use of odds is easier to explain with a 
single independent variable, and one with a limited number of possible values. The religios-
ity variable fulfills this requirement, and it was also (at least in the regression) the strongest 
predictor of optimism. Figure 10.7 shows the crosstabs of the Religious variable with the 
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Figure 10.7 Percent of 10th-graders who are pessimistic versus optimistic for different values of 
religiosity.
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Optim_Pess dichotomous outcome. Note that for values of −1.43 on the religiosity variable, 
the split on the optimism/pessimism variable was 56.4% pessimistic and 43.6% optimistic. 
Thus for those with a value of −1.43 Religious, the probability of being pessimistic was .564 
versus .436 optimistic. The odds of being optimistic for this value of Religious would be 
.436/.564 or .773 (or .773 to 1). For every one chance of being pessimistic for this value of 
Religious, there is a .773 chance of being optimistic. In contrast, the odds of being optimistic 
for the highest value of Religious (1.59) are .655/.345 or 1.90. Tenth-graders who report this 
level of religiosity are much more likely to be optimistic as opposed to pessimistic.

But one more transformation is required: we need to go from odds to the (natural) loga-
rithm of odds. The primary reason for this is because log odds have better characteristics 
as a dependent variable than do simple odds (e.g., log odds can range from large negative 
numbers to large positive numbers, whereas odds have a lower bound of zero). Thus in LR 
we focus on the natural logarithm of the odds, known as the log odds. Don’t worry, however; 
in the output there is a translation of the results back into odds ratios. Several of the texts I 
have cited elsewhere in this book provide more information about the calculation of odds, 
odds ratios, and log odds (Darlington, 1990; Howell, 2010; Thompson, 2006). For our pur-
poses here, just consider that we have made a transformation in the dependent variable; in 
LR, we have transformed the dependent variable from a dichotomous outcome into the log 
odds of that outcome.

Conducting the Logistic Regression and Understanding the Output

Of course the actual logistic regression is conducted using a logistic regression command in 
your statistics program, and you conduct logistic regression in the same general way as mul-
tiple regression, by regressing a dichotomous dependent variable on one or more (dichoto-
mous or continuous) independent variables. Figure 10.8 shows some of the SPSS output 
for such an analysis. The first table shows the number of cases used in the analysis. The next 
shows how the dependent variable is coded for the analysis. Here, the value we coded as zero 
(pessimistic) is, in fact, coded as zero for the analysis, whereas the value coded one (opti-
mistic) is treated as one in the analysis. This table is worth checking to make sure values are 
indeed coded in the way expected; things could be reversed from what you expect, which will 
likely result in the coefficients being reversed from what you expect as well. 

The next section of the output (Figure 10.8) is labeled Block 0: Beginning Block. LR oper-
ates sort of like sequential regression, by adding predictors in blocks. The difference is that 
Block zero is the logistic regression with no predictors included, just the intercept. Like struc-
tural equation modeling (the focus of Part 2 of this book), LR uses maximum likelihood 
estimation as opposed to least squares estimation (see Chapter 3 for more on least squares). 
It also uses a chi-squared test at each block of the regression to determine whether each block 
of the regression improves prediction (as opposed to an F test associated with DR2). Since 
the purpose of this section is to try to understand what happens in LR from a MR orienta-
tion, we will not expand on these aspects of LR here. Instead, think of LR as doing something 
like sequential MR, and note that we are going to be focused on a different statistic for under-
standing the statistical significance of the regression. Thus Block 0 sets the baseline for the 
success of the prediction for subsequent comparisons.

Block 0 also shows the success of the prediction using only the overall probability of being 
pessimistic versus optimistic. The “Classification Table” calculates a predicted probability for 
every case for being in group 1 (optimistic). If that probability is greater than .5, the case is 
predicted for group 1 (optimistic); if less than .5, it is predicted for group 0 (pessimistic). 
With no predictors in the model, this probability is based only on the overall numbers of stu-
dents in the sample who are pessimistic versus optimistic. There are 527 out of 804 students 
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who are optimistic, so the probability of being optimistic (based on no other information) 
is 527/804 = .655. This value is greater than .5, so as shown in the table, at Block 0 the LR 
predicts that everyone is optimistic. In other words, if all you knew was that 66% of students 
in your sample were optimistic, your best bet for any student would be that they were opti-
mistic (in the absence of other information).

The “Variables in the Equation” is read just like the table of coefficients in MR. There is a 
b, and it is tested for statistical significance. The b is also converted into another coefficient 
that may be easier to interpret. We will postpone looking at the details of this table until we 
have some predictor variables in the equation.

Figure 10.9 shows the first portion of printout from Block 1 of the LR. For this 
regression I entered all of the predictors in a single block (i.e., a simultaneous LR). It  

Dependent Variable Encoding

0
1

Original Value

.00 Pessimistic
1.00 Optimistic

Internal Value

a. If weight is in effect, see classification table for the total
number of cases.

Case Processing Summary

Logistic Regression

Block 0: Beginning Block
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1000

80.4
19.6

100.0

Selected Cases Included in Analysis
Missing Cases
Total

0
1000

.0
100.0

Unselected Cases
Total

NUnweighted Casesa Percent

Variables in the Equation

.643 .074 75.111 1 .000 1.903ConstantStep 0
B S.E. Wald df Sig. Exp(B)

Classification Tablea,b

Optim_Press Optimistic or
Pessimistic

Overall Percentage

.00 Pessimistic

1.00 Optimistic

0

0

277

527

.0

100.0

65.5

Observed

Step 0

.00
Pessimistic

1.00
Optimistic

Optim_Press Optimistic or
Pessimistic

Predicted

Percentage
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a. Constant is included in the model.
b. The cut value is .500

Figure 10.8 Selected output for the logistic regression of pessimism vs. optimism on four predictors. 
Output from the initial block of the LR with no predictors in the equation.



224 • MULTIPLE REGRESSION

is also possible to enter variables in blocks (sequential LR) or a stepwise fashion using a 
variety of criteria (not generally recommended for explanatory research; see Chapter 5). 
The “Omnibus Tests of Model Coefficients” shows the χ2 (actually the change [decrease] 
in χ2, Δχ2 ) associated with the overall model (Model) and with this block (Block) of 
variables. The Δχ2 is tested for statistical significance, Δχ2 = 105.133 with 4 df for the four 
predictors, and the probability of this decrease in χ2 happening by chance alone is < .001. 
This table is thus analogous to testing the R2 for statistical significance in ordinary MR. 
If a sequential approach were used, the Δχ2 values shown for the overall model (Model) 
and the Block would differ on block 2; if a stepwise approach were used, the values for 
step would differ from those associated with Model for block 2 and beyond. With either 
of these approaches, the statistical significance of the associated Δχ2 would be analogous 
to the statistical significance associated with ΔR2 in a sequential or stepwise regression. 
The −2 Log likelihood value in the “Model Summary” table is the genesis of the χ2 values 
shown in the previous table. If you were to conduct a sequential LR and subtract the −2 log 
likelihood from one block to the next you would see that these match the χ2 associated 
with that block. Why a −2 log likelihood? Recall that we are testing the natural logarithm 
of the odds of pessimism/optimism. That’s where the “log” comes from. The negative is 
there to reverse what would all be negative numbers. The 2 turns this into a χ2 distribu-
tion. Conceptually, from a MR orientation, think of the log likelihood as being analogous 
to the R2 (or sums of squares) from regression (except that smaller values are better and 
we try to reduce it rather than increase it), and the χ2 test as analogous to the F test of the 
R2. This table also includes two estimates of R2. LR does not use least squares estimation 
and therefore does not produce a measured of variance explained compared to the vari-
ance unexplained. But those of us with a background in MR like some sort of estimate of 
the proportion of explained variance, so two are produced in SPSS. There are others; as 
can be seen in the table, they do not always produce consistent estimates of R2, and thus 
should be used cautiously.

The table “Variables in the Equation” in the lower part of Figure 10.10 looks quite familiar 
to those used to regression output, and it is interpretable in a similar way. The b’s shown in 
the second column represent the amount of change in the dependent variable for each one 
unit change in each independent variable. Just as in MR, these coefficients can be used to 

Model Summary

Step
-2 Log

likelihood
Cox & Snell R

Square
Nagelkerke R

Square

1 930.408a .123 .169

a. Estimation terminated at iteration number 4
because parameter estimates changed by less than
.001.

Omnibus Tests of Model Coefficients

Block 1: Method = Enter

105.133
105.133
105.133

4
4
4

Step 1 Step
Block
Model

Chi-square df
.000
.000
.000

Sig.

Figure 10.9 Logistic regression, block 1, with all predictors in the equation.
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create an equation for predicting the dependent variable from the independent variables. In 
this case, it is:

logodds Optimism Substance Religious

BY

=− − +
+

1 137 249 481

497

. . .

. SSES BYTests+ . .036

Recall that the dependent variable is in log odds units, so these coefficients and this equa-
tion are not as useful as we might wish. The standard errors are used to test the statisti-
cal significance of each variable with all the others controlled, using the Wald test and the 
formula ( b

SEb
)2; they can also be used to create confidence intervals around the coefficients. 

Unlike a t test from multiple regression, these Wald tests each have 1 df. The probabilities are 
interpreted in the same fashion, however, and these show that each of our four predictors 
was statistically significant.

The final column shows the exponentiated version of the b, a conversion that makes it more 
easily interpretable. For this interpretation, the dependent variable optimistic/pessimistic is 
still in odds format but is no longer logarithmically transformed. Thus interpretations are 
based on the odds of being optimistic. One-to-one odds would represent an equal chance of 
being pessimistic or optimistic. Values greater than one indicate that increases in that inde-
pendent variable increase the odds of going from pessimistic to optimistic, whereas values 
less than one indicate that increases in that independent variable lead to (or predict) lower 
odds for the dependent variable. Focus on substance use and religiosity. The value of 1.617 
for Religious means that, other things being equal, a one point increase in religiosity results 
in an increase in the odds of being optimistic by 1.617. Alternatively, we could say that this 
1-point increase would increase the odds of being optimistic by 61.7%. Other things being 
equal, religious faith and attendance seems to result in increased optimism about the future. 

Variables in the Equation
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a. The cut value is .500

a. Variable(s) entered on step 1: Substance, Religious, byses, bytests.

Figure 10.10 More output from Block 1 of the logistic regression, including a table of coefficients 
(lower table) and a table showing how well the LR equation would perform in predicting group mem-
bership (upper table).
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The .780 value for Substance is slightly harder to interpret, but the fact that it is less than 
one means that increases in substance use predict decreases in the odds of being optimistic, 
and thus increases in the chances of being pessimistic. A one point increase in substance use 
thus results in a 22% (1 − .780 × 100) decrease in the odds of being optimistic. Alternatively, 
we could use this odds ratio of less than 1 to calculate the probability of being pessimistic 
rather than optimistic by reversing it (1/.780 = 1.282). Then our interpretation would be that 
a 1-point increase in substance use results in a 28% increase in the odds of being pessimis-
tic. To round out our interpretations, the coefficients suggest that BYTests and BYSES also 
have positive and statistically significant effects on the odds of being Optimistic. A 1-point 
increase in SES increases the odds of being optimistic by 64%, and a 1-point increase in test 
scores increases those odds by 3.6%. Keep in mind that these are still unstandardized coef-
ficients, so you need to keep in mind that a “1-point increase” means something different 
for each of these independent variables. As a review of Figure 10.2 will show, the variables 
BYSES, Substance, and Religious were all means of z-scores, so a 1-point increase in any of 
these variables is a much larger change than a 1-point increase in BYTests, which was a mean 
of T-scores. The output shows no analog to b, that is, no standardized regression coefficients, 
so we can’t really compare the magnitude of the coefficients to one another. See Thompson 
(2006, p. 413) for suggestions of ways to produce something akin to standardized coefficients 
in LR by standardizing the independent variables; he also suggested the use of structure coef-
ficients in LR.

The final piece of output we will address is shown at the top of Figure 10.10, the 
“Classification Table.” This LR regression equation is used to predict group membership 
(pessimistic versus optimistic) and these predictions are compared to each participant’s 
actual categorization as optimistic versus pessimistic. As shown in the final column of the 
Table, 68.7% of those in the sample were correctly classified, although the equation was 
more accurate in classifying those who were optimistic than those who were pessimistic. 
This represents a slight improvement in classification with no predictors in the model 
(Figure 10.8, 65.5%).

Categorizing a Continuous Variable

Let’s revisit the beginning of this example, in which I took a continuous variable, an Opti-
mism composite, and turned it into a categorical Pessimistic/Optimistic one. The reason for 
doing so was to have an interesting and understandable example. But is this a good idea? In 
a word, no. Early in the text I argued against turning a continuous variable into a categorical 
one, and I have reiterated that admonition elsewhere (e.g., Chapter 8). Let me reiterate it yet 
again: it is generally not a good idea to turn a continuous variable into a categorical one. I 
have done so here for the sake of an example, but that does not mean it is a good idea.

Note the output shown in Figure 10.11, the results of a multiple regression using the 
original continuous Optimism variable. It is reassuring that the same variables are statistically 
significant, and that the coefficients are in the same direction (Substance is negative, all oth-
ers are positive) in this analysis as in the MR for the dichotomous Optimism variable, and 
as in the LR for the dichotomous Optimism variable. Note, however, the model summary 
table in Figure 10.9 as compared to Figure 10.3 (the MR for the dichotomous outcome). 
With the continuous dependent variable, R = .370, and the variance explained (R2) was .137. 
In contrast, with a dichotomous outcome, R = .352 and R2 = .124. Categorizing a continu-
ous variable reduces—throws away! wastes!—its variance and reduces its correlation with 
any other variable, thus reducing its R and R2. This reduction in correlation becomes larger 
the farther we get from a 50/50 split. Thompson calls such categorization “data mutilation” 
(2006, pp. 386–390), and I agree (see also Cohen, 1983). 
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In my experience, such dichotomization is a disappointingly common occurrence in 
logistic regression research: researchers take perfectly good continuous dependent vari-
ables and turn them into dichotomous ones. This practice, again in my limited experience, 
seems especially common in medical and diagnostic research, where, for example, scores 
on a measure of depressive symptomology are categorized into not depressed/depressed, or 
infant birth weights into adequate/low birth weight. Such categorization seems reasonable 
given the seemingly related categorization that is often necessary in applied practice, such as 
deciding whether a patient is depressed or not. The resulting research on predictors or influ-
ences on these outcomes can thus help the physician predict, for example, which patients 
are likely to have babies with low birth weight, or the psychologist which clients are likely to 
be depressed. But such predictions would be just as easy, and likely more accurate and more 
valid, if done using the continuous as opposed to the categorical outcome. If the prediction 
equation is really being used, why not predict a continuous birth weight from the variables 
of interest and then, based on that prediction, flag values that are below a certain level? My 
point is that it generally does not make sense to categorize a continuous variable for analytic 
purposes. It may make sense to categorize a continuous variable after analysis as an aid in 
interpretation (also discussed in Chapter 8). Unless there are compelling reasons for doing 
otherwise, leave your variables in continuous format!

Appropriate Uses of Logistic Regression

My diatribe concerning categorizing a continuous variable should not give the impression 
that logistic regression is rarely advised. I discourage the categorization of continuous 
variables, but there are many naturally occurring categorical variables that are legitimate 
possible outcome variables in our research. LR is indeed an appropriate analytic choice when  

Model Summary

.370a .137 .133 .54777

Model

1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

a. Predictors: (Constant), bytests 8th-grade achievement
tests (mean), Religious, Substance, byses SOCIO-
ECONOMIC STATUS COMPOSITE

Coefficientsa

3.707 .134 .00027.747(Constant)

-.057 .026 -.076 .027-2.213Substance

.139 .023 .207 .0006.024Religious

.131 .029 .170 .0004.540byses SOCIO-
ECONOMIC STATUS
COMPOSITE

.008 .003 .122 .0013.258bytests 8th-grade
achievement tests
(mean)

Model
1

B Std. Error

Unstandardized
Coefficients

Beta t Sig.

Standardized
Coefficients

a. Dependent Variable: Optimism

Figure 10.11 Multiple regression using the original, continuous Optimism dependent variable. Com-
pare these results to those in Figure 10.3 to see the cost of dichotomizing a continuous variable.
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we wish to predict or explain such outcomes. We may wonder why some students drop out 
of a class or of school while others continue, and how we can predict such an outcome. Some 
adolescents choose to smoke or to use drugs, while others do not. Some people with mental 
health concerns seek counseling, others seek help from family, whereas others do not seek 
help at all. Some former prisoners manage to stay out of prison, whereas others do not. All of 
these examples involve natural categorical outcomes and would be appropriate for LR; you 
can no doubt think of others in your own area of study.

Logistic Regression Versus Discriminant Analysis

There is another, older method for analyzing categorical dependent variables in MR fashion: 
discriminant analysis. With a dichotomous outcome, discriminant analysis is mathemati-
cally equivalent to ordinary multiple regression (Cohen et al., 2003), although the output 
looks somewhat different. Logistic regression is the more popular method at the current 
time, in part because, as shown here, much of what you have learned about multiple regres-
sion is directly applicable to logistic regression. Logistic regression also has an advantage 
over discriminant analysis in that it can include both categorical and continuous variables as 
independent variables, whereas, strictly speaking, discriminant analysis should include only 
continuous independent variables. Logistic regression also requires fewer and more reason-
able assumptions. Discriminant analysis had been a better choice for categorical variables 
that included more than two categories, but up-to-date logistic regression programs can also 
handle polytomous, in addition to dichotomous, categorical variables. The Sage Quantitative 
Applications in the Social Science series includes good introductions to both methods (Klecka, 
1980; Menard, 1997). The several references already mentioned provide useful introductions 
to LR (Darlington, 1990; Howell, 2010; Thompson, 2006), and the classic text by Hosmer 
and Lemeshow (2000) provides more depth. The UCLA statistics help websites are also very 
useful (e.g., “FAQ: How do I interpret odds ratios in logistic regression?”).

MULTILEVEL MODELING

One of the assumptions of multiple regression briefly discussed in the last chapter is that the 
observations are drawn independently from the population. One way this assumption can be 
violated is for some observations to be related to one another, to overlap or cluster in some 
way. Think, for example, about the NELS data. The design of the full NELS survey was to 
select schools from a national list and then to select, at random, approximately 24 students 
per school for inclusion in the sample. We have treated the NELS participants as if they were 
unrelated; but if you think about it, you will probably expect that students will be somewhat 
more similar to other students within their same school than to students from other schools. 
This similarity probably becomes stronger when we focus on variables (like homework?) that 
may be controlled, in part, by the schools. What this means is that the NELS observations are 
not quite as independent as we would like, which, in turn, may deflate the standard errors of 
the regression coefficients and make variables seem statistically significant when they are not. 
To use a more striking example, suppose we were to regress a measure of marital satisfaction 
on variables such as age, educational attainment, and occupational status. Imagine, however, 
that we have collected data from couples—both members of every couple. Married couples 
are likely more similar to one another than are two strangers on all these characteristics, and 
thus these observations are not independent. One method of dealing with such problems is 
through a method known as hierarchical linear modeling (HLM) or, more generally, multi-
level modeling (MLM). MLM is a regression method that can take into account data that are 
clustered in some way—students in schools, people in couples, and so on. To use the NELS 
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example, with MLM we could examine the effects of homework on achievement at both an 
individual level and school level. In addition to dealing with the problem of lack of indepen-
dence of observations, multilevel models can also provide a richer understanding of how 
group-level variables can affect individual-level variables.

Effects of SES on Achievement

Let’s consider a simple example, focused on the effects of SES on student achievement. 
We have used SES or some component of SES (e.g., parent education level) as a student 
level variable fairly consistently in this text. But if you think about schools near you, I’ll bet 
that SES is a school-level variable also. That is, in many communities, there are higher-SES 
schools and lower-SES schools. And most parents assume that the general achievement level 
is higher in the high-SES schools (if you don’t believe this is true, ask real-estate agents the 
kinds of questions they get about schools and school districts!). If you quizzed these parents 
a little further, I’ll bet you would find that they believe, or at least hope, that their children 
will achieve at a higher level if they attend a higher-SES and higher-achieving school. Thus 
we have several possible hypotheses embedded in this thinking: that school-level SES may 
affect school-level achievement and that school-level SES may also affect individual-level 
achievement. How could we test such hypotheses?

The first requirement to test this speculation is that we have data capable of doing so, 
that is, measures of SES and achievement from multiple students within multiple schools. 
Although the NELS data we have been using throughout the text would seem to fit this bill, 
it does not because it is a random subsample of 1,000 students selected from larger NELS 
data. As a result, for most schools represented in the subsample we only have one or maybe 
two students. The larger NELS dataset, however, does indeed fulfill this basic requirement, 
and included data on an average of 24 students selected at random from each of the 1,000 
schools in the data set. Thus I will use a different subsample of this original dataset for this 
illustration. For it, I selected all students from schools with 30 or more students in the larger 
NELS data set. This resulted in the selection of 4,630 students from 127 schools. The data are 
on the website (“nels smaller 3.sav” on www.tzkeith.com), and are limited to the variables to 
be used in these analyses plus a few others.

Next, consider the variables needed to test our hypotheses. Of course we would need 
a measure of SES (the BYSES variable we have often used), a measure of achievement 
(BYTests), and a variable that tells us what school each student attends (the SCH_ID vari-
able). Our first hypothesis was that the average SES of the school would affect the average 
achievement level. To test this hypothesis we would need to create measures of the average 
SES and achievement by school. In SPSS this is easily accomplished using the AGGREGATE 
command from the DATA menu, and it is likely just as easily accomplished in other statis-
tics programs. This command will allow you to put these aggregated variables back in the 
original student-level dataset, or create a new school-level dataset. This first option—the 
school level variable inserted into an individual-level data set—is often referred to as disag-
gregation, and the variable (in MLM jargon) as a “contextual” variable. A contextual vari-
able “refers to the higher-level context of the units we are investigating” (Hox, 2010, p. 9), a 
group-level variable (one often derived from an individual-level variable as in this example) 
thought to influence some individual-level outcome.

Multiple Regression Analysis

Perhaps you could create a school-level dataset and then regress average achievement on 
average SES? Your results would suggest that school SES had a very powerful effect on 
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school-level achievement (R2 = .743, b = .862), a much stronger effect than any of our pre-
vious analyses examining the effect of individual SES on individual achievement (with the 
current data, b = .525). Curious.

Our second hypothesis was that school-level SES should affect individual level achieve-
ment. To follow our current thinking, perhaps in the student-level file you could regress stu-
dent achievement on school-level average SES? And for good measure, why not also include 
individual-level SES? This analysis would presumably tell you the effect of the school-level 
SES as well as the student’s own SES on students’ achievement. The table of coefficients for 
such an analysis is shown in Figure 10.12. This result would seem to suggest that school-
level SES has a strong effect on individual achievement (b = .504, b = 8.16), and that a stu-
dent’s own level of SES also has a statistically significant, although smaller effect (b = .251, 
b = 3.74). Note a slight deviation from my explanation in this table: instead of using the 
original (individual-level) SES variable in this regression, I used a centered version (SES_C). 
To create this variable, each student’s school SES (ses_mean) was subtracted from his or 
her individual SES. This centering was done in an effort to separate the SES variable into 
school-level and individual-level components. As a result of this centering, SES_mean and 
SES_C were uncorrelated. If the original SES variable had been used, its correlation with the 
SES_mean variable would have been fairly high, .675.

These two analyses seem to answer our questions, and conceptually, at least, they will help 
us understand MLM. There are problems, however, both conceptual and statistical, and these 
are well-cataloged in most texts on MLM (Hox, 2010; Raudenbush & Bryk, 2002). Let me 
illustrate one such problem using the individual-level analysis.

Separate Regression Lines by School 

When we conduct an ordinary regression analysis on individual-level data (ignoring school-level 
effects), we assume that the school-level regression lines are the same for every school in our 
analysis. But doesn’t it make sense to assume that some schools are simply better than others? And 
that they will raise all students’ achievement, whether they are of high or low SES backgrounds? 
If so, this should show up as a higher intercept if we were to conduct separate regressions for 
every school. And doesn’t it also make sense to think that some schools should be more effective 
at breaking the relation between SES and achievement? That is, shouldn’t some schools be par-
ticularly effective in working with lower-SES students, whereas others are more successful with 
higher-SES students? If this were the case, we should see this possibility play out as different slopes 
when we conduct separate regressions by school; schools more effective in breaking the SES to 
Achievement effect should show less steep slopes in their regression lines. 

Figure 10.13 shows such regression lines. For this graph I selected out 428 students in 
12 schools to make the graph readable. First note the heaviest dark regression line that 

Coefficientsa

50.906 .112 .000452.514(Constant)

8.159 .201 .504 .00040.643ses_mean average SES
for school

3.744 .185 .251 .000

50.685

7.766

3.381

51.126

8.553

4.10720.217SES_C SES centered by
school

Model
1

B Std. Error

Unstandardized
95.0% Confidence Interval for BCoefficients

Beta Lower Bound Upper Boundt Sig.

Standardized
Coefficients

a. Dependent Variable: bytests 8th-Grade Achievement

Figure 10.12 Multiple regression of school-level and within-school SES on individual student 
achievement.
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starts about 32 on the Y axis. This is the regression line from a standard regression in which 
Achievement was regressed on SES for all students, without regard for their school. Think 
of it as the average regression line, in some sense of the word. The other regression lines 
show the regression of Achievement on SES separately for each school. Note how variable 
they are; some are indeed quite steep (showing a strong relation between SES and Achieve-
ment), whereas some are quite flat, suggesting that SES is much less important for achieve-
ment in those schools. And note the considerable differences in the intercepts (the level of 
Achievement for those with a value of zero on the original SES variable). It looks like some 
schools are simply better in producing Achievement than others. Note in particular the dot-
ted regression line that starts at around −2.9 on the X axis. This is a very steep line, repre-
senting a school in which SES and Achievement are very much related. This is probably the 
school you would like your children to attend if you were a high SES parent! Note next the 
dashed regression line that starts at about 54 on the Y axis. This school seems to show a 
much weaker relation between SES and Achievement; if I were a low-SES parent, this would 
be a school I’d want my child to attend. Note finally that the intercepts for these two schools 

Figure 10.13 The overall regression of 8th-grade achievement test scores on SES is shown by the heavy 
solid line. The other regression lines are for the regressions of Achievement on SES for individual 
schools.
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are almost equal (in this graph the intercept—where the lines cross zero on the X axis—is 
near the middle of the X axis). Either would work well, it appears, for mid-level-SES family. 
If nothing else, the graph certainly does seem to suggest the importance of examining the 
within-school regressions!

Different Slopes for Different Folks? 

Think for a minute: where have we looked at graphs like this before? And when did we talk 
about the importance of centering before? Reward yourself with a treat if you answered 
“when we talked about interactions.” Yes, what this graph shows is an interaction between 
school and SES in their effect on achievement. This is the final advantage of MLM, the abil-
ity to model interactions between level 2 (in this example, school-level variables) and level 1 
(individual-level) variables in their effect on outcomes. And while we can do so in ordinary 
multiple regression, we can do so better with MLM.

First, take look at how this might be accomplished via regression. Figure 10.14 shows some 
of the results from a regression of student-level achievement (BYTests) on school-level SES 
(SES_Mean), individual-level SES (SES_C, centered around each student’s school SES), and 
a cross-product of the two (sesM_by_sesC). Recall that we previously used cross-products 
to test for interactions, also known as moderation. The results suggest that both school-level 
SES and individual-level SES are important in predicting student achievement. The non-
significant finding for the sesM_by_sesC cross-product term suggests that these two vari-
ables do not interact, however, in their effect on achievement. Said differently, school-level 
SES does not moderate the effect of individual-level SES on achievement. Or, despite the 
apparent variability in regression lines, it appears that the best summarization of these data 
would be a series of regression lines all with the same slope. 

As an aside, the graph in Figure 10.13 does not correspond exactly to the regression. Fig-
ure 10.15 shows a graph that gets closer to the regression. On the X axis is SES centered by 
school, and the lines represent school-level SES (as opposed to schools, as was done in Fig-
ure 10.13). The results are quite similar, however, including the overall regression line as well 
as the dashed and dotted lines we focused on previously. 

Multilevel Analysis of the Effect of SES on Achievement

Next, let’s turn to a MLM analysis of this same problem. MLM used to require specialized 
software, and those, including HLM (Hierarchical Linear Modeling, Raudenbush, Bryk, & 
Congdon, 2004), and MLwiN (Rasbash, Steele, Browne, & Goldstein, 2009) are still excellent, 
regularly updated options. Unsurprisingly, the major statistical programs have also added  

Coefficientsa

50.905 .113 .000452.480(Constant)

8.160 .201 .504 .00040.642ses_mean average SES
for school

sesM_by_sesC

3.725

-.230

.188

.382

.250

-.008

.000

.547

50.685

7.766

3.357

-.979

51.126

8.554

4.093

.519

19.825

-.602

SES_C SES centered by
school

Model
1

B Std. Error

Unstandardized
95.0% Confidence Interval for BCoefficients

Beta Lower Bound Upper Boundt Sig.

Standardized
Coefficients

a. Dependent Variable: bytests 8th-Grade Achievement

Figure 10.14 Multiple regression of individual-level Achievement on school-level and individual-
level SES, plus a cross-product (interaction) of the two.
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MLM features, so that it is possible to conduct MLM via SAS’s PROC MIXED and SPSS’s 
Mixed procedures. The Mplus computer program (Muthén & Muthén, 1998–2012) for 
structural equation modeling (discussed in Part 2 of this book) will also conduct MLM, 
including latent variable MLM. The output in this chapter is from the SPSS Mixed proce-
dure. Given that this is not a tutorial on how to conduct MLM but rather a bridge to under-
standing MLM from a regression orientation, I will not present the output in the depth that 
we have used up to this point.

Figures 10.16 through 10.19 show the results of series of MLM analysis designed to deter-
mine the prediction of school-level and individual-level SES on student achievement. The 
figures also shows the syntax used to conduct the analyses. MLM analyses are commonly 
conducted in this sort of sequential fashion, gradually adding level 2 (in this case, school-
level) and level 1 (individual-level) predictors and their interactions. In addition, although 
not shown in these figures, because MLM analysis, like logistic regression, uses maximum-
likelihood estimation, “fit indices” are also shown, including the −2 log likelihood, as we 
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Figure 10.15 Another scatterplot showing both the overall regression of Achievement on SES (heavy 
solid regression line) and separate regressions by school. This graph uses the SES_c variable. Thus the 
zero-point on the X axis here represents the mean SES of each school. For the graph in Figure 10.13, 
the zero represented the mean of SES for all students in the NELS dataset.
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encountered in logistic regression. As with logistic regression, the −2 log likelihood can be 
used to determine whether each new step leads to a better fit, or explanation, of the data 
by the model. With nested models the −2 log likelihood values can be subtracted from one 
another, with the difference equivalent to a χ2 distribution that can be tested for statistical 
significance. For now, think of these fit indices as being somewhat similar to the R2 and ΔR2 
from multiple regression in that they help inform us whether it is worth adding predictors to 
the model. The fit of models will be discussed extensively in Part 2 of this text, where we will 
use Δχ2 to compare models. More detail concerning maximum likelihood estimation will 
also be presented.

Unconditional Model 

Figure 10.16 shows the results of a model without any predictors but one in which we specify 
that we are interested in the school- versus individual-level achievement. This model is often 
referred to as the unconditional model because the dependent variable is not “conditioned 
on” (regressed on) any predictors. The reason for this step in the analysis is that it gives us an 
idea of the degree to which the variance in the dependent variable (BYTests) can be considered 
between-school variance versus within-school (individual-level) variance. This information 
is contained in the table labeled “Estimates of Covariance Parameters,” and which includes 
both covariances (in subsequent models) and variances (think of a variance/covariance 
matrix). The estimate for the “intercept [subject=school_id]” is the between school variance, 
and the residual is the remaining, or within-school, variance. This information can be used 
to calculate the interclass correlation, a ratio of the between group to total variance using the 

formula ρ= +
V

V V
b

w b
, or, in this case ρ= +

Intercept
Residual Intercept  = 24 780

56 302 24 780 306.
. . .+ = . This finding 

means that approximately 31% of the variance in the achievement test scores is between 
school variance, and that is a lot! A MLM analysis is likely appropriate. 

Estimates of Fixed Effectsa

50.786663 .459064 126.203 .000110.631 49.878203 51.695123

Parameter

Intercept

Estimate Std. Error

95% Confidence Interval

df Lower Bound Upper Boundt Sig.

a. Dependent Variable: bytests 8th-Grade Achievement

Estimates of Covariance Parametersa

56.301644
24.779558

1.211400
3.330467

46.477
7.440

.000

.000
53.976711
19.040960

58.726719
32.247665

Parameter

Residual
Intercept [subject=
sch_id]

Variance

Estimate Std. Error

95% Confidence Interval

Wald Z Lower Bound Upper BoundSig.

a. Dependent Variable: bytests 8th-Grade Achievement

MIXED bytests
/print=solution testcov
/method=ml
/fixed=intercept
/random=intercept | subject(sch_id).

Figure 10.16 Unconditional model (a model with no predictors of BYTests). This model shows the 
variance in Achievement within schools and between schools.
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Adding a Level 2 Covariate

Figure 10.17 shows the results of the MLM analysis of school-level achievement regressed 
on average school-level SES. In MLM lingo, this will often be referred to as adding a level 
2 covariate. You can read the table of “Estimates of Fixed Effects” the same way you would 
a table of regression coefficients in MR. Note that the effect of school-level SES was sta-
tistically significant, suggesting that school-level SES is indeed important for the average 
level of school achievement. Although the MLM results do not include standardized coef-
ficients, we can calculate those using the formula we learned for regression: β= ×b SD

SD
x

y
 

(Hox, 2010). Although not shown in the Figure, the standard deviations of SES_mean and 
BYTests were .560 and 9.058, respectively, and β= =×8 194 560

9 058
507. .

.
. , which we would likely 

classify as a large effect (assuming we used the same criteria that we have used in MR). Let 
us briefly look at the remainder of the output shown, again with an idea of giving you a 
way of thinking about MLM interpretation using a MR orientation. The intercept shown 
in the first table in the figure is the expected mean achievement for a school of average 
SES (given that SES is centered at zero because it is an average of z-scores). The variances 
shown in the second table (Estimates of Covariance Parameters) can be compared to the 
values from the previous analysis with no predictors in the model (Figure 10.16). The 
residual, the unexplained variance in individual-level achievement, shows the unexplained 
within-school variance in achievement. This is relatively unchanged from the previous 
model, because there are no level 1 (individual-level) predictors in the model. In contrast, 
the school-level residual variance (“Intercept [subject=sch_id]”) is reduced from a value 
of 24.780 in the previous model to a value of 4.922 in the current model. School-level 
SES is quite effective in explaining school-level variation in achievement (and recall that 
school-level variation in achievement accounts for approximately 31% of all the variation 
in achievement). 

Estimates of Fixed Effectsa

50.862076
8.193784

.228727

.419393
124.976
121.308

.000

.000
222.370

19.537
50.409396

7.363507
51.314756

9.024061

Parameter

Intercept
ses_mean

Estimate Std. Error

95% Confidence Interval

df Lower Bound Upper Boundt Sig.

a. Dependent Variable: bytests 8th-Grade Achievement

Estimates of Covariance Parametersa

56.305034
4.921789

1.211488
.827835

46.476
5.945

.000

.000
53.979932

3.539587
58.730286

6.843739

Parameter

Residual
Intercept [subject=
sch_id]

Variance

Estimate Std. Error

95% Confidence Interval

Wald Z Lower Bound Upper BoundSig.

a. Dependent Variable: bytests 8th-Grade Achievement

MIXED bytests with ses_mean
/print=solution testcov
/method=ml
/fixed=intercept ses_mean
/random=intercept | subject(sch_id).

Figure 10.17 MLM analysis, regression of school-level achievement on school-level SES.
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Adding a Level 1 Covariate

The next step (Figure 10.18) shows the addition to the analysis of a level 1 covariate, that is, 
the prediction of BYTests by within-school SES (SES_C), in addition to average school SES 
(SES_mean). Recall that SES_C is the SES variable centered within school. It is, in essence, 
an individual (within-school) SES measure, with variation in SES across schools removed. 
As shown in the Estimates of Fixed Effects table, within-school SES (individual-level SES 
with school-level SES removed) was a statistically significant predictor of individual-level 
achievement (b = 3.684, p < .001); achievement increases as students’ SES within a school 
increases. The standardized coefficient for SES_C is calculated as .247: large but not as large 
as the school-level SES predictor (.510). The Intercept in the top table labeled Fixed Effects 
(50.852) represents the expected achievement for students whose SES levels are at their 
school-level mean and who attends a school with average SES.

In the table of Covariance Parameters (lower portion of Figure 10.18), the residual shows 
the residual variance in BYTests, after accounting for within-and between-level school SES. 
Compared to the same value in the model shown in Figure 10.16, this value (50.86) repre-
sents about a 10% reduction (50.86/56.30 = .89) in unexplained variance with the addition 
of these two predictors. If this were multiple regression we would be discussing this decrease 
in unexplained variance as an increase in R2. This table also includes a set of two variances 
[UN(1,1) and UN(2,2)] and one covariance [UN(2,1)]. The first variance [UN(1,1)] repre-
sents the variance in intercepts, or the variation in achievement means across schools. Think 
of this as the variation in the height of the regression lines in Figure 10.15. Note that there 
is considerable (and statistically significant) variation in these intercepts. This finding is not 
surprising because schools differ in their SES and children within each school also differ in 
their SES. The second variance [UN(2,2)] represents the slope variance, that is, the variation 

Estimates of Fixed Effectsa

50.851845
8.255060
3.683728

.228039

.411689

.207082

124.915
123.005
118.132

.000

.000

.000

222.996
20.052
17.789

50.400524
7.440147
3.273653

51.303166
9.069973
4.093803

Parameter

Intercept
ses_mean
SES_C

Estimate Std. Error

95% Confidence Interval

df Lower Bound Upper Boundt Sig.

a. Dependent Variable: bytests 8th-Grade Achievement

Estimates of Covariance Parametersa

50.545718
5.046839
1.148305
1.326492

1.101435
.823190
.540769
.637371

45.891
6.131
2.123
2.081

.000

.000

.034

.037

48.432394
3.665894
.088418
.517258

52.751255
6.947986
2.208193
3.401744

Parameter

Residual
Intercept + SES_C
[subject= sch_id]

UN (1,1)
UN (2,1)
UN (2,2)

Estimate Std. Error

95% Confidence Interval

Wald Z Lower Bound Upper BoundSig.

a. Dependent Variable: bytests 8th-Grade Achievement

MIXED bytests with SES_mean SES_C
/CRITERIA=MXITER(500)
/print=solution testcov descriptive
/method=ml
/fixed=intercept SES_mean SES_C
/random=intercept SES_C | subject(sch_id) covtype(UN).

Figure 10.18 Adding a Level 1 covariate: prediction of Achievement based on school-level SES and 
within-school SES.
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in the slopes in Figure 10.15, or the variation in the influence of student SES on achieve-
ment across schools. The results show that there is indeed a statistically significant degree of 
variation for the slopes across schools (given we are using p < .05). Compare this to the coef-
ficient associated with SES_C in the table of Fixed Effects above in this same Figure 10.18. 
You can think of the fixed effect (3.684) as the average slope across schools when predicting 
Achievement from within-school SES. The value of the (residual) variance [UN(2,2)] associ-
ated with the SES slopes shows that there is significant variation in the slopes across schools, 
however. In the next step we will add a cross-level interaction (the interaction of school-level 
and individual-level SES in their effect on Achievement) term to see if that helps explain the 
variation in slopes across schools. The covariance [UN(2,1)] is not generally interpreted. 

Adding the Cross-Product to Test the Interaction  
of School-Level and Individual-Level SES

The final analysis in this MLM is shown in Figure 10.19, and is, perhaps the most interest-
ing and most closely approximates our multiple regression analysis of these same data. The 
intercept from the table of Fixed Effects (50.819) represents the expected Achievement for 
students with average levels of within-school SES and average school-level SES (average for 
the entire sample and average for their school). The coefficients for SES_mean and SES_C 
represent the influence (or prediction) of school-level SES on school-level Achievement and 
the influence of within-school SES on individual Achievement. Both are statistically signifi-
cant. Table 10.1 shows the standardized coefficients associated with these effects. Both effects 
are large, although school-level SES appears a better predictor of Achievement than within-
school SES. Finally, the coefficient for SES_Mean*SES, representing the interaction of school-
level and within-school SES, was not statistically significant. As much as it appears from the 
scatterplots that the slopes of the regressions across schools are different, this difference in 

Estimates of Fixed Effectsa

50.851333
8.212505
3.668397
-.236231

.228036

.418401

.208706

.414750

124.934
121.619
124.952
161.947

.000

.000

.000

.570

222.997
19.628
17.577

-.570

50.400020
7.384211
3.255341

-1.055246

51.302647
9.040798
4.081453
.582784

Parameter

Intercept
ses_mean
SES_C
ses_mean * SES_C

Estimate Std. Error

95% Confidence Interval

df Lower Bound Upper Boundt Sig.

a. Dependent Variable: bytests 8th-Grade Achievement

Estimates of Covariance Parametersa

50.543328
5.046617
1.138532
1.318330

1.101331
.823085
.539929
.635190

45.893
6.131
2.109
2.075

.000

.000

.035

.038

48.430203
3.665831
.080290
.512746

52.748654
6.947494
2.196774
3.389575

Parameter

Residual
Intercept + SES_C
[subject= sch_id]

UN (1,1)
UN (2,1)
UN (2,2)

Estimate Std. Error

95% Confidence Interval

Wald Z Lower Bound Upper BoundSig.

a. Dependent Variable: bytests 8th-Grade Achievement

MIXED bytests with SES_mean SES_C
/CRITERIA=MXITER(500)
/print=solution testcov
/method=ml
/fixed=intercept SES_mean SES_C SES_mean*SES_C
/random=intercept SES_C | subject(sch_id) covtype(UN).

Figure 10.19 Adding the cross-product of school-level and within-school SES.
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slopes is not statistically significantly different, once school-level and within-school SES are 
controlled. Another way of thinking about this coefficient is that school-level SES explained 
a non-significant portion of the differences in slopes shown, for example, in Figure 10.15. 

How does this figure compare to coefficients obtained using multiple regression (Figure 
10.14)? The coefficients, both unstandardized and standardized, are not that different, and 
in this example at least, they tell the same story: school-level and within-school SES are both 
important predictors of Achievement. The big difference in the two results is in the standard 
errors for the coefficients, and these are different primarily because of the sample sizes used 
in their calculation. This shows up most clearly in the df for each analysis. For the multiple 
regression, the df are the same for each coefficient, as is the value for the dfresidual: 4442, cal-
culated without respect to our knowledge that these are students nested within schools. In 
the MLM, the df are calculated separately for each coefficient, and note that they are much 
smaller than those for the regression. They are also calculated taking into account the nested 
nature of the data, and are more accurate than those in the MR. As noted in the introduction 
to this topic, the nested nature of the data affects the standard errors (and thus statistical 
significance) of effects much more so than the estimates themselves.

The Covariance Parameters table in Figure 10.19 shows that the individual-level resid-
ual variance in Achievement [Residual] is still statistically significant, as is the remaining 
variance in school intercepts [UN(1,1)] and the remaining variance in the school slopes 
[UN(2,2)]. Note also that there is relatively little reduction in the unexplained variation in 
slopes [UN(2,2)] from that shown Figure 10.18. Together, these findings suggest that there 
are indeed different slopes associated with the prediction of Achievement for each school 
but that school-level SES does not help explain these differences. Presumably there are other 
variables, not explored, that could help explain this remaining variance (if you would like to 
pursue this example, try using the variable in the data representing public versus private and 
Catholic schools as a level 2 predictor, along with a SES_C by Private school interaction term).

Here I have tried, via a simple example, to explain MLM using MR concepts and the jar-
gon we have developed to talk about MR. To help with the transition, I have also introduced 
some of jargon used by MLM methodologists. MLM discussions will also often refer to fixed 
versus random effects. Most discussions of MLM refer to the regression equation results (i.e., 
the intercepts and coefficients from the tables labeled here as “Estimates of Fixed Effects”) 
as exactly that: fixed effects. In contrast, the information contained in the tables labeled in 
SPSS as “Estimates of Covariance Parameters” are often referred to as random effects. Think 
of it this way: the regression results apply to all of the schools in our samples; the value of 
3.668 for the SES_C coefficient in Figure 10.19, for example, is the effect of within-school 
SES averaged across all schools. In contrast, the information in the “Covariance Parameters” 
are things—intercepts and slopes—that vary across schools; they are not fixed, they are ran-
dom. As we moved from Figure 10.16 through 10.19, we gradually added new predictors to 
the equation to attempt to explain some of this random variation. Because this short section 
is presented as a transition to understanding MLM given that you understand MR, I have 

Table 10.1 Standardized Coefficients, Calculated From the Unstandardized 
Coefficients Shown in Figure 10.19 and the SDs of the Variables

Parameter b SE p b

SES_Mean 8.213 .418 <.001 .507
SES_C 3.668 .210 <.001 .246
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avoided many important aspects of MLM, such as alternative methods of centering and dif-
ferent types of maximum likelihood estimation, among others.

MLM: Next Steps

I chose this simple example to illustrate MLM for several reasons. First, it is interesting 
and the underlying reasoning for looking at school-level effects is readily understand-
able. Second, it is similar to examples used in one of the primary texts for MLM analy-
sis (Raudenbush & Bryk, 2002), although that example uses data from an earlier data set 
(High School and Beyond, HSB) and also includes a second level-2 covariate, public versus 
Catholic school. The HSB example from Raudenbush and Bryk is further used to illustrate 
how to conduct MLM using SAS (Singer, 1998) and SPSS using syntax (Peugh & Enders, 
2005). As of this writing, Craig Ender’s website has a document that shows how to conduct 
this same analysis using SPSS menus (https://webapp4.asu.edu/directory/person/839490). 
All of these references are excellent resources for those wishing to learn more about MLM. 
Two other excellent resources are the book by Joop Hox mentioned earlier in this chapter 
(Hox, 2010), and a short text that focuses specifically on the use of SPSS to conduct MLM 
(Heck, Thomas, & Tabata, 2010). The website associated with the Hox text includes videos 
showing how to analyze MLM data using a variety of statistical programs (www.joophox.
net/mlbook2/MLbook.htm).

SUMMARY

This chapter covered two methods that can be considered extensions of multiple regression. 
Logistic regression is useful when the outcome variable of interest is categorical. The example 
used four variables (BYTests, BYSES, Substance use, and Religiosity) to predict a categorical 
pessimism/optimism variable. The example was first analyzed via multiple regression analysis 
and then via logistic regression. A problem with using MR for this analysis was that such analysis 
violated many of the assumptions for the method as outlined in Chapter 9. One way of think-
ing about LR is that it is like MR but with the categorical variable transformed into a metric 
that avoids these violations. For LR, the categorical dependent variable is transformed into the 
natural logarithm of the odds of being in one group (optimistic) versus the other (pessimistic).

We saw that the actual output for the logistic regression was similar to that of regression 
but with some differences. Because LR uses a different method of estimation—maximum 
likelihood as opposed to least squares—different statistics are used to assess the statistical 
significance of the regression equation. For LR, the −2 log likelihood, converted to a Δχ2, 
was tested for statistical significance and used instead of a R2 to assess whether prediction of 
Optimism from the four independent variables was statistically significant, often referred to 
as the “fit” of the model to the data. The table of coefficients produced by the logistic regres-
sion showed whether each variable added statistically significantly to the prediction. The b 
coefficients from that table were for log odds units, however, and there is no LR analog to 
the bs from multiple regression. A column showing the exponentiated value of b was our 
primary focus for interpretation for each independent variable, and these were easily inter-
pretable as odds ratios, that is, the ratio of being optimistic as opposed to pessimistic. So, 
for example, the value for BYSES of 1.644 could be interpreted as meaning that for each one 
point increase in SES, the odds of being optimistic are increased by a value of 1.644, or that 
for each one unit increase in SES the odds of being optimistic (as opposed to pessimistic) 
increased by 64.4%. The LR output also included a table showing how well the LR equation 
served in predicting group membership, first with no variables in the equation and then with 
all predictors. It is possible, of course, to conduct LR in a sequential fashion, adding variables 
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one at a time or in blocks, and assessing changes in model fit with each block, as well as 
assessing the improvement in prediction with each block. I ended this short presentation 
with a reiteration of my previous admonition against routinely turning continuous variables 
into categorical ones for analysis (as I did to illustrate LR). In other words, I suggested “do 
as I say, not as I do!”

Multilevel modeling (MLM), also known hierarchical linear modeling (HLM), is useful 
for taking into account the often hierarchical or clustered nature of the data we analyze. 
Examples of such clustered data include students within schools (as with the NELS data), 
individuals within couple groups, or experimental intervention participants within different 
sites. The MLM example was illustrated using a subset of data from the larger NELS data to 
examine the effect of school-level versus individual-level SES on academic achievement. In 
ordinary multiple regression, we would assume that there was one regression equation that 
applied to everyone in our sample, regardless of school or other possible clustering variables. 
As a result, our estimates of the intercept and slope for SES in the regression equation would 
be fixed at the same value, known as a fixed effect. Our examination of scatterplots and 
regression equations across schools suggested otherwise, however. It suggested that there 
may be differences in the regression equations of Achievement on SES by school; that is, that 
the intercepts and slopes of the school-level regressions may differ from school to school. 
Another way of saying this is that our scatterplots suggested the possibility that a model with 
random (as opposed to fixed) effects might be more appropriate. This is one major advan-
tage of MLM over ordinary MR: the ability to allow for separate regression equations across 
the groups on which our participants are clustered. Another advantage of MLM is the abil-
ity to separate the effects at different levels, in this case the effect of school-level SES versus 
individual-level SES on achievement.

Our scatterplots and separate regression lines by school were reminiscent of the follow-ups 
we conducted in previous chapters for the findings for statistically significant interactions in 
MR. This, then, is one way making the transition in understanding to MLM from MR: we are 
testing for possible interactions between variables at different levels in their effects on out-
comes. In this case, we were testing for possible differences in slopes and intercepts for different 
schools: the possible interaction of school-level and individual-level SES on Achievement.

Once this conceptual understanding of what is done in MLM is grasped, it is easier to 
understand the somewhat different (different from MR) output that results from MLM. 
Generally with MLM, one adds predictors gradually and, as with LR, examines the fit of the 
model (using −2 log likelihood, among others) as a result of these new predictors. In our 
example, we started by predicting achievement from school-level SES, then added within-
school SES (individual-level SES corrected for school level SES), and then added a cross-
product of these two predictors. At each step in the analysis, the coefficients associated with 
the variables in the equation showed up in the table of Fixed Effects, which is similar in look 
and interpretation to a table of coefficients in MR. As with LR, there are no standardized 
coefficients presented in MLM, but these can be calculated. Estimates of the residual varia-
tion in slopes and intercepts (by school, in this case) showed up in the table of Covariance 
Parameters. This latter table is useful in determining if there are other variables that could 
help explain the differences in slopes and intercepts beyond those already in the equation. 
Taken together, our example suggested that there were indeed differences in intercepts and 
slopes across schools, and that school-level SES helped explain the differences in intercepts 
but not in slopes.

For both topics presented in this chapter, my intent was not to provide a detailed expla-
nation of the methodology. Instead, the hope was to provide a way of understanding these 
related methods using something that you already understand, multiple regression. Refer-
ences were provided for both methods for further study.
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In this chapter, we continue our journey beyond multiple regression and begin discussing 
structural equation modeling (SEM). This chapter focuses on the technique of path analy-
sis, which can be considered the simplest form of SEM. Because we used path-type models 
as a way of displaying and understanding regression models throughout Part 1 of this text, 
this transition to a formal presentation of path modeling should be a natural extension of 
our work so far. As you will see, many path analyses can be solved using multiple regression 
analysis, although we will soon begin using specialized structural equation modeling soft-
ware for both simple and complex path models.

In the final chapter of Part 1, we reviewed one of the difficulties with multiple regression 
analysis, the fact that we can come to different conclusions about the effects of one vari-
able on another depending on which type of multiple regression we use and which statistics 
from the analysis we interpret. (If you are beginning the book here, I recommend that you 
read Chapter 9 as a review of multiple regression.) As you will see, this difficulty is obviated 
in path analysis and structural equation modeling, where it is natural to focus not only on 
direct effects but also on indirect and total effects (total effects are the sum of direct and 
indirect effects). We will use both simultaneous and sequential MR in path analysis, an exer-
cise that will clarify the relation between these two methods. In the process, we will focus 
more explicitly on explanation, and on the issues of cause and effect. I think that path analy-
sis makes many aspects of multiple regression more understandable, and it is often a better 
choice for the explanatory analysis of nonexperimental data.

11
Path Modeling

Structural Equation Modeling  
With Measured Variables
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Before we begin, let’s deal with a little jargon. The general type of analysis discussed in this 
part of the book, SEM, is also referred to as analysis of covariance structures, or causal analy-
sis. Path analysis, one form of SEM, is the subject of this and the next two chapters; it may 
also be considered as a component of SEM. Confirmatory factor analysis (CFA) is another 
component. More complex forms of SEM are often referred to as latent variable SEM, or 
simply as SEM. SEM is also sometimes referred to as LISREL analysis, which is actually the 
first computer program for conducting latent variable SEM and stands for linear structural 
relations. We will discuss these and other topics in subsequent chapters, including this and 
other SEM computer programs. Now we introduce path analysis.

INTRODUCTION TO PATH ANALYSIS

A Simple Model

Let’s return to the example we used in Chapter 9, in which we were interested in the effects 
of Family Background, Ability, Academic Motivation, and Academic Coursework on high 
school Achievement. For the sake of simplicity, we will focus on only three of the variables: 
Ability, Motivation, and Achievement. Suppose, then, we are interested in the effects of Moti-
vation on Achievement. Although presumably motivation is manipulable, it is not a variable 
that you can assign at random, and thus you will probably need to conduct a nonexperimen-
tal analysis, as was done in Chapter 9. Intellectual Ability is included in the model to control 
for this variable. More specifically, we believe that Ability may affect both Motivation and 
Achievement, and we know that it is important to control for such common causes if we are 
to estimate accurately the effects of one variable on another.

Figure 11.1 illustrates the data we collected. Motivation is a composite of items reflecting 
academic motivation (student ratings of their interest in school, willingness to work hard in 
school, and plans for post-high school education); Achievement is a composite of achieve-
ment tests in reading, math, science, civics, and writing. We also collected data on Intellec-
tual Ability (a composite of two verbal ability tests), with the notion that ability should be 
controlled because it may affect both Motivation and Achievement. The curved lines in the 
figure represent correlations among the three variables. The figure essentially presents the 
correlation matrix in graphic form. The correlation between Ability and Motivation, for 
example, is .205. (The data are from the correlation matrix used in Chapter 9.)

Unfortunately, the data as presented in Figure 11.1 do little to inform our question of inter-
est: understanding the effects of Motivation on Achievement. The correlations are statistically 

Figure 11.1 Correlations among Ability, Motivation, and Achievement. An “agnostic” model.
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significant, but we have no information on the effects of one on the other. We can think of 
this figure, then, as an “agnostic” model. In Figure 11.2 we take the first bold step in solving 
this dilemma by drawing arrows or paths from presumed causes to presumed effects. The 
purpose of this research was to determine the effect of Motivation on Achievement, so it cer-
tainly makes sense to draw a path from Motivation to Achievement. Ability was included in 
the research because we worried that it might affect both Motivation and Achievement; there-
fore, paths drawn from Ability to Motivation and Achievement are the embodiment of this 
supposition. Our drawing of the paths asserting presumed cause and effect was not so bold 
after all; it simply made obvious the reasoning underlying our study and the data we collected.

What exactly do these paths mean? They assert what is called a weak causal ordering, 
meaning that the path from Motivation to Achievement does not assert that Motivation 
directly causes Achievement, but rather that if Motivation and Achievement are causally 
related the cause is in the direction of the arrow, rather than the reverse. Note that we did 
not use the correlations or the data to make these inferences about causality; instead, our 
informal causal thinking guided the data we collected and used! Figure 11.2 formalizes our 
notions of how these three variables are related and thus represents our model of the nature 
of the relations among these three variables.

The data shown in Figure 11.1 may be used to solve for the paths in the model shown in 
Figure 11.2. The easiest way to do so is to use the tracing rule: “the correlation between two 
variables X and Z is equal to the sum of the product of all paths from each possible tracing 
between X and Z [in Figure 11.2]. These tracings include all possible routes between X and 
Z, with the exceptions that (1) the same variable is not entered twice per tracing and (2) a 
variable is not both entered and exited through an arrowhead” (Keith, 1999, p. 82; cf. Kenny, 
1979, p. 30). Thus, the correlation between Ability and Achievement (r13) would be equal to 
path b plus the product of path a times path c: r13 = b + ac. Two other formulas (for the other 
two correlations) may be derived: r23 = c + ab and r12 = a. You may wonder why the third 
equation does not include the tracing bc. The reason is that this tracing would violate the 
second exception (the same variable was entered and exited through an arrowhead).

We now have three equations and three unknowns (the three paths). If you recall high 
school algebra, you can use it to solve for the three unknowns:1

a r

b
r r r

r

c
r r r

r
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=
−
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13 12 13
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2

1
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3
Achievement

b

a
c

Figure 11.2 Presumed causal structure of the three variables. Note that the assumptions about causal 
direction were not based on the correlations.
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(If you don’t recall high school algebra, note 1 shows how these three equations were gen-
erated.) Substituting the actual correlations in these equations, we calculate
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The solved paths are included in the model in Figure 11.3. The model may be interpreted 
as demonstrating the effects of Ability and Motivation on Achievement, along with the effects 
of Ability on Motivation (given several assumptions). The paths shown are the standard-
ized path coefficients and are interpreted in standard deviation units. Thus, the path from 
Motivation to Achievement of .108 suggests that, given the adequacy of our model, each SD 
increase in Motivation will result in a .108 increase in Achievement.2

If this sounds familiar, it should. This type of interpretation is the same as that for stan-
dardized regression coefficients. A closer inspection of the formulas above will show striking 
similarity to those in Chapter 2 for regression coefficients. In fact, these formulas are the 
formulas for standardized regression coefficients. We don’t need to use algebra to solve for 
the paths; we can use good old multiple regression analysis!

To solve for the paths using multiple regression, regress Achievement on Ability and Moti-
vation. The b’s from this regression are equal to the standardized paths, calculated previ-
ously, from Ability and Motivation to Achievement. The path from Ability to Motivation is 
estimated through the regression of Motivation on Ability. Relevant portions of the output 
are shown in Figure 11.4. The first table of coefficients is from the first regression and esti-
mates the paths to Achievement; the second table of coefficients is from the second regres-
sion and shows the path to Motivation. Compare the results to those shown in Figure 11.3.

We can use and interpret that printout and model in the same fashion as we previously 
did with multiple regression. The model thus suggests that Motivation has a moderate effect 
(using the rules of thumb from Chapter 4) on Achievement, after taking students’ Ability 
into account.3 Ability, in turn, has a moderate effect on Motivation and a very large effect 
on Achievement. We can use the rest of the regression output as we have previously. Just as 
in other forms of MR, the unstandardized regression coefficients—used as estimates of the 
unstandardized paths—may be more appropriate for interpretation, for example, when the 
variables are in a meaningful metric. In the present example, the standardized coefficients 
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Figure 11.3 We used the data from Figure 11.1 to solve for the paths from Figure 11.2. The paths rep-
resent the standardized effect of one variable on another, given the adequacy of the model.
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are probably more interpretable. (You may wonder why the unstandardized and standard-
ized paths from Motivation to Achievement are the same. The reason is because the SDs for 
the two variables are the same.) In addition, we can use the t’s and standard errors from the 
output to determine the statistical significance of the path coefficients, as well as confidence 
intervals around the paths. The 95% confidence interval around the (unstandardized) path 
from Motivation to Achievement was .066 to .151.

The model shown in Figure 11.3 is not entirely complete. Conceptually and statistically, it 
should be clear that the model does not include all influences on Achievement or Motivati-
won. You can no doubt think of many other variables that should affect high school achieve-
ment: family background, coursework, homework, and others. And what about effects on 
Motivation; if Ability only affects Motivation at a level of .205, obviously many influences 
are unaccounted for. The model shown in Figure 11.5 rectifies these deficiencies by includ-
ing “disturbances” in the model, symbolized as d1 and d2. Disturbances represent all other 
influences on the outcome variables other than those shown in the model. Thus, the circled 
variable d2 represents all influences on Achievement other than Ability and Motivation. The 
disturbances are enclosed in circles or ellipses to signify that they are unmeasured variables. 
We obviously don’t measure all variables that affect Achievement and include them in the 
model; the disturbances, then, are unmeasured, rather than measured variables. 

When I say that the disturbances represent all other influences on the outcomes besides 
the variables in the model, this explanation may ring a bell, as well. You might think that the 

Model Summary

.745a .554 620.319 2 997 .000
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Coefficientsa
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Figure 11.4 Using simultaneous multiple regression to solve the paths.
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disturbances should somehow be related to the residuals, which we at one point described as 
what was left over or unexplained by the variables in the model. If you had this sense, then 
reward yourself with a break or a chocolate, because the disturbances are basically the same 
as the residuals from MR. You have probably encountered instances in research and statistics 
where two different names are used to describe the same concept; this is another instance of 
this practice. Although many sources use the term disturbances to describe these other influ-
ences (e.g., Bollen, 1989; Kenny, 1979), others continue to use the term residual, and others 
simply refer to these outside influences as errors. The paths associated with the disturbances 

are calculated as the square root of 1 12 2− −R R( ) from each regression equation. Focus 
again on Figure 11.4. For the first equation, the regression of Achievement on Ability and 

Motivation, R2 was equal to .554, and thus 1 6682− =R . , the value shown for the path from 
d2 to Achievement. Take a moment to calculate the disturbance for Motivation.

Cautions

With all this talk of cause and effect, you may feel a little queasy. After all, aren’t we here 
breaking the one cardinal rule of elementary statistics: Don’t infer causation from correla-
tions? If you are having such misgivings, I first urge you to revisit the short quiz on this same 
topic in Chapter 1. Second, I point out that, no, we did not infer causality from the correla-
tions. Yes, we had the correlations, but recall that they did not lead to or even enter into our 
causal inferences. We made the inference of causality when we drew paths from one variable 
to another, and we drew these paths without reference to the correlations. Neither the mag-
nitude nor the sign (positive or negative) of the correlations entered our consideration of 
cause and effect.

How did we, and how could we, make these inferences of cause and effect? Several lines 
of evidence can be used to make such inferences and thus to draw the paths. First is theory. 
School learning theories generally include both motivation and ability (or some similar con-
struct) as influences on academic achievement and thus justify the paths from Ability and 
Motivation to Achievement (Walberg, 1986). And even when formal theory is not available, 
informal theory can often inform such decisions. Talk to an observant teacher and he or she 
will tell you that if you can increase a child’s level of motivation his or her achievement will 
likely increase.
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Figure 11.5 The full, standardized, solved model, including disturbances of the presumed effects. 
Disturbances represent all other, unmeasured variables that affect a variable other than the variables 
already pointing to it.
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Second, we should attend to time precedence. As far as we know, causality cannot oper-
ate backward in time and so, if we can establish that one variable occurs prior to another 
in time, it makes it easier to draw the path. This is one reason that longitudinal data are so 
valued in research; we can feel more confident about inferring cause and effect when our 
“effect” is measured after our “cause.” Yet even with cross-sectional data it is often possible 
to determine logical time precedence. In the current example, it is well known that ability is 
a relatively stable characteristic, for most people, from about the time children start school. 
Logically, then, Ability, stable from an early age, occurs prior to high school motivation and 
achievement, and thus it makes sense to draw a path from Ability to both Motivation and 
Achievement. For an even more striking example, consider if we had the variable Sex in our 
model. For almost everyone (excepting those who have sex change operations!), Sex is stable 
from conception on. Thus, no matter when Sex is measured, we can feel confident placing it 
prior to variables that logically occur after conception.

Third, you should have a competent understanding of the relevant research. Previous 
research may well highlight the proper causal inference. Even if it doesn’t—even if you find 
that other researchers have had to make these same inferences—previous research may help 
you understand the logic by which others have decided that A affected B rather than B affect-
ing A.

Our fourth and final line of evidence we’ll call logic, although it is probably a combination 
of logic, observation, understanding, and common sense. Go back to the illustration of what 
I termed informal theory. Teachers observe children every day in their classes; they are keen 
observers of the process of learning. If you were to ask a teacher, “Which is more likely, an 
increase in students’ levels of motivation affecting their learning or an increase in their learn-
ing affecting their motivation?” most would pick the former possibility. You can use the same 
sort of process to make such inferences. Imagine the ways in which A could affect B, and then 
imagine the ways in which B could affect A. If you are familiar with the phenomena you are 
considering, if you have observed them carefully, you will often find it easy to imagine the  
cause going in one direction but may require mental gyrations to imagine it going in the 
other. This logical exercise, then, will often suggest that one direction of causation is much 
more plausible than the other.

Again, these lines of evidence are how we make such inferences of cause and effect. Once 
we have made those inferences, the correlations merely provide fuel for our calculations.

More formally, three conditions are necessary before we can make a valid inference of 
causality (see Kenny, 1979, or Kline, 2011, for additional discussion of these conditions; for 
a considerably expanded discussion of the concept of causality, see Pearl, 2009; 2011). First, 
there must be a relation between the variables being considered. If two variables are unre-
lated, then they are also causally unrelated. This condition is generally satisfied by the pres-
ence of a correlation between the variables (although there are exceptions). Second, and as 
already discussed, the presumed cause must have time precedence over the presumed effect. 
Causality does not operate backward in time. Third, the relation between the variables must 
be a true, rather than a spurious, relation. This is the hardest condition to satisfy and gets to 
the heart of what we have been calling the problem of omitted common causes. We will delve 
into this problem more deeply in the next chapter, but for now simply note that this condi-
tion means that all common causes are taken into account. Given that these three conditions 
are satisfied, it is perfectly reasonable to make an inference of cause and effect. What makes 
nonexperimental research so interesting and challenging is that we can often be very confi-
dent that we have satisfied these three conditions but never completely sure. (As it turns out, 
however, we can never be sure in experimental research either.)4

Just to make sure we are all on the same page, let’s be completely clear as to what we mean 
by cause. When we say one variable “causes” another, we do not mean that one variable 
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directly and immediately results in change in another. When we say, for example, that smok-
ing causes lung cancer, we do not mean that every person who smokes will necessarily and 
quickly develop lung cancer. What we mean is that if you smoke you will, as a result of smok-
ing, increase your probability of developing lung cancer. The term cause is thus a probabi-
listic statement.

Jargon and Notation

I’ve been sneaking some of the jargon of SEM into the chapter as we introduce path analy-
sis. Before we move to an expanded example, let’s spend a little time going over such jargon 
so that it will be familiar. I have already noted that the variables representing other influ-
ences from outside the model are often called disturbances in path analysis, although many 
researchers use the term with which you are already familiar, residuals. In addition, I have 
noted that variables that we wish to symbolize but which we have not measured (unmea-
sured variables) are generally enclosed in circles or ovals. In contrast, measured variables, 
variables that we have measured in our data, are generally enclosed in rectangles. Paths or 
arrows represent influences from presumed cause to presumed effect, whereas curved, dou-
ble-headed arrows represent correlations without an inference of causality.

Recursive and Nonrecursive Models

The models shown in Figures 11.2 and 11.3 are called recursive models, meaning that paths, 
and presumed causes, go in one direction only. It is also possible to have feedback loops in 
a model, to specify that two variables affect each other in a reciprocal fashion. Such models 
are termed nonrecursive; an example is shown in Figure 11.6, where Variable 2 is assumed to 
both affect (path c) and be affected by Variable 3 (path d). You cannot solve for the equations 
for nonrecursive models using the tracing rule, although you can generate the correct equa-
tions using the first law (see Note 2). Likewise, nonrecursive models cannot be estimated 
through multiple regression (you can estimate such models with MR, but the results will be 
incorrect). It is possible to estimate nonrecurive models using specialized SEM software or 
through a method called two-stage least squares regression, although such estimation is often 
tedious (and, as we will see momentarily, this model could not be estimated). It is tempting, 
especially for those new to SEM, to solve difficult questions of presumed cause and effect by 
deciding that such effects are reciprocal. Can’t decide whether Motivation affects Achieve-
ment or Achievement affects Motivation? Draw paths in both directions! Generally, how-
ever, this is equivocation rather than decision. Nonrecursive models may require additional 
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Figure 11.6 Nonrecursive model. The model is also underidentified and cannot be solved without 
additional assumptions.
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constraints to avoid underidentification (see below) and, in my experience, often end up 
suggesting that the effect is indeed in the direction we would have guessed had we done 
the difficult work of making such decisions. I am not suggesting that you develop a cavalier 
attitude toward making decisions about the correct direction of causality; it often requires 
tough work and deep thought. Instead, I am arguing that you should not try to avoid this 
work by defaulting to nonrecursive models. Save such models for those instances when you 
have real, substantive questions about causal direction or when effects really appear to go 
in both directions. Some authors (e.g., Kenny, 1979) refer to recursive models as hierarchi-
cal models and nonrecursive models as nonhierarchical, but such usage may be confusing 
because sequential regression is also often termed hierarchical regression.

Identification

The model shown in Figure 11.3 is also a just-identified model. In a simplistic sense, what 
this means is that we had just enough information to estimate the model. Focus again on 
the Figures 11.1 through 11.3. We had three unknowns (the three paths in Figure 11.2), and 
we solved for these three paths using the three correlations from Figure 11.1. We had just 
enough information to solve for the paths. In addition to being a nonrecursive model, the 
model shown in Figure 11.6 is an underidentified model. For this model, we still have three 
correlations, but we now have four paths that we need to estimate. Unless we make some 
additional assumptions (e.g., assuming that paths d and c are equal), we cannot solve for the 
paths in this model.

The model shown in Figure 11.7, in contrast, is overidentified. For this model, we have 
more correlations than paths. The result is that we could, in fact, develop two separate sets of 
equations to solve for paths a and b. Consider the three equations generated from the tracing 
rule: 

r13 = b r12 = a r23 = ab.

Using these equations to solve for a (and substituting for b), for example, we could gen-
erate the equations a = r12 and a = r23/r13. And for b, b = r13 and a = r23/r12 At first blush, 
the possibility of calculating two different estimates of each path might seem a problem. 
But consider for a minute what it would mean if our two estimates of the same path were 
very close to one another versus considerably divergent? Wouldn’t you be more likely to 
believe a model in which you could estimate a path several different ways and always get the  
same result? We won’t explore this topic in any greater depth right now but will return to it 
later. In the meantime, simply recognize that overidentified models are not problematic, but, 
rather, overidentification may help us evaluate the quality of our models.

Figure 11.7 Overidentified model. The paths can be estimated more than one way.
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This discussion has been a necessary simplification of the topic of identification, which 
can be much more complex than has been presented here. For example, it is possible for por-
tions of a model to be overidentified and other portions to be underidentified. The primary 
rule presented for determining identification—comparing the number of correlations to 
the number of unknown paths—is really more of a necessary but insufficient condition for 
identification. Nevertheless, this rule generally works well for the simple path models of the 
type presented in this and the next chapter. For a more detailed discussion of the topic of 
identification with simple or complex models, see Bollen (1989).

Exogenous and Endogenous Variables

In SEM, the presumed causes (e.g., Ability in Figure 11.3) in a model are often referred to 
as exogenous variables. In medicine or biology, exogenous means “having a cause external to 
the body” (Morris, 1969, p. 461). An exogenous variable has causes outside the model or not 
considered by the model. Or, more simply, exogenous variables are ones that have no arrows 
pointing toward them. In contrast, variables that are affected by other variables in the model, 
variables that have arrows pointed toward them, are termed endogenous variables (meaning, 
loosely, from within). In Figure 11.3, Motivation and Achievement are endogenous variables.

Measured and Unmeasured Variables

In the discussion of disturbances, I noted that we generally symbolize unmeasured variables 
in path models by enclosing them in circles or ellipses. Unmeasured variables are variables 
that we wish to include in a path model, but we have no measures of these variables in our 
data. For now, the only unmeasured variables we will deal with are disturbances, but in later 
chapters we will focus on other types of unmeasured variables. Unmeasured variables are 
also known as latent variables or factors.

Variables enclosed in rectangles are measured variables for which we have actual measures 
in our data. These include all sorts of items, scales, and composites. Indeed, all the variables 
we have discussed so far in this book, with the exception of disturbances and residuals, are 
measured variables. Measured variables are also known as manifest or observed variables.

A MORE COMPLEX EXAMPLE

Now that you have a handle on the basics of path analysis, let’s expand our example to a more 
realistic level. We will now focus on the effects of Family Background characteristics, Ability, 
Motivation, and Academic Coursework on High School Achievement. These are, then, the 
same data and the same example from Chapter 9, but in path analytic form. The comparison 
of the results of the path analysis to the results for the different forms of multiple regression 
will be instructive and help illustrate important concepts about both methods.

Steps for Conducting Path Analysis

Here are the steps involved in conducting a path analysis (Kenny, 1979; Kline, 2011).

Develop the Model

The first step in path analysis is to develop and draw the model based on formal and informal 
theory, previous research, time precedence, and logic. Figure 11.8 shows my model, or the-
ory, of how these variables are related to one another. School learning theories consistently 
include variables reflecting Ability (e.g., ability, aptitude, previous achievement), Motivation 
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(internal motivation, perseverance), and Coursework (quantity of instruction, time spent 
learning, opportunity to learn) as influences on learning and achievement (e.g., Walberg, 
1986). School learning theory, therefore, supports our drawing paths from Ability, Motiva-
tion, and Coursework to Achievement. You can probably easily justify these paths in other 
ways, as well.

Family Background is basically a background variable. By this I mean that it is included in 
the model because it seems needed to make the model valid (i.e., I think it may be a common 
cause of some of the variables and Achievement), but I’m not really interested in its effects on 
any of the other variables in the model. The fact that I consider this a background variable is 
not, however, justification for placing it first in the model. The likelihood that Family Back-
ground occurs before the other variables in time can be used to draw such paths, however, 
and you may find that the notion of background variable often is related to time. In the pres-
ent case, Family Background is a parent variable, and most of its components—parents’ level 
of education, occupational status—were likely in place, for many families, before children 
were even born. Even in cases in which parents were still in school or not yet employed when 
their children were born, time precedence would seem to flow from Family Background to 
the other variables in the model. Think about it: is it more likely that parents’ SES will affect 
their child’s ability (or motivation, etc.) or that a child’s ability will affect his or her parents’ 
SES? I suppose the second option is possible (children’s ability affecting parents’ SES), but 
it requires some mental gyrations to come up with plausible scenarios. Such reasoning may 
be used to draw paths from Family Background to each of the other variables in the model.

Time precedence, along with previous research, may also be used to justify the paths from 
Ability to each subsequent variable in the model. Ability, intelligence, or academic aptitude 
is relatively stable from an early elementary level on, and there is ample evidence that Ability 
affects many aspects of life and schooling, from Motivation to Achievement (Jensen, 1980, 
1998).

This leaves the path from Motivation to Coursework. Imagine two high school students 
of equal ability and background. It is not hard to imagine one student taking a relatively 
easy mix of courses in high school and the other taking courses like pre-calculus, physics, 

Figure 11.8 Model of the effects of Family Background, Ability, Motivation, and Academic Course-
work on Achievement.
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and advanced English. Academic Motivation—the desire to work hard and persevere in 
school, the expectation that schooling and what is learned in school will be important for 
the future—is likely a key difference between these students. Many of you can probably think 
of such examples in your own family, siblings or children who were highly motivated taking 
tough courses versus others just getting by. In essence, it makes a great deal of sense to posit 
that students with high levels of academic motivation will, other things being equal, take a 
tougher mix of academic courses than will students with lower levels of motivation. (Keith 
and Cool, 1992, further bolstered this time precedence by measuring Motivation 2 years 
prior to Coursework.)

This reasoning justifies the directions of the paths in the model, but what about the vari-
ables in the model? In particular, are there variables that should be included in the model that 
have not been included? That is, have I neglected an important common cause? Are there 
variables in the model that are unnecessary? I will postpone in-depth discussion of these 
issues until the next chapter. For now, I simply note that theory and previous research can 
help answer these questions, as well.

Check the Identification Status of the Model

Make sure that the model is either just-identified or overidentified so that the model may 
be estimated. The model shown in Figure 11.8 is just-identified. The correlation matrix 
includes 10 correlations, and there are 10 paths to be solved for. The model appears to be 
just-identified and can probably be estimated.

Measure the Variables in the Model

We next need to decide how to measure the variables in the model. This may mean selecting 
tests and items designed to measure the constructs of interest and then administering these 
measures to a sample of participants. When using existing data, such as the NELS data, this 
may mean seeing if items that measure the variables of interest have already been adminis-
tered to a sample of participants. In the present case, the variables in the model were already 
measured in the High School and Beyond data set; the authors selected items and composites 
to measure these constructs.

Estimate the Model

Our next step is to estimate the model. We are currently discussing how to estimate such 
models using multiple regression analysis; in subsequent chapters we will learn how to esti-
mate such models using SEM software. To estimate the paths to Achievement using MR, we 
regress Achievement on Family Background, Ability, Motivation, and Academic Coursework. 
Partial results of this regression are shown in Figure 11.9. The b’s and b’s from the regression 
are the estimates of the unstandardized and standardized path coefficients, respectively, from 
each variable to Achievement. The R2 is used to calculate the path from the disturbance (d4) 

to Achievement: 1 1 629 6092− = − =R . . .
The paths to Academic Coursework are estimated by regressing Courses on Family Back-

ground, Ability, and Motivation, and the path from d3 to Coursework is estimated from the 
R2 from that regression (R2 = .348). Results from this regression are shown in Figure 11.10. 
The paths to Motivation are estimated from the regression of Motivation on Family Back-
ground and Ability, and the path from Family Background to Ability is estimated by the 
regression of Ability on Family Background. The relevant regression results are shown in 
Figure 11.11.
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Figure 11.12 shows the path model with all the standardized path coefficients added. You 
should compare the model to the regression results to help you understand where each path 
came from, including those from the disturbances.

Interpretation: Direct Effects

So, what do these findings tell us? If you focus first on the paths to Achievement, you will see 
these findings and their interpretation are the same as those from the simultaneous multiple 
regression of Achievement on these four variables in Chapter 9. Ability and Academic Course-
work each had a strong effect on Achievement (.551 and .310, respectively), whereas Family 
Background had a small, but statistically significant effect (.069). As in the simultaneous 

Figure 11.9 Using simultaneous regression to estimate the paths to Achievement.
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Figure 11.10 Estimating the paths to Academic Coursework through simultaneous multiple 
regression.
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Figure 11.11 Estimating the paths to Motivation and Ability.
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Figure 11.12 Solved model explaining Achievement, showing all standardized paths and disturbances.
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regression of these same data in Chapter 9, the effect of Motivation on Achievement was 
small and not statistically significant.

The path model includes much more than this single simultaneous regression, however, 
because it also includes information about the effects on Coursework, Motivation, and Abil-
ity. Which of these variables affect the courses students take in high school? As hypothesized 
(and given the adequacy of the model), students’ level of Academic Motivation had a strong 
effect on Coursework (.267); students who are more motivated take a more academic mix of 
courses than do students with lower levels of motivation. The largest effect on Coursework 
was from Ability (.374); more able students also take more academic courses in high school. 
Finally, Family Background also had a moderate effect on Coursework (.165), meaning that 
students from more advantaged backgrounds are more likely to take academic courses in 
high school than are students from less advantaged backgrounds.

The solved model also speaks to the extent to which Family Background and Ability affect 
Motivation; higher levels of both Ability and Family Background lead to higher levels of 
Academic Motivation. In addition, students from more advantaged backgrounds also show 
higher levels of Ability.

As an aside, notice the paths from the disturbances to each of the endogenous variables. As 
a general rule, these get smaller the farther to the left in the model. Don’t read too much into 
this phenomenon. Achievement has four paths pointing toward it, four variables explain-
ing it in the model, whereas Ability has only one explanatory variable (Family Background) 
pointing toward it. Other things being equal, it is natural that our model should explain 
more of the variance of Achievement than Ability, and thus the paths from the disturbances 
from Achievement should be smaller.

Indirect and Total Effects

The model (Figure 11.12) includes other information, beyond what we would get in the 
usual MR, as well (e.g., Chapter 9). The results of this analysis suggest that Motivation affects 
Coursework, which in turn affects Achievement. This makes sense: more motivated stu-
dents take more academic courses in high school, and this coursework, in turn, improves 
their achievement. Thus, although Motivation has little direct effect on Achievement, it does 
have an indirect effect, through Coursework. In fact, we can easily calculate this indirect 
effect: multiply the path from Motivation to Coursework times the path from Coursework 
to Achievement (.267 × .310 = .083), which is the indirect effect of Motivation on Achieve-
ment through Coursework. We can also add the direct and indirect effects to determine the 
total effect of Motivation on Achievement (.083 + .013 = .096).5 

It is slightly more complex to calculate the indirect and total effects of Ability or Family 
Background, because the farther back you go in the model, the more possible indirect effects 
there are. To calculate the indirect effect of Ability on Achievement, for example, you would 
need to calculate the indirect effect through Coursework (.374 × .310 = .116), Motivation 
(.152 × .013 = .002), and both Motivation and Coursework (.152 × .267 × .310 = .013). 
These indirect effects are then summed to calculate the total indirect effect, .131, and added 
to the direct effect (.551) to calculate the total effect, .682. Table 11.1 shows the standardized 
direct, indirect, and total effects for each variable on Achievement. Calculate the indirect and 
total effects of Family Background on Achievement to see if your results match mine. Note 
also that there are no indirect effects for Coursework on Achievement. This is, of course, 
because our model includes no intervening variables between Coursework and Achieve-
ment. If it did, there would be indirect effects for Coursework as well.
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Using Sequential Regression to Estimate Total and Indirect Effects

Recall that in Part 1 of this book we focused on differences in findings from simultaneous 
(or forced entry) and sequential (hierarchical) regression. I noted at the time that the reason 
for this difference is that simultaneous regression focuses on direct effects, whereas sequen-
tial regression focuses on total effects. We have seen in this chapter that the b’s and b’s from 
simultaneous regression may be used as estimates of the direct effects in path analysis. Fig-
ure 11.13 shows some of the output for the sequential regression of Achievement on the vari-
ables in the school learning model, reproduced from Chapter 9. The figure shows the table of 
coefficients, with the variables entered into the equation based on their order of appearance 
in the model; that is, the first (exogenous) variable (Family Background) was entered first, 
followed by Ability, and so on. Focus on the standardized coefficients, b’s, as each variable 
is added to the model; these coefficients are in italic boldface in the figure. Compare these 
coefficients to the total effects shown in Table 11.1 and you will see that they are the same, 
within errors of rounding. Thus, sequential regression may be used to estimate the total 
effects of each variable on the outcome for a path model. To do so, regress the endogenous 
variable of interest on each presumed cause in the order of their appearance in the model. 
The b for the variable entered at each step is the estimate of the variable’s total standardized 
effect on the endogenous variable. The b for the variable entered at each step is the estimate 
of the variable’s total unstandardized effect. If you are interested in the statistical significance 
of the total effects, however, you need to correct the degrees of freedom, using the value with 
all variables in the model. That is, look up the statistical significance of the t’s using 995 df 
(total N—k—1), rather than the df from each equation. Using this method, we can calculate 
the indirect effects via simple subtraction: we subtract the direct effect from the total effect 
to estimate the total indirect effects of each variable on the outcome. Try this subtractive 
method to calculate the indirect effects in Table 11.1. (To calculate the standard errors, confi-
dence intervals, and statistical significance of indirect effects you will need to do a little hand 
calculation [Baron & Kenny, 1986]. See the discussion of mediation in Chapter 8. See also 
Kris Preacher’s Web page on mediation mentioned in that chapter: www.quantspy.org/sobel. 
Alternatively, you can estimate the model with a SEM program, which will calculate standard 
errors of direct, indirect, and total effects.)

Note we could also calculate the total effects of each variable on each of the other endog-
enous variables in the model (in addition to their effects on Achievement). To estimate the 
total effects of each variable on Coursework, for example, we sequentially regress Coursework 
on Family Background, followed by Ability, and followed by Motivation. The coefficient for 
the variable entered at each step equals its total effect on Coursework. The coefficients for the 
final step in the multiple regression equal the direct effects for each variable on Coursework. 
We can calculate the indirect effects by subtracting the direct from the total effect for each 
variable.

Table 11.1 Standardized Direct, Indirect, and Total Effects of School Learning Vari-
ables on High School Achievement

Variable Direct Effect Indirect Effect Total Effect

Academic Coursework .310 — .310
Motivation .013 .083 .096
Ability .551 .131 .682
Family Background .069 .348 .417
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Even with only five variables in the path model, it soon becomes tedious to solve for 
indirect and total effects directly, that is, by multiplying and summing paths. There are 
several possible shortcuts for doing such calculations. The one we have illustrated here—
using sequential regression to estimate total effects and then calculating indirect effects by 
subtraction—is one of the easiest and has the advantage of illuminating the previously puz-
zling relation between sequential and simultaneous regression. The reason simultaneous and 
sequential regression tell different stories is because they focus on different questions; simul-
taneous regression focuses on direct effects, whereas sequential regression focuses on total 
effects. I hope the method also illustrates the importance of proper order of entry in sequen-
tial regression. If you wish to interpret sequential regression results in a causal fashion, you 
must enter the variables in their proper causal order.

It should be clear that this method of estimating total and indirect effects does work, but 
it may not be clear why it works. Recall that for the next to last variable in the causal chain 
(Coursework) the direct effects were equal to the total effects. The reason, of course, is there 
are no intervening or mediating variables between Coursework and Achievement and thus 
no possible indirect effect. The total and direct effects for Coursework on Achievement are 
the same. All the effect of one variable on another, then, is a direct effect when there are no 
intervening variables. It then stands to reason that one way of calculating total effects is to 
remove intervening variables.

In essence, what we have done with our sequential regression is to temporarily remove the 
intervening variables. Focus on Figures 11.14 through 11.16. The first step in the sequential 
regression, in which Achievement was regressed on Family Background, estimates the model 
shown in Figure 11.14. In this model, all intervening variables between Family Background 
and Achievement are removed. The total effect of Family Background remains the same 
whether there are no intervening variables or whether there are three, or even 30, interven-
ing variables; the total effects are always the same. Therefore, when we estimated this model, 
with the intervening variables removed, the direct effects and total effects are the same. The 
regression coefficient from this regression (.417) can then be used as an estimate of the total 
effect for the full model with all intervening variables. Figure 11.15 removes the intervening 
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Figure 11.13 Using sequential multiple regression to estimate the total effects of each variable on 
Achievement. The indirect effects are then calculated through subtraction (total−direct).
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Figure 11.14 “Model” used to estimate the total effect of Family Background on Achievement.

Figure 11.15 Estimating the total effect of Ability on Achievement. The total effect is estimated by the 
b (or b) for the variable added at this stage of the sequential regression.
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Figure 11.16 Estimating the total effect of Motivation on Achievement.

variables between Ability and Achievement. The second step in the sequential regression, 
in which Achievement is regressed on Family Background and Ability, operationalizes the 
model in Figure 11.15, and because there are no intervening variables between Ability and 
Achievement, the regression coefficient for Ability estimates the total effect of Ability on 
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Achievement. Finally, the model shown in Figure 11.16, the third step in the sequential 
regression, provides the estimate of the total effect of Motivation on Achievement.

Interpretation

Let’s take a few minutes to interpret these findings and, at the same time, further under-
stand the relation between simultaneous and sequential regression. Focus on Motivation in 
Figure 11.12. The path model and Table 11.1 suggest that Motivation’s effects on Achieve-
ment are primarily indirect, not direct. Motivation influences Achievement by influencing 
the courses students take in high school. Highly motivated students take more academically 
oriented courses, and these courses, in turn, improve their Achievement. In contrast, Abil-
ity’s effects on Achievement are primarily direct. A portion of the effect of Ability is indirect, 
through Motivation and Coursework—more able students are more highly motivated and 
take more academic coursework, on average, than less able students—but the majority of 
the effect is direct: more able students also have higher academic Achievement. Again, the 
simultaneous regressions focused on direct effects and the sequential regressions focused on 
total effects.

I hope this discussion has illustrated some of the heuristic beauty of path models. They 
allow us to focus on both direct and indirect effects. Indirect effects, also known as medi-
ating effects, are often vital for understanding how an influence comes about. How does 
Motivation affect Achievement? One important way is by influencing the courses students 
choose to take in high school. More motivated students take more academic coursework, and 
this coursework raises achievement. We generally miss understanding these indirect effects 
when we analyze our data with ordinary MR without path models. When you conduct path 
analysis, make sure to calculate and interpret all three types of effects. When you find a 
direct effect and wonder how it comes about, try incorporating several plausible mediating 
variables in a path model to see if you can understand how these effects happen. Suppose 
you find, for example, that physical abuse affects children’s later social status. You may won-
der whether these children’s social behaviors (e.g., aggression) mediate, and thus partially 
explain, this effect. That is, are abused children more likely to be aggressive, with the aggres-
sion leading to a reduction in their subsequent social status (Salzinger, Feldman, Ng-Mak, 
Mojica, & Stockhammer, 2001)?

Path analysis has other advantages over multiple regression. A figure often makes it more 
obvious than does a table of regression coefficients exactly what are the presumed causes and 
the presumed effects. I think that the obviousness of the figural, causal assumptions in path 
analysis makes it more likely that the researchers will consider causal assumptions, as well as 
the basis for making these assumptions (theory and previous research). If nothing else, the 
drawing of the path model is at least an informal theory of cause and effect. As already dis-
cussed, path analysis makes use of the different stories told by simultaneous and sequential 
regression. For these reasons, I believe that path analysis (and SEM) is often the best method 
of analysis for nonexperimental research.

SUMMARY

We have covered a lot of material in this chapter, and I hope the chapter has both covered 
new ground and made clear some loose ends from our adventures in MR. This chapter for-
mally introduced path analysis, which is the simplest form of structural equation modeling, 
or SEM.

We introduced the chapter with a simple model involving Ability, Motivation, and 
Achievement. Our initial, agnostic model simply showed the correlations among these three 
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variables, a less than satisfying solution since it did not inform our research question of 
interest, which was understanding the influence of Motivation on Achievement. Thinking 
through our research interest and using a combination of theory, logic, and previous research, 
we were able to make some general causal statements: (1) if Motivation and Achievement are 
causally related, Motivation affects Achievement, rather than the reverse, and (2) Ability may 
affect both Motivation and Achievement. These statements, a weak causal ordering, were 
translated into a path model in which Ability was assumed to affect both Motivation and 
Achievement and Motivation was assumed to affect Achievement. The correlations, notably, 
were not used to draw the paths. We now had three unknowns (three paths) and three pieces 
of data (the correlations), and through the use of algebra we were able to generate equations 
for and solve for the paths.

Although we can solve for the paths using algebra, for simple recursive models the paths 
are equal to the standardized or unstandardized coefficients from a series of simultaneous 
regressions. For the three-variable model, we regressed Achievement on Ability and Fam-
ily Motivation, with the b’s providing estimates of the standardized paths from Ability and 
Motivation (or the b’s estimating the unstandardized paths). A second regression of Motiva-
tion on Ability provided the estimate of the path from Ability to Motivation. The influences 
of the disturbances (or residuals) were estimated by 1 2−R  from each regression equation. 
Disturbances represent all other influences on a variable besides the variables in the model, 
and were symbolized by variables enclosed in circles or ovals.

What evidence was used to make the inferences of causality? It was not the correlations. 
Instead, we focused on formal and informal theory, time precedence, an understanding 
of the phenomenon being studied, and logic. At a more formal level, three conditions are 
required to make a valid inference of cause and effects: there must be a functional relation 
between the variables, the cause must precede the effect in time (either actually or logically), 
and the relation must be nonspurious.

We dealt with some jargon you are likely to encounter in path analysis. Measured vari-
ables, those measured in your research, are symbolized by rectangles. Unmeasured, or latent 
variables, are symbolized by circles or ovals. Disturbances represent unmeasured variables 
not considered in the model; disturbances may also be referred to as residuals or errors. 
Recursive models have arrows flowing in only one direction, whereas nonrecursive models 
have feedback loops, or arrows pointing in two directions. Just-identified models are those 
for which we have just enough information to solve for the paths, and overidentified models 
are those for which we have more information than we need and can thus estimate some of 
the paths in more than one way. Underidentified models are those for which we have more 
paths than we have information to estimate the paths; they are therefore not solvable without 
the addition of extra constraints. Exogenous variables are presumed causes, variables with 
no paths pointing towards them. Endogenous variables are presumed effects; they have paths 
pointing to them in the model. Most of this jargon is summarized in Figure 11.17.

We conducted a path analysis using the data from Chapter 9, where the data were used 
to highlight the differences in findings from simultaneous and sequential regression. We 
developed a model of the effects of Family Background, Ability, Motivation, and Course-
work on Achievement based on theory, time precedence, previous research, and logic. Paths 
and disturbances were estimated via a series of simultaneous multiple regressions. Given the 
accuracy of the model, the results suggested that Ability and Coursework had strong effects 
on Achievement, Family Background had a small effect, and Motivation had no appreciable 
effect. Further inspection of the model showed that Motivation had a strong effect on the 
Coursework students take in high school, so Motivation should have an indirect effect on 
Achievement through Coursework. We were able to calculate these indirect effects by multi-
plying together the two paths. We added this indirect effect to the direct effect to estimate the 
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total effect of Motivation on Achievement. When we focused on the total effect, Motivation 
did indeed have an influence on Achievement and one that makes sense: more motivated 
students, it appears, take more advanced coursework, and this coursework, in turn, improves 
their achievement.

An easier way to estimate total effects is through sequential regression. To do so, we 
regressed Achievement on Family Background and then added Ability, then Motivation, and 
then Coursework. The b associated with each variable, when entered, represents its total 
standardized effect. Thus, when Motivation was added to the model, its b was .096, its total 
effect. This procedure works because the total effects are the same whether or not there are 
intervening variables between the variable of interest and the outcome. If we remove the 
intervening variables, the total effects are equal to the direct effects. We then estimated the 
indirect effects by subtracting the direct from the total effects.

In addition to illustrating the basics of path analysis, this chapter tied together a major 
loose end of Part 1, the apparent inconsistency between simultaneous and sequential regres-
sion results. I argued that path analysis is particularly useful because it allows us to focus on 
both direct and indirect effects and that indirect effects are useful in explaining how an effect 
works. Intervening or mediating variables can thus be added to models to help understand 
how an effect comes about. Path models are also useful because they make explicit what is 

Figure 11.17 Quick summary of some of the jargon of path analysis.
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too often left vague: the researcher’s theory of how variables are causally related. In my opin-
ion, path analysis is the best use of MR for explanatory, nonexperimental research.

EXERCISES

1. Table 11.2 shows the means, standard deviations, and correlations among the variables 
used in this chapter’s example. Reanalyze the five-variable path model. (For users of 
SPSS, the file “motivate 5 var path.sps” on the Web site (www.tzkeith.com) shows how 
to analyze such a matrix using this program.) Calculate all paths and disturbances to 
create a table of direct, indirect, and total effects. Make sure your results match mine.

2. Construct a path model using the variables Family Background, 8th-grade GPA, 10th-
grade Self-Esteem, 10th-grade Locus of Control, and 10th-grade Social Studies achieve-
ment test scores. How did you make the decisions on which variable affected which? 
Which of these decisions were the most difficult? What sources could you use to better 
inform your decisions?

3. What is the identification status of your model from Exercise 2: just-identified, overi-
dentified, or underidentified? If your model is underidentified, see if you can make it 
into a just-identified model so that you can estimate it.

4. Select the variables BYSES, BYGrads, F1Cncpt2, F1Locus2, and F1TxHStd from the 
NELS data. Check the variables (e.g., descriptive statistics) to make sure you under-
stand the scales of the variables. Also make sure that any values that should be coded as 
missing values are so coded.

5. Estimate your model using the variables from NELS (Exercise 4). Calculate the direct 
effects and disturbances, and put them into your model. Calculate total effects and 
create a table of direct, indirect, and total effects. Interpret the model; focus on direct, 
indirect, and total effects.

6. Compare your model and interpretation with others in your class. How many class-
mates drew the model in the same way you did? How many drew it differently? What 
difference did these different models make in results and interpretation?

7. Curtis Hansen tested a path model of the influences on accidents among chemical 
industry workers (1989). A simulated version of a portion of the data are on the website 
(www.tzkeith.com) under chapter 11 (e.g., “Hansen accident data.sav”; the file is also 
available in other formats). A guiding question for our analysis might be: what are the 

Table 11.2 Means, Standard Deviations, and Correlations among the School Learning Variables

Family 
Background

Ability Motivation Coursework Achievement

N 1000 1000 1000 1000 1000
Mean 0 100 50 4 50
SD 1 15 10 2 10
Family Background 1
Ability .417 1
Motivation .190 .205 1
Coursework .372 .498 .375 1
Achievement .417 .737 .255 .615 1
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relative effects of abilities, personality characteristics, and job characteristics on work-
ers’ accident rates? Figure 11.18 shows a model designed to answer this question.

  Mechanical Comprehension (Mechanic in the data file) was a measure of work-
ers’ understanding of mechanical reasoning. Social Maladjustment (Maladjust) was a 
50-item scale derived from the MMPI and designed (by Hansen) to assess general social 
maladjustment. These two variables are exogenous variables in the model. The Dis-
tractibility Scale (Distractibility), also derived from the MMPI, was designed to assess 
distractibility, and especially “neurotic-anxious” (Hansen, 1989, p. 83) characteristics 
that should lead to distractibility. The Risk Level of the Job (Risk) was a rating of the 
“responsibility and accident potential” (Hansen, p. 84) of each possible job on a 1 to 
35 scale. The final endogenous outcome variable was Accident Consistency (Accident), 
a measure of the number of accidents for a worker plus the number of years in which 
each worker had an accident.

  Estimate the model shown in the figure using multiple regression analysis. What is 
the identification status of the model? Calculate the direct effects and disturbances and 
put them in your model. Calculate total effects on Accident Consistency and create a 
table of direct, indirect, and total effects. Interpret the results. What were the important 
effects on accident consistency? Were there meaningful indirect effects? If so, interpret 
them. Which variable(s) had the strongest total effect on accident consistency?

Notes

1 Here’s more detail in solving the paths using algebra. The three equations were

 r13 = b + ac, 
 r23 = c + ab, and
 r12 = a. We can rearrange these equations to solve for paths a, b, and c:

Figure 11.18 Path model of the presumed effects of abilities, personality characteristics, and job char-
acteristics on number and consistency of accidents in an industrial setting.
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 b = r13 − ac,
 c = r23 − ab, and
 a = r12.

  We will solve the equation for b by substituting the third and second equations (for a and c, 
respectively) into the first equation:

 

  See if you can use the same approach to solve for c.
2 The other method of developing equations to solve for paths is called the first law of path analysis 

(Kenny, 1979, p. 28). The correlation between Y (a presumed effect) and X (rxy) is equal to the sum 
of the product of each path (p) from all causes of Y times the correlation of those variables with X: 
r p ryx yz xz= ∑ . Using the first law, the correlation between Motivation and Achievement is r32 = 
br12 + cr22, which reduces to r32 = br12 + c (description and equation adapted from Kenny, 1979, 
p. 28). The advantage of the first law is that it can be used to generate equations for any type of 
model, whereas the tracing rule works only with simple recursive models.

3 These rules are that standardized coefficients above .05 could be considered small; those above .10, 
moderate; and those above .25, large. These rules apply primarily to manipulable influences on 
school learning.

4 Kline (2011) adds a fourth condition, that the direction of the presumed causation is correctly 
specified (p. 98). This is a little more specific than we want to get right now, and we will deal with 
this problem in the next chapter.

5 Total effects are sometimes referred to as total causal effects. It is also possible to subtract the total 
causal effects from the original correlation to determine the noncausal (or spurious) portion of the 
correlation.
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Path analysis is not magic; it does not prove causality. It does not make a silk purse out of a 
sow’s ear; it cannot turn poor data into valid causal conclusions. Like multiple regression, 
there are assumptions underlying path analysis and the use of multiple regression to estimate 
paths. Like multiple regression, path analysis is open to abuse. This chapter will discuss these 
assumptions and the dangers of path analysis; it will also discuss how to avoid the dangers 
of the method.

ASSUMPTIONS

Because we have so far been using multiple regression to estimate path models, it should not 
be surprising that the basic assumptions of multiple regression also apply to path analysis. As 
discussed in Chapter 9, these include the following:

1. The dependent variable is a linear function of the independent variables. In addition, 
the causal direction in the model must be correct.

2. Each person (or other observation) should be drawn independently from the 
population.

3. The errors are normally distributed and relatively constant for all values of the inde-
pendent variable.

12
Path Analysis

Dangers and Assumptions
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Multiple regression analysis assumes that the errors are uncorrelated with the indepen-
dent variables or, in the jargon of path analysis, the disturbances are uncorrelated with the 
exogenous variables. Therefore, the causal mechanism underlying our path analysis (or mul-
tiple regression) model needs to conform to these same constraints in order for the regres-
sion coefficients to provide accurate estimates of the effects of one variable on another. This 
assumption also implies several additional assumptions; to the extent that the following con-
ditions are violated, the paths (regression coefficients) may be inaccurate and misleading 
estimates of the effects.

1. There is no reverse causation; that is, the model is recursive.
2. The exogenous variables are perfectly measured, that is, they are completely reliable 

and valid measures.
3. “A state of equilibrium has been reached” (Kenny, 1979, p. 51). This assumption means 

that the causal process has had a chance to work.
4. No common cause of the presumed cause and the presumed effect has been neglected; 

the model includes all such common causes (Kenny, 1979).

If these sound a lot like the assumptions from Chapter 9, you are perceptive; they are vir-
tually the same but rewritten in path analytic lingo. These assumptions are also required any 
time we wish to interpret regression coefficients in a causal, or explanatory, fashion.

The first assumption (of the second set) is really twofold. It first means that we have 
paths drawn in the correct direction. We have already discussed how this is done and will 
continue to discuss this critical issue in this and later chapters. This assumption also means, 
as indicated, that the model is recursive, with no feedback loops or variables both causing 
and affecting other variables. There are methods for estimating such models, but ordinary 
multiple regression is not a valid method for nonrecursive models.

The second assumption is one we can only approximate. We all know there is no such 
thing as perfect measurement, especially in the social sciences. When we begin discussing 
latent variable SEM, we will see how serious our violation of this assumption is and what can 
be done about it. For now, I will simply note that if our exogenous variables are reasonably 
reliable and valid little harm is done, meaning our estimates of effects are not overly biased.

The third assumption is that the causal process has had a chance to work. If motivation 
affects achievement, this process presumably takes a certain amount of time, and this time 
must have elapsed. This assumption applies to all causal research. Consider an experiment in 
which children are given some treatment and subsequently measured on a dependent vari-
able. If you make these measurements too soon, not allowing the treatment to work, you will 
miss spotting any real effects your treatment may have. The amount of time needed depends 
on the process being studied.

The final assumption is the most crucial, and it is one we have returned to over and over 
in this book. We will now explore it in more depth, because the danger of omitted common 
causes is the biggest threat to the causal conclusions we reach from path analysis, in particu-
lar, and nonexperimental research in general. Again, I remind you that these assumptions 
apply to any explanatory use of MR.

THE DANGER OF COMMON CAUSES

Suppose I were to go into my local elementary schools and ask every student to read the 
Gettysburg Address, and I scored each student on the number of words he or she read cor-
rectly within 2 minutes. Suppose that I also measured each child’s shoe size. If we correlate 
these two variables (reading skill and shoe size), we likely will find a substantial correlation 
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between them. This correlation is illustrated in the top of Figure 12.1 by the curved line 
between the two variables. It is foolish, however, to conclude that shoe size affects reading 
skill (as is done in the middle portion of the figure), and it is equally foolish to conclude that 
reading skill affects shoe size. The reason is that there is a third variable—age or growth—
that affects both shoe size and reading skill, as symbolized by the bottom portion of Fig-
ure 12.1. Older students, on average, are larger (and thus have larger shoes) and read better 
than do younger students. The bottom of the figure illustrates the true causal relation among 
these variables; shoe size and reading skill are correlated only because the two are affected 
by age. The correlation between shoe size and reading skill is the essence of what we call a 
spurious correlation. The term spurious correlation means that two variables are not related 
by one variable affecting the other but are the result of a third variable affecting both (cf. 
Simon, 1954).

This example also illustrates the essence of the problem we have been referring to as that 
of a neglected common cause. If we set up a path analysis of the reading–shoe size data 
in which we assumed shoe size affected reading skill (as in the middle of Figure 12.1), the 
results would not tell us we were foolish, but instead would suggest that shoe size had a sub-
stantial impact on reading skill. The reason, again, is that we neglected to control for age, the 
common cause in our analysis. If we controlled for age, we would see the apparent effect of 
shoe size on reading skill diminish to zero. The model is crucial; for the estimates to be accu-
rate, we must control for important common causes of our presumed cause and presumed 
effect. This problem is referred to as omitted common causes, spurious correlation, or the 
third-variable problem.

Shoe
Size

Reading
Skill

Shoe
Size

Reading
Skill

Age

Reading
Skill

Shoe
Size

Figure 12.1 Spurious correlation in path form. Although shoe size and reading skill are correlated, 
shoe size does not cause reading skill, nor does reading skill cause shoe size. There is a third variable, 
age or growth, that affects both reading skill and shoe size. This common cause of shoe size and read-
ing skill is why the two variables are correlated.
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A Research Example

A more realistic example will further illustrate the problem. There is ample evidence that 
involvement by parents in education improves students’ learning (Christenson, Rounds, & 
Gorney, 1992), but estimates of the effects of parent involvement on learning vary widely 
across studies. Figure 12.2 shows a plausible model of the effects of Parent Involvement on 
10th-grade GPA. For this model, Parent Involvement was defined as a combination of parents’ 
educational aspirations for their children and communication between parents and their 
children about school. Background variables—potential common causes of Parent Involve-
ment and 10th-Grade GPA—include students’ Ethnic origin, their Family Background char-
acteristics, and their previous school performance (Previous Achievement). Let’s concentrate 
on this final variable. Previous Achievement should certainly affect students’ current aca-
demic performance, since it forms a basis for all future learning. But should students’ previ-
ous academic performance also affect the degree to which parents are involved in students’ 
schooling? I think it should; it should affect both parent involvement, in general, and more 
specifically parents’ aspirations for their children’s future educational attainment (one of the 
components of parent involvement). We could turn to previous research and determine that 
students’ previous performance or aptitude indeed affects their parents’ level of involvement. 
In other words, Previous Achievement, or aptitude, appears to be a likely common cause of 
both Parent Involvement and current GPA.

I estimated the model using the NELS data; the results are shown in Figure 12.3. Parent 
Involvement appears to have a moderate effect on student GPA (β = .160). The results show 
that our supposition about Previous Achievement was also correct: Given the adequacy of 
the model, the results suggest that Previous Achievement had a large effect on both GPA 
(.417) and Parent Involvement (.345). Previous Achievement thus appears to be an impor-
tant common cause of Parent Involvement and current Grades.

What would happen if we were not attuned to the importance of students’ previous 
school performance? What if we had not built Previous Achievement into our model? What 
if we had neglected this important common cause? The results of such neglect are shown in 
Figure 12.4. In this model, Previous Achievement was not included; this important common 
cause was not controlled. The result is that the model substantially overestimates the effect 
of Parent Involvement on GPA: the effect in this model is .293, as opposed to .160 in the 

Figure 12.2 Model of the effects of Parent Involvement on high school GPA. The model is just-
identified and recursive.
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previous model. With the omission of this important common cause, we overestimated the 
effect of Parent Involvement on GPA.

This example illustrates the importance of including known common causes in path mod-
els. The example also illustrates the most frequent consequence of neglecting these common 
causes: When a common cause is omitted from a model, we often end up overestimating 
the magnitude of the effect of one variable on another.1 Finally, the example illustrates one 
possible reason for the variability in findings concerning the effect of parent involvement on 
school performance: not all research has controlled for previous achievement (and there are 
other possible explanations, as well). Research on parent involvement is not the only area in 
which researchers have likely overestimated effects by ignoring important common causes. 
For example, Page and Keith (1981) showed how Coleman and colleagues (Coleman, Hoffer, & 
Kilgore, 1981) had overestimated the effects of private schooling on student achievement 
by ignoring student ability as a potential common cause of achievement and private school 
attendance. In fact, if you are suspicious of the findings of nonexperimental research, you 
should probably first look for neglected common causes as the reason for misleading findings.

Figure 12.3 Parent Involvement model estimated through multiple regression analysis. Note the effect 
of Previous Achievement on Parent Involvement and GPA.
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Figure 12.4 Previous Achievement, a common cause of Parent Involvement and GPA, is not included 
in this model. Notice the inflation of the path from Involvement to GPA.
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Note that there was nothing in the analysis summarized in Figure 12.4 that told us we had 
missed an important common cause. The analysis did not explode; no alarm bells went off. 
How then do you know that you have included all relevant common causes in your research? 
A good understanding of relevant theory and previous research are the keys to avoiding this 
deadly sin, just as they are for drawing the model in the first place.

Common Causes, Not All Causes

Unfortunately, many neophytes to path analysis (and nonexperimental research in general), 
terrified of neglecting a common cause of a presumed cause and a presumed effect, include 
every variable they can think of that might be such a common cause. Others misunderstand 
the admonition about common causes and try to include all possible causes of either the 
presumed cause or the presumed effect. Both approaches lead to overloaded and less power-
ful analyses (by reducing degrees of freedom in the regression), ones that are more likely to 
confuse than inform (and see Darlington, 1990, chap. 8, for additional dangers with includ-
ing too many variables).

I demonstrated in note 2 in Chapter 4 that the inclusion of a noncommon cause in a 
regression does not change the estimates of regression coefficients. Here we will demonstrate 
this truism again using the current example. Focus again on Figure 12.3. For this model, we 
do not need to include all causes of Parent Involvement in the model, nor do we need to 
include all causes of GPA in the model. This is fortunate, because there must be hundreds of 
variables that affect GPA alone! All we need to include in the model are common causes of 
Parent Involvement and GPA. Note the effect of Ethnicity on Parent Involvement and GPA. 
Ethnicity affects Parent Involvement; other things being equal, minority students report 
greater involvement than do majority students (majority students are coded 1 and minority 
students coded 0). But once the other variables in the model are controlled, Ethnicity had no 
meaningful effect on GPA (β = –.035). Despite its inclusion in the model, it appears that Eth-
nicity is not a common cause of Parent Involvement and GPA. If my argument is correct, if 
variables need not be included in a model unless they are common causes, then the exclusion 
of Ethnicity from the model should have little effect on our estimate of the magnitude of 
influence of Parent Involvement on GPA. As shown in Figure 12.5, the exclusion of Ethnicity 

Figure 12.5 In this model, Ethnicity was excluded. But Ethnicity was not a meaningful common 
cause; it affected only Parent Involvement, not GPA, in Figure 12.3. Thus, its exclusion in this model 
has little effect on the estimate of the effect of Parent Involvement on GPA.
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had only a minor effect on this estimate, which changed from .160 to .165. We could exclude 
Ethnicity from this model without seriously affecting the estimate of the influence of Parent 
Involvement on GPA. To reiterate, models must include common causes of the presumed 
cause and the presumed effect if they are to be valid, but they need not include all causes.2

True Experiments and Common Causes

The elimination of the danger of omitted common causes is the reason that true experiments 
allow such a powerful inference of cause and effect. As a general rule, experimental research, 
in which participants are assigned at random to experimental versus control groups, has a 
higher degree of internal validity than does nonexperimental research, meaning that it is 
generally less dangerous to make an inference of cause and effect with a true experiment. 
Figure 12.6 helps illustrate the reason for this power. Suppose you conduct an experiment in 
which you assign, at random, children with behavior disorders to two types of treatments: 
group therapy or behavior modification, with some measure of behavior improvement as 
the dependent variable. Figure 12.6 illustrates this experiment in path analytic form, with 
the path from the dummy variable Group Therapy versus Behavior Modification to Behavior 
providing the estimate of the relative effectiveness of the two treatments. But a multitude of 
variables affect children’s behavior, from parents to friends to teachers, and many more. Why 
don’t we have to consider these variables when we conduct our analysis of the experiment? 
The reason we don’t have to consider these Other Influences on Behavior is because they are 
not common causes of assignment to treatment groups and Behavior. Although these Other 
Influences affect Behavior, they did not affect assignment to the Therapy versus Behavior 
Modification groups because assignment to the treatment groups was random, based on 
the flip of a coin. This, then, is why true experiments are so powerful. True experiments 
still require an inference of cause and effect, but we can make that inference so powerfully 
because the act of random assignment effectively excludes all possible common causes of the 
presumed cause and the presumed effect. Random assignment assures that no other vari-
ables affect the presumed cause.

Intervening (Mediating) Variables

Given the admonition that models must include all common causes of the presumed cause 
and presumed effect, you may wonder how this applies to intervening or mediating variables. 

Other Influences
on Behavior

Group Therapy vs.
Behavior Modification

Behavior

Figure 12.6 A true experiment in path form. Due to random assignment to groups (Group Therapy 
versus Behavior Modification), the variables that affect Behavior (the effect) do not affect the cause 
(treatment group). Random assignment rules out common causes, which is why we don’t need to 
control for the multitude of other influences on Behavior in our analysis.
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Do you also need to include all variables that mediate the effect of one variable on another? 
The answer is no; mediating variables are interesting because they help explain how an effect 
comes about, but they are not necessary for the model to be valid; in short, they are gravy. 
It is good that mediating variables are not required to make the model valid, because you 
could always include another layer of mediating variables. In the present example, you might 
wonder if Homework and TV viewing time mediate the effects of Parent Involvement on 
GPA (cf. Keith et al., 1993). That is, do parents influence their adolescents’ learning, in part, 
by influencing them to complete more homework and watch less TV? Suppose you found 
that these variables indeed mediated the influence of Parent Involvement on GPA; you might 
then wonder if the effects of Homework were mediated by time on task, and so on. Even 
with a seemingly direct relation, say the effect of smoking on lung cancer, we could posit and 
test indirect effects—the effect of smoking on buildup of carcinogens in the lungs, the effect 
of these chemicals on the individual cells, and so on. Again, it is not necessary to include 
indirect effects for models to be valid, but such indirect effects can help you understand how 
effects come about.

In our current example, suppose that our central interest was the effect of Previous 
Achievement on GPA. If we were to conduct an analysis examining the direct effect of Pre-
vious Achievement on GPA without the intervening variable of Parent Involvement, the 
standardized direct (and total effect) would be .472. If you conduct the calculations for the 
indirect and total effects, you will find that the total effect of Previous Achievement on GPA 
for Figure 12.3 is also .472. When mediating or intervening variables are included in the 
model, the total effects do not change (although direct effects do); indirect effects are unnec-
essary for model validity.

I stress again, however, that although unnecessary for valid models, indirect effects are 
often very illuminating. Our current example suggests that Parent Involvement has a pos-
itive effect on GPA. But how does that effect come about? Previous research that tested 
for possible mediation by homework and TV viewing suggests that homework, in fact, 
partially mediates the effect of parent involvement on learning but that TV viewing does 
not (Keith et al., 1993). Parents who are more involved encourage, cajole, or force their 
children to do more homework, and this homework, in turn, raises their achievement. 
Although parents who are involved also influence their adolescents to spend less time 
watching TV, TV viewing appears to have little effect on achievement. Thus, leisure TV 
viewing does not appear to mediate the effect of parent involvement on achievement. As 
you become more expert in a particular area of research, you will likely find yourself ask-
ing questions about indirect or mediating effects. Indeed, even for those conducting experi-
ments, indirect effects may often be of interest. Suppose you find that your experimental 
treatment (e.g., a new versus an established type of consultation) is effective; you may 
next reasonably wonder why. Is it because the new consultation method improved prob-
lem identification, or speeded the time to intervention, or made evaluation more complete? 
Another advantage of mediating variables is that they can help strengthen the causal 
inferences embedded in path models. Logically, if you can explain both which variables 
affect an outcome and the mechanism by which that effect occurs, your causal claims are more 
believable. If we can demonstrate the indirect effect of smoking on lung cancer through the 
buildup of carcinogens in the lungs, it strengthens the case for smoking, as opposed to other 
characteristics of smokers, being a cause of lung cancer (Pearl, 2009). For additional infor-
mation on testing mediating variables, see Baron and Kenny (1986), MacKinnon (2008); 
MacKinnon et al. (2002), or Shrout and Bolger (2002; see also the earlier discussion of 
mediation in Chapter 8.
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OTHER POSSIBLE DANGERS

Paths in the Wrong Direction

Another possible danger in path analysis (and nonexperimental research in general) is that 
you may draw a path in the wrong direction. The implications of this danger depend on 
where this mistake takes place.

Figure 12.7 shows a model in which I erroneously assumed that 10th-grade GPA affected 
8th-grade Parent Involvement. This model is clearly impossible, because it violates one of our 
primary assumptions, that cause cannot happen backward in time. The GPA variable occurs 
in 10th grade (although it is actually a measure of 9th- and 10th-grade GPA), whereas the 
Parent Involvement variable occurs in 8th grade. The model is clearly impossible. There is, 
however, nothing in the multiple regression analyses and nothing in the figure that would 
alert you to the fact that your model is incorrect. Indeed, the model leads you to completely 
erroneous conclusions about the moderate effect of 10th-grade GPA on 8th-grade Parent 
Involvement. Obviously, if the arrow between the two variables of prime interest is drawn in 
the wrong direction, the results will be completely and totally misleading.

In contrast, Figure 12.8 shows a model in which the path between Previous Achievement 
and Parent Involvement is drawn in the wrong direction. Previous Achievement was included 
in the model as a potential common cause of Parent Involvement and GPA, so the model in 
Figure 12.8 no longer controls for this variable as a common cause. Again, there is nothing 
in any of the analyses to suggest that our model is incorrect. In this case, however, with the 
mistaken path being between our primary causal variable and a “control” variable, the find-
ings are not quite as misleading. In fact, the direct effects of each variable in the model are the 
same as they were with the “correct” model shown in Figure 12.3. This makes sense when you 
realize that all paths to GPA are estimated via simultaneous MR, and for the models shown 
in Figures 12.3 and 12.8, both simultaneous regressions regressed GPA on each of the four 
variables in the model. What are incorrect in Figure 12.8 are the total effects. In Figure 12.3, 
Previous Achievement has an indirect effect on GPA through Parent Involvement, and thus 

Figure 12.7 In this model the path between GPA and Parent Involvement is drawn in the wrong direc-
tion. There is nothing in the results to indicate that it is wrong.
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its total effect is .472, compared to a direct effect of .417. In Figure 12.8, Previous Achieve-
ment is the next to last variable in the causal chain, so it has no indirect effect on GPA; its 
direct and total effects are both .417. For Parent Involvement, the reverse is true. In the “cor-
rect” model (Figure 12.3), Involvement had no indirect effect on GPA, so its direct and total 
effects were both equal to .160. In Figure 12.8, Involvement has an indirect effect on GPA 
through Previous Achievement, and thus we overestimate its total effect as .294. You should 
calculate the indirect and total effects yourself to make sure your estimates agree with mine, 
and that you understand the difference between these two models.

If the variables with paths drawn in the wrong direction are two of the less central vari-
ables, there should be little or no effect on the estimates of the primary variables of interest. 
For example, suppose the current example included a path from Ethnicity to Family Back-
ground, rather than a correlation. Suppose further that we erred by drawing that path in the 
wrong direction (from Family Background to Ethnicity). This mistake will have no effect on 
the estimates of the direct, indirect, or total effects of Parent Involvement on GPA.

To summarize, if the effect, the final endogenous variable, is in the wrong position, esti-
mates of all effects will be erroneous. If the primary causal variable has paths drawn in the 
wrong direction (but not the primary effect of interest), estimates of direct effects may still be 
accurate, but indirect and total effects will likely be incorrect. If background variables have 
paths drawn in the wrong direction, this error will likely not affect estimates of effects from 
the main cause variable to the main effect. These comments apply to just-identified mod-
els estimated through multiple regression but are not too far off for other, more complex 
models.

Reciprocal Causal Relations?

Given the problems resulting from paths drawn in the wrong direction, you may be tempted 
to be open-minded and proclaim that the variables are causally related in a reciprocal fash-
ion in which not only does a affect b but b also affects a. Don’t succumb to this temptation at 
this stage of your development! Although it is indeed possible to estimate such nonrecursive 
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Figure 12.8 In this model the path between Parent Involvement and Previous Achievement is drawn 
in the wrong direction. The direct effects for these two variables remain the same, but the indirect and 
total effects differ from the “correct” model in Figure 12.3.
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models, you cannot do so using multiple regression. You can estimate nonrecursive models 
using the SEM programs discussed in subsequent chapters, but such models are neither easy 
nor their results always illuminating. In my experience, reciprocal effects are also less com-
mon than you might think. Reserve the use of nonrecursive models for those cases in which 
you really think reciprocal effects may exist or for which you have legitimate, substantive 
questions about causal direction, not those for which you are simply unsure.

An even worse solution to this dilemma is to try to conduct the regression–path analysis 
both ways to see which “works best.” You have already seen that the results of simple path 
analyses do not tell you when you have a path in the wrong direction. Likewise, the results 
of the analyses do not inform you as to which direction is best. Once again, theory, previous 
research, and logic are the appropriate tools for making such judgments.

I should note that, although the results of just-identified path analyses estimated through 
multiple regression cannot inform decisions about causal direction, properly overidentified 
models estimated through an SEM program may indeed be able to help with such decisions. 
In addition, well thought out nonrecursive models estimated via SEM programs can also be 
very informative about the nature and process of how one variable affects another. We will 
discuss these issues in later chapters.

Unreliability and Invalidity

One assumption underlying the causal interpretation of regression and path coefficients is 
that the exogenous variables are measured with near perfect reliability and validity. With our 
current model, Ethnicity may come close to meeting this assumption, but the variable Fam-
ily Background, a composite of Parent Education, Parent Occupational Status, and Family 
Income, certainly does not. We obviously regularly violate this assumption but will postpone 
until later chapters a discussion of the effects of this violation and possible solutions.

DEALING WITH DANGER

The two primary dangers of path analysis are (1) that you have neglected to include in your 
model an important common cause of the variable you think of as your primary cause and 
the variable you think of as your primary effect and (2) that you have drawn paths in the 
wrong direction; that is, you have confused cause and effect. In the jargon of SEM, these are 
generally termed specification errors, or errors in the model. Of these two, I consider the first 
the most common and insidious. In most cases, it should be pretty obvious when you draw 
a path in the wrong direction. What can you do to avoid these errors?

My first response is to say, “Welcome to the dangerous world of structural equation mod-
eling; join us SEMers on the wild side!” More seriously, I again remind you that these same 
dangers apply to any nonexperimental research, no matter how that research is analyzed. 
One advantage of path analysis and structural equation modeling, in my opinion, is the 
requirement of a theory, generally expressed figurally in a path model, prior to analysis. It is 
much easier to spot missing common causes and causal assumptions in the wrong direction 
when examining a path model than it is when reading the description of, say, a MR analysis. 
Furthermore, these dangers apply to all research, experimental or nonexperimental, in which 
we wish to infer cause and effect. A true experiment allows a powerful inference of cause and 
effect by knocking one leg out from under the danger of common causes, but the farther 
we stray from the true experimental ideal of random assignment to treatment groups, the 
more real this danger becomes. Indeed, many concerns with quasi experimental research 
(e.g., research using matched groups rather than random assignment) boil down to concerns 
over unmeasured common causes. With a true experiment we also actively manipulate the 
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independent variable, the presumed cause, thus making true experiments less likely to con-
fuse causal direction, as well.

We have seen that the analyses themselves do not guard against these errors; they do not 
tell us when our models are wrong or when we have neglected an important common cause. 
How, then, to avoid these specification errors? I come back to the same refrain: understand 
relevant theory; be familiar with the research literature; spend time puzzling over your 
model, especially thinking about potential common causes and potential problems in direc-
tion; and draw your model carefully.

These same concerns and dangers apply when you are a consumer and reader of others’ 
research. As you read others’ nonexperimental research, you should ask yourself whether the 
researchers neglected to include any important common causes of their presumed cause and 
presumed effect. If so, the results of the research will be misleading and likely overestimate 
(or underestimate) the effect of one variable on another. Arm-chair analysis is not sufficient, 
however; it is not valid to simply say, “Well, I think variable Z is a probable common cause of 
variables X and Y,” and expect to have your concerns taken seriously. You should be able to 
demonstrate, through theory, previous research, or analysis, that variable Z is indeed a likely 
and important common cause. Likewise, as you read nonexperimental research, you should 
be attuned to whether any of the causal assumptions are reversed. Again, you should be able 
to demonstrate this incorrect causal direction through theory, research, logic, or your own 
analyses.

We will revisit the danger of measurement error and its effects. For the time being, you 
should simply strive to make sure that all your variables, and especially your exogenous vari-
ables, are as reliable and valid as possible.

REVIEW: STEPS IN A PATH ANALYSIS

Let’s review the steps involved in path analysis now that we’ve carefully considered the 
dangers.

1. First, spend some time thinking about the problem; how might these variables of inter-
est be causally related?

2. Draw a tentative model.
3. Study relevant theory and research. Which variables must be included in the analysis? 

You must include the relevant common causes, but not every variable under the sun. 
The relevant theory and research, along with careful thought, will also help you resolve 
questions of causal direction. “The study of structural equation models can be divided 
into two parts: the easy part and the hard part” (Duncan, 1975, p. 149). This step is the 
hard part of SEM.

4. Revise the model. It should be lean, but include all necessary variables.
5. Collect a sample and measure the variables in the model, or find a data set in which the 

variables are already measured. Use reliable and valid instruments.
6. Check the identification status of the model. Make sure the model is just-identified or 

overidentified.
7. Estimate the model.
8. Fill in the model estimates (paths and disturbances) in your figure. Are the paths more 

or less as expected? That is, are the paths you expected to be positive in fact positive; 
those you expected to be negative, negative, and those that you expected to be close to 
zero in fact close to zero? Meeting such expectations allows more confidence in your 
model.

9. Write up the results and publish them.
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Some writers recommend theory trimming in between my steps 8 and 9. Theory trimming 
means deleting statistically nonsignificant paths and re-estimating the model. I do not rec-
ommend this step, especially when using multiple regression to solve for the paths. We will 
return to this issue in the next chapter.

SUMMARY

The chapter began by reiterating the basic assumptions of multiple regression: linearity, 
independence, and homoscedasticity. For regression coefficients to provide accurate esti-
mates of effects, the disturbances should be uncorrelated with the exogenous variables. This 
assumption will likely be fulfilled if there is no reverse causation, the exogenous variables 
are perfectly measured, equilibrium has been achieved, and there are no omitted common 
causes in the model.

These assumptions led to a discussion of the dangers of path analysis. When a common 
cause (a variable that affects both a presumed cause and a presumed effect) is omitted from 
a model, this omission changes the estimate of the influence of one variable on another. The 
most common result is that we end up overestimating the effect, although underestimation 
is also possible. The dreaded spurious correlation is a result of an omitted common cause, 
and thus omitted common causes are the primary reason for the admonition about inferring 
causation from correlations. I illustrated the effects of omitting a common cause through a 
research example testing the effects of Parent Involvement on 10th-grade GPA. When Previ-
ous Achievement, a common cause of Involvement and GPA, was omitted from the model, 
we overestimated the effect of Parent Involvement on GPA. Omitted common causes may be 
a reason for variability in research findings in nonexperimental research.

The warning to include common causes should not be interpreted as a mandate to include 
all causes of the presumed cause and the presumed effect. Only variables that affect both the 
presumed cause and presumed effect must be included. We illustrated the difference between 
a cause and a common cause by deleting Ethnicity from the model. Ethnicity affected Parent 
Involvement but not GPA, and thus was not a common cause of the two variables. As a result, 
when Ethnicity was removed from the model, the estimate of the effect of Involvement on 
GPA barely changed. The main reason that true experiments allow such a powerful infer-
ence of causality is because, through the act of random assignment, such research rules out 
possible common causes of the independent (cause) and dependent (effect) variable, even 
though experiments do not rule out all causes of the dependent variable.

The warning to include common causes also does not extend to mediating or intervening 
variables. When an intervening variable is included in the model, the total effects remain the 
same, but a portion of the direct effect of X on Y becomes indirect effect through the mediat-
ing variable. Intervening variables help explain how an effect comes about but do not need to 
be included for the model to be valid.

Estimates of effects are also incorrect when paths are drawn in the wrong direction, 
although the extent of the problem depends on the paths involved. If the incorrect path is 
from the effect to the cause, the results will obviously be incorrect and completely mislead-
ing. If the incorrect path involves the primary causal variable and one of the other causal 
variables in the model, this error will affect the total effects but not the direct effects. If the 
incorrectly drawn path involves some of the background variables in the model, this error 
should have little effect on the estimates of primary interest (although it will make attentive 
readers less trusting of your results!). We will revisit and address this danger in subsequent 
chapters.

How, then, can you be sure that your model is correct? Have a good understanding of rel-
evant theory and previous research. Think about the variables in your model, how they are 
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related to one another. If necessary, bolster causal assumptions (e.g., a affects b, rather than 
b affects a) through the use of longitudinal data. Think about possible common causes and 
investigate them in the research literature. If necessary, test common causes in the research 
itself. In fact, most of what you should do to ensure the adequacy of your model boils down 
to the same advice for drawing a model in the first place: theory, previous research, and logic.

I also noted that, as a reader or reviewer of others’ nonexperimental research, it is not 
enough to guess about neglected common causes; you should be able to demonstrate such 
criticisms through theory, previous research, or independent analysis. Finally, I noted again 
that these dangers apply to all nonexperimental research, no matter how it is analyzed. One 
advantage of path models is that the figural display of one’s model (in essence a mini theory) 
often makes errors and assumptions more obvious and therefore more likely to be corrected. 
We postponed dealing with the violation of the assumption of perfect measurement until 
later chapters.

EXERCISES

1. Conduct each of the parent involvement analyses reported in this chapter, using the 
NELS data. The variables, as listed in NELS, are: Ethnicity = Ethnic; Family Back-
ground = BySES; Previous Achievement = ByTests; Parent Involvement = Par_Inv; and 
GPA = FfuGrad. Compare your results to mine.
a. Make sure you understand what happens when a common cause is omitted versus a 

simple cause of only one of the variables of interest (Figures 12.3 through 12.4). Is 
Family Background a common cause or a simple cause of Parent Involvement and 
GPA? Try deleting it from the model; what happens to the path from Involvement to 
GPA?

b. Analyze a model without Parent Involvement. Calculate direct, total, and indirect 
effects for each variable on GPA. Do the same for the model shown in Figure 12.3. 
Compare the tables of direct, indirect, and total effects.

c. Analyze a model like Figure 12.3, but in which a path is drawn from Ethnicity to 
Family Background. Now analyze a model in which the path is drawn from Family 
Background to Ethnicity. Which model is correct? How did you make this decision? 
What effect, if any, did this change in direction have on the estimate of the effect of 
Parent Involvement on GPA?

2. Find an article that uses path analysis or explanatory multiple regression on a research 
topic with which you are familiar and interested. If the authors’ model is not drawn 
in the article, see if you can draw it from their description. How do the authors justify 
their causal assumptions or their paths? Do you agree, or do you think some of the 
paths are drawn in the wrong direction? Do you think there are any obvious common 
causes that have not been included in the model? Can you demonstrate that there are 
common causes that have been neglected? If the authors included a correlation matrix 
with their article, see if you can reproduce their results. Draw the estimated model.

3. In Chapter 11, you constructed and tested a path model using the variables Family 
Background (BYSES), 8th-grade GPA (BYGrads), 10th-grade Self-Esteem (F1Concpt2), 
10th-grade Locus of Control (F1Locus2), and 10th-Grade Social Studies Achievement 
(F1TxHStd). Refer to or redo the analysis. For the sake of consistency, make sure you 
have Social Studies Achievement as the final endogenous variable.
a. Notice the direct effects of Self-Esteem and Locus of Control on Social Studies 

Achievement. Focus on the effect of GPA on Self-Esteem and Locus of Control. Is 
8th-grade GPA a common cause of these variables and Social Studies Achievement? 
Now remove the 8th-grade GPA variable from the model. What happens to direct 
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effects of Self-Esteem and Locus of Control on Social Studies Achievement? Explain 
the difference in effects from the original model.

b. Did you draw a path from Self-Esteem to Locus of Control or Locus of Control to 
Self-Esteem? Calculate the direct, indirect, and total effects of these two variables 
on Social Studies Achievement. Whichever way you drew the path, now reverse the 
direction and re-estimate the model. Recalculate the direct, indirect, and total effects 
of these variables on Social Studies. Explain the differences you find.

Notes

1 If the common cause has positive effects on both the presumed cause and the presumed effect, its 
neglect will lead to an overestimate of the effect of the presumed cause on the presumed effect. If a 
common cause has a negative effect on either variable, its omission will lead to an underestimate, 
and if it has a negative effect on both, its omission will result in an overestimate.

2 There may be other advantages for including a variable in the model that is not a common cause. 
For example, inclusion of noncommon causes results in overidentified models, the advantages of 
which we will discuss in the following chapter.
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To this point I have used multiple regression for the analysis of path models (as well as mul-
tiple regression models). It is also possible to use dedicated structural equation modeling 
(SEM) programs for such analysis. We make that switch in this chapter. As you will see, the 
results of simple path analyses are identical using SEM or MR analysis, but SEM programs 
can analyze more complex models and have real advantages when analyzing overidentified 
models.

SEM PROGRAMS

Numerous SEM programs are available, all of which are capable of analyzing everything 
from simple path models through latent variable structural equation models. LISREL (Linear 
Structural Relations; Jöreskog & Sörbom, 1996; Mels, 2006) was the first such program and 
is still widely used. For additional information, go to www.ssicentral.com. Other common 
programs include EQS (Bentler, 1995; www.mvsoft.com) and Mplus (Muthén & Muthén, 
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1998–2012; www.statmodel.com). Each such program has its own advantages; Mplus, for 
example, has sophisticated routines for analyzing categorical variables and is perhaps the 
most flexible such program. They generally cost $500 to $600 for those in academia, and 
many of them have try-out or trial versions and reduced pricing for students. For users of 
R (a free statistical programing language), there are at least two free SEM add-ons for that I 
know of, OpenMx (http://openmx.psyc.virginia.edu/; Boker et al., 2012) and lavaan (http://
lavaan.ugent.be/; Beaujean, 2014; Rosseel, 2012). 

Amos and Mplus

My favorite teaching program is one called Amos (Analysis of Moment Structures; Arbuckle, 
2013; www.spss.com/amos), although I also use Mplus on a regular basis. Amos uses a 
graphic approach and is probably the most intuitive and easiest SEM program to use. It 
produces attractive path diagrams (all the path models you have seen so far were produced 
by Amos) and can be used both to draw a path diagram and analyze it. As of this writing, 
student pricing for Amos is around $50 per year as an SPSS for Windows add-on (there is no 
Mac version). The user’s guide for the most recent version is also available as a pdf document 
on the spss website (under product support) and you can download the program as a free 
try-out for 14 days. Of course, you can analyze these problems using any SEM program, so if 
you have another program available you may want to use it. As noted, there are also student 
or demo versions available of many of the commercial SEM programs.

There are numerous examples of Amos and Mplus input and output—at least one per 
chapter—on the website (www.tzkeith.com). Statistical programs are revised constantly, so 
check the website also for more up-to-date information than is contained here in the text. 
Whatever program you use, you should download or purchase the user’s manual, which pro-
vides the basics for the use of the program. There are numerous other sources of informa-
tion about various SEM programs, as well. If you use Amos, for example, I recommend you 
download a tutorial from http://ssc.utexas.edu/training/software-tutorials . This site also has 
tutorials for other SEM and general statistics programs, and there are, of course, a growing 
number of such resources on the web. Although I will generally use Amos to estimate subse-
quent models, the information presented applies to SEM programs in general.

Basics of SEM Programs

Everything you have learned about path analysis so far will transfer to Amos and other SEM 
programs. Figure 13.1 shows a basic SEM (Amos) version of the parent involvement model 
first presented in Chapter 12. As in all previous examples, rectangles represent measured 
variables, and ovals represent unmeasured or latent variables (in this example, the distur-
bances). Straight arrows represent paths, or presumed influences, and curved, double-headed 
arrows represent correlations (or, with unstandardized coefficients, covariances). The one 
new aspect of Figure 13.1 is the value of 1 beside the paths from the disturbances to the 
endogenous variables. These paths simply set the scale of measurement for the disturbances. 
Unmeasured variables have no natural scale. When we set the path from the disturbances, 
which are unmeasured variables, to the measured variables to 1.0, we are merely telling the 
SEM program that the disturbance should have the same scale as the measured variable. (In 
reality, any number could be used: .80, 2.0, but 1.0 is the most common and most straight-
forward.) We will use the same rule of thumb when we begin using other latent variables: 
we will set one path from each latent variable to 1.0 to set the scale of the latent variable. At 
a practical level, the model would be underidentified without this constraint (or some other 
way of setting the scale of the disturbances). Depending on which program you use, these 
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paths from disturbances to endogenous variables may be set to 1 automatically and invisibly 
(for example, this happens by default in MPlus).

We could also set the scale by fixing the variance of the disturbance to 1.0; all substantive 
results would be the same. In fact, this is exactly what we did with multiple regression, even 
though we did not realize that we were doing so. When we use multiple regression to esti-
mate the paths, the variances of the disturbances are set to 1.0, and the program estimates 
the paths from the disturbances to the endogenous variables (when we set the path to 1.0, 
the program estimates the variance of the disturbance). We can choose either method with 
Amos; I here set the paths to 1.0 because that is the most common method.

REANALYSIS OF THE PARENT INVOLVEMENT PATH MODEL

The model shown in Figure 13.1 provides the basic input for analysis by Amos (the model 
is on the Web site as “PI Example 1.amw”); add data and you can conduct the analysis. Most 
SEM programs, including Amos, can use the correlation matrix and standard deviations as 
input for the analysis. The matrix for this example is saved as both an SPSS (PI matrix, list-
wise.sav) and an Excel file (PI matrix, listwise.xls). The matrix is also shown in Table 13.1; the 

Figure 13.1 Parent Involvement model from Chapter 12, as drawn in the Amos SEM program.
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Table 13.1 Means, Standard Deviations, Sample Sizes, and Correlations among the Variables for the 
Parent Involvement Path Example

Variable Ethnic Byses Bytests Par_inv Ffugrad

ETHNIC 1.000 .333 .330 .075 .131
BYSES .333 1.000 .461 .432 .299
BYTESTS .330 .461 1.000 .445 .499
PAR_INV .075 .432 .445 1.000 .364
FFUGRAD .131 .299 .499 .364 1.000
M .793 .047 52.323 .059 5.760
SD .406 .766 8.584 .794 1.450
N 811.000 811.000 811.000 811.000 811.000
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variable names are as in the NELS raw data. The SPSS commands I used to create the matrix 
using the NELS data are in the file “create corr matrix in spss.sps.”

Estimating the Parent Involvement Model via Amos

With the model and the data, we can estimate the model via Amos (or any other SEM pro-
gram). The standardized output for this model is shown in Figure 13.2. Compare the results 
with your results from Chapter 12; with the exception of the lack of a number associated 
with the paths from disturbances to endogenous variables, the results should be identical. 
Figure 13.3 shows the unstandardized output for the model. Recall that we set the paths from 
disturbances to endogenous variables to 1.0 and estimated the variances of the disturbances. 
The numbers next to the disturbances are the estimates of their variances. The numbers 
above the two exogenous variables are their variances. Again, the results should match those 
from your regression analysis in Chapter 12.

Figure 13.2 Parent Involvement model estimated via Amos. The standardized results are the same as 
those in Chapter 12 when the model was estimated via multiple regression.
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Figure 13.3 Unstandardized estimates for the Parent Involvement model.
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Of course, you will get more detailed output than just these diagrams from your SEM 
program. Figure 13.4 shows one portion of the printout; this and all subsequent printouts 
show Amos output, but you will get something similar with any of the SEM programs. The 
top portion of the output (Regression Weights) shows the unstandardized path coefficients, 
listed under the column Estimate. For example, the first row shows that the unstandardized  
path from BYSES (Family Background) to bytests (Previous Achievement) is 4.431 (it is 
possible to have Amos list the longer variable labels in addition to the variable names, but 
just the names are shown in this output). The S.E. column shows the standard errors of the 

Regression Weights 
 Estimate S.E. C.R. P Label 

bytests <--- BYSES 4.431 .362 12.229 *** 
bytests <--- Ethnic 4.195 .684 6.131 *** 
par_inv <--- bytests .032 .003 10.034 *** 
par_inv <--- Ethnic -.286 .063 -4.525 *** 
par_inv <--- BYSES .333 .036 9.345 *** 
ffugrad <--- bytests .070 .006 11.406 *** 
ffugrad <--- par_inv .292 .064 4.528 *** 
ffugrad <--- BYSES .093 .069 1.354 .176 
ffugrad <--- Ethnic -.124 .117 -1.057 .290 

Standardized Regression Weights
Estimate 

bytests <--- BYSES .395 
bytests <--- Ethnic .198 
par_inv <--- bytests .345 
par_inv <--- Ethnic -.146 
par_inv <--- BYSES .321 
ffugrad <--- bytests .417 
ffugrad <--- par_inv .160 
ffugrad <--- BYSES .049 
ffugrad <--- Ethnic -.035 

Covariances 
Estimate S.E. C.R. P Label 

Ethnic <--> BYSES .103 .011 8.996 *** 

Correlations 
Estimate 

Ethnic <--> BYSES .333 

Variances 
 Estimate S.E. C.R. P Label 

Ethnic  .164 .008 20.125 ***
BYSES   .586 .029 20.125 ***
d1  55.370 2.751 20.125 ***
d2  .452 .022 20.125 ***
d3  1.521 .076 20.125 ***

Figure 13.4 Output from the SEM program (Amos) showing unstandardized coefficients (regression 
weights), their standard errors, and critical ratios, along with standardized coefficients.
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coefficients, the column labeled C.R. (for critical ratio) shows the t’s for each coefficient. 
(Recall that t = coefficient/SEcoefficient and that with large samples t’s greater than approxi-
mately 2 are statistically significant. The values are actually z statistics, but they are essentially 
the same with the sample sizes we are using.) The column labeled P shows the probability 
associated with each path, with values less than .001 indicated by ***. The next portion of the 
figure (Standardized Regression Weights) shows the standardized paths. Again, the output 
should match the SPSS output from Chapter 12. This portion is followed by the covariance 
and correlation between the two exogenous variables, the variances of the two exogenous 
variables and the variances of the disturbances of the three endogenous variables.

SEM programs will also produce tables of direct, indirect, and total effects for both the 
standardized and unstandardized solution. The tables for the current example are shown in 
Figure 13.5. The tables are read from column to row; thus the total unstandardized effect of 

Figure 13.5 Total, indirect, and direct effects of variables on each other in the Parent Involvement 
model.

Total Effects 
par_inv bytests Ethnic BYSES 

.000 .000 4.195 4.431 bytests 

.000 .032 -.153 .474 par_inv 

.292 .080 .127 .544 ffugrad 

Standardized Total Effects 
par_inv bytests Ethnic BYSES 

.000 .000 .198 .395 bytests 

.000 .345 -.078 .458 par_inv 

.160 .472 .035 .287 ffugrad 

Direct Effects 
par_inv bytests Ethnic BYSES 

.000 .000 4.195 4.431 bytests 

.000 .032 -.286 .333 par_inv 

.292 .070 -.124 .093 ffugrad 

Standardized Direct Effects 
par_inv bytests Ethnic BYSES 

.000 .000 .198 .395 bytests 

.000 .345 -.146 .321 par_inv 

.160 .417 -.035 .049 ffugrad 

Indirect Effects 
par_inv bytests Ethnic BYSES 

.000 .000 .000 .000 bytests 

.000 .000 .134 .141 par_inv 

.000 .009 .251 .450 ffugrad 

Standardized Indirect Effects 
par_inv bytests Ethnic BYSES 

.000 .000 .000 .000 bytests 

.000 .000 .068 .136 par_inv 

.000 .055 .070 .238 ffugrad 
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Family Background (BYSES) on GPA (ffugrad), as shown in the bottom left of the first table, 
is .544. Take some time to compare these results with those from the previous chapter.

It is also possible to evaluate the statistical significance of the indirect and total effects; 
in Amos this is done through a bootstrapping procedure. (Bootstrapping is a procedure in 
which one takes repeated, smaller random samples of an existing sample. With bootstrap-
ping, it is possible to develop empirical estimates of standard errors of any parameter, even, 
for example, standard errors of standard errors. Recall that in previous discussions of media-
tion, aka indirect effects, I have said that there are better ways of assessing the statistical sig-
nificance of indirect effects than the Sobel test. Bootstrapping is such a method.) Figure 13.6, 
for example, shows the indirect effects for the variables in the Parent Involvement model, 
followed by their standard errors. You can use this information to calculate the t values for 

Indirect Effects
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par_inv
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.009
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Standardized Indirect Effects
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Indirect Effects - Standard Errors
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Indirect Effects - Two Tailed Significance (BC)
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Figure 13.6 Indirect effects (both unstandardized and standardized) for the Parent Involvement 
model, their standard errors, and statistical significance.
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each indirect effect to determine its statistical significance; this is done in the bottom of the 
figure. Thus, SEM programs allow a more direct test of the statistical significance of media-
tion than do most regression results (see in Chapter 8 the section on Mediation). Amos also 
provides the standardized indirect and total effects and their standard errors and statistical 
significance (the standardized indirect effects are shown in the figure). 

ADVANTAGES OF SEM PROGRAMS

Overidentified Models

Figure 13.7 shows a potential model of the effect of Homework on GPA. The data are from 
NELS (the larger NELS data, not those on the Web site). For this model, Ethnicity, Family 
Background, and Previous Achievement were measured in eighth grade and are defined in 
the way we have in the past (Ethnicity = majority vs. minority, Family Background = BYSES, 
Previous Achievement = BYTests). Homework was based on student reports of time spent 
on homework in each academic area, measured in both eighth and tenth grades; it may be 
considered a measure of average homework over time. Grades are students’ GPAs (English, 
Math, Science, and Social Studies) from 10th grade.

Note that several potential paths are not drawn: there are no paths from Ethnicity and 
Family Background to Grades. Just as it means something to draw a path, it means something 
to not draw a path and, in fact, it is often a stronger statement than drawing a path. When we 
draw a path, we are stating that one variable may have some effect on another. What the lack 
of path from Family Background to Grades means is that I believe the path from Background 
to Grades is a value of zero. Indeed, not drawing a path is the same as drawing a path and 
fixing or constraining that path to a value of zero. This model also makes explicit the notion 
that the only way Ethnicity and Family Background affect Grades is through Homework 
and Previous Achievement, that they have no direct effect on Grades, only indirect effects 
through other variables in the model. I developed this hypothesis in the usual way, based on 
previous research and logic. Indeed, you will even find support for the exclusion of paths 

Figure 13.7 Overidentified model testing the effects of Homework on students’ Grades in High School.
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from Ethnicity and Family Background to Grades based on our Parent Involvement models, 
which showed only small direct effects for these variables on Grades.

You know from Chapter 11 that this is an overidentified model, meaning that we have 
more information than we need to solve for the paths. Note that there are 10 correlations 
among variables, but we are solving for only eight parameters (seven paths and one correla-
tion). Recall also that if we were solving for the paths using algebra we could come up with 
multiple formulas for solving some of the paths. I argued in Chapter 11 that this approach 
may have advantages, because similarity in path estimates calculated two different ways can 
give us additional confidence in our model, whereas dissimilarity might make us wonder 
about the veracity of the model.

One advantage of SEM programs is that they provide this type of feedback about overi-
dentified models. The method is not as described above; the programs do not estimate the 
paths several different ways and allow you to compare the different estimates. Instead, the 
programs compare matrices and provide measures of the fit of the model to the data. We’ll 
see how this process works when we analyze the model in Figure 13.7.

The data (correlation matrix, standard deviations, means, and N) are contained in both 
an Excel and an SPSS file (“homework overid 1.xls” and “homework overid 1.sav”); the data 
are also shown in Table 13.2.1 The model shown in the figure was used as input to Amos and 
is in the file “homework path 1.amw” on the accompanying Web site.

Figure 13.8 shows the solved, standardized path model. Using our rules of thumb, it 
appears Homework has a moderate effect (.15) on 10th-grade GPA. Previous Achievement 
had a strong effect on Homework, suggesting a “rich get richer” sort of effect: students who 
achieve at a high level do more homework, and this homework, in turn, improves their sub-
sequent school performance. Family Background also had a moderate effect on Homework, 
but Ethnicity had no substantive effect.

The file includes standard deviations, sample sizes, and correlations. Means are included 
but are not required or analyzed.

How can we use the overidentification status of the model to assess the model? Recall 
how we solved for the paths in our first example of path analysis: through the use of algebra, 
the tracing rule, and the correlations among the variables. Amos is essentially doing the 
same thing here: the model specification and the correlation matrix (actually the covari-
ance matrix, but we will address this point later) were used as input, and the program used 
these pieces of information to solve for the paths. If we can solve for the paths using the 

Table 13.2 Contents of the Excel file for the homework path example

rowtype_ varname_ Ethnic FamBack PreAch Homework Grades

n 1000 1000 1000 1000 1000
corr Ethnic 1
corr FamBack 0.3041 1
corr PreAch 0.3228 0.4793 1
corr Homework 0.0832 0.2632 0.2884 1
corr Grades 0.1315 0.2751 0.489 0.2813 1
stddev 0.4186 0.8311 8.8978 0.8063 1.479
mean 0.7282 0.0025 52.0039 2.565 5.7508

The matrix is in the format required for analysis in Amos. These include the rowtype_ and varname_ 
columns, and the n, corr, and stddev rows (the mean row is not required at this stage of our adventures).
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correlations, why can’t we do the reverse: solve for the correlations using the paths? In fact, 
we can do exactly that. You could, and SEM programs do, use the solved path model (e.g., 
Figure 13.8) to calculate an expected, or predicted, correlation matrix, the matrix implied by 
the model.2 With overidentified models, this implied matrix (also known as the predicted 
matrix) and the input matrix will differ to some degree. The actual correlation matrix and 
the implied correlation matrix from the Amos output are shown in Figure 13.9. Notice that 
most of the correlations are the same, but that the values in the lower left—the correlations 
of Grades with Ethnicity and Family Background—differ slightly between the actual and the 

Figure 13.8 Standardized output for the Homework model.
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Sample Correlations 
 Ethnic FamBack PreAch Homework Grades 

Ethnic 1.000
FamBack .304 1.000 
PreAch .323 .479 1.000 
Homework .083 .263 .288 1.000 
Grades .132 .275 .489 .281 1.000 

Implied (for All Variables) Correlations 
 Ethnic FamBack PreAch Homework Grades 

Ethnic 1.000 
FamBack .304 1.000 
PreAch .323 .479 1.000 
Homework .083 .263 .288 1.000 
Grades .156 .253 .489 .281 1.000 

Figure 13.9 The sample (input) correlation matrix compared to the matrix implied by the Homework 
model.



292 • BEYOND MULTIPLE REGRESSION

implied matrices. SEM programs use this degree of similarity or nonsimilarity between the 
two matrices to assess and measure the fit of the model to the data. This information is also 
useful for diagnosing and correcting model problems.

Correlations versus Covariances

Before going any further, it is time to augment our thinking about correlation matrices with 
the additional considerations of covariance matrices. Most SEM programs are set up to ana-
lyze covariance rather than correlation matrices. For some SEM problems you will get the 
same substantive answer no matter which type of matrix you analyze, but for others you 
should analyze covariance matrices (see Cudeck, 1989, or Steiger, 2001, for further discus-
sion about this issue). An easy solution is simply to get in the habit of analyzing covariance, 
rather than correlation, matrices. (An alternative is to use a program, such as SEPATH, a part 
of the Statistica package, designed specifically to analyze correlation matrices.)

Recall from Chapter 1 that we can easily calculate covariances from correlations if we 
know the variances or standard deviations of the variables, because CoVxy = rxy × SDxSDy. 
Indeed, this is what Amos did; we input the correlations and standard deviations, and the 
program generated the covariance matrix from that input. The covariance matrix is shown 
at the top portion of Figure 13.10. The covariances are shown below the diagonal, and the 
variances are shown in the diagonal. Another way of thinking of covariance versus correla-
tion matrices is to recall that correlation matrices are standardized covariance matrices, with 
all variables converted to z scores.

Model Fit and Degrees of Freedom

SEM programs, then, generally compare the actual covariance matrix to the implied covari-
ance matrix. Some of the relevant output from Amos is shown in Figure 13.10: the actual 
covariance matrix, the implied matrix, and the residual covariance matrix. The residual cova-
riance matrix is the result of subtracting the implied matrix from the actual matrix; intui-
tively, large differences between these matrices and large residuals should signal problems 
with the model. More helpful are the standardized residuals, in which the residuals have been 
converted to a common, standardized metric. These are standardized like z-scores. Thus, 
one rule of thumb is that standardized residuals larger than 2 signal an area of misfit in the 
model. The values of standardized residuals are dependent on sample size, however, so large 
sample will produce many more large values than will small samples. Thus, a better rule of 
thumb is to focus on the largest values in this matrix when the more global fit statistics sug-
gest a lack of fit.

Table 13.3 shows another useful, related matrix: the differences between the actual cor-
relations and those implied by the model (the Sample Correlations from Figure 13.9 minus 
the Implied Correlations). As we will see, this matrix can also be useful for isolating and 
understanding problems with models. Kline (2011), for example, advises to examine fur-
ther variables with such “correlation residuals” greater than .10 or less than –.10. (chap. 5). 
This matrix is not produced in all SEM programs (it is not produced in Amos or Mplus, for 
example), but it is easily generated in Excel by subtracting the values in the implied correla-
tion matrix from those in the actual correlation matrix. As shown in the table, the correla-
tion between Ethnicity and Grades that is implied by the Homework was slightly larger than 
the actual correlation; in contrast, the actual correlation between Family Background and 
Grades was slightly larger than the correlation implied by the Homework model.

Although these residual matrices are not particularly useful in the present example in 
which only two paths have been constrained, as we begin to focus on more complex and 



Table 13.3 Differences between the Actual Correlations and those Implied by the Homework Model

 Ethnic FamBack PreAch Homework Grades

Ethnic      
FamBack 0     
PreAch 0 0    
Homework 0 0 0   
Grades –.025 .022 0 0  

Figure 13.10 Sample and implied covariance matrices and residual and standardized residual matri-
ces for the Homework model.

Sample Covariances 
 Ethnic FamBack PreAch Homework Grades 

Ethnic .175 
FamBack .106 .690 
PreAch 1.201 3.541 79.092 
Homework .028 .176 2.067 .649 
Grades .081 .338 6.429 .335 2.185 

Implied (for All Variables) Covariances 
 Ethnic FamBack PreAch Homework Grades 

Ethnic .175 
FamBack .106 .690 
PreAch 1.201 3.541 79.092 
Homework .028 .176 2.067 .649 
Grades .097 .311 6.429 .335 2.185 

Residual Covariances 
 Ethnic FamBack PreAch Homework Grades 

Ethnic .000 
FamBack .000 .000 

.000 

.000 
–.015 

PreAch .000 .000 
Homework .000 .000 .000 
Grades .027 .000 .000 .000 

.000

.000

.000

.000
–.776

Standardized Residual Covariances 
 Ethnic FamBack PreAch Homework Grades 

Ethnic
FamBack .000 
PreAch .000 .000 
Homework .000 .000 .000 
Grades .662 .000 .000 .000 
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latent variable models the standardized residual covariances and the residual correlations 
will be useful for determining where there is misfit in our models. I focused on the actual, 
implied, and residual matrices now, however, because this difference between the actual and 
implied covariance matrix is the source of other measures of the fit of the model.

We can and will quantify the degree to which a model is overidentified. The current model 
has two paths that could have been drawn to make the model just-identified (paths from 
Ethnicity and Family Background to Grades). The model thus has two degrees of freedom. 
More exactly, we can calculate the degrees of freedom using the following steps:

1. Calculate the number of variances and covariances in the matrix using the formula 
[p × (p + 1)]/2 where p is equal to the number of variables in the model. For the current 
model, there are 15 variances and covariances: [5 × (5 + 1)]/2 = 15.

2. Count the number of parameters that are estimated in the model. Don’t forget covari-
ances between exogenous variables, variances of the exogenous variables, and variances 
of the disturbances. For the current model, we estimated seven paths, one covariance 
between the exogenous variables, the variances of the two exogenous variables, and the 
variances of the three disturbances, for a total of 13 estimated parameters.

3. The degrees of freedom are calculated by subtracting the number of estimated parame-
ters from the number of variances and covariances. The present model has two degrees 
of freedom (15 − 13 = 2).

The degrees of freedom for a model provide information about the degree to which the 
overall model is overidentified. The degrees of freedom also provide a handy index of the 
parsimony of the model. In science, we value parsimony: if two explanations for a phe-
nomenon are equally good (or, in SEM, fit equally well), we generally prefer the simplest or 
more parsimonious explanation. Degrees of freedom are an index of the parsimony of a path 
model: the more degrees of freedom, the more values constrained (to zero or some other 
value) prior to estimation, and thus the greater the parsimony.

The difference between the actual and implied matrices provides evidence of the degree 
to which the model is a good explanation of the data. This difference is used to generate a 
multitude of fit statistics or fit indexes for overidentified models. There are literally dozens 
of such fit indexes, with different indexes focusing on slightly different aspects of fit. We will 
focus on a few common such indexes here; there are also numerous sources for more infor-
mation about fit indexes (e.g., Fan, Thompson, & Wang, 1999; Hoyle, 1995; Hu & Bentler, 
1998, 1999; Marsh, Hau, & Wen, 2007; see also David Kenny’s web pages for excellent and 
up-to-date advice on fit statistics: http://davidakenny.net/cm/fit.htm).

Chi-square (χ2) is the most commonly reported measure of fit.3 Chi-square has the 
advantage of allowing a statistical test of the fit of the model; it can be used with the degrees 
of freedom to determine the probability that the model is “correct” (to be explained later). 
Interestingly, in SEM we want a small χ2 and one that is not statistically significant. For our 
current example, χ2 = 2.166, with 2 df and a probability of .338. What does this mean? It 
means that the actual and the implied matrix are not statistically significantly different from 
one another, and thus the model and the data are consistent with one another. If the model 
and the data are consistent, the model could have generated the data and thus may provide 
a good approximation of how the phenomenon being studied works. In other words, the 
model may approximate reality, it may be “correct.” Given all the “mays” and “coulds” in this 
explanation, you may be disappointed; this is hardly the kind of evidence of the quality of the 
model you were hoping for! Sorry; fit statistics do not prove that a model is true and do not 
prove causality. If the fit indexes are good, they suggest that a model may provide a reason-
able, tentative explanation of the data. I’ll simply note that this is better than nothing and 
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more feedback than we’ve had in previous chapters about the quality of our explanations of 
our data.

Figure 13.11 shows the fit indexes output by Amos; other SEM programs will provide an 
equally intimidating listing of indexes of fit, many of which will be the same (although some 
may be labeled differently). Focus on the first few rows and columns. The model that is being 
estimated (i.e., the model in Figure 13.7) is labeled the Default model. The first column of 
numbers shows the number of parameters (NPAR) that are estimated in the model (remem-
ber we calculated 13 parameters being estimated), and the second shows the χ2 (labeled 
CMIN, a value of 2.166). These are followed by the degrees of freedom (2) and the probabil-
ity associated with the χ2 and df (.338).

The rows labeled Saturated model pertain to a just-identified model. A just-identified 
model will estimate 15 parameters and thus have zero df. With a just-identified model, the 
implied covariance matrix will be identical to the actual matrix, and thus χ2 associated with 
a just-identified model is equal to zero. In other words, a just-identified model will provide a 
perfect fit to the data. Why not, then, continue to estimate just-identified models, as we have 
done previously? The reason, again, is that we value parsimony. An overidentified model is 
more parsimonious than a just-identified model; our present overidentified model fits as 
well as a just-identified model (another interpretation of the statistically not significant χ2). 
Because this model fits as well but is more parsimonious, it is a preferable model from a 
scientific standpoint.

The rows labeled Independence model refer to a model in which the variables in the 
model are assumed to be independent of one another. This model, also called a null model, 
could be represented by the five variables, with no paths or correlations drawn (and thus 
for this model all we would estimate would be the five variable variances). It could also be 
represented by constraining all paths and correlations in the current model to zero. Again, 
the null model assumes the variables are unrelated. The saturated and independence models 
essentially provide two endpoints with which we can compare our theoretical model. The 
saturated model provides a best fitting model and the independence model a very poorly fit-
ting model. Some of the other fit indexes make use of these endpoints.

Other Measures of Fit

χ2 seems to fill our need for assessing model fit: if it is not statistically significant, we have 
evidence that our model may explain reality, and if it is statistically significant, our model 
does not explain the data. Why do we need other fit indexes? Unfortunately, χ2 has some 
problems as a measure of fit. First, χ2 is related to sample size; indeed, χ2 is calculated as 
N − 1 times the minimum value of the fit function (FMIN on the Amos output). Thus, given 
the same matrix and a sample size of 10,000 instead of 1000, the χ2 would be approximately 
10 times larger than the current value of 2.166. A χ2 of 21.66 (actually 21.68, because N − 1 
rather than N is used in the calculations), again with 2 df, will be statistically significant (p < 
.001), and thus we would reach the conclusion that the model did not fit the data, an oppo-
site conclusion from the one we reached with the sample size of 1000. (A reminder: with 
SEM the df depend on the number of model constraints, not the sample size.) This weak-
ness of χ2 is one reason alternative measures of fit have been developed. Most SEM users 
report χ2 but also report other fit statistics as well.

Several fit indexes compare the fit of the existing model with that of the null, or indepen-
dence model. The comparative fit index (CFI) and the Tucker–Lewis index (TLI, also known 
as the nonnormed fit index, or NNFI) are two common such indexes. The CFI provides a 
population estimate of the improvement in fit over the null model (although null models 
are the most common comparison, the CFI can also be calculated with more restricted but 



Figure 13.11 Fit indexes for the Homework model.

AIC 
Model AIC BCC BIC CAIC 
Default model 28.166 28.324 91.967 104.967 
Saturated model 30.000 30.181 103.616 118.616 
Independence model 827.868 827.929 852.407 857.407 

ECVI 
Model ECVI LO 90 HI 90 MECVI 
Default model .028 .028 .036 .028 
Saturated model .030 .030 .030 .030 
Independence model .829 .738 .926 .829 

HOELTER 

Model 
HOELTER 

.05 
HOELTER

.01 
Default model 2763 4248 
Independence model 23 29 

Model Fit Summary 

CMIN 
 FD/NIMC P FD NIMCledoM

Default model 13 2.166 2 .338 1.083 
Saturated model 15 .000 0 
Independence model 5 817.868 10 .000 81.787 

RMR, GFI
Model

NPAR 

RMR GFI AGFI PGFI 
Default model .008 .999 .994 .133 
Saturated model .000 1.000 
Independence model 1.998 .715 .572 .477 

Baseline Comparisons 

Model 
NFI 

Delta1
RFI

rho1 
IFI

Delta2
TLI

rho2 
CFI 

Default model .997 .987 1.000 .999 1.000 
Saturated model 1.000  1.000  1.000 
Independence model .000 .000 .000 .000 .000 

Parsimony-Adjusted Measures 
Model PRATIO PNFI PCFI 
Default model .200 .199 .200 
Saturated model .000 .000 .000 
Independence model 1.000 .000 .000 

NCP 
Model NCP LO 90 HI 90 
Default model .166 .000 8.213 
Saturated model .000 .000 .000 
Independence model 807.868 717.735 905.396 

FMIN 
Model FMIN F0 LO 90 HI 90 
Default model .002 .000 .000 .008 
Saturated model .000 .000 .000 .000 
Independence model .819 .809 .718 .906 

RMSEA 
Model RMSEA LO 90 HI 90 PCLOSE 
Default model .009 .000 .064 .854 
Independence model .284 .268 .301 .000 
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substantively meaningful models). The TLI provides a slight adjustment for parsimony and 
is relatively independent of sample size (Tanaka, 1993). For both indexes, values approaching 
1.0 suggest a better fit; common rules of thumb suggest that values over .95 represent a good 
fit of the model to the data, and values over .90 represent an adequate fit (cf. Hayduk, 1996, 
p. 219; Hu & Bentler, 1999).

Another problem with χ2 and its associated probability is that p is the probability that 
a model fits perfectly in the population, even though most researchers argue that a model 
is designed only to approximate reality. The root mean square error of approximation 
(RMSEA) is designed to assess the approximate fit of a model and may thus provide a more 
reasonable standard for evaluating models. RMSEAs below .05 suggest a “close fit of the 
model in relation to the degrees of freedom” (Browne & Cudeck, 1993, p. 144), in other 
words a good approximation. Browne and Cudeck further speculated that models with 
RMSEAs below .08 represented a reasonable fit, with those above .10 representing a poor 
fit. Research with the RMSEA supports these rules of thumb (i.e., values below .05 suggest-
ing a good fit; Hu & Bentler, 1999), as well as its use as an overall measure of model fit (Fan, 
Thompson, & Wang, 1999). Other advantages of RMSEA include the ability to calculate 
confidence intervals around RMSEA, the ability to use RMSEA “to test a null hypothesis of 
poor fit” (Loehlin, 2004, p. 69), and the ability to conduct power calculations using RMSEA 
(MacCallum, Browne, & Sugawara, 1996). Conceptually, you can think of RMSEA as repre-
senting the degree of misfit per degree of freedom.

One final, useful measure of fit (or misfit) is the standardized root mean square residual 
(SRMR). We approached the topic of fit by discussing the difference between the actual cova-
riance matrix used to estimate a model and the covariance matrix implied by the model. If 
you average these differences, you get the root mean square residual. (To keep the negative val-
ues from canceling out the positive values, you’d need to first square the values and then take 
the square root of the final average number.) The SRMR is the standardized version of the 
root mean square residual. Because correlations are standardized versions of covariances, the 
SRMR is conceptually equivalent to the average difference between the actual correlations 
among measured variables and those predicted by the model. Hu and Bentler’s (1998, 1999) 
simulation research suggests SRMR as among the best of the fit indexes, with values below 
about .08 suggesting a good fit of the model to the data (this value may be a little high; .06 may 
be a more reasonable value for SRMR). The SRMR is not produced automatically in Amos  
but is easily obtained (select the ”Plugins” menu, then Standardized RMR).

I currently use RMSEA for my primary measures of the fit of a single model, supple-
mented by SRMR and CFI or TLI, or sometimes other indexes. As we will soon see, it is also 
possible, indeed desirable, to compare the fit of competing models; we will use different fit 

Figure 13.11 (Continued)

AIC 
Model AIC BCC BIC CAIC 
Default model 28.166 28.324 91.967 104.967 
Saturated model 30.000 30.181 103.616 118.616 
Independence model 827.868 827.929 852.407 857.407 

ECVI 
Model ECVI LO 90 HI 90 MECVI 
Default model .028 .028 .036 .028 
Saturated model .030 .030 .030 .030 
Independence model .829 .738 .926 .829 

HOELTER 

Model 
HOELTER 

.05 
HOELTER

.01 
Default model 2763 4248 
Independence model 23 29 
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indexes for this purpose. Note, however, that thinking and research about fit indexes are in 
a constant state of development. The advice I (or others) give as this is written is different 
from what I would have given 5 years ago and may well be different from what I will advise 5 
years in the future. Because of this state of flux, and because much advice about fit indexes is 
based on the experience of the user, my advice may also be different from that of others. See 
the section at the end of this chapter for additional thoughts concerning fit indexes.

Focus again on Figure 13.11. The RMSEA for our Homework model was .009, with a 90% 
confidence interval of .000 to .064 (Lo 90 to Hi 90 in the figure). The CFI and TLI were 1.0 
and .999, respectively. Although not shown in the figure, the SRMR for this model was .0085, 
suggesting an average difference between the actual and predicted correlations of only .0085. 
All indexes suggest a good fit of the model to the data; the model could indeed have gener-
ated the data.

Comparing Competing Models

Another major advantage of SEM programs is that we can use them to compare competing 
theoretical models (and the hypotheses embedded in these competing models) via the fit 
statistics. An example will illustrate.

Suppose in your reading of the literature on the effects of homework you came across 
evidence that homework and school learning are unrelated. Perhaps the evidence is in the 
form of research that suggests that homework has no real effects on achievement or grades. 
Or perhaps the evidence is in the form of informal theory that suggests that homework really 
should not affect learning, or vice versa. Whichever is the case, we could test these hypotheses 
by comparing models embodying them with our initial model (Figures 13.7 and 13.8). One 
such model will delete the paths from Previous Achievement to Homework and from Home-
work to Grades. This model asserts that students’ previous achievement has no effect on the 
time they spend working on homework, and such time spent on homework also has no effect 
on students’ grades. Stated differently, this model embodies the hypothesis that homework is 
unrelated to academic performance, either as an effect (the path from Previous Achievement 
to Homework) or as an influence (the path from Homework to Grades).

The standardized results of this model are shown in Figure 13.12, which also shows some 
of the relevant fit indexes. We will focus primarily on the RMSEA (.128), which suggests a 
poor fit of this model to the data. This assessment is supported by the TLI of .797 and the 
statistically significant χ2 of 69.61 with 4 degrees of freedom. The CFI (.919) and the SRMR 
(.071), in contrast, suggest a so-so model. The model is, among other things, a good illustra-
tion that the various fit statistics often present different pictures and lead to different conclu-
sions if used in isolation. Nevertheless, with a primary focus on RMSEA, we conclude that 
this model does not fit the data well, and we will likely reject the model as a good explanation 
of the relations between homework and learning.

We can address our primary questions more directly, however, by comparing the results 
of this model with the results of our initial model. That model fit well, whereas this model 
did not; but are the differences between the fits of the two models meaningful or statisti-
cally significant? We can use the fit indexes to make these comparisons, as well. Interestingly, 
although χ2 has problems as a measure of fit of a single model (what I will henceforth call a 
“stand-alone” measure of fit), it often works well for comparing competing models (Loehlin, 
2004). Furthermore, if the models are nested (meaning that one can be derived from the 
other by deleting paths), this comparison can be statistical rather than qualitative.

When two models are nested, the more parsimonious model (the model with fewer free, 
or estimated, parameters) will have a higher df (recall that df is a measure of parsimony) and 
a larger χ2. The χ2 and df for the less parsimonious model can be subtracted from those of 
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the more parsimonious. The resulting change in χ2 (Δχ2) is also a χ2 distribution and may 
be compared to the change in df for the two models. Again, models are nested when one can 
be derived from the other by deleting paths or correlations. This second model—the one 
with one or more paths deleted and the higher df—will be a subset of the first and nested 
within the first model.

The model shown in Figure 13.12 (no-homework-effects model) is a more parsimonious, 
more constrained version of the model shown in Figure 13.7 (the initial model); two paths 
that were estimated in the initial model were constrained to zero in the no-homework-effects 
model. This model is nested within the initial model. The no-homework-effects model had 
a χ2 of 69.609, with 4 df. We subtract the corresponding values for the initial model (χ2 = 
2.166, df = 2) from those for the no-homework-effects model to obtain a Δχ2 of 67.443, with 
a Δ df of 2. If you look up these values in the probability calculator or spreadsheet,4 you will 
find an associated probability of < .001; the additional constraints on the no-homework-
effects model resulted in a statistically significant increase in Δχ2.

This finding, that the Δχ2 is statistically significant, means that not only does the no-
homework-effects model fit worse than the initial model, but it fits statistically significantly 
worse. Although the no-homework-effects model is more parsimonious than the initial 
model, the parsimony comes at too great a cost in terms of model fit, and we reject these con-
straints on the model and stick with the initial model. What this means, in turn, is that we can 
reject the hypothesis that time spent on homework is unrelated to academic performance.

The process of comparing competing models can be used to test competing models and 
hypotheses, but it can also bolster, or undermine, our faith in our preferred models. “The 
fact that one model fits the data reasonably well does not mean that there could not be other, 
different models that fit better. At best, a given model represents a tentative explanation of 

Figure 13.12 Does Homework indeed affect Grades? Compare the fit of this model with the earlier 
Homework model.
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the data. The confidence with which one accepts such an explanation depends, in part, on 
whether other, rival explanations have been tested and found wanting” (Loehlin, 2004, p. 61).

We can also use Δχ2 to test the assumptions we made when we developed our initial 
model. Recall that we assumed that Ethnicity and Family Background had no direct effect 
on students’ Grades, but that their effects were indirect through Previous Achievement and 
Homework. We could test whether these assumptions are, in fact, supported by freeing these 
parameters and studying the change in fit of the model. Table 13.4 shows fit statistics for the 
two models already discussed, plus a model labeled Background Effect, in which the path 
from Family Background to Grades was freed, or estimated. As you can see, this model is less 
parsimonious than the initial model. The Δχ2 for this model was .837 with 1 df; the Δχ2 is 
not statistically significant. In this case, the two models had nearly equivalent fit. The more 
relaxed (background effect) model did not fit statistically significantly better; the more par-
simonious (initial) model did not fit statistically significantly worse. In other words, the 
models had equivalent fit. In this case, we favor the more parsimonious of the two models, 
the initial model. Therefore, our initial assumption that Family Background would affect 
Grades only through other variables was supported. (Earlier in the text I suggested that you 
memorize the factoid that with a reasonable sample size, a t of approximately 2 is statisti-
cally significant. It would also be worth remembering that with 1 df, a Δχ2 of around 3.9 is 
statistically significant.) 

Note that we could also have evaluated the statistical significance of the path from Family 
Background to Grades by focusing on the CR (critical ratio, or t) in the Amos printout. The 
t was .915, which is not statistically significant, thus also supporting our initial assumption 
of the lack of direct effect of Family Background on Grades. When single parameters are 
tested, Δχ2 and t will usually, but not always, give the same answer. Δχ2 can be used to test 
the statistical significance of multiple changes to a model, whereas t focuses on only one 
parameter at a time.

We could have freed both paths that were constrained to zero in the initial model (Family 
Background to Grades and Ethnicity to Grades). In this case, the new model will be just-
identified, with χ2 and the df both equal to zero. Thus, the Δχ2 comparing this model with 
the initial model equals the value for the χ2 for the initial model (2.166, df = 2), which was 
not statistically significant (p = .338). Perhaps this comparison makes it obvious that, strictly 
speaking, what we are testing with overidentified models is the overidentifying restrictions 
(constraints) on the model, not the model as a whole.

We can also use fit statistics to clean up our models. Note that the path from Ethnicity to 
Homework was not statistically significant in the initial homework model. One alternative 

Table 13.4 Comparison of Fit Indexes for Alternative Models of the Effects of Homework on High 
School Students’ Grades

Model χ2 df Δχ2 Δdf p RMSEA 
(90% CI)

SRMR CFI AIC

Initial 2.166 2    .009  
(.000–.064)

.009 1.00 28.166

No Homework 
Effects

69.609 4 67.443 2 <.001 .128  
(.103–.155)

.071 .919 91.609

Background 
Effect

1.329 1 .837 1 .360 .018  
(.000–.089)

.008 1.00 29.329
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model worth investigating is one in which this path is deleted. With this change, Δχ2 is 
statistically not significant; this more parsimonious model thus fits as well as does the ini-
tial model. Although it is perfectly reasonable to use Δχ2 and other fit statistics to clean 
up models, keep in mind that this process is fundamentally different from the other model 
comparisons we have made. Our previous model comparisons were designed to test hypoth-
eses drawn from theory and previous research. Model modifications to remove statistically 
nonsignificant paths are not theoretical; instead, they are based on the data themselves. They 
should not be accorded the same weight as theoretically derived model modifications until 
they are tested against new data. If you do a lot of data-based model revisions, you should 
recognize that you are conducting exploratory, rather than theory testing, research.

To reiterate, our rule of thumb is that if Δχ2 is statistically significant it means that the 
more parsimonious model has a statistically significantly worse fit than does the less parsi-
monious model. If you use this methodology, you would then reject the more parsimonious 
model in favor of the less parsimonious one. If, on the other hand, the Δχ2 is not statistically 
significant, then this means that the two models fit equally well (within a reasonable margin 
of error). Because we value parsimony, in this case you would reject the less parsimonious 
model in favor of the more parsimonious one.

Table 13.4 also includes one more fit index that can be used to compare competing mod-
els. The Akaike Information Criterion (AIC) is a useful cross-validation index in that it tends 
to select models that would be selected if results were cross-validated to a new sample (Loeh-
lin, 2004). Another useful feature of AIC is that it can be used to compare competing models 
that are not nested. Smaller values of AIC are better, and thus if we use the AIC to compare 
the models in Table 13.4, we will continue to favor the initial model over its competitors. 
Another, related measure is the Bayes Information Criterion (BIC in the Amos output); the 
BIC includes a stronger adjustment for parsimony than does the AIC. Another, related index 
that I currently use is the sample size adjusted BIC, the aBIC. Its parsimony adjustment is 
between that of the AIC and the BIC. The aBIC is not currently computed in Amos but is 
relatively easy to calculate using other fit information provided. See, for example, David 
Kenny’s web site (http://davidakenny.net/cm/fit.htm). The Amos manual shows how to cal-
culate the fit indices used in that program. aBIC is produced in Mplus.

The table shows the values for the RMSEA, along with its 90% confidence interval. 
These values can also be used to compare competing models either informally, by choos-
ing the model with the lowest RMSEA, or more formally, by comparing the point value for 
one model with the 90% CI for another model. Using either approach, we will favor the ini-
tial model as being better fitting than the no-homework-effects model and more parsimoni-
ous (but equivalent fitting) compared to the background effect model. Some researchers also 
use the CFI to compare competing models in tests of invariance (e.g., Cheung & Rensvold, 
2002; see chapter 19).

I currently use Δχ2 as my primary index for comparing competing models if these mod-
els are nested and given a reasonable sample size (say 150 to 1000). For nonnested models, 
the AIC and aBIC have worked well in my experience. 

MORE COMPLEX MODELS

Equivalent and Nonequivalent Models

Equivalent Models

We saw in Chapter 12 that with just-identified models path directions could be reversed, 
leading to very different conclusions, without any warning that one model was correct and 
the other incorrect. In other words, these models (e.g., Figures 12.3 and 12.7) are equivalent; 
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we cannot differentiate them by their fit. This makes sense, because just-identified models fit 
perfectly, and thus we cannot differentiate them by their fit.

We have seen in this chapter that one advantage of overidentified models analyzed 
through SEM programs is that they provide measures of fit of the model to the data. We can 
use these fit indexes to compare models, to reject those that fit less well and tentatively accept 
those with better fit. What may not be obvious is that it is also possible, in fact likely, to have 
equivalent overidentified models. Equivalent models are those that produce the same fit sta-
tistics as the original model and thus cannot be differentiated from that model based on fit. It 
is often possible to reverse a path or to replace a path with a correlation without any change 
in the fit of the model. For example, Figure 13.13 shows the results of an analysis in which the 
path from Homework to Previous Achievement was reversed (compared to Figure 13.8). As 
can be seen in Figure 13.13, the χ2, df, and RMSEA are all the same as in the initial analyses of 
this model (Figure 13.11; and although not shown, the rest of the fit indexes are also identi-
cal). The two models, with the path between Homework and Previous Achievement drawn 
in opposite directions, are statistically equivalent and cannot be differentiated. There are, in 
fact, numerous equivalent models to most target models, and you should consider them as 
you focus on a particular model.

Stelzl (1986) and Lee and Hershberger (1990) provided rules for generating equivalent 
models. The main gist of these rules is summarized briefly here. For this presentation, I have 
assumed that the beginning models are recursive.

1. For a just-identified model, a path from a to b (symbolized as ) may be replaced by 
a path from b to a ( ) or by a correlation between a and b (if a and b are exogenous). 
Endogenous variables may not have simple correlations, but their disturbances may be 
correlated.5 Thus, a path from endogenous variable a to endogenous variable b may be 
replaced by a correlation between the disturbances of a and b (I will symbolize both 
types of correlations by for this  discussion). All these possibilities are equivalent, 

Figure 13.13 An equivalent model. Note that the Previous Achievement to Homework path is reversed, 
but the fit indexes are identical to those of the initial Homework model.
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meaning you can also replace  with . This is simply another way of stating that 
all just-identified models are statistically equivalent because they all fit the data perfectly.

2. More importantly, for overidentified models, portions of these models may be just 
identified. For the just-identified portions of models, these same rules apply. That is, 
you can replace  by  or by  (or vice versa), and the model will be equiva-
lent. So, for example, in Figure 13.13 the model is just-identified through the variable 
Homework. This is why we can reverse the Homework–Previous Achievement path 
and still have an equivalent model.

3. For portions of the model that are overidentified, if a and b have the same causes,  
(a path from a to b) may be replaced by  or by . Thus, for the model in Figure 
13.7, reversing the path from Homework to Grades will not result in an equivalent 
model, because the two variables do not have the same causes.

4. For portions of the model that are overidentified, when a and b do not have the same 
causes, the substitutions are slightly more complex. A path from a to b may be replaced 
by  if the causes of b include all the causes of a. You could not replace the path 
from Homework to Grades with a correlated disturbance between d2 and d3 because 
the causes of Grades do not include all the causes of Homework. Ethnicity and Fam-
ily Background are influences on Homework but not Grades. In addition, correlated 
disturbances can be replaced by a path from a to b if b includes all causes of a.

Figure 13.14 shows several equivalent models to our original Homework model (from 
Figure 13.7, also shown as model A in Figure 13.14). Make sure you understand why each is 
equivalent to the original model. It is worth noting that these rules can be applied repeatedly, 
which is how the final model (model F) is derived. The derivation of each model is explained 
in note 6.6

It should be obvious from a study of Figure 13.14 that the presence of equivalent models 
may threaten the causal conclusions from our research. If all these models are statistically 
equivalent to our preferred model, how can we assert, for example, that Previous Achieve-
ment affects Homework, rather than Homework affecting Previous Achievement? I encour-
age you to generate and consider alternatives to your model of choice. You may discover 
alternatives that make as much sense as your original model, or you may begin to feel more 
comfortable with your initial model. It is certainly better to consider equivalent models and 
either revise your models or defend your reasoning prior to publication rather than after! 
But, in reality, the answer to the threat of equivalent models is the same as the method of 
devising strong models to begin with: consider logical and actual time precedence, build in 
relevant theory and research, and carefully consider the variables involved.

What should we do, however, when equivalent models remain plausible even after such 
considerations? As we will see, one possible solution is to devise nonequivalent models that 
evaluate the different possibilities; another possibility is the use of longitudinal data. 

The Lee and Hershberger rules apply to portions of nonrecursive models as well, but the 
rules presented here will cover most models of interest in this text. See Lee and Hershberger 
(1990) for more information; the rules are also summarized and well illustrated by Her-
shberger (2006) and by Kline (2011). MacCallum, Wegener, Uchino, and Fabrigar (1993) 
illustrated problems that arise from not considering equivalent models.

Directionality Revisited

If some overidentified models are equivalent, it follows that some overidentified models are 
not equivalent and that we can use the same rules to generate nonequivalent models. These, in 
turn, may help us deal with one problem we encountered with simple just-identified models: 
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Figure 13.14 Equivalent models. All the models are equivalent to Model A and cannot be differenti-
ated from it based on fit.

uncertainty concerning causal direction. As you will see, although the problem of equivalent 
models is a danger to SEM interpretation, an understanding of the rules of equivalent models 
can lead to the development and testing of nonequivalent models, which can be a blessing.

Figure 13.15 shows one more version of the homework model, one in which the path 
from Homework to Grades is reversed, replaced by a path from Grades to Homework. This 
direction does not make sense based on time precedence (Homework includes information 
from 8th and 10th grades, whereas Grades are from 10th grade). Still, as demonstrated in 
Chapter 12, if we estimate a just-identified version of this model, there will be nothing in our 
analysis to tell us that it is incorrect. The current version is overidentified. More importantly, 
this model is not equivalent to the original model. Grades and Homework do not have the 
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same causes (rule 3), and thus the reversal of the path does not result in an equivalent model. 
If the models are not equivalent, does that mean that the fit indexes may help spot the error 
in our model? In a word, yes. 

Figure 13.16 shows the solved “wrong direction” model with a few of the relevant fit 
indexes. Note that if we look at the RMSEA (or other stand-alone fit indexes), this model 
will be deemed acceptable. Of more interest, however, is to compare this model with the 
initial “correct” homework model. We can’t use Δχ2 because the two models are not nested; 
you cannot arrive at one by deleting paths from the other. Indeed, the models are equally 
parsimonious (they have the same df). We can still use the AIC to compare nonnested mod-
els, however. As you can see, if you compare the AIC from Figure 13.16 with the fit indexes 
for the original model (shown in Figure 13.11), the AIC for the original model is smaller. 
The rule of thumb for AIC is to favor the model with the lower value; we would thus favor 
the original model over the model with the Homework–Grades path drawn in the wrong 
direction. The judicious use of nonequivalent models may indeed help us answer nagging 
questions of directionality!

You may wonder why this should work. Recall the genesis of the fit indexes: a comparison 
of the actual correlation–covariance matrix with the matrix implied by the model. Quite 
simply, Figure 13.16 implies a slightly different covariance matrix than does the model 
shown in Figure 13.8, and the matrix implied by the model shown in Figure 13.8 comes 
closer to the actual matrix.

Practically, the easiest way to develop such nonequivalent models is to include variables 
that uniquely cause one of the variables in question. That is, include variables in the model 
that are influences of the presumed cause but not the presumed effect and variables that 
are influences on the presumed effect but not the presumed cause. In other words, include 
some relevant noncommon causes in the model. Thus, although we saw in Chapter 12 that 
noncommon causes are not required for the model to be valid, we now see they may help 
in dealing with other problems. Likewise, intervening (mediating) variables can help in the 
development of nonequivalent models and thus may be valuable for this purpose as well.
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Figure 13.15 Reversing the Homework to Grades path results in a nonequivalent homework model.
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Nonrecursive Models

Another advantage of SEM programs is that they can be used to analyze nonrecursive models, 
or models with feedback loops. Suppose you were interested in the influences on partners’ lev-
els of trust in marriage and other close male–female relationships. It makes sense that my level 
of trust in my wife may be affected, in part, by my own personal and psychological character-
istics. My trust may also be affected by my wife’s level of trust in me, however, and vice versa. 
If I trust my wife more, she will likely trust me more, and so on. Trust likely has reciprocal 
effects. Your theoretical model might look something like that shown in Figure 13.17. The 
model posits that one’s trust in his or her partner is affected by one’s own characteristics (self-
esteem and perception of the partner’s desire for control), as well as by the partner’s own level 
of trust. This model is a smaller version of one posited and tested by John Butler (2001).

Recall that the tracing rule does not work with nonrecursive models but that we can 
develop formulas for the paths using the first law of path analysis. If you develop equations 
for the model shown in Figure 13.17, you find that, unlike recursive models, the formulas 
no longer are equivalent to those for regression coefficients from multiple regression. This is 
simply a convoluted way of saying that with nonrecursive models you cannot use ordinary 
multiple regression to estimate the paths.

It is possible, however, to use SEM programs to estimate models such as those shown in 
Figure 13.17. Some results of such an analysis are shown in Figure 13.18; they suggest that 
each partner’s trust is indeed affected by the other’s trust. Self-Esteem had a positive effect 
on Trust, and Perception of Control had a negative effect, although the relative magnitudes 
of these effects were different for men and women. You will have a chance to return to this 
model in the exercises. (The data that produced these results are simulated because the origi-
nal article did not include the correlation or covariance matrix. These simulated findings are 
consistent with those of the original article, however.)

I have presented this model as an example of the use of nonrecursive models to answer 
questions in which we expect there to be reciprocal effects. These are common in analyses 

Ethnicity

Family
Background

Previous
Achievement

Homework

Grades

.49

.16
.14

–.03

.4
2

.20

.30

d1

d2

d3

.1
7

 Chi-Square = 4.614
 df = 2
 RMSEA = .036
 AIC = 30.614

Figure 13.16 The nonequivalent homework model demonstrated a worse fit to the data.
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of data from couples or other pairs of people. One of the best-known nonrecursive models, 
extensively analyzed and used as an example in many SEM manuals, was devised by sociolo-
gist Otis Dudley Duncan and colleagues to estimate the effects of friends on each other’s 
occupational and educational aspirations (Duncan, Haller, & Portes, 1971). As you might 
expect, nonrecursive models are also used to settle questions of causal sequence (e.g., Reib-
stein, Lovelock, & Dobson, 1980).

Nonrecursive models are considerably more complex than this simple overview, however, 
and are beyond the scope of this book. If you are interested in pursuing nonrecursive models, 

Figure 13.17 Nonrecursive model to test the reciprocal effects of partners’ trust in each other.
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Figure 13.18 Standardized solution, partner trust model. The data are simulated, but based on 
research reported by Butler (2001).
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you will need to study such models in considerably more depth. Kline (2006) and Loehlin 
(2004) provide a more detailed introduction, Rigdon (1995) presents a detailed discussion of 
identification issues for nonrecursive models, and Hayduk (1996) presents interesting issues 
related to nonrecursive models.

Longitudinal Models

Another method of answering questions about the reciprocal effects of variables on one 
another is through longitudinal models. Indeed, if you focus on our homework models, 
you will see that they take advantage of this technique. These models focus on the effects of 
homework on learning in later grades (subsequent GPA), while controlling for achievement 
in an earlier grade (Previous Achievement in 8th grade).

Do job stress and emotional exhaustion (or burnout) have reciprocal effects? Figure 13.19 
shows a longitudinal model designed to answer this question for physicians surveyed in the 
United Kingdom (McManus, Winder, & Gordon, 2002). The physicians were surveyed in 
1997 and again in 2000; the variables in the model should be self-explanatory. The data 
(stress burnout longitudinal.xls) and this model are on the Web site (stress burnout longi-
tudinal 5.amw).

The model is barely overidentified (with 1 df); there is no path from Personal Accomplish-
ment at time 1 to Stress at time 2. The results suggest that Stress and Emotional Exhaustion 
indeed have reciprocal effects. Stress increases Exhaustion, which, in turn, increases subse-
quent Stress. It is worthwhile to compare this model to one in which it is assumed that Stress 
affects future Stress only via the indirect effect through Exhaustion (full mediation).

Longitudinal models can also help bolster the reasoning behind the paths we draw, even 
in the presence of equivalent models. If Emotional Exhaustion is measured in 1997 and 
Stress in 2000, it is easier to argue that the proper direction is from Exhaustion to Stress than 
if they are measured concurrently. Still, I don’t want to oversell the ability of nonrecursive 
and longitudinal models to answer questions about the direction of influence; the results are 

Figure 13.19 Reciprocal effects of Stress and Emotional Exhaustion, estimated via longitudinal data. 
The model is based on research with physicians (McManus et al., 2002).
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not always as clear as we would like them to be. I have provided fairly clean and clear-cut 
examples here to illustrate the possibilities.

Figure 13.20 shows a special type of longitudinal model known as a panel model. A panel 
model has the same set of two or more variables measured two or more times. It is often used 
to test questions of reciprocal causation or settle issues of causal predominance. The model 
shown could be tested with the NELS full data (including the 12th-grade data, not included 
in our NELS subsample). Note that the Achievement tests (the same or similar tests) and 
the self-concept measure are administered three times; the model, as shown, has 21 df. If the 
results of the analysis showed a substantial effect from Achievement at every time period to 
Self-Concept at the next but not the reverse (Self-Concept not affecting Achievement) then 
we would feel more comfortable in specifying a path from Achievement to Self-Concept in 
subsequent cross-sectional or longitudinal research. Note the correlated disturbances for the 
two variables of interest in 8th grade. In this case, the correlated disturbance may serve two 
purposes: it can take into account that we have not specified any effects between Achieve-
ment and Self-Concept at Grade 8 (perhaps additional correlated disturbances are needed 
at the other time points?), and that there may be other common causes of these variables 
that we have not considered. The time lag between measures in panel and other longitudinal 
model eases our concerns about specifying a causal direction, but keep in mind that the lag 
needs to be long enough for the causal process to have worked. For more information about 
longitudinal models, in general, and panel models, in particular, see Little, 2013.

ADVICE: MR VERSUS SEM PROGRAMS

We have seen that with just-identified models SEM programs provide the same information 
for a path analysis as we get with multiple regression programs. With overidentified models, 
however, there are advantages in using SEM programs. If you have a choice, which should 
you use? Here’s my advice:

1. If you plan to analyze a single, just-identified recursive model, either MR or a dedicated 
SEM program will work just fine.
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Figure 13.20 Potential longitudinal panel model designed to determine the extent of the effect of self-
concept on achievement, and vice versa.
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2. If you plan to analyze an overidentified model or compare several competing mod-
els, use a SEM program. If you plan to analyze a nonrecursive model, use a SEM 
program.

3. If you are using a MR program to conduct a path analysis, there is no real benefit in 
specifying overidentified models. Instead, what I suggest is a more qualitative evalu-
ation of fit. By this I mean that prior to analysis you should try to predict, based on 
previous research and theory, which paths will be close to zero, which should be large, 
which should be positive, which should be negative, and so on. I’m not suggesting that 
you necessarily need to make these as formal predictions, but you should spend some 
time thinking about what you expect each path to look like. After conducting the analy-
sis, see how your predictions fared. If the paths you thought should be close to zero 
were, in fact, close to zero, and so on, you can have much more faith that your model 
may be a faithful approximation of the way the phenomenon you are studying actually 
works. If, on the other hand, many of your predictions were wrong, you should be more 
cautious in your interpretation and should rethink you model and double-check your 
analyses.

4. If you are using a SEM program to conduct a path analysis, it is worthwhile to try to 
specify overidentified models rather than just-identified models. Again, spend some 
time comparing your model to what you know based on theory and previous research. 
Are there paths that you can set to zero based on such information? If so, delete them 
from your model (you can always test these no-effect hypotheses in subsequent mod-
els). Again, it is preferable to specify these no-effect hypotheses prior to analyzing the 
data, rather than after running a just-identified model and noting which paths were 
statistically nonsignificant. If you are using a SEM program, you should also consider 
the substantive hypotheses you can test by comparing competing models.

ADVICE: MEASURES OF FIT

If you are using a SEM program to conduct path analysis (or CFA or latent variable SEM) 
you should strive for overidentified models and use the fit information to evaluate the mod-
els and to compare competing models. It is with some trepidation that I write this section 
attempting to consolidate and expand my earlier advice on fit indices. Quite simply, given 
the number of model characteristics (e.g., sample size, number of variables, degrees of free-
dom, model misspecification, and unique variances) my advice will often be wrong. But if 
you are a beginner, you need to start somewhere. Please also see the caveats at the end of 
this section.

Evaluating a Single Model

As noted earlier in the chapter, I have found RMSEA, SRMR, CFI, and TLI useful for 
evaluating the fit of a single model, or what I’ve called useful “stand-alone” fit indexes. 
Common criteria for these fit indices are shown in Table 13.5. As noted earlier, these cri-
teria have been generally supported in simulation studies (e.g., Hu & Bentler, 1998, 1999). 
These authors (Hu & Bentler, 1999) recommended using them in combination, such as 
SRMR and CFI. But things are not that simple. More recent research, however, has shown 
potential problems with cut-off criteria for good versus poor fitting models (Chen, Curran, 
Bollen, Kirby, & Paxton, 2008; Fan & Sivo, 2007; Marsh, Hau, & Wen, 2004). Many things 
affect fit indices, so adherence to rigid cutoff criteria simply will not work. For example, 
concerning RMSEA, “The authors’ analyses suggest that to achieve a certain level of power 
or Type I error rate, the choice of cutoff values depends on model specification, degrees of 
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freedom, and sample size” (Chen et al., p. 462). I continue to use the criteria listed in the 
Table but not as a fixed good model/bad model criteria. If all the fit indices look good, I’m 
tentatively OK with a model. If some are good and some are not so good, I try to understand 
why and investigate how the model could be improved. Loehlin likened this approach of 
multiple fit indexes to having multiple watches, each of which may tell you a different 
time (Loehlin, 2004, chap. 2). If the watches are fairly close to one another, you will have 
a pretty good idea of the correct time. If they tell you vastly different times, you’d better 
investigate further.

I have mixed feelings about the use of χ2 as a primary measure of fit for a single model; 
you should realize that other writers are more supportive. Kline, for example, suggests always 
reporting χ2 and its associated df and p, and for models with a statistically significant χ2, 
carefully examining the residual correlation matrix for the sources of misfit. I am less enam-
ored with χ2, but that may be because most of my research involves large samples (thou-
sands of cases) and, given that χ2 is so affected by sample size, my χ2s are usually statistically 
significant. But this is not bad advice, especially if you use sample sizes in the 75 to 200 or 
maybe even 400 range (http://davidakenny.net/cm/fit.htm, retrieved April 1, 2014). With 
larger samples, I think χ2 is less useful as a stand-alone measure of fit. And the more general 
point here is even more useful: when fit, as measured by your preferred indexes, is less than 
stellar, then you should investigate further. The residual correlations and the standardized 
residuals (covariances) are an excellent resource for doing so. The modification indices (and 
associated expected parameter change) are also useful (Heene, Hilbert, Freudenthaler, & 
Bühner, 2012); these will be discussed in subsequent chapters.

This difference highlights several important points. First, different writers will empha-
size different measures of fit and will give different advice. Second, knowledge about the 
performance of various fit indexes will increase over time, and common wisdom con-
cerning fit indexes will change over time. If you are to be a responsible user of SEM for 
research, you need to say attuned to new developments. I’ve already noted Kenny’s web 
pages as a good source of current advice; presumably he will continue to update his advice. 
You should also pay attention to the conventions and norms in your own area of research, 
because these will differ from one area to another. Third, you should always keep in mind 
that even when a model fits the data well, that does not mean that the model is correct, 
and that you have found “truth.” There may be alternative models with equivalent or better 
fit. And even if your model beats out all alternatives, it’s just a model; it does a good job in 
explaining the observed relations among the variables you have looked at, and those are 
just a small slice of the infinite number of variables you could have considered. Fourth, 
and very importantly, what you should NOT do is cherry-pick your fit index to support 
the model that you prefer. Although you can change your preferences for fit indices over 
time, that change should be based on knowledge and experience, not the desire to support 
a particular model.

Comparing Competing Models

This lack of concrete, universally accepted rules of thumb concerning what constitutes a 
good model, and the fact that good models are not “correct” models, highlights a fourth 
important point: although stand-alone measures of fit are very useful, it is even better when 
we can compare the fit of alternative, competing models. As already noted, I’ve found Δχ2 
useful for this purpose, when those models are nested, and given reasonable sample sizes 
(say up to 750 or 1,000 or so). Also useful are the AIC and other information criteria indexes, 
and these have the advantage of being usable and useful when models are non-nested. The 
various information criteria indices (AIC, BIC, aBIC) give different rewards for parsimony 
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(Mulaik, 2009 has shown that these parsimony “rewards” depend on sample size, and disap-
pear with large samples). At least in my recent research I have found the aBIC to provide a 
happy medium between too strict versus too forgiving. All of these indexes (AIC, BIC, aBIC) 
are only useful for comparing competing models (they are not used or useful as stand-alone 
indexes), and smaller is better. 

Finally, please recognize that my term “stand-alone” fit index is not common. I think it 
makes sense to talk about stand-alone measures of fit versus measures useful for compar-
ing competing models, but this is not common usage. More commonly, writers will refer to 
measures such as CFI and TLI as incremental or relative fit indexes (because they compare 
the target model with a null model), and measures such as RMSEA, SRMR, sometimes and 
χ2 as absolute fit indexes. Additional categorizations vary from writer to writer. Kenny adds 
the term “comparative fit” indexes for indexes such as AIC that are only useful for comparing 
competing models (http://davidakenny.net/cm/fit.htm, retrieved April 1, 2014), others refer 
to AIC and related measures as information-theoretic measures (e.g., Arbuckle, 2013), and 
so on.

Table 13.5 shows the fit indices we have discussed so far, and their usefulness (in my opinion) 
for evaluating a single model or competing models. Some other indices are included as well.

Table 13.5

Fit Index May be useful for & other notes Common criteria

χ2 Useful as stand-alone measure with 
N = 75 to 400. Tested for statistical 
significance with df

non-significance supports 
the model

Δχ2 Comparing competing, nested models, 
N ≤ 1000

Non-significance supports 
the model with larger df; 
significance supports the 
model with smaller df

RMSEA Stand-alone measure of fit. Can 
calculate confidence intervals around 
RMSEA, and test whether an obtained 
RSMEA is statistically significantly 
different from some value (e.g., .05)

≤ .05 = good fit (close fit)

≤ .08 = adequate fit

≥ .10 = poor fit

SRMR Stand-alone measure of fit. Intuitively 
appealing

≤ .08 = good fit, although ≤ 
.06 may be a better criterion

CFI Stand-alone measure of fit. Some 
research suggests ΔCFI may be useful 
in invariance testing (see Chapter 19)

≥ .95 = good fit

≥ .90 = adequate fit

TLI Stand-alone measure of fit ≥ .95 = good fit

≥ .90 = adequate fit
AIC Comparing competing models—

nested or non-nested
Smaller is better

BIC Same as AIC, but larger reward for 
parsimony

Smaller is better

aBIC Same as AIC, in between AIC and BIC 
in reward for parsimony

Smaller is better
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SUMMARY

We covered a great deal of ground in this chapter; a review is needed. In this chapter we made 
the transition from estimating path models using multiple regression analysis to estimating 
these models with programs specifically designed for structural equation modeling (SEM). 
Several such programs are available, each with its own advantages. Many programs have 
student, or demonstration, versions available, downloadable from the Web; these student 
versions work the same as do the full-featured programs, but generally limit the number 
of variables that can be analyzed. There are SEM modules available for R, the free statistical 
programming language. I have used the Analysis of Moment Structures (Amos) program to 
illustrate SEM programs. The illustrations and explanations should translate easily to other 
SEM programs, and the web site illustrates input and output from several SEM programs.

All our previous discussions of path analysis translate directly to path analysis via SEM 
programs. To illustrate, we re-estimated the parent involvement path model from Chapter 12 
using Amos. One advantage of Amos is that a drawing of a path model is used as the speci-
fication of the model, and the drawing, along with the data, is sufficient for conducting the 
analysis. The input drawing for reanalysis of the parent involvement example was similar to 
the conventions we have used previously for developing path models. The one difference was 
that, by convention, we set the paths from the disturbances to the endogenous variables to 
1, which allowed us to estimate the variance of the disturbance. (In multiple regression the 
variance of the disturbance was assumed to be 1, but the path was estimated.) We will fol-
low this convention with other unmeasured–latent variables as well: setting the scale of the  
unmeasured variable by setting the path from it to one measured variable to 1; this convention 
merely says the scale of the unmeasured variable is the same as that of the measured variable.

Output from the SEM program (in this case Amos) included standardized and unstan-
dardized path models, as well as detailed output. The more detailed output included stan-
dard errors of unstandardized coefficients and their associated t (or z) statistics, as well as 
tables of direct, indirect, and total effects.

Our next example was an overidentified model designed to determine the extent of the 
influence of Homework time on high school Grades. The model did not include all the paths 
that could have been drawn, a specification that is the same as drawing the paths but con-
straining them to a value of zero. The solved model suggested that Homework had a moder-
ate effect on Grades, and Previous Achievement and Family Background had moderate to 
strong effects on time spent on Homework.

In earlier chapters I noted that overidentified models can be used to provide feedback 
about the adequacy of the model. A chief advantage of SEM programs is that they naturally 
provide such feedback. We can solve for paths using covariances, but we can also do the 
reverse: solve for the covariances using the solved path model. When models are overidenti-
fied, these two matrices (the actual and the implied covariance matrices) will differ to some 
degree. Fit statistics or indexes describe this degree of similarity or dissimilarity and provide 
feedback as to the adequacy of the model in explaining the data.

The degrees of freedom for a model describe the extent to which it is overidentified, or 
the parsimony of the model. The Homework model had 2 degrees of freedom; there were 
two paths we could have drawn but did not. The more we constrain values in the model to 
zero (or some other value), the more parsimonious the model and the larger its degrees of 
freedom.

Numerous fit indexes are provided by SEM programs. We focused on the root mean square 
error of approximation (RMSEA) as a primary index of fit for a single model; RMSEAs of .05 
or less suggest a good fit, with values of .08 or less suggesting an adequate fit (cf. Browne & 
Cudeck, 1993). I also discussed using the comparative fit index (CFI), and the Tucker–Lewis 
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index (TLI) as methods of assessing the fit of a single model. For these indexes, values above 
.95 suggest a good fit, and values above .90 suggest an adequate fit. The standardized root 
mean square residual (SRMR) is an intuitively appealing index of fit, and represents the 
average difference between the actual correlations among measured variables and those pre-
dicted by the model; SRMR values below .08 (or perhaps .06) represent a good fit. χ2, along 
with the df and its associated probability, may be used to assess the fit of a model, with sta-
tistically significant values suggesting a lack of fit and statistically not significant values sug-
gesting a good fit of the model to the data. Although common, χ2 has problems as a measure 
of the fit of a single model.

A major advantage of SEM programs and measures of fit is that they may be used 
to compare competing theoretical models. We compared the fit of the initial Homework 
model to several competing models; these comparisons tested basic hypotheses embodied 
in these models. Although I downplayed the use of χ2 as the measure of fit of a single 
model, I argued that if models are nested (one is a more constrained version of the other) 
χ2 can be a useful method of comparing the two models. The more parsimonious model 
(the one with the larger df) will also have a larger χ2. If the change in χ2 is statistically 
significant compared to the change in df, our rule of thumb is to prefer the less parsimo-
nious model; but if the Δχ2 is statistically not significant, our preference is for the more 
parsimonious model. A Δχ2 of close to 4 is statistically significant with 1 df. Other fit 
indexes for comparing competing models are the Akaike Information Criterion (AIC) and 
the sample size adjusted Bayes Information Criterion (aBIC), in which smaller values are 
better.

Although overidentified models allow us to compare competing models, representing 
competing hypotheses about the effects of variables on each other, there may be several or 
many models that are equivalent to our preferred model. These equivalent models may also 
represent competing hypotheses about effects but are statistically indistinguishable from  
our preferred model. I briefly explained and illustrated the rules for generating equivalent 
models, and noted that you should consider such equivalent models as you develop your 
own models. You can guard against the threat represented by equivalent models in the same 
way you build valid models in the first place, through careful consideration of theory, previ-
ous research, time precedence, and so on.

The flip side of equivalent models is that there are other overidentified but nonnested 
models that are not equivalent with the model under consideration. Such models can be 
very useful for testing and rejecting threats to path models. Knowing the rules for generating 
equivalent models also allows us to develop nonequivalent models. We illustrated this value 
by testing a nonequivalent version of the Homework model with the path from Homework 
to Grades reversed.

Other advantages of SEM programs are that they can be used to analyze nonrecursive 
models and can provide for more powerful analysis of longitudinal models. Longitudinal 
data may also be useful for overcoming some challenges posed by equivalent models by 
clarifying causal direction. I briefly illustrated such models but did not delve into them in 
detail.

We now have two methods for analyzing path models: multiple regression analysis via a 
generic statistical analysis program or SEM programs. If you are using MR to conduct path 
analysis, there is no real benefit for developing overidentified models. If you are using a SEM 
program, however, it is worth developing overidentified models when possible, because of 
the fit information the programs provide. Similarly, if you are interested in overidentified 
models, comparing competing models, or in more complex forms of path models, I encour-
age you to use a SEM program to estimate these models.
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EXERCISES

1. Reproduce the Homework models used in this chapter. Make sure your results match 
mine (note there may be minor differences in estimates if you are using programs other 
than Amos). Are there additional models that you might test?

2. Try estimating a similar homework model using the NELS data.
3. In the section introducing overidentifying models, I stated that “not drawing a path 

is the same as drawing a path and fixing or constraining that path to a value of zero.” 
Demonstrate the truth of this statement. Using the homework model, constrain, for 
example, the path from Previous Achievement to Grades to zero and check the fit of 
the model. Now delete that same path. Is the fit the same? Are the parameter estimates 
the same for the two models?

4. Focus on the equivalent models in Figure 13.14. Note the difference between these and 
the initial model (model A). Which rule or rules were used to produce each equivalent 
model? Check your answers against those in note 5. Try estimating one or two of these 
models to demonstrate that they are indeed equivalent.

5. Henry, Tolan, and Gorman-Smith (2001) investigated the effect of one’s peers on boys’ 
later violence and delinquency. Figure 13.21 shows one model drawn from their study, 
their “fully mediated” model. Family Relationships is a composite of measures of fam-
ily cohesion, beliefs about family, and family structure, with high scores representing a 
better functioning family; the violence and delinquency variables are measures of the 
frequency of violent and nonviolent delinquent offenses for peers and individuals. The 
model is longitudinal, with Family Relationships measured at age 12, Peer variables at 
age 14, and Individual variables at age 17. The model is also contained in the file “henry 
et al.amw” on the Web site.

Figure 13.21 One model from Henry et al. (2001).
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 Data consistent with those reported in the original article are in the SPSS file “Henry 
et al.sav” or the Excel file “Henry et al.xls.” Analyze and interpret this model. Which 
variable had a more important effect on boys’ delinquency: peers who are delinquent 
or peers who are violent? Which variable was more important for boys’ violence? What 
were the indirect effects of Family Relationships on Individual’s Violence and Delin-
quency? Test an alternative model to determine whether Family Relationships directly 
affect the outcome variables.
 (The Henry et al., 2001, article reported correlations among variables. The data used 
in this example were simulated data designed to mimic these correlations. The Family 
Relationships variable used here was a combination of three variables from the original 
article.)

6. Estimate the nonrecursive trust model from Figure 13.17. The model (trust nonrecur-
sive model 1.amw) and the data (trust norec sim data.xls) are included on the accom-
panying Web site. Second, assume that the Man’s Trust affects his partner, but not the 
reverse: delete the path from Woman’s Trust to Man’s Trust, along with the correlated 
disturbance. Are these models nested? Why? Compare the fit of the two models. What 
conclusions do you reach from these model comparisons?

7. Exercise 6 in Chapter 4 was “designed to explore further the nature of common causes, 
and what happens when non-common causes are included in a multiple regression. We 
will begin our analysis of these data here, and will return to them in Part 2 when we 
have the tools to explore them more completely.”
 You now have the tools to explore them more completely. To review, there are two 
data files for this exercise, both including variables labeled X1 X2 X3 and Y1. In both 
files, the three X variables are intercorrelated, but variable X2 is not a common cause 
of variables Y1 and X3. For the data in the first file (common cause 1.sav), variable X2 
has no effect on Y1. In the second file (common cause 2.sav), variable X2 has no effect 
on variable X3. 
 Analyze these data using an SEM program. For both data sets, the model you should 
estimate is illustrated in Figure 13.13. Compute and examine the correlations among 
the variables in both data sets. All correlations are statistically significant, correct?
 Now analyze the model shown for both data sets. Notice that for data set 1 the effect 
of X2 on Y1 is essentially zero. For data set 2, what is the effect of X2 on X3? Is X2 a 
common cause of X3 and Y1 in either model? Now notice the effect of X3 on Y1 in 
each model. What should happen to this path when the variable X2 is removed from 
the model?
 Analyze each data set without variable X2 in the model. What happens to the magni-
tude of the path from X3 to Y1?

Figure 13.22 Understanding common versus non-common causes, and their effects on path estimates.
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 Now conduct the same analyses with the data set in “common cause 3.sav.” Note the 
relation of X2 to X3 and Y1. Now take variable X2 out of the model. What happens to 
the path from X3 to Y1?
 Consider what you findings mean concerning the nature of controlling for common 
versus non-common causes.

Notes

1 We could also analyze the NELS raw data, but would then need to consider methods of dealing with 
missing data in more depth than I want to right now. We will return to this issue in the chapter on 
latent means in SEM, Chapter 18.

2 How could you do so? It is fairly easy to do so using the tracing rules. For example, to calculate 
the correlation between Ethnicity and Grades implied by the model, here are the possible tracings 
between Ethnicity and Grades (where represents a path and  represents a correlation):

1. Ethnic  PreAch  Grades + Ethnic  PreAch  Homework  Grades + Ethnic  
Homework  Grades = .20 × .44 + .20 × .22 × .15 + –.04 × .15 = .089, and

2. Ethnic  FamBack × (FamBack  PrevAch  Grades + FamBack  PrevAch  
Homework  Grades + FamBack  Homework  Grades) = .30 × (.42 × .44 + .42 ×  
.22 × .15 + .17 × .15) = .067.

 When added together, these equal .156, the implied correlation between Ethnicity and Grades. 
Another way to think about this is that the tracings listed under 1 are the total effects of Ethnicity 
on Grades, and those listed under 2 are the total effects of Family Background on Grades, times the 
correlation of Ethnicity and Grades.

3 I know properly it should be chi-squared, but, by convention, it’s chi-square.
4 For example, type the χ2 and df into two cells in Excel. Click on another cell, then Insert, Function. 

Click on CHIDIST and follow the directions to obtain the probability associated with χ2 with the 
indicated df.

5 What do correlated disturbances mean? Focus on model C in Figure 13.14, which shows a corre-
lated disturbance between d1 and d2. The disturbances represent all other influences on the cor-
responding variables other than those shown in the model. The correlation between d1 and d2 in 
this model suggests that the other influences (other than Ethnicity and Family Background) on 
Previous Achievement and Homework may be correlated. What this means, in turn, is that there 
may be other common causes of Previous Achievement and Homework not included in the model. 
Correlated disturbances can also be used to denote an agnostic causal relation; that is, we think that 
Previous Achievement and Homework are causally related but don’t know the direction. As shown 
in Appendix C, one helpful way of thinking about partial correlations is that they represent the cor-
relation between disturbances.

6 Model B and Models C and D resulted from the application of rule 2. Model E, with the paths 
between Homework and Ethnicity and Homework and Family Background reversed, also resulted 
from the application of this rule. Model F builds on Model E. Note that with model E Homework 
and Grades now have the same causes. We can therefore apply rule 3 to Model E and reverse the 
path from Grades to Homework. It may not be obvious, but Models E and F are nonrecursive 
models. Note that in Model F, for example, Homework affects Background, which affects Previous 
Achievement, which affects Homework, and so on.
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Recall the assumptions required to interpret regression coefficients (paths) as estimates of 
effects of one variable on another:

1. There is no reverse causation; that is, the model is recursive.
2. The exogenous variables are perfectly measured, that is, they are completely reliable 

and valid.
3. A state of equilibrium has been reached. This assumption means that the causal process 

has had a chance to work.
4. No common cause of the presumed cause and the presumed effect has been neglected; 

the model includes all such common causes (Kenny, 1979, p. 51).

We have dealt with several of these assumptions, such as the effect of neglecting a com-
mon cause, and I promised we would return to assumption 2: the assumption of perfect or 
near perfect measurement of the exogenous variables. Obviously, this assumption is violated 
routinely—perfect measurement is rare to impossible—but what effect does this violation 
have on our research? In addition, inaccurate measurement of the endogenous variables also 
affects estimates in path models.

It is worth noting that issues of reliability and validity of measurements affect all research, 
not just that based on path analysis and multiple regression. Many of us think of measurement 
as separate from statistics, but they are inexorably intertwined. In a laboratory experiment 
our experimental conditions (the exogenous variable) may be clear-cut and thus perfectly 
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measured (e.g., treatment versus control), but the dependent (endogenous variable) (e.g., a 
measure of self-esteem) may be considerably less reliable. This lack of reliability may result in 
an underestimation of the effect of the experimental treatment, with even a truly meaningful 
finding showing up as statistically nonsignificant. In applied research, there may be variations 
in the treatments by those responsible for providing the experimental treatment. Teachers in an 
experiment designed to compare the effects of two methods for teaching reading may use other 
methods outside the experimental procedure. This variation is, in fact, unreliability and inva-
lidity in the independent (exogenous) variable, which will also cloud the results of the research. 
In fact, the effect of measurement on decision making affects every aspect of life. Your physician 
may prescribe or not prescribe medication for high blood pressure depending on her measure-
ment of your blood pressure; if her measurements are unreliable, however, you may receive 
unnecessary treatment or not receive needed treatment. You may have costly repairs completed 
on your car based on unreliable measurement, and so on. Measurement accuracy affects all 
research and all decisions made from these measurements. Why, you may wonder, does it?

EFFECTS OF UNRELIABILITY

The Importance of Reliability

In classic measurement theory, we might administer a test, or survey, or other measurement 
to a group of people. There will be variation in their scores; some people will score high, 
some low. We also know that there will be error in their scores; all measurement involves 
error. This aspect of scores is represented in Figure 14.1. V represents the total variation in 
a set of scores on some measurement. This total variance can be divided into variation due 
to error (Ve) and true score variation (Vt): V =Vt + Ve. Using this definition, reliability is the 

proportion of the true score variance to the total variance: V
V

t . This makes sense: the greater 
the error in a set of scores, the less a person’s score on that measure is a result of true varia-
tion and the less reliable the measurement.

Figure 14.2 illustrates the effects of unreliability in path analytic format. In this graphic, a 
person’s score on any measurement is affected both by the person’s true score and by errors of 

Total   Variance (V)

Vt Ve

Figure 14.1 Variance definition of reliability. Reliability is the proportion of true score variance to 
total variance (

V
V

t ).

Figure 14.2 Path analytic definition of reliability; a person’s score on a test or measurement is affected 
by their true, but unknown, score and by error.

Score

Error

True
Score
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measurement. In this graphic, error is equivalent to Ve and the true score to Vt. Note that the 
actual, measured score is the only measured variable in this model; both the true score and 
the error are unmeasured and unknown.

The reliability of a test, scale, survey, or other measure places an upper limit on the cor-
relation that the measurement can have with any other measurement. As a general rule, a 
second variable will correlate with the measured score through correlation with the true 
score. That is, other variables will generally correlate with the Vt portion of the variable 
illustrated in Figure 14.1, not the Ve portion. This, then, is the reason that measurement 
quality affects statistics and research: a less reliable measurement limits the correlations a 
variable can have with any other variable. Since correlations are the statistic underlying mul-
tiple regression, path analysis, ANOVA, and other derivatives of the general linear model, 
unreliable measurement causes us to underestimate the effects of one variable on another in 
all these methodologies.

Effects of Unreliability on Path Results

What effect does measurement error have on path analytic results? Figure 14.3 shows the 
results for the homework model from Chapter 13. In this model, whether we realize it or not, 
we are assuming that all the variables in the model are measured without error, with perfect 
reliability. As researchers, we may recognize that the variables in the model are measured 
with different degrees of error, but the model assumes they are all error free.

Focus on the variable of homework. Homework is based on student self-report of the 
average amount of time students spend on homework in several academic areas. Undoubt-
edly, error is inherent in this variable, not only because of the self-report nature of the ques-
tions, but also because, perhaps more importantly, students were asked to approximate their 
average amount of time per week. I would not be surprised to discover that this variable had 
a reliability of only about .70, with a corresponding error of 30%. If we build such estimates 
into the path model, what will be the effect on the estimates of paths?

Figure 14.3 Homework model from Chapter 13 revisited.
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Figure 14.4 shows a model that recognizes this unreliability (reliability = .70, error = .30) 
in the Homework variable. Note the increase in the apparent effect of Homework on Grades, 
from .15 in Figure 14.3 to .19 in Figure 14.4. What this means is that when we assumed that 
the error-laden Homework variable was perfectly reliable, as in Figure 14.3, we underesti-
mated the true effect of Homework on Grades. In contrast, when we recognize the error 
inherent in this variable, we obtain a more realistic and larger estimate of the effect. This is 
also the most common effect of error in models: unreliability artificially reduces our esti-
mates of the effects of one variable on another.

Note also that many of the other paths in the model are different from those in Figure 
14.3. Indeed, all paths to Homework increased in magnitude, and the path from Achieve-
ment to Grades decreased slightly. Recognition of the error that exists in the Homework 
variable resulted in changes in many of the paths in the model.

But Homework is not the only less than perfectly reliable variable in the model. What 
about Grades? Grades were also based on student self-report, plus there are well-known 
problems with Grades as measures of student learning, including variations in grading stan-
dards from teacher to teacher, the unreliability of teacher-made tests and other components 
of grades, and the likely clouding of other variables (e.g., students’ apparent interest) in 
teachers’ grading practices. Given these deficiencies of Grades, it is probably reasonable to 
estimate their reliability at a maximum of .80 (and 20% of the variation in scores due to 
error).

Figure 14.5 shows the results of recognition of this level of error for the Grades variable 
(assuming perfect reliability for the other variables in the model). In this model, compared 
to Figure 14.3, the magnitude of the paths to Grades from both Previous Achievement (from 
.44 to .50) and Homework (from .15 to .17) increased. 

Although it is not obvious from these figures, the effects of unreliability are different 
depending on whether the variable in question is exogenous or endogenous. Briefly, error 

Figure 14.4 Effects of error. This model recognizes and accounts for the unreliability in the Home-
work variable; with this recognition, the apparent effect of Homework on Grades increases.
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in an exogenous variable affects both the standardized and unstandardized paths, as well as 
their statistical significance. Paths from other exogenous variables (in addition to the error 
laden one) may be affected. In contrast, error in an endogenous variable affects only stan-
dardized estimates of effects, leaving unstandardized effects unchanged. The unstandard-
ized paths for the model shown in Figure 14.5 would be the same as those for the model 
shown in 14.3, despite the differences in the standardized paths. This difference is why error 
in exogenous variables is more consequential than error in endogenous variables. When a 
variable is in the middle of a model—exogenous in relation to some variables, endogenous 
for others—the results of error are more complex, as in the example recognizing error in 
Homework (Figure 14.4). The bottom line is that measurement error affects estimates of 
effects, but is more serious for exogenous variables [for more information, see Bollen, 1989 
(chap. 5); Rigdon, 1994; or Wolfle, 1979].

These examples have corrected for unreliability in a single variable. What would happen 
if we were to recognize the unreliability in all the variables in the model? If you think about 
it, all the variables in the model are unreliable to one degree or another. Even Ethnic orienta-
tion, probably the most reliable variable, likely has some error. Students may not read the 
survey question accurately, students who could legitimately claim to belong to more than 
one ethnic group are allowed only one answer, some students simply knowingly mark the 
wrong response, and there may be errors in coding of students’ responses. For whatever the 
reason, even this variable likely includes some error.1

The model shown in Figure 14.6 attempts to recognize the error inherent in every vari-
able in the model. For this example, I assumed that error was responsible for 30% of the 
variability for Homework, 20% for Grades, 5% for Ethnicity, 20% for Family Background, 
and 10% for Previous Achievement. These are plausible estimates. Note that every parameter 
estimate in the model changed from those shown in Figure 14.3. Most estimates increased 
in magnitude, but one, the path from Ethnicity to Previous Achievement, decreased (from 
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Figure 14.5 Effects of error. This model shows the result of recognizing the error inherent in the 
Grades variable.
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.20 in Figure 14.3 to .17 in Figure 14.6). Recognition of the error inherent in the variables in 
our models will often, although certainly not always, result in larger estimates of the effects 
of one variable on another. With such complex patterns of errors, estimates may increase, 
decrease, or stay the same.

These examples illustrate the effects of measurement error on estimates of the influence of 
one variable on another in path analysis (as well at MR, ANOVA, etc.). What can researchers 
do to avoid misestimating such effects? We can strive for better measures, but no measures 
are error free. We could also correct the correlations for all the variables in the model using 
estimates of each variable’s reliability and the common formula for correcting for attenua-
tion, r r r rT T1 2 12 11 22= ×/ , where rT T1 2

 is the corrected, or “true” correlation, r12 is the original 
correlation, and r11 and r22 are the reliabilities of the two variables. This solution is not very 
satisfying for several reasons. First, it divorces the correction from model testing; indeed, the 
process smacks of statistical voodoo. Second, when there are multiple estimates of reliability, 
such as with several studies providing estimates, it is unclear which estimate should be used. 
Conversely, no estimates of reliability may be available for a given measure. Finally, although 
this method might deal with unreliability of measures, it ignores problems of invalidity.

EFFECTS OF INVALIDITY

The Meaning and Importance of Validity

What effect does invalidity have on estimates of effects? In classic measurement theory, 
validity may be considered as a subset of reliability. An example will illustrate how these 
measurement concepts are related. Suppose that you are interested in the effects of reading 
comprehension on subsequent delinquent behavior. One task is to measure reading compre-
hension. You will find that different tests of reading comprehension use different methods of 
measurement. Test 1, for example, asks research participants to read a passage on one page 

Figure 14.6 Effects of error. This model recognizes the error inherent in all the variables in the model. 
Compare the coefficients here with those shown in Figure 14.3.
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and then point to one picture (out of four choices) on the next page that best illustrates what 
they read in the passage. Test 2, in contrast, asks participants to read a passage (e.g., “stand 
up, walk around the table, then sit down”) and then do what the passage requested. Test 3 
uses a “cloze” procedure; the participant reads a passage with one or several words missing 
and then supplies the missing words based on the meaning of the text.

It is clear that each of these tests measures reading comprehension to some degree. But 
each test also measures something else, something other than reading comprehension. Test 1 
also measures the ability to translate something read into a picture; Test 2 measures the ability 
to act out something read; Test 3 measures the ability to pick from one’s knowledge store the 
word or words that will make the most sense when inserted in a passage. Each test may mea-
sure these unique skills reliably, but these skills are not the same as reading comprehension.

We are also not interested in the variation in scores due to these unique skills. We are 
interested in the effects of reading comprehension on delinquent behavior, not the effects 
of the ability to translate text into mental pictures (Test 1) or the unique skills measured 
by other tests on delinquent behavior. This variation due to these unique skills will not be 
removed through correction for attenuation, however, because these skills are measured reli-
ably and are not due to error.

As shown in Figure 14.7, it is possible to extend the earlier variance definition of reliabil-
ity. The true score variation (reliability) can be divided further. Using the reading compre-
hension example, one component of the true score variation for each test is the variance that 
these three tests have in common, the common variance, or Vc. What do the three Reading 
Comprehension Tests measure in common: reading comprehension! Each test also measures 
something unique or specific, however, and this component of the true score reliability is 
symbolized as Vs, for specific variance. The common variance, Vc, is an estimate of the valid-
ity of each test and thus demonstrates that validity is a subset of reliability. The Vs, the unique 
or specific variance of each test, is sometimes called the specificity, or the unique variance. 
For our present purposes, it represents invalidity and needs to be taken into account in our 
research on the effects of reading comprehension on delinquent behavior. 

Accounting for Invalidity

How can we take this invalidity into account? Another way of conceptualizing the problem is 
as a path model, as shown in Figure 14.8. The diagram illustrates the influences on individu-
als’ scores on the three Reading Comprehension Tests. Each person’s score on each test is first 

Figure 14.7 True score variance may be further subdivided into common variance (Vc) and specific or 
unique variance (Vs). Validity is related to common variance.

Total   Variance (V)
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affected by his or her level of reading comprehension. Reading Comprehension—the true 
level of reading comprehension—is an unmeasured or latent variable and is thus enclosed in 
an oval. Each person’s scores on each test are also affected by error (unreliability) and by that 
person’s level of the unique skills measured by each test (one’s ability to translate text into 
pictures, and so on). These are also unmeasured variables. Our primary interest, of course, is 
in the Reading Comprehension latent variable. 

Figure 14.8 is just another path model, and we can solve it in much the same way we 
solved the path models in Chapter 11. Figure 14.9 shows a slight revision of the model, with 
the error and unique variances combined for each variable and the paths labeled to help 
develop equations. Figure 14.10 shows the correlations among the three tests. As in Chap-
ter 11, we can use the tracing rule to develop equations:

r12 = ab,
r13 = ac, and
r23 = bc.

Figure 14.8 Using path models to understand validity. Individuals’ scores on three tests of Read-
ing Comprehension are affected by their true level of Reading Comprehension and by error and the 
unique aspects of each test.
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Figure 14.9 Reading Comprehension measurement model; we can generate equations to solve for the 
paths from Reading Comprehension to the three Tests.
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If we combine the first two equations, we get r12r13=abac, which can be simplified as 
a2bc = r12r13, or a2 = r12r13 /bc. Because bc = r23 from the third equation, a2 = r12r13 /r23 and 

a r r r= 12 13 23/  We can also solve for b and c: b r r r= 12 23 13/  and c r r r= 13 23 12/ . If you substi-

tute the correlations in these equations, a = .716, b = .894, and c = .839. Figure 14.11 shows 
the model with the path estimates inserted.

Interestingly, what we have done by solving for the paths in Figure 14.11 is a simple (con-
firmatory) factor analysis. Figure 14.12 shows output from a factor analysis of these three 
items in SPSS; the factor loadings from the output are the same as the paths from the Read-
ing Comprehension latent variable to the three reading Tests.2 The example nicely illustrates 
the thinking underlying factor analysis: there is a latent, or unmeasured, variable, or factor, 
that affects individuals’ scores on these three Tests and does so to different degrees. The 
example also illustrates the equivalence of several terms. What we have been referring to as 
latent or unmeasured variables are equivalent to the factors from factor analysis. These latent 
variables or factors are also much closer to the constructs we are interested in than are our 
normal, error-laden measurements.

 Our primary interest, of course, was the influence of Reading Comprehension on Delin-
quent Behavior. Because we can solve the model to estimate the Reading Comprehension 
latent variable, we could also use the latent variable in an analysis of the effects of Reading 
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Figure 14.10 Correlations among the three Tests used to solve for the paths.

Figure 14.11 Solved Reading Comprehension measurement model.
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Comprehension on Delinquent Behavior, as in Figure 14.13 (once we were able to measure 
Delinquent Behavior).

LATENT VARIABLE SEM AND ERRORS OF MEASUREMENT

To return to our more general problem, perhaps this means that the solution to the problem 
of less-than-perfect measurement is not to correct all the correlations for attenuation but 
to obtain multiple measures of each construct in our path model, separately factor analyze 
these items, and then use the factor scores in our path analyses, rather than the original items 
or tests. This process will rid our measures of both invalidity and unreliability (because rid-
ding the measure of invalidity will rid it of unreliability) and will allow us to get closer to the 
constructs we are interested in. Although this solution makes sense conceptually, it too has 
drawbacks. The multistep process separates the different factor analyses (the measurement 
model) from the testing of the path model (the structural model). It would be preferable to 
be able to conduct all analyses simultaneously.

This is what latent variable SEM does: it performs confirmatory factor analysis and a path 
analysis of the resulting factors at the same time. In the process, latent variable SEM removes 
the effects of unreliability and invalidity from the estimation of the effect of one variable 
on another. By doing so, the method gets closer to constructs we are really interested in. 
Thus, instead of doing research on the effects of a measure of Reading Comprehension on a 

Figure 14.12 Reading Comprehension measurement model solved via factor analysis. Our measure-
ment model is a (confirmatory) factor analysis.

Factor Matrixa

.716

.893

.839

TEST_1

TEST_2

TEST_3

1

Factor

Extraction Method: Principal Axis Factoring. 
   a. 1 factors extracted. 11 iterations required. 

Reading
Comprehension

Test 1

Test 2

Test 3

error
unique 3

error
unique 2

error
unique 1

Delinquent
Behavior

d1

Figure 14.13 We could use the Reading Comprehension factor, or latent variable, in a structural equa-
tion to more accurately determine the effect of Reading Comprehension on Delinquent Behavior.
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measure of Delinquent Behavior, we can come closer to studying the effect of true Reading 
Comprehension on true Delinquent Behavior. Alternatively, if we are interested in the effects 
of income on job satisfaction, we are not interested in the effects of reported income (the 
number someone reports on a survey) on perceptions of job satisfaction. Instead, we are 
interested in the effects of true income on true job satisfaction. In other words, we want to 
strip away the fog of invalidity and measurement error and get at the true constructs of inter-
est. Likewise, if we are studying the effect of social skills on peer acceptance, we are not really 
interested in the effects of someone’s perceptions of peoples’ social skills on their perceptions 
of acceptance; we are interested in the effects of real social skills on real acceptance. Latent 
variable SEM helps us get closer to this level of analysis.

The Latent SEM Model

Figure 14.14 illustrates a generic latent variable structural equation model. To refresh our 
jargon, latent variables are the same as unmeasured variables or factors. Latent variables are 
inferred from the measured variables, and they more closely approach the constructs of true 
interest in the research. Latent variables are enclosed in circles or ovals. Measured variables 
are also known as observed variables or manifest variables. They are the variables that we 
actually measure in our research through tests, surveys, observations, interviews, or other 
methods. Measured variables are enclosed in rectangles. Scores on a reading test, survey 
items concerning time spent on homework, records of social interactions from playground 
observations, and a count of errors on a computer task are all examples of measured vari-
ables. Actual reading comprehension, time really spent on homework, true social acceptance, 
and actual mental processing speed are the latent variables we hope to determine through 

Figure 14.14 Latent variable structural equation model. The model includes a confirmatory factor 
analysis of the latent and measured variables, as well as a path analysis of the effects of one latent vari-
able on another.
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these measured variables. In research we are almost always interested in the latent rather than 
the measured variables, but we often have to settle for the error-laden measured variables as 
approximations of the latent variables. Not necessarily so with latent variable SEM!

Understanding the Model

The system of paths from the latent to the measured variables is sometimes referred to as the 
measurement model. It is a simultaneous confirmatory factor analysis of all the latent vari-
ables in the model. The system of paths and correlations among the latent variables is often 
referred to as the structural model. You can think of it as a path analysis of the latent variables. 

You may find it confusing at first glance that both the measured variables and the endog-
enous latent variables have smaller latent variables pointing to them, but you will soon see 
that these have previously been defined. Recall that endogenous variables (effects) in a path 
model have latent variables pointing toward them; these latent variables are generally called 
either residuals or disturbances. The disturbances represent all other influences on the endog-
enous variables other than those shown in the model. It is the same with latent endogenous 
variables. We need to account for all other influences on the latent variables besides those 
shown in the model; again we do so with other latent variables known as disturbances or 
residuals. The small latent variables pointing to the measured variables represent the unique 
and error variances that we wish to remove from consideration in the SEM as we focus on the 
true effects of one (latent) variable on another. These unique and error variances are often 
simply referred to as error or occasionally by Greek letters (e.g., theta delta, theta epsilon), a 
convention from LISREL. More generally, both types of variables (errors and disturbances) 
are sometimes referred to as errors.

In fact, you can think of errors and disturbances in the same way. Latent Variable 2 and 
Latent Variable 3 are not the only influences on Latent Variable 4; there may be a multitude 
of other such influences outside the model. Residual/Disturbance 2 represents all the other 
influences on Latent Variable 4 other than those shown in the model. Likewise, Latent Vari-
able 4 is not the only influence on Measured Variable a; unique and error variances also affect 
this and other Measured Variables. “Unique error a” represents these influences. Although I 
will continue to treat disturbances and errors as different, you can thus think of them as “all 
other influences” on the measured and latent variables.

Figure 14.15 shows a latent variable SEM version of the homework model used in the 
last few chapters. Note that each variable in the model, except Ethnicity, was measured via 
multiple measured variables and thus can be estimated by a latent variable. Ethnicity, still 
indexed by a single item, is still a measured variable in this model. We will explore this model 
in more detail in subsequent chapters. What is interesting to note at the present time is that 
the use of latent variables rather than measured variables increased the estimate of the effect 
of Homework on Grades from .15 (from the path analysis) to above .20 (in the latent vari-
able SEM; the value is not shown in the figure). Again, the latent variable analysis has the 
advantage of removing measurement error from consideration in the model and thus getting 
closer to the level of the constructs we are really interested in (e.g., Homework and Grades). 
The latent variable estimates in this model should thus be the more accurate ones.

We will explore this example in more depth in subsequent chapters. First, however, we 
will take an important detour in the next chapter into confirmatory factor analysis, or the 
measurement model portion of latent variable SEM.

Before leaving this chapter, I reiterate that the problems discussed here—the effects of 
imperfect measurement in research—apply to all research. Here I have focused on the effects 
of measurement error in nonexperimental research–path analysis and structural equation 
modeling because this is our focus. But measurement error affects all research, experimental 
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and nonexperimental, whether analyzed through ANOVA, correlations, multiple regression, 
or SEM.

SUMMARY

One assumption required to interpret regression (path) coefficients in a causal fashion is that 
the exogenous variables be measured without error. We rarely satisfy this assumption and 
thus need to know the effect of this violation on our estimates of the effects of one variable 
on another. To expand this discussion, I noted that unreliability and invalidity affect all types 
of research, not just path analysis and multiple regression. Problems in measurement in both 
the independent and dependent variables affect our research results.

Reliability is the converse of error. Error-laden measurements are unreliable, and reli-
able measurements contain little error. We can consider reliability from the standpoint of 
variance by thinking of true score variance as the total variance in a set of scores minus the 
error variance. In path analytic form, we can think of a person’s score on a measurement as 
being affected by two influences: their true score on the measure and errors of measurement. 
The true score and error influences are latent variables, whereas the actual score the person 
earns on the measurement is a measured variable. These concepts are important for research 
purposes, because other variables generally correlate with the true score, but not the error. 
For this reason, the reliability of a measurement places an upper limit on the correlation a 
variable can have with any other variable. Unreliable measurements can make large effects 
look small and statistically significant effects look nonsignificant.

The path models we have been discussing so far assume that the variables in our mod-
els are measured with perfect reliability. In a series of models, I demonstrated what would 
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Figure 14.15 A latent variable version of the homework model. All constructs except Ethnicity are 
indexed by multiple measures. We will examine and test this model in Chapter 17.
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happen when we recognized and quantified the unreliability of these measurements. When 
unreliability was taken into account in these models, the apparent effects of one variable on 
another changed and usually increased. Taking unreliability into account in our research will 
improve our estimates of the effects of one variable on another.

Reliability is not the only aspect of measurement that needs to be considered, however; 
there is also validity. I demonstrated that a measurement may be reliable but may focus on 
some unique skill, rather than the central skill we are interested in. Said differently, a mea-
surement may be reliable but may not be a valid measure of our construct of interest. As it 
turns out, validity is a subset of reliability. We can get closer to valid measurement, closer to 
the constructs of interest in our research, by using multiple measures of constructs.

Latent variable structural equation modeling seeks to move closer to the constructs of 
interest in our research by using such multiple measures. With latent variable SEM, we simul-
taneously perform a confirmatory factor analysis of the measured variables in our research 
to get at the latent variables of true interest, along with a path analysis of the effects of these 
latent variables on each other. In the process, latent variable SEM removes the effects of 
unreliability and invalidity from consideration of the effects of one variable on another and 
avoids the problem of imperfect measurement. In the process, latent variable SEM gets closer 
to the primary questions of interest: the effect of one construct on another.

Although our discussion focused on the effects of imperfect measurement in multiple 
regression and path analysis, it is worth remembering that measurement affects every type of 
research, however that research is analyzed. With the addition of latent variables to SEM, we 
are able to take measurement problems into account and thus control for them.

EXERCISES

1. Pick a research study in your area of interest. Describe the latent variables, the con-
structs the authors were interested in. What was the construct of interest underlying the 
independent variable(s)? What was the construct of interest underlying the dependent 
variable(s)? What measured variables were used to approximate these constructs?

2. How could you convert this research from a measured variable study into a latent vari-
able study? Think of ways to include multiple measures of the researchers’ indepen-
dent and dependent variables. Draw a model incorporating both measured and latent 
variables.

3. What is the advantage of moving from a measured to a latent variable approach? What 
might happen to the estimates of effects with this transition?

4. Find an article in your area of interest that uses latent variable structural equation 
modeling (it may be referred to as structural equation modeling or covariance struc-
tures analysis). Read the article. Do the authors discuss reasons for using latent over 
measured variables? Do they link latent variables with reliability and validity? How do 
they label the disturbances? The error and unique variances of the measured variables?

Notes

1 Some of these examples are actually systematic errors rather than random errors and are thus 
not considered unreliability. I include them because I want you to consider the errors that can be 
included in even such a straightforward item.

2 The results are equivalent only because the example is so simple. With more items and multiple 
factors, the results of a confirmatory analysis will be different from those of an “exploratory” factor 
analysis (from SPSS), and even the results of an exploratory analysis will differ depending on the 
method used and the assumptions made. The example is useful for heuristic purposes, however, as 
a conceptual illustration of what factor analysis is.



332

15
Confirmatory Factor Analysis I

Factor Analysis: The Measurement Model 332
An Example with the DAS-II 333

Structure of the DAS-II 334
The Initial Model 335
Standardized and Unstandardized Results: The Initial Model 337
Testing a Standardized Model 338

Testing Competing Models 342
Testing Plausible Cross-Loadings 342
A Three-Factor Combined Nonverbal Model 344

Model Fit and Model Modification 347
Modification Indexes 347
Residuals 350
Adding Model Constraints and z Values 352
Cautions 353

Hierarchical Models 353
Higher-Order Model Justification and Setup 353
Higher-Order Model Results 354
Bifactor Model Justification and Setup 357
Bifactor Model Results 358
Comparing Hierarchical Models 360

Additional Uses of Model Constraints 363
Summary 368
Exercises 369

Notes 370

FACTOR ANALYSIS: THE MEASUREMENT MODEL

This chapter will focus in more detail on the measurement model of latent variable struc tural 
equation modeling, more generally known as confirmatory factor analysis. At its most basic 
level, factor analysis is a reduction technique, a method of reducing many measures into 
fewer measures. The methodology works by placing scales or items that correlate highly with 
each other on one factor, while placing items that correlate at a low level with each other 
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on different factors. Because one primary reason items correlate highly with one another is 
that they measure the same construct, factor analysis provides insights as to the common 
constructs measured by a set of scales or items. Because it helps answer questions about 
the constructs measured by a set of items, factor analysis is a major method of estab lishing 
the internal validity of tests, questionnaires, and other measurements. You can also think 
of factor analysis as a method of establishing convergent and divergent validity: items that 
measure the same thing form a factor (converge), whereas items that measure different con-
structs form a separate factor (diverge).

With exploratory factor analysis (not covered in this text), one analyzes a set of items or 
scales that presumably measures a smaller set of abilities, traits, or constructs. Decisions are 
made concerning the method of factor extraction to use, the method for deciding the num-
ber of factors to retain, and the method of factor rotation to use. Given these choices and 
the data, the results of the analysis will suggest that the items measure a smaller num ber of 
factors. For example, factor analysis of 13 scales may suggest that these scales mea sure four 
constructs. The output from the analysis will include factor loadings of each scale on the four 
factors and, if oblique rotation is used, the correlations of the factors with each other. The 
researcher then decides on names for the factors based on the con structs they presumably 
reflect, a decision based on the loadings of the variables on the fac tors, relevant theory, and 
previous research.

With confirmatory factor analysis one uses previous research and relevant theory to 
decide in advance what the factors or constructs are that underlie the measures. Just as in 
path analysis, we propose a model that underlies the variables of interest. The fit statistics 
then provide feedback concerning the adequacy of the model in explaining the data. I 
hope it is obvious why the methods are termed exploratory versus confirmatory factor 
analysis. With the first, we examine the results and decide what the various scales are 
measuring, whereas with the second we decide what the various scales are measuring and 
then exam ine the results to find out how accurate our predictions were. This dichotomy 
is an obvious simplification—we can use exploratory factor analysis in a confirmatory 
fashion and can use confirmatory factor analysis in an exploratory fashion—but it is still 
a useful distinction.

The development of factor analysis is inexorably linked with development of theo-
ries of intelligence and intelligence tests. Early intelligence researchers developed the 
methods of factor analysis to understand the nature and measurement of intelligence, 
and fac tor analysis continues to be a major method of supporting and challenging the 
validity of intelligence tests. For this reason, I will illustrate the method of confirmatory 
factor analy sis using intelligence test data. Note that this is one of two chapters on the 
topic of CFA; we will return to more advanced CFA topics after learning more about 
latent variable SEM.

AN EXAMPLE WITH THE DAS-II

The Differential Ability Scales, Second Edition (DAS-II; Elliott, 2007) is among the most 
commonly admin istered individual intelligence tests for children. The DAS-II includes a 
series of short verbal and nonverbal subtests and is appropriate for children and youth ages 
2½ to 18. The DAS-II is a common portion of a broader psychological evaluation for chil-
dren and adoles cents who are having learning, behavioral, or adjustment problems. It may 
be used to help evaluate children for special programs (e.g., those for children with learning 
disabilities and gifted programs); diagnose learning, behavioral, and neurological problems; 
or provide information relevant to an intervention to ameliorate such problems.
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Structure of the DAS-II

Although the DAS-II includes different tests for children at different ages, all 21 tests from 
the battery were standardized for children ages 5–8. We will analyze data for 12 of these tests 
designed to measure four underlying constructs. The test names and a portion of the theo-
retical structure of the DAS-II are shown in Figure 15.1. Although I will not describe the sub-
tests in detail, they measure a variety of verbal and nonverbal skills. For exam ple, the Word 
Similarities subtest requires children to explain the construct shared by three words. In con-
trast, Pattern Construction requires the child to construct, from pictures, geometric designs 
using two-colored foam squares and blocks. According to the author, the DAS-II measures 
verbal reason ing (Verbal Ability), nonverbal, inductive reasoning (Nonverbal Reasoning), 

Figure 15.1 Initial DAS-II model. Does the DAS-II measure verbal, nonverbal, and spatial reasoning 
skills, along with short-term memory?
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visual– spatial reasoning (Spatial), and short-term memory (Working Memory) (and some 
other skills not discussed here; you may also see these abilities referred to as Crystallized 
Intelligence, or Gc; Fluid Intelligence, Gf; Visual Processing, Gv; and Short-Term Memory, 
Gsm). The figure shows which subtests are designed to measure which skills. This structure 
is reflected in the actual scoring of the test. For children 7 and older, for example, scores for 
two tests per construct are added together to form Verbal, Nonverbal Reasoning, Spatial, and 
Working Memory com posite scores.

The Initial Model

Figure 15.1 is also the setup for a confirmatory factor model (indeed, the figure is the input 
for analysis in Amos), with the constructs underlying the DAS-II shown in ovals as latent 
variables and the eight subtests (the actual measurements we obtain) shown in rectangles as 
measured variables. The arrows in the figure make explicit the causal assumptions underly-
ing such testing and models. The paths point from the constructs to the subtests in recog-
nition of the implicit assumption that each person’s level of verbal reasoning ability is the 
primary influence on his or her score on the Word Definitions subtest, for example, whereas 
each person’s level of visual spatial ability is the primary influence on his or her score on the 
Pattern Construction subtest. Although the constructs the test is designed to measure are 
the primary influence on indi viduals’ scores on the subtests, you know from the last chapter 
that individuals’ scores on each subtest are also influenced by unreliability and by the unique 
characteristics of each test. This latter statement makes sense intuitively as well. Although 
Pattern Construction and Recall of Designs (in which children draw complex designs from 
memory) obviously both require visual and spatial skills, they also both obviously require 
different specific skills, such as the mental translation of a two-dimensional picture into 
three-dimensional form versus visual and spatial memory skills. These unique skills and 
unreliability are represented by the small latent variables pointing to each subtest labeled 
e1 through e12. e7, for example, represents all influ ences on children’s scores on the Pattern 
Construction subtest other than Spatial Ability.

You will recall that latent variables have no set scale, and we must set the scale of each 
latent variable to estimate the model. Recall also that one way to set the scale of a latent vari-
able is to set a path from each latent variable to one measured variable at 1.0. This is done in 
Figure 15.1. The Verbal factor’s scale is set to be the same as that for the Naming Vocabulary 
subtest. The choice of which measured variable to use is arbitrary; I have simply set the scale 
of each factor to be the same as the first variable that measures this factor. Without these 
constraints to set the scales of the latent variables the model would be underidentified. Kline 
(2011, p. 127) calls this method of setting the scales of latent variables “unit loading iden-
tification,” or ULI. The scales for the unique–error variances are also set to the same scale 
as their corresponding subtests: e1 is set to have the same scale as Naming Vocabulary, e2 as 
Word Definitions, and so on. Alter natively, we could also set the scale of the factors by setting 
the variance of each factor to 1.0 (we will come back to this point).

The model shown in Figure 15.1 also includes correlations among each construct thought 
to be measured by the DAS-II. It is commonly recognized that cognitive tests and cog nitive 
factors are positively correlated (Carroll, 1993). The model shown in the figure is on the 
Web site (www.tzkeith.com) in the folder for this chapter under the name “das 2 first order 
1.amw”; Mplus script is also available.

The DAS-II manual includes tables of correlations among the subtests for each age level 
2½ through 17 (along with means and standard deviations). The averaged covari ance matrix 
for these subtests for children 5–8 is shown in Table 15.1; this matrix was pro duced as a 
by-product of CFA analyses designed to determine whether the DAS-II measures the same 
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constructs across its age levels (Keith, Low, Reynolds, Patel, & Ridley, 2010). The matrix of 
covariances among the twelve subtests was used to estimate the model shown in Figure 15.1. 
The covari ance matrix is also contained in the Excel file “DAS 2 cov.xls” and the SPSS file 
“DAS 2 cov.sav.” The sample size for the analyses was 800. 

Standardized and Unstandardized Results: The Initial Model

Figure 15.2 shows standardized results of the initial analysis of the DAS-II model. First, 
focus on the fit indexes. The Root Mean Square Error of Approximation (RMSEA) was 
.046, lower (better) than our rule of thumb for good models of .05. The Standardized Root 
Mean Square Residual (SRMR) was .027, meaning that the average difference between the  

Figure 15.2 Standardized estimates for the initial DAS-II four-factor model
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actual and the implied correlation matrices was only .027. The TLI (and the CFI, not shown) 
were above our target for a good model (.95). By these criteria, it appears that the DAS-II 
model fits the data well. In other words, the model that underlies the DAS-II indeed could 
indeed have produced the correlations and covariances we observed among the DAS-II sub-
tests, and the theoretical structure of the DAS-II is supported. Note, however, that the χ2 is 
statistically significant (127.355 [47], p < .001), which, in contrast to the other indices, sug-
gests a lack of fit of the model to the data. We will examine possible sources of misfit later in 
this chapter. Focusing on the model itself, it appears that most subtests provided relatively 
strong measures of the appropriate ability or construct; the factor loadings for most subtests 
on the Verbal, Nonver bal Reasoning, Spatial, and Memory factors were .6 or higher. The 
exceptions to these larger loadings were the Picture Similarities and Recognition of Pictures 
subtests on the Nonverbal and Spatial factors (loadings of .54 and .59). Although the detailed 
printout shows that these loadings were statistically sig nificant, they are lower than for the 
other factors. Within factors, most subtests had fairly equivalent loadings on the factor they 
supposedly measure, although there are clearly subtests that have stronger loadings (e.g., 
Verbal Similarities, Sequential and Quantitative Reasoning, Pattern Construction). This dif-
ference in loadings suggests that the common construct mea sured by these tests is better 
measured by, for example, Sequential & Quantitative Reasoning than by Picture Similarities. 
The results also show that the latent factors correlate substantially with each other, with fac-
tor correlations ranging from .75 to .89.

Figure 15.3 shows the unstandardized estimates (“Regression Weights”) of the factor load-
ings, standard errors, z values (critical ratio, or CR), and p values (all less than .001). Note 
that the loadings used to set the scales of the latent variables, the ones that were set to 1, were 
not tested for statistical significance. Estimated values are tested for statistical significance; 
constrained parameters are not. In the second section of the figure are the standardized 
loadings (“Standardized Regression Weights”) followed by the covariances and correlations 
among latent factors. Note that all estimated paths (fac tor loadings) and covariances were 
statistically significant (z > 2), and that the standardized loadings match those in the figural 
display of the model.

Testing a Standardized Model

It is also possible to set the scale of the latent factors in the model by setting the factor vari-
ances to 1.0 (instead of setting one factor loading per factor to 1.0). The setup for such 
a standardized model—also known as unit variance identification, or UVI (Kline, 2011, 
p. 128)—for the DAS-II is shown in Figure 15.4. Although less common, and less consis-
tent with SEM, than the method of setting factor loadings, the factor variance method has 
the advantage of producing standardized covariances (i.e., correlations) among the fac tors. 
Recall that a correlation matrix is a standardized covariance matrix, the result of standardiz-
ing the variables in the matrix (i.e., setting their variances to 1.0). Alternatively, you can think 
of a correlation matrix as just another variance–covariance matrix, but with all variances set 
to 1.0. Thus, when we set the variances of the factors in a CFA to 1.0, we have standardized 
the covariance matrix of factors. Figure 15.5 shows the unstandardized output for the UVI 
analysis just described. Note that the covariances (correla tions) in this figure are the same 
as the correlations from the standardized output shown in Figure 15.2. The factor loadings, 
however, are still in an unstandardized metric (although a different unstandardized metric 
than previously).

The advantage of having the factor covariances standardized comes into play when we 
wish to compare competing models. Note the high correlation between the Nonverbal Rea-
soning and Spatial factors (.89). We may wonder if this correlation is statistically sig nificantly 



nvss <--- Verbal
wdss <--- Verbal
vsss <--- Verbal
psss <--- Nonverbal
mass <--- Nonverbal
sqss <--- Nonverbal
pcss <--- Spatial
rdss <--- Spatial
rpss <--- Spatial
dfss <--- Memory
dbss <--- Memory
soss <--- Memory

1.0000
.9418

1.0996
1.0000
1.3056
1.4059
1.0000
.9822
.7949

1.0000
1.0346
1.1187

Estimate

Regression Weights

.0489

.0526

.0926

.0936

.0468

.0485

.0576

.0609

S.E.

19.2542
20.8866

14.0950
15.0205

20.9828
16.3777

17.9493
18.3809

C.R.

***
***

***
***

***
***

***
***

P

Verbal <--> Nonverbal
Verbal <--> Spatial
Verbal <--> Memory
Nonverbal <--> Spatial
Nonverbal <--> Memory
Spatial <--> Memory

33.4641
42.0275
45.4283
37.2672
35.2301
44.8726

Estimate

Covariances

3.0790
3.2851
3.6929
3.2043
3.2871
3.5411

S.E.

10.8684
12.7934
12.3016
11.6305
10.7175
12.6721

C.R.

***
***
***
***
***
***

P

nvss <--- Verbal
wdss <--- Verbal
vsss <--- Verbal
psss <--- Nonverbal
mass <--- Nonverbal
sqss <--- Nonverbal
pcss <--- Spatial
rdss <--- Spatial
rpss <--- Spatial
dfss <--- Memory
dbss <--- Memory
soss <--- Memory

.7395

.7333

.8052

.5414

.7102

.8082

.8139

.7370

.5906

.6692

.7535

.7780

Estimate

Standardized Regression Weights

Verbal <--> Nonverbal
Verbal <--> Spatial
Verbal <--> Memory
Nonverbal <--> Spatial
Nonverbal <--> Memory
Spatial <--> Memory

.8049

.7509

.8239

.8922

.8561

.8100

Estimate

Correlations
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different from 1.0, meaning that the factors may be statistically indistinguishable. We could 
test this supposition by setting the factor correlation to 1.0 and comparing the fit of this 
model with the original model. However, model constraints apply to the unstandardized 
model only. Thus, if we wish to set a factor correlation to 1.0 (or some other value), we need 
to make the factor correlations equivalent to the factor covariances, using this standardized 
model. (As will be shown, a few other constraints are also needed to test the distinguishabil-
ity of factors).

Although the primary results of a CFA—notably the fit indexes and the standardized 
output—will generally be the same whichever method is used, it is possible for some results 
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Figure 15.4 An alternative standardized method of specifying the initial DAS-II model. With this 
method, we set the scale of the latent variables by setting their variances to 1 instead of constraining 
factor loadings.
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to change slightly depending on whether the ULI (factor loading set to 1) or the UVI (fac tor 
variance set to 1) method is used. Likewise, results generally do not change—but sometimes 
do—depending on which factor loading is set to 1 using the ULI method. In particular, 
the unstandardized parameter estimates and the standard errors may change across the two 
methods, and the resulting z values (crit ical ranges) may change as well. What this means is 
that it is possible for a factor loading or factor covariance to be statistically significant using 
one method but not statistically sig nificant using the other. (For more information, see Mill-
sap, 2001). This article also shows that with complex models, where tests load on multiple 
factors, the fit of models can change depending on which factor-to-test path is set to 1.0.)
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Figure 15.5 Unstandardized solution using the standardized model. Note that the factor covariances 
are now equivalent to the factor correlations from Figure 15.2.
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Before moving to the next topic, notice the numbers beside the unique and error vari-
ances: 46.17 for e1, 42.47 for e2, and so on. These numbers are the estimates of the com bined 
unique and error variances of the various subtests. You can compare them to the variances 
of the variables shown in the diagonals of the variance–covariance matrix (Table 15.1). It 
appears that close to one half of the variation in the Word Definitions subtest is error and 
unique variance.

TESTING COMPETING MODELS

This initial example has tested the adequacy of a single confirmatory model. As in SEM, 
however, a more powerful use of the methodology is to compare alternative and competing 
models. I will briefly illustrate this method using the DAS-II example.

Note that in the models shown thus far each subtest has been assumed to measure one 
and only one underlying common ability or factor. But the constructs measured by tests may 
be and often are much more complex than this; indeed, it seems likely that some of the DAS-
II subtests may measure more than one underlying ability. For example, the Recall of Designs 
subtest requires children to draw from memory designs they have seen a few seconds earlier. 
Doesn’t it make sense to assume that this test requires short-term memory skills in addition 
to (or instead of) visual-spatial reasoning?

Testing Plausible Cross-Loadings

Figure 15.6 shows a model that tests this possible cross-loading by allowing Recall of Designs 
to load on both the Spatial and Memory factors. Note that this model and the initial model 
(e.g., Figure 15.1) are nested, because the initial model can be derived from this model by 
constraining the path (loading) from Memory to Recall of Designs to zero. Thus the model 
in Figure 15.1 is nested within the model shown in Figure 15.6. Figure 15.7 shows the stan-
dardized loadings for this model, along with some of the fit indices.

The DAS-II alternative cross-loading model fits the data well. Our primary stand-alone fit 
index, the RMSEA, suggests that the two-factor model explains well the test standardization 
data. The other stand-alone fit indexes (SRMR, TLI) also suggest a good fit of the model to 
the data. If we focus only on the fit of each model in isolation, we conclude that this model 
fits well, as does the earlier four-factor model. Our primary interest, however, is relative fit 
of the two models. In particular, we are interested in how this three-factor model compares 
to the initial model that did not include any cross-loadings. The cross-loaded model is less 
parsimonious than the initial model, with 47 degrees of freedom shown in Figure 15.7 ver-
sus 48 for the initial model in Figure 15.2. Degrees of freedom represent parameters that are 
constrained to some value, rather than freely estimated, and thus each additional degree of 
freedom means an increase in parsimony. Thus, if the two models fit equally well, we will 
prefer the initial (more parsimonious) model. Do the models fit equally well? To answer this 
question, we need to focus on the fit indexes appropriate for comparing competing models.

In Chapter 13 I argued that Δχ2 was a good method for comparing competing models 
that were nested, that is, when one model can be derived from the other by fixing one or 
more parameters. The two models are indeed nested; to derive the model shown in Fig-
ure 15.1 from that in Figure 15.6 we would only need to constrain the loading of Recall of 
Designs on the Memory factor to 0.

Table 15.2 shows the Δχ2 comparing these two models. According to the χ2, the initial 
model fit slightly worse than did model 2 (the model with Recall of Designs loaded on two 
factors). But if two models are nested, the more constrained model (the model with the 
larger df ) will always fit worse than the less constrained model according to χ2. The question, 
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Figure 15.6 An alternative model testing whether Recall of Designs measures both visual-spatial and 
short-term memory skills. This model and the initial model are nested.
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then, is how much worse is the fit? Is it trivial or is it large enough so that we say that it is 
not worth the extra degrees of freedom we gain? The common way to judge whether the 
fit-worsening constraint is “worth it” is to test the Δχ2 for statistical significance. This has 
also been done in the table. As shown, when the extra path/loading was added to the second 
model, χ2 decreased by only .491, and this difference is not statistically significant (p = .483) 
(And recall that we need a Δχ2 of approximately 3.9 for statistical significance with 1 df and 
p < .05.) What does this mean? Recall also our rule that if Δχ2 is not statistically significant 
that we prefer the more constrained model, the one with more df. This means that we would 
tentatively accept the Initial four-factor model over the cross-loaded model, and that we 
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Figure 15.7 Standardized estimates and fit for the cross-loaded model

would reject the hypothesis that is personified by the difference between the two models. In 
other words, no, the data do not support the cross-loading of Recall of Designs on both the 
Spatial and the Memory factors; it appears that Recall of Designs indeed measures visual-
spatial reasoning skills, not short-term memory.

A Three-Factor Combined Nonverbal Model

Although I have argued that the DAS-II should measure four underlying constructs, we have 
already noted the very high correlation (.89) between the Nonverbal Reasoning and the Spa-
tial factors. Perhaps these two factors really are equivalent, meaning that we could collapse 
them into one? We could easily argue that the Spatial and the Nonverbal Reasoning subtests 
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should be con sidered as measuring a single underlying ability. After all, most of these tests 
require some degree of spatial awareness and nonverbal reasoning; why separate the two 
factors? Thus, we have both a priori logical as well post hoc data-driven reasons for suggest-
ing another plausible model, one that combines these two factors. Figure 15.8 shows such a 
plausible three-factor model. Although it is not obvious, the model is nested with the model 
in Fig ures 15.1 through 15.5. This three-factor model is equivalent to the model shown in 
Figure 15.4 (the standardized model) with the following constraints:

1. Set the Nonverbal Reasoning–Spatial correlation to 1.0 (in the standardized model). 
This constraint essentially equates the factors.

2. Constrain other factor correlations to be equal to one another across these factors. 
That is, constrain the Memory–Spatial factor correlation to be equal to the Memory–
Nonverbal Reasoning correlation, and then constrain the Verbal–Spatial factor correla-
tion to be equal to the Verbal–Nonverbal correlation. The most direct way to do this in 
Amos is to constrain the correlations to an alphabetical value (e.g., a for the first two 
correlations and b for the second two). The result of this constraint is that the values 
will be freely estimated, but all values with the same letter will be constrained to be 
equal. Other SEM programs will have other methods of constraining values to be equal.

Because the models are nested, Δχ2can be used to compare the competing models. This 
model is more parsimonious that the initial four-factor model. (Make sure you understand 
why this three-factor model is more parsimonious than the initial model.) Thus, if the two 
models have an equivalent fit, we will favor the more parsimonious three-factor model with 
the combined Nonverbal factor.

As shown in Figure 15.8, the three-factor combined Nonverbal model showed a good fit to 
the data according to most of the stand-alone fit indexes (with the exception of RMSEA), yet 
the χ2 also increased substantially for this model. The four-factor model had a χ2 of 127.826 
(df = 48) versus 163.651 (df = 51) for the three-factor Combined Nonverbal model. Change 

Table 15.2 Comparison of Fit Indexes for Alternative Models of the Structure of the DAS-II

Model χ2 df Δχ2 df p AIC aBIC RMSEA TLI CFI SRMR

1.  Initial four-
factor

127.826 48 187.826 233.023 .046 .974 .981 .027

2.  Recall 
Designs 
cross-loaded

127.335 47 .491 1 .483 189.335 236.038 .046 .974 .981 .027

3.  Three-factor 
(Figure 15.8)

163.651 51 35.825 3 <.001 217.651 258.328 .053 .966 .974 .029

4.  Nonverbal-
Spatial 
correlation 
= 1

156.698 49 28.872 1 <.001 214.698 258.388 .052 .966 .975 .028

5.  Equivalent 
correlations

163.651 51 6.953 2 .031 217.651 258.328 .053 .966 .974 .029

Note: All models are compared to Model 1 with the exception of Model 5. The Δχ2 for Model 5 is a 
comparison to the previous model (Model 4).
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in Δχ2 = 35.825 (df = 3), a value that is statistically significant (p < .001). This means that the 
three-factor combined Nonverbal model, although more parsimonious than the four-factor 
model, does not explain the relations among the DAS-II subtests, the DAS-II structure, as 
well as does the four-factor model. Said differently, the Nonverbal Reasoning and Spatial 
factors are indeed statistically distinguishable. The models shown in Figures 15.1 through 
15.4 provide a better “theory” for understanding the DAS-II than does the model shown in 
Figure 15.8. Thus this analysis suggest that the DAS-II tests used in this analysis should be 
interpreted as measuring four, rather than three, underlying abilities. The fit indexes for this 
model are also shown in Table 15.2.
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Figure 15.8 Another competing model of the DAS-II. This model combines the Nonverbal Reasoning 
and Spatial factors into a single Nonverbal factor.
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Although Δχ2 is our primary method for comparing competing, nested models, it is also 
worth noting the other fit indexes we discussed as useful for comparing (non-nested) mod-
els, the AIC and the aBIC. The rule of thumb for the AIC (and aBIC) is that they favor the 
model with the lower value; again the four-factor model appears superior if we use the AIC 
or aBIC to compare models. Again, according to our primary criteria, the four-factor model 
provides a better fit than does the three-factor model. Table 15.2 also includes fit indexes 
for the two steps outlined earlier for turning the standardized four-factor model into the 
three-factor model. (I will not show the analyses or models here, but I encourage you to 
conduct them.) In the first step, the factor correlation (standardized covariance) between 
the Nonverbal and Spatial factors was constrained to 1. In the second step, the Nonverbal-
Verbal and the Spatial-Verbal factor correlations were constrained to be equal, as were the 
Nonverbal-Memory and Spatial-Memory factors. Note that the fit statistics associated with 
this second step are identical to those from the three-factor model as shown in Figure 15.8. 
As an aside, I don’t believe it is necessary to conduct this analysis in two steps, but it does help 
to understand what is being done.

Before we move to the next topic consider why this approach is equivalent to that in which 
we simply combined the two factors into one. What we are testing is whether the Nonverbal 
and Spatial factors should really be considered as the same factor. What would be required 
for them to be “the same” factor? First and obviously, they should be perfectly correlated with 
one another. But a perfect correlation is not enough. If the Nonverbal and Spatial factors are 
really “the same,” then they should also have the exact same relation (correlation) with other 
factors. The second step, constraining factor correlations to be the same value, fulfills this 
part of the requirement that the factors be “the same factor.”

MODEL FIT AND MODEL MODIFICATION

A common response when a model does not fit well is to examine more detailed aspects of 
fit with an eye toward modifying the model. I won’t try to dissuade you from this practice, 
because it is indeed useful and necessary, but I encourage you to do so sparingly, unless you 
are primarily involved in model development and exploration (as opposed to testing a priori 
models). I am not alone in this ambivalence concerning model modification: “As a statisti-
cian, I am deeply suspicious of modification indices. As a data analyst, however, I find they 
are really great” (Dag Sörbom, one of the authors of LISREL, quoted in Wolfle, 2003, p. 32). 
There are several aspects of the printout that may help in this process.

Modification Indexes

To illustrate the use of the more detailed fit indexes, let’s examine the combined three-factor 
Nonverbal model from Figure 15.8. If we had started with this model—if we had not com-
pared this model with the initial four-factor model (e.g., Figure 15.1), could we have figured 
out that the four-factor was better? Would the modification indexes or the other detailed 
fit statistics have led us to what we have concluded was a better model? And are there other 
changes we need to make in our models?

Figure 15.9 shows the modification indexes from the Amos output for this model. With 
some programs, all modification indexes are printed; with Amos you can request modifica-
tion indexes above a certain level. The figure shows the default, indexes greater in magnitude 
than 4.0 (recall that 3.9, or approximately 4, is the value of Δχ2 that is statistically significant 
with 1 df ). When models do not fit well, you may be able to improve the fit by freeing param-
eters in the model. Recall that freeing a parameter reduces the degrees of freedom (parsi-
mony) of the model and improves the Δχ2 to some degree. The question we ask with such 
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relax ations in the model is whether the decrease in Δχ2 is worth the reduction in the df. The 
modification indexes estimate the minimum decrease in Δχ2 that will result from freeing the 
listed parameter. Modification indexes are shown for covariances and for regression weights 
(the first row, for example, lists a modification index of 5.334). Although the actual output 

Figure 15.9 Modification indexes for the 3-factor combined model.
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also had a table for variances, there were no modification indexes associated with variances 
greater than 4.0 so the table was blank and is not included in the figure.

Note the modification index for the covariance between e5 and e6: a value of 21.896. This 
modification index suggests that Δχ2 can be reduced by at least 21.896 by freeing the cova-
riance between e5 and e6. Although this is a statistically significant decrease in Δχ2 with a 
df of 1, we need to consider whether this change makes theoret ical sense. The variables e5 
and e6 represent the unique variances of Matrices and Sequential & Quantitative Reasoning. 
The column marked “Par Change” shows the expected value of this parameter (covariance) 
if we were to free this constraint, that is, if we were to allow these two unique variances to 
correlate. Note that the expected parameter change is positive (this shows the expected value 
of this parameter in the unstandardized solution if it, and it alone, were freed). If we were 
to free this covariance (correlation), it would suggest that we think the unique variances of 
the Matrices and Sequential & Quantitative Reasoning subtests are related above and beyond 
the effect of Nonverbal Reasoning on each subtest. The factors corre late with each other 
because they are both affected by Nonverbal Reasoning, but could they be correlated for 
other reasons, as well? Stated differently, do Matrices and Sequential & Quantitative Reason-
ing measure something in common other than the factor Nonverbal Reasoning? Given our 
other analyses, it is fairly easy to answer this question: yes, these two subtests likely measure 
a more narrow Nonverbal Reasoning factor that is separate from Spatial ability. Note also the 
modification index for the covariance between e7 and e8 (21.895), suggesting that we free the 
covariance between the unique variances of the Pattern Construction and Recall of Designs 
subtests. Again, given our knowledge of the four-factor solution, we can say that yes, these 
two tests indeed do measure something in common, a Spatial factor that is separate from the 
Nonverbal reasoning factor.

If we had started with this three-factor (combined Nonverbal) model and IF we were 
skilled in reading the modification indexes, or IF we had some knowledge of the theory 
underlying the DAS-II, then the modification indexes may have suggested to us to split this 
factor into two factors. This example also illustrates that the modification indexes are not 
always easy to interpret!

The other large modification index in Figure 15.9 is between e5 and e8 (21.672). This modi-
fication index suggests that freeing the covariance between the unique variance for Matrices 
subtest and that of the Recall of Designs would results in a Δχ2 of at least 21. This “sugges-
tion” by the modification indexes would seem to be in the opposite direction from the previ-
ous ones, because we know from the four-factor model that Matrices and Recall of Designs 
measure separate abilities. But note also that the expected parameter change is negative. This 
finding, in turn, suggests that these two tests measure less in common than our three factor 
model would predict. Again, given our additional knowledge, this finding also suggests the 
possibility of placing these two subtests on separate factors. The question is whether they 
would have suggested this possibility if we did not have this additional knowledge!

Here are common rules of thumb for using modification indexes. Examine the larger 
values of the modification indexes. Note that in actual practice you may have even more 
modification indexes to examine than those shown for this model. What is large? Modi-
fication indexes, like χ2, are sample-size dependent; if our model fit much worse or if we 
had a larger sample size, we would have larger modification indexes and more modifi cation 
indexes greater than 4.0. Thus, you should examine the larger values of the modifi cation 
indexes relative to the other values. Again, the modification indexes show the expected mini-
mum reduction in χ2 if the listed parameter is freed, at a cost of 1 df. Next, consider whether 
each change is justifiable through theory and previous research. Make the single change that 
makes the most theoretical sense and results in the largest improvement in model fit, and 
then re-estimate the model. You can then repeat the process. Generally we don’t use the 
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modification indexes to make several changes at a time, because with each addi tional change 
the modification indexes are likely to differ. I remind you to use the modifi cation indexes 
cautiously. You will find it is all too easy to justify model modifications after examining 
modification indexes; do so sparingly and with an eye toward theory and previ ous research. 
If you see the modification index and smack yourself in the head because you should have 
thought of that model change a priori, then the model change is probably reasonable. If you 
find yourself having to do mental gymnastics to justify freeing a parameter, then you prob-
ably should not.

One final note on the modifications indexes. None of the MIs for the second table (Regres-
sion Weights) were particularly large, but if they had been, and if they were between a subtest 
and a factor, they would have suggested the possibility of allowing for cross-loadings of tests 
on other factors.

Residuals

Another aspect of fit to examine to understand why a model does not fit well is the matrix of 
standardized residuals (Standardized Residual Covariances) shown in Table 15.3 (this matrix 
is also from the output for results of the model analyzed in Figure 15.8). Recall from Chap-
ter 13 that the various fit statistics examine the consistency between the actual covariance 
matrix and the covariance matrix implied by the model. The difference between these two 
matrices is the matrix of residual covariances; the matrix of standardized residual covari-
ances simply puts these residuals on the same standardized scale so that they can be com-
pared. That matrix is shown in Table 15.3. 

Standardized Residual Covariances

For this matrix, as well, we are looking for relatively larger values, regardless of sign. One rule 
of thumb suggests examining standardized residual covariances (commonly referred to as 
standardized residuals) greater in absolute magnitude than 2.0; but the standardized residu-
als are also sample-size dependent, so with larger sam ples you may have many values greater 
than 2, whereas with smaller samples there may be few or no standardized residuals that 

Table 15.3 Standardized Residual Covariances for the Three-Factor Combined Nonverbal Model.

pcss soss dbss dfss rpss rdss sqss mass psss vsss wdss nvss

pcss .000
soss –.548 .000
dbss .192 –.040 .000
dfss –.455 .173 –.130 .000
rpss –.226 –.383 –.111 –1.014 .000
rdss 1.614 –.411 .264 .353 1.910 .000
sqss –.196 –.095 .693 –.411 –.125 –.815 .000
mass –.891 1.163 1.169 –1.123 –.238 –1.981 1.609 .000
psss –.288 –.680 .050 .322 .377 .533 –.936 –.052 .000
vsss .420 –.207 –.166 .447 –.655 –.531 .650 .387 1.291 .000
wdss –1.036 .552 –.581 .295 –1.372 –2.297 –.316 .610 1.480 .108 .000
nvss 1.012 .227 –1.052 1.005 –.316 .489 –.542 –.609 1.366 –.348 .365 .000
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reach this level. Again, focus on the relatively larger values; these are bolded and italicized 
in the table. For the present example, the combined Nonverbal DAS-II model, there is only 
one value greater than 2.0, between the Recall of Designs and the Word Definitions (–2.297).

What does this value mean? Recall how this matrix is created: the implied covariance 
matrix is subtracted from the actual covariance matrix to create the residuals. The residuals 
are then standardized to create this matrix. This means that for positive values the actual 
correlation between two measured variables is larger than the implied correlation. For neg-
ative residuals, just the opposite is the case: the implied correlation is larger than the actual 
correlation. This means that positive standardized residuals suggest that the model does not 
adequately account for the observed correlation between two variables, whereas for nega tive 
residuals the model more than accounts for the original correlation between variables. Posi-
tive residuals are thus generally more informative for purposes of model modification in that 
they suggest ways the model can be modified to improve the fit.

In the current example, the highest value, –2.297, is between Recall of Designs (rdss) and 
Word Definitions (wdss). The value is negative, which suggests that the model—in which 
these subtests load on the Spatial and Verbal factors, factors which correlate .75—more than 
accounts for the correlation between Word Definitions and Recall of Designs. Given the 
loadings of these subtests on their factors, and given the correlation between the factors, we 
would expect these two subtests to be more highly correlated than they are. This standard-
ized residual thus seems to hint a different aspect of local misfit than we saw with the modi-
fication indexes, although it is not clear what this means or if there is anything we should do 
about it.

The other larger standardized residuals (those with values greater than 1.5 are highlighted) 
tell the same story as did the modification indexes. There are high positive values for Recall 
of Designs with Pattern Construction and with Recognition of Pictures. The model does not 
adequately explain the correlations between Recall of Designs and the other two Spatial tests. 
Likewise, the model does not adequately explain the correlation between the Matrices and 
the Sequential & Quantitative Reasoning subtests (both measures of Nonverbal Reasoning), 
but more than accounts for the correlation between Matrices and Recall of Designs (which, 
in the four-factor model measure two different underlying abilities). Again, if we were skilled 
and theoretically savvy, we might have taken these as hints that these six subtests should be 
split into two factors rather than loaded all on one. Or maybe not. The other thing the pat-
tern of higher loadings suggests is that the Recall of Designs subtest is a general source of 
misfit in this model.

Residual Correlations

Table 15.4 shows a related but potentially useful matrix, the matrix of residual correlations. 
As noted in chapter 13, this matrix shows the residuals for the actual and implied correlation 
matrices. The downside is that many SEM programs do not produced this matrix (Amos 
does not, as least as of this writing). But the matrix is easy to produce; I simply copied and 
pasted the sample correlation matrix and the matrix implied by the model into Excel and 
subtracted the latter from the former. Again I have highlighted the higher values in this 
matrix (here, values greater than .06 in absolute value). Note that the subtests highlighted 
the same as in the previous table, which should always be the case. This table, however, shows 
differences in correlations, so the values are readily interpretable. The value for Recall of 
Designs and Word Defintions (–.088) means the actual correlation between these two sub-
tests is .088 lower than that predicted by the model. If you focus on the model (Figure 15.8), 
it shows Word Definitions with a standardized loading of .73 on the Verbal factor and Recall 
of Designs with a loading of .70 on the Nonverbal factor, with these factors correlating .81 
with each other. The expected or implied correlation between these two subtests would thus 
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be .73 x .70 x .81, or .41 using the tracing rule. In fact, the actual correlation between these 
two subtests was .32, a difference of –.09 (rounded). Again, this model predicts a higher cor-
relation between these two subtests than was found in the actual data.

For both the standardized residuals and the residual correlations, consider whether the 
larger positive values share some characteristic in common (you can do the same for the larger 
negative values, which may suggest additional constraints to the model). Although the 
residuals are somewhat more difficult to interpret than the modification indexes, they also 
sometimes show a pattern, and thus may be very useful in suggesting additional paths, cor-
relations, or even minor factors to add to a model.

The residual correlations should highlight the same sources of misfit as the standardized 
residuals. The advantage is that these residuals are on a scale with which we are familiar, that 
of a correlation coefficient. As a result, we can devise informal rules of thumb for problem-
atic values. Kline, for example, suggests “correlation residuals” greater than .10 as potentially 
problematic (2011, p. 202). Kline also suggests examining the residual correlations whenever 
the χ2 for the model is statistically significant; I would simply add that this is a good idea 
when any of the fit indexes suggest a lack of fit.

Adding Model Constraints and z Values

You can modify a model by relaxing constraints to the model (estimating a parameter that was 
previously set to zero), as discussed previous. Model relaxations will always improve χ2, but 
will make the model less parsimonious. Sometimes the relaxation of constraints is worth the 
improvement in fit. Another direction in modifying models is to add constraints, gener ally by 
constraining a previously estimated value to zero (or some other value). If, for exam ple, some 
of the factor loadings had been statistically not significant according to the critical ranges 
(z values), we might have constrained these values to zero (i.e., removed the path) in subse-
quent models. Adding constraints to the model will always lead to a larger (worse) χ2, but 
a more parsimonious model. If the Δχ2 is not statistically significant, the constraint makes 

Table 15.4 Residual Correlations for the Three-Factor Combined Nonverbal Model.

 pcss soss dbss dfss rpss rdss sqss mass psss vsss wdss nvss

pcss 0            
soss –.022 0           

dbss .008 –.002 0          

dfss –.018 .007 –.005 0         

rpss –.009 –.015 –.004 –.038 0        

rdss .065 –.016 .010 .014 .073 0       

sqss –.008 –.004 .028 –.016 –.005 –.033 0      

mass –.036 .045 .045 –.043 –.009 –.078 .065 0     

psss –.011 –.026 .002 .012 .014 .020 –.036 –.002 0    

vsss .017 –.008 –.007 .017 –.025 –.021 .026 .015 .048 0   

wdss –.040 .022 –.023 .011 –.051 –.088 –.012 .023 .055 .004 0  

nvss .040 .009 –.041 .038 –.012 .019 –.021 –.023 .051 –.014 .015 0
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sense. These same rules apply to many other fit indexes, as well: relaxations will improve fit, 
constraints will degrade fit. The exception to this rule is with fit indexes that take model parsi-
mony into account; these indexes may improve with constraints and degrade with relaxations. 
Of the indexes we have discussed, the TLI, RMSEA, aBIC, and (commonly) the AIC also take 
parsimony into account. Indeed, the AIC and related fit indexes (e.g., BIC) are designed to 
prevent “overfitting,” or making small, sample-specific changes solely to improve fit.

Cautions

I again encourage you to be cautious when making model modifications. Extensive model 
modifications will take you far afield from the supposedly confirmatory, theory-testing 
nature of SEM and CFA and can even lead to erroneous models (MacCallum, 1986). Some 
authors make the useful distinction between the use of SEM and CFA in a theory-testing 
versus a more exploratory matter (Joreskog & Sorbom, 1993). I believe this is a useful dis-
tinction, and encourage you to know where you are along this continuum. If you make more 
than minor changes to your model, you should not think of what you are doing as theory 
testing unless you have retested the model with new data.

HIERARCHICAL MODELS

Higher-Order Model Justification and Setup

The analyses so far have pointed to the model in Figure 15.1 as a more valid representation 
of the structure of the DAS-II than the models in Figures 15.7 and 15.8. But the model in 
15.1 is not complete, either. In addition to measuring the four abilities shown in Figure 15.1, 
the DAS-II is also designed to measure overall general intelligence. The model shown in Fig-
ure 15.10, then, is probably a more accurate reflection of the intended structure of the DAS-
II: rather than simply having the first-order factors correlated, these factors are shown as 
reflections of second-, or higher-order factor, general intelligence, usually symbolized as g, in 
a hierarchical model. Note that this type of hierarchical model (with higher-order factors) is 
generally referred to as a higher-order model; another type of hierarchical model (the bifac-
tor model) is also discussed (also see Keith & Reynolds, 2012 or Reynolds & Keith, 2013). 

There are several reasons for developing and estimating higher-order models. In the arena 
of intelligence, higher-order models are more consistent with commonly accepted theories 
of intelligence (e.g., three-stratum or Cattell–Horn–Carroll theory, Carroll, 1993) than are 
first-order models and are more consistent with the actual structure of most intelligence 
tests. Higher-order and other hierarchical models may be equally relevant in many other 
areas of research. Higher-order models can also lead to a better understanding of the first 
level of factors. Just as the first level of fac tors helped us understand what the subtests mea-
sured, the second-order factor(s) may help us better understand the first-order factors.

The mechanics of estimating a higher-order CFA also need comment. Note that the scale 
of the second-order factor (g) is set in the same way as the first-order factors, by fix ing one 
path from it to one of the first-order factors to 1.0. We could also set the scale by fixing the 
variance of g to 1.0 (in this case we would still need to set the scale of the first-order factors 
by setting a path to 1.0, and thus the first-order factor solution will not be standardized). 
The higher-order model differs from the first-order model in that the first-order factors have 
small latent variables pointing toward them, labeled uf1 through uf4 (for unique factor vari-
ance). These latent variables have the same essential meaning as other disturbances/residuals: 
they represent all influences on the first-order factors (Verbal, Nonverbal Rea soning, etc.) 
other than g. To put it another way, any variable—whether measured or latent—that has an 
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arrow pointing to it must also include a latent disturbance/unique vari able to represent all other 
influences on the variable. Finally, the model shown here includes three levels—measured 
variables, first-order factors, and a second-order factor—but additional levels are possible 
and are capable of estimation using these same methods.

Higher-Order Model Results

Figure 15.11 shows the fit statistics and standardized estimates for the higher-order analy-
sis. Note that the first-order factor loadings are the same as they were for the initial, first-
order analysis (Figure 15.2; these will not always be identical but should be very similar). 
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Figure 15.10 Higher-order model of the DAS-II. The model specifies that the DAS-II measures gen-
eral intelligence in addition to the four broad cognitive ability factors.



CONFIRMATORY FACTOR ANALYSIS I • 355

The equivalence is because the essential difference between the higher-order and the first-
order model is that the higher-order model explains the correlations (covariances) among 
the first-order factors with a specific structure. The first-order factor model helps explain 
why the subtests correlate with each other: because there are four abilities that partially cause 
students to perform at a certain level on the eight subtests. The second-order model adds to 
that a possible explanation of the reason for the correlations among the four factors: because 
there is one general intellectual ability factor that influences, in part, the four more narrow 
abilities. Conceptually, the factor analysis of latent variables (second-order) is equivalent to 
the factor analysis of measured variables (first-order).

The fit of the model looks good; with the exception of the statistically significant χ2, all 
indexes suggest a good fit of the model to the data. An examination of the modification 

Figure 15.11 Standardized estimates for the higher-order DAS-II model.
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indexes, standardized residuals, and correlation residuals show similar results as for the ini-
tial four-factor model, and suggest no major problems.

Given that the higher-order model is the same as the initial four-factor model with the 
addition of paths explaining the correlations among factors, it should be clear, then, that the 
higher-order model may be considered a more constrained, more parsimonious version of 
the first-order model (Rindskopf & Rose, 1988). The first-order model places no constraints 
on the factor correlations, whereas the higher-order model says that these correlations are the 
product (in this case) of another latent variable, g. Given this similarity, you may consider the 
two models as nested, and thus we could use Δχ2 to compare the two models. If we were to do 
so, Δχ2 = 13.968 [2], p = .001, and we would likely reject the higher-order model as not worth 
the increase in χ2 compared to gain in parsimony. Likewise, the AIC and aBIC are worse for the 
higher-order model compared to the four-factor first-order model. I generally don’t compare 
first-order with higher-order models in this way (as nested models), however. It seems to me 
that at least in the area of intelligence, such models are justified on purely theoretical grounds, 
without reliance on fit indexes to compare them to agnostic, non-higher-order models. In 
addition, theorists recognize the likelihood of there being intermediate factors between the 
first-order factors and g, (Carroll, 1993, chap. 16) and such factors, if accurate, would improve 
the fit of the higher-order models. With the DAS-II, for example, allowing the unique variances 
of the Nonverbal and Spatial factors to correlate would lead to a higher-order model that fit as 
well as the first-order model (Keith et al., 2010). Allowing this “correlated error” is statistically 
equivalent to specifying that Nonverbal Reasoning and Visual-Spatial skills are reflections of an 
intermediate factor between them and g (can you figure out why this would be the case?). Or 
perhaps I just have a soft spot in my heart for higher-order models of intelligence.

Let’s be sure we understand where these two extra degrees of freedom come from as you 
look over the model. For the first-order model, there were six covariances among the first-
order factors and four first-order factor variances. This is calculated as p p× +( )1

2 ) “moments” 
in the variance/covariance matrix where p = the number variables, in this case, first-order 
factors, and thus 4 5 1

2 10× +( ) =) . The higher-order model uses up eight of these free parameters 
to estimate three of the second-order to first-order factor loadings (recall that one path was 
set to 1), along with the variance of the g factor and the variances of the new disturbances (uf1 
through uf4), leaving two extra df. This means that if there are only three first-order fac-
tors the higher-order portion of the model will be just-identified; the two models will then 
have identical fit and cannot be compared statistically. If we try to add a higher-order factor 
to a model with only two first-order factors, the higher-order portion of the model will be 
underidentified and estimation will be impossible unless we make additional con straints 
(e.g., constraining the two second-order loadings to be the same). You need to pay attention 
to the identification status of the higher-order portions of such models (identification was 
discussed in Chapter 11).

Recall that one reason for investigating higher-order models is to help understand the 
first-order factors. Indeed, the second-order factor loadings are interesting. The highest 
loading (near 1.0, unity) was by the Nonverbal Reasoning factor. Nonverbal Reasoning thus 
appears to be the most intellectually laden of the first-order factors. This finding suggests 
that the deductive and inductive reasoning that underlies the tasks on this factor is close to 
the essence of general intelligence.

Total Effects

Psychometric researchers are often also interested in understanding which of the subtests are 
most highly related to the global general intelligence factor. We can calculate these loadings 
of the subtests on the second-order factor by multiplying paths (e.g., the load ing of Word 
Definitions on g would equal .86 x .73 = .63). If this process sounds familiar, it should; we 
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are simply calculating the indirect effect of g on each subtest. Because there are no direct 
effects (all the effects from g are mediated by the first-order factors), these indirect effects are 
also the total effects. Figure 15.12 shows the total stan dardized effects of g on the first-order 
factors and subtests (for some reason, the order of sub-tests in the Figure is almost reversed 
from the order of the subtests in the figure). The total effects from g to subtests are shown 
in boldface. As shown in the figure, the Sequential and Quantitative Reasoning subtest had 
the highest total effect from g (.770). Thus, this subtest is most closely related to g, or g has a 
stronger effect on this subtest than on any of the other subtests.

Bifactor Model Justification and Setup

There is another type of hierarchical model, often known as the bifactor model. You may see 
this model referred to by other names, as well, including the nested-factors or direct hierar-
chical model. A bifactor version of the DAS-II is shown in Figure 15.13. This model, like the 
higher-order one, includes both Verbal, Nonverbal, and the other first-order factors, and it 
also includes a more general factor, here symbolized as G. With the bifactor model, however, 
both the narrow and the general factor are first-order factors, whereas in the higher-order 
model the general factor is a higher-order one designed to explain the correlations/covari-
ances among the first-order factors. Because the general factor in a bifactor model is also a 
first-order factor, it is often symbolized in intelligence models as G as opposed to g (used for 
a second- or higher-order factor).

Note several other aspects of the bifactor model. First, note that the more narrow fac-
tors (the “broad abilities” in intelligence lingo) are often specified as uncorrelated with one 
another, and as uncorrelated with the general factor. This is done because if we allowed all 
of these to be correlated with one another the model would be underidentified and thus 
we could not estimate it. Because models imply theories, the bifactor model thus says that 

Figure 15.12 Standardized total effects for the higher-order model. The bolded coefficients are the 
total effects of g on the subtests. These may also be considered the loading of the subtests on the 
higher-order g factor.
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the broad abilities and G are unrelated to one another. This model also says that each of the 
 DAS-II tests measures two things: a general ability shared by all the DAS-II tests, and one of 
four other underlying constructs. Note also that the scales of both the broad abilities and G 
were set using ULI (unit loading identification). It is also possible to use UVI to set the scale 
for the broad abilities, or for G, or for both.

Bifactor Model Results

The initial analysis of the bifactor model returned the error message that the variance associ-
ated with e6 was negative, as shown in Figure 15.14. Variances, which are squared terms (one 

Figure 15.13 A bifactor hierarchical model for the DAS-II. This model has both G and the broad abili-
ties as first-order factors.
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way of thinking of them is that they are the standard deviation squared), cannot be negative, 
so the model would not run. This problem is common enough in factor analysis that it has 
a name, a “Heywood case.” In CFA, a Heywood case generally shows up as a negative error 
variance resulting from the path or paths to a variable explaining 100% or more than 100% 
of its variance. In the present example, the Nonverbal and G factors, together, explain more 
100% of the variance in the Sequential and Quantitative Reasoning test. It is worth noting 
that Heywood cases are not unique to bifactor models; they also show up in higher-order 
models (one should always check the first-order residual/disturbance variances carefully in 
higher-order models), and even in first-order models. One common method of dealing with 
a negative variance is to set the offending value to zero.1

Figure 15.15 shows the standardized results for the bifactor analysis with the error vari-
ance for Sequential and Quantitative Reasoning (e6) constrained to zero. As shown in the 
figure, the model fit the data well, with RMSEA = .043, SRMR = .025, and TLI = .977. Indeed, 
the bifactor model fit better than did the higher-order model (AIC = 175.844 versus 197.794 
for the higher-order DAS-II model). We will return to this issue of fit momentarily.

Beyond fit, you probably noticed a few curious aspects of the model results, like the nega-
tive loadings of two of the tests on the Nonverbal factor. These exist because the Picture 
Similarities test was chosen as the reference variable for the unit loading identification. If the 
loading from Nonverbal to Matrices or to Sequential and Quantitative Reasoning (SQR) had 
instead been set to one, the Picture Similarities tests would have shown and small negative 
loading on the Nonverbal factor (–.06) and the Matrices and SQR loadings would have been 
positive (.14 and .64, respectively).

The loadings of each test on G were large and statistically significant. Note also how simi-
lar these values are to those shown as the total effects of g on the subtests for the higher-order 
model (Figure 15.12). Although the rank order changes slightly, the subtests that were the 
best measures of g for the higher-order model are also the best measures of G for the bifactor 
model, and the worst for one are also the worst for the other. In contrast, note how much 
lower are the loadings for the subtests on the four broad factors in the bifactor model com-
pared to all previous models. Indeed, although not shown in the figure (but would be in the 
detailed output), some of these paths/factor loadings are not statistically significant. Why, 
you may wonder? The short answer is that these two models imply quite different theories 
about the nature of intelligence. The higher-order model says that the primary reason that 
the 12 tests shown correlate with one another is that they measure four underlying cognitive 
abilities. g, in turn, affects these broad cognitive abilities, and g affects the specific tests only 
indirectly. The bifactor model, in contrast, says that there are two reasons for the correla-
tions among these 12 tests: first, they all measure G, and second, they all measure some other 
broad cognitive abilities that are independent from one another. In the bifactor model, G has 
direct effects on the specific tests. In the higher-order model, then, g can be understood by 
the nature of the broad cognitive abilities that underlie it, and those cognitive abilities can 
be understood as more or less related to g. For the bifactor model, the nature of G can be 
referenced to specific tests.

Figure 15.14 Error message for the initial bifactor model. Variances cannot be negative.

-35.264

e6

The following variances are negative. (Group number 1 - initial model)
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Comparing the Hierarchical Models

It is possible to obtain similar (smaller) loadings for the higher-order models as for the bifac-
tor model, and doing so also aids in understanding their differences (or similarities). One 
way of doing so is illustrated in Figure 15.16. For the previous higher-order models I speci-
fied that the paths from the disturbances for the first-order factors were equal to 1 and that 
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the unique factor variances were estimated (i.e., ULI specification for uf1 through uf4). In 
Figure 15.16, in contrast, UVI was used for identification of the disturbances. With this setup 
it is possible to calculate the indirect effect of uf1 through uf4 on the various DAS-II subtests. 
These indirect effects are generally quite similar to those for the loading of the subtests on 
the broad abilities in the bifactor model (they are not identical because the underlying mod-
els are different). Consider what this means. uf1 through uf4 represent all other influences 
on the broad abilities, once g is taken into account. These indirect effects, then, represent the 
unique effects of the broad abilities on the subtests, once g is removed. Such estimates may 
indeed be of interest, and are in fact equivalent to the Schmid-Leiman transformation that is 
a popular method for interpreting higher-order exploratory factor results.

Figure 15.16 Model setup allowing the comparison of the broad ability loadings from the higher-
order to the bifactor models.
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Although it is common to treat the bifactor and higher-order models as non-nested (as 
we have done here), it is possible to go from the bifactor model to a model that is equivalent 
to the higher-order model. Note that because g affects the subtests only through the broad 
abilities in the higher-order model, this places constraints on the relative loadings on the 
subtests on g. It would be possible, then, to go from the bifactor to the higher-order model 
by adding proportionality constraints (a topic beyond the scope of this text) (Yung, This-
sen, & McLeod, 1999). What is important to realize at this stage of understanding is that 
higher-order model is equivalent to a more constrained version of the bifactor model. Thus, 
the bifactor model will generally fit as well or better than the more constrained higher-order 
model.

The bifactor model is popular right now (my colleague Tiffany Whitaker calls it the “little 
black dress” of CFA), and it does indeed have some advantages over a higher-order model 
(Chen, West, & Sousa, 2006; Reise, 2012). Chief among these is that it fits as well or better 
than does a higher-order model (see the previous example). One could consider its lack of 
specification of a relation between G and the broad factors as agnostic (not sure how they 
are related) rather than well-defined (it actually specifies that they are unrelated). With this 
change in thinking, the bifactor model would seem to be a good choice for a hierarchical 
model when there is no theory specifying how general and broad factors are related, or when 
that theory is undefined on this point. I will note that this is not the case in the area of intel-
ligence, but it may be the case in many other areas where hierarchical CFA is of interest.

The bifactor model also has some disadvantages. As should be obvious by now, models 
imply theories, and the model you choose should be consistent with the theory you wish to 
test. Although some researchers treat the higher-order and the bifactor models as interchange-
able, even our cursory explanation shows that they imply different theories. If one of these 
models is more consistent with the theory you wish to test, then that is the one you should use. 
If one theory says the structure of your construct of interest is one way (e.g., a bifactor-type 
model), and another theory says it is another way (e.g., a higher-order-type model), then you 
should compare the two (with knowledge that the bifactor model will fit as well or better). 
Such comparisons should make reference to the underlying theory being tested.

Another problem with the bifactor model is that it is not always easy to estimate, and the 
results can be quirky. With the present example you saw that we had to make an additional 
constraint to one error variance in order for the model to work. The fact that this model speci-
fies that each measure is a reflection of two underlying factors sometimes leads to problems 
with estimation and convergence of the factor solution. As a result, it is not unusual to have to 
specify “start values,” or initial guesses of what parameters might be (this is easy to do in most 
SEM programs, although you may have to do some digging to find out how). If the broad 
ability factors are uncorrelated, they must be referenced by three or more measures or the 
model will be underidentified.2 More concerning is the fact that you may get different results 
for the bifactor model depending on how you go about estimating your model. In the pres-
ent example, when I constrained the second test on each factor as the reference variable (i.e., 
Matrices loading set to 1 instead of Picture Similarities), the various standardized loadings 
showed the same magnitude but a different pattern of nonsignificance (e.g., the unstandard-
ized SQR on Nonverbal loading was nonsignificant for the initial analysis but statistically 
significant for this one). When a UVI specification was used (factor variances set to 1), there 
were many fewer nonsignificant factor loadings. Finally, when I analyzed the initial model in 
Mplus, it suggested a negative variance for e5, whereas Amos suggested a negative variance 
for e6. All these differences are likely related to the fact that the variances for some of broad 
abilities were small and, depending on estimation method, nonsignificant. But whatever the 
reason, finding such differences is disconcerting (cf. Milsap, 2001), and in my experience they 
are more common with a bifactor as opposed to a higher-order factor model.



CONFIRMATORY FACTOR ANALYSIS I • 363

A final disadvantage of the bifactor model is that it may lend support to an incorrect 
model (Maydeu-Olivares & Coffman, 2006; Murray & Johnson, 2013). These simulation 
studies show that, for example, the bifactor model may fit the data better than a higher-order 
model, even when a higher-order model is the correct model (Murray & Johnson, 2013).

My current take on the bifactor model, as compared to a higher-order model, is that the 
bifactor model may indeed be a useful model when one is agnostic or unclear about how 
the most general factor should relate to the more specific factors. Likewise, if one believes 
that the structure of the underlying data conform to something like a bifactor model, then it 
should be used in those cases as well. When the guiding theory specifies a higher-order rela-
tion between the most general and more specific factors, however (as with most theories of 
intelligence), the bifactor model results may be misleading. I am not sure if these tentative 
conclusions will be supported five years from now, however. Despite the long history of the 
bifactor model, we are still learning about it! For more detailed comparisons of the two mod-
els see some of the references already listed (Chen, West, & Sousa, 2006; Murray & Johnson, 
2013; Reise, 2012). Keith and Reynolds (2012) and Reynolds and Keith (2013) also compare 
these two models with intelligence data, and Mulaik and Quartetti (1997) and Yung and col-
leagues (1999) show some important statistical comparisons.

ADDITIONAL USES OF MODEL CONSTRAINTS

Occasionally, it is useful to be able to specify single-indicator factors. This may seem impos-
sible, given that we earlier noted that we needed to have multiple measures of each construct 
to have a latent variable model. As you will see, with single indicators the portion of the 
measurement model is underidentified, but there are ways of working around this problem.

Pretend for this example that the DAS-II only included a single measure of short-term 
memory skills, the Digits Forward subtest. Is there some way we could model a Memory fac-
tor despite this weakness in the data? There are several ways we could do so. One method is 
shown in Figure 15.17, which shows a Memory factor with a single indicator, Digits Forward. 
This sort of model is more difficult to estimate because, without further constraints, this 
portion of the model is underidentified. We can work around this problem of estimating a 
single-indicator latent variable in SEM (and CFA) by fixing the value of the unique–error 
variance to some value; this brings this portion of the model back into a just-identified state.

We could, of course, con strain the value of the unique/error variance to zero. This 
approach tacitly suggests that we believe the measured variable is measured without error, 
that the measured variable and the factor are exactly the same. Whether we realized it or not, 
this is what we were doing when we were analyzing path models (and when we were doing 
multiple regression): we assumed that a single measure was a perfectly valid and reliable 
indicator of the constructs we were interested in.

Another approach is to use information about the estimated reliability of the measured 
variable in the model, if we know it or can estimate it. One minus the reliability provides an 
estimate of the proportion of error in the measured variable; if this value is multiplied by the 
variance of the variable, the result is the variance in the measured variable that can be attrib-
uted to error. Figure 15.17 shows a model that uses this methodology. The estimated (inter-
nal consistency) reliability for the Digits Forward test, across ages 5–8, is .91 (Elliott, 2007), 
and the variance of Digits Forward for the present sample is 121.523 (from the variance/
covariance matrix). The estimate used for the error vari ance for Speed of Processing (u9) is 
thus 10.94:

V r Ve tt= −( ) = −( )× =1 1 91 121 523 10 937. . . .
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Study this portion of the model. As for all other factors, one path from the latent to the 
measured variable is set to 1 in order to set the scale. The only difference is that there is only 
one path from the factor to the measured variable. The path from the unique variance to 
the subtest is also set to 1, again to set the scale. Recall when we discussed esti mating path 
models via SEM programs we noted we can either estimate the path from the disturbance or 
estimate the variance of the disturbance. It is the same with the unique and error variances. 
Normally, we set the path from the unique–error variance to 1 and estimate the unique and 
error variance. With only a single measured variable, we have to fix the unique–error vari-
ance as well as the path to allow model estimation. The value 10.94 beside e10 shows that 
we have done so, and with this constraint we can estimate the model successfully. Again, this 
is a common method for dealing with single-indicator latent variables; for more detail, see 
Hayduk (1987, chap. 4). In fact, this was the method I used to estimate the models showing  
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Figure 15.17 Modeling a single-indicator factor. In this model the memory factor has only a single 
measured variable.
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the effects of different degrees of error in the previ ous chapter. It is also possible to use esti-
mates of validity to account for both unreliability and invalidity. The use of reliability prob-
ably provides a very conservative (lower-bound) estimate for the unique and error variance 
(e10). In the complete higher-order model (the model in Figure 15.11), the estimate for Digit 
Forward’s unique and error variance was 67.91 (this information is contained in the text 
output or the unstandardized estimates, neither of which are shown here). Some writers rec-
ommend using a range of values in such single-indicator analyses to make sure the estimates 
obtained for loadings and paths are reasonable.

The results of this analysis are shown in Figure 15.18. With this approach the Memory 
factor had a considerably lower loading on the g factor than did the other first-order factors 
(and it was considerably lower than in higher-order model with three memory indicators). 

Figure 15.18 Standardized solution for the model with a single indicator for the memory factor.
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Although this method allows us to estimate a model with single-indicator factors, it obvi-
ously provides less information about these factors than do factors defined by multiple mea-
sured variables. For the current example, the model tells us the relative effect of g on Memory 
(with Memory defined as very closely related to the Digits Forward), but it provides little 
additional information concerning the nature of the Digits Forward subtest or the Memory 
factor. Although many SEM users regard this method for dealing with single indicators as a 
trick to allow estimation, Hayduk has argued persuasively for advantages for this approach 
in path analysis and SEM (1987).

Let’s briefly review two alternative methods for dealing with single indicator factors. Fig-
ure 15.19 shows the results of a model in which the unique and error variance for Digits 
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Figure 15.19 An alternative specification with a single indicator. Here, we have constrained the error 
variance for the Digits Forward test to zero, which essentially says that the subtest is perfectly reliable 
and that the memory factor and the subtest are equivalent.
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Forward (e10) was set to zero. Note that the fit indexes for this model are the same as those 
shown for Figure 15.18, but that the estimates of the first and second-order factor loadings 
for Digits Forward and Memory are different. A third possible method is shown in Fig-
ure 15.20, in which Digits Forward is loaded directly on the g factor; here we essentially say 
that we don’t know what the Digits Forward test measures other than general intelligence. It 
may not be immediately obvious, but this model is statistically and conceptually equivalent 
to the previous one. Note that in Figure 15.19 by setting e10 to zero we essentially said that 
the Memory factor and Digits forward are the same “thing.” Note also that the loading of 
Digits Forward on the second-order g factor are identical in the two models (Figures 15.19 
and 15.20). Whether you think you will ever use single-indicator latent variables or not, I 
encourage you to try estimating these three models. You will learn a lot about latent variables 

Figure 15.20 Yet another method for dealing with a single-indicator. Although it seems quite differ-
ent, this model is interchangeable with the previous one.
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and alternative models in the process. Make sure you carefully examine the unstandardized 
estimates in addition to the standardized values shown here.

If the DAS-II indeed only included a single measure of short-term memory another, there 
is a more powerful method for better understanding the nature of the constructs being mea-
sured by the DAS-II Digits Forward test and the Memory factor (in addition to the other 
factors). This more powerful method would be to factor analyze the DAS-II with another test 
that includes known measures of short-term along with other related factors. For example, 
Stone (1992) analyzed the original DAS along with another intel ligence test, the Wechsler 
Intelligence Scale for Children—Revised (Wechsler, 1974) to better understand the con-
structs measured by both tests.

The examples in this chapter have focused on testing the validity of existing mea sures. CFA 
can also be used to test theories. I have mentioned three-stratum theory in the area of intel-
ligence. The DAS-II, it appears, measures several important constructs from three-stratum 
theory, and thus we can use three-stratum theory to develop a better understanding of what 
the DAS-II measures. We can turn this process around, as well, to examine the valid ity of the 
guiding theory. If we develop multiple measures of the constructs in three-stratum theory, 
CFA can be used to determine whether a three-stratum-derived model fits the data better 
than do plausible alternative theories (see Keith & Reynolds, 2012 for more information).

SUMMARY

In the preceding chapter we introduced the full latent variable SEM model. In this chapter we 
focused on the measurement portion of this model. As it turns out, the measurement model 
portion of SEM is a useful methodology of its own, generally termed Confirmatory Factor 
Analysis (CFA). Because the history of factor analysis is so intertwined with the his tory of 
intelligence testing, the chapter illustrated CFA through the analysis of a common measure 
of intelligence, the Differential Ability Scales, Second Edition (DAS-II).

The example used 12 subtests of the DAS-II that supposedly measure four underlying 
constructs. We drew a model that shows the relations among the factors and subtests (latent 
and measured variables) (Figure 15.1). The model specifies, with paths drawn from factors 
to subtests, which subtests load on, or measure, which factors. Consistent with our rules for 
other path models, each subtest also has a small latent variable pointing to it that represents 
all other influences on the subtest beyond the four latent factors. With CFA/measurement 
models, these other influences represent a combination of errors of measurement along with 
unique or specific influences. With the addition of constraints to set the scales of the latent 
factors and the unique variances and correlations among the factors—the conceptual model 
underly ing the DAS-II is a testable confirmatory factor model.

We estimated the DAS-II model with data derived from the DAS-II standardiza tion sam-
ple. The initial model fit the data well according to the stand-alone fit indexes that we have 
used in previous chapters (e.g., RMSEA = .046, SRMR = .027), and most of the subtests 
appeared to measure their corresponding factors strongly. That is, the paths from factors 
to measured variables, or factor loadings, were generally high. Another way of interpreting 
these loadings is that the latent constructs (e.g., verbal ability, spatial ability) had strong 
effects on the corresponding subtests. The factors, or latent constructs, also correlated sub-
stantially with each other; all correlations were .75 or larger. This finding suggests that these 
latent, broad abilities are substantially related to each other.

The common method of setting the scale of latent variables is to set one path from each 
latent variable to 1, which sets the scale of the variable to be the same as that of the mea-
sured variable (the Unit Loading Identification, or ULI, approach, Kline, 2011). An alter-
native method is to set the variance of the latent variable to 1 (the UVI, or unit variance 
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identification approach). When done with first-order factors, this method turns the factor 
covariances in the unstan dardized solution into factor correlations, because a correlation 
matrix is simply a covari ance matrix among standardized variables. This methodology may 
be useful to test hypotheses about factor correlations.

Just as we can test competing path models using fit statistics, so can we test alterna tive 
competing CFA models. We illustrated the testing of competing models by comparing the 
initial four-factor DAS-II model with a model with a cross-loading and with an alternative 
three-factor model. In both cases, the initial model fit the data better than did the competing 
models.

When we wish to use information from the model results to revise the model, several 
aspects of the SEM program output may be useful. Modification indexes and standardized 
resid ual covariances may suggest relaxations in the model that will lead to a better fit. Resid-
ual correlations may also be used and have an easier-to-understand metric than standard-
ized residual covariances. Residual correlations are not displayed as output in many SEM 
programs but are easy to compute. Using these data for model modifications will result in 
less parsimonious but presumably better fitting models. Using the t (or z) values may lead to 
values that can be constrained and thus should lead to more parsimonious but equivalent 
fitting models. You should use such meth ods to modify models sparingly or else recognize 
that you are using CFA in an exploratory rather than a theory-testing manner. Model modi-
fications should also be justifiable based on logic, theory, and previous research.

We are often interested in higher-order or other hierarchical models. The field of intel-
ligence is replete with higher-order models, but such models may be relevant in other fields, 
as well. For the DAS-II example, we hypothesized that a more general factor, often symbol-
ized as g for general intelligence, affects each of the four latent variables, which, in turn, affect 
the subtests. Said differently, our higher-order model explains that the correlations among 
the latent factors is a product of their each being affected, in part, by another, more general 
factor.

An alternative hierarchical model, commonly known as the bifactor model, was also illus-
trated and tested against the DAS-II data. The bifactor model has shown renewed popular-
ity in recent years and is sometimes considered as a more agnostic version of a hierarchical 
model. As always, I urge you to consider your underlying theory carefully and allow that 
theory to guide your model.

It is possible to model latent variables or factors when some of these latent variables 
include only a single measured variable by constraining the unique–error variance (i.e., e10 
in Figure 15.14) to some value. A common method of estimating that unique–error vari-
ance uses estimates of the reliability of the measured variable (and thus really only models 
the error variance, not the specific variance). This may prove a useful method when we only 
have a single indicator, but we recognize that the variables are not error free. The method 
can be used in both CFA and SEM models. The chapter ended with a hint of some other uses 
of CFA.

EXERCISES

1. Conduct the analyses outlined in this chapter. If you have a student version program 
that only allows a certain number of variables, you may be able to estimate a portion 
of the mod els. The initial four-factor model is on the accompanying Web site (www.
tzkeith.com) as the file “DAS-II first 1.amw,” and the data are in the file labeled “das 2 
cov.xls” or “DAS 2 cov.sav.”

2. The NELS data include a series of items (ByS44a to ByS44m) designed to assess stu-
dents’ self-esteem and locus of control. Choose several or all of these items that you 



370 • BEYOND MULTIPLE REGRESSION

believe best measure self-esteem and locus of control and subject them to confirmatory 
factor analysis. First use SPSS (or another general statistical program) to create a matrix 
for analysis in Amos (or one of the other programs). Then analyze your model using 
this matrix. I recommend using the matrix for analysis in order to temporarily avoid 
dealing with missing data in Amos.

3. The files “DAS 5–8 simulated 6.sav” and “DAS 5–8 simulated 6.xls” include 500 cases of 
simulated data for the DAS-II.
a. Conduct the first-order factor analyses from this chapter using the simulated data. 

Inter pret the findings. How do the results compare with those in this chapter (and in 
Exer cise 1)? Would you come to different conclusions following these analyses than 
we did in the chapter?

b. Note the fit indexes. Which changed the most from the analyses in the chapter? Why 
do you think this may be?

c. As you examine your analyses, are any other hypotheses or models suggested by the 
findings? If so, conduct these analyses and interpret the findings.

Notes

1 In higher-order intelligence models, Heywood cases often show up in connection with Fluid Rea-
soning factors (Gf, in the DAS-II represented by the Nonverbal Reasoning factor). When this hap-
pens, the g to Gf path may approach or exceed 1 and the associated unique factor variance become 
negative. Note in Figure 15.11 that the g to Nonverbal Reasoning loading approached 1. One impli-
cation of such a finding is that g and Gf factors are not separable. Some researchers use this not-
uncommon finding to argue that the Gf factor is redundant with g, whereas others argue that this 
shows that g is redundant. As noted, one common method for dealing with negative variances is to 
set the value to zero. This makes sense if the value is fairly close to zero but is less defensible if it is a 
large negative value (which likely indicates problems with the model). There are also other possible 
ways to deal with negative variances, including constraining the value to be positive.

2 Here is an interesting conundrum. When factors are correlated, it is possible (although not desir-
able) to have factors referenced by only two measured variables each. So, for example, a correlated 
two-factor, four-measured variable model would have one degree of freedom. But when factors are 
uncorrelated, each factor requires a minimum of three measured variables for identification, and 
with three measured variables each factor is just-identified (as in the present bifactor example). 
That means that if a bifactor model includes fewer than three variables for a factor, the researchers 
will need to either make additional constraints (e.g., constrain the two factor loadings to be equal) 
or, counter-intuitively, relax constraints (e.g., allow that factor to be correlated with another factor). 
As you are reading research using the bifactor model and you notice only two measured variables 
on a factor, make sure the researchers tell you what they have done to solve this problem! This 
conundrum of identification also occasionally leads to a phenomenon known as “empirical unde-
ridentification” in which a model allows factors to be correlated, but that correlation is small and 
nonsignificant. If one of the offending factors involves fewer than three measured variables, it will 
thus be underidentified. The phenomenon of empirical underidentification applies to first-order 
factor models as well (Kenny, 1979).
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Let’s review our progress in our adventures beyond MR. You know how to conduct path 
analysis using MR. This experience includes the estimation of standardized and unstandard-

ized paths, the calculation of disturbances ( 1 2−R ), and the calculation and comparison of 
direct, indirect, and total effects using two different methods. We transitioned into estimat-
ing path models using Amos and other SEM programs and focused again on the estimation 
of both standardized and unstandardized effects and direct, indirect, and total effects. With 
Amos, we switched from the estimation of the paths from disturbances to estimating the 
variances of the disturbances, although either is possible. We have defined just-identified, 
overidentified, and underidentified models, and I suggested that you use a SEM program to 
estimate overidentified models but use either MR or an SEM program if your models are 
just-identified. We have examined fit indexes for overidentified models and have highlighted 
a few that are useful for evaluating a single model and those that are useful for compar-
ing competing models. We briefly focused on equivalent models, nonrecursive models, and 
longitudinal data. We focused on the effects of measurement error on path analysis, MR, 
nonexperimental research, and research in general and began considering the use of latent 
variables as a method of obviating this threat. We expanded our knowledge of latent vari-
ables, their meaning, and estimation via confirmatory factor analysis. 

PUTTING THE PIECES TOGETHER

In this chapter, we will begin putting all these pieces together in latent variable structural 
equation modeling. As noted in Chapter 14, you can consider latent variable SEM as a 

16
Putting It All Together

Introduction to Latent Variable SEM
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confirmatory factor analysis of the constructs involved in the research project, along with a 
path analysis of the effects of these constructs on each other. For this reason, many writers 
refer to these as the measurement model and the structural model, respectively (e.g., Mulaik 
& Millsap, 2000), to denote the conceptual distinctions between components of latent vari-
able SEMs. Although this separation of measurement and structural portions is not neces-
sary statistically, it can be very useful conceptually, especially at this stage of learning.

Figure 16.1 displays, for review, the components of a latent variable SEM. The measure-
ment model consists of the estimation of the four latent variables from eight measured 
variables. The structural model consists of four paths and one correlation among the four 
latent variables. Note that each variable that has a path pointing to it also has a residual–
disturbance–error term pointing to it, representing all other influences on the variable other 
than the variables pointing to it. Some of these residuals represent the unique and error 
variances of measured variables, the remaining influences on these measured variables other 
than the latent variable underlying it. Some residuals represent disturbance terms for latent 
variables, meaning all remaining influences on these latent variables other than the other 
latent variables. Although I refer to some of these as unique–error variances and others as 
disturbances, the terms error and residual are used fairly interchangeably.

Why, you may wonder, doesn’t Latent Variable 1 have a disturbance pointing to it? Because 
Latent Variable 1 has no paths pointing to it; it is exogenous. Note also that each latent vari-
able (including the unique–error variances and the disturbances) has its scale set by fixing 
a single path from it to another variable to 1. So, for example, the latent variable labeled 
residual/disturbance 2 has its scale set to the same value as the latent variable labeled Latent 
Variable 4, which in turn is set to the same value as Measured Variable a. Note that the big-
gest difference between this model and the CFA models from the last chapter is that some 
correlations among latent variables are replaced by paths. As a result, the latent variables 

Figure 16.1 Full latent variable SEM model
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with paths pointing to them also have disturbances pointing to them. Of course, this is akin 
to the difference between a correlation matrix of variables and a path model specifying that 
one variable influences another. Take some time studying the model to make sure you under-
stand it.

AN EXAMPLE: EFFECTS OF PEER REJECTION

Overview, Data, and Model

Eric Buhs and Gary Ladd used SEM to examine the effects of peer rejection on Kindergarten 
students’ academic and emotional adjustment (2001). A portion of the model they analyzed 
is shown in Figure 16.2. The latent variables in the model, along with the measured variables 
used to estimate them, were these:

1. Rejection was indexed by averaged sociometric ratings for each child by the other chil-
dren in the class (Averaged Rating; the scale of this variable was reversed to make it 
consistent with the negative [Rejection] name of the latent variable) and by the number 
of times each child was nominated negatively (as someone other children did not want 
to play with; Negative Nominations).

2. Change, from a previous rating, in Classroom Participation. This variable was esti-
mated from teacher ratings of Cooperative Participation (e.g., accepts responsibility) 
and Autonomous Participation (e.g., self-directive).

Figure 16.2 Effects of peer rejection on Academic and Emotional Adjustment, initial model. The 
model was derived from Buhs and Ladd, 2001.

Rejection

Classroom
Participation

(change)

Achievement

Emotional
Adjustment

d11

d21

d3

1

negative
nominations

r2

1

averaged
rating

(reversed)

r1

1

cooperative
participation

Buhs & ladd initial
Model Specification

r3

1
1

autonomous
participation

r4

1

loneliness
(reversed)

r7

1 1

school
avoidance
(reversed)

r8

1

MRT
Language

r6

1
1

MRT
Quantitative

r5

1

1



374 • BEYOND MULTIPLE REGRESSION

3. Achievement, which the authors considered one aspect of adjustment, was estimated 
from the Language and Quantitative subtests from a standardized school readiness test 
(the Metropolitan Readiness Test, Nurss & McGauvran, 1986).

4. Emotional Adjustment, as indexed by self-ratings of students’ Loneliness at school and 
their desire to avoid school (School Avoidance). These two variables were reversed to 
make the latent variable consistent with the positive name (Adjustment).

Buhs and Ladd’s article included an additional intervening variable (Negative Peer Treat-
ment) and an additional indicator of Rejection. These variables were not included here to 
simplify the model. The model is longitudinal; the Rejection variables were collected in the 
fall, the other variables in the spring (for more detail, see Buhs & Ladd, 2001).

Recall that with our earlier path models (e.g., the homework models in Chapter 13) many 
of the variables in the model were composites (e.g., Achievement was a composite of four 
scores). Buhs and Ladd (2001) could have done the same thing here, but instead of adding 
Quantitative and Language into an achievement composite variable, for example, the authors 
used these two measures as indicators of an Achievement latent variable. Recall our discus-
sion in Part 1 about multiple regression predicting an outcome variable from an optimally 
weighted combination of the independent variables. Conceptually, the latent variables in SEM 
are similar: they are optimally weighted combinations of the measured variables.

The model will be estimated from the measured variables. A portion of the data is shown 
in Table 16.1 (and is saved as data files on the Web site under the label “buhs & ladd data.
sav” and “buhs & ladd data.xls”). Note there are no variables in the data file corresponding 
to the latent variables. This is because the latent variables, or factors, are estimated from 
the measured variables. If this is still confusing, think of the latent variables as imaginary 
variables that we estimate from the measured variables. (In the actual data file, the variable 
names are shortened versions of the variable labels used in the table and the Amos model, 
but they should be self-explanatory. Note that the data included here and on the Web site are 
not the actual data but rather simulated data created to be consistent with the correlation 
matrix, means, and standard deviations reported in the actual article. N = 399. Three of the 
measured variables were reversed to make them consistent with the variable names and thus 
more easily interpretable.) 

Table 16.1 Sample Data: Measured Variables for the Peer Rejection Example

Child Averaged 
Rating

Negative 
Nomina-
tions

Cooperative 
Participation

Autonomous 
Participation

Quantita-
tive

Lan-
guage

Loneli-
ness

School 
Avoid-
ance

1 –1.33 –1.09 1.19 .69 7.47 6.30 2.09 2.48
2 1.32 .55 –.13 –.07 2.72 2.76 1.42 2.16
3 –.64 –1.09 –.29 –1.26 6.40 5.39 1.59 1.38
4 1.42 –.36 –.19 –.56 .99 1.05 .94 2.13
5 .58 –.01 –.36 –.13 2.80 3.56 .36 2.20
6 –1.20 –1.51 .04 .07 7.07 7.79 1.37 2.03
7 .42 .39 –.25 .40 3.68 3.47 2.08 3.00
8 –.40 –.81 .78 1.03 7.03 4.94 2.03 2.61
9 1.99 1.89 –.45 –.66 1.51 5.08 .66 .99
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Just because our analyses have gotten more sophisticated does not mean we should ignore 
the mandate from Part 1: Always, always, always, always, always, always check your data prior 
to conducting analyses! This command is just as important—maybe even more so—as our 
analyses become more complex. So before conducting the SEMs here, make sure you check 
means, SDs, minimums and maximums of the variables in this file. As we conduct SEM, 
you should also get in the habit of examining skew and kurtosis. Note that with the current 
data, few of the measured variables had meaningful scales, and many had both positive and 
negative values. The averaged ratings, for example, were standardized within classroom. The 
descriptive data are shown in Figure 16.3.

For the current model, I have symbolized the unique–error variances of the measured 
variables as r1 through r8 and the disturbances of the latent variables as d1 through d3. 
Recall that we can consider the unique–error variances as all other influences on the mea-
sured variables beyond the influence of the latent variable, just as the disturbances are all 
other influences on a latent variable beyond those of the other latent variables.

Measurement Model

For the sake of clarity, the measurement model, without the structural model, is shown in 
Figure 16.4. Except for its placement of variables (in a circular fashion instead of in a line), 
the model is similar to the confirmatory factor models from the last chapter. The model sim-
ply delineates the estimation of the four latent variables (Rejection, Adjustment, etc.) from 
the eight measured variables (Averaged Rating, Negative Nominations, etc.).

Note that each latent variable had its scale set by a single factor loading (path from the 
latent to measured variable) set to 1. Each error–unique (residual) variable had its scale set 
by setting the path from it to its corresponding measured variable to 1.

Structural Model

The structural portion of the model is shown in Figure 16.5, a figural representation of 
the hypotheses of the effects of one latent variable on another, and includes the distur-
bances for the endogenous latent variables in the model. The model examines the effect 
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Figure 16.3 Descriptive statistics for the simulated rejection data.
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Figures 16.4 Measurement model portion of the initial peer rejection model.

Figure 16.5 Structural model portion of the initial peer rejection model.
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of Rejection on Adjustment, both directly and indirectly, through the class participation 
of the students.

The full SEM model (Figure 16.2) has 15 degrees of freedom. Fourteen degrees of free-
dom are from the measurement portion of the model (Figure 16.4). Note that all the factor 
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loadings that could be included in the model (e.g., a path from Rejection to Cooperative 
Participation or Loneliness) are not included; these constraints are the source of this 14 df. 
The structural model (Figure 16.5) includes one additional df, resulting from the omission 
of a path between Achievement and Adjustment. The model is saved on the Web site (www.
tzkeith.com) in the file “Buhs & Ladd model 1.amw.” Note 1 at the end of the chapter shows 
the calculation of the degrees of freedom.1

Results: The Initial Model

The model (Figure 16.2) was analyzed using the raw data (Table 16.1 and the file “buhs & 
ladd data.sav” or “buhs & ladd data.xls”) via Amos. Figure 16.6 shows relevant fit indexes, 
along with the standardized output. The model shows an adequate, but not good, fit to the 
data. The RMSEA was above .05 (.067, 90% confidence interval = .043 to .092), but was 
below .08. The SRMR was below the cutoff of .08 or .06 (.046). The CFI was above .95, but 
the TLI was below our informal cutoff for a good fit of .95. Although not shown in the fig-
ure the χ2 was also statistically significant (p < .01), further suggesting a lack of fit. Again, 
the model shows an adequate, but not good, fit. The full array of fit indexes is shown in 
Figure 16.7. Because the model had an adequate fit, we’ll first interpret these results. Later 
in the chapter we’ll take a look at the more detailed fit information and consider how the 
model might be modified. 

Figure 16.8 shows more detail concerning the paths and factor loadings, including the 
unstandardized coefficients, their standard errors, and critical ranges (z statistics). All the 
parameters that were estimated were statistically significant (z greater than approximately 2).

Figure 16.6 Standardized estimates from the initial peer rejection model. The model has an adequate, 
but not good, fit to the data.
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Standardized Results

Let’s now focus on the meaning of the results (Figure 16.6). Our primary interest was in the 
effects of Rejection on kindergarten students’ academic Achievement and Emotional Adjust-
ment. The standardized direct effect of Rejection on Achievement was –.40, whereas the 
direct effect on Emotional Adjustment was –.34. Both effects were statistically significant and 

Model Fit Summary 

CMIN 
Model  CMIN DF P CMIN/DF 
Default model 21 41.869 15 .000 2.791 
Saturated model 36 .000 0 
Independence model 8 972.032 28 .000 34.715 

RMR, GFI
Model    GFI AGFI PGFI 
Default model .047 .974 .938 .406 
Saturated model .000 1.000 
Independence model .504 .574 .453 .447 

Baseline Comparisons 

Model 
NFI 

Delta1
RFI

rho1 
IFI

Delta2
TLI

rho2 
CFI 

Default model .957 .920 .972 .947 .972 
Saturated model 1.000  1.000  1.000 
Independence model .000 .000 .000 .000 .000 

Parsimony-Adjusted Measures 
Model  PNFI PCFI 
Default model .536 .513 .520 
Saturated model .000 .000 .000 
Independence model 1.000 .000 .000 

FMIN 
Model FMIN F0 LO 90 HI 90 
Default model .105 .068 .028 .126 
Saturated model .000 .000 .000 .000 
Independence model 2.442 2.372 2.125 2.637 

RMSEA 
Model RMSEA LO 90 HI 90 PCLOSE 
Default model .067 .043 .092 .110 
Independence model .291 .276 .307 .000 

AIC 
Model  BCC BIC CAIC 
Default model 83.869 84.841 167.637 188.637 
Saturated model 72.000 73.666 215.603 251.603 
Independence model 988.032 988.403 1019.944 1027.944 

NPAR 

RMR

PRATIO

AIC

Figure 16.7 Fit indexes for the initial rejection model.
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large. Given the adequacy of the model, for each SD change in the latent Rejection variable, 
Emotional Adjustment should decrease by .34 of a standard deviation, and Achievement 
should decrease by .40 of a SD, other things being equal. These findings, in turn, suggest 
strong effects for Rejection on kindergarteners’ subsequent Adjustment, both academically 
and emotionally. Obviously, Rejection can have deleterious effects.

Unstandardized Findings

Focus on the unstandardized coefficients (Figure 16.8). The unstandardized direct effect of 
Rejection on Adjustment was –.118, meaning that for each 1-unit change in the latent Rejec-
tion variable Emotional Adjustment decreased by .118 points. To understand the meaning of 
this statement, we need to understand the scales involved. The Rejection latent variable was 
set to have the same scale as the measured Averaged Ratings variable, whereas the Emotional 
Adjustment latent variable was set to the same scale as the Loneliness scale. The Averaged 
Ratings variable was originally based on a 3-point scale but was each child’s average rating 
on this 3-point scale by all of his or her classmates. In addition, these ratings were standard-
ized separately by classroom (Buhs & Ladd, 2001). This seems a good approach, but it means 

Regression Weights
Estimate S.E. C.R. P

***550.6-430.502.-noitcejeR---<)egnahc(_noitapicitraP_moorssalC
Emotional_Adjustment <--- Classroom_Participation_(change) .289 .098 2.944 .003

***625.5-501.875.-noitcejeR---<tnemeveihcA
Achievement <--- Classroom_Participation_(change) .886 .274 3.236 .001

***034.3-430.811.-noitcejeR---<tnemtsujdA_lanoitomE
***751.41750.208.noitcejeR---<MON_GEN

000.1noitcejeR---<TAR_EVA
000.1)egnahc(_noitapicitraP_moorssalC---<POOC

***695.5141.887.)egnahc(_noitapicitraP_moorssalC---<OTUA
000.1tnemtsujdA_lanoitomE---<ENOL

SCHAVOID <--- Emotional_Adjustment 1.140 .223 5.104 ***
000.1tnemeveihcA---<GNAL

***109.01431.564.1tnemeveihcA---<TNAUQ

Standardized Regression Weights
Estimate

154.-noitcejeR---<)egnahc(_noitapicitraP_moorssalC
Emotional_Adjustment <--- Classroom_Participation_(change) .372

304.-noitcejeR---<tnemeveihcA
Achievement <--- Classroom_Participation_(change) .281

533.-noitcejeR---<tnemtsujdA_lanoitomE
308.noitcejeR---<MON_GEN
949.noitcejeR---<TAR_EVA
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Figure 16.8 Unstandardized and standardized paths and loadings, standard errors, and critical ratios.
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that the Averaged Ratings unstandardized metric and thus the metric of the Rejection latent 
variable are not readily interpretable. According to the authors, the Loneliness scale is a five-
item composite (Buhs & Ladd). Although not explained further, it appears from the means 
and standard deviations that this scale is also a mean of the item scores. Without further 
detail, the unstandardized metric of this variable and thus the Emotional Adjustment latent 
variable are also not interpretable. The unstandardized coefficients, although useful for other 
purposes (e.g., comparisons with other research), are not readily interpretable, and thus the 
previous interpretation of the standardized paths is probably our best approach.

Mediation

Many more interesting findings are contained in the model beyond the direct effects. One 
primary interest of the researchers was to determine whether classroom participation medi-
ated the effect of Rejection on Adjustment. In other words, what were the indirect effects of 
Rejection on Adjustment through Classroom Participation? Note in Figure 16.8 that Rejec-
tion had a powerful effect on Participation (–.45): rejected children showed less participa-
tion than did their nonrejected peers. Classroom Participation, in turn, had a strong effect on 
both Achievement (.28) and on Emotional Adjustment (.37); children who participated evi-
denced higher achievement and better adjustment. Thus, it certainly seems that the indirect 
effects of Rejection on the two adjustment variables were also substantial and that Classroom 
Participation partially mediates the effects of Rejection on Adjustment.

Indirect and Total Effects

Figure 16.9 shows the standardized direct, indirect, and total effects of the latent variables 
on each other. Rejection had moderate and negative indirect effects on Achievement (–.126) 
and Emotional Adjustment (–.168). Although not shown in the figure, these effects were also 

Figure 16.9 Standardized total, direct, and indirect effects for the initial rejection model.
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statistically significant. Although these effects are smaller than the direct effect of Rejection 
on each variable, they are meaningful and show that students’ participation in class partially 
mediates the effects of rejection on adjustment. Children who are rejected by their peers 
show less participation, which, in turn, results in lower levels of school emotional adjust-
ment and achievement. Because the direct and indirect effects of Rejection on the academic 
(Achievement) and Emotional Adjustment variables were both negative, the total effects 
were even larger (–.529 on Achievement; –.503 on Emotional Adjustment). (Of course we 
could have calculated these indirect and total effects by hand. For example, the indirect effect 
of Rejection on Achievement via Participation = –.451 × .281 = –.127. The total effect = 
–.127—.403 = –.530 [the same value as the figure, within errors of rounding]. With more 
complex figures, of course, such calculations become considerably more complex.)

COMPETING MODELS

We may wonder if the model, as drawn, is correctly specified. Is it reasonable, for example, to 
assume that the only way Achievement and Adjustment are related to each other is by their 
both being affected by Rejection and Participation? Or does Achievement affect Adjustment, 
as well (or Adjustment affect Achievement)?

Figure 16.10 shows an alternative model in which Achievement affects Adjustment. The 
logic behind this competing model is simple: children who are successful academically, a 
major component of the orientation of kindergarten, will, as a result, be better emotionally 

Figure 16.10 Alternative Achievement Effect model of the effects of rejection on educational and 
emotional adjustment. The model includes a path from Achievement (educational adjustment) to 
Emotional Adjustment.
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adjusted than will children who have difficulty with the academic aspects of kindergarten. 
As shown in the figure, this model had a good fit to the data. In particular, the RMSEA was 
.048, and the TLI and CFI were above .95.

More directly, we can compare the fit of this model with the initial model. Because the 
two models are nested, we can use Δχ2 to compare the two models. The fit statistics for 
this Achievement Effect model are shown in Table 16.2, along with those from the initial 
model. As can be seen in the table, the model in which Achievement was allowed to affect 
Adjustment resulted in a smaller χ2 than did the initial model, and this Δχ2 was statistically 
significant (Δχ2 [1 df] = 15.095, p < .001). Although the initial model was more parsimoni-
ous, our rule of thumb is that when Δχ2 is statistically significant we will reject the more 
parsimonious model in favor of the better fitting model. In this case, the model shown in 
Figure 16.10 is the better fitting model; the decrease in parsimony is worth the decrease in χ2.

Given our acceptance of the Achievement Effect model over the Initial Model, what are 
the implications for this new model? The results shown in Figure 16.10 suggest that Achieve-
ment has a powerful effect on Emotional Adjustment (β = .38). If this model is correct, 
then it appears that Achievement is an important mediating variable between Rejection and 
Adjustment: children who are rejected suffer academically, and this academic difficulty, in 
turn, results in lower levels of adjustment in school. 

This change in the model also substantially reduced the direct effect of both Rejection 
and Participation on Emotional Adjustment (compare the models shown in Figures 16.6 
and 16.10). If you compare the total effects for Rejection on Adjustment in the two models, 
however, you will find them to be similar. Take a few minutes to consider why this is the case. 
As long as you are pondering models, it is also worth noting that with the Achievement Effect 
model (Figure 16.10), the structural portion of the SEM (the paths among the latent vari-
ables) is just-identified. That is, for a measurement model there are six correlations among 
the latent variable; for the model shown in Figure 16.10, all six of those correlations are used 
to estimate the six paths among the latent variables. Finally, please note that these results are 
with simulated data. I do not know if the addition of this path would have led to such an 
improvement in fit in the actual data.

Other Possible Models

You may question why I drew the path from Achievement to Adjustment rather than the 
reverse. The decision was based primarily on logic. I reasoned that the types of skills and 
abilities assessed by the Achievement measured variables are more stable than the ratings 
of loneliness and school avoidance assessed by the Adjustment latent variable. Given what 

Table 16.2 Comparison of the Fit of Alternative Peer Rejection Models

Model χ2 df Δχ2 df p AIC TLI CFI SRMR RMSEA 
(90% CI)

1. Initial 41.869 15    83.869 .947 .972 .046 .067  
(043-.092)

2.  Achievement 
Effects

26.774 14 15.095 1 < .001 70.774 .973 .986 .027 .048  
(.018-
.075)
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is meant by these two latent variables, it seemed to me that it was more likely that Achieve-
ment would affect Adjustment than it was that Adjustment would affect Achievement. What 
do you think? Should the path go in this direction or the reverse? It is interesting to conduct 
this exercise, but if we examine this model as more than an exercise, we will need to examine 
relevant theory and previous research to see which of these possibilities is more likely. We 
would use such theory and research to design the study and to draw the path in the appropri-
ate direction.

Why not, you may wonder, just estimate a model with the path drawn in the opposite 
direction and see how that model fits? Recall the rules for equivalent models in Chapter 13. 
Unfortunately, these two models are statistically equivalent; their fit is identical. Although 
this alternative Adjustment Effect model will have very different implications for interpreta-
tion, the data cannot tell us which model is correct. It is also inappropriate to run this alter-
native model, interpret it, and then decide which interpretation we like more. Perhaps, then, 
we can draw the paths in both directions, a nonrecursive model, and see which path is stron-
ger? This solution will not work either; the structural model will be underidentified. If dif-
ferentiation between these two models is one of the purposes of the research, the researchers 
could build in noncommon causes of the two outcome variables and thus test nonequivalent 
or nonrecursive models; likewise, longitudinal data will help. With the current model and 
data, we must rely on theory and previous research to make this decision.

What if theory and previous research do not inform this decision; what if you cannot 
decide in which direction to draw the path? One option, an agnostic option, is shown in Fig-
ure 16.11. In this model, we have allowed the disturbances of Achievement and Adjustment 

Figure 16.11 Another alternative model of the effects of rejection. This agnostic model specifies an 
unknown causal relation between Emotional Adjustment and Achievement. The model is equivalent 
to and statistically indistinguishable from the previous Achievement Effect model.
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to be correlated. Note that this model is also equivalent to the model in Figure 16.10; the fit 
indexes are therefore the same, and the data cannot tell us which of the two models is correct. 
But consider what this model with the correlated disturbances says about our assumptions 
of the causal process underlying these variables. The disturbances represent all other influ-
ences on the latent variables other than the variables in the model that are pointing to the 
latent variable. To allow the disturbances to be correlated means that we recognize that these 
other causes may be related. In other words, we recognize that Emotional Adjustment and 
Achievement may be related in other ways beyond the paths shown in the model, but we’re 
not really sure what these other relations may be. Practically, these correlated disturbances 
may mean that the two variables are causally related, but we don’t know the direction. The 
correlated disturbances may also mean that there is some other variable, not included in the 
model, that affects both Adjustment and Achievement (an unmeasured common cause). 
If you think about it, this correlation means what any correlation may mean: a may cause b,  
b may cause a, or there may be a third variable, c, that causes both a and b. Again, the mod-
els are equivalent, so we can’t decide which is correct based on the data. As a general rule, 
however, I prefer to make the causal statement (Figure 16.10) than to be noncommittal (Fig-
ure 16.11), but I want a more solid grounding in relevant theory and research than I now 
have before making the decision of causal direction. We will return to the topic of causal 
direction in the next chapter.

MODEL MODIFICATIONS

The competing model discussed above was developed based on logic rather than analysis 
of the detailed fit information. You may wonder, if we had not thought of this competing 
model, would the modification indexes (MIs) or the standardized residuals (or the correla-
tion residuals) have hinted at it? Figure 16.12 shows the modification indexes greater than 
4.0 for the initial model (from Figure 16.6). Although many of the modification indexes do 

Figure 16.12 Modification indexes for the initial rejection model.

Modification Indices

Covariances
M.I. Par Change

d3 <--> d2 12.075 .086
r7 <--> d2 16.425 .120
r7 <--> r5 4.590 .073
r4 <--> r5 7.147 .101
r4 <--> r6 10.334 -.117

Regression Weights
M.I. Par Change

Achievement <--- Emotional_Adjustment 4.714 .522
Emotional_Adjustment<--- Achievement 7.159 .046
QUANT <--- AUTO 5.448 .250
LANG <--- AUTO 8.107 -.294
LONE <--- Achievement 9.785 .065
LONE <--- QUANT 9.925 .041
LONE <--- LANG 9.972 .046
AUTO <--- LANG 4.345 -.033
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not make a lot of sense, several are worth noting. The largest index suggests that χ2 could 
be reduced by at least 16.425 by freeing the correlation–covariance between the residual for 
Loneliness (r7) and the disturbance for Achievement (d2). This modification makes little 
sense. The next largest modification index (12.075 for the covariance between d3 and d2) 
does, however. This MI suggests that the model will fit statistically significantly better if this 
covariance is freed. Focus on the MIs for the regression weights (the paths). Although they 
are not the largest MIs, the first two listed also suggest that the fit of the model could be 
improved by focusing on the relation between Achievement and Emotional Adjustment. 
Thus, although the modification indexes do not point directly to our Achievement Effect 
model, they certainly hint in that direction. 

Table 16.3 shows the standardized residual covariances and the correlation residuals 
among the variables. These residuals show that the Initial Model did not adequately account 
for the correlations between Loneliness and the MRT Quantitative and Language scores and 
also between Language and School Avoidance. The table of residual correlations also shows 
that these residuals are substantial. The model predicts a correlation of .144 between the 
MRT Language test and the Loneliness scale, whereas the actual correlation between these 
measured variables was .301, a difference of .157 (the actual correlation and the implied cor-
relation are not shown in the table but are easily accessible in the text output from Amos or 

Table 16.3 Standardized residual covariances and residuals correlations for the initial rejection model.

Standardized Residual Covariances

 QUANT LANG SCHAVOID LONE AUTO COOP AVE_RAT NEG_NOM

QUANT 0        
LANG 0 0       
SCHAVOID .682 1.260 0      
LONE 2.968 3.096 0 0     
AUTO .321 –1.821 –.008 –1.089 0    
COOP –.608 –.488 –.128 –.444 .313 0   
AVE_RAT .006 –.235 .236 –.053 .760 –.286 0  
NEG_NOM .433 –.104 –.536 .741 .333 –.983 .014 0

Residual Correlations

 QUANT LANG SCHAVOID LONE AUTO COOP AVE_RAT NEG_NOM

QUANT 0        
LANG 0 0       
SCHAVOID .035 .064 0      
LONE .152 .157 0 0     
AUTO .016 –.093 –.001 –.055 0    
COOP –.031 –.025 –.007 –.023 .016 0   
AVE_RAT .001 –.013 .012 –.003 .039 –.015 0  
NEG_NOM .024 –.005 –.028 .038 .017 –.051 .001 0
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other SEM programs). Again, the residuals might lead you in the direction of the Achieve-
ment Effect model if you had not thought of it previously.

As long as we are cleaning up our models, we might reexamine the statistical signifi-
cance of the various parameter estimates to see if all paths are statistically significant, 
with the idea that if any are not it will be okay to remove them. As shown earlier in Figure 
16.8, all paths were statistically significant. Although not shown here, all paths are also 
statistically significant in the Achievement Effect model. It is worth reiterating a previous 
point: models that are extensively modified based on modification indexes and other tools 
for model modification should be considered exploratory, tentative models until tested 
against new data. 

SUMMARY

This chapter is the first to focus on latent variable structural equation models. Such SEM 
models may be considered as a confirmatory factor analysis of the various constructs 
involved in the research, with a simultaneous path analysis of the effects of these constructs 
on each other. The chapter reviewed the components of latent variable SEMs and illustrated 
the methodology with an extended example from the research literature.

Conceptually, you may consider latent variable SEM as a confirmatory factor analysis of 
the constructs underlying the measured variables in the research, along with a path analysis 
of the latent variables. The measurement model includes the latent variables, constructs, 
or factors that underlie the measured variables in the research as causes of these measured 
variables. The measurement model also includes latent variables, one per measured variable, 
representing the unique and error variances of each variable, or all other causes of that mea-
sured variable other than the construct/latent variable. The structural model includes the 
paths and covariances among the latent variables, along with the disturbances for the endog-
enous latent variables (all other causes of the latent variables other than those with arrows 
pointing to the latent variables). It is often confusing to those new to the SEM methodology 
to know which variables require latent variables representing disturbances or unique/error 
variances. At the most mechanical level, any variable that has an arrow pointing to it must 
also include a latent variable representing all other influences on this variable. For measured 
variables, these other influences are unique and error variances. For latent variables, these 
other influences generally represent disturbances along the lines of the disturbances from 
path analysis or the residuals from multiple regression analysis. In fact, you can, and some 
methodologists recommend that you do, analyze the model separately as a measurement 
(confirmatory factor) model, and then add the structural model. We have not used this pro-
cess here, but it can be useful, especially for complex models or in the beginning stages of 
research.

The research example used in the chapter was based on research on the effects of peer 
rejection on kindergarten students’ academic and emotional adjustment (Buhs & Ladd, 
2001). The example analyzed models similar to (but smaller than) those analyzed in the 
actual research, with data simulated to mimic the actual data. The initial model included 
four latent variables with two measured variables indexing each latent variable (more good 
measures per latent variable are preferable in practice, but our interest was in a smaller, more 
manageable example). We split apart the measurement model from the structural model 
for conceptual purposes but not for analysis. The initial model was fairly parsimonious 
(15 df ), with most of the degrees of freedom a result of constraints in the measurement 
model (undrawn factor loadings from latent to measured variables).

The initial model had an adequate fit to the data and suggested that Rejection by peers 
resulted in lower subsequent Achievement and school-related Emotional Adjustment. A 
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portion of these effects were indirect, or mediated, through Class Participation: rejected 
students had lower rates of participation, which resulted in lower achievement and adjust-
ment. Thus, all three types of effects—direct, indirect, and total—were interesting and 
interpretable.

An alternative model, which included an additional path from Achievement to Emotional 
Adjustment, was also estimated. This change resulted in a statistically significant improve-
ment in χ2, which we interpreted as meaning that the alternative Achievement Effect model 
was a better explanation of the data than the initial model. The alternative model led to 
different interpretations of direct, indirect, and total effects. As an aside, this change (in the 
structural portion of the model) used up the 1 degree of freedom that was due to the struc-
tural portion of the model.

Any complacency we may have garnered that we had now found the correct model was 
quickly shattered, however. The chapter discussed two alternative models that are equiva-
lent to our preferred Achievement Effect model. Although these two models are statistically 
indistinguishable from the Achievement Effect model, they have very different interpreta-
tions and implications. The chapter included the standardized figural output from one of 
these alternative models to demonstrate its statistical, but not conceptual, equivalence to the 
Achievement Effect model. This fuzziness served as another reminder of the importance of 
theory, logic, and previous research in the construction of models. The equivalent models 
also served as a reminder of the importance of planning the research so that you can indeed 
answer the questions of interest.

In the final section of the chapter we examined some of the more detailed fit statistics 
from the SEM program output. The modification indexes and the standardized residual 
covariances and correlations for the initial model hinted at the change we made in the 
Achievement Effect model (although they also suggested the other equivalent, indistin-
guishable models). Although we might have arrived at the same place had we constructed 
the alternative Achievement Effect model based on these hints, alternative models devised 
prior to the examination of the data and results should generally be given more credence 
than models derived from extensive data-driven model modifications. There were no sta-
tistically not-significant paths or factor loadings that we might have constrained in subse-
quent models.

Although not discussed in detail, there are always equivalent possible models, and their 
veracity must be tested against these (theory, etc.) standards, not through complex statisti-
cal analysis. We can test and reject some models, but we can rarely (maybe never) test and 
evaluate all possible models that would result in alternative interpretations. Some we don’t 
think of, and some are indistinguishable. At the most basic level, our models always come 
back to this need for theory, thought, and previous research. “The study of structural equa-
tion models can be divided into two parts: the easy part and the hard part” (Duncan, 1975, 
p. 149). The hard part is developing sound, theory-grounded models. Again, welcome to the 
dangerous world of SEM.

EXERCISES

1. Analyze the simulated Buhs and Ladd data (“Buhs & Ladd data.sav” or Buhs & Ladd 
data.xls”) using a structural equation modeling program (if you are using Amos, the 
initial model is saved as “Buhs & Ladd 1.amw”; the Mplus script is also online).
a. Estimate the models discussed in this chapter. Study the parameter estimates and 

standard errors, the fit statistics, modification indexes, and standardized residuals.
b. Interpret the model. Be sure to interpret the indirect and total effects in addition to 

the direct effects.
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c. Compare the initial model with the competing model discussed in this chapter (the 
Achievement Effect model). Do you agree that this model is a better alternative? 
What theoretical, logical, and research evidence can you offer in support of this 
model? What evidence argues against this model?

d. Are there other alternative models that you are interested in testing? Do so; be sure 
to evaluate the relative fit of the model and to interpret your findings.

e. Are there any common causes that the authors may have neglected? How could you 
investigate the possibility of unmeasured common causes more completely?

2. Figure 16.13 shows a model to test the effects of participation in Head Start on chil-
dren’s cognitive ability. This example is a classic reanalysis of a controversial quasi-
experiment; I have seen variations of it presented in Kenny (1979) and Bentler and 
Woodward (1978), among others. The measured background variables in the model 
include measures of mother’s and father’s educational attainment, father’s occupa-
tional status, and family income. Head Start was hoped to improve participants’ cogni-
tive skills, and the latent Cognitive Ability outcome was indexed by scores on two tests: 
the Illinois Test of Psycholinguistic Abilities (ITPA) and the Metropolitan Readiness 
Test (MRT). The Head Start variable is a dummy variable coded 1 for those who par-
ticipated in Head Start and 0 for children in the control group. The data are shown in 
Table 16.4. These are data from 303 white children from an early Head Start evalua-
tion, 148 who attended Head Start in the summer and 155 who did not. To understand 
why the example is so controversial, note the correlation between Head Start and the 
two cognitive outcomes: both are negative (–.10, –.09), suggesting that Head Start may 
have negative effects on Ability! The model is one of several possible models designed 
to determine what the outcomes of Head Start are after taking the family’s background 
characteristics into account. The correlations and SDs are also included here and in the 
Excel file “head start.xls” (the SDs are not included in most presentations of these data. 
I estimated these and the means from data presented in Magidson & Sörbom, 1982). 
All continuous variables are standardized.
a. Draw (set up) and estimate the model. Is the structural portion of the model just-

identified or overidentified? Evaluate the fit of the model and, if adequate, focus 
on parameter estimates. Interpret the model. According to these results, does Head 
Start have a positive effect on cognitive ability, a negative effect, or no effect at all? 
Interpret the other aspects of the model.

Figure 16.13 Model testing the potential effects of Head Start participation on children’s cognitive 
ability

Education
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Education

r2 11

Mother's
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r1 1
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1
1

1
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b. Fix the path from Head Start to Cognitive Ability to zero; compare the fit of this 
model to the initial model. Do you still come to the same conclusion as before?

c. Are there other alternative models that you are interested in testing? Are they equiva-
lent to the initial model? Test these models; be sure to evaluate the relative fit of the 
model and to interpret your findings.

d. Are there any common causes that the research may have neglected? How could you 
investigate the possibility of unmeasured common causes more completely?

3. Kimmo Sorjonen and colleagues used SEM to estimate the relative effects of intelli-
gence, family of origin SES, and emotional capacity (at the time of their conscription 
into the military) on Swedish men’s occupational status at ages approximately 35-40 
(Sorjonen, Hemmingsson, Lundin, Falkstedt, & Melin, 2012). The authors were inter-
ested in the relative effects of these variables as well as the extent to which their effects 
were mediated by educational attainment. Figure 16.14 shows the authors’ model 
(minus one correlated error). A dataset of 1000 cases, simulated to give similar findings 
to the article, are on the website in the file “Sorjonen et al simulated 7.sav” (the actual 
research had an N of over 48,000). Note that while the simulated data are designed to 
mimic the means and variances of the original data, I have not been strict in the scaling; 
thus there are items that have (impossible) negative values. A brief explanation of the 
variables in the analysis are shown in Table 16.4.
 Estimate the model shown. Create a table of direct, indirect, and total effects on the 
final outcome (Attained Occupation). Which variables are the most important influ-
ences on these men’s eventual occupations? Which variables are less important? Inter-
pret your findings. Is there anything unusual about this model?

Figure 16.14 Model for the Sorjonen and colleagues (2012) exercise.
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Note

1 Here is the calculation of df for the measurement and structural models: with eight measured 
variables, there are 36 elements in the variance/covariance matrix: p p× + ×( ) = =1

2
8 9

3 36 . For the 
measurement model we estimate 22 parameters: 6 correlations/covariances among the factors, 
4 factor loadings (recall that for each factor one factor loading is set to one to set the scale), 4 fac-
tor variances, and 8 unique/error variances (r1 through r8). 36 – 22 = 14 df for the measurement 
model. For the full latent variable SEM we are estimating 21 parameters: the 8 unique/error vari-
ances, 4 factor loadings, 1 factor variance (for the exogenous variable, Rejection) and 3 variances of 
disturbances (d1 through d3), and 5 paths. For this model, 36 – 21 = 15 df. Another way of thinking 
about df is to apportion them to the measurement versus structural models (Figures 16.3 versus 
16.4). As already calculated, the measurement model accounted for 14 df. In the structural model, 
the 6 factor correlations are replaced by 5 paths, resulting in 1 additional df.

Table 16.4 Variables in the Sorjonen et al. (2012) example.

Variable Name Label in Figure Description

Instructions Short measure of verbal intelligence & 
inductive reasoning

Selection Short measure of verbal intelligence & 
inductive reasoning

Assembly Short measure of visual-spatial reasoning
Technical Short measure of “mechanical ability” and 

“technical understanding” (p. 270)
Pop Occ Father’s 

Occupation
Occupation status on a 5-point scale from 
census

Fam 
Economy

Family 
Economy

Participant’s ratings of their family’s economic 
standing from very poor (1) to very good (5), 
rated in 1969/70 at time of conscription

Pop Income Father’s 
Income

Natural log of participant’s father’s income, 
from census data, for 1970

Maturity Social 
Maturity

Psychologist’s ratings in 1969/70 irresponsibility 
and maladjustment versus “responsibility . . . 
independence, . . . and extraversion” (p. 271)

Control Emotional 
Control

Psychologists’ ratings of nervousness and 
anxiousness versus calmness

Energy Psychic 
Energy

Psychologists’ ratings of a lack on initiative 
versus initiative and ideas

Occ 85 Occupation 
1985

Occupational status from 1985 census 

Occ 90 Occupation 
1990

Occupational status from 1990 census

Education Level of education (7 point scale) from 1990 
Census data
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In the previous chapter we introduced and explored latent variable structural equation mod-
els. This chapter will review and consolidate that learning by reviewing another example. We 
will continue our exploration with several more advanced topics and an assessment of where 
we stand in our efforts to conduct meaningful nonexperimental research. The chapter will 
begin with a model that incorporates two complexities that we have touched on previously: 
single-indicator variables and correlated errors.

SINGLE INDICATORS AND CORRELATED ERRORS

A Latent Variable Homework Model

Figure 17.1 shows a latent variable version of our earlier Homework model from Chap-
ter 13. The primary variables in the model are Homework, indexed by student reports 
of average time spent on homework in 8th (Homework 8th) and 10th (Homework 
10th) grades, and students’ overall Grades in high school, a latent variable estimated 
by students’ high school GPAs in English, Math, Science, and History–Social Studies  
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(from students’ transcripts at graduation). Other measured variables in the model were 
as follows: 

1. Achievement test scores from 8th grade in Reading, Math, Science, and History–Social 
Studies

2. Parent Educational attainment, Family Income, and Parent Occupational status. These 
variables were generally taken from the parent file; Parent Occupation and Parent Edu-
cation were each based on the higher value reported for either the father or the mother.

3. Ethnic background, coded 1 for White and 0 for other.

Recall that with the earlier homework model most of the variables were composites 
of some sort; Previous Achievement, for example, was a composite of the four 8th-grade 
achievement tests. In the current model, these components were not added together as com-
posites but appear in the model as measured indicators of latent variables. Instead of adding 
the four tests together to create a Previous Achievement composite variable, for example, the 
four 8th-grade tests are used as indicators of a Previous Achievement latent variable.

The model will be estimated from the covariance matrix of the measured variables. The 
covariance matrix is recovered from the correlation matrix and standard deviations, shown 
in Table 17.1, and on the accompanying Web site (www.tzkeith.com) under the label “hw 
latent matrix.xls.” The variable names in the file are the variable names from the Amos model 
(rather than the variable labels as shown in the Figure); these should either be familiar to 
you or self-explanatory. The data are 1000 cases chosen at random from the 8th- through 

Figure 17.1 Latent variable model of the effects of Homework on High School GPA.
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12th-grade NELS data, including information from students’ transcripts. For the current 
model, I have symbolized the unique–error variances of the measured variables as r1 through 
r14 and the disturbances of the latent variables as d1 through d3.

Note that each latent variable has its scale set by a single factor loading (path from the 
latent to measured variable) set to 1 (ULI). Each error–unique (residual) variance has its 
scale set by constraining the path from it to its corresponding measured variable to 1.

The model examines the effect of time spent on homework on subsequent GPA 
while controlling for students’ previous school performance. Two background variables, 
Ethnic background and Family Background, are also controlled, although the model 
specifies that both background variables affect Grades only indirectly through Previous 
Achievement and Homework. Note that the model is simply a latent variable version of 
the path model from Chapter 13 and, like that model, is supported by theory and previ-
ous research.

Single-Indicator Latent Variable

The model included several less common characteristics, as well. First, notice the value 
associated with the residual (r1) of the Ethnic variable (.0099). The latent variable Ethnic-
ity is indexed by a single measured variable (Ethnic), and this portion of the measurement 
model would be underidentified without further constraints. As discussed in Chapter 15, a 
common method for dealing with single-indicator factors is to constrain the error–unique 
variance of that measured variable to some value, often a value of 1 minus the estimated 
reliability of the measured variable. Why, you may ask, would a variable as clear-cut as eth-
nic background be unreliable? Students’ reports of their ethnic identity should be very, but 
not completely, reliable. Students may misread the questionnaire item or might decide on a 
whim to mark it incorrectly. Students of mixed ethnic background can only chose one group 
when they belong to more than one. Those who enter the data into the computer may make 
transcription errors. All these possibilities add small amounts of error. For these reasons, I 
estimated the reliability of the Ethnic variable at approximately .95. Thus 5% of the vari-
ability of the Ethnic measured variable is due to unreliability, or error. The variance of Eth-
nic is .198 (from Table 17.1, SD2 = .4452 = .198), and 5% of this variance is .0099; the error 
variance of the Ethnic variable was constrained to this value. (Note that I am using the term 
reliability here quite loosely. Strictly speaking, unreliability refers to random error, whereas 
my examples include random and systematic error. Our estimates of error variance in SEM 
often include both.)

Correlated Errors

The model also includes correlations between the error and unique variances of the 
Achievement test scores and later Grades. The model, for example, specifies that the unique 
and error variance of the 8th-grade Math achievement test score is correlated with the 
unique and error variance of the 12th-grade Math GPA. Conceptually, this correlated error 
means that we believe that the Math test score and Math Grades share something in com-
mon above and beyond the effect of general Previous Achievement on overall Grades. If 
you think about it, this makes sense, and we can even label that “something” that Math 
test scores and Math grades share in common: specific Math achievement. The model also 
includes correlated errors between Reading–English, Science test and grades, and History–
Social studies test and grades. Such correlated errors are common in longitudinal models 
in which a single measure is administered more than once or when closely related measures 
are administered at two different times (as in the present model). Indeed, the ability to 



LATENT VARIABLE MODELS II • 395

take the possibility of correlated unique and error variances into account is an important 
advantage of SEM.

The full SEM model (Figure 17.1) has 66 degrees of freedom. Sixty-four degrees of free-
dom are from the measurement portion of the model. Simply note all the factor loadings 
that could be included in the model that are not included (e.g., a path from Homework to 
Reading 8th or Parent Occupation); these constraints are the source of this 64 df. The struc-
tural model produces the other 2 df, resulting from the paths from Ethnicity and Family 
Background to Grades that are constrained to zero. A little later in the chapter we will esti-
mate the measurement model separately and then add in the structural model.

Results

The model (Figure 17.1 and in the file “hw latent 1.amw”) and the data (Table 17.1 and the 
file “hw latent matrix.xls”) were analyzed via Amos. Figure 17.2 shows relevant fit indexes, 
along with the standardized output. The model showed a good fit to the data. The RMSEA 
was below .05 (.046, 90% confidence interval = .039–.052), and the TLI and CFI were above 
.95. The SRMR for this model was .029, meaning that the matrix implied by the model dif-
fered from the actual correlation matrix, on average, by only .029. The full array of fit indexes 
is shown in Figure 17.3. (Now might be a good time to review the suggestions for fit indexes 
and their evaluation in Chapter 13.) Because the model generally fits well, we’ll first interpret 
the results. Later in the chapter we will take a look at the more detailed fit information to see 
how the model might be modified.

Figure 17.4 shows more detail concerning the paths and factor loadings, including the 
unstandardized coefficients, their standard errors, and critical ratios (z statistics). All the 

Figure 17.2 Standardized output for the latent variable homework model.
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Model Fit Summary 

CMIN 
 FD/NIMC P FD NIMCledoM

Default model 39 204.450 66 .000 3.098 
Saturated model 105 .000 0 
Independence model 14 8383.652 91 .000 92.128 

RMR, GFI 

 IFGP IFGA IFGledoM
Default model 1.389 .972 .955 .611 
Saturated model .000 1.000 
Independence model 24.569 .310 .204 .269 

Baseline Comparisons 

Model 
NFI 

Delta1
RFI

rho1 
IFI

Delta2
TLI

rho2 
CFI 

Default model .976 .966 .983 .977 .983 
Saturated model 1.000  1.000  1.000 
Independence model .000 .000 .000 .000 .000 

Parsimony-Adjusted Measures 

 IFCP IFNPledoM
Default model .725 .708 .713 
Saturated model .000 .000 .000 
Independence model 1.000 .000 .000 

FMIN 

Model FMIN F0 LO 90 HI 90 
Default model .205 .139 .099 .186 
Saturated model .000 .000 .000 .000 
Independence model 8.392 8.301 8.003 8.605 

RMSEA 

Model RMSEA LO 90 HI 90 PCLOSE 
Default model .046 .039 .053 .825 
Independence model .302 .297 .308 .000 

AIC 

Model

NPAR

RMR

PRATIO

AIC BCC BIC CAIC 
Default model 282.450 283.639 473.852 512.852 
Saturated model 210.000 213.201 725.314 830.314 
Independence model 8411.652 8412.079 8480.361 8494.361 

Figure 17.3 Fit indexes for the initial homework model.

parameters that were estimated were statistically significant (z greater than approximately 2). 
Figure 17.5 shows the covariances, correlations, and variances. Note that covariances were 
also statistically significant, with the exception of the covariance between r8 and r14. The 
correlated error between 8th-grade History test scores and 12th-grade History grades was 
not statistically significant; we could, if desired, remove this parameter in subsequent mod-
els, presumably without any noticeable loss of fit. 



Regression Weights
Estimate S.E. C.R. P

Previous_Achievement <--- Family_Background .278 .020 13.649 ***
Previous_Achievement <--- Ethnicity 1.774 .646 2.748 .006
Homework <--- Family_Background .013 .004 3.120 .002
Homework <--- Previous_Achievement .053 .008 6.640 ***
Homework <--- Ethnicity -.281 .123 -2.292 .022
Grades <--- Previous_Achievement .145 .012 12.574 ***
Grades <--- Homework .601 .132 4.566 ***
Ethnic <--- Ethnicity 1.000
parocc <--- Family_Background 1.000
byfaminc <--- Family_Background .100 .005 19.214 ***
bypared <--- Family_Background .062 .003 21.607 ***
bytxrstd <--- Previous_Achievement 1.000
bytxmstd <--- Previous_Achievement .997 .030 33.737 ***
bytxsstd <--- Previous_Achievement .990 .030 33.520 ***
bytxhstd <--- Previous_Achievement .967 .029 32.909 ***
eng_12 <--- Grades 1.000

***318.73420.698.sedarG---<21_htaM
***386.34220.759.sedarG---<21_icS

ss_12 <--- Grades 1.062 .022 48.194 ***
hw10 <--- Homework 1.000
hw_8 <--- Homework .453 .060 7.549 ***

Standardized Regression Weights
Estimate

Previous_Achievement <--- Family_Background .529
Previous_Achievement <--- Ethnicity .087
Homework <--- Family_Background .198
Homework <--- Previous_Achievement .413
Homework <--- Ethnicity -.108
Grades <--- Previous_Achievement .518
Grades <--- Homework .274
Ethnic <--- Ethnicity .975
parocc <--- Family_Background .776
byfaminc <--- Family_Background .667
bypared <--- Family_Background .805
bytxrstd <--- Previous_Achievement .855
bytxmstd <--- Previous_Achievement .844
bytxsstd <--- Previous_Achievement .846
bytxhstd <--- Previous_Achievement .837

429.sedarG---<21_gne
028.sedarG---<21_htaM
878.sedarG---<21_icS
419.sedarG---<21_ss

hw10 <--- Homework .592
hw_8 <--- Homework .451

Figure 17.4 Unstandardized and standardized factor loadings and paths for the initial latent variable 
homework model.
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Covariances
Estimate S.E. C.R. P

Family_Background <--> Ethnicity 2.136 .277 7.705 ***
r5 <--> r11 .704 .248 2.842 .004
r6 <--> r12 2.856 .342 8.346 ***
r7 <--> r13 .920 .285 3.225 .001
r8 <--> r14 .533 .277 1.926 .054

Correlations
Estimate

Family_Background <--> Ethnicity .294
r5 <--> r11 .128
r6 <--> r12 .331
r7 <--> r13 .130
r8 <--> r14 .082

Variances
Estimate S.E. C.R. P

Family_Background 280.913 21.615 12.996 ***
Ethnicity .188 .009 21.232 ***

***221.51615.3361.351d
***710.5281.519.2d
***695.51202.051.33d

010.1r
***512.41420.31721.5814r
***762.81391.825.33r
***196.21640.085.2r
***716.61817.1555.825r
***541.71228.1332.136r
***950.71867.1561.037r
***093.71577.1468.038r
***801.41570.250.111r
***635.91221.873.221r
***716.71490.356.131r
***521.51090.463.141r
***336.11202.253.201r
***355.71850.810.19r

Figure 17.5 Covariances, correlations, and variances for parameters estimated in the initial home-
work model.

Interpretation

Let’s now focus on the meaning of the results. First, our primary interest was in the effects of 
Homework on GPA. As already noted, this effect was statistically significant (see the Home-
work --> Grades path in Figure 17.4). The standardized coefficient was .27, meaning that for 
each SD change in the latent Homework variable Grades should change by .27 of a standard 
deviation, other things being equal. This finding, in turn, suggests a strong effect of time 
spent on homework on subsequent GPA (given the adequacy of the model). This effect is 
larger than in our previous path analyses using only measured variables (even though we 
are focusing on a longer time span—through 12th grade, rather than 10th grade) and larger 
than the effect shown in Part 1 when we examined the effect of homework on learning using 



LATENT VARIABLE MODELS II • 399

multiple regression. As noted in Chapter 14, our measures of variables in research are always 
error laden. Latent variable SEM removes unreliability and invalidity from the estimates 
of the effects of one variable on another. The most common effect of removing measure-
ment error from our estimation process is to increase the apparent effect of one variable 
on another. This effect is illustrated well by comparing the present homework model with 
previous versions. The current, latent variable model is a more accurate representation of 
the true effects of homework on learning, because it gets closer to the level of the constructs 
of true interest.

Unstandardized Coefficients

Focus on the unstandardized coefficients (Figure 17.6). The unstandardized effect of Home-
work on Grades was .60, meaning that for each 1-unit change in the latent homework vari-
able Grades increase .60 point. To understand the meaning of this statement, we need to 
understand the scales involved. The Homework latent variable was set to have the same scale 
as the measured Homework 10th variable, whereas the Grades latent variable was set to the 
same scale as the English GPA measured variable. If Homework 10th had been measured on 
a simple hour scale and English GPA on a standard 4.0 scale, interpretation would be rela-
tively straightforward. Unfortunately, the underlying scales for both variables are not that 
meaningful, which is one reason I am focusing more on the interpretation of standardized 
as opposed to unstandardized coefficients. The Homework 10th measured variable was a 
mean of two questions, F1S36A1 and F1S36A2 (average time spent on homework in school 
and time spent on homework out of school). I changed the scale of each of these items so 
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Figure 17.6 Unstandardized output for the initial homework model.
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that they ranged from 0 (none) to 9 (over 15 hours a week; I changed the scale from a 0 to 
7 scale so that it would be consistent with the scale used for the 8th-grade homework ques-
tion). The homework scales in NELS are presumably designed to take into account the cur-
vilinear nature of the effect of homework on learning. The English GPA scale ranged from 
0 (an F average) to 12 (A+). Again, the unstandardized coefficients are less interpretable than 
would be ideal. 

Effects on Homework, Indirect and Total Effects

Many more interesting findings are contained in the model, as well. The analysis has 
shown that Homework affects Grades, but this raises another question. Which other 
variables in the model affect Homework? That is, who spends more time on home-
work? Previous Achievement had a strong effect (.41, standardized) on Homework. Stu-
dents who achieve at a higher level spend more time on homework than those who 
achieve at lower levels; this increase in Homework time subsequently results in higher 
Grades as well. The coefficients from Family Background suggest that students from 
more advantaged backgrounds have higher 8th-grade achievement (.53) and complete 
more homework (.20). Students’ Ethnic background had only a small effect on 8th-grade 
Achievement (.09). Ethnicity had a negative effect on Homework (–.11). Given the cod-
ing of the Ethnic variable, this means that students from minority ethnic backgrounds 
report higher levels of homework time than majority (White) students. The unstandard-
ized coefficient for the Ethnicity–Homework path (–.28) shows that minority students 
report .28 points higher on the Homework time scale than do majority students when 
the other variables in the model are controlled.

Figure 17.7 shows the standardized indirect and total (as well as the direct) effects of 
the latent variables on each other. Note that, because there are no paths from Ethnicity 
or Family Background to Grades, there are, of course, no direct effects for these variables 
on Grades. Family Background, however, had a large indirect effect on Grades (.388), pri-
marily through its effect on Previous Achievement (.529 times the total effect of Previous 

Standardized Total Effects
Ethnicity Family_Background Previous_Achievement Homework Grades

Previous_Achievement .087 .529 .000 .000 .000
Homework -.072 .417 .413 .000 .000
Grades .025 .388 .631 .274 .000

Standardized Direct Effects
Ethnicity Family_Background Previous_Achievement Homework Grades

Previous_Achievement .087 .529 .000 .000 .000
Homework -.108 .198 .413 .000 .000
Grades .000 .000 .518 .274 .000

Standardized Indirect Effects
Ethnicity Family_Background Previous_Achievement Homework Grades

Previous_Achievement .000 .000 .000 .000 .000
Homework .036 .219 .000 .000 .000
Grades .025 .388 .113 .000 .000

Figure 17.7 Standardized direct, indirect, and total effects for the initial homework model.
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Achievement on Grades, .631 = .334). The indirect effect of Family Background on Grades 
through Homework was smaller but still meaningful (.198 × .274 = .054). Because there 
are no direct effects of Family Background on Grades, the total effects are the same as the 
indirect effects. In contrast, the total effect of Ethnicity on Grades is very small (.025), and I 
would probably consider it nonmeaningful. The reason this effect is so small is that the posi-
tive indirect effect of Ethnicity through Previous Achievement is canceled out by the negative 
indirect effect through Homework. 

With the use of a single indicator accounting for the likely error in the measured variable, 
the latent variable Ethnicity behaves like all the other latent variables in the model. Note that 
the loading of Ethnic on Ethnicity (standardized) was .97 (Figure 16.2). This value is simply 
a function of the reliability estimate used to fix the error variance (the standardized loading 
is equal to rtt , with rtt equal to the estimate of the reliability used to constrain the error). 
Another option is to simply have Ethnic appear as a measured, rather than latent variable, an 
option that does not recognize the error inherent in the variable. As a result of building error 
into this variable, the standardized estimates of the effects from Ethnicity are slightly larger 
than they would have been without recognition of this error.

Note that I simply made an educated guess as to the likely reliability of the Ethnic variable. 
If reliability estimates are available for a variable, or a similar variable, use them, but some-
times a guess is the best you can do. In such cases, it may be worthwhile to try different values 
for the reliability (e.g., .90 or .98 versus .95) to make sure you have a good understanding of 
what happens to the parameters of interest when you make these changes.

If you return to Figure 17.2 and focus on the correlated errors, you will see that the corre-
lated error between the Math test and subsequent Math grades is substantial (.33), suggesting 
that these measures indeed share something in common (specific math achievement) above 
and beyond the effect of general achievement on overall grades. The other correlated errors 
are smaller, but all except one (History 8th–History) are statistically significant. The expecta-
tion for the existence of correlated errors is probably reasonable.

Competing Models

We may wonder if, indeed, Ethnicity and Family Background really only affect Grades indi-
rectly, only through Previous Achievement and Homework. We could test this hypothesis by 
comparing the initial model to one in which paths are estimated from Ethnicity and Family 
Background to Grades. The fit statistics for this model are shown in Table 17.2 under the 
label Direct Background Effects. The model in which the background variables affect Grades 
directly results in a smaller χ2 (202.263), but the change in χ2 is not statistically significant 
(Δχ2 = 2.187, df = 2, p =.335). When Δχ2 is not statistically significant, our rule of thumb is 
to prefer the more parsimonious model, which is the initial model in Figure 17.2. In other 
words, yes, it appears that Ethnicity and Family Background only affect Grades indirectly, 
not directly. 

Was the assumption that the error–unique variances are correlated across similar tests 
and grades really necessary? To test the veracity of this assumption, we can delete these cor-
related errors from the model and compare the fit of this No Correlated Errors model with 
the initial model. This new model is more parsimonious than the initial model because it 
includes four fewer parameters to be estimated (the four correlated errors), so if the models 
fit equally well, we would prefer the more parsimonious No Correlated Errors model. The 
fit indexes for the model are also shown in Table 17.2. The deletion of the correlated errors 
resulted in a Δχ2 of 114.962, with four df. This increase in χ2 is statistically significant, mean-
ing that the No Correlated Errors model, although more parsimonious, resulted in a statisti-
cally significantly worse fit to the data than did the initial model. Our rule of thumb is that 
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if the Δχ2 is statistically significant we prefer the less parsimonious model. The increase in 
parsimony is not worth the cost of additional misfit; the initial model appears a better rep-
resentation of the effect of these variables on Grades; the correlated errors are needed. [It is 
also worth noting that the RMSEA for this model is not particularly good, and even its 90% 
CI does not include our cutoff for a good model (.05). We might have rejected this model 
even based on the RMSEA used as a stand-alone fit index.]

We may also want to test directly the statistical significance of the effect of Homework 
on Grades by comparing the initial model to one in which the path from Homework to 
Grades is set to zero. The previous two competing models essentially tested assumptions 
underlying the initial model, whereas this competing model tests the substantive research 
question guiding the research: whether homework affects high school grades. The fit of 
this model is also summarized in Table 17.2. When this No Homework Effect model 
is compared to the initial model, the Δχ2 is 31.417 (df = 1, p < .001). Although the No 
Homework Effect model is more parsimonious, the parsimony (the extra df) resulted in 
too great a cost in model fit; the Δχ2 increase is statistically significant. Yes, Homework 
indeed has a strong and statistically significant effect on students’ high school GPA. Of 
course, we would come to this same conclusion through examination of the statistical 
significance of the Homework to Grades path in the original model (Figure 17.4), but as 
long as we are testing other aspects of the model using the fit indexes, it makes sense to 
test this one as well.

Fit indexes for two additional models are shown in Table 17.2. Model 5 shows the fit for a 
measurement model, that is, a CFA model in which the measured variables are loaded onto 
the same factors shown in Figure 17.2, but the factors themselves are simply allowed to cor-
relate with one another. As noted earlier, this type of model is often tested prior to the full 
structural model and the fit compared to such a model. As shown in the Table, the difference 
in fit between this measurement model and the initial model is trivial and non-significant, 
and thus we would likely decide that the full SEM model was a reasonable one. Note also that 
the fit of this model is identical to that of the Direct Background Effects model 2. Make sure 
you understand why this is the case.

Table 17.2 Comparison of Fit of Alternative Homework Models

Model x2 df Dχ2 df p CFI SRMR RMSEA  
(90% Cl)

AIC

1. Initial 204.450 66 .983 .029 .046 
(.039–.053)

282.450

2. Direct Background 
Effects

202.263 64 2.187 2 .335 .983 .029 .047 
(.039–.054)

284.263

3. No Correlated Errors 319.412 70 114.962 4 <.001 .970 .031 .060 
(.053–.066)

389.412

4. No Homework Effects 235.867 67 31.417 1 <.001 .980 .039 .050 
(.043–.057)

311.867

5. Measurement Model 202.263 64 2.187 2 .335 .983 .029 .047 
(.039–.054)

284.263

6. Ethnic Measured 204.450 66 .983 .029 .046 
(.039–.053)

282.450

Note: All models compared to the initial model.
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The final model shown in the Table replaced the single indicator Ethnicity latent variable 
with the measured Ethnic variable. The standardized results for this model are also shown in 
Figure 17.8. Note that replacing the latent single-indicator variable with the simple measured 
variable did not change the fit of the model at all. The purpose of using a single indicator 
latent is not to improve fit but to obtain more accurate estimates of effects in the model. The 
fact that standardized path estimates changed very little from one version of this model to 
the other is because our estimate for the error variance for Ethnic was quite small (and our 
estimate of reliability quite large).

Model Modifications

Should we consider other, post hoc model modifications? One possible modification was 
already discussed: constraining the correlated error between History test scores and History 
GPA to zero, thus specifying that these error and unique variances are not correlated. This 
additional constraint results in a worse fit of the model (increase in χ2), but this change will 
likely not be statistically significant.

We may wonder if there are model modifications we can make that will improve the fit 
of the model. Because our initial model fit well, this change may have lower priority than 
it would have if the model did not fit well; but it is still worth exploring if for no other rea-
son than to reinforce the concepts presented in previous chapters. Figure 17.9 shows the 

Figure 17.8 Latent variable homework model, with Ethnicity as a measured, rather than a single-
indicator latent variable (standardized output).
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modification indexes greater than 4 (not all are listed for space reasons). The largest modifi-
cation index is for the covariance between r6 and d2 and suggests that χ2 can be lowered by 
at least 28.05 by freeing the correlation between the error of measurement for the 8th-grade 
Math test and the disturbance for Homework. Allowing such a change suggests that the Math 
Test and Homework share something in common, or have a common cause, other than 
those shown in the model. Although we could probably make up all sorts of reasons why 
this might be if we tried hard enough, there is no real theoretical or research-based reason to 
allow such a correlation. Another possibility is to free the covariance between the Math test 
unique–error variance and the disturbance for Grades (modification index = 21.132), but 
this change also makes little sense. In a related fashion, the modification indexes for regres-
sion weights suggest that we consider allowing a path from Homework to Math Achievement 
test scores (20.912) or from Science grades to Math test scores (21.287). Again, these modi-
fication indexes make little sense, other than to suggest that the 8th-grade Math test score 
seems to be a general source of misfit in the model.

Figure 17.10 shows the standardized residual covariances, one of our other methods of 
isolating sources of misfit in the model. There are no especially large standardized residuals, 
which is consistent with our overall satisfaction with the model fit. If we arbitrarily pick a 
value of +2 as representing a larger standardized residual, there are three large values in the 
matrix. Consistent with the speculation that the Math test score is something of a source of 
misfit, two of these large values are with the 8th-grade Math test (bytxmstd). They suggest 
that the model does not adequately account for the correlation between the math test and 

Regression Weights
M.I. Par Change

hw_8 <--- bytxmstd 4.546 .007
Sci_12 <--- Math_12 5.365 .038
Sci_12 <--- bytxmstd 5.329 .010
eng_12 <--- bytxsstd 6.293 -.010
bytxhstd <--- hw_8 7.752 -.479
bytxsstd <--- Ethnicity 4.822 1.004
bytxsstd <--- Grades 6.760 -.209
bytxsstd <--- Sci_12 4.924 -.159
bytxsstd <--- eng_12 11.603 -.246
bytxsstd <--- Ethnic 4.891 .961
bytxmstd <--- Ethnicity 5.668 -1.065
bytxmstd <--- Homework 20.912 1.024
bytxmstd <--- Grades 16.586 .321
bytxmstd <--- hw_8 15.356 .655
bytxmstd <--- hw10 9.556 .307
bytxmstd <--- ss_12 11.112 .219
bytxmstd <--- Sci_12 21.287 .324
bytxmstd <--- Math_12 10.536 .228
bytxmstd <--- eng_12 16.159 .284
bytxmstd <--- bypared 5.130 .334
bytxmstd <--- Ethnic 5.737 -1.018
bypared <--- Ethnicity 15.925 -.277
bypared <--- Homework 5.914 .084
bypared <--- Grades 4.378 .026
bypared <--- hw_8 4.089 .053

Covariances
M.I. Par Change

r9 <--> d3 5.461 -.155
r14 <--> d2 4.042 -.133
r12 <--> r13 10.441 .222
r8 <--> d2 6.712 -.769
r8 <--> r9 6.483 -.531
r7 <--> Ethnicity 6.788 .216
r7 <--> d3 10.663 -1.230
r7 <--> r11 11.075 -.794
r7 <--> r8 6.160 2.866
r6 <--> Ethnicity 9.522 -.251
r6 <--> Family_Background 8.285 9.729
r6 <--> d2 28.050 1.526
r6 <--> d3 21.132 1.688
r6 <--> r9 7.955 .571
r6 <--> r13 6.817 .697
r6 <--> r8 13.541 -4.148
r2 <--> Ethnicity 17.664 -.053
r2 <--> d1 5.900 .564
r3 <--> Ethnicity 17.316 .115
r1 <--> r7 5.743 .197
r1 <--> r6 6.493 -.205
r1 <--> r2 18.380 -.053
r1 <--> r3 17.347 .114

Figure 17.9 Modification indexes for the initial homework model.
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8th-grade homework time (hw_8) or 12th-grade science GPA. They were also the largest 
correlation residuals (not shown here), but they were still small, with the largest between 
bytxmstd and 12-grade science GPA. The third large standardized residual (and correlation 
residual) suggests that the model does not completely account for the correlation between 
the Ethnic measured variable and Family Income. Again, although we can likely think of rea-
sons why this may be so, we are not slapping ourselves on the head, thinking “I can’t believe 
I did not think of that before!” There are no really compelling reasons to relax any of the 
constraints in the model to improve the fit.

Latent Variable Panel Models

In chapter 13 we examined panel models as one type of model appropriate for longitudinal 
data. Now that we have developed an understanding of latent variables and correlated errors, 
we can examine this topic in a little more depth.

Figure 17.11 shows a latent variable panel model designed to determine the longitudinal 
effects of achievement on locus of control and of locus of control on achievement. Recall 
from Part 1 what locus of control means: this is the degree to which people believe that they 
control what happens to them (an internal locus and a high score) versus they believe their 
lives are controlled by outside forces (an external locus and a low score). It makes sense that 
students with an internal locus of control would achieve at a higher level, perhaps as the 
result hard work or additional study (we just posited some potential mediators!). But then 

Figure 17.11 Latent variable panel model designed to compare the effect of achievement on subse-
quent locus of control with the effect of locus of control on achievement.
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it also makes sense that high achieving students would, as a result of that success, develop a 
more internal locus of control. These two possibilities are embodied in the figure, and can 
be tested in this panel model. Spend a few minutes considering which of these you consider 
more likely. Or are they both likely?

I estimated the model using the NELS 8th through 12th grade data. The data (a correla-
tion matrix and SDs) are in the file “sc locus ach matrix n12k.xls.” The Achievement test 
scores, SES, and Female (Sex, male=0, female=1) variables are familiar. The locus of control 
latent variable is indexed by four items in grade 8: 

BYS44B I don’t have enough control over the direction my life is taking (called control8 
in the figure),

BYS44C In my life, good luck is more important than hard work for success (luck8),
BYS44F Every time I try to get ahead, something or somebody stops me (stops8), and
BYS44M Chance and luck are very important for what happens in my life (chance8).

The same items were administered in 10th and 12th grade. The website also contains a word 
file providing more information about each of the variables “Codebook for sc locus ach data.
docx.”

Note that each of the measured locus and achievement variables has a correlated error 
with the same variable measured at each of the other two time points. It makes sense that the 
control item at time 8, for example, should share something in common with control10 and 
control12, beyond general locus of control. Disturbances of locus of control and achieve-
ment are also correlated at each time point. One of the reasons for doing a panel model is to 
determine the primary direction of influence, and so it makes sense that no causal influence 
is specified at each time point but that a correlation, an agnostic causal relation, is allowed.

The figure shows a fairly strict version of a panel model, however, in that the background 
variables of sex and SES only influence the 10th-grade variable through the eighth grade 
variables. Likewise, the 8th grade constructs of interest (locus and achievement) only influ-
ence 12th grade locus and achievement indirectly, through the 10th grade variables. These are 
model variations that could be tested as alternative models. You will have a chance to do so 
in the exercises!

The standardized results are shown in Figure 17.12. The model fit the data well using 
our normal criteria: RMSEA = .050, CFI = .964, SRMR = .044. The χ2 was very large and 
statistically significant (χ2 [262] = 790167, p < .001), but then that is expected with a sample 
size of over 12,000. Given that large sample size, every path and correlation in the model 
is statistically significant, even the ones that we would consider too small to be meaning-
ful. Given an acceptable fit, the results suggest that the primary direction of effect is from 
achievement to locus of control, rather than the reverse. Students who achieve at higher lev-
els show higher, more internal, locus of control as a result. The effect of locus of control on 
subsequent achievement is negligible. Note that achievement in 8th grade also has substantial 
indirect effects on 12th-grade achievement, via both 10th-grade achievement (.93 * .14 = .13) 
and via 10th-grade locus of control (.10 * .54 = .05).

Panel models, as illustrated, can be useful for helping to understand the primary direction 
of effect. The model is also useful for illustrating the plausible unfolding of a developmental 
process, in this case how locus of control and achievement are related over middle to high 
school. We have again just scratched the surface of the topic of panel models. Little’s text is 
an excellent source for more information concerning panel models and longitudinal SEM 
(Little, 2013). In chapter 20 we will study another method for answering questions about 
how attributes develop over time, latent growth modeling. 
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MULTI-GROUP MODELS

Our previous homework models included the variable Ethnicity. This variable was included 
for the simple reason that it is often included as a background variable in such models, 
although our analyses suggested that Ethnicity did not need to be considered to make the 
model valid. The results of the Ethnicity variable are interesting, however, in that our analyses 
suggested that Ethnicity has no effect on high school GPA and that minority students spend 
more time on homework than do majority students. Perhaps more importantly for our pur-
pose, its inclusion allowed the illustration of the use of a single-indicator latent variable.

A Multi-Group Homework Model across Ethnic Groups

Now I want you to consider another possibility. Our explorations so far have suggested that 
Ethnicity has no effect on GPA. It could be the case, however, that Homework has different 
effects on GPA depending on students’ ethnic group membership. Previous research, for 
example, has suggested that homework may have larger effects on learning outcomes for 
minority, as opposed to majority, students (Keith, 1993; Keith & Benson, 1992). If this is the 
case, it means that a teacher or school that increased homework demands can expect this 
homework to pay off in increased learning for all students, but to result in an even larger 
increase in learning for minority students. If this sort of speculation sounds methodologi-
cally familiar, it should. What we are talking about is the possibility of testing an interaction 
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between Ethnic background and Homework in their effects on Grades. Another way of stat-
ing this is that we are interested in whether Ethnic background moderates the effect of Home-
work on Grades.

Conceptually, we can test this hypothesis by analyzing a homework model separately 
for minority and majority students and then comparing the effect of homework on grades 
for the two groups. Such a model is illustrated in Figure 17.13; we can analyze the model for 
majority students and find the unstandardized value for the path from Homework to Grades 
(denoted with a question mark in the figure). We can then analyze the model for minority 
students and examine the same path. We might even put a 95% confidence interval around 
one of the coefficients and see if the other value was within this interval, as we did with 
regression coefficients in Chapter 2.  

Before moving on, make sure you understand why Ethnicity does not appear in the 
model (because it is the variable on which the sample is divided into subsamples). Also, 
make sure you understand why I said to use the unstandardized paths (review the reasons 
in Chapter 2).

Constraining Parameters across Groups

Although this method will work, there is a better method for testing the equivalence of this 
path, and other parts of the model, across groups. Within Amos and other SEM programs, 
it is possible to test multi-group or multisample models, which generally means the same 
model tested across two or more groups. With such MG (multi-group) models, it is possible 

Figure 17.13 Initial multi-group analysis of the effects of Homework on Grades for majority and 
minority students. This model makes no constraints across groups.
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to constrain parameters to be equal across groups and compare the fit of these constrained 
models to models without constraints. An example will illustrate.

Figure 17.13 also illustrates the basic, or initial, model for the multi-group analysis. The 
identical model is specified for each group (minority and majority), and each group’s model 
is estimated from its own data matrix. Both models are estimated within a single analysis. 
Thus, Figure 17.13 represents the input model for one group; the model for the other group 
is identical. In Amos, this is accomplished using the Manage Groups option under the Ana-
lyze menu. The manuals of other SEM programs will detail their method for conducting 
multi-group analyses. The file “initial multi group model.amw” shows this initial model, and 
the files “majority matrix.xls” and “minority matrix.xls” contain Excel versions of the cor-
relation matrices, means, and standard deviations necessary to estimate the models.1 

This initial model has no constraints across the two groups; the path from Homework 
to Grades is not constrained to be equal for minority and majority students, nor are there 
any other constraints. The reason is that this represents the baseline model to which we will 
compare models with such constraints. The fit statistics for the MG analysis represent the fit 
of “all models in all groups” (Jöreskog & Sörbom, 1993, p. 54). With no constraints across 
groups, the χ2 and degrees of freedom for the multi-group analysis are the same as if we had 
analyzed the majority model and minority model separately and added together the values 
(the χ2 is not always identical but should be quite close).

Figures 17.14 and 17.15 show the unstandardized output for the unconstrained multi-
group model for minority and majority students, respectively. First note the fit indexes. The 
χ2 for the initial multi-group analysis was 219.576, with 112 degrees of freedom. In contrast, 
separate analyses showed χ2 equal to 92.097 (56 df) for minority students and 127.401 (56 df) 
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Figure 17.14 Unstandardized output for the unconstrained multi-group homework model. These 
results are for minority students.
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for majority students, which sums to 219.498 (112 df); the initial model, with no constraints 
across groups, has essentially the same fit (χ2) as the two groups analyzed separately. The 
RMSEA for the multi-group analysis was .031, suggesting a good fit. Steiger (1998) has argued 
that the RMSEA should be adjusted in multi-group analyses, however, by multiplying it by the 
square root of the number of groups analyzed:

RMSEA RMSEA numbergroupsadjusted = ×

= ×
=

.

.

031 2

044

This adjusted value, .044, is closer to the average of the RMSEAs when the two groups 
are analyzed separately (.041 and .049) but also suggests a good fit of the models to the data 
across the two groups.2 The corrected value has been used in the table of fits (Table 17.3), 
although the figures show the uncorrected values. The other stand-alone fit indexes (TLI, 
CFI, SRMR) also suggest a good fit of the model to the data across groups. The initial model 
appears to fit well and should serve as a good baseline for comparing subsequent models. 

Our primary interest, of course, is whether the path from Homework to Grades is the 
same across groups. For minority students, the unstandardized effect was .80, versus .47 
for majority students. Perhaps homework does have different effects for the two groups! 
Although if we use standard errors (.637 minority and .114 majority), we will be tempted to 
say that the two parameters are not different from one another, we will make such tests more 
directly in just a minute. Interestingly, the standardized paths for minority and majority stu-
dents are nearly identical (.24 and .25), illustrating again the fact that the standardized and 
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unstandardized coefficients may produce different answers to the question of equivalence 
across groups (again, the reasons for focusing on unstandardized as opposed to standardized 
coefficients for such comparisons are spelled out in Chapter 2).

Our baseline model fits well; let’s now compare it to several models in which we add constraints 
across groups. In Amos, the way to add constraints across groups is to fix the relevant parameters 
to some alphabetic (not numeric) label. We can, for example, set the path from Homework to 
Grades to a value of a for both groups (or “path1” or some other label). This constraint will allow 
the parameter to be estimated but will constrain the (unstandardized) estimate to be identical 
across the two groups. In Mplus, like numbers or labels in parentheses are used to make the equal-
ity constraints [e.g., (1) in both groups for the Homework to grades path]. 

Measurement Constraints

Although our primary interest is in comparing the Homework to Grades path across groups, 
the first model to be compared actually involves a different set of constraints. The model 
shown in Figure 17.16 sets the factor loadings from all latent to measured variables to be the 
same across groups. The model shown is the setup for minority students. As in all previous 
models, note that one factor loading from each latent variable is set to 1.0. In addition, how-
ever, the other factor loadings are set to specific labels (fl2, for factor loading, through fl14). 
The model for majority students, if displayed, would show the same constraints for the factor 
loadings, thus constraining these loadings to be equal for minority and majority students.

Why start with constraints on factor loadings? Basically, this constraint specifies that the 
latent variables (Homework, Grades, etc.) are the same across the two groups. This specifica-
tion means that we are measuring the same thing across groups, that our variables of interest 
mean the same thing for minority students as for majority students. Consider for a minute 
what it would mean if Homework meant something different for one group compared to 
the other. If Homework has one meaning for one group and a different meaning for another, 
then it really doesn’t make much sense to ask whether Homework has the same effect across 
the two groups, does it? Differences in the measurement model (factor structures) across 
groups suggest a difference in the constructs being measured. You will also hear this step of 
comparisons referred to as testing the invariance of the factor or measurement model across 
groups (we will cove this topic in depth in chapter 19).

Table 17.3 shows the fit statistics for this Compare Loadings model in comparison to the 
initial model. There are 9 additional degrees of freedom for this model, representing the 9 fac-
tor loadings that were constrained to be equal across groups (one factor loading per latent 
variable was already set to 1 for both groups). The model is more parsimonious than the initial 
model, and thus χ2 is larger. However, the Δχ2 was not statistically significant, meaning that the 

Table 17.3 Comparison of Multi-Group Homework Models

Model χ2 df Δχ2 df p CFI SRMR RMSEA AIC aBIC

1 All Free 219.576 112    .987 .041 .044 359.576 480.795
2 Compare Loadings 235.591 121 16.015 9 .067 .986 .044 .042 357.591 521.436
3 Compare 

Homework Effects
236.522 122 0.931 1 .335 .986 .044 .042 356.522 517.681

4 Compare All Effects 241.323 126 4.801 4 .308 .986 .048 .042 353.323 503.738
5 All Parameters 

Invariant
288.262 147 46.939 21 .001 .983 .054 .044 358.262 452.271

Note: Each model compared to the previous model.
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additional constraints are justified. The specification that the factor loadings of the latent vari-
ables be identical across groups cannot be rejected; the measured variables represent the same 
constructs for minority and majority youth; the latent variables have the same meaning across 
groups. Given that we are measuring the same constructs across groups, we can now determine 
whether these latent constructs have the same effects on each other across groups.

Does Homework Have the Same Effect across Groups? 

The next step in model comparison answers the question in which we are most interested: 
whether Homework has the same effect on Grades across groups. The model specification for 
minority students is shown in Figure 17.17. For this model, all the constraints from the last 
model (Compare Loadings) are retained, and one new constraint is added. For both groups, 
the path from Homework to Grades was set to a value of a, meaning that the path will be freely 
estimated but that the unstandardized path will be constrained to be equal across groups.

The Δχ2 and other fit indexes for this Compare Homework Effect model are also shown 
in Table 17.3. As you can see, the Δχ2 was not statistically significant. The additional con-
straint specifying that the effect of Homework on Grades be identical for minority and 
majority students did not lead to a statistically significant degradation in the fit of the 
model. It appears, then, that homework has about the same effect on high school students’ 
grades whether they come from minority ethnic backgrounds or not. When students spend 
time on homework it will have the same effect on grades whatever their ethnic background  

Figure 17.16 Multi-group homework model with factor loadings constrained to be equal across 
groups. Model specification for minority students; factor loadings are constrained to the same values 
(e.g., fl2, fl3) for majority students.

Family
Background

Previous

Model Specification
Minority

Achievement

Homework

Grades

d1
1

d21

d3

1

Parent
Occupation

r4 11

Family
Income

r3 fl31

Parent
Education

r2

fl2

1

Reading
8th

r5

1

1

Math
8th

r6

fl6

1

Science
8th

r7

fl7
1

History
8th

r8

fl8

1

English
r11

1

1

Math
r12

fl12
1

Science
r13

fl13 1

History
r14

fl14

1

Homework
10th

r10

1
1

Homework
8th

r9

fl9

1



414 • BEYOND MULTIPLE REGRESSION

(at least for the gross division of majority–minority). Another way of saying this is that there 
is no interaction between Ethnic background and Homework in their effects on high school 
Grades, or that Ethnicity does not appear to moderate the effect of Homework on Grades. 
Thus you now know how to test for interactions (moderation) between a categorical and a 
continuous variable in SEM.

Other Effects

There may be several other comparisons of interest to pursue in these multi-group analyses. 
Although it appears that Homework has the same effect on Grades for both groups, we may 
wonder if the other variables in the model have the same effects on each other across groups. 
In essence, we are asking if any of the variables interact with Ethnicity in their effects on other 
variables in the model. To test this possibility, we can simply set all other paths (Family Back-
ground to Previous Achievement, and so on) in the model to be the same across groups. For 
this model, four additional constraints are required beyond those for the Compare Homework 
Effect model. The results of this Compare All Effects model are also shown in Table 17.3. Again, 
this more constrained model did not lead to a statistically significant Δχ2. It appears that all the 
effects of one latent variable on another in the model are consistent across groups; the variables 
in the model have the same effects on each other for minority as for majority youth.

None of the models so far has made constraints on the errors of measurement or the dis-
turbances. Both of these types of parameters represent errors of some sort, either errors of 
measurement (r2 through r14) or the variance left unexplained by the other variables in the 
model (d1 through d3). These parameters do not really represent substantive portions of the 
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Figure 17.17 Multi-group homework model testing the equivalence of the effects of Homework on 
high school GPA across groups.
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model, and thus it is probably not reasonable to expect them to be invariant across groups 
(Marsh, 1993). Likewise, I can think of no substantive reason why the variance of the exog-
enous variable (Family Background) or the correlated errors (between the test scores and 
corresponding grades) should be expected to be equal across groups. For these reasons, these 
errors, variances, and covariances were not constrained to be equal across groups in any of 
the models, and we could reasonably stop our model testing without such constraints. For 
our present purposes, however, it will be instructive to see if these nonsubstantive param-
eters are indeed equivalent across groups.

The results for the All Parameters Invariant model are shown in the bottom row of 
Table 17.3. For this model, 13 measurement errors (r2 through r14), three disturbances, the 
variance of the Family Background latent variable, and the four correlated errors are con-
strained to be the same for the two groups. These 21 additional constraints resulted in a sta-
tistically significant increase in Δχ2. Taken together, these equality constraints across the two 
groups resulted in a statistically significant degradation in model fit. The errors and other 
nonsubstantive aspects of the models, as expected, are not identical across groups. If desired, 
we can fix or free these parameters in smaller blocks to see exactly where the differences are 
(less formally, we can compare the unstandardized parameters for the models shown in Fig-
ures 17.14 and 17.15 to look for differences). Note, however, that if we were to use the aBIC as 
our primary criteria for choosing among competing models, we would have concluded that 
the All Parameters model was the best fitting model. As we will see in Chapter 19, simulation 
research suggests the possible use of change in CFI for such tests of invariance.

Figures 17.18 and 17.19 show the standardized estimates for the Compare All Effects 
model for minority and majority students, respectively. (Note this is the next to last model 
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Figure 17.18 Standardized estimates of the effects of Homework and other influences on GPA for 
minority students. These results pertain to the model in which all influences were constrained to be 
equal across groups (Model 5: Compare All Effects).
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in the table, model 5.) Of course, for this model the factor loadings and paths are set to be 
equal across groups, so in the unstandardized estimates they will be the same for majority and 
minority youth. Note the minor differences, however, for the standardized estimates across 
groups. Again, the unstandardized coefficients should be used to compare across groups; 
standardized estimates should only be used for interpretations within each group. Neverthe-
less, our interpretation of effects will be similar within each group and also consistent with 
the estimates for the overall model given earlier in the chapter.

Summary: Multi-Group Models

This series of analyses has illustrated a method for conducting tests of interactions in SEM 
via the comparison of nested, multi-group models. The method can be used to test for an 
interaction between a single categorical variable and a single continuous variable or, more 
broadly, between one categorical variable and all other variables in the model. This broader 
orientation (e.g., the Compare All Effects model) essentially asks if entire models are compa-
rable across groups and may be of interest when you have questions such as “Are the variables 
that influence the learning of White students also important for minority students?” Such 
questions are common. For example, in the 1980s, one outcome of the controversial report 
A Nation at Risk (National Commission on Excellence in Education, 1983) was a proposal 
for an ideal, academic high school curriculum (Bennett, 1987). Columnist William Rasberry 
(1987) agreed that such a curriculum should work well for White and middle-class youth 
but wondered if it would work equally well for minority youth. One way to test this question 
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Figure 17.19 Standardized estimates for the compare all effects model for majority students. The stan-
dardized estimates differ across groups because constraints were made for unstandardized parameters.
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would be to test a multi-group school learning model across various ethnic groups (e.g., 
Keith & Benson, 1992).

There is nothing sacred about the order in which I tested successive models. It is just as 
defensible to begin with the most constrained model and gradually free parameters. Different 
groupings of constraints will also work well. For example, I could have constrained parameters 
one at a time, rather than as a block, in going from the Compare Homework Effect model to 
the Compare All Effects model. The main considerations in this process of model comparison 
should be that you do them in a logical, systematic fashion, that you understand exactly what 
is and what is not being tested at each step, and that your model comparisons answer research 
questions of interest. In the upcoming chapter on more advanced aspects of CFA (Chapter 19), 
we will spend more time discussing the meaning of each step in invariance testing.

There is also one additional model that is sometimes tested in such analyses. We could 
also compare the overall covariance matrix for majority youth with that of minority youth. 
Consider that all the models that we have estimated are derived from the covariance matrices. 
Thus, if we specify that the two covariance matrices be identical across groups, this means 
that we are specifying that all aspects of the model be identical across groups, but without 
specifying a model. In essence, this comparison says, “I don’t know (or don’t care) what the 
model is, but whatever it is, it’s the same across groups.” This model is thus nested with, but 
less constrained than the All Parameters Invariant model, and the difference between the two 
represents the cost of specifying a particular model.

This example has illustrated MG models as a method of testing for an interaction between 
a categorical variable and other variables in a SEM. There are also methods of testing for 
interactions between continuous variables in SEMs, but they are beyond the scope of this 
book. Schumacker and Marcoulides (1998) is a good resource for more information about 
this method, as is Kline (2011). Recent versions of the Mplus program have made such tests 
considerably easier than in the past. In tests of invariance of structures across groups, it is 
also possible to test for invariance in means and intercepts; this topic will be covered in sub-
sequent chapters.

DANGERS, REVISITED

Recall that in Chapter 12 we discussed the dangers of path analysis in particular and nonex-
perimental research in general. Given that I have argued for the advantages of overidentified 
models (in Chapter 13) and latent variable models in the last few chapters, you may wonder 
if the fit statistics that result from using SEM programs to analyze overidentified models or 
the advantages of latent variables somehow obviate these dangers. Let’s find out.

Omitted Common Causes

Throughout this book, I have argued that the biggest danger in nonexperimental research 
is the possibility of neglecting to include in the analysis an important common cause of the 
presumed cause and the presumed effect. As shown previously, a neglected common cause 
will result in inaccurate estimates of the effects of one variable on another. Do fit indexes and 
latent variables control this danger; do SEM programs alert you when you have neglected a 
common cause? Unfortunately, no, generally they do not.

Figure 17.20 shows the homework model analyzed at the beginning of this chapter. It is 
obvious that Previous Achievement is an important common cause of Grades and Home-
work. Previous Achievement had a large effect on both Homework (b = .41) and Grades 
(.52). What will happen if we delete it from the model? Will the fit statistics or some other 
aspect of feedback alert us to the deletion?
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Figure 17.21 shows the results of an analysis without Previous Achievement in the model. 
As expected and consistent with previous analyses, the apparent effect of Homework on 
Grades changed dramatically from the previous analysis. Also consistent with previous dis-
cussions, the omission of this important common cause led to an inflated estimate of the 
effect of Homework on Grades. In this model, the standardized effect of homework was .66, 
much inflated from the .27 value in earlier figures. 

Notice the fit indexes accompanying the model. Obviously, it is not the case that the omis-
sion of an important common cause resulted in a worse fit; in fact, the model fits better with-
out Previous Achievement in the model! (Of course, with different variables in the model, you 
can’t compare the chi-square values formally, but at an informal level the model without the 
common cause shows a better fit. The AIC for the model without the common cause is also 
lower, suggesting a better fit.) Likewise, there is nothing in the more detailed fit information 
that suggests to you, the researcher, that you have done something wrong, such as neglecting 
an important variable. As this example illustrates, the fit statistics of latent variable SEM do 
not protect against the danger of omitted common causes; they do not alert us to any errors. 
If you think about it, this makes sense. The fit statistics can only tell us about the fit of the 
variables in the model; they don’t inform us about things that are not included in the model.

In contrast, if we want to find out if Previous Achievement is indeed a common cause of 
Homework and Grades, we can put the variable in the model and set the path from Previous 
Achievement to either Homework or Grades (or both) to zero. In this case, the fit statistics 
will show a statistically significant degradation. But the common cause must generally be in 
the model to test it.3
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Figure 17.20 Initial, latent variable homework model.
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Path in the Wrong Direction

What about the other major danger in nonexperimental analysis: assuming a variable is an 
effect when it is really a cause (or vice versa)? Figure 17.22 shows the results of a model that is 
misspecified, with a path drawn in the wrong direction. In fact, unlike many models, we can 
be certain that this model is incorrect, because the Grades variable occurs in time mostly after 
the Homework variable. More importantly, using the rules for generating equivalent models 
from Chapter 13, this model is not equivalent with the original model from Figure 17.2 (and 
Figure 17.20). The Homework and Grades variables do not have the same variables point-
ing to them, and the path cannot be reversed and still have an equivalent model. The two 
models are not nested, however, because they have the same degrees of freedom. Thus, the 
two models should be comparable via fit statistics (e.g., the AIC) that do not require nested 
models. It is gratifying to see that the model with the path drawn in the correct direction 
(Figures 17.2 and 17.20) indeed had the lower AIC and thus the better fit. In this example, 
we would have chosen the model with the path drawn in the correct direction even without 
prior knowledge of the correct order of the variables. Yes, under the right conditions, with 
overidentified models that are also nonequivalent we may be able to guard against the danger 
of drawing paths in the wrong direction.

You might also wonder whether latent variable SEM has led to improvements in our ten-
tative causal statements over those we made using multiple regression. Recall the assump-
tions needed to interpret regression coefficients as effects, from Chapter 12:

1. There is no reverse causation;
2. The exogenous variables are perfectly measured;
3. The causal process has had a chance to work (equilibrium);
4. No neglected common causes.
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Figure 17.21 Homework model with the Previous Achievement variable omitted. The fit statistics do 
not alert us to the fact that we have not included an important common cause of Homework and GPA.
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As we have seen, the addition of latent variables specifically addresses the issue of imper-
fect measurement (assumption/danger 2). SEM models can test for reverse causation and, 
if carefully developed (as we have just demonstrated), test for effects in one direction versus 
the other (assumption/danger 1). As already noted, the issue of common causes is probably 
more commonly and more properly addressed through careful consideration of previous 
research and theory. The issue of equilibrium is also likely best addressed non-statistically, at 
least for non-recursive SEM models (Kline, 2011, chap. 5). The important lesson is that those 
who wish to use SEM to answer research questions need to know their area of research, not 
just the ins and outs of the statistical method. 

SUMMARY

This chapter reviewed and built on the previous chapter and covered several more complex 
topics in latent variable SEM. We estimated a latent variable version of our earlier homework 
model. This model included two interesting features: a latent variable estimated from a single 
measured variable and correlations among the unique and error variances.

The latent variable homework model included one latent variable (Ethnicity) that was 
indexed by a single measured variable (Ethnic). The primary reason for doing this, rather 
than simply using only a measured variable, is to build into the model estimates of the error 
inherent in the measured variable and to take this error into account in the analysis. In the 
example, we estimated the Ethnic variable to have a reliability of .95, and thus 5% of the vari-
ance in Ethnic is attributable to error. To use this information in the model, we constrained 
the error variance of the measured Ethnic variable to be 5% of its total variance.
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Figure 17.22 Path from Homework to Grades is incorrectly reversed in this model. The model has a 
worse fit than the initial model.
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The homework model also included the specification of correlations between the unique 
and error variances of the 8th-grade Achievement test scores and high school Grades in 
related areas. The reason for specifying these correlated errors was to recognize that Grades 
and tests in a particular area (e.g., Mathematics) may share more than simply the effect of 
general achievement on general Grades. Our initial and subsequent comparative analyses 
showed that these correlated errors are indeed important and that removing them from the 
model resulted in a statistically significantly worse fit to the model.

A latent variable panel model of locus of control and achievement made even more use of 
correlated errors and disturbances. Such longitudinal models are often used to understand a 
developmental process and to test questions of causal ordering.

We explored multi-group models as a method of testing interactions between categorical 
and other variables in SEMs. To illustrate the method, we analyzed the homework model 
separately for majority (White) and minority youth in an effort to determine whether the 
effects of Homework on Grades are the same for both groups. The example gradually con-
strained parameters to be the same across groups and used Δχ2 to test the viability of these 
constraints. In the example, we showed that the constructs (latent variables) are equivalent 
across groups and that the variables in the model have the same effects on each other across 
groups. Homework, it appears, has the same effect on the learning of minority and majority 
youth. Ethnic background does not moderate the effect of Homework on Grades.

The final section of the chapter revisited some of the dangers we discussed previously in 
connection with structural equation modeling, path analysis, multiple regression, and nonex-
perimental research. Do the fit statistics and other advantages of SEM obviate these dangers? 
We showed that there is nothing in the fit statistics or other aspects of a latent variable SEM 
that will alert us when we neglect an important common cause in our models. In contrast, 
the measures of fit did alert us when we estimated a model with a path drawn in the wrong 
direction. This was only the case because we were working with an overidentified model and 
comparing the fit of two nonequivalent models. Of course we also explicitly tested this ques-
tion of direction; if we had not done so we would not have known that we made a mistake in 
the model shown in Figure 17.22. Latent variable SEM methodology does not protect against 
the danger of an omitted common cause, but if you plan carefully to construct nonequivalent 
models, you may be able to guard against the danger of a path drawn in the wrong direction.

EXERCISES

1. If you have a full-featured SEM program, analyze the series of full homework models 
starting with the model shown in Figure 17.1. Make sure your results match those pre-
sented here. If you are using a student version of a program that places a limit on the 
number of variables you can analyze, try eliminating the Ethnicity variables, Family 
Income, and the Science and History Test and Grades variables. Estimate this smaller 
model; compare your results to those presented in this chapter. Are the results similar?
a. Study the parameter estimates and standard errors, the fit statistics, modification 

indexes, and standardized residuals. Are there changes that you might make to the 
model? Are they theoretically justifiable?

b. Interpret the model. Be sure to interpret the indirect and total effects in addition to 
the direct effects.

c. Compare the model with the two competing models discussed in this chapter (the 
Direct Background Effects model and the No Homework Effect model).

2. Nancy Eisenberg and colleagues (2001) conducted research to determine the effects 
of mothers’ emotions on their young children’s behavior problems and social com-
petence. One interest in the research was whether these effects are mediated by chil-
dren’s own emotional regulation. Figure 17.23 shows a model patterned after those in 
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this article. It includes fewer variables but still includes many interesting aspects of 
the original research. Mother’s Positive Expressivity represents mothers’ expression of 
positive emotions with their children, both as rated by the mothers and as observed 
during their work on a task. Child’s Regulation, Externalizing, and Social Competence 
are latent variables representing these child characteristics, and each was rated both by 
the mothers and by teachers. The model includes correlated errors between the child 
ratings by the mother and the child ratings by the teacher. The model is contained in 
the Amos file “Eisenberg et al 1.amw.” Simulated data designed to mimic the relevant 
portions of the correlation matrix presented in the article are contained within the 
Excel file “Eisenberg et al 2001.xls” and the SPSS file “Eisenberg et al 2001.sav” on the 
accompanying Web site. The variable names in the data and the corresponding labels 
from the model are shown in Table 17.4.
a. Estimate the model as shown. Focus on the fit indexes and, if you judge them to be 

adequate, interpret the model.
b. Estimate a model without the correlated errors. What happens to the fit of the 

model? Were these parameters justified?
c. Compare the fit of this model with one in which Mother’s Expressivity is also 

allowed to have direct effects on the two child outcomes. Based on the change in fit, 
would you say that children’s Regulation completely or partially mediates the effect 
of Mother’s Expressivity on Behavior Problems and Social Competence?

d. Calculate and interpret direct, indirect, and total effects for your accepted model.
e. Test any additional alternative models that are of interest.

3.  Analyze the latent variable panel model of locus of control and achievement. The data 
are in the file “sc locus ach matrix n12k.xls,” and more information about the variables 
is shown in the related codebook file. Estimate the model as shown in the figure; make 
sure your results match those presented in the chapter.
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Figure 17.23 Model testing the effects of Mother’s emotional expression on child outcomes. The 
model is drawn from Eisenberg et al., 2001.



LATENT VARIABLE MODELS II • 423

a. Given the nature of the measured variables, are there any correlated errors you might 
add a priori to improve model fit? Consider, in particular, if some of the Locus items 
measure something in common other than general locus of control. 

b. Examine the modification indexes and standardized residuals to determine if there 
are other model modifications you might make to improve fit. Do you have a theo-
retical justification for doing so? How can the modification indexes be so large in a 
model that generally fits well?

c. Using the concepts of setting parameters to be the same from the multi-group section 
of the chapter, constrain the factor loadings of the Locus factor to be the same over 
time. That is, constrain the loadings for luck8, luck10, and luck12 to be the same, con-
strain the loadings for stops8, stops10, and stops12 to be the same, and so on. Do the 
same for the Ach factor loadings. Using a criterion of ΔCFI larger than an absolute value 
of .01, decide whether these model modifications are reasonable. This is a type of factor 
invariance; it and the ΔCFI criterion will be discussed in more detail in Chapter 19.

d. Specify two alternative models to determine, based on fit, whether Ach affects Locus, 
and whether Locus affects Ach. Why is Δχ2 not a good choice for these comparisons? 
What might you examine instead?

e. Specify an alternative model to answer the question of whether SES has any direct 
effects on 10th-grade locus of control and achievement. Next test for direct effects 
on 12th-grade Locus and Achievement. Are the effects statistically significant? Are 
they meaningful? How did you decide?

f. Specify an alternative model in which Locus8 is allowed to affect Locus12 and Ach8 
is allowed to affect Ach12. Are the effects statistically significant? Are they meaning-
ful? How did you decide?

Notes

1 Most SEM programs, including Amos, also allow the analysis of a single, raw data file, with some 
selection or grouping variable used to separate the two groups. We will not delve that deeply into 
program specifics here, but it is good to know that this option is available.

2 Many programs, including Mplus, Steiger’s SEPATH, and LISREL, have the correction already built.
3 I think it is possible, through the use of carefully planned overidentified models, to test whether 

there are unmeasured common causes not included in a model. Such models might include both 
a path between the two variables of interest and a correlated disturbance between those variables. 
This is not common, however, so in normal usage I don’t see latent variable SEMs protecting against 
the danger of unmeasured common causes.

Table 17.4 Variable Names and Variable Labels for the Eisenberg and Colleagues Model

Variable name (Eisenberg et al 2001.xls) Variable label (from figure 16.22)

Exp_mo Expressivity Observed
Exp_msr Expressivity Self-Report
Reg_mr Mother Report (Child’s Regulation latent variable)
Reg_tr Teacher Report (Child’s Regulation)
Exter_mr Mother Report (Externalizing Problems)
Ext_tr Teacher Report (Externalizing Problems)
Soc_mr Mother Report (Social Competence)
Soc_tr Teacher Report (Social Competence)
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Most of the models we have considered so far have only focused on the analysis of variances 
and covariances. This should not be surprising, given that one name for SEM is the analysis 
of covariance structures. Yet it is also possible to analyze means in SEM, and there are definite 
advantages in doing so.

In fact, we have already analyzed several models that included analysis of means. In Chap-
ter 16, for example, one of the exercises analyzed data from Head Start, with the Head Start 
variable coded 0 for those in the control group and 1 for those in the experimental group. As 
we will see in this chapter, the resulting unstandardized path from Head Start to Cognitive 
Ability represented the mean difference between the experimental and control groups on 
the cognitive ability latent variable (controlling for SES and Education). Including dummy 
variables in an SEM is thus one way of analyzing latent means. We will explore this method 
in more depth, and then delve into a more complete method as well. Latent means are also 
of interest in CFA.

Why focus on latent means? As suggested in the Head Start example, including means in 
our analyses can help us understand whether an experimental treatment results in differ-
ences in some outcome. This may not seem like a big deal; analysis of variance (ANOVA), 
after all, can answer that question. Why go to all the trouble? Why use an electron microscope 
when a magnifying glass will do? The advantage is that SEM can focus on latent, rather than 
measured, variables. As a result, SEM with latent means can help us determine whether the 
treatment resulted in change in the construct of true interest (e.g., Cognitive Ability) rather 
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than an error-laden measured variable (scores on a single measure of cognitive ability). Of 
course, SEM can also be used to test for differences in latent means for other categorical vari-
ables, such as differences across the sexes, ethnic groups, or family structures. SEM can also 
test assumptions taken for granted in ANOVA.

In Chapter 17 we explored how to test for interactions (moderation) in SEM when we 
examined possible differential effects of homework on achievement for different ethnic 
groups. In prior analyses, with the variable Ethnicity in the model, we examined the main 
effect of ethnic group on Achievement (latent mean differences). When we conduct multi-
group analyses using latent means it will be possible to examine both questions—main effect 
and interaction—in a single analysis.

As noted, latent means are also of interest in confirmatory factor analyses. In Chapter 
17 we also discussed the importance of testing for invariance of constructs prior to testing 
for differences in effects across groups: in the example, we tested whether the constructs 
in the homework model were equivalent prior to testing for differences in the effects of 
homework across groups. This need for invariance extends to analysis of latent means. 
There are also substantive questions that can be answered via the inclusion of latent means 
in CFA. We may be interested, for example, whether there are true differences across groups 
on some latent variable, as opposed to differences on an error-laden measured variable.

We will start with some preparatory work: reviewing slopes, intercepts, and means from 
regression, and then seeing how to integrate means and intercepts into SEM. An example 
will illustrate the explicit estimation of measured means and intercepts in a SEM model. 
This work will set the stage for the estimation of latent means and intercepts in SEM, and 
two methods will be shown for accomplishing this purpose. One, via the inclusion of one 
or more dummy variables in a single-group SEM, has already been illustrated, but the latent 
means aspect has not been emphasized. The second, via multi-group analysis, will allow the 
testing of both main effects and interactions in a single latent variable analysis.

PREPARATORY WORK

Displaying Means and Intercepts in SEM

Although I have been talking about latent means in SEM, we are in fact interested in both 
means and intercepts (I will sometimes refer to these in combination as “mean structures”). 
We haven’t talked about intercepts since discussing multiple regression, so let’s review, and 
then we’ll see what these look like in SEM.

Figure 18.1 shows the results from the regression of a 10th-grade Math test on 10th-grade 
Homework (time spent on homework out of school). The data are in the file labeled “math & 
hwork means.sav,” which is a subset of the National Education Longitudinal Study (NELS) 
data set. The figure shows the descriptive statistics for the two variables, along with the table 
of coefficients for the regression (intercept and regression coefficient). The figure also shows 
the scatterplot with regression line. 

The table and graph should serve as a reminder as to what the regression coefficients 
represent: the intercept (47.74) is the predicted value on the dependent variable for students 
who have a value of zero on the homework variable. Our best bet for the math achievement 
score for a student who does no homework is 47.74. The unstandardized regression coef-
ficient (1.57), in turn, represents the slope of the regression line. Other things being equal, 
each additional unit of time spent on homework should result in a 1.57-point increase in 
math achievement.

Figure 18.2 shows the unstandardized results of the same regression in SEM (Amos) for-
mat, with the added specification that mean and intercepts are analyzed.1 The value for the 
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path (1.57) is, as in previous models, the unstandardized coefficient, the slope of the regres-
sion of Math achievement on Homework time. The values above the Homework rectangle 
show the mean (2.42) and variance (2.53) of the Homework variable, and match the regres-
sion results (Homework SD squared, 1.5922 = Homework variance, 2.53). The value above 
the Math rectangle (47.74) shows the intercept for the regression. The values beside the dis-
turbance (d1) show the mean and variance of the disturbance. In most cases we will assume 
that latent variables (including error terms) have means of zero. Just to be clear, means are 
estimated for exogenous variables, whereas intercepts are estimated for endogenous vari-
ables. Figure 18.3 labels these components as they will be used in subsequent SEM figures. 

As you read articles and other books describing SEM findings when means are analyzed 
you are likely to encounter another graphic method of displaying means and intercepts: 
McArdle and McDonald’s reticular action modeling (RAM) format (McArdle & McDonald, 
1984). Figure 18.4 displays the current regression using RAM symbols (top) and lists the 
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Figure 18.3 Components of SEM results (unstandardized solution) with the analysis of means and 
intercepts. The mean of the disturbance is set to zero; this is a common assumption for latent variables.
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Figure 18.4 Regression results and format for display using the RAM format when means and inter-
cepts are estimated.
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components of the format (bottom). The biggest departure from the previous display is the 
inclusion of a triangle, with paths pointing to Homework and Math achievement. The pres-
ence of the triangle with “1” inside tells you that means and intercepts were analyzed (you 
can actually get the same results in your general statistics program by regressing Math on 
Homework and a variable with a constant value of 1, which is what this figure symbolizes). 
The path from the triangle to the exogenous variable (Homework) shows its mean; the path 
from the triangle to the endogenous variable (Math) shows its intercept. The curved double-
headed arrows pointing to Homework and the disturbance are the variances (these represent 
the covariance of the variable with itself, i.e., the variance). 

Of course the example used here includes measured means and intercepts rather than 
latent means and intercepts; the figural display will easily generalize, however. I prefer the 
format shown in the initial display (Figures 18.2 and 18.3) and will use it in this and subse-
quent presentations of SEM with mean structures. You should be familiar with the display 
using a triangle to signify the estimation of means, however, because it is common.

Estimation of Means and Intercepts in Single Group SEM Models

Figure 18.5 shows a variation of the latent variable homework model first analyzed in Chap-
ter 17. The model has been simplified by the exclusion of the Ethnicity variable. The data 
used are different as well. The data (homework means.sav) are a subsample of the NELS 
data, but a different subset than the primary data set we have been using, including data 
from 8th through 12th grades. Extraneous variables have been deleted from the data set to 
simplify it, as well. 
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Figure 18.5 Setup for the latent variable homework model; means and intercepts included.
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Descriptive statistics for the variables in the model are shown in Figure 18.6. Most 
of the variables in this model have been described previously. The two homework vari-
ables (f1s36a2 and f2s25f2) are student self reports of time spent on homework out of 
school in 10th and 12th grades. The measured grades variables are recorded from students’ 
transcripts. 

The model setup in Figure 18.5 looks quite similar to previous models. The big difference 
between these models and those we have analyzed previously is the presence of the values of 
zero beside all of the latent variables. These values represent the latent means of exogenous 
variables (Family Background, r1, d1, and others) and the latent intercept for the endog-
enous variable (Homework, Grades). When we first began discussing latent variables (in the 
chapter on CFA), I noted that latent variables have no natural scale, and therefore we have 
to set the scale of latent variables either by setting a single factor loading to one (ULI) or by 
setting the latent variable variance to one (UVI). Likewise, latent variables have no natural 
mean, and we generally set the means of all latent variables to zero.

These model changes are accomplished by specifying that means and intercepts are to be ana-
lyzed. This specification will be program-specific. For example, in Amos, this is accomplished 
by selecting “Estimate means and intercepts” under “Estimation” under “Analysis Properties” 
(Figure 18.7). Amos automatically sets the means and intercepts for latent variables to 0 when 
this option is chosen. In Mplus, in contrast, the estimation of mean structures is the default. 
The estimation of means and intercepts is turned off via a MODEL=NOMEANSTRUCTURE 
option as a part of the ANALYSIS command. 

Descriptive Statistics
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Figure 18.6 Descriptive statistics for the variables in the homework latent variable model.
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The standardized output from the analysis in which means and intercepts are explicitly 
estimated looks identical to an analysis without that estimation (Figure 18.8). Indeed, with-
out other constraints, the fit of the model and even the degrees of freedom are the same 
as they would be if means and intercepts were not analyzed. As shown in the Figure, the 
model fits well; the CFI of .993 and the RMSEA of .032 are better than our normal rule-of-
thumb values. Although not shown in the Figure, the standardized root mean square residual 
(SRMR) was also good (.023; more on this later). Given a good fit, we interpret the param-
eters. The results suggest that out-of-school Homework has a strong direct effect on high 
school Grades (.32), and that Previous Achievement and Family Background characteristics 
have strong and moderate effects on time spent on Homework, respectively. 

With the explicit estimation of means and intercepts, the results for the unstandardized 
model are considerably more complex than in previous models. Figure 18.9 shows a portion 
of the unstandardized output with the new parameters labeled. Each of the latent variables, 
including the residuals of the measured variables and the disturbance of the latent variable, 
has a mean (or intercept) of zero. These are means for exogenous variables, and intercepts 
for endogenous variables. What’s the difference? One way of thinking about this is to say 
that if a variable is not influenced by other variables, we then estimate its mean. In contrast, 
we estimate intercepts for variables that are influenced by other variables. Said differently, 
any latent variable that has an arrow pointing to it will have an intercept. This includes the 
Homework latent variable in the Figure. Any latent variable with no arrows pointing to it will 
have a mean. This includes Family Background, r9, r10, and d2. Again, all of these means and 
intercepts of the latent variables are set to zero.

Figure 18.7 Amos setup for estimating mean structures.
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Figure 18.8 Standardized estimates for the homework latent variable model.
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Figure 18.9 Detail from the unstandardized model results, showing the location of means and inter-
cepts in the homework latent variable model.

In contrast, these values (means and intercepts) are freely estimated for the measured 
variables, that is, they are not constrained to zero. Thus, the numbers (2.48 and 3.28) above 
and to the right of the two Homework measured variables are the measured intercepts. Why 
intercepts rather than means? Because the measured variables are endogenous; Homework 
10 is caused, in part, by the latent Homework variable.

This distinction between means and intercepts may be confusing at first, but just think 
of intercepts as being related to the means, but controlling for the other influences in the 
model. Recall from multiple regression that intercepts are where the regression line crosses 
the Y axis; they are the predicted score on the outcome for those with a value of zero on 
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the influence(s). So, for those with a value of zero on the latent Homework variable, their 
predicted, or average, score will be 2.48 on Homework 10 and 3.28 on Homework 12. If you 
want to know the model-predicted score for any other value of the influence, just substitute 
that value for X in the simple regression equation: Y′ = a + bX. Because the mean of the latent 
Homework variable is zero, these values (2.48 and 3.28) also represent the model-implied 
means for Homework 10 and Homework 12, respectively. Figure 18.10 shows some of the 
more detailed text output from this same analysis. Note in Figure 18.10 that the intercepts of 
all of the measured variables are equal to the model-implied means for those variables. This 
is because the only influences on these measured variables are the latent variables, and all of 
these latent variables have means of zero, a function of the assumption that latent variables 
have means of zero. 

This equality between the measured intercepts and the model-implied means will not 
hold when we start estimating means across multiple groups, because with multi-group 
analyses we will be able to actually estimate means and intercepts for the latent variables 
for some of the groups (technically, we will estimate mean and intercept differences from 
one group to another). As we will see, this is a major reason for adding the estimation of 
means and intercepts to SEM: to examine differences across groups in latent means and 
intercepts.

Note that the values listed as implied means are also close to the actual means calculated 
in SPSS (Figure 18.6). In fact, the values would be identical, except that SPSS and Amos (and 
most other SEM programs) calculate means differently when there are missing data in a data 
set. Most SEM programs use maximum likelihood methods whereas SPSS uses listwise dele-
tion or simply calculates each mean separately. More on this later.

If you still find the distinction between means and intercepts confusing, take heart that 
you are not alone. And most of the time the distinction is not that important, either. Perhaps 
for this reason, many writers simply refer to this process of including means and intercepts 
in the model as the analysis of “mean structures.” I will do so, as well.

Related Points

I mentioned earlier that the fit of this model would be the same whether we estimated mean 
structures or not. In fact, all parameter values—unstandardized and standardized paths and 
factor loadings—would be the same whether we estimated mean structures or not. You may 

Variable Estimate S.E. C.R. P
parocc 51.388 .679 75.639 ***
byfaminc 9.841 .083 118.357 ***
bypared 3.128 .040 78.528 ***
bytxrstd 51.257 .320 160.308 ***
bytxmstd 51.493 .316 162.994 ***
bytxsstd 51.179 .320 160.071 ***
bytxhstd 51.373 .310 165.851 ***
eng92 6.074 .085 71.860 ***
math92 5.482 .084 65.648 ***
sci92 5.770 .084 68.619 ***
soc92 6.207 .089 69.581 ***
f2s25f2 3.280 .065 50.293 ***
f1s36a2 2.481 .055 45.432 ***

Intercepts:

Implied Means

f1s36a2 f2s25f2 soc92 sci92 math92 eng92 bytxhstd bytxsstd bytxmstd bytxrstd bypared byfaminc parocc
2.481 3.280 6.207 5.770 5.482 6.074 51.373 51.179 51.493 51.257 3.128 9.841 51.388

Figure 18.10 Intercepts versus implied means, homework model.
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be wondering why we are bothering with the estimation of mean structures in SEM if the 
fit and parameter values are the same either way. Why go through all the hassle for no addi-
tional payoff?

Next Steps

There are several valid reasons for estimating mean structures. First, this discussion has really 
been preparatory work for estimating means and intercepts in multi-group SEM and CFA. As 
you will soon find out, analysis of mean structures adds some very interesting information to 
multi-group analyses. With multiple groups, it is possible to estimate latent means and inter-
cept differences for all groups except the first. Just as we think of latent variables and getting 
closer to the construct level—true Homework rather than measured Homework, true Hap-
piness rather than a simple survey-reported measured-variable version of happiness—we can 
think of latent means as getting closer to the true mean differences across groups. Estimating 
differences in latent means and intercepts in SEM will be the focus of most of the remainder 
of this chapter. Estimating such differences in CFA will be one focus of the next chapter.

Missing Values

The second reason for estimating means and intercepts in SEM when using Amos is that 
Amos requires this addition in analyses of raw data in which there are missing values. Recall 
that for all analyses preceding this one we have either analyzed matrix data or raw data sets 
in which there are no missing data. The data set for this example includes missing data for 
each of the measured variables in the model (note the Ns in Figure 18.6). If you were to try 
to estimate the homework model without clicking on the “Estimate means and intercepts” 
option, the analysis would not run and Amos would return the error message: “In order to 
analyse data with missing observations, you must explicitly estimate means and intercepts.” 
You now know how to do that.

Unfortunately, Amos does not provide all of the output we like when there are missing 
observations. In particular, when there are missing data the detailed output will no longer 
include standardized residuals or modification indices, the information we found useful for 
figuring out possible modifications to models. Bootstrapping is also not allowed, and Amos 
will no longer calculate the SRMR. These are disadvantages to the analysis of raw data with 
missing values in Amos. One possibility is to analyze matrix data in the preliminary stages 
of data analysis but then to double-check all analyses via the analysis of raw data. Another 
option is to use a program without these limitations. Although Mplus requires the estima-
tion of mean structures when data are missing, it will compute SRMR and conduct boot-
strapping with missing data. Indeed, the SRMR listed for the latent homework model earlier 
in this chapter (.023) was calculated using Mplus.

You may wonder why use raw data in an SEM program when there are missing data? Why 
not generate a matrix in SPSS using one of its missing data methods, listwise or pairwise 
deletion, and then analyze the matrix in the SEM program? Or why not just get rid of all 
missing data, a strategy that is equivalent to listwise deletion? The reason is that Amos and 
other SEM programs use a more sophisticated method for dealing with missing data, gener-
ally referred to as full information maximum likelihood (FIML) estimation. Missing data 
are ubiquitous in research. Traditional methods of dealing with missing data can distort 
estimates of means, covariances, and variances (Wothke, 2000). Modern methods, including 
maximum likelihood methods, generally come closer to estimating model parameters accu-
rately, and are recommended by methodologists (Enders, 2010; Enders & Bandalos, 2001; 
Graham, 2009; Muthén, Kaplan, & Hollis, 1987; Schafer & Graham, 2002). The issue of miss-
ing values will be discussed further in Chapter 21.
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Calculating Degrees of Freedom

Because additional parameters are analyzed, calculating degrees of freedom is slightly dif-
ferent when means are analyzed. For the current example (Figure 18.5) there are 13 measured 

variables, so there are p p× +( )1
2 , or 13 14

2 91× =  items in the variance covariance matrix, plus the 
means of the 13 measured variables, for a total of 104. An alternative formula when estimat-

ing means structures is p p× + ×( ) = =3
2

13 16
2 104  pieces of information in what we will now refer 

to as the “moment” matrix.
How many parameters are freely estimated in the model? There are:

1. 4 paths
2. 10 factor loadings
3. 4 error covariances
4. 13 error variances, 3 disturbance variances, and the variance of the 1 exogenous latent 

variable
5. 13 measured variable intercepts for a total of 48 freely estimated parameters. The df = 

the number of moments (means, variances, covariances) minus the number of estimated 
parameters = 104 − 48 = 56. As shown in Figure 18.8, the df for the model are indeed 56.

OVERVIEW: TWO METHODS TO  
TEST FOR DIFFERENCES IN LATENT MEANS

As noted above, this introductory work is really prep work to lay the groundwork for esti-
mating latent means and intercepts. Before beginning this topic in earnest, it is worth exam-
ining a quick overview to get a general sense of what will be covered. Figure 18.11 shows 
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Figure 18.11 One method of testing for mean and intercept differences in SEM.
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a variation of the latent variable homework model from Chapter 17. This model includes 
the exogenous dummy variable Sex, coded 0 for boys and 1 for girls. Note in the model the 
bolded path from Sex to Homework: what does it represent? If this path were statistically 
significant and positive, it would suggest that girls, on average, do more homework than boys 
(taking into account Family Background and Previous Achievement). The finding would 
suggest a higher mean on Homework for girls versus boys (strictly speaking, it would sug-
gest a higher intercept for girls versus boys. Imagine two parallel regression lines [like those 
shown in Chapter 7], one for boys and one for girls, with the girl line higher than the boy 
line). Said differently, this finding would show a main effect for Sex on Homework. This 
is one method of estimating latent means and intercepts in an SEM model. In contrast, if 
the path were statistically significant and negative, it would suggest that, other things being 
equal, boys report more homework than girls. 

As shown in Chapter 17, it is also possible to test for interactions (aka moderation) 
between categorical and continuous variables in SEM through the use of multi-sample, 
or multi-group (MG), models. With the current example, this would involve removing 
Sex from the model and conducting a multi-group analysis with one model for boys and 
one for girls (Figure 18.12). For this MG model, a difference in the magnitude of the 
(unstandardized) path from Homework to Grades for boys versus girls would suggest that 
Homework had differential effects on Grades for the sexes. If, for example, the path were 
larger for girls than boys, the finding would suggest that homework has a larger effect on 
grades for girls and that each additional hour spent on homework has a bigger effect on the 
grades of girls than boys. We would likely test the statistical significance of the difference by 
constraining the boy path and the girl path to be the same and examining the change in fit 
of the model (as is done in Figure 18.12). Again, this multi-group approach tests whether 
Sex and Homework interact in their effect on Grades. Or, to use the “it depends” method 
of describing interactions (see Chapters 7 and 17), if someone were to ask you the extent of 
the effect of Homework on Grades, you would need to answer, “it depends on whether you 
are a boy or a girl.” Alternatively, we might say that such findings suggest that sex moder-
ates the effect of homework on grades. 
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Figure 18.12 Multi-group analysis to test for differential effects of Homework on Grades, by Sex. The 
boys’ model is on the left, the girls’ model on the right.
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The second method for testing mean structures in SEM builds on the multi-group 
approach but tests for main effects and interactions in a single analysis (see Figure 18.13). 
This approach is often referred to as the “multi-group mean and covariance structures,” or 
MG-MACS, approach. As in the previous multi-group approach, separate models are speci-
fied for boys and girls; the path from Homework to Grades can be constrained versus freed 
across groups in order to test the statistical significance of the interaction. In addition, how-
ever, means and intercepts are estimated in the multi-group model. The statistical signifi-
cance of the main effect of sex on homework is tested by comparing a model with the boy 
and girl Homework intercepts both constrained to zero versus a model in which the Home-
work intercept is freed for one group (in this case, girls). Given certain other constraints, the 
value for the girl intercept for Homework (sex diff hw in the right half of the figure) would 
equal the unstandardized path from Sex to Homework in the model in Figure 18.11; in both 
cases, this value represents the difference in intercepts for girls as compared to boys. Think of 
this as the true mean difference in homework time for boys versus girls. 

EXAMPLE: HYPNOSIS FOR HOT FLASHES

Single Group/Dummy Variable Approach

Elkins and colleagues used hypnosis as an experimental treatment to control hot flashes 
among women who were breast cancer survivors; menopause and hot flashes are a com-
mon side effect of chemotherapy (Elkins et al., 2008). Sixty women with hot flashes were 
randomly assigned to a hypnosis intervention (five weeks) or a no-treatment control group. 
A variety of outcomes, including hot flash frequency and severity, were assessed in a pretest– 
posttest control group design. Results were analyzed using multivariate analysis of covari-
ance (MANCOVA). The hypnosis group showed a large and statistically significant reduction 
in hot flash frequency and severity in comparison with the control group.

Here, we will analyze a simulated version of the Elkins data using SEM, and using the 
two methods described to analyze means and intercepts. The simulated raw data (“hot flash 
simulated.sav”) include a larger sample, with 48 women each in the control and hypnosis 
experimental groups.
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Figure 18.13 Multi-group model with means and intercepts. This model estimates both mean and 
intercept differences and differential effects (interactions) in the same analysis. 



LATENT MEANS IN SEM • 437

The initial model is shown in Figure 18.14. Five measured variables are included in the 
model. Four are measures related to hot flashes: hot flash scores (a combination of ratings 
of frequency and severity of hot flashes, from daily diaries) from pretest and posttest (HF1 
and HF2) and Interference scores from pre- and posttest (ratings of the degree that the hot 
flashes interfere with daily life, Int1 and Int2). The Hypnosis variable is a dummy variable 
coded 0 for women in the control group and 1 for those in the experimental (hypnosis) 
group (the variable is labeled Group in the raw data). The pretest hot flash measures are 
used as indicators of a latent Hot Flash Pretest score, with the posttest measures used as 
indicators of a latent Hot Flash Posttest score. For both the measured and latent hot flash 
variables higher scores represent worse outcomes, that is, more frequent, severe, and inter-
fering hot flashes. The model allows cross-time correlations among the errors of measure-
ment (residuals) because these are the same measures administered on two occasions. Note 
also that there is no correlation (covariance) between the Hypnosis variable and Hot Flash 
Pretest scores. Because assignment to groups was random, group membership (Hypnosis vs. 
Control) should be unrelated to the initial severity of hot flashes. This is an assumption that 
could be tested in the analysis. 

The model is similar to those analyzed in previous chapters. There is no explicit estima-
tion of means and intercepts in this model; instead, the intercept for the latent Hot Flash 
Posttest will be shown by the path from the dummy Hypnosis variable to Hot Flash Posttest. 
We could add the explicit estimation of means and intercepts, but it would add little to the 
example. In addition, I want to show similarities and difference between this type of analysis, 
done in previous chapters, and the MG-MACS approach. The descriptive statistics for the 
data are shown, by group, in Figure 18.15.

This approach to the estimation of mean structures, with a categorical independent vari-
able affecting one or more latent outcome variables, is often referred to as a MIMIC model. 
MIMIC stands for multiple indicators and multiple causes (Jöreskog & Goldberger, 1975). 
Here, I will refer to this model as both the dummy variable hot flash model and the MIMIC 
version of the hot flash model. 
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Figure 18.14 Dummy variable model designed to test the effect of hypnosis on hot flash severity and 
interference.
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Figure 18.16 Unstandardized results, hot flash model. Women in the hot flash group scored 28 points 
lower on the hot flash latent variables, on average, compared to women in the control group.

The unstandardized results are shown in Figure 18.16. The model shows an adequate 
fit to the data. CFI is good (> .95), and χ2 is statistically non-significant. The RMSEA 
of .088 is not as low as we would like, although RMSEA often behaves this way in small 
samples (Hu & Bentler, 1998), with small models with few degrees of freedom (Kenny, 
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Kaniskan, & McCoach, 2011). The average difference in correlations for the actual versus 
predicted matrix was .071. Again, taken together, these fit indices suggest an adequate fit 
of the model to the data.

The most interesting finding for the model is the path from Hypnosis to the Hot Flash 
Posttest latent variable (−28.62). Because the Hypnosis dummy variable was coded 0 for those 
in the control group and 1 for those in the hypnosis (experimental) group, this coefficient 
means that those in the experimental group scored 28 points lower, on average, than those 
in the control group on the latent Hot Flash Posttest, controlling for pretest scores. What 
does that mean? There are several ways to understand this finding. The latent variable has 
the same scale as the Int2 measured variable because the path from the latent variable to Int2 
was set to one. In other words, the Int2 variable was used to set the scale for the latent Posttest 
variable. The Int2 measured variable, in turn, has an overall standard deviation of around 
23 points (total sample, Figure 18.15). This means that the hypnosis intervention resulted 
in a huge decrease in (latent) hot flashes, with the experimental group women scoring more 
than a SD below the control group women. As shown in the text output (Figure 18.17), this 
value is, not surprisingly, statistically significant. The standardized estimates in Figure 18.17 
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also show the importance of the hypnosis intervention; the path from Hypnosis (Group) to 
Hot Flash Post was −.693. For each SD change in Hypnosis group, Hot Flashes decreased by 
.693 SD units. Because half of the women were in each group (control and hypnosis), the SD 
of the Hypnosis measured variable was .5. Therefore, the Hypnosis group scored 1.386 SDs 
(2 × .693) lower on the Hot Flash latent variable than did the control group. I will not discuss 
the rest of the findings contained in Figures 18.16 and 18.17, but you should review the rest 
of the coefficients to make sure you understand them and can interpret them.

As noted earlier, it is possible to test the success of the random assignment to treatment 
groups. In the initial model there was no correlation allowed between Hypnosis group and 
pretest score. As shown in Table 18.1, allowing the Hypnosis group dummy variable and the 
Hot Flash Pretest to covary resulted in a reduction in χ2 and improvement in RMSEA and 
SRMR, but the reduction χ2 was not statistically significant. I would likely conclude that the 
randomization was successful and that the two groups were statistically equivalent on the 
latent pretest. In contrast, constraining the effect from Hypnosis group to Hot Flash Posttest 
to zero resulted in a statistically significant increase in χ2, further demonstrating that the 
hypnosis treatment had a statistically significant effect.2 

Also noted earlier, Elkins et al (2008) analyzed their hot flash data using MANCOVA. Those 
familiar with MANOVA may wonder how the current analysis corresponds to MANOVA 
and MANCOVA. As noted in Chapter 1, MANOVA (and MANCOVA) are subsumed under 
SEM. MANOVA essentially combines the multiple dependent variables into a single latent 
dependent variable. An advantage of the SEM approach is that any covariates (the pretests) 
can also be modeled as one or more latent variables, thus reducing the effects of unreliabil-
ity and invalidity. In MANCOVA, each measured pretest is considered separately, and the 
analysis assumes that the measures are completely reliable (cf. Arbuckle, 2013, examples 9 
and 13). Recall from the chapter on error (Chapter 14) that unreliable exogenous variables 
are a particular danger in path analysis, regression, and other analyses based on the general 
linear model. Covariates in ANCOVA and MANCOVA are exogenous variables, and unreli-
ability in them can affect the estimates of effects. For more information on the correspon-
dence between SEM and MANOVA, see Cole, Maxwell, Avery, and Salas (1993) or Green and 
Thompson (2006).

MG-MACS Approach

Figure 18.18 shows the model setup to analyze the hot flash data via a multi-group approach 
that explicitly estimates means and intercepts, the MG-MACS approach. The upper model 
shows the setup for the control group and the lower model the experimental (hypnosis) 
group. As in other multi-group models, the categorical group variable is removed from the 
model but is used to differentiate the two models. That is, the upper model analyzes data only 
from the control group and the lower model analyzes data only for the experimental group. 

Table 18.1 Fit of Alternative MIMIC Hot Flash Models

Model χ2 df Δχ2 Δdf p RMSEA SRMR CFI

Initial 3.464 2 .088 .071 .994
Pretests Vary .087 1 3.377 1 .066 .000 .007 1.000
No Effect 16.079 2 15.992 1 <.001 .272 .113 .939

Note: Each model compared to the previous model.
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(To analyze two groups using a single raw dataset in Amos, you will need to tell the program 
what the grouping variable is [the variable Group in these data] and which value corresponds 
to which group. This is done in the same window used to specify the data set to use.) 

As in our previous discussion of multi-group models, note the path from the latent Hot 
Flash Pretest to HF1 is set to fl1 (for factor loading 1) for both groups, meaning that the 
loading is estimated, but it is constrained to be equal across groups. Similarly, the loading of 
HF2 on the latent Hot Flash Posttest is constrained to fl2 for both groups. These constraints 
ensure that the latent variables reflect the same underlying constructs across groups. (This 
topic, invariance, will be further explored in the next chapter.)

We take these constraints one step further for the MG-MACS model. The values of mi1 
through mi4 (for measured intercepts) constrain the intercepts for each of the measured 

Figure 18.18 Analyzing the hot flash experiment via a MG-MACS model. Notice the model con-
straints across groups.
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variables to be the same for one group as for the other. Setting the factor loadings to be equal 
across the groups puts the scales in the same metrics. Setting the intercepts of the measured 
variables to be equal gives those scale the same starting, or zero, point. Equality of measured 
variable intercepts is another aspect of invariance that we need to consider as we add the 
estimates of mean structures to our SEM models.

As in the previous means model, most of the latent means (Hot Flash Pretest, r1, e1, and 
others) and latent intercept for the endogenous variable (Hot Flash Post) are set to zero. As 
noted earlier, we generally set the means of all latent variables to zero (this is done automati-
cally for those using Amos by choosing to estimate means and intercepts). The exception 
is for the latent intercept for Hot Flash Posttest for the Hypnosis group. For this group, 
the value was not constrained and will be freely estimated. The result of this difference—
constraining the latent intercept to 0 for one group and no constraint in the other group—is 
that the value for the second group is the difference in latent intercepts for the control versus 
the experimental group. This, then, is the test of the main effect of the hypnosis treatment.

Here is one way of thinking about what we are doing by constraining the intercepts and 
means. If you examine the data in Figure 18.15, it is obvious that the Hypnosis group scores 
lower than the control group on both of the hot flash post measures, HF2 and Int2. By con-
straining the measured intercepts to be equal (mi3, mi4) and allowing the latent intercepts to 
differ, we are saying that the only reason for this difference on HF2 and Int2 is because the true 
level of Hot Flashes differs across groups. In other words, this formulation says that the true 
mean level of hot flashes at posttest differs for women in the control and experimental groups, 
and this difference in the true (i.e., latent) variable is what causes the measured variables to dif-
fer. The difference in the measured variable means is fully explained by the difference in latent 
means. Another, mechanistic way of thinking of this is that by constraining the measured inter-
cept to be equal we have forced any differences to show up at the latent variable level.

There are several other points worth mentioning:

1. As already noted, it is not possible to use this method to estimate latent means and 
intercepts for a single group (at least not without some other constraints). Of course, as 
we have already seen, it is possible to have the program estimate means and intercepts 
for a single group, but the latent means and intercepts must be set to zero for at least one 
group. Thus to estimate latent means and intercepts using this method, a multi-group 
approach must be used and the latent means and intercepts constrained to zero in one 
of the groups; it is then possible to free this constraint in the other group or groups to 
determine the difference in means and intercepts. It is also certainly possible to estimate 
means and intercepts across groups using the dummy variable approach we used earlier. 
We will soon see that there are some advantages to the MG-MACS approach, however.

2. When conducting experimental research, the group constrained to zero will likely be 
the control group in order to estimate the degree to which the other groups deviate 
from the control group.

3. Note that the pretest means (Hot Flash Pretest) were constrained to zero for both 
groups. Random assignment was used to assign women to groups and we have assumed 
that the groups are equal on the latent pretest. As in the single group dummy variable 
analysis, we could test the validity of this assumption, in this case by freeing the pretest 
mean for the Hypnosis group and examining the change in fit for the model. Likewise, 
we could constrain the latent intercept (Hot Flash Post) of the Hypnosis group to 0 to 
further test the hypothesis of no posttest difference for the Hypnosis group.

The unstandardized results for the MG-MACS models are shown in Figure 18.19 for the 
figural output and Figure 18.20 for the text output. The top portion of Figure 18.19 shows 
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the findings for the control group. As shown in the Figure, this initial version of the Hot 
Flash model fit the data fairly well. The χ2 was not statistically significant and the CFI was 
.986. The RMSEA of .09 was larger than our rule of thumb (corrected for two groups it 
would be even larger, .127), but the average difference between the actual and predicted cor-
relation matrices was only .008. 

Much of the output, such as the factor loadings and the path from Pretest to Posttest, are 
already familiar, and we will not spend time discussing them. Focus on the upper portion 
of the figure. The values above the latent Hot Flash Pretest represent its mean and variances; 
the mean was set to zero, and the variance is 286.94 (for the control group). For the Posttest, 
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Figure 18.19 Hot flash results for the MG-MACS model. The intercept difference for the hypnosis 
group (shown above the Hot Flash Post latent variable) shows that women in the Hypnosis group 
scored 28 points lower, on average, than did women in the control group.
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the value shown (0) is the intercept, which was also set to zero for the control group. As 
in the homework model, the values above and to the right of the measured variables are 
the intercepts for each of the measured variables. That is, these are the model-predicted 
values for the measured variables for those with a value of zero for the latent variable. 
(The intercepts are the predicted values for the outcome for those with a value of zero on the 
independent variable. For the measured variables, the independent, or exogenous, variable 
is the latent variable). Because the latent variables have means of zero, the values shown for 
the measured variable intercepts are the predicted means for the measured variables for the 
control group.

The lower portion of Figure 18.19 shows the values for the hypnosis experimental 
group. The primary finding of interest is the value for the intercept for Hot Flash Posttest: 
−28.44. This finding means that the Hypnosis group scored 28 points lower, on average, 
on the Hot Flash Posttest than did the Control group. This value is similar to but not 
identical with the value found in the dummy variable version of this research (−28.62). 
Note that there are several other differences between the two groups. The slope for the 
experimental group is negative (−.45), for example, whereas the value is positive for the 
control group (1.14).
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Figure 18.20 Detailed results for hypnosis on hot flashes, MG-MACS model.
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Figure 18.20 shows the estimates for the Control and Hypnosis groups in tabular form, 
with the values for the Control group on the left and those for the Hypnosis group on the 
right. As shown in the table of intercepts, the value for the intercept for the Hypnosis group 
was indeed statistically significantly different from that of the Control group. The model 
assumes that the two groups’ hot flash scores were statistically equivalent at the beginning of 
the experiment (and the generally good fit of the model would not suggest otherwise), but 
by the end of the five-week period the hypnosis intervention had led to statistically fewer, less 
severe, and less interfering hot flashes for the experimental group. 

Figure 18.21 shows the values for the implied matrices for both groups. I noted previ-
ously that we estimate means for exogenous variables, but that we estimate intercepts for 
endogenous variables. Still, you may be interested in the values for the predicted means for 
the endogenous variables, including the measured variables. These are shown in the tables 
of implied means, and they represent the predicted values of the means given the model. If 
the computer program you are using uses a RAM-type notation (Figure 18.4), the predicted 
means might be shown as a part of the total effects of the constant on various outcomes. If 
you want to understand how these estimates come about, recall the general form of a regres-
sion equation: Y′ = a + bX. The predicted value for a dependent (endogenous) variable is 
equal to the intercept plus the regression coefficient (path, slope, or factor loading) times 
the value for the independent (exogenous) variable. If we substitute the mean of X in this 
equation the outcome will be the predicted mean for Y. Thus the predicted mean value 
for the HF1 variable for the Control group is 15.47. The mean for the latent Hot Flash Pre-
test = 0, slope = .39, intercept = 15.47, and 

Y a bX

Y

Y

′
′
′

= +

= + ×
=

15 47 39 0

15 47

. .

.

This compares to the actual value of 17.08. Note that if we had allowed the latent Pretests for 
the Control and Experimental groups to differ, the value for the Pretest mean for the Experi-
mental group would likely be some value other than zero. 

Table 18.2 compares the fit of the initial model to one in which the Pretest scores were 
allowed to differ across groups. As shown in the Table, this model fit better than did the 
initial model. The difference in Δχ2 was not statistically significant, however, and given our 

Figure 18.21 Implied matrices and means, MG-MACS results.
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rule of thumb (if Δχ2 is not statistically significant, stick with the more constrained model), 
I would continue to focus on the initial model for interpretation. 

Comparing the Two Methods

Why bother with the MG-MACS approach? It seems like a lot of work and we can get the 
same information treating the categorical variable as a dummy variable and using it in the 
analysis. There are several reasons, but the primary one is that the dummy variable approach 
requires several assumptions, but those assumptions go untested in that approach. MAN-
COVA required but did not test the assumption of perfectly reliable covariates. That assump-
tion was not required (but could be tested) using the dummy variable SEM approach. 
Similarly, using the MG-MACS approach, we can evaluate the assumptions made with, but 
not tested by, the dummy variable approach.

What are those assumptions? Most have to do with equality constraints across the two 
groups (Control and Hypnosis). With the dummy variable approach, as in Figures 18.14 and 
18.16, almost all parameters were constrained to be equal for the Control and the Hypnosis 
groups, because the two groups were analyzed in a single model. Factor loadings and mea-
sured intercepts were constrained to be equal in both models (we consciously constrained 
them for the MG-MACS model), and this level of invariance is needed in order to compare 
latent means and intercepts. In addition, however, the error variances (r1, r2, e1, etc.) and the 
error covariances were also constrained to be equal across groups. Again, these constraints 
are a function of the fact that there are not separate groups in the analysis in the dummy 
variable approach, and thus it was not possible to allow different estimates across groups. 
Finally, the path from Hot Flash Pretest to Hot Flash Posttest (the slope of the regression of 
the latent posttest on the latent pretest) was constrained to be equal across groups. We saw 
in the section on multiple regression that the requirement for equal slopes in ANCOVA is 
not always reasonable, and the similar requirement for equal slopes in the dummy variable 
approach to estimating means in SEM may also not be reasonable.

It is possible to test the validity of these constraints using a MG-MACS model. Fig-
ure 18.22 shows the constraints needed for such a model, with the Control group model 
above and the Hypnosis group model below. Note that all the parameters, except one, are 
constrained to be equal across the two groups: factor loadings, intercepts, variances, error 

Table 18.2 Comparison of MG-MACS Hot Flash Models to the Initial Model and the Revised Initial 
Model (Initial 2)

Model χ2 df Δχ2 Δdf p RMSEA SRMR CFI

1. Initial 5.286 3  .090 .008 .986
2. Pretests Differ 1.789 2 3.497a 1 .061 .000 .007 1.000
3. Test Assumptions 84.615 12 79.329b 9 <.001 .254 .128 .566
4. Slopes Vary 44.252 11 40.363a 1 <.001 .179 .047 .801
5. Initial 2 6.927 5 1.641b 2 .440 .064 .012 .988
6. No Main Effect 67.312 6 60.385c 1 <.001 .330 .120 .633
7. No Slope Difference 22.496 6 15.569c 1 <.001 .171 .011 .901

aModel compared to previous model
bModel compared to Initial model
cModel compared to Initial 2 model
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variances, covariances, pretest means, and slopes. The one parameter allowed to vary across 
the groups was the intercept for the Hot Flash Posttest. This parameter was set to zero for 
the Control group but was named Hyp_intercept and freely estimated for the Hypnosis 
group. If we have set this model up correctly, with the right mix of constraints and free 
parameters, the parameter estimates, such as the differences in intercepts, should be identi-
cal to the findings for the initial dummy variable model because it has the same restrictions 
as that model. 

Figure 18.23 shows the unstandardized results for the hypnosis group. Note first the value 
for the intercept for the Hypnosis group: −28.62, a value identical to that shown for the 
path from the group dummy variable to the Hot Flash Posttest in Figure 18.16. Note that 
all other values—factor loadings, intercepts, and so on—are the same as those in the initial 
dummy variable model. Now note how poorly this model fits the data, with a RMSEA of 
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Figure 18.22 Model constraints needed to obtain the same results the MG-MACS model as for the 
dummy-variable version of the hot flash model. These represent assumptions made but not tested in 
the dummy-variable model.
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.254 (.359 corrected) and a CFI of .566, for example. What does this finding mean? The 
model fit well when we analyzed it using the MIMIC approach, but now when we analyze 
it using the MG-MACS approach, the model shows a poor fit. The difference between the 
two approaches is that with the MG-MACS we are now testing assumptions that were hid-
den using the dummy variable approach. And when tested, those assumptions are not sup-
ported. Said differently, we made some implicit assumptions about the equality of various 
parameters in the dummy variable approach, but when we tested those equality constraints 
using the MG-MACS approach they were not supported. This model and the initial model 
are nested, so we can also compare the fit of the two. This comparison is done in Table 18.2, 
and, as shown, this model, termed the Test Assumptions model, fit statistically significantly 
worse than did the initial model.

As noted earlier, the assumption that the slopes are equal across groups may be especially 
suspect, and an inspection of the models in which the slopes were freely estimated (Fig-
ure 18.19) shows that the values for the Control and the Hypnosis groups are quite different. 
Model 4 in Table 18.2 freed this constraint. Thus the “Slopes Vary” model kept all of the 
restrictions of the Test Assumptions model but allowed the slopes to vary. As shown in the 
Table, this relaxation of invariant slopes resulted in a statistically significant improvement 
in model fit over the Test Assumptions model. Nevertheless, this model also fit statistically 
significantly worse than did the initial model (Δχ2 = 38.966 [8], p < .001). We would likely 
stick with the initial model, with fewer equality constraints. We could also try other model 
relaxations, perhaps based on the modification indices.

Testing Main Effects and Interactions

Earlier in this chapter I noted that one of the advantages of the MG-MACS approach is that 
it allowed the testing of main effects and interactions in a single analysis. The testing of slope 
differences above tested for the presence of an interaction. By allowing the paths from pretest 
to posttest (the slopes) to vary across groups (and comparing that with a model that required 
equal slopes), we tested whether the pretest interacts with the treatment in its effect on the 
posttest. The results suggested that these two variables do interact, and that the latent pretest 
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Figure 18.23 Model results when testing the assumptions underlying the dummy variable version of 
the hot flash model. Results are for the hypnosis group.
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had differential effects on the latent posttest, depending whether women were in the control 
or the experimental groups.

The comparison is less than ideal, however, because even though the Slopes Vary model fit 
statistically significantly better than did the Test Assumptions model, it still had a horrible fit. 
Let’s go back, then, and ask the main effect and interaction question again but using a better 
fitting baseline model. Refer back to the output shown in Figure 18.20. Note that the covari-
ances allowed between r2 and r4 were not statistically significant for either group. The “Ini-
tial 2” model shown in Table 18.2 removed the covariance between r2 and r4. This model is 
reasonable, given that this covariance is unnecessary, and removing it will provide two extra 
degrees of freedom for the model. As shown in the Table, the model fit the data well. The 
χ2 increased slightly with this constraint, but the Δχ2 was not statistically significant. This 
model thus provides a good baseline for additional comparisons. Parameter estimates for the 
Control and Hypnosis groups are shown in Figure 18.24 on the left and right, respectively. 

For the “No Main Effects” model, the latent posttest intercept for the Hypnosis group was 
constrained to zero (as was the intercept for the control group in all analyses). Thus this 
model specified no difference in means (intercepts) for those in the control versus hypnosis 
groups and no effect for the treatment on true hot flash severity and interference. As shown in 
the Table, this constraint resulted in a poor overall fit and a statistically significant increase in 
Δχ2 compared to the Initial 2 model. Given a statistically significant change in Δχ2, we would 
favor the less constrained, or Initial 2 model. Said differently, we should reject the hypoth-
esis that the Hypnosis treatment had no effect on the severity, frequency, and interference of 
women’s hot flashes. This finding is consistent with the large and statistically significant effect 
shown for the latent intercept for the Hypnosis group in the Initial 2 model in Figure 18.24.

The “No Slope Difference” model had the same specifications as the Initial 2 model, except 
that the path from Pretest to Posttest was constrained to be equal for the Control and the 
Hypnosis groups. As shown in Table 2, this constraint also resulted in a large and statistically 
significant Δχ2 in comparison with the Initial 2 model. We should reject the hypothesis that 
the pretest had the same effect on the posttest for both the control and the Hypnosis groups. 
As shown in Figure 18.24, the Control group path from the Pretest to the Posttest was positive, 
large (standardized path = .912), and statistically significant. For the Hypnosis (experimental) 
group, the effect was negative and not statistically significant. For women in the Hypnosis 
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Figure 18.24 Parameter estimates for the control and hypnosis groups for the Initial 2 MG-MACS 
hypnosis model.
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group, the pretest level of hot flashes had no effect on the Posttest level of those hot flashes. 
What is the effect of initial level of hot flashes on posttest level? Interaction lingo alert: It 
depends. It depends on whether women are in the control group or the hypnosis experimental 
group. In this research both the main effect and the interaction were statistically significant.

Other Technical Issues

Analyzing Matrices Versus Raw Data

We analyzed the model in this chapter using raw data to help convey the continuity between 
the dummy variable and the MG-MACS approaches. The same raw data file was used for both 
analyses (hot flash simulated.sav). As in other SEM analyses, it would also be possible to con-
duct these analyses using matrix data. Different matrices are required for the two approaches 
(dummy variable vs. MG-MACS), however, because the dummy variable method analyzes 
the data as a single group, and thus requires a single matrix. The MG-MACS approach, in 
contrast, analyzes two (or more) groups, and thus requires two (or more) matrices. Table 18.3 
shows the matrix for the dummy variable approach, and Table 18.4 shows the two matrices 

Table 18.3 Correlation Matrix and SDs for the Hot Flash Example Analyzed via the Dummy Variable 
Approach

Variable Group HF1 HF2 Int1 Int2

Group 1.000
HF1 −.121 1.000
HF2 −.520 .718 1.000
Int1 −.182 .409 .342 1.000
Int2 −.678 .248 .642 .426 1.000
SD .503 11.111 10.130 20.173 23.275

N = 96

Table 18.4 Correlations, Means, and SDs for the Hot Flash Example Analyzed via the MG-MACS 
Approach

Variable HF1 HF2 Int1 Int2

Control Group n = 48
HF1 1.000
HF2 .880 1.000
Int1 .481 .436 1.000
Int2 .516 .552 .632 1.000
Mean 17.077 15.508 46.313 42.250
SD 10.823 11.206 21.394 21.842
Hypnosis Group n = 48
HF1 1.000
HF2 .732 1.000
Int1 .307 −.027 1.000
Int2 −.290 .057 −.042 1.000
Mean 14.396 5.036 39.000 10.875
SD 11.347 5.086 18.373 10.736
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for the MG-MACS approach (with the control matrix on top and the Hypnosis matrix on 
the bottom). Note that because we explicitly analyzed means and intercepts in the MG-
MACS analysis these matrices also each include a row of means. In contrast, note that there 
are no means in Table 18.3, but that the Group variable appears in the correlation matrix. 
(Of course we could include a row of means in the matrix, but it is not needed because we 
did not explicitly analyze means and intercepts for this model.) 

Calculating df

How do the 3 df for the MG-MACS Initial model come about? There are 4 measured vari-
ables for each of the 2 groups, and thus there are 14 Control + 14 Hypnosis = 28 moments 
(means, variances, covariances) to be analyzed. For the control group, 15 parameters are 
estimated in the model (2 factor loadings, 1 path, 4 measured intercepts, 6 variances, and 2 
covariances). Ten parameters are estimated for the Hypnosis group: 2 factor loadings and 
4 intercepts are constrained to be equal to the values for the Control group, but the inter-
cept for the Hot Flash Posttest is freely estimated. Moments minus parameters estimated = 
28 − (15 + 10) = 3.

SUMMARY

Up until now in our exploration of SEM we have mostly been concerned with using covari-
ances to estimate paths and correlations (covariances) among measured variables (initially) 
and latent variables (more recently). It is also possible to estimate mean structures (i.e., 
means and intercepts) in SEM, and that has been the focus of the current chapter. Early in 
the chapter we conducted a simple regression in path form as a reminder about means versus 
intercepts. Briefly, for exogenous variables we estimate the means, whereas for endogenous 
variables we estimate intercepts, which are the estimated means for those with a value of zero 
on the corresponding exogenous variable. This becomes slightly more complex with latent 
variable models, because measured indicators of latent variables are endogenous (influenced 
by the latent variables). If this seems confusing, just think of intercepts as estimated means 
adjusted for the variables that have paths pointing to the variable under consideration. We 
generally assume that latent variables have means of zero.

With a single-group analysis not much changes when the estimation of mean structures is 
added. The output of the analysis becomes a little more complex, but the results are the same 
as those when means and intercepts are excluded from the analysis. Many SEM programs 
require the analysis of means and intercepts when there are missing data, however. In the 
summary chapter for Part Two we will focus a little more on missing data; for now, simply 
understand that there are advantages for using missing data handling features (maximum 
likelihood estimation) in most SEM programs.

Although our concern up until this point has been with the estimations of paths, it turns 
out that several of our examples in previous chapters have indeed focused on mean struc-
tures. When dummy exogenous variables were included in the model (the Head Start exer-
cise from Chapter 16 and the Homework example with ethnic group membership in the 
model in Chapter 17), it turns out that the paths we were estimating from these dummy 
exogenous variables were the intercepts on the latent outcome variables across the groups. 
Said differently, these paths estimated the differences across groups on the latent dependent 
variable, or the main effect for group membership on the latent (true) outcome variable.

The estimation of means and intercepts becomes even more interesting when we conduct 
multi-group analyses. Multi-group mean and covariance structures (MG-MACS) analysis 
allows us to test both main effects and interactions in one analysis. In previous chapters we 
estimated the main effect by including a dummy variable in one analysis and we tested for 
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interactions (moderation) in a separate MG analysis across groups. Review Chapter 17 if you 
are unclear how we did this. MG-MACS also allows us to test such models more completely 
than we did using dummy variable models.

An example was used to illustrate the similarities and differences between the two 
approaches—the dummy variable versus the MG-MACS approach—for estimating mean 
structures. Simulated data designed to be consistent with the findings of a true experiment 
using hypnosis to treat hot flashes in postmenopausal breast cancer survivors were analyzed. 
In the first analysis, a dummy variable was used to represent membership in the control 
group versus the experimental (hypnosis) group. The path from this dummy variable to a 
latent hot flash outcome variable (indexed by hot flash scores and hot flash interference in 
daily life) showed the effect of treatment on this latent outcome variable. Pretest hot flash 
scores and interference were also controlled. The use of a latent outcome variable had the 
advantage of coming closer to the true variable of interest (hot flash frequency, severity, and 
interference) than would an approach that relied only on measured outcome variables. This 
approach is similar to Multivariate Analysis of Covariance (a more common approach for 
such analysis), which would also treat the outcome as a latent variable. MANCOVA, however, 
would treat the pretest scores as two separate error-free covariates, and we saw in the chapter 
on error (Chapter 14) why it is dangerous to treat error-laden exogenous variables as if they 
were error-free.

The example was next analyzed as a multi-group model, with the explicit analysis of 
means and intercepts. Factor loadings and measured variable intercepts were constrained 
to be equal across groups (control versus experimental). The latent pretest means were con-
strained to zero for both groups; because there was random assignment to treatment groups 
the two groups should be equal on the latent (true, underlying) hot flash pretest. In one 
analysis the latent posttest intercepts (mean posttest score adjusted for pretest score) were 
constrained to zero for both groups, a model consistent with no treatment effect for group 
membership. In another analysis (actually, here it was the first analysis), the latent posttest 
intercept was allowed to vary for the hypnosis group, a model consistent with a treatment 
effect for the hypnosis group. In MG-MCAS, one group’s latent means and intercepts must 
be set to zero, and the values for the other group (or groups) can be freely estimated; the dif-
ference represents the difference as a result of group membership. This model fit much better 
than did the no-treatment effect model, and the value for the intercept difference was large 
and statistically significant. Hypnosis led to a large and statistically significant reduction in 
hot flash frequency, severity, and interference.

The value for the difference in intercepts in the MG-MACS model was similar, but not 
identical to, the value of the path from treatment group to Hot Flash outcome in the dummy 
variable model. The difference in these two coefficients was a result of assumptions that 
were made but were untested in the dummy variable model. When these assumptions were 
made explicit in the MG-MACS model (by constraining variances, covariances, and slopes to 
be equal across groups), the estimate of treatment effect was identical in the two models. These 
constraints also led to a much worse-fitting model, however, a finding that illustrated that the 
assumptions made for the dummy variable model were probably not valid. This, then, is also 
an advantage of the MG-MACS approach: it allows the testing of assumptions that are made 
but not tested in the dummy variable approach to estimating mean structures.

For these examples we analyzed raw data. It is also possible to conduct both types of 
analyses using matrix input. The matrices look different for the different analyses, however. 
For the dummy variable approach a single matrix is used, and one of the variables in the 
matrix represents the dummy (group membership) variable. It is not necessary to explicitly 
analyze means structures. With the MG-MACS approach, separate matrices are needed for 
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each group, and the grouping variable (control versus experimental group) does not appear 
in the matrix. You must explicitly estimate means and intercepts in the MG-MACS approach, 
however, because group differences show up as differences in means and intercepts of the 
latent variables. The matrices input for the MG-MACS approach must also include a row of 
means for the measured variables.

EXERCISES

1. Reproduce the hot flash analyses used in this chapter: both the dummy variable model 
and the MG-MACS models. Make sure your results match mine. Are there additional 
models you might test?

2. Figure 18.25 shows a starting model for a MG-MACS analysis of the effect of Homework 
on 12th-grade GPA. The model for boys is shown. A starting model for Amos (with 
variable names but without cross-group constraints) is available on the website (www.
tzkeith.com). Also on the website are the raw data for analysis (homework means.sav).

Further develop this model so that you can conduct a MG-MACS analysis (add a group 
for girls, make the correct cross-group constraints). In the initial model constrain latent 
means/intercepts for Family Background, Previous Achievement, Homework, and 
Grades to zero for both groups. In a second model allow the Homework and Grades 
intercepts to vary for girls. Do girls have significantly higher or lower levels of true 
homework (once other variables are controlled)? Grades? In a third model allow the  
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Figure 18.25 Initial MG-MACS model to study levels of homework and grades and effects of home-
work on high school grades for boys versus girls.
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effect of Homework on Grades to vary across groups. Does homework have the same 
effect on grades for boys and girls, or does the effect of homework depend on sex?

Interpret your findings. Make sure you answer the questions asked in the preceding 
paragraph.

3. Figure 18.26 shows a dummy variable model designed to test the effect of Sex on the 
change in Locus of Control from 8th to 10th grade (or 10th-grade Locus controlling for 
8th-grade Locus). Analyze the model using the NELS data. You should recode the Sex 
variable or create a new Sex dummy variable so that boys are coded 0 and girls 1. Analyze 
the model. Do boys or girls have higher (more internal) locus of control in 10th grade?

Analyze a MG-MACS version of this model. Test both for intercept differences and for 
differences in the effect of Achievement on Locus of Control in 10th grade.

Notes

1 In Amos, this is accomplished by clicking on “Estimate means and intercepts” in the estimation tab 
in the “View→Analysis Properties” menu. The graphic input and output shown here are in Amos 
format. In order to obtain identical estimates with Amos to those shown, you will need to change 
one setting: View→Analysis Properties→Bias. Choose “unbiased” for both “covariances supplied as 
input” and for “covariances to be analyzed.” With small samples, the default settings in Amos will 
give divergent results from regression. The reasoning for the difference is explained in the Amos 
manual (see example 16, pp. 242–243 in the version 22 manual, or search for “unbiased”).

2 For this third model I constrained the path from Hypnosis to Posttest to zero, while still allow-
ing the covariance between Hypnosis and Pretest (as in the second model). Because we rejected the 
“Pretests Vary” model, it would make more sense to constrain the covariance to zero for the third 
model and compare it to the initial model. That model would not run, however (problems with 
identification).

Figure 18.26 Initial dummy variable model to study differences in locus of control for boys versus 
girls in grades 8 and 10.

bys44b bys44c bys44f bys44m

1
0,

1
0,

1
0,

1
0,

1
0,

1
0,

1
0,

1

1

0,

1
0,

1

0,

r5 r6 r7 r8

Sex

f1s62f f1s62mf1s62b f1s62c

Locus
10

r12r11r10r9

Locus
8

Achievement

Nels locus 1
Model Specificationbytxhstdbytxrstd bytxmstd bytxsstd

1 1 1 1

0, 0, 0, 0,

r1 r2 r3 r4
Chi-Square = \cmin

df = \df
RMSEA = \rmsea

CFI = \cfi

10

0,

e1



455

19
Confirmatory Factor Analysis II

Invariance and Latent Means

Invariance Testing with Means 455
Measurement Invariance Steps 458
Invariance Testing without Means 479
Higher-Order Models 481

Single-Group, MIMIC Models 485
Summary 489
Exercises 490

Notes 492

Now that we have introduced the topic of latent means in SEM, we can revisit the topic of 
CFA, with the addition of latent means analysis in CFA. We will do so within the frame-
work of invariance testing, a topic first introduced in the initial discussion of multi-group 
SEM. This is an important topic that needs additional exploration. Although it is possible, 
perhaps even common, to test for aspects of invariance without examining measured and 
latent means, here we will first focus on invariance testing with means and intercepts. Thus, 
this chapter will focus in some detail on the steps needed to test for invariance in constructs 
across groups, including invariance in measured variable intercepts, which will allow the 
testing of differences in latent means. Part of this discussion will concern what is tested con-
ceptually at each step, and why one would want to do such testing. We will then back up a 
little and focus in less detail on the steps you might take if you were interested in invariance 
testing without focusing on means. Finally, we will (as in the previous chapter) see how some 
of this same information can be obtained by the addition of a categorical variable to the 
analysis, but with the addition of some assumptions that may or may not be valid.

INVARIANCE TESTING WITH MEANS

In the introductory chapter on CFA we focused on an example from the intelligence literature 
in part because the topics of factor analysis and intelligence are so intertwined. We will do so 
again. The example is drawn from research by Matthew Reynolds and colleagues in which 
they were interested in possible sex differences and similarities in general and specific intel-
ligences (Reynolds, Keith, Ridley, & Patel, 2008). Previous research had shown some consis-
tent differences across the sexes (e.g., males generally perform at a higher level on measures 
of spatial reasoning), but also areas with no differences, and plenty of inconsistencies across 
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studies. Reynolds and colleagues analyzed data from children ages 6 through 18 from the stan-
dardization of the Kaufman Assessment Battery for Children—Second Edition (KABC-II) 
(Kaufman & Kaufman, 2004). They used a higher-order model of intelligence in order to 
study both general intelligence and five more specific intellectual abilities. They reasoned that 
one reason for inconsistencies in research findings was that researchers often had studied 
measured variables, such as composite scores, that were likely clouded by the specific mea-
sures used. Latent variables should provide more accurate estimates of any true differences.

Here, we will use data from one age group (ages 15–16), and with a slightly different focus. 
Specifically, we are interested in testing whether the KABC-II measures the same set of constructs 
for boys and girls in this age group. For the sake of presentation, we will focus on fewer constructs, 
and only on first-order factors. The data (correlation matrices, means, and standard deviations) 
are in the first two worksheets in the Excel file “kabc cfa matrices.xls.” The third worksheet will be 
used later in the chapter. The small amount of data that were missing were imputed.

Table 19.1 shows a brief description of the various KABC-II subtests used in this 
chapter, and Figure 19.1 shows the constructs these tests supposedly measure, that is, the 

Table 19.1 Description of KABC-II Subtests for Youth Ages 15 to 16. Adapted from “Sex differences in 
latent general and broad cognitive abilities for children and youth: Evidence from higher-order MG-
MACS and MIMIC models” by M. R. Reynolds, T. Z. Keith, K. P. Ridley, & P. G. Patel, Intelligence, 36, 
236–260. Copyright 2008 by Elsevier.

Subtest Description

Riddles Examinee points to or names objects or ideas described by 
examiner

Verbal Knowledge Points to a picture that illustrates the meaning of a vocabulary 
word or the answer to a general information question

Expressive Vocabulary Names pictured objects
Gestalt Closure Describes the pictured object or action from incomplete black 

and white drawings
Triangles (Untimed) Arranges two-colored foam triangles to match a pictorial model
Block Counting Counts blocks in pictures when some blocks are clearly visible 

and others are implied or only partially visible
Rover Determines the most efficient route for a dog to find a bone on a 

grid. The route must take into account various obstacles.
Rebus Examiner teaches the meaning of rebuses (pictures representing 

words); the examinee reads a series of rebuses, which form a 
sentence or phrase

Rebus Delayed Reads a series of rebuses 15–25 minutes after initial training
Atlantis Examiner teaches names for cartoon fish and objects; the 

examinee points to the correct picture when the examiner 
subsequently names them

Atlantis Delayed Points to the Atlantis objects 15–25 minutes after initial training
Word Order Examiner states object names, examinee touches pictures of 

the objects in the same order. Later items have an intervening 
interference task.

Number Recall Recalls digits spoken by examiner
Hand Movements Repeats a series of hand motions made by examiner
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expected factor structure. The construct Gc is also known as crystallized intelligence, or 
may be referred to as verbal comprehension or verbal reasoning. Gv represents visual-
spatial reasoning, Glr long-term storage and retrieval, and Gsm short-term memory. As 
shown, most subtests appear to measure a single construct, with the exception of Gestalt 
Closure, which is thought to require both visual-spatial and verbal skills. This makes 
sense, given that for Gestalt Closure the child is supposed to describe or name incom-
plete pictures. The model allows the residuals of two pairs of tests to covary, because 
one in each pair is a delayed version of the other. So, for example, for the Rebus Delayed 
subtest, children are asked to recall names associated with symbols initially presented in 
the Rebus subtest. Note that the KABC-II is also designed to measure other abilities not 
analyzed here.

Again, our interest in this chapter is whether the constructs measured by the KABC-II are 
measured in the same way, or are measurement invariant, across the sexes. We are interested 
in the invariance of measurement across groups. As we shall see, there are different levels 
of measurement invariance that can be modeled with CFA, from fairly loose definitions of 
invariance to quite strict. We will focus on the steps needed to test these levels of invariance 
and what each level means.
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Figure 19.1 Factor structure of the KABC-II for 15- to 16-year-olds.
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Measurement Invariance Steps

Configural Invariance

The first step in invariance testing is often referred to as configural invariance. The model 
shown in Figure 19.1 is estimated via a multi-group model but without parameter con-
straints across groups (other than the reference variable indicator of 1 for each factor, and 
the same pattern of fixed at zero versus free loadings). In other words, for this level of invari-
ance we simply specify that the same factor model holds for both groups. There are no speci-
fications that the values of factor loadings must be the same across groups, just that the same 
pattern of loadings holds. As we shall see, the χ2 of this model will be the same as if we had 
analyzed each group separately and summed the χ2 values. This level of invariance is gener-
ally called configural invariance, meaning the structure of what is measured by the test shows 
the same configuration across groups (boys and girls in this example).1

Note, then, in Figure 19.2 that the same factor configuration is specified for boys and for 
girls, with the model for boys to the left and the model for girls to the right. The model is the 
same as in Figure 19.1, with the exception that the shorter titles are used for the factors. For 
both sexes, one factor loading is set to 1 to set the scale for the latent ability variables. For 
invariance testing, this method (ULI) should be used to set the scale of factors. Although it 
is not necessary to estimate mean structures for this level of invariance (and we will examine 
such models later in the chapter), we have done so here. The means of all latent variables (the 
ability constructs and the residuals/error) are fixed to zero. Although it may not be obvious 
from the figures, the intercepts for the measured variables (the subtests) are freely estimated 
for both groups.

The graphic standardized results for this model are shown in Figure 19.3. Because this is 
a multi-group model, there is only one set of fit indices shown, representing the fit of the 
model across both groups. Note that a single set of fit indices is provided in Amos; other 
programs may also provide some of the fit indices separately by group (e.g., Mplus provides 
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Figure 19.2 Configural invariance model. The same factor structure is specified for males and females, 
but no cross-group constraints are made.
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the contribution of each group to the χ2). The model shows a good fit for girls and boys, with 
RMSEA = .035 (corrected for 2 groups), SRMR = .047, and CFI = .988. Fit indices for this 
and subsequent models are also shown in Table 19.2. We would likely accept this model as 
providing a good baseline for subsequent model comparisons. 

As shown in the Figure, the model produced similar standardized estimates for both girls 
and boys. All values are reasonable, with most factor loadings and factor correlations of sub-
stantial and reasonable magnitude. Perhaps the biggest difference is the factor loading of the 
Gestalt Closure subtest on the Visual-Spatial (Gv) factor: .40 for males and .21 for females. 
We should not over-interpret this difference, however. First, recall that to compare differ-
ences across groups, we should compare unstandardized estimates rather than standardized 
ones. Second, we will test whether the unstandardized loadings are statistically significantly 
different across the sexes in the next step in invariance testing.

As noted previously, the χ2 for the configural invariance model should be the sum of the 
χ2s for the boy and girl models if run separately. The fit information for these models is also 
shown in Table 19.2. It appears that the model fit well for boys and girls, and the χ2 for the 
configural invariance model is almost identical to the summed value for males and females 
separately (161.282 vs. 161.281). The same relation holds for the AIC, whereas the configural 
CFI and SRMR are closer to averaged values. The RMSEA appears somewhat better for the 
Configural Invariance model than for the separate male and female models, but recall that 
RMSEA should be corrected for the number of groups (Steiger, 1998). The column labeled 
RMSEA* shows the corrected RMSEA, the reported RMSEA multiplied by the square root of 
the number of groups (RMSEA× 2). This correction is necessary in Amos (but not in Mplus) 
as of this writing; check whatever program you are using to determine whether it is needed. 

It is common—but certainly not universal—to test the factor structure of each group sep-
arately either before or after testing the configural invariance model. There is nothing wrong 
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Figure 19.3 Configural invariance results, standardized estimates. The results for boys are shown to 
the left, and girls to the right.
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with doing this step first, which would insure that the chosen model fits each group well and 
would allow model adjustments prior to testing for configural invariance. I thought that this 
step was not necessary in this case, because the factor structure is fairly well understood for 
this test. In addition, the Configural Invariance model fit well, so I would likely just move to 
the next step in invariance testing. On the other hand, if this were a more exploratory analysis, 
or if we had questions resulting from this first step, a separate analysis by group would likely 
help to understand the nature of the group differences. Perhaps the model fits well for one 
group but not the other. Perhaps one subtest should have a cross-loading for one group but 
not the other, or two subtests should have correlated errors for one group. A change or two 
may be quite reasonable, and, if minor, may still allow a conclusion of configural invariance, 
or partial configural invariance. Any change that leads to a substantive difference in interpre-
tation across groups suggests a lack of invariance. Of course, what constitutes a “substantive” 
difference will likely be a matter of opinion; the excellent references concerning invariance 
testing throughout this chapter will provide guidance on this and other topics. Please note, 
however, that if you need to make changes in the factor structure (number of factors, cross-
loadings, error covariances), this is the time to do it; subsequent models simply add equality 
constraints across groups.

Metric Invariance

The next step in invariance testing is often referred to as Metric Invariance, or factor loading 
invariance. It is also known as weak factorial invariance (as opposed to the next step, strong 
factorial invariance) (Meredith, 1993; Meredith & Teresi, 2006).2 For this step, the loadings 
of the subtests on the factors are constrained to be equal for males and females. The setup 
for this step is shown in Figure 19.4. Note that the loading for Verbal Knowledge on Gc is set 
to gcl1 (for Gc loading 1) for both males and females. All other loadings are also constrained 
to be equal across groups, except those used to identify the latent factors, which were already 
set to 1 in both groups. Note that all other aspects of the factor model, including unique 

Figure 19.4 Model setup for a test of metric invariance across the sexes. Factor loadings are con-
strained to be equal across the two groups.
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variances of subtests (e1 through e11), factor variances, and factor covariances, were allowed 
to vary across groups. It is not necessary to estimate means and intercepts at this step (to be 
discussed in more depth later), but if means and intercepts are estimated, the intercepts are 
allowed to vary across groups, but factor means are constrained to zero for both groups (as 
was done here).

Table 19.2 shows the fit indices for this model. As shown in the Table, the model fit the 
data well (RMSEA = .034, SRMR = .051, CFI = .988). This model is nested with the Config-
ural model, and the increase in χ2 for the Metric invariance model was not statistically signif-
icant (Δχ2 (11) = 10.954, p = .447). Thus, we would likely accept the factor loading equality 
constraints in the Metric invariance model as reasonable. As will be explained later in this 
chapter, it is also common to use other fit indices (e.g., ΔCFI) to compare invariance models.

Given metric invariance, what does it mean? With metric invariance, the unstandardized 
factor loadings are the same for both groups. The factor loadings tell us about the relation of 
the measured variables to the latent factors. This level of invariance means that the scales of 
the latent variables are the same for both males and females. This finding, in turn, means that 
for each unit change in the latent variable, it is reasonable to assume that scores on the sub-
tests increase by the same amount for males and females. So, for example, if the true level of 
long-term retrieval (Glr) increases by 10 points, scores on the Rebus subtest will increase by 
10 points for males and 10 points for females (because the unstandardized loading for both 
groups is 1.0). Likewise, with this example, scores on the Atlantis subtest would increase by 
9 points for both males and females (the unstandardized loading for both groups = .916 × a 
10-point increase in Glr = 9.16).

Conversely, imagine what it would mean if metric invariance did not hold. If metric 
invariance did not hold for the Glr factor, that would mean that a 10-point increase in the 
latent variable would result in a different point increase on the subtest for adolescent boys 
versus girls. As an analogy, imagine a fishing competition where the biggest fish wins the 
prize. Imagine that I measure my fish using a meter stick and you measure yours using a 
yard stick. I find that my fish is 35 units long compared to your fish, which is only 25 units 
long. I win, correct? No; if converted to the same units, the same metric, my fish is 35 cm 
long, whereas yours is 64 cm. The scaling needs to be the same for the two instruments (tests, 
scales, rulers) to measure the same construct. Metric invariance means using the same scale 
for both groups, which in turn means the factors represent the same “thing” across groups. 
As another example, imagine measuring the temperature in two different cities daily for a 
month but you use a Fahrenheit thermometer in one city and a Celsius scale in the other. The 
comparisons would make no sense because the scales of measurement are different.

As noted when we first discussed multi-group analysis, with this level of invariance we can 
conclude that the latent variables have the same meaning and represent the same constructs 
across groups. In SEM, this level of invariance is the minimum level needed in order to 
compare the effects (the paths) of one latent variable on another. Thus, if this were an SEM 
rather than a CFA model, we could now validly compare the effects of one latent variable on 
another across groups (e.g., Gc on Glr). In CFA (and SEM), if metric invariance is achieved, 
it is reasonable to compare factor variances and covariances across groups.

If metric invariance is not achieved, it is possible to test for partial metric invariance 
(Byrne, Shavelson, & Muthén, 1989) by allowing one (or several) factor loadings to differ 
across groups, while constraining all other loadings to be equal. We would likely pursue this 
option if the metric invariance step resulted in considerable decrement in model fit. The 
modification indices could be used to help isolate loadings that should be allowed to vary 
across groups. Any such subtest should be freed in the intercept invariance step as well. Given 
the complexity of such models and the number of comparisons being made, we might also 
choose to use a more conservative level of statistical significance (e.g., p < .01 or .001) for 
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rejecting the hypothesis of invariance at each step. For this reason, some researchers have 
suggested using ΔCFI or Δ in some other fit index as opposed to Δχ2 to evaluate invariance 
tests (Cheung & Rensvold, 2002). With this approach we might decide that a change in CFI 
of −.01 or more from one step to another signals a lack of measurement invariance at that 
step. In my experience, this ΔCFI criterion works well for invariance testing.

In the section (Chapter 7) on categorical and continuous variables in multiple regression 
we discussed the issue of test bias. Invariance testing is commonly used to answer an even 
more basic question about bias, commonly referred to as bias in construct validity. Consider 
that if metric invariance did not hold in the present example we would be forced to conclude 
that the KABC-II measures different constructs (in some sense of the word) for males versus 
females. This test of bias answers a common question about tests and other scales across 
groups, commonly expressed along the lines of “Sure, the XYZ test likely measures intelli-
gence for white middle-class students, but it probably measures something different, perhaps 
test-taking skill, for students for minority backgrounds.” Or, with the current example, “Sure, 
the Gestalt Closure, Triangles, Block Counting, and Rover subtests likely measure visual 
spatial reasoning for boys, but they probably measure exposure to such mechanical-spatial 
problems for girls.” In both cases, the questioner is suggesting that the constructs measured 
by the instrument differ across groups. Achieving metric invariance across groups suggests 
no such bias across groups (as we will see, however, other problems may still exist).

Intercept Invariance

Invariance testing with mean structures also goes by several names: intercept invariance, sca-
lar invariance, or strong factorial invariance. Intercept invariance includes all the constraints 
of metric invariance, plus the added constraint that the intercepts of the corresponding mea-
sured variables are constrained to be equal across groups. The setup for this step is shown 
in Figure 19.5 for females. Notice the values i1, i2, i3, and so on next to the subtests. These 
labels refer to the intercepts of each subtest, and the same labels are used for the male model, 
thus constraining the values of the measured intercepts to be equal for females as for males.

Note also that constraints on the factor means (Gc, Gv, etc.) have been removed for 
females. In the previous model, the metric invariance model, the latent means were set to zero 
for both males and females. For this step, the male latent factor means are still constrained 
to zero, but the female factor means are allowed to differ from the male factor means. This 
combination of free versus constrained parameters means that any differences in intercepts 
(and therefore means) on the subtests are the result of true differences in means of the latent 
variables (Gc, Gv, etc.) rather than something specific to that subtest. Figure 19.6 shows a 
portion of this same model using the RAM format where the triangle pointing to a factor or 
variable represents the estimate of its mean or intercept. 

The fit of the intercept invariance model is also shown in Table 19.2. The unstandardized 
model for females is shown in Figure 19.7. As shown in the Table and the Figure, the intercept 
invariance model fit well. More important for our present purpose, the fit compared well to the 
metric invariance model, with Δχ2 not statistically significant and the ΔCFI is less than −.01 
(.988 − .989 = −.001). Note also that the AIC is lower for the intercept invariance as opposed to 
the metric invariance model, also supporting the constraints imposed by this model. 

More detailed model output for males and females is shown in Figures 19.8 through 19.10, 
with the male output on the left and female output on the right. There is a lot of detail con-
tained in these figures so we will spend some time going over it. I encourage you to com-
pare the output for the two groups on your own, and to conduct these various analyses to 
make sure you understand how to do them and how to interpret them. Figure 19.8 shows the 
unstandardized and standardized factor loadings (paths from the latent to measured variables) 
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Figure 19.5 Specifying invariance for the measured variable intercepts. The same names are given 
to the intercepts for boys and girls, thus constraining these to be equal across the groups (intercept 
invariance). At the same time, the latent factor means are freely estimated for one group.

Figure 19.6 A portion of the intercept (strong) factorial invariance model using a RAM-type nota-
tion. Because all latent variables means were set to zero for males, the male model would have no 
arrows from the constant (triangle) to the factors. In addition, the paths from the constant to the 
subtests (representing the intercepts) are constrained to be equal for males and females.
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Figure 19.7 Intercept (strong) invariance results for females. Note that the values above the factors 
represent the differences in means from the group coded zero (males), followed by the factor variance.

for the two groups. The tables of unstandardized loadings shows that these values indeed are 
constrained to be equal across groups, with those constraints originally made in the metric 
invariance model. The columns named “Label” show the labels attached to each parameter in 
the model setup. This is, of course, how equality constraints are made in Amos; Mplus uses a 
similar method; other programs will use other methods. Note that males and females have the 
same labels for all factor loadings not constrained to 1. (It is also possible to give the parameters 
different names and then tell the program to constrain them to be equal; see the Amos manual 
for more detail.) The second set of tables show the standardized loadings. If you compare 
these across groups you will see that they are similar but not identical for boys and girls. Why? 
Again, it is the unstandardized values (paths, loadings, etc.) that are constrained to be equal 
across groups, not the standardized values. Recall from multiple regression that a standardized 
coefficient depends on the unstandardized coefficient AND on the variances of the variables 

involved. Just as in regression, β=b SD
SD

x

y
or =b V

V
x

y
, none of the variances is constrained to be 

equal in this model, so the standardized loadings are not equal across groups.
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Figure 19.9 shows the values for the measured intercepts across groups. Again, for this 
model the intercepts for each measured variable have been constrained to be equal for males 
and females. Because the intercepts are constrained to be equal across groups, it is possible 
to allow the means of the latent variables to differ across groups. Without the intercept con-
straints, we could not allow the means of the latent variables to differ across groups, because 
the model would be under-identified (we would be using the 14 subtest means to estimate 
both intercepts and factor means). As in the previous chapter, what we are saying is that any 
differences that are shown on the means of the various subtests are a result of true mean 
differences in the latent variables. The latent mean differences are shown for females in the 
lower part of the Figure. Recall that the latent means are set to zero for males and the values 
shown for females thus represent the differences from zero for females. Thus adolescent girls 
differ from boys by −.194 points on the latent Gc factor, meaning they score lower by 2/10 
of a point, compared to boys. This value is not statistically significant, however, meaning 
that we should probably consider the true value to be zero, or not different from that of 
boys. Two of the latent mean differences were statistically significant, however: those for Gv 
and Glr. These findings suggest that boys score statistically significantly higher on the latent 
visual-spatial reasoning factor (−.648) and that girls score statistically significantly higher on 
the latent long-term retrieval factor (.638). We will return to these findings and delve more 
deeply into them later. 

Figure 19.10 shows the information concerning covariances, correlations, and variances 
across groups. None of the values has been constrained across groups, but we can add such 
constraints in subsequent models.
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Figure 19.8 Detailed results, intercept invariance tests.
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Figure 19.9 Intercept invariance detailed results, continued.
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Okay, we have now established intercept, scalar, or strong invariance across groups. What 
does that mean at a practical level? One meaning was already presented: intercept invariance 
means that any difference in means across the groups on the subtests (measured variable) 
are the result of true differences in the underlying latent variables, not to something specific 
about the subtest. Intercepts are the mean values on the dependent variable (the subtests) for 
those with a value of zero on the independent variable (the factors). Another way of think-
ing about what intercept invariance means is that each measured variable has the same zero 
point for males as for females. That is, the scale for the measured variables starts at the same 
place. Metric invariance means that the scales use the same metrics across groups; intercept 
invariance means that the scales start at the same point.

Imagine if this were not the case, if the scales did not have the same starting point. Imag-
ine, for example, if your speedometer were broken such that speed did not register until you 
were going 10 mph, and it consistently registered 10 mph under your actual speed. Imagine  
all the tickets you would get! Your measured speed would be due, in part, to your true (latent) 
speed but would also be due, in part, to having an incorrect starting point for speed mea-
surement. Alternatively, consider measuring temperature in two different cities daily for a 
month. In one city you use a thermometer with a Celsius scale, but in the other you use one 
with a Kelvin scale (the same metric but with a zero point of −273° Celsius). The average 
temperatures will be different in part because the scales have different zero points.

Also at a practical level, intercept invariance is assumed (but rarely tested) any time we 
wish to compare means on some composite variable. In other words, any time we compare 
means across groups on some composite, we are assuming—whether we know it or not—
that strong measurement invariance holds. Brown (2006) used the example of items designed 
to measure agoraphobia (unreasonable fear of being in places where escape is difficult, such 
as crowds or open spaces). We might expect women to express more fear of walking alone 
in isolated areas (one indicator of agoraphobia), compared to men, even when they have the 
same level of underlying agoraphobia. If so, this would show up as a difference in intercepts 
for this item across sexes. If not tested or taken into consideration in research on agora-
phobia, this difference could lead to erroneous conclusions. If 4–5 agoraphobia items were 
simply summed, we might conclude that women had higher levels of agoraphobia when in 
fact they only differed on this single item. This example also illustrates what a difference in 
intercepts often means: that there is some more specific factor (e.g., fear of attack) that influ-
ences an item beyond the more general factor (agoraphobia).

We discussed bias in construct validity in connection with metric invariance (or a lack 
of metric invariance). A lack of intercept invariance would likewise suggest construct bias 
across groups. Suppose we had found a lack of intercept invariance for, say, the Rover subtest 
on the Gv factor (partial intercept invariance, see below). That would mean that one sex was 
scoring systematically higher or lower on this test, even after taking into account the dif-
ferences in the latent Gv mean. That finding, in turn, would suggest that the Rover test was 
not a fair measure of Gv skills for the lower scoring group, because the test systematically 
underestimated that group’s scores.

There are several additional points to consider concerning the topic of intercept invari-
ance. First, you may question whether the metric invariance and the intercept invariance 
models are truly nested. After all, nested relations are those in which one model can be 
derived from the other by imposing parameter constraints. In going from metric to inter-
cept invariance, we have imposed 14 constraints (the intercepts for one group constrained 
to be equal to those of the other) but have also freed four previous constraints (the latent 
factor mean differences were freely estimated for females). Good for you if you wondered 
about this, but the models are indeed nested. An alternative method for estimating the met-
ric invariance model would be to constrain the intercepts of the reference variables (those 
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with a factor loading of 1, e.g., Riddles, Triangles) to be equal across groups, but free the 
factor means for girls. This alternative metric invariance model would have the same 
degrees of freedom (because 4 constraints are added and 4 dropped) and an identical fit. 
The results are the same. To go from this model to the intercept invariance model then 
merely requires that the remaining 10 intercepts be constrained equal across groups (for 
an additional 10 df).

Second, it is possible, and indeed common, to test the first two invariance steps without 
estimating means structures. Model fit and model results will be the same as those shown 
here. Of course it is necessary to estimate means and intercepts to test for intercept invari-
ance. The point here is, however, that it is perfectly acceptable to estimate configural and 
metric invariance without estimating mean structures and then compare those models to 
an intercept invariance model.

Third, in my experience, complete intercept invariance is often harder to fulfill than 
metric invariance (and I have talked to others far more knowledgeable than I am about 
this topic who have reported the same thing). When complete intercept invariance is not 
achieved, one option is to test for partial intercept invariance by freeing selected intercept 
constraints for one or more groups (Byrne et al., 1989). Candidates for such model relax-
ations may be found through inspection of findings (e.g., modification indices) or based 
on theoretical grounds (Reynolds & Keith, 2013). As already noted, the most common 
reason for partial intercept invariance is the existence of unmodeled minor specific (or 
common) factors. So, for example, suppose that the KABC included a measure of quanti-
tative skills (doing arithmetic problems in one’s head) among its measures of short-term 
memory. Because quantitative reasoning factors often show sex differences (Benbow & 
Stanley, 1980), it would not be surprising for this test to show a difference in intercepts 
while the remaining memory tests (and factor) showed no sex differences (and thus only 
partial intercept invariance). As with any ad hoc model comparisons, results-based partial 
invariance relaxations should be done sparingly. One rule of thumb is that a factor should 
have at least one other invariant indicator (other than the reference variable) in order to 
consider it partially invariant (Byrne et al., 1989). For more information concerning the 
topic of partial invariance, see Byrne, Shavelson, and Muthén (1989), Gregorich (2006), 
Reynolds and Keith (2013), or Vandenberg and Lance (2000). Another possible solution 
to this potential problem is to recognize that the Δχ2 test we have been using to compare 
models may be too sensitive and to use an alternative (e.g., ΔCFI) for invariance tests 
(Cheung & Rensvold, 2002).

Fourth, and finally, when item level analysis is conducted (e.g., the agoraphobia example), 
and intercept invariance is not achieved for an item, this finding is evidence of what is known 
as differential item functioning (DIF) in the psychometric literature.

Residual Invariance

The final step, at least in the current presentation, in invariance testing requires that the 
residual variances (and covariances, if any) for the measured variables also be equal across 
groups. Meredith (1993) termed this “strict” factorial invariance. It is also sometimes referred 
to as “invariant uniquenesses” (Vandenberg & Lance, 2000). This level of factorial invariance 
is consistent with measurement invariance, that is, all differences in the means and variances 
of the observed scores are completely explained by mean and variance/covariance differences 
in the latent factors.

Not all writers consider residual invariance necessary, or the next step, in invariance 
testing (Vandenberg & Lance, 2000). Metric invariance is needed prior to intercept invari-
ance, and intercept invariance is needed prior to testing for differences in latent means. But 
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strict factorial (residual) invariance need not follow intercept invariance testing immedi-
ately. Many writers would test for substantive differences in latent means, or factor vari-
ances and covariances next, deeming invariance in residuals a relatively minor, and perhaps 
unlikely, issue. I present residual invariance as the next step here for several reasons. First, 
configural, metric, intercept, and residual invariance variance all focus on different aspects 
of measurement invariance; other aspects of invariance (latent means and variances) can 
be considered structural aspects of invariance (Byrne et al., 1989; Vandenberg & Lance, 
2000). Or, said differently, configural through residual invariance focus on how the mea-
sured variables relate to the latent variables; the other aspects focus on the latent variables 
themselves. Second, if we were to select two subsamples at random from a larger group, 
we should not necessarily expect equality of factor variances and covariances (Meredith, 
1993; Widaman & Reise, 1997), so these should be considered later steps. Finally, the order 
of these subsequent invariance tests should, in most cases, make little difference in find-
ings. So, using the present example, changing the order of invariance tests (e.g., testing 
latent means next versus last in the series) made very little change in the χ2 associated with 
each step. This makes sense if we have faith in the power of these models to separate the 
different aspects of measurement, such as unique variances, latent variances, covariances, 
means, and so on.

For the subtest Residual Invariance model, the residual variances (also known as errors, 
or unique variances) for the 14 KABC-II subtests were constrained to be equal for males 
and females. The two subtest residual covariances (between Rebus and Rebus Delayed and 
Atlantis and Atlantis Delayed) were also constrained to be equal for the two sexes. These 
constraints can be seen in the labels used for these parameters in Figure 19.11. The figure 
is for the male subsample; the same labels were used for the female subsample, thus con-
straining the values to be equal across the sexes. The fit of the residual invariance model is 
shown in Table 19.2. Once again, the model fit well and the change in χ2 was not statisti-
cally significant. The additional constraints are “worth” the cost of the slight increase in χ2, 
and we would likely accept the Residual Invariance model as a reasonable representation of 
the cross-sex structure of the KABC-II. The ΔCFI criterion would also support the residual 
invariance step. 

Residual invariance is more difficult to obtain than are metric and intercept invariance. 
If it does not hold, then, as with other types of invariance, it may be possible to achieve 
partial residual invariance by allowing some of the measured variable residuals to vary 
across groups. Residual invariance is also not as important as are the previous forms of 
invariance. As noted by Widaman and Reise, metric (weak) and intercept (strong) invari-
ance are most important “for most substantive research questions” and residual (strict) 
invariance is “nice but not necessary” (1997, p. 296). Metric invariance is needed in order 
to compare the effects of one variable on another across groups (i.e., to compare paths 
in SEM), and intercept invariance is needed to compare mean structures across groups. 
The addition of residual, or strict, invariance means, however, that “group differences in 
the factor means and variances account fully for all group differences in subtest scores.” 
(Reynolds & Keith, 2013, p. 45; cf. Meredith & Teresi, 2006). Recall the distinction made 
earlier between measurement invariance and factorial invariance. Here, we have been 
demonstrating testing for factorial invariance as a way of demonstrating measurement 
invariance. Residual, or strict, “invariance is consistent with measurement invariance 
because group differences would only be attributed to group differences in the latent vari-
ables” (Reynolds & Keith, 2013, p. 74; cf. Meredith & Teresi, 2006). Just as strong invariance 
allows one to make valid comparisons of factor and observed means, strict invariance allows 
one to make valid comparisons of variances and covariances of the observed variables  
(Gregorich, 2006).
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Structural Invariance: Factor Variances Equal

Testing for invariance in measurement residuals completes the steps involved in testing for 
measurement invariance. Subsequent steps test for substantive differences in structural aspects 
of the CFA model, that is, the characteristics of the latent variables (variances and means) 
and how they relate to one another (covariances). These often reflect substantive research 
questions about the nature of constructs of interest, such as whether and how the constructs 
differ across groups. In contrast, the measurement aspects of invariance ask whether the mea-
surement instruments work equally well across groups (to accurately assess the constructs of 
interest). So, with the current example, Reynolds and colleagues’ primary interest was whether 
there were differences for males and females in their mean levels of different aspects of intel-
ligence (2008); previous research had suggested differences favoring both males and females 
in various aspects of intelligence. Research has also suggested that males may overpopulate 
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the two ends of the normal curve, and thus show greater variance on intelligence than females 
(Johnson, Carothers, & Deary, 2008). Reynolds and colleagues also tested this possibility.

Because measurement invariance and structural invariance have different orientations, 
some methodologists recommend using different criteria to judge model fit. Little, for exam-
ple, suggested the possibility of using a “modeling rationale,” and focusing on what I have 
called stand-alone fit indices to judge the overall fit of the measurement models, but then 
using a “statistical rationale” (e.g., the statistical significance of Δχ2) to compare the fit of the 
structural model (Little, 1997, pp. 58–59). Others have provided rules of thumb for judging 
changes in fit indices such as CFI in tests of invariance (Cheung & Rensvold, 2002). Another 
possibility would be to use different criteria for judging measurement invariance versus test-
ing substantive hypotheses (e.g., p < .01 versus .05, respectively).

When testing for differences in these structural parameters, most methodologists begin 
by constraining the factor variances to be equal (see Vandenberg & Lance, 2000 for varia-
tions in these recommendations, however), followed by factor covariances. This makes sense 
to study how variables vary before examining how they covary with one other. Figure 19.12 
shows the model for females with these and all other parameters constrained to be equal (we 
will refer to this Figure for the next two models, as well). The values above and to the right of 
the four factors (fv1, fv2, etc.) represent the constraints on the factor variances. 

Figure 19.12 Latent factor variances, covariances, and means constrained to be equal across groups.
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As shown in Table 19.2, this set of constraints (factor variances equal) resulted in an 
increase in χ2 of 3.895, which was not statistically significant with 4 degrees of freedom. The 
overall fit of the model was also good. I would accept these constraints as reasonable and 
conclude that the variances of the four latent factors are equal for 15- to 16-year-old boys 
and girls. Males and females show the same degree of variability (the same width for the 
normal curves) for verbal reasoning, visual-spatial reasoning, and so on. As noted earlier, 
because the factor variances are now constrained to be equal (in addition to the unstan-
dardized factor loadings), the standardized loadings are also now the same across groups 
(although this equivalence is not shown here).

It would also be possible to test the equality of these factor variances one at a time, to 
determine if each factor in isolation showed equality of variances across the sexes. This could 
be planned in advance, or as a response to decrement in model fit at this step. Thus if we 
had found a statistically significant increase in χ2 at this step, the next step would likely 
have been testing each variance, in turn, to determine which among them showed differ-
ences in variances across groups. For those that were statistically significant, we would likely 
have concluded that 15- to 16-year-old boys and girls had different degrees of variability 
on the underlying latent construct. Note again that the conclusions from this (and subse-
quent) invariance steps focus on the constructs being measured rather than the measuring 
instrument. Invariance in factor variances (and covariances and means) thus should not 
be expected, even given an excellent measuring instrument. “Still, if imposing invari-
ance constraints on the ψ̂ matrices [the variance-covariance matrix of latent factors] results 
in little worsening of fit, the resulting model—with ψ̂ invariant across groups—is elegant” 
(Widaman & Reise, 1997, p.298). So far, our model is quite elegant!

Factor Covariances Equal

Figure 19.12 also shows equality constraints on the factor covariances (cv1, cv2, etc.). As shown 
in Table 19.2 (Model 6), this addition of 6 equality constraints also resulted in a small, but not 
statistically significant, increase in χ2, and all other model fit indices continue to look good. 
We can conclude that the degree that each factor relates to the others is equal across groups.

If both factor variances and factor covariances are equal across groups, then the factor 
correlations are equal across groups. Correlations, after all, are standardized covariances, 
standardized by taking into account the SDs, or variances, of the two variables. It is pos-
sible to test factor correlations (as opposed to covariances) explicitly by adding phantom 
variables (cf. Little, 1997), but that procedure is beyond the scope of this book. You may be 
tempted to think you could do this using the standardized (UVI constraint) model in the 
initial CFA chapter, but that method would confound earlier tests of invariance with the test 
of the equality of the factor correlations. You should generally use ULI constraints to identify 
models when doing invariance testing.

Factor Means Equal

The final step in this series is to test the equality of the means of the latent variables across 
groups. The model shown in Figure 19.12 shows the setup for this model also. Note that the 
factor means for females are all constrained to zero in this model, and recall that the factor 
means have been constrained to zero for males in every model tested. Thus for this model, 
not only are the intercepts constrained to be equal across groups, but the factor means are 
constrained to be zero for both groups. The fit statistics are shown in Table 19.2 (Model 7). 
As shown in Table 19.2 (Model 7), this set of constraints resulted in a statistically significant 
increase in χ2, along with a noticeable decrement in model fit according to the other indices. 
This finding suggests males and females show differences in their mean level of one or more of 
the latent variables Gc, Gv, and so forth. This finding is also consistent with the detailed output 
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from the intercept invariance model, which suggested that females had statistically significantly 
higher long-term retrieval (Glr) abilities and that males had higher visual-spatial (Gv) abilities.

The next five models (7a through 7e) probed these findings further. Models 7a through 
7d tested each factor individually for mean differences. Constraining the Gv factor means to 
be equal for males and females resulted in a statistically significant increase in χ2 (Model 7b), 
as did the model in which the Glr means were constrained to be equal (Model 7c). Again, 
the findings are consistent with those from the intercept invariance model. In contrast, a 
model constraining the Gc factor means to be equal did not result in a statistically significant 
degradation in model fit, nor did a model in which the Gsm means were constrained to be 
equal across the sexes. Interestingly, however, the model in which Gc and Gsm means were 
both constrained to be equal (but Glr and Gv means were allowed to vary) also fit worse 
(Δχ2 statistically significant) than did equal factor covariances model (Model 6). Presumably, 
although neither Gc nor Gsm were that different for males and females, constraining them in 
combination pushed the Δχ2 over the cut-point for statistical significance. What should we 
conclude? I think that taken together, the evidence suggests that we should consider Gc and 
Gsm to have equivalent means and variances. In contrast, long-term retrieval (Glr) abilities 
and visual-spatial reasoning (Gv) are measured equally well for males and females, but ado-
lescent boys and girls show different levels of these abilities. Boys have higher visual-spatial 
skills and girls have higher long-term retrieval abilities.

It is worth reiterating that it is not necessary to test for equality of variances and covari-
ances prior to testing for differences in factor means. It is necessary to demonstrate intercept 
invariance (or partial intercept invariance) prior to testing for differences in latent means. 
Likewise, metric (or partial metric) invariance is needed prior to testing for differences in 
factor variances and covariances.

To review, this section has served two purposes: it introduced the estimation of means 
and intercepts in confirmatory factor analysis, and it fleshed out in more detail the process of 
invariance testing in CFA. The demonstration of invariance in the measurement of constructs 
is an important topic, and an important use of multi-group CFA. Whether we realize it or  
not, such invariance is assumed in all research that makes cross-group comparisons; our 
research is much stronger if we demonstrate such invariance. As shown in previous chapters 
(and fleshed out here), metric invariance is needed in order to compare the effects of one 
latent variable on another (paths) across groups (Chapter 17), and intercept invariance is 
needed in order to compare latent means and intercepts across groups (Chapter 18). You may 
be tempted to think that these issues apply only to latent variable analysis, but such thinking 
is shortsighted. Most of the variables in our research are really latent variables. That is, we are 
generally interested in constructs and their effects on each other, and our various measures 
are only imperfect measures of those constructs. Our research will provide much stronger 
evidence of influences if we can demonstrate invariance across the groups being compared.

Variance/Covariance Matrix of Measured Variables

Many methodologists, starting with Jöreskog (1971), actually recommend a comparison of the 
covariance (variance/covariance) matrices across groups as a first step in invariance testing. 
Why, you may wonder? Consider how we solve CFAs; what is the “fuel” for the analyses? CFAs 
are solved from the covariance matrices; the covariance matrices are used to estimate fac-
tor loadings, residual variances, and factor variances and covariances. Thus, if the covariance 
matrices are the same across groups, then the factor structures (excluding mean structures) 
must also be the same across groups. Said differently, any factor solution is contained within 
the covariance matrix. A test of the equivalence of the covariance matrices thus tests whether 
the instrument measures the same constructs across groups, but without specifying exactly 
what those constructs are. If this test is extended to include constraints on the means of the 
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measured variables, then this test of the equivalence of the moment matrices (means, vari-
ances, and covariances) also subsumes the intercept invariance and factor mean equality steps.

Figure 19.13 shows a model designed to test the equivalence of the covariance and moment 
matrices across groups. The model appears complex (or at least, cluttered), but it really only 
includes three sets of constraints:

1. The variances of the measured variables (subtests), labeled vvv1_1 through vvv14_1 in 
the model shown for males (and labeled vvv1_2 through vvv14_2 for females, although 
not shown here);

Figure 19.13 Testing the equivalence of the moment matrix across groups.
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2. The covariances of the measured variables, labeled ccc1_1 through ccc91_1 for boys 
and ccc1_2 through ccc91_2 for girls; and

3. The means of the measured variables, labeled m1_1 through m14_1 for boys and m1_2 
through m14_2 for girls.

(For those using Amos, these constraints can be made automatically using the multiple-
groups option in the analysis tab.)

Table 19.3 shows the fit indices for the models tested. The first model made no constraints 
across groups. This model simply estimates the means, variances, and covariance in the 
models. There are no constraints within groups; there are, for example, no factor loadings 
constrained to a value of zero, as in a CFA. There are also no constraints across groups. There 
are no constraints whatsoever, and thus this model has zero degrees of freedom and fits 
perfectly. There is really no need to include these values in the table, but I did so in order to 
make it clear that this “no constraints” model is our baseline for subsequent comparisons. 
For the second model, the variances and the covariances among the measured variables are 
constrained to be equal for males and females (this includes the first two sets of constraints 
in the previous numbered list). As shown in the table, this model had an excellent fit to the 
data (e.g., CFI = 1, RMSEA = 0), and even the Δχ2 from the model was non-significant. 
(I generally would not expect this for a model of this complexity and would likely place 
more emphasis on the stand-alone fit indices for this model.) This finding is consistent with 
our more detailed invariance testing, which suggested that the factor loadings, residual vari-
ances, factor variances, and factor covariances were all equal for males and females. This test 
is equivalent to Box’s M test for the equality of covariance matrices. 

If the variances/covariances equal model did not fit well, what would that mean? It would 
mean that one or more aspects of measurement (loadings, residual variances, etc.) were not 
equal across groups (and those aspects of measurement were out of whack enough to mess 
up the fit of the entire model). If this were the case, our next steps would need to be the 
detailed invariance testing as summarized in Tables 19.2 and 19.4.

The third model shown in Table 19.3 constrained the means of the subsets to be equal 
for males and females. As shown in the Table, this set of constraints resulted in a statisti-
cally significant increase in χ2. If this were the criteria by which we judged the model, we 
would conclude that we needed to investigate this finding further. We could do so by testing 
whether the model misfit was due to a difference in some of the subtest means (via testing of 
intercept invariance), or if the model misfit could be explained by a more general difference 
in latent means on some or all of the latent factors. Our previous invariance testing suggests 
that the difference in means is a result of a significant difference for boys versus girls on the 
latent Gv and Glr factors.

Table 19.3 Testing the Equivalence of Variance/Covariance and Moment Matrices

Model χ2 df Δχ2 Δdf p RMSEA RMSEA* SRMR CFI AIC

1. No constraints .000 0    .000 .000 .000 1.000 476.000
2.  Variances & 

covariances equal
98.155 105 98.155 105 .669 .000 .000 .038 1.000 364.155

3. Means equal 139.586 119 41.431 14 .000 .024 .034 .038 .991 377.586

*RMSEA corrected for the number of groups
Note: All models compared to the previous model.
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It is interesting that if we had used only stand-alone fit indices to judge the final model in 
Table 19.3, we would have concluded that variances, covariances, and means are all invariant 
across the two groups. In this example, the addition of mean constraints led to a decrement 
in model fit but not enough of a decrement to make the overall fit bad. This finding is analo-
gous to an omnibus F test being non-significant in ANOVA but some of the more detailed 
comparisons of means being statistically significant.

As noted, many methodologists suggest this as the first step in invariance testing (and I 
often use it in my own research). Many also suggest that if this model fits well across groups 
then detailed invariance testing is not needed. This makes perfect sense. But the current 
example also illustrates that the overall matrix may fit well (in this case, the moment matrix), 
but that detailed invariance testing may show differences in some aspects of the model. That 
is, an overall good fit at this step may mask actual group differences in measurement or struc-
tural invariance at the more specific steps. Which route should you take with your research? 
As always, carefully consider the purpose of your research and proceed based on the ques-
tions you want to answer. In the research on which this example was based, the researchers 
wanted to know if boys and girls differed in their mean levels of different types of intelligence 
(Reynolds et al., 2008). It thus made sense to conduct detailed comparisons of intercepts and 
factor means. If, on the other hand, your purpose is to compare across groups the effects of 
one variable on another, then a demonstration of well-fitting variance/ covariance matrices 
across groups may be enough to establish invariance before your comparison of effects. If 
you are not sure which route to take, then the detailed invariance testing may well be the 
safest route.

Table 19.4 summarizes these invariance steps when means and intercepts are estimated. 
The table also reviews the meaning of invariance at each step. The comparison of moment 
matrices is listed as step zero because it may or may not be used. 

Invariance Testing without Means

Many researchers conduct invariance testing without testing for differences in mean struc-
tures. Suppose, for example, you are interested in testing for invariance on a measure 
administered in different countries, with the measure standardized separately by country. 
All measured variables will have the same mean across countries, because the measure was 
developed that way (e.g., Chen, Keith, Weiss, Zhu, & Li, 2010). Or perhaps you are only inter-
ested in whether a latent variable (e.g., Homework) has the same effect on another latent 
variable across groups (e.g., Grades, as in Chapter 16). In this case, intercepts and means are 
not of interest. Whatever the reason, not all researchers include tests of invariance in mean 
structures in their tests of invariance (see, however, Little (1997) for an argument for always 
including mean structures). This section briefly outlines the steps in invariance testing when 
mean structures are not included.

When mean structures are not part of invariance testing, invariance testing can follow 
these steps:

1. configural invariance (same factor patterns)
2. metric invariance
3. invariance of measured variable residual variances and covariances
4. equality of factor variances, and
5. equality of factor covariances.

We could also add testing of equivalence of variance/covariance matrices as step zero. 
Again, not all writers would conduct these in the same series. But most would likely 



Ta
bl

e 
19

.5
 S

te
ps

 fo
r 

Te
st

in
g 

fo
r 

In
va

ri
an

ce
 W

it
h

ou
t 

C
on

si
de

ri
n

g 
M

ea
n

s 
an

d 
In

te
rc

ep
ts

M
od

el
A

ls
o 

K
no

w
n 

A
s

M
od

el
 C

on
st

ra
in

ts
 

A
cr

os
s 

gr
ou

ps
M

ea
ni

ng
P

ra
ct

ic
al

 I
m

pl
ic

at
io

ns
, i

f M
et

0.
  I

nv
ar

ia
n

t 
m

at
ri

ce
s

E
qu

al
it

y 
of

 
co

va
ri

an
ce

 m
at

ri
ce

s
V

ar
ia

n
ce

s 
an

d 
co

va
ri

an
ce

s 
of

 m
ea

su
re

d 
va

ri
ab

le
s.

 T
h

er
e 

ar
e 

n
o 

la
te

n
t 

va
ri

ab
le

s 
in

 t
h

is
 

m
od

el
.

T
h

e 
in

st
ru

m
en

t 
m

ea
su

re
s 

th
e 

sa
m

e 
co

n
st

ru
ct

s 
ac

ro
ss

 g
ro

u
ps

 (
w

it
h

ou
t 

de
m

on
st

ra
ti

n
g 

w
h

at
 t

h
os

e 
co

n
st

ru
ct

s 
ar

e)
. 

C
an

 c
om

pa
re

 t
h

e 
ef

fe
ct

s 
of

 o
n

e 
va

ri
ab

le
 o

n
 a

n
ot

h
er

 (
pa

th
s 

in
 S

E
M

) 
ac

ro
ss

 g
ro

u
ps

. I
f 

n
ot

 s
u

pp
or

te
d,

 t
h

e 
de

ta
ile

d 
st

ep
s 

be
lo

w
 a

re
 n

ee
de

d 
to

 
fi

n
d 

th
e 

so
u

rc
e 

of
 t

h
e 

m
is

fi
t. 

T
h

is
 

om
n

ib
u

s 
te

st
 c

an
 m

as
k 

di
ff

er
en

ce
s 

in
 

sp
ec

ifi
c 

pa
ra

m
et

er
s,

 h
ow

ev
er

.
M

ea
su

re
m

en
t I

n
va

ri
an

ce
1.

  C
on

fi
gu

ra
l 

in
va

ri
an

ce
Sa

m
e 

pa
tt

er
n

 o
f 

fi
xe

d 
an

d 
fr

ee
 lo

ad
in

gs
. F

ac
to

r 
m

ea
n

s 
co

n
st

ra
in

ed
 to

 
ze

ro
 fo

r 
al

l g
ro

u
ps

.

Fa
ct

or
s 

si
m

ila
r 

ac
ro

ss
 g

ro
u

ps
.

2.
  M

et
ri

c 
in

va
ri

an
ce

W
ea

k 
m

ea
su

re
m

en
t 

in
va

ri
an

ce
, f

ac
to

r 
lo

ad
in

g 
in

va
ri

an
ce

 

Fa
ct

or
 lo

ad
in

gs
 

co
n

st
ra

in
ed

 e
qu

al
. 

C
on

st
ru

ct
 is

 o
n 

th
e 

sa
m

e 
sc

al
e 

fo
r 

di
ff

er
en

t g
ro

up
s. 

Sa
m

e 
co

ns
tr

uc
ts

 
m

ea
su

re
d 

ac
ro

ss
 g

ro
up

s. 
A

ny
 d

iff
er

en
ce

s 
in

 v
ar

ia
ti

on
 o

f t
he

 m
ea

su
re

d 
va

ri
ab

le
 a

re
 

du
e 

to
 la

te
nt

 v
ar

ia
bl

es
.

C
an

 c
om

pa
re

 e
ff

ec
ts

 o
f 

on
e 

va
ri

ab
le

 
on

 a
n

ot
h

er
 (

pa
th

s 
in

 S
E

M
) 

ac
ro

ss
 

gr
ou

ps
.

3.
  R

es
id

u
al

 
in

va
ri

an
ce

U
ni

qu
en

es
s 

in
va

ri
an

ce
; I

nv
ar

ia
nt

 
er

ro
r 

va
ri

an
ce

s

M
et

ri
c 

in
va

ri
an

ce
 +

 
m

ea
su

re
d 

va
ri

ab
le

 
re

si
du

al
 v

ar
ia

n
ce

s 
(a

n
d 

co
va

ri
an

ce
s,

 if
 a

ny
)

A
ny

 d
if

fe
re

n
ce

s 
in

 t
h

e 
va

ri
an

ce
s 

an
d 

co
va

ri
an

ce
s 

of
 m

ea
su

re
d 

va
ri

ab
le

s 
ar

e 
th

e 
re

su
lt

 o
f 

th
e 

la
te

n
t 

va
ri

ab
le

s.

St
ru

ct
u

ra
l I

n
va

ri
an

ce
4.

  F
ac

to
r 

va
ri

an
ce

s
In

va
ri

an
t 

fa
ct

or
 

va
ri

an
ce

s
M

et
ri

c 
in

va
ri

an
ce

 +
 

va
ri

an
ce

s 
eq

u
al

D
o 

th
e 

la
te

n
t 

va
ri

ab
le

s 
h

av
e 

th
e 

sa
m

e 
va

ri
an

ce
 a

cr
os

s 
gr

ou
ps

? 
(T

h
is

 
an

d 
th

e 
n

ex
t 

m
od

el
 m

ay
 b

e 
u

se
d 

to
 te

st
 s

u
bs

ta
n

ti
ve

 q
u

es
ti

on
s 

ab
ou

t 
di

ff
er

en
ce

s 
ac

ro
ss

 g
ro

u
ps

.)

T
h

e 
n

or
m

al
 c

u
rv

es
 fo

r 
th

e 
la

te
n

t 
va

ri
ab

le
s 

w
ill

 b
e 

eq
u

al
ly

 w
id

e 
or

 
n

ar
ro

w
.

5.
  F

ac
to

r 
co

va
ri

an
ce

s 
eq

u
al

In
va

ri
an

t 
fa

ct
or

 
co

va
ri

an
ce

s
V

ar
ia

n
ce

s 
eq

u
al

 +
 

co
va

ri
an

ce
s 

eq
u

al
D

o 
th

e 
la

te
n

t 
va

ri
ab

le
s 

h
av

e 
th

e 
sa

m
e 

re
la

ti
on

s 
am

on
g 

ea
ch

 o
th

er
 a

cr
os

s 
gr

ou
ps

?

If
 b

ot
h 

va
ri

an
ce

s 
an

d 
co

va
ri

an
ce

s 
ar

e 
eq

ua
l a

cr
os

s 
gr

ou
ps

, c
or

re
la

ti
on

s 
am

on
g 

fa
ct

or
s 

ar
e 

al
so

 e
qu

al
 a

cr
os

s 
gr

ou
ps

.



CFA II: INVARIANCE AND LATENT MEANS • 481

agree that step 2 (metric invariance) is the most important, and is required prior to sub-
sequent steps. Practically, you can accomplish such invariance testing, in part, by simply 
turning off the option of testing means and intercepts in your model (e.g., by un-click-
ing the “estimate means and intercepts” box in Amos, or by including the command 
MODEL=NOMEANSTRUCTURE in Mplus, assuming, in both cases, that you have no 
missing data). These steps are summarized in Table 19.5. 

Table 19.6 shows the fit of the models listed previously with the data for the KABC-II for 
ages 15–16. Note that most of the fit indices are identical for the first three models (Equal 
matrices through Metric Invariance) as they were in the analyses using mean structures 
(shown in Tables 19.2 and 19.3). Even when means and intercepts are analyzed they are not 
really considered in the model for these steps (comparison of variance/covariance matrices, 
configural invariance, and metric invariance). Because of this similarity in fit, some research-
ers conduct the first three steps without estimating means and intercepts and then add that 
estimation for the remaining steps from Table 19.4. I recommend that if you are going to 
analyze mean structures, go ahead and do so through all of the steps. 

Note that the AIC is the exception to this rule of the same fit with and without the estima-
tion of means; it differs for all models in Tables 19.2 and 19.3 versus 19.6. The AIC differs 
because its formula relies on the number of parameters in the model, rather than just the 
degrees of freedom, and the models have more parameters when means and intercepts are 
analyzed. This same caveat applies to the other, related fit indexes, as well (e.g., aBIC).

Higher-Order Models

In the previous chapter on CFA we also analyzed a higher-order version of the CFA model. As 
noted in that chapter, theory underlying some constructs, including intelligence, would sug-
gest that those constructs are better understood by including a second- or even higher-order 
construct that helps explain the first order constructs. The theory underlying the KABC-II is 
hierarchical in nature, and thus a hierarchical or higher-order model is justified when doing 
research on this instrument. The steps involved in invariance testing are easily generalizable 
to a higher-order model.

Figure 19.14 shows a higher-order version of the KABC-II model. Note the components 
of this model: the first-order factor loadings, second-order factor loadings, subtest intercepts, 
intercepts for first-order factors, subtest residual variances and covariances, unique factor 
variances (and covariances, if applicable) for first-order factors (e.g., e15 through e18), and 

Table 19.6 Tests of Equivalence of Factor Structure Without Consideration of Means and Intercepts 
(Intercept Invariance)

Model χ2 df Δχ2 Δdf p RMSEA RMSEA* SRMR CFI AIC

0. Equal matrices 98.155 105    .000 .000 .038 1 308.155
1. Configural 161.282 136    .025 .035 .047 .988 309.282
2. Metric 172.236 147 10.954 11 .447 .024 .034 .051 .988 298.236
3. Subtest residuals 194.894 163 22.658 16 .123 .026 .037 .051 .985 288.894
4. Factor variances 198.633 167 3.739 4 .442 .025 .035 .057 .986 284.633
5. Factor covariances 204.635 173 6.002 6 .423 .025 .035 .056 .986 278.635

*RMSEA corrected for the number of groups
Note: Models 2 through 5 compared to the previous model.
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the second-order factor mean (for g). As in previous models, we can constrain these param-
eters to be equal across groups to test for different aspects of invariance.

Table 19.7 shows the steps involved in testing invariance for a higher-order model such as 
shown in the Figure. As with previous models, the ordering of some of the steps is not fixed. 
I have put the second-order steps in a similar sequence to the first-order steps, but you might 
change these depending on the purpose of your research. Reynolds and colleagues (2008), 
for example, were primarily interested in latent mean differences for males versus females on 
the various types of intelligence; as a result, they saved comparison of the second-order fac-
tor mean and the first-order factor intercepts for the last two steps in their analyses. We will 
not go through these steps here, but you will have the opportunity to do so in the Exercises!

Before we move to the next topic, I do want to make two points. The first point is that the 
second-order portions of the factor model, second-order factor loadings, first-order inter-
cepts, and so on, are considered aspects of the structural model rather than the measurement 
model. There are two reasons for this categorization. First, these parameters are estimated 
from the first-order factor covariances and means (just like the first-order loadings, and so 
on are estimated from the covariances and means of the measured variables). The first-order 
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factor covariances and means are considered part of the structural model in Table 19.4, so 
why should they not be in Table 19.7? Second, the term “structural model” is generally used 
to refer to how latent variables relate to other latent variables. The second-order portion of 
the factor model also deals with exactly that: the relation of one set of latent variables on 
another.

The second point concerning the second-order invariance model concerns the nature of 
the first-order intercepts. If it is still unclear why these intercepts reflect the difference in 
means on the unique aspects of the first-order factors, then review the explanation of means 
and intercepts in the previous chapter. Second, consider an alternative method for setting 
up steps 4–6. The most common method (that shown in the table) would set the first-order 
intercepts for one group to zero and allow the intercepts to vary for the other group (with 
the second-order factor means set to zero for all groups). In these models, the differences in 
first-order intercepts then reflect the differences on the first-order factors controlling for the 
second-order factors. The first-order intercepts are then set to zero for both groups in step 
7 to set the means of the first-order factors equal (controlling for the second-order factors) 
to see what happens to the fit of the model (here the second-order factor means are allowed 
to vary for all but one group). An alternative method for specifying this same model would 
be to set the first-order intercepts to zero for both groups (steps 4–6), but allow the means 
of the unique factors (e15 through e18) to vary for one group (females, in this example). 
The resulting difference in means of the unique aspects of the first-order factors using this 
method will show the same values as the difference in first-order intercepts using the original 
method. Then in step 7 we would constrain the means of the unique factors to be equal for 
both groups. Again, the results should be the same using either method. The second method 
may make it clearer exactly what is being compared in the different models.

In chapter 17 we also tested a different hierarchical structure, the bifactor model. Because 
all factors in a bifactor model are first-order factors, the invariance steps for this model are 
the same as those shown in Table 19.4 (although one might test for invariance for broad 
versus the general factor loadings in two or more steps).

SINGLE-GROUP, MIMIC MODELS

The previous chapter illustrated the consistencies (and inconsistencies) in the MG-MACS 
and the single-group/dummy variable/MIMIC approaches for testing models with mean 
structures. It is also possible to test some, but not all, aspects of invariance using a dummy 
variable approach. Again, these models have a special name in CFA: they are commonly 
known as MIMIC models, with MIMIC an acronym for Multiple Indicators and Multiple 
Causes. MIMIC models are those in which (one or more) measured variables influence one 
(or more) latent variables, with those latent variables having multiple indicators.

A MIMIC version of the first-order KABC-II model is shown in Figure 19.15. (Note that this 
model is still referred to as a MIMIC, that is, multiple cause, model even though there is only 
a single cause, Sex.) In this model we analyze a single group rather than conducting a separate 
(but connected) analysis for males and females. Instead of two groups, the group variable is 
contained in the model as a single sex variable (coded 0 for males and 1 for females). The data 
for this analysis are in the same Excel file as were the MG-MACS data (“kabc cfa matrices.xls”) 
but as the third worksheet; the data include the correlation matrix, means, and SDs.

Essentially, the model is a standard first-order CFA model but with a single measured, 
categorical variable, Sex, influencing each of the first-order factors. Whereas our first-order 
model had correlations (covariances) among factors, in this model these correlations show 
up as correlations among the disturbances. Endogenous variables can’t be correlated, but 
their disturbances can. These correlated disturbances are something that, in my experience, 
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novices often forget, but you would be quickly alerted to the inadequacies of a model with-
out them in the present case by the poor fit. (How poor a fit, you may wonder? Without the 
correlated disturbances, CFI = .801 and RMSEA = .133. Sex clearly does not account for the 
correlations among the first-order factors!)

The unstandardized figural results are shown in Figure 19.16. The model fits the data well 
according to most of our rules of thumb. The unstandardized estimates are shown because 
I want to compare the difference between males and females on the latent variables. In the 
MG-MACS model these were estimated by the difference in latent means for females as com-
pared to males. In the MIMIC model they are estimated by the paths from the dummy Sex 
variable to each of the first-order factors. For the latent Gv factor this path is −.65 (or −.653 
to 3 decimals). Because males are coded 0 and females 1, this means that females score .653 
points lower on the Gv factor than do males. Think of this as the “effect” of going from being 
a male (coded 0) to being a female (coded 1); this one point change resulted in a .653 point 
decrease on the latent Gv factor.

This finding is identical to the findings for the difference in means for step 7 (factor 
covariances equal) in the MG-MACS invariance testing: a .653 point difference favoring 
males. This is the model in which all parameters except the latent means were constrained 
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Figure 19.15 Testing for group differences in latent means using a MIMIC approach. Many aspects of 
measurement invariance are assumed, rather than tested. Intercept invariance can be tested, however.
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Figure 19.16 MIMIC results. Compare the unstandardized paths with the differences in latent means 
shown in Figure 19.9.

to be equal. In fact, as shown in Figure 19.17, all estimates of mean differences are the same 
for the MIMIC model (on the left) as for the penultimate MG-MACS model (on the right). 
For the MIMIC model, these estimates of differences show up in the table of unstandardized 
paths from exogenous variables to endogenous variables (the values of interest are bolded); 
in the MG-MACS model they are in the table of mean differences for females as compared 
to males. Compare the other difference we found in the MG-MACS model, the difference 
favoring females on the Glr factor. The value shown on left side of Figure 19.17 is .623, the 
same as the value on the right (MG-MACS) side (.623).

Why did I compare the MIMIC results to those of step 7 in the MG-MACS analyses? This is 
the model in which all parameters—factor loadings, measured variable intercepts and residuals, 
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and factor variances and covariances—except the factor means are constrained to be equal 
across groups. Those same constraints are also made in the MIMIC model, whether we know 
it or not. Because there is only one group for the MIMIC analysis, there is only one set of factor 
loadings, residuals, factor variances, and factor covariances; they are the same for males and 
females. What about the measured variable intercepts? Recall how differences in latent means 
show up in the MIMIC model: as paths from the Sex dummy variable to the first-order factors. 
If the model included any differences in measured variable intercepts, these could likewise be 
modeled in the MIMIC model via paths from Sex to the subtests. The fact that there are no 
paths from Sex to any of the measured variables means that the measured variable intercepts 
are constrained to be equal across groups. In contrast, if you wished to test for partial intercept 
invariance, you could do so by including paths from Sex to one or more measured variables.

If you consider this correspondence between models a little more completely, it becomes 
clear all of the assumptions the MIMIC model makes but does not test. The MIMIC model 
assumes that:

1) factor loadings,
2) measured variable intercepts,
3) measured variable residuals,
4) factor variances, and
5) factor covariances

are all invariant across groups. Only one of these—the measured variable intercepts—can be 
tested across groups in the MIMIC model. If these assumptions are valid, then the MIMIC 
model will provide valid estimates of mean differences on the latent factors.

Said differently, the MIMIC model assumes that the variance/covariance matrix of the 
measured variables is the same across groups. And this assumption can (and was) tested in 
the comparisons of matrices (Table 19.3). Thus if your main interest in model comparisons 
was to determine whether boys and girls differed on mean levels for any of these intelli-
gences, then it would likely be reasonable to compare covariance matrices across groups. If 

Figure 19.17 Detailed output for the MIMIC model versus the MG-MACS model. Again, compare 
the paths from Sex_d to the latent factors with the values of the latent means shown in in the right 
half of the figure.
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this comparison showed a reasonable fit, you could then compare latent means in a MIMIC 
model. You could test for intercept invariance by comparing the MIMIC model shown to a 
model with paths drawn from Sex to all subtests (but not pointing to any of the latent fac-
tors). In contrast, if your primary interest is in establishing invariance in measurement across 
groups, you should go through the detailed invariance steps as shown in Table 19.4. For con-
siderably more detail comparing MG-MACS and MIMIC models see Hancock (1997) or, for 
this same example, Reynolds et al. (2008).

SUMMARY

This chapter focused on the estimation of mean structures in confirmatory factor analysis. 
We did so by focusing on testing for invariance across groups in CFA, an important topic, 
and a needed step, before latent variables can be compared across groups. In the previous 
chapter on latent means, we noted that it was necessary to constrain factor loadings and 
measured variable intercepts to be equal across groups in order to be able to test for differ-
ences in latent variable means and intercepts. As explicated in this chapter, this prerequisite 
step goes by the label of intercept, or strong factorial, invariance. It is worth exploring the 
topic of invariance in more depth, and the meaning of the information obtained at each step. 
We did so here by examining the structure of a common intelligence measure, the KABC-II, 
for adolescent boys versus girls.

When mean structures are estimated, common steps for establishing measurement invari-
ance include:

1. configural invariance, in which the same pattern of fixed and free loadings is tested 
across two or more groups.

2. metric invariance, also known as weak factorial invariance or factor loading invariance, 
in which the values of the (unstandardized) factor loadings are constrained to be equal 
across groups. If established, this means that the scaling of the measure is the same 
across groups, meaning that a one unit change in the underlying latent variable results 
in the same change in the measured variables for the two (or more) groups. Metric 
invariance is needed in order to make valid comparisons of factor variances and covari-
ances across groups (in CFA) or to make valid comparisons of effects (paths) across 
groups (in SEM).

3. Intercept invariance, also known as strong factorial invariance or scalar invariance, in 
which the values of the measured variable intercepts are constrained to be equal across 
the groups. At the same time, the latent variable means are freely estimated in all but 
one group. This set of constraints says that any differences in the measured variable 
means are the product of differences in the true means of the underlying, latent vari-
ables. Intercept invariance also means that the measured variables have the same starting 
point (intercept) across groups. Intercept/strong factorial invariance is needed in order 
to make valid comparisons of factor means across groups (in CFA) or to make valid 
comparisons of latent variable (or composite variable) means and intercepts (in SEM).

4. Residual invariance, also known as strict measurement invariance, in which the mea-
sured variable residual variances (and covariances, if there are any) are constrained to 
be equal across groups. This set of constrains says that the errors of measurement are 
the same across groups. If residual invariance is established, it means that any and all 
differences in the measured variables are a result of the latent variables.

Be aware that not all writers would put these steps in the same order, and others would 
suggest other steps (e.g., testing the equivalence of the moment matrices).
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As noted, if metric invariance is established, it is possible to test the equality of latent 
variable variances and covariances in CFA, or the equality of effects in SEM. If intercept 
invariance is established, it is possible to test for differences in latent means and intercepts 
across groups. These tests generally address substantive hypotheses about the nature of the 
latent variables, however, rather than aspects of how well the measured variables measure the 
constructs of interest (measurement invariance).

It is possible to conduct invariance tests without reference to means and intercepts. The 
reasons one might do so and the steps involved are discussed in the chapter. In addition, it is 
possible to conduct invariance testing on higher-order models, in which the first-order fac-
tors are considered as indicators of a second-order one.

It is tempting to think that the topic of invariance is applicable only if you are interested 
in validating some measurement instrument, but that is emphatically not the case. Just as 
it is important to attend to measurement whenever you conduct research, it is important 
to attend to invariance whenever you compare groups in research. The comparison of the 
effects of one variable on another across two or more groups (e.g., paths in SEM, regression 
coefficients in MR) presumes that there is metric invariance across the groups. The compari-
son of means of latent or composite variables across groups presumes that there is intercept 
invariance across groups on the variable being compared. This admonition applies whether 
those groups are based on some variable of interest, such as sex in the present model, or 
when we wish to compare treatment groups in experimental research. It applies equally to 
nonexperimental, quasi-experimental, and experimental research. Invariance is important, 
and you now have the tools to test for it. The sources cited in this chapter are great places to 
turn for additional information on this topic.

EXERCISES

1. Conduct the analyses outlined in this chapter. The data are in the file labeled “kabc cfa 
matrices.xls.” The first two worksheets include the matrices for males and females sepa-
rately. The third worksheet contains the matrix with sex as a part of the matrix (for the 
MIMIC model). See the website (www.tzkeith.com) for initial setup for these models 
for Amos and Mplus.

2. Conduct the higher-order invariance tests as outlined, but not detailed, in this chapter. 
Make sure your degrees of freedom match those shown in Table 19.8 below for each 
model:

Table 19.8 Degrees of Freedom to the Higher-Order Invariance Tests, Exercise 2

Configural 140
Metric 151
Intercept 161
Residual 177
Second-order metric 180
Second-order intercept 183
Second-order residual 187
Second-order variance/covariance 188
Second-order means 189
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3. Test the invariance of shorter self-concept and locus of control scales from NELS across 
sex. The proper composition of these scales is represented in Figure 19.18. A reminder 
of the item wording is shown in Table 19.9. The data are in the excel file “sc loc matrix 
2.xls” with a separate tab for boys and girls (there is also a tab with the full matrix). 
Note that the four self-concept items have been reversed so that for all items a high 
score represents a positive self-concept or an internal locus of control. Note also that 
the figure shown below represents a “conceptual model” only; it does not include errors 
or other crucial model details. (Your model should include those details, however!)
a) Test this initial model across groups (configural invariance). You do not need to 

estimate means & intercepts at this step (but I recommend that you do so).
b) Add a covariance between the errors of measurement for items BYS44Dr and 

BYS44Er.

bys44ar bys44dr bys44er

bys44b bys44c bys44f

bys44hr

Self
Concept

Locus of
Control

Figure for text
Conceptual model

Figure 19.18 Conceptual model for Exercise 3: invariance of self-concept and locus of control for boys 
and girls.

Table 19.9 Self-Concept and Locus of Control Items for Exercise 3. Each item’s response choices 
ranged from 1, strongly agree, to 4, strongly disagree. As shown, positively worded items were reversed 
so that for all items a high score represents a high self-concept or a high (internal) locus of control.

Variable Label

bys44ar I FEEL GOOD ABOUT MYSELF, reversed
bys44b I DON'T HAVE ENOUGH CONTROL OVER MY LIFE
bys44c GOOD LUCK MORE IMPORTANT THAN HARD WORK
bys44dr I'M A PERSON OF WORTH, EQUAL OF OTHERS, reversed
bys44er I AM ABLE TO DO THINGS AS WELL AS OTHERS, reversed
bys44f EVERY TIME I GET AHEAD SOMETHING STOPS ME
bys44hr ON THE WHOLE, I AM SATISFIED WITH MYSELF, reversed
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c) Test metric invariance across groups.
d) Test intercept invariance (aka strong invariance; you do need to estimate means & 

intercepts at this step).
e) Based on the text output, does it appear that boys and girls differ in their overall 

latent mean level of self-concept? Locus of control? On what did you base this con-
clusion? If you concluded that there were differences, which sex scored higher, and 
by how many points?

f) Test the equivalence of the latent means for locus of control using a model con-
straint and fit statistics. Do boys and girls differ in their levels of locus of control? 
Why do you come to that conclusion?

g) Test the equivalence of the latent means for self-concept using a model constraint 
and fit statistics. Do boys and girls differ in their levels of self-concept? Why do you 
come to that conclusion? Briefly interpret your findings from questions f and g (e.g., 
who, if anyone, scored higher?).

h) Provide a table of fit statistics for the models listed in steps a through g. Be sure to 
list the corrected RMSEA.

  i) Would you be willing to accept configural invariance (step a)? Metric invariance? 
Intercept invariance? Briefly explain why or why not.

Notes

1 I say this is the “first step” in invariance testing, but it need not be. Many use a test of the equality of 
variance/covariance matrices as the first step. It is also reasonable to start with a very strict model 
and gradually free parameter constraints. The ordering of some of the other steps is fixed (we need 
to establish intercept invariance prior to testing for latent mean differences, for example), but for 
others different orders are recommended by different methodologists (Vandenberg & Lance, 2000). 
I will point out likely variations as the chapter progresses.

2 Strictly speaking, the next three types of invariance (weak, strong, and strict) are all forms of metric 
invariance (Widaman & Reise, 1997) because they all refer to the metric (scaling) of the instru-
ment. I believe most writers use the term “metric invariance” as used here to refer to factor loading, 
or weak measurement invariance.
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This chapter will cover latent growth modeling (LGM), also known as latent growth curve 
modeling. Such models will enable us to more closely and clearly study the process of lon-
gitudinal change. So, for example, we can use latent growth models to study the process of 
learning in children, the developmental trajectory of behavior problems in youth, the decline 
in cognitive functioning in old age, or even the developmental trajectory of children’s height.

Consider some of our previous examples. In the early chapters in this text, we studied the 
effects of various influences (including homework) on achievement. Later, we examined the 
potential effects of different variables on achievement, while controlling for previous achieve-
ment, essentially asking whether these variables influenced the change in achievement over 
some time frame. Our panel model in Chapter 13 (illustrated but not analyzed) was designed 
to assess the potential effects of self concept and achievement on each other, over time. The 
latent variable panel mode in Chapter 17 tested the effects of locus of control and achievement 
on each other, over time. Perhaps underlying all these models was a more basic question: what 
influences actual growth in learning and achievement? Although this may have been an under-
lying question in these examples, we were not able to get at that question directly. With LGM 
we will be able to do so more directly. With LGM it will be possible to study the influences on 
initial level of achievement and also the growth in achievement. And it will be possible to study 
the influence of growth in achievement and learning on other, subsequent variables.

We will start the chapter by revisiting, yet again, the topics of slopes and intercepts that 
we first addressed in the early chapters of this book. The graph shown in Figure 20.1 shows 
Math test data for 10 children from the Early Childhood Longitudinal Study. The test is 
designed to measure “conceptual knowledge, procedural knowledge, and problem solving” 
with math items ranging from simple (number knowledge) to advanced (algebra) (DiPerna, 
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Lei, & Reid, 2007, p. 372). The scores form a continuous measure of math skill and knowl-
edge, with each child measured during the fall and spring of Kindergarten, fall and spring of 
first grade, spring of third grade, and spring of fifth grade. More difficult items were included 
in the third and fifth grade assessments, but these assessed the same skills. Note the line 
labeled Child 1; this girl started Kindergarten with relative well-developed math skills, and 
then showed steady improvement. Child 2, in contrast, began Kindergarten with a lower level 
of math skills, and fell further behind as she progressed through the Spring of fifth grade. 
This is an illustration of the infamous Matthew effect, named after the Bible verse (Mathew 
25:29): “For everyone who has will be given more, and he will have an abundance. Whoever 
does not have, even what he has will be taken from him” (New International Version).

The raw data are interesting, but if they form coherent patterns, perhaps we can summa-
rize and help explain them. One method for doing so would be to correlate children’s scores 
time 1, time 2, and so on. Or we could regress Grade X scores on scores from grades K, 1, 
2, and 3 to see if there was something unique about Kindergarten-level scores in explaining 
Fifth-grade math skills. This sort of focus has been the orientation taken so far in this text.

Another option would be to conduct a separate regression and create a separate regression 
line for each child. In this orientation, the data for each child would look like that shown in 
Table 20.1, with the scores on each administration of the math test shown in the first column, 
and time of administration shown in the second column. In this arrangement, the Fall K 
administration is time 0, the Spring K administration is time 1, and so on through time 5 for 
the Spring fifth grade administration of the math test. The data shown are for Child 1. You 
can regress this child’s math scores on the time of those math scores. If you were to do so, you 
would obtain the following regression equation: 

Predicted Reading  = a + b × Time  
= 56.128 + 17.715 × Time

0.000

20.000

40.000

60.000

80.000

100.000

120.000

140.000

160.000

Fall K Spring K Fall 1 Spring 1 Spring 3 Spring 5

Child 1 
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Figure 20.1 Math scores from Kindergarten to 5th grade for 10 students from the Early Childhood 
Longitudinal Study.
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This is the regression equation that describes Child One’s math growth. Her initial pre-
dicted level of math achievement is described by the intercept, a score of 56.128. Recall that 
the intercept describes the predicted level on the dependent variable (Math) for a score of 
zero on the independent variable (Time). In the current setup, a level of zero on the inde-
pendent variable represents Time 0, or testing in the Fall of Kindergarten. Figure 20.2 shows 
the regression line for Child 1, and compares it to the raw data for this same child. The slope 
for this regression line (17.715) is even more interesting than was the intercept: it represents 
our prediction of growth for this girl in math from one measurement to the next. Child one 
shows an average growth in math of 17.7 points from one measurement to the next. We could 

Table 20.1 Math scores from Figure 19.1 for child 1.

Math Time

58.810 0
71.070 1
98.800 2
92.950 3

135.600 4
145.270 5

Figure 20.2 Child 1’s math scores and a regression line of those math scores over time.
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use this line to predict that her math score at time 6 would be approximately 163 (ignore for 
now the fact that the time intervals are uneven). Note that the regression line indeed does a 
good job of describing the raw data for this child.

We can conduct a similar regression for each of the ten children whose data are shown in 
Figure 20.1. The results of those 10 regressions are shown in Figure 20.3; each line represents 
the regression of math scores on time for an individual child. For each child, the intercept 
represents our prediction of his or her initial level of math. And the slope for each regression 
line represents our prediction of each child’s growth in math. Again, note Child 2’s regression 
line. She started Kindergarten with a Math score of approximately 5.6 (intercept), among the 
lowest beginning levels for the ten children shown. (Note that the intercepts—the zero point 
on the X axis—are slightly to the right of the Y axis.) Even worse, her rate of growth in math 
is lower than the other children shown in the Figures (a slope of 15.8 versus 19.6, the average 
slope). This child needs some sort of math intervention if she has not yet had one! 

Look at Child 3, however (dashed line). Although she started K with lower math skills 
than the other children (intercept = 6.3), her growth in math exceeded the average (slope = 
24.9), so that by grade 5 her math score was higher than the average. Whatever her teachers 
and parents are doing to teach her math certainly seems to be working!

We could, as was implied in the previous paragraph, average the intercepts and slopes for 
these 10 children to get an idea of the average starting level of math for these children, and 
the average growth in math from K to 5th grade. This would tell us something interesting 
about average initial level of math knowledge in Kindergarten as well as the average growth. 
We could also look at the standard deviations of the intercepts to get an estimate of indi-
vidual differences in initial math knowledge, and we could look at the standard deviation of 
the slopes (the b’s) to get an estimate of individual differences in growth.

Child 1

Child 3

Child 2

Figure 20.3 Regression lines for 10 students from ECLS. Math scores are regressed on time of test 
administration (from K through 5th grade).
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Even better, we could use latent variable methods to get closer to the “true” (latent) inter-
cept, or starting point, for these children and their “true” (latent) growth, or slope. This is 
what LGM does. We now turn to an example to illustrate the method.

UNCONDITIONAL, SIMPLE GROWTH MODEL

Recall that many SEMers urge a two-step process for estimating complex latent variable 
models: first estimating the measurement model and then adding in the structural model. 
Most users of LGM follow a similar process in which they first estimate the growth portion 
of the model, and then add in influences on growth or the variables affected by growth. 
This is the approach we will take here. The initial model, the portion focusing just on the 
growth aspects of the model, is often referred to as the unconditional model, meaning that 
the growth aspects do not depend on (are not conditional on) other variables in the model. 
This initial model is sometimes simply referred to as the “change model” (Kline, 2011). Here, 
I will refer to this model as the simple growth model (with the understanding that “simple” 
is a relative term!).

The file “math growth final.sav” includes simulated data for 1000 children’s math scores 
(and other information). The data are loosely based on research by DiPerna, Lei, and Reid 
(2007). In that study, the researchers used data from the ECLS to study growth in mathemat-
ics skills from Kindergarten through grade 3. The researchers were interested in the pos-
sible influences on that growth from child behavior (e.g., teacher ratings of internalizing and 
externalizing behavior) and other characteristics (e.g., cognitive ability) measured in Kin-
dergarten. The simulated data we will use includes measures of math skills for five equally 
spaced time points (math skill in the Fall of grades K, 1, 2, 3, and 4), in raw score units. Also 
included are child and parent variables measured in Kindergarten. These are Sex (0=male, 
1=female), Parent Education (highest years completed by either parent, from 11th grade 
through a PhD, coded 20), Cognitive Ability (on a standard IQ scale, M=100, SD=15), and 
the age at first assessment (in months). The descriptive statistics for these data are shown in 
Figure 20.4. Note the steadily increasing means for the math scores; indeed, as shown in Fig-
ure 20.5, these means barely depart from a straight line (the advantage of simulated data!). 

Figure 20.6 shows the setup to estimate the simple growth model designed to understand 
growth in mathematics skills. The model, as shown, suggests that the observed math scores 
of these 1000 children are the product of two latent variables: their intercept, which we can 
also think of as the initial level of math skills, and their slope, that is, their growth from one 

Descriptive Statistics

math1
math2
math3
math4
math5
sex
age
ParEd
Cognitive
Valid N (listwise)

1000
1000
1000
1000
1000
1000
1000
1000
1000
1000

39.871148
46.730771
49.790040
56.005987
64.127584

0
61.12
11.00
37.00

107.642878
113.480272
128.998535
136.398892
150.988747

1
74.51
20.00

148.00

70.13811900
79.61711846
88.54294497
96.95733842

1.05854571E2
.51

68.5182
16.1330

101.00010

9.254201322
1.02109861E1
1.12984577E1
1.28533857E1
1.46851370E1

.500
2.02936
1.39329

14.99453

N Minimum Maximum Mean Std. Deviation

Figure 20.4 Descriptive statistics for the simulated math K-4 data.



Figure 20.5 Average math scores over time.
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Figure 20.6 Initial simple, or unconditional, growth model of Math scores.
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observation to the next. I have here labeled these latent variables as the intercept and slope, 
but names along the lines of “Initial Math Level” and “Math Growth” would be equally valid 
(although of course by initial we are referring to Fall of Kindergarten). The main things we 
will seek to estimate in this model are the means and variances of both of these latent vari-
ables. Consider what these represent: the mean for the intercept will represent the average 
level of beginning math skills, cleansed of measurement error and conceptually similar to 
the average of intercepts from our previous regression example. The variance of the latent 
intercept is slightly trickier but represents the variation in intercepts across the children. 
Look back at Figure 20.3: do all children have the same intercept? No, of course not, and we 
would not expect all children to enter Kindergarten with the same math knowledge. We can 
estimate that variation in the intercepts via the variance of the latent intercept. The mean 
for the latent slope variable represents the average systematic level of growth for these 1000 
children across the assessments. As with the intercepts, not all children have the same slope; 
some show more growth, some show less. The estimate of the variance of the latent slope 
variable serves to estimate the degree of variation in growth these children show. And as 
with other latent variable analyses, the errors and unique variances of the measurements are 
separated out in the analysis, allowing the intercept and slope variables to more approximate 
the underlying variables of true interest (e.g., the real rate of change in Math skills). 

The model and its constraints look similar to some of our CFA models with mean struc-
tures but also has some important differences. As in previous models, the means of the 
residuals, or measurement errors and unique variances (e1 through e5), are set to zero. Note 
the differences between this and previous models, however. First, note the “factor loadings,” 
all of which are constrained. The paths from the Math Intercept latent variable to each of the 
math tests are all constrained to 1. One way of estimating the intercept in an ordinary regres-
sion is to regress the Y variable on the X variables plus a constant variable of 1 (this happens 
“behind the scenes” when we run a regression). Setting the intercept-to-measured-variable 
paths to 1 forces this latent variable to be an intercept in LGM. The paths from the Math 
Slope latent variable to the measured math tests are constrained to linearly increasing values, 
starting with zero (0, 1, 2, 3, etc.). The first loading set to 0 indexes math 1 as the starting 
point for the growth. These constraints make the second latent variable serve as a latent slope 
variable. We will discuss alternatives to these and other specifications later in the chapter.

Note also that the intercepts for the measured math tests are all set to zero. This is a 
departure from what we normally do with mean structures. Less obvious, but related, the 
means for the latent intercept and slope variables are not constrained to zero. This is our first 
instance of a single-sample analysis with mean structures in which we have not set the latent 
variable means to zero. We have not done so because this is one of our primary interests in 
LGM: estimating the latent intercept and the latent slope. We are able to accomplish this in a 
single group analysis because we set the measured variable intercepts to 0, essentially forcing 
the means to the latent variable level rather than the measured variable level.

The model allows the latent intercept and latent slope to be correlated. Intercepts and 
slopes are often correlated. In the present example, recall the Matthew penalty: the academi-
cally rich get richer and the poor get poorer. If this is indeed the case with math skills, then 
we would expect the two variables to be positively correlated (although the correlation will 
depend, in part, on how the slope loadings are assigned). In other areas of research it is not 
unusual to see the intercept and slope negatively correlated, so that those who start at a lower 
level catch up with those who started at a higher level.

The model also sets each of the residuals to be the same (because each is assigned a value 
of v1), a specification that says that the errors and unique variances are equal from one time 
point to the next. Interestingly, this is one of the assumptions that would be made, but not 
tested, in a repeated measures ANOVA. We can test this assumption in LGM by comparing 
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this model to one with these constraints freed. It is also possible to allow the residuals to 
be correlated with those at the next time point to allow for a “lag one autocorrelation.” It 
makes sense that adjacent measurements might be correlated for other reasons other than 
the trajectory of growth; a student, for example, may remember some of the items from the 
previous test administration. To review, here are the steps to specify this model:

1. Include two latent variables affecting the longitudinal data of interest, one representing 
the intercept, or starting level, and one representing the slope, or growth. Constrain 
the paths from the Intercept to each measured longitudinal variable to 1. Constrain the 
paths from the Slope to the measured longitudinal variables in a linear fashion. Start 
with a constraint of zero and increase each subsequent path by one (0, 1, 2, 3, and 4 
in the present example). There are many alternatives to this specification, but this is a 
common method, especially within a rather restricted developmental time period.

2. Constrain the means of the residuals (errors) to zero (if this has not been done automatically).
3. Constrain the intercepts of the longitudinal measured variables to zero.
4. Freely estimate both the means and the variances of the Intercept and Slope.
5. Allow the Intercept and Slope to correlate.
6. Constrain the variances of the residuals to be equal (can be relaxed).

Let’s also briefly review what this model says about the data. According to this model, 
the five math scores for this sample are a product of two influences: first, the initial level of 
math skills (intercept), and second, the growth in math skills that the children experience as 
a result of development and education. These two influences (plus error) are the primary 
source of the increase in scores over time, and of their variation and covariation with one 
another. The model also allows one other reason for the covariation among score: the inter-
cept and slope are presumed to covary. The fit of the model against the data will tell us the 
degree to which this explanation for the scores is consistent with the data.

Figure 20.7 shows the unstandardized output for this initial unconditional model. Both 
the TLI (.995) and the SRMR (.006) suggest an excellent fit of the model to the data, but the 

Figure 20.7 Unstandardized output, initial simple growth model
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RMSEA is a little higher than we would like (.069). We know, however, that RMSEA tends 
to be inflated in small df models; in addition, the 90% CI for the RMSEA (.055–.084) sug-
gests that we can reject the hypothesis on a not-close fit (because it does not encompass the 
value .10). Most other parameters were statistically significant and reasonable. The model 
has 14 df. There are 20 moments in the matrix (15 variances and covariances, 5 means), and 
these are used to estimate the means and variances of the Intercept and Slope, 1 error vari-
ance (1 because all were constrained to the same value), and the Intercept and Slope covari-
ance. Degrees of freedom = 20—(4+1+1) = 14.

Figure 20.8 shows a revised version of this initial simple growth model. This model 
removed the equality constraint for the residual variances. This model also uses alterna-
tive names from the previous one: Initial Math Level rather than Math Intercept and Math 
Growth rather than Math Slope. This model shows improvement in fit over the initial model 
(Δχ2 = 11.798 [4], p = .019), but the RMSEA and the TLI both get slightly worse (because 
they reward parsimony). Despite the improvement in fit, I think I would likely stick with the 
initial model, given its elegance and parsimony. Indeed, I might not have even bothered to 
compare this second model given the overall good fit of the initial model.

We will thus accept the initial model (Figure 20.7) as a reasonable simple growth model 
and examine the output in more detail. A portion of this more detailed output is shown in 
Figure 20.9. This portion of the output, showing the unstandardized and standardized paths 
from the two latent variables to the five math measured variables, is not particularly interesting. 
Unlike our previous analyses, all of these values have been constrained, so there are no standard 
errors or significance levels. It is useful to examine the unstandardized values, however, just to 
make sure that all of the constraints were as they should be. You can see that the paths from 
the latent intercept (starting level) were all constrained to 1, and that the paths from the latent 
slope (growth) variable, were indeed constrained to 0, 1, 2, 3, and so on. The standardized coef-
ficients from the level and growth variables are generally less of interest in LGM than in SEM.
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Figure 20.8 Revised simple growth model. Here, the equality constraint on the residual variances was 
relaxed.
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The primary output of interest includes the means and variances of the latent Math Inter-
cept and Math Slope variables. These are shown in Figures 20.7 (mean, variance next to the 
two latent variables) and 20.10 (Figure 20.10 also includes the standard errors and z values). 
The baseline latent mean, or Initial Math Level, was 70.47, a value close to the average for the 
first math measured variable (70.14). The two are not identical because the latent Intercept 
takes into account errors of measurement, deviations from a linear trajectory, and so on. This 
value is our best estimate of the true initial average level of math achievement in these 1000 
children. The variance of Initial Math Level (the intercept) is 81.19, a value that is statistically 
significant. This finding means that there is considerable variability in children’s initial level 
of math skills. Presumably, some of the variables we add in the next step, variables designed 
to explain initial level and growth in math skills, will help explain a portion of this variation.

Figures 20.7 and 20.10 also show the mean (8.88) and the variance (5.83) for the latent 
Math Growth (or Slope) variable; both are statistically significant. The statistically significant 
value for Math Growth means that these children, on average, show statistically signifi-
cant growth. The fact that the variance is statistically significant means that there is indeed 
considerable variation in the individual slopes for these children. So, for example (as in Fig-
ure 20.3), some children have fairly steep slopes (fast growth), and some children have much 
more shallow slopes (slower growth). There is enough variation in these slopes so that the 
value is statistically significant.
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Figure 20.9 Detailed results for the initial growth model. These results correspond to the model 
shown in Figure 20.7. Not much to see here, but worth checking.
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The final interesting finding included in these figures is the covariance (4.56, p < .001) 
and correlation (.21) between the latent Math Initial Level and Math Growth variables. As 
expected, this positive correlation means that children with higher levels of initial math skills 
also improve those skills at a faster rate. The correlation is not large, but it is statistically 
significant.

As noted earlier, this model says that the reasons for the scores that children get on these 
math tests are three-fold: their scores are a result of an overall initial level of math skill, plus 
growth over time, plus error (including deviations from linear growth). We can use this 
information to calculate the expected, or model-implied, means for each of the successive 
math test administrations. The implied mean score for math1 is the latent Initial Math Level 
(70.47). The implied mean score for math 2 is the initial Math Level plus 1 times the latent 
slope (8.88), and the implied mean for math3 is 70.47 + 2 * 8.88, or 88.22 (within errors of 
rounding). These and the values for math4 and math5 are shown in Figure 20.11 (implied 
means), but they can also be calculated easily from Figure 20.7. Of course, the model-implied 
covariances and correlations could also be calculated from the data in Figures 20.7 and 20.9–
20.10 using the tracing rule.

With this simple growth model we have modeled the development, or growth, or trajec-
tory of children’s math skills from Kindergarten through fourth grade (although with simu-
lated data). The analyses suggest that a linear growth model can indeed explain this growth, 
and that the children show significant growth across this time period. There is also signifi-
cant variation in this developmental process across the children in this sample, both in their 
initial starting level of math skills and in the amount of growth they show over time. Initial 
level and growth in math skills are weakly but positively correlated, meaning that children 
with higher initial levels of math skills also show more growth, on average, than do children 
who start out with lower levels of initial skills.

Figure 20.10 Detailed results for the initial simple growth model, continued. These tables show the 
findings of primary interest.
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CONDITIONAL GROWTH MODEL, OR EXPLAINING GROWTH

I don’t know about you, but I find these analyses pretty fascinating; imagine, we can actually 
model the process of growth and change! But as they’d say on the infomercial, wait—there’s 
even more! Our next step will be to add other variables to the model to see if we can under-
stand the variables that may influence initial math skills and growth in math skills.

Figure 20.12 shows a conditional growth model, labeled as such because now the growth 
parameters are conditional on, or depend on, four possible influences. These four new vari-
ables are Sex, Parent Education, Cognitive Ability, and Age; the coding of these variables is 
described earlier in this chapter. Each of these variables is assumed to affect these children’s 
initial levels of math skills and their level of growth; you can probably justify each of these 
paths fairly easily. Thus paths are drawn from each of these exogenous variables to the latent 
Initial Math Level and Math Growth variables. 

The model setup builds on the previous analyses. Paths are drawn from the latent Initial 
Level and Growth variables to each of the measured math variables. Given the results of 
our previous analyses, no covariances are allowed among the residuals (errors), and the 
residual variances are constrained to be equal. As already noted, paths are drawn from 
each of the exogenous possible influences to the Initial Level and Growth variables. In the 
previous models we allowed the Intercept (Initial Math Level) and Slope (Math Growth) 
variables to correlate. In the conditional model these variables are now endogenous, and 
thus cannot correlate directly. Instead, their disturbances are correlated, accomplishing the 
same thing (some SEM programs don’t make this distinction between the variables and 
their disturbances by default). The Cognitive and Parent Education variables are allowed 
to correlate, but none of the other exogenous variables are expected to do so. If the Cog-
nitive scores were raw scores you would expect them to correlate with Age, but they are 
age-corrected standard scores. All other aspects of the model setup are consistent with the 
previous analyses.

Figure 20.11 Covariances, correlations, and means implied by the initial simple growth model.
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Figure 20.13 shows the graphic output for this analysis, with the unstandardized solution 
in the top portion of the figure and the standardized solution in the lower portion. As shown 
in the Figure, all fit indexes suggest an excellent fit of the model to the data. 

With the addition of the explanatory variables we now shift our attention from the aspects 
of the growth model, per se, to the influence of these new variables on growth. Some of 
these variables, such as Parent Education, are in a meaningful metric, whereas others, such as 
Cognitive Ability, are less meaningful. As with regression and other SEMs, the unstandard-
ized metric is useful for variables that have a meaningful metric. For Cognitive Ability, the 
standardized effects (lower figure) are more interpretable. The standardized effects are also 
useful for comparing the relative effects of one variable with another. The standard errors 
and statistical significance of the effects are shown in Figure 20.14

The results shown in Figure 20.13 suggest that Sex had positive effects on both Initial Math 
Level and on Math Growth. The Sex to Initial Level path of .77 means that girls (coded 1) 
scored .77 points higher on the latent Initial Math Level variable than did boys. However, 
these effects of Sex on Initial Level and on Growth were not statistically significant (Fig-
ure 20.14), and thus should be considered as zero effects. In contrast, Parent Education had 
statistically significant effects on both Initial Level and Growth in math skills. For each addi-
tional year of parent education, children scored, on average, .89 points higher in their initial 
math skills. In addition, for each additional year of parent education, children’s growth in 
math skills increased by .16 points, after controlling for the other variables in the model 

Figure 20.12 Model setup to test the influence of cognitive ability, parent education, and other back-
ground variables on math skills in Kindergarten and growth in math skills K-4.
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Figure 20.13 Influences of Sex, Parent Education, Cognitive Ability, and Age on initial level of math 
skills and growth in math skills grades K-5. The top model shows the unstandardized effects, the lower 
model the standardized effects
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Figure 20.14 Effects of background variables on Initial Math Level and Math Growth (unstandard-
ized estimates), standard errors, and statistical significance.
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(e.g., Cognitive Ability). Age had a statistically significant negative effect on Math Growth; 
children who were older at first measurement show less growth from one measurement to 
the next than were those who were younger (–.20 points per month increase in age). This 
finding could be a result of parents who perceive their children as not ready for Kindergarten 
waiting until they are older to start them in Kindergarten.

Cognitive Ability had statistically significant effects on Initial Math and on Math Growth. 
These effects were also quite large (see the lower portion of Figure 20.13). Children with 
higher levels of cognitive ability have higher initial levels of math skills; for each SD increase 
in cognitive ability, initial math skill increased by .43 SD. Children with higher cognitive 
ability also showed more growth than those with lower ability. Each SD increase in cognitive 
ability resulted in .41 of a SD increase in the math slope, or the growth in math skills from 
year to year. As shown in the standardized model, these are the largest influences on math 
skills and growth in math skills. (Keep in mind, of course, that these are simulated data. The 
findings for cognitive ability are fairly consistent with those reported by DiPerna et al., 2007, 
however). Parent Education had the next strongest influence on the Math intercept (Initial 
Level), .14, and Age was the second strongest on growth in math skills (slope), –.17.

Two other aspects of the results are worth mentioning. First, note that the covariance/
correlation between the disturbances of the latent variables (e6 and e7) is considerably 
reduced from the previous correlation between the latent variables, and it is no longer statis-
tically significant. The model suggests that this correlation was partially a result of Cognitive 
ability affecting both Initial Math Level (standardized effect .43) and Math Growth (.41). 
Using the tracing rule we learned when first discussing path analysis, you can see that this 
influence accounted for .17 of the correlation of the intercept and slope in the simple growth 
model. Thus cognitive ability is, to some degree, a common cause of initial math level and 
math growth. Or said differently, a large portion of reason that the initial level of math 
skills and math growth are correlated is because both are affected by overall cognitive ability. 
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Smarter children have higher initial levels of math and learn math more quickly and easily 
compared to less able children. Don’t make too much of this original correlation or its reduc-
tion, however. If we had chosen a different initial level for the model (in the current model 
the initial level is indexed as Kindergarten, the time point with the zero path from the slope), 
the correlations in both the conditional and unconditional models would differ1. The second 
point worth noting is that the variances of the math initial level and growth disturbances, 
e6 and e7, are still substantial and statistically significant (not shown here). The explanatory 
variables do not explain all of the variation in children’s initial level of math skills or all of 
the variation in growth in those math skills.

Several of the paths and the correlation between disturbances were not statistically sig-
nificant. Therefore, in a second model these paths (from Sex to both Initial Level and Math 
Growth, from Age to Initial Level) were removed, along with the correlation between e6 and 
e7. This revised model also showed an excellent fit to the data using our common criteria 
(χ2 [35]= 98.36, RMSEA = .043, TLI = .993, SRMR = .017), and the Δχ2 was not statisti-
cally significant (Δχ2 [4] 5.69, p = .22). This trimmed model provides a more parsimonious 
explanation of the development and growth in math skills and the influences on that growth. 
The magnitude of the remaining influences was virtually unchanged from the initial model, 
so those will not be presented here (although I encourage you to conduct these additional 
analyses and interpret them).

ADDITIONAL ISSUES

Data Requirements

You should now have a basic understanding of LGM, how to conduct it, and how to interpret 
the results. Let’s cover a few requirements for conducting LGM, and then we will talk about 
variations in setup and analysis.

Obviously, we need longitudinal data in order to conduct LGM. That is, we need repeated 
measures of the same individuals over time; measures of different individuals at each time 
point will not suffice (although for some inventive stringing together of two time-point data, 
see Ferrer & McArdle, 2004) . Some other requirements for LGM data are:

1. At least three time-sequenced measures are needed, although four or more measures 
give you more degrees of freedom.

2. The measures need to measure the same construct at each time point and need to be 
on a metric capable of showing growth, such as raw scores. With many of our previous 
examples using achievement data we have used standardized scores as the metric. Such 
scores are available in the ECLS data (M = 50, SD = 10) but would not work because 
the standardization at each time point would destroy the growth aspects of the data. 
Thus, as noted, raw scores from an instrument that is administered repeatedly are often 
used in LGM. With the ECLS data, item response theory (IRT) methods were used to 
create a single continuous scale capable of showing growth. Even though assessments 
in the later grades included more advanced items than did earlier assessments, these 
measured the same domains as the earlier items and were placed on the same scale. The 
result is a short continuous measure of math skills appropriate for children in grades K 
through 5 in which 5th grade scores have the same meaning as K scores.

3. The time interval for longitudinal measurement needs to be the same for all partici-
pants in the study. Thus, every child in our simulated data was measured in the Fall of 
K, 1, 2, 3, and 4. As will be explored below, these time intervals need not be equal; that 
is, the research design could specify testing in Fall and Spring of Kindergarten, Spring 
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of first grade, Spring of third grade, and so on, as long as everyone was measured at 
the same intervals. There are ways of dealing with data where the time intervals are 
not equal, but those are beyond the scope of this introductory chapter (e.g., McArdle, 
Hamagami, Meredith, & Bradway, 2000; Mehta & West, 2000).

4. Raw data, as were used here, are always appropriate for LGM analysis. Matrix data will 
also work, if means are included; LGM is no different in this way than are other models 
in which latent means are estimated. The exercises at the end of the chapter will give 
you an opportunity to use both types of data.

Variations in Model Specifications

As noted above, the intervals from each measurement to the next need not be equal. So, for 
example, suppose you were interested in the growth of marijuana or other substance usage 
among adolescents (cf. S. C. Duncan, Duncan, Biglan, & Ary, 1998). You might administer 
the first and second survey one year apart and the third survey a year and a half later. If you 
expected growth in usage to be linear, you could set the slope (growth)-to-measured variable 
paths to 0, 1, and 2.5 rather than the more common 0, 1, and 2.

It is also not necessary to assume that growth is linear. Consider our current example, 
math achievement. Even with equally-spaced measurements, can we assume that growth 
in math skills is linear? It seems more likely, instead, that growth in math skills should be 
steeper for younger children (in Kindergarten) than for older (those in fourth grade). There 
are many possible ways to model non-linear growth. Recall testing for curves in regression 
lines; we can do something similar in LGM, by modeling one growth (slope) variable as lin-
ear growth, and another as quadratic growth. Hancock and Lawrence illustrate how to model 
quadratic and several other types of non-linear growth (Hancock & Lawrence, 2006). It is 
also possible to constrain the first two slope loadings (e.g., to 0 and 1) and freely estimate the 
other slope loadings (known as a latent basis model). Researchers should consider the likely 
shape of growth prior to modeling, and we should always evaluate the raw data to consider 
possible departures from linearity (Willett & Sayer, 1994).

In the DiPerna and colleagues (2007) example referenced here, the authors were faced with 
different times between each assessment and the next and the possibility of nonlinear growth 
in math skills. They divided the sample in half and used the results from the first half to con-
strain the model in the second half. For the first half of the data (the calibration or training 
data), the values for the latent slope were constrained to 0 and 1 for the first two measured 
math variables. The remaining slope-to-measured variable paths were freely estimated (the 
latent basis model mentioned above). The values found in the calibration data (0, 1, 3.2, and 
6) were used as parameter constraints in the validation (second half) data. The DiPerna et al. 
example also illustrates another variation in LGM: because the first slope-to-measured vari-
able path is commonly set to zero, and this is the same as having no path at all, some research-
ers do not show this first measured variable as loading on the Slope variable at all.

It is possible to relax and add constraints. Here we to set the error variances of the mea-
sured variables equal at each time point (homoscedasticity), but it is possible to allow these 
to differ. It is also possible to allow correlations among the residuals.

There are additional constraints that can be made to the simple growth (unconditional) 
model to test specific aspects of that model. Some of the model constraints and their mean-
ings include:

1. Error variances equal (discussed previously)
2. Zero correlation between the latent intercept and slope. If this model is supported, it 

means that the growth rate is uncorrelated with initial status.
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3. Latent slope mean set to 0. If supported, this constraint would mean that the aver-
age growth was zero but that there may be variation in the amount of growth across 
individuals.

4. Variance of the slope variable fixed to zero. This model would suggest no individual 
differences in growth, that is, that everyone in the sample grew at the same pace.

5. Loadings for the latent slope variable fixed to a linear time metric (as was done in our 
example). This model suggests that growth is linear.

6. Mean and variance of slope both fixed to zero. This very strict “no growth” or “strict 
stability” model says that no one in the sample experienced growth (Stoolmiller, 1994).

Latent growth models are often more complex than those analyzed here. Here, we exam-
ined the effect of several possible influences on initial level of math skills and on growth in 
those skills. As already noted, it is possible to study the effects of the intercept and growth 
on other subsequent outcomes. It is also possible to study the relations of growth in one 
variable with growth in another with the inclusion of multiple intercept and slope variables. 
With repeated measures of cognitive ability, for example, we could study whether growth 
in cognitive skills was related to growth in math skills. More advanced methods, known as 
dynamic modeling or latent change score modeling, can test the effects, over time, of changes 
in variables on each other (McArdle et al., 2000).

It is also possible to model higher-order growth variables. Suppose for the example 
used here we had multiple measures of math at each grade, say measures of numbers, con-
cepts, and geometry. It would then be possible to have a latent math skills variable at each 
grade rather than the measured variable included here. The intercept and slope variables 
could then be indexed by a series of latent variables, a method called the “curve-of-factors” 
approach. Alternatively, we could specify an intercept and slope for each of the math sub-
constructs (numbers, concepts, geometry) and then a higher-order intercept and slope for 
general math skills (a factor-of-curves approach). If you are interested in reading further, 
the book An Introduction to Latent Variable Growth Curve Modeling includes much more 
detail (T. E. Duncan, Duncan, & Strycker, 2006). McArdle’s Annual Review of Psychology 
article does a great job of putting LGM models in the context of other longitudinal SEM 
models (McArdle, 2009).

OTHER METHODS OF ANALYZING GROWTH DATA

There are other methods of analyzing change and growth data such as those used here. A clas-
sic approach uses repeated measures ANOVA, or multivariate ANOVA to analyze repeated 
measures data. RANOVA assumes that errors of measurement (e1 through e5) are equal and 
independent, however, not always a reasonable assumption. As noted by Kline, the ability to 
model errors is a major advantage of LGM (Kline, 2011). ANOVA also generally focuses on 
categorical independent variables rather than the mix of categorical and continuous vari-
ables used here.

Our initial discussion of individual growth curves at the beginning of this chapter may 
have reminded you of the introduction (Chapter 10) to multilevel modeling. Perhaps not 
surprisingly, multilevel modeling can also be used to analyze latent growth models (Singer & 
Willett, 2003). Consider that with LGM we are focused on understanding multiple measure-
ments nested within individuals. This “nested within” language is exactly what multilevel 
modeling (MLM) is focused on. To use MLM to conduct LGM, the individuals are consid-
ered the second level of measurement, and the repeated measures are structured within indi-
viduals. Conceptually, at least, this approach is very much like what we did at the beginning 
of this chapter: conducting individual, time-related regressions, and pooling the results of 
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those regressions across individuals. One advantage of the MLM approach to LGM is that 
individuals need not have the same number of measurements or the same intervals between 
measurements, but those issues are easily overcome in SEM also. The use of SEM allows 
more complex (e.g., multiple related growth curves) and more flexible models, however.

SUMMARY

In previous chapters we used SEM to analyze various types of longitudinal models. Now, with 
the addition of latent means analysis we have expanded that focus to perhaps the most inter-
esting longitudinal analysis so far: latent growth modeling. With LGM we are able to study 
and model more completely the actual process of growth and change, including the possible 
influences on growth and the possible effects of growth in some developmental process.

If we measured the same set of people on the same variable over time, it would be pos-
sible to conduct a regression for each person of their score on the measure on time. We 
could thus get a regression line of scores across time for each person. For each regression 
line, the intercept would represent the person’s starting level on the variable, and the slope 
would represent his or her growth on the measure. If we then averaged the various intercepts 
and slopes across individuals we would be doing something conceptually similar to LGM 
through multilevel modeling.

To conduct LGM via SEM, we set up something that looks like a CFA, with the set of 
repeated measures being indexed by two latent variables, one representing the latent inter-
cept (initial level on the repeated measures) and the other the latent slope (growth on the 
repeated measures). For the illustrative example used in this chapter, the repeated measures 
were (simulated) math test scores for a group of children, K through 4th grade. Our esti-
mates for the mean and variance of intercept latent variable thus represented the average 
initial level of math knowledge for these children and the degree of variability from child 
to child. The mean and variance of the latent slope variable represented the average growth 
for the children and the degree of variation in that growth from child to child. A tabular 
summary of the meaning of, and alternative names for, the intercept and slope variables is 
shown in Table 20.2. 

The model setup for LGM, while looking something like a CFA, is also a little different 
from what we are used to. The paths from the intercept variable to the repeated measures 
were all constrained to 1 (this forces this variable to be an intercept), and the paths from the 
latent slope variable to the repeated measures were constrained to sequential values of 0, 1, 
2, and so on. The constraints on the slope loadings suggest linear growth and place the first 
measurement (Kindergarten) as the starting point for the growth. Finally, the intercepts for 

Table 20.2 Meaning and alternative names of LGM intercept and slope variables.

Latent growth variable Meaning Alternative names

Intercept Initial level of the construct Initial (construct name) level
Initial status
Level

Slope Growth or change in the construct (Construct name) growth
Linear growth
Developmental trajectory
Trend
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the repeated measures (the math scores) were all set to zero. This allowed us the estimate the 
means for the latent intercept and slope variables even though we only have a single group 
(previously, multigroup analyses were needed to estimate latent means). The data required 
are repeated measures (generally three or more) of the same individuals on some variable 
capable of showing growth (that is, for example, not measures standardized within age).

Once we estimated the “simple” growth model, we were able to test for possible influences 
on both the initial level of math ability and on growth in math abilities. In our simulated 
data, we found statistically significant effects for Parent Education and Cognitive Ability on 
the initial level (intercept) of math and significant effects for Parent Education, Cognitive 
Ability, and Age on growth in math skills (latent slope). Although not done in this example, 
it would also be possible to examine the effects of these latent initial level and slope variables 
on other variables (e.g., students’ subsequent academic self-esteem). Thus, with LGM, we are 
able to study the process of growth, the variables that influence it, and the results of it.

Of course it is not always growth that we are interested in; sometimes it is decay, or some 
other developmental process. It is thus not uncommon for those doing LGM to talk of exam-
ining the “trajectory” of some developmental process. The chapter concluded with an exami-
nation of alternative methods of specifying the LGM, and the meaning of those alternatives. 
We also discussed other methods of analyzing growth, including repeated measures ANOVA 
and MLM. Of course it is possible to use some of the other methods we have explored for 
SEM, including multi-group and higher-order models, with LGM.

EXERCISES

1. Conduct the analyses outlined in this chapter. The data are in the file labeled “math 
growth final.sav.” See the website (www.tzkeith.com) for initial setup for these models 
for Amos and Mplus.

2. Does being the child of an alcoholic influence adolescent drinking behavior? Curran, 
Stice, and Chassin examined the growth in adolescents’ alcohol, along with that of their 
peers, over a three-year period (Curran, Stice, & Chassin, 1997). Here we will use a 
portion of the data to examine the effect of parents’ alcoholism and adolescents’ rebel-
liousness on the developmental trajectory of adolescents’ drinking behavior. The data 
(matrix) are in the file are in the file “curran et al alcohol.xls,” with the matrix derived 
from reports of 363 adolescents age 10 to 15 and their parents. Variables include self 
reports of students’ drinking behavior yearly for three years (Adol1 through Adol3), 
composite scores derived from items addressing frequency of use, frequency of exces-
sive drinking, and frequency of getting drunk. Possible explanatory variables include 
parent alcoholism (Parent, 1 for yes, 0 for no), Age at time 1 (in years), and self-reported 
rebelliousness (Rebel1), a composite in which adolescents rated agreement with eight 
items concerning rule breaking a getting away with things. The file includes a Sex vari-
able (0=girl, 1=boy), but it is not used for this exercise. See if you can set up these analy-
ses from this description. For more information about these variables and the study 
(and for an illustration of a LGM with more than one set of developmental trajectories) 
see the original article (Curran et al., 1997).
a. Develop an unconditional LGM to explain the developmental trajectory among 

these youth in drinking behavior. Start with a model in which the error variances 
for Adol1 through Adol3 are constrained to be equal. Does the fit improve when you 
free this constraint in a second model?

b. You may need to constrain the error variances for Adol1 and Adol3 to zero (to avoid 
negative values). What happens to the fit of this model? (These constraints will not 
be needed for the conditional model with explanatory variables.)
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c. Interpret your final unconditional model. What do the means and variances of the 
Drinking intercept and Drinking slope tell you? Are these two latent variables cor-
related? What does that correlation tell you?

d. Add the variables Age, Parent Alcoholism, and Rebelliousness as possible explana-
tory variables in a conditional LGM. Does parent alcoholism affect adolescents’ 
drinking behavior? Does adolescent rebelliousness affect drinking? What do those 
effects mean? Briefly interpret any statistically significant effects. Be sure to give a 
real-world interpretation (one that would make sense to your grandmother).

e. Provide a table of fits of the various models. I suggest including χ2 and df, Δχ2 and 
Δdf, RMSEA, SRMR, CFA, and AIC, although your instructor may have different 
preferences.

Note

1 What do I mean by “If we had chosen a different initial level for the model?” Here, the paths from 
Growth to the Math scores were set to 0, 1, 2, etc. We could have set the first score to -1, the second 
to 0, the third to 1, and so on. This would have made the second measurement the initial level, and 
would have resulted in a different value for the correlation between the slope and the intercept. 
Don’t overinterpret this correlation.
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Part 1 discussed multiple regression as a research tool. Part 2 has been concerned with 
the “And Beyond” portion of the title of the book and has focused on path analysis, 
confirmatory factor analysis, structural equation modeling, and latent growth model-
ing. This final chapter will begin with a review and summary of Part 2. I will then briefly 
discuss several topics about which you should be aware but have not yet been covered 
in this text.
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SUMMARY

Path Analysis

Basics. Throughout this book I have assumed that we are primarily interested in estimating 
the effects of one variable on another. We became even more explicit in this assumption in 
Part 2, where we focused on variations of structural equation modeling. The journey of SEM 
discovery started with path analysis, the simplest form of SEM.

If, through previous research, relevant theory, and logic, you can specify the likely causal 
relations among a set of variables, you can (given a few other conditions) estimate these 
effects using the correlations among the variables and simple algebra. Figure 21.1 shows such 
a model with the likely causal relations among the variables represented by paths. The paths 
represent a weak causal ordering, meaning that they do not assert that one variable directly 
affects another but rather that if the two variables are causally related the influence is in the 
direction shown, rather than the reverse. If this model includes a one-way causal flow, we 
can forgo the algebra and use multiple regression to estimate the effects of one variable on 
another. These estimates, or paths, are estimated by the standardized and unstandardized 
coefficients in multiple regression. The paths to Achievement are estimated by the simultane-
ous regression of Achievement on Family Background, Ability, Motivation, and Coursework; 
the paths to Coursework are estimated using the regression coefficients from the regression 
of Coursework on Family Background, Ability, and Motivation, and so on. The standard-
ized paths from disturbances, represented by the variables in ovals labeled d1 through d4, 

are estimated as 1 2− R  from each regression equation. The disturbances represent all other 
influences on these variables beyond the variables in the model; many writers use the term 
residuals (consistent with MR) or errors instead of disturbances. We interpret the paths in 
much the same way as we did explanatory regressions in Part 1. The standardized paths (b’s) 
represent the change in standard deviation units in the outcome for each standard deviation 
change in the influence, and the unstandardized paths (b’s) represent the amount of change 
in the outcome for each 1-unit change in the influence. 

We dealt with some of the jargon and symbols you are likely to encounter in structural 
equation modeling. Measured variables, the variables actually measured in your research, 

Ability

Motivation

Achievement

d2

d4
Family

Background

Academic
Coursework

d1 d3

Figure 21.1 Path model; the paths represent the presumed effects of one variable on another.
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are symbolized by rectangles. Unmeasured, or latent, variables are symbolized by circles or 
ovals. Disturbances/residuals represent unmeasured variables not considered in the model. 
Recursive models have arrows pointing in one direction only, whereas nonrecursive models 
have feedback loops, or arrows pointing in two directions. Just-identified models are those 
for which we have just enough information to solve for the paths, and overidentified models 
are those for which we have more information than we need and can thus estimate some of 
the paths in more than one way. Underidentified models are those for which we have more 
paths than we have information to estimate the paths; they are, therefore, not solvable with-
out additional constraints. The causes of exogenous variables come from outside the model; 
exogenous variables have no paths pointing toward them. Endogenous variables are effects; 
they have paths pointing to them in the model. Most of this jargon is summarized in 
Figure 11.17.

The paths provide estimates of the direct effects of one variable on another. It is also pos-
sible to estimate indirect effects, such as the effect of Motivation on Achievement through 
Coursework in Figure 21.1. We can estimate the indirect effects by multiplying the paths 
involved. Indirect effects are also referred to as mediation: we may be interested in the extent 
to which Coursework mediates the effect of Motivation on Achievement. When the indirect 
and direct effects of one variable on another are added together, they provide an estimate of 
the total effect of one variable on the other. We can also calculate total effects directly using 
the regression coefficients from a series of sequential regressions. We finished Part 1 with 
questions about which type of MR to use. Although we had discussed direct versus total 
effects and mediation, these distinctions became much clearer with the development of path 
analysis: simultaneous regression focuses on direct effects, whereas sequential regression 
focuses on total effects. If nothing else, path analysis provides a valuable heuristic device for 
understanding and organizing the results of multiple regressions. I argued that path analysis 
should be the method of choice for those interested in MR for explanatory, nonexperimental 
research.

One noteworthy aspect of this process is how we made decisions concerning the influ-
ence of one variable on another: through logic, theory, and previous research. The correla-
tions did not inform these decisions, they merely provided fuel for the calculations once we 
developed the causal model. To make a valid inference of cause and effect, there must be a 
functional relation between the variables, the cause must precede the effect in time, and the 
relation must not be spurious. For multiple regression to provide valid estimates of paths, 
we must be able to assume that there are no omitted common causes of the presumed cause 
and presumed effect, that there is no reverse causation, and that the exogenous variables are 
perfectly measured.

Dangers

The biggest danger of path analysis is that of omitted common causes. When a common 
cause (a variable that affects both the presumed cause and the presumed effect) is omitted 
from the model, we get inaccurate estimates of the effects of one variable on another. We 
showed that the problem of omitted common causes is at the heart of the dreaded spurious 
correlation, which is, in turn, the reason for the admonition that we should not infer causa-
tion from correlations. When common causes are accounted for, paths provide accurate esti-
mates of the effects of one variable on another. True experiments provide powerful evidence 
of cause and effect because the process of random assignment to groups rules out the pos-
sibility of common causes. The problem of common causes is not unique to path analysis, 
but is paramount in any nonexperimental (and most quasi-experimental) research. Omitted 
common causes are one likely reason for variability in findings from such research. If you 
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disagree with the results of nonexperimental research, focus on the possibility of the research 
having omitted a common cause of the presumed cause and effect. You need to go beyond 
mere armchair analysis, however, and provide evidence of an omitted common cause.

The danger of common causes does not mean that all possible causes of every variable 
must be included in a model. If a variable, for example, affects an endogenous variable in 
research, but not an exogenous variable, it does not necessarily need to be included. Likewise, 
it is not necessary to include intervening or mediating variables in models for the results to 
be valid. Intervening variables are valuable, however, in that they can help us understand how 
one variable goes about influencing another. Noncommon causes and intervening variables 
may both be valuable in helping devise nonequivalent overidentified models, however.

Another danger in path analysis occurs when you draw a path in the wrong direction, 
although the extent to which this is a problem depends on the paths involved. You should 
not use reciprocal paths (nonrecursive models) to avoid making decisions concerning the 
direction of causation. Nonrecursive models are much more complex than recursive models 
and cannot be estimated through ordinary multiple regression. Even worse is to estimate a 
model via MR with a path drawn in one direction, and then the other direction; the results 
will not tell you which direction is correct.

The solution to both of these dangers is to have a good understanding of relevant theory 
and previous research. Think about the variables in your model, how they are related to one 
another. If necessary, bolster causal assumptions (e.g., a affects b rather than b affects a) 
through the use of longitudinal data. Think about possible common causes, and investigate 
them in the research literature. If necessary, test common causes in the research itself. In fact, 
most of what you should do to ensure the adequacy of your model boils down to the same 
advice for developing a model in the first place: theory, previous research, and logic. One 
advantage of path analysis over ordinary MR is that the figural display of the model makes 
your assumptions, and also any errors, very obvious.

Path Analysis Using SEM Programs

There are special computer programs for analyzing structural equation models, including 
path models. In Chapter 13 I illustrated their use for path analysis. Although the example 
used the computer program Amos, the concepts generalize to other SEM programs, and the 
web site illustrates the use of several other such programs.

Your knowledge of MR and path analysis translates directly into SEM programs. Although 
there are differences in the look and labeling of output, the output from SEM programs will 
list unstandardized paths, standard errors, statistical significance, along with standardized 
paths, correlations, covariances, and variances. Most programs will also provide tables of 
direct, indirect, and total effects (both standardized and unstandardized), along with their 
standard errors, an advantage for such programs over MR.

SEM programs become even more valuable in the analysis of overidentified models. 
When models are overidentified (when we have more information than we need to estimate 
the paths), they have positive degrees of freedom. The covariance matrix implied by the 
solved model will also differ to some extent from the covariance matrix that was used to solve 
the model when models are overidentified, and the extent of the similarity or dissimilarity of 
these two matrices can be used to assess the fit of the model to the data. There are a plethora 
of fit indexes for SEM, all of which are designed to assess the fit of the model to the data, or 
the likelihood that the solved model could have produced the data. We focused on RMSEA, 
SRMR, CFI, and TLI as measures of the fit of a single model to the data. Although we talk of 
the fit of the model, strictly speaking, what is really assessed is the veracity of the overidenti-
fying restrictions (e.g., paths constrained to zero or some other value) in the model.
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A major advantage of SEM programs is that they may be used to compare the fit of com-
peting theoretical models. When two models are nested (one is a more constrained version 
of the other), the change in χ2 between the two models can be used to determine which 
model better explains the data. When Δχ2 is statistically significant (when compared to Δdf ), 
we favor the better fitting, but less parsimonious, model. When Δχ2 is not statistically signifi-
cant, we favor the more parsimonious model (the model with the larger df ). The AIC and 
related indexes (e.g., BIC, aBIC) can be used to compare nonnested, competing models. I 
provided some tentative advice on rules of thumb for fit indexes (Chapter 13) but noted that 
others may well give different advice, that thinking about fit indexes will likely change over 
time, and that different fields of study may have different conventions.

Any overidentified model will likely have a number of models that are equivalent to 
it, models that cannot be differentiated from it based on fit. Such models may have paths 
reversed or replaced by correlations. We discussed rules for developing equivalent models; 
these rules are also useful for developing nonequivalent models, models that can be differen-
tiated based on their fit. We saw that carefully designed nonequivalent models may be able to 
obviate one of the threats we encountered with models estimated through MR: a path drawn 
in the wrong direction. SEM programs can also analyze nonrecursive models.

If you can develop overidentified models, there are advantages to using an SEM program 
instead of a MR program. If you are using MR to estimate path models, there are few reasons 
to strive for overidentified models. If, however, you are using an SEM program, you should 
see if you can develop an overidentified model prior to estimation. Whichever method is 
used, be aware of the threat of equivalent models.

Error

One assumption required to interpret regression (path) coefficients in a causal fashion is that 
the exogenous variables be measured without error. We rarely satisfy this assumption, and 
thus we need to know the effect of this violation on our estimates of the effects of one vari-
able on another. To expand this discussion, I noted that unreliability and invalidity affect all 
types of research, not just path analysis and multiple regression. Problems in measurement 
in both the independent and dependent variables affect our research results.

Reliability is the converse of error. Error-laden measurements are unreliable, and reli-
able measurements contain little error. We can consider reliability from the standpoint of 
variance, by thinking of true score variance as the total variance in a set of scores minus the 
error variance. In path analytic form, we can think of a person’s score on a measurement as 
being affected by two influences: their true score on the measure and errors of measurement. 
The true score and error influences are latent variables, whereas the actual score the person 
earns on the measurement is a measured variable. These concepts are important for research 
purposes because other variables generally correlate with the true score but not the error. 
For this reason, the reliability of a measurement generally places an upper limit on the cor-
relation a variable can have with any other variable. Unreliable measurements can make large 
effects look small and statistically significant effects look nonsignificant.

MR and path models assume that the variables in our models, and especially the exogenous 
variables, are measured with perfect reliability. We demonstrated that if the variables in our 
models were unreliable (but we assumed perfect reliability) our estimates of the effects of one 
variable on another were inaccurate and were often underestimates of true effects. Given the 
complexity of path models, unreliability can also result in the overestimation of true effects.

Reliability is not the only aspect of measurement that needs to be considered, however; there 
is also validity. As it turns out, validity is a subset of reliability. We can get closer to valid measure-
ment, closer to the constructs of interest in our research, by using multiple measures of constructs.
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Latent variable structural equation modeling seeks to move closer to the constructs of 
interest in our research by using such multiple measures. With latent variable SEM, we simul-
taneously perform a confirmatory factor analysis of the measured variables in our research 
to get at the latent variables of true interest, along with a path analysis of the effects of these 
latent variables on each other. In the process, latent variable SEM removes the effects of 
unreliability and invalidity from consideration of the effects of one variable on another and 
avoids the problem of imperfect measurement. In the process, latent variable SEM gets closer 
to the primary questions of interest: the effect of one construct on another.

Although our discussion focused on the effects of imperfect measurement in multiple regres-
sion and path analysis, it is worth remembering that measurement affects every type of research, 
however that research is analyzed. With the addition of latent variables to SEM, we are able to 
take measurement problems into account—to model them—and thus control for them.

Confirmatory Factor Analysis

We spent a chapter focused on confirmatory factor analysis, the measurement portion of 
the latent variable SEM model. CFA focuses on and tests hypotheses about the constructs 
measured in our research. For example, the CFA model in Figure 21.2 asserts that the 
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12 measured variables (subtests from the Differential Ability Scales Second edition) are really 
reflections of four broader abilities or constructs: Verbal, Nonverbal, Spatial, and Memory 
abilities. The fit statistics associated with the estimation of this model will tell us whether it 
is indeed reasonable to assume that these 12 measured variables are indicators of four such 
general latent abilities. We can interpret the factor loadings (the paths from the latent to the 
measured variables) in two ways. First, we can compare the effects as evidence of the relative 
validity of each test in measuring the corresponding factor (a CFA-type interpretation). We 
can also consider these paths as the effect of the latent variables on the measured variables 
(an SEM-type interpretation).

With path models, we added disturbances to account for all other influences on endog-
enous variables besides the variables in the model. We do something similar with the CFA–
measurement models and add latent variables reflecting all other influences on each measured 
variable beyond its corresponding latent variable. These “all other influences” are, in fact, 
unreliability and invalidity, or errors of measurement. The latent variable e1 (for error), for 
example, symbolizes all other influences on the Naming Vocabulary test beyond Verbal Abil-
ity. Such influences include measurement error and specific/unique influences, such as spe-
cific vocabulary knowledge.

As in other types of SEM, with CFA we can use fit indexes to compare competing models, 
models that hypothesize different constructs or different compositions of these constructs. 
The SEM programs also provide more detailed fit statistics that may be useful for modifying 
poorly fitting models. Hierarchical models are also possible; for example, we tested a model 
in which we hypothesized that the four latent factors in Figure 21.2 were, in turn, reflections 
of a single general intellectual ability factor.

Latent Variable SEM

In Chapters 16 through 18, we combined path analysis and CFA into latent variable SEM. 
With multiple measures of the constructs of interest, SEM performs simultaneous confir-
matory factor analysis of the constructs in a model and path analysis of the effects of these 
constructs on each other. Figure 21.3 shows such a model, designed to determine the effects 
of peer rejection on kindergarten students’ academic and emotional adjustment. The model 
included eight measured variables (in rectangles) designed to measure four constructs (in 
large ovals). We hypothesized that the constructs affected each other as shown by the paths 
connecting each latent variable. The model tested whether peer rejection affects academic 
and emotional adjustment and whether this effect is partially mediated (indirect effect) by 
children’s classroom participation. We found that all three types of effects—direct, indirect, 
and total effects—were meaningful and interesting. 

It is generally preferable in all four variations of SEM (path analysis, CFA, latent variable 
SEM, and latent growth models) to test hypotheses about models by comparing competing 
models. “The fact that one model fits the data reasonably well does not mean that there could 
not be other, different models that fit better. At best, a given model represents a tentative expla-
nation of the data. The confidence with which one accepts such an explanation depends, in part, 
on whether other, rival explanations have been tested and found wanting” (Loehlin, 2004, p. 61). 
We did so with this example and found another model that both made sense and had a better fit 
than the initial model. We also discussed two equivalent alternatives to this model that had 
different interpretations, but which were statistically indistinguishable from our accepted model.

We can easily build more complex models than that shown in Figure 21.3. Figure 21.4, for 
example shows a model in which one latent variable is indexed by a single measured vari-
able. The model also includes correlated errors, the specification that the unique aspects of 
the measures of one construct share something in common with those of another construct 
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beyond the effect of one construct on another. Such specifications are common in longitu-
dinal research in which the same measures are obtained at several times or when different 
respondents are asked to provide assessments of multiple constructs. In the exercises for 
Chapter 17, for example, both parents and teachers provided feedback concerning multiple 
constructs. Correlated errors were used to control for respondent variance and remove it 
from consideration of the effects of one variable on another. Latent variable panel models 
(Chapter 17) are often used to study longitudinal developmental processes and to answer 
questions of which variable affects which. 

It is possible to test for interactions (moderation) between categorical and other variables 
in SEM through multisample SEM. We analyzed the homework model separately for minor-
ity and majority students, for example. By constraining various parameters to be equivalent 
across groups and comparing the fit of these models to models without constraints, we were 
able to determine that Homework (and other variables in the model) had the same effect on 
Achievement for one group as for the other. That is, we found that Homework and Ethnic 
orientation did not interact in their effect on Achievement, that ethnic background did not 
moderate the effect of Homework on Achievement.

SEM with Mean Structures

Chapter 18 introduced the topic of latent means and intercepts in SEM. We had actually esti-
mated latent means in a few previous examples via the inclusion of a dummy variable in a latent 
variable SEM, but in this chapter we made the issue of estimation of latent means more explicit. 
Not only are their advantages for the analysis of means in SEM, but the understanding of latent 
means is needed for subsequent topics, including invariance and latent growth models.

The model shown in Figure 21.5 tests the effect of Sex on time spent on Homework, 
among other things. The unstandardized path from the dummy variable Sex (coded 0 for 
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boys and 1 for girls) to Homework would tell us the difference for boys and girls on the 
latent Homework variable. A big advantage of SEM is that by modeling the errors of mea-
surement we are able to get closer to the true constructs of interest. This type of dummy 
variable model extends this advantage to the estimation of means, and gets closer to the true 
difference between boys and girls on time spent on homework. Note two things, however. 
First, the results do not tell us the actual mean level on the Homework latent variable for 
boys versus girls. Instead, this path tells us the difference on the latent variable for boys versus 
girls. A positive value of, for example, 2 would mean that girls score two points higher, on 
average, on the latent homework variable, whereas a value of -2 would mean that boys score 
2 point higher (and girls score two points lower). Second, the value is actually the difference 
in intercepts. Recall from regression what intercepts are: they are the predicted scores on the 
dependent variable for those with a value of 0 on the independent variable. So we can think 
of these as the mean differences for boys and girls on the Homework latent variable, control-
ling for the other variables in the model. 

If we were interested in how homework differed for boys and girls we might also won-
der if homework had differential effects on Grades for girls versus boys. In Chapter 17 we 
learned how to test for such interactions (moderation) using a multi-group (MG) approach. 
This approach is also illustrated in Figure 21.6, in which we would compare path a in the 
boys model with path a in the girls model (via parameter constraints). With the addition 
of the estimation of means and intercepts to this MG approach, however, we were able to 
test for both the main effect (effect of Sex on Homework) and the interaction (differential 
effect of Homework on Grades across the sexes) in one analysis. To do so, one first tells the 
program to estimate means and intercepts and makes various constraints across the models. 
The mean or intercept of interest is set to zero in one group and freely estimated in the other 
group. Thus like the dummy variable approach, this method is used to estimate the difference 
in means or intercepts across groups. 

The MG-MACS (multi-group mean and covariance structures analysis) approach is quite 
useful for the analysis of experimental data when the post-test (and pretest) are latent vari-
ables, and an example of such an analysis—the effects of hypnosis on hot flashes–was used to 

Figure 21.6 A multi-group approach for testing whether Sex moderates the effect of Homework on 
Grades. Differences in the magnitude of path a (tested via model constraints) for boys versus girls 
would suggest a differential effect.

Family
Background

Previous
Achievement

Homework

Grades

pa
th

 a

pa
th

 a

d11

d21

d3

1

Parent
Occupation

r4

1

1

Family
Income

r3

fl8
1

Parent
Education

r2

fl9

1

Reading
8th

r5

1

1

Math
8th

r6

fl1

1

Science
8th

r7

fl 2
1

History
8th

r8

fl3

1

English
r11

1

1

Math
r12

fl4
1

Science
r13fl5 1

History
r14

fl6

1

Homework
10th

r10

1
1

Homework
8th

r9

fl7

1

Boys’ model

Family
Background

Previous
Achievement

Homework

Grades

sex diff hw

d11

d21

d3

1

Parent
Occupation

r4

1

1

Family
Income

r3

fl8
1

Parent
Education

r2

fl9

1

Reading
8th

r5

1

1

Math
8th

r6

fl1

1

Science
8th

r7

fl 2
1

History
8th

r8

fl3

1

English
r11

1

1

Math
r12

fl4
1

Science
r13fl5 1

History
r14

fl6

1

Homework
10th

r10

1
1

Homework
8th

r9

fl7

1

Girls’ model



524 • BEYOND MULTIPLE REGRESSION

illustrate the method. Many programs (including Amos and Mplus) also require the analysis 
of mean structures when there are missing data in a raw data format.

CFA with Latent Means and Invariance

The analysis of latent means applies to confirmatory factor analysis, as well. To test for dif-
ferences in factor means, factor loadings and the intercepts of the measured variables are 
constrained to be equal across groups. The latent mean for one group is constrained to zero, 
and the means for the other group (or groups) freely estimated. The latent mean obtained 
represents the difference across groups on the construct of interest, the variable underlying 
the measures.

Chapter 19 also presented the topic of measurement invariance, first broached in Chap-
ter 17, in more depth. Metric (aka weak) invariance requires the factor loadings to be equal 
across groups, and is required when wish to compare variances and covariances across 
groups. It is also required when we wish to compare effects, including paths from one latent 
variable to another, across groups. Intercept (strong) invariance requires that the intercepts 
of the measured variables are equivalent across groups. If strong invariance is obtained, it 
is then possible to compare validly the differences in latent means across groups. These and 
other possible steps involved in invariance testing (including both measurement and sub-
stantive comparisons) were detailed in the chapter. It is important to realize that measure-
ment invariance is not just applicable to those interested in CFA. Measurement invariance 
is, in fact, assumed, but often untested, in most comparisons across groups. When we test 
for differences in means across two groups (e.g., in a typical ANOVA) we are assuming that 
intercept invariance of the dependent variable is plausible. When we test for differences in 
effects across groups (e.g., in an interaction analysis in MR or ANOVA) we are assuming that 
metric invariance holds for the measures used. This chapter showed how these assumptions 
can be tested via invariance comparisons. 

Latent Growth Modeling

We have been interested in change, loosely defined, throughout this text. One plausible inter-
pretation for a regression coefficient is along the lines of “for each unit increase in X, Y 
will increase by so many units.” Yet for most of these regressions, no one really increased or 
decreased; instead we inferred such change based on comparing an individual at one level 
with another individual who was at another level. Later in the text we investigated longitudi-
nal path models that examined the effects variables on some outcome controlling for previ-
ous scores on that outcome. Panel models became even more explicit in investigating change, 
examining the effect of time 1 variables on time 2 variables, and beyond.

With latent growth modeling (LGM) we are, for the first time, able to actually model the 
process of change over time. Consider if you had measures of the same variable for the same 
people at three or more points over time. Given the same underlying unstandardized scal-
ing, it would be possible to derive two underlying factors from these repeated measures: one 
factor representing the latent starting point for the repeated measures, and one representing 
the latent growth in those measures. The initial level factor may also be thought of as a latent 
intercept, with the growth factor as a latent slope for the repeated measures. As with other 
latent variables, these initial level and growth latent variables would come closer to the true 
underlying construct than would the actual measures. This is the thinking underlying LGM. 
An example LGM model from Chapter 20 is shown in Figure 21.7

In previous chapters we have seen that multiple groups are required in order to estimate 
latent means and their differences across groups. With LGM we see that there is a way around 



SUMMARY, POWER, MISSING DATA, FURTHER STUDY • 525

this restriction: when the intercepts of the measured (repeated) variables are constrained to 
be zero, we can estimate the means of the latent initial level and growth variables. As a result 
with LGM we get estimates for the latent (true) mean and variance of the initial level of the 
repeatedly measured variable. We also get estimates for the latent (true) mean and variance 
of growth in that variable. In what is often then a second step in LGM analyses we can then 
examine variables that likely influence the initial level of the construct and variables that 
influence growth in the construct. Alternatively, we can examine the effect of initial level 
and growth in other variables. As a result, LGM allows the study of variables that influence 
change and the influences of change on other variables.

It is worth reiterating one more time that the fit statistics from SEM, while providing some 
feedback as to the quality of the model, are no panacea. In particular, the fit statistics do not 
help with the biggest dangers in nonexperimental research. They do not warn you when you 
have left out a common cause from your model. If you plan your overidentified model care-
fully, however, you can test hypotheses about whether paths are drawn in the correct direction.

ISSUES INCOMPLETELY OR NOT COVERED

Maximum Likelihood Estimation

In Part 1 we focused on least squares estimation; we showed that MR works by minimizing 
the errors of prediction around the regression line. SEM programs generally use a different 
approach by default, maximum likelihood estimation. Rather than minimizing errors, ML is 
designed to provide estimates that most likely would have resulted in the sample data. Sim-
plistically, for each set of possible parameters, the probability that these estimates could have 
produced the data is computed. The estimates with the highest probability are used.
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With simple, just-identified path models, maximum likelihood and least squares esti-
mates are equivalent, and thus MR and SEM programs provide the same estimates. The two 
methods will also generally yield very similar results for overidentified path models. The 
interpretation of the coefficients is also the same.

Maximum likelihood estimation is the default for SEM programs, but other methods 
(e.g., generalized least squares) are also possible. For more information about maximum 
likelihood estimation, see Eliason (1993); for additional information about estimation in 
SEM, see Bollen (1989) or Loehlin (2004).

Missing Values

We broached the topic of missing values in SEM in Chapter 18 (Latent Means), but the topic is 
worth repeating and expanding here. In Part 1 I noted that two common methods of dealing 
with missing data in MR are listwise deletion of missing data (any case that has missing infor-
mation on the variables used in the regression is not used in the analysis) and pairwise dele-
tion of missing data (a case that has a missing value on a variable is not used to calculate the 
correlations with this variable, but the case is used to calculate other correlations). Currently, 
all SEM programs use a more sophisticated strategy for dealing with missing data, generally 
referred to as full information maximum likelihood estimation, or FIML (Arbuckle, 1996).

So what makes FIML (and other modern missing data methods, discussed below) better? 
Methodologists often differentiate possible missing data mechanisms (Rubin, 1976), which 
requires thinking about why the data are missing. Simply put, what causes missingness, and 
how is it related to the variables we are analyzing? First, data can be missing completely at 
random (MCAR). This is the ideal missing data scenario in which the reason for the missing 
data is unrelated both to the values of variable that has missing data and to other variables in 
the model. Suppose, for example, you were interested in the effects of Homework on Grades, 
but in your survey not everyone reported their Grades. If the reason for the missing data was 
unrelated to participants’ Grades and Homework, the data would be classified as missing 
completely at random (MCAR). This possibility is illustrated in the top of Figure 21.8. Here, 
the reason for the missing data is an unmeasured (and unknown, as it often is) variable. 
What matters is that the reason for missingness is unrelated to the value of Grades. (Please 
note that these are conceptual models designed to illustrate these missing data concepts 
with already familiar concepts; they are not models that you would actually analyze.) When  
data are MCAR, both traditional and modern methods of dealing with missing data pro-
vide accurate estimates of means, covariances, variances, and effects in SEM models. Clearly, 
however, MCAR is a pretty strong assumption, and one that is likely unreasonable in much 
research.

Alternatively, data may be missing at random (MAR). In this situation, illustrated in the 
middle portion of Figure 21.8, the reason for the missing data may be related to the values of 
variable with missingness (e.g., those with lower Grades are less likely to report their Grades), 
but that relation disappears when other variables in the model are controlled (e.g., when Sex 
is controlled). In this scenario, perhaps boys are less likely to report their Grades than are 
girls, and that is the reason for the missing data on the Grades variable. However, once Sex 
is controlled, the reason for the missingness is no longer related to Grades; that is, path a, 
from Reason to Grades, reduces to zero. When data are MAR, FIML and other maximum-
likelihood-based methods provide more accurate estimates of parameters (e.g., effects) than 
do traditional methods of dealing with missing data (e.g., pairwise or listwise deletion). 

Note that if Sex were not in the model, if Sex were not controlled, then the path from 
Reason to Grades would not reduce to zero. For FIML to work with MAR, the variable that 
reduces the relation between the reason for missing and the outcome must be included in the 
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model. Think of it this way: Sex is a common cause of the Reason for Missing and of Grades; 
common causes need to be included in the model for estimates of effects to be accurate. For 
data to be considered MAR, both the data and the model being estimated are important.

The lower model in Figure 21.8 illustrates data that are Missing Not at Random (MNAR). 
In this scenario, even after controlling for the other variables in the model, the Reason for 
Missingness is still related to the values on the variable of interest. In this case, perhaps (as 
illustrated in the Figure), the other variables in the model are not related to the reason for 
missing on Grades. Or (not illustrated), perhaps they are related (e.g., perhaps there is a path 
from Sex to Reason), but the effect of Reason on Grades is still meaningful even after the 
other variables are controlled. When data are MNAR, even FIML methods meant for MAR 
data will be inaccurate (as will other methods).
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Figure 21.8 Path illustrations of MCAR, MAR, and MNAR mechanisms for missingness.
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Several points are worth making here. First, we often do not understand the missing data 
mechanism. MCAR can be tested, but we often don’t know whether we really meet the MAR 
assumption as opposed to MNAR. In addition, the MCAR test is affected by sample size. 
For these reasons alone, it is better to use the missing data routines of your SEM program as 
opposed to creating a matrix using listwise or pairwise deletion of missing data (or deleting 
all the cases with missing data in your file). In addition, because our the reasons for missing-
ness for some variables may be MAR and others MNAR, maximum likelihood approaches 
are generally preferred even when the MAR assumption is not clear-cut. There are other 
advantages in using the FIML method used in SEM programs, including the fact that FIML 
methods use all the data rather than a portion of the data. Second, it is important to include 
the variables believed to affect the missing data mechanism in the model and analysis. For 
this reason, missing data methodologists generally recommend the inclusion of “auxiliary 
variables” in SEM analyses (Enders, 2006; Graham, 2009).

Two other related methods for dealing with missing data are worth considering. The 
expectation-maximization (EM) algorithm is a method of obtaining maximum likelihood 
estimates with missing data, and it is available in general statistics software (e.g., in SPSS’s 
Missing Values Analysis add-on). With EM, one generally estimates the variance/covariance 
matrix and means of a data set that has missing values and then uses this matrix in an SEM 
program. EM thus makes it easy to consider auxiliary variables. However, with EM, different 
sample sizes may need to be specified depending on missing data patterns and χ2 estimates 
may need to be corrected (Enders & Peugh, 2004; Savalei & Bentler, 2009). With multiple 
imputation (MI), one creates multiple versions of a data set using maximum likelihood or 
Bayesian methods to impute the missing data. These multiple data sets are analyzed, and 
parameter estimates, standard errors, and fit measures summarized across the data sets. MI 
requires multiple analyses for each model, however, making what is often an already com-
plex analysis strategy even more complex (although it is often possible to automate these 
multiple analyses). Both Amos and Mplus, among other SEM programs, have the ability to 
perform MI, and it is also possible to do so in SAS and in stand-alone missing data analysis 
programs (e.g., NORM, Schafer, 1997, see http://sites.stat.psu.edu/~jls/misoftwa.html#mi). 
Single imputation is also a possibility, and may be a good option when the amount of miss-
ing data is relatively minor (Widaman, 2006).

Unfortunately, when there are missing data, Amos, the program I have used primarily 
to illustrate SEM in this text, does not include many of the more detailed aspects of fit that 
we generally examine when first analyzing models (i.e., modification indices and standard-
ized residuals), and other aspects of the program are also not available (e.g., bootstrapping 
and SRMR). One option is to use another program, such as Mplus, for the analysis; Mplus 
provides all of this information even when there are missing data. Another option is to use a 
method such as EM to generate a covariance matrix, or MI or single imputation to generate 
complete data sets, and analyze those in Amos. One option I have also used is to specify a 
model that only includes covariances (and means) among the measured variables to be used 
in an SEM or CFA model; the model has zero df. The implied covariance matrix produced by 
Amos using FIML can then be used as input in subsequent analyses. It seems to me that this 
approach can incorporate one of the advantages of EM (the ease of including auxiliary vari-
ables), but please note that I know of no studies supporting this approach. When I use one of 
these two-stage type approaches (estimate a matrix and then use the matrix to estimate the 
SEM model), I generally also go back and re-estimate the raw data and check to make sure 
that the results are the same.

Fortunately, the state of the art in missing data analysis methods has improved dra-
matically in recent years, and there are many resources for those who want to understand 
this topic in more depth. Enders has an excellent book on the topic (Enders, 2010), and 
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Graham’s review of the topic is also excellent (Graham, 2009). Widaman’s 2006 article 
already referenced has some excellent analysis recommendations, some of which I have 
included and updated: 

“Analysis recommendation 3: If the amount of missing data in the entire data set is 
very small, consider using single imputation” (Widaman, p. 61). Also consider FIML, 
given that simulation studies show FIML works well even with small amounts of miss-
ing data, and that the benefits increase as missingness increases (C. K. Enders, personal 
communication, April 11, 2014).

“Analysis recommendation 5: If the amount of missing data is moderate or large, 
but variables related to missingness can be included in analytic models, consider using 
FIML estimation” (p. 62); and 

“Analysis recommendation 4: If the amount of missing data is moderate or large 
and the variables related to missingness cannot be included in all analyses, use mul-
tiple imputation (p. 61).” Multiple imputation may also be advised when the model 
includes both continuous and categorical variables (C. K. Enders, personal communi-
cation, April 11, 2014).

Whatever approach you choose, learn about and routinely use one of these modern methods 
(FIML, EM, MI) for dealing with missing data. 

Planned missingness

Most of what you will read on methods of dealing with missing data, including the section 
above, approach the topic as how to deal with a nuisance. And missing data are a nuisance, 
although a ubiquitous one for anyone who does research. But missing data—when planned 
for—can actually improve research. Consider that if modern missing data methods allow 
the accurate estimation of effects when data are missing MCAR or MAR, then one can plan 
data collection so that data will be MCAR (or MAR) knowing that the data will be analyzed 
via FIML (or some other modern method). What this plan would allow is to then reduce 
the data demands on participants in the research. Consider a complex CFA or SEM, and the 
sheer amount of data that need to be collected on each participant. If the plan also calls for 
longitudinal data collection, the complexity and data demands multiply. Given a very com-
plex or time consuming project, one has to wonder if those participants with complete data 
are unusual in some way!

It is possible to reduce data demands and improve such research by planning missing data 
in advance. Suppose you were interested in conducting a CFA across multiple intelligence 
batteries. If one set of participants took battery A and B, another set A and C, and another 
set A and D, with the test forms randomly assigned, the data would indeed be MCAR, and 
the data from all three measures could be combined into a single analysis with accurate esti-
mation of effects (cf. Reynolds, Keith, Flanagan, & Alfonso, 2012). See McArdle for an early 
explanation of this “reference variable” approach (McArdle, 1994). See Enders (2010) and 
Rhemtulla and Little (2012) for additional designs and developments. 

Sample Size, Number of Parameters, and Power

In the summary for Part 1, we briefly reviewed issues of samples size and power in MR. MR, 
and to a greater extent SEM, are large-sample techniques, and one good rule of thumb is the 
more the better. But many students and researchers struggling to collect data often wonder 
about minimum sample sizes in SEM, just as in MR. In Part 1, we examined several of our 
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analyses using a power analysis program to determine the sample sizes needed to have a rea-
sonable chance of rejecting a false null hypothesis in MR.

For SEM research, MacCallum, Browne, and Sugawara (1996) showed how to calculate 
power for the RMSEA using the sample size and df, or how to calculate the sample size 
given the df and desired power (see also Kaplan, 1995, for a discussion of power). Briefly, 
the larger the sample size and the larger the degrees of freedom, the higher the power. Thus, 
complex, highly constrained models are more powerful than models with fewer df. As of 
this writing, Kris Preacher’s Quantpsy.org website (http://quantpsy.org/rmsea/rmsea.htm) 
has R utilities that can be used to compute power for RMSEA or the minimum sample size 
needed to achieve a desired level of power given a target level of the RMSEA and the df for 
the model. Of perhaps greater interest, because we usually want to compare various models 
to determine which fits better, another utility will tell you the sample size needed to detect a 
difference in RMSEA between two nested models (Preacher & Coffman, 2006, May). 

Usually when we compare competing models, however, we use Δχ2, not ΔRMSEA. Loeh-
lin’s (2004) text shows how to determine the sample size needed to detect, via Δχ2, the pres-
ence or absence of a particular parameter (e.g., a path). It is a pretty labor-intensive process, 
however. The Mplus website has script for conducting such analyses in Mplus (www.stat 
model.com/power.shtml).

A common rule of thumb for SEM studies is that researchers should strive for a 20:1 ratio 
of sample size to the number of parameters to be estimated (the N:q rule, Jackson, 2007), An 
N:q ratio of 10:1 may be acceptable (Kline, 2011). 

A related sample-size issue with SEM gets at the accuracy and stability of findings. A com-
mon rule of thumb is that SEM studies should include a minimum sample size of 100; this 
rule of thumb is based on simulation studies that show problems with results below this level 
(e.g., Boomsma, 1985; see also Loehlin, 2004, for a summary).

Another important consideration in SEM studies is the number of indicators per factor. 
Although here I have presented models that include two indicators per factor (to allow their 
estimation on free versions of SEM software), another good SEM rule of thumb is to try for 
three or more indicators per factor. This rule becomes more important with smaller sample 
sizes and when latent variables have low intercorrelations. Including more indicators should 
lead to more stable estimates of factors, and (because more indicators generally result in 
greater df ) more power. For a dissenting view, however, see Hayduk, 1996. 

These are a lot of rules of thumb, and some may give different answers! What’s a poor grad-
uate student to do? Try this: Draw your model and then conduct a power-analysis-derived 
estimate of the needed sample size. Also examine the needed sample size to detect plausible 
differences in RMSEA, with those plausible differences gleaned from previous studies. Does 
this sample size conform to the N:q rule? Do these two methods together give you a do-able 
sample size? If the number suggested is below 200, can you obtain a sample size of 200? 150? 
Of course if you can obtain a sample size larger than 200, do so, because larger is better. Also, 
more complex models with more free parameters need larger samples. Finally, keep in mind 
that your model is not doomed if you cannot get as large a sample as these methods suggest, 
but it is better to be safe than sorry. Larger samples are safer.

Interactions (Moderation) among Latent Variables

In Chapters 17 and 18 we discussed how to test whether a categorical variable, such as sex 
or membership in an experimental versus control group, moderated the effect of one latent 
variable on another. In Part 1 (Chapter 8) we learned it is also possible to test for interac-
tions between two continuous variables in their effect on some outcome. Is it possible to do 
so in SEM? Indeed it is, and with a measured variable model (path analysis), we could do 
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so in the same way we did in MR, by creating a cross-product of centered versions of the two 
variables involved. It is possible to extend this methodology to latent variables, as well, but 
doing so is beyond the scope of this text. To find out more about how to test for interactions 
among latent variables, Kline has a short introduction (2011); for more detail see Marsh, 
Wen, and Hau (2004, 2006). Mplus includes commands to simplify testing for latent variable 
interactions.

Multilevel SEM

In Chapter 10 we discussed the topic of multilevel modeling (MLM), an extension of mul-
tiple regression in which nested data are analyzed at more than one level, such as children 
within schools. It is possible to conduct MLM with latent variables, as well, although with 
the exception of latent growth modeling, that topic is beyond the scope of this text. As noted 
in Chapter 20, latent growth modeling can be considered as a type of MLM, given that with 
LGM observations are nested within individuals. Most of the major SEM programs have the 
capability of analyzing multilevel models, although as of this writing Amos does not do so 
(other than LGM). I suspect that many SEMers will chose to do even simple MLM analyses—
with measured variables, and which could be conducted with SPSS, SAS, or HLM—via a 
SEM program.

Longitudinal Models

We have discussed several types of longitudinal models in this text. In addition to getting 
closer to studying the process of change, I have hinted that longitudinal models can help 
bolster your guesses about causal ordering by building in an actual time component in your 
analysis. If X is measured prior to Y, it is less likely that you are committing an error when 
you draw a path from X to Y. Another less obvious advantage of longitudinal models is 
that they may help control for the number one danger to causal inference, the omission 
of a common cause of our presumed cause and presumed effect. Consider the Homework 
models from Chapters 13 and 17 (See also Figure 21.5). For both, we controlled for previous 
achievement when examining the effect of Homework on grades. It is likely that by doing so 
we controlled for many likely common causes, because many influences on current grades or 
achievement will likely flow through previous achievement. Note that this thinking appears 
to be accurate with the homework models; the background variables in these models affected 
grades only by affecting previous achievement and homework. That does not mean that this 
will always be the case. Properly analyzed longitudinal models may reduce dangers inherent 
in nonexperimental research, but do not remove them.

It is important to realize that although longitudinal models can bolster claims of causal 
precedence, they are no panacea for the danger of confused time precedence. Consider, 
for example, if you measured Self-Concept in 2010 and Sex in 2012. Despite the longitu-
dinal nature of the data collection, you will still be mistaken if you draw the path from 
Self- Concept to Sex. Sometimes logical time precedence takes precedence over actual time 
precedence. 

Dynamic Modeling

With the introduction of latent variable panel models and latent growth models we got ever 
closer to modeling and testing notions about the process of change in variables over time. 
Dynamic modeling, also known as latent change score (LCS) modeling, takes these ideas 
further still by examining change scores as latent variables and can be used to test directly 
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whether change in one variable plausibly leads to change in another. This topic, while fas-
cinating, is beyond the scope of this book. For a brief introduction, see Ferrer and McArdle 
(2010). For a cognitive development example that also includes a fascinating use of planned 
missingness, see Ferrer and McArdle (2004). 

Formative Measures

All the latent variables we have discussed in this text have been what are known as reflec-
tive indicator models in which we have assumed that the latent variables are causes of the 
measured indicators. In such models, which are by far the most common latent variable 
models, we assume that there is an underlying factor that, in effect, partially causes the 
scores we get on the measured indicators of those factors. But in some instances, it makes 
sense to think of the arrows going in the other direction, from the measured variables to 
the latent variables. Is a variable such as GPA really best conceived as an underlying factor, 
for example? Or would it make more sense to simply think of GPA as the sum of its parts, 
a composite? If so, we would instead draw the measurement paths from students’ GPAs in 
each course to a latent variable representing overall GPA. In this instance, GPA would be 
what is known as a formative (rather than reflective) measure. Once again, such a topic is 
beyond the scope of this text, but for a nice introduction, see Kline (2011). Such models can 
be tricky to estimate.

Categorical Variables

When we initially discussed SEM programs (Chapter 13) I noted that Mplus has sophisti-
cated routines for analyzing categorical outcome variables. Indeed it is possible to have fac-
tors and other latent variables that are based on categorical rather than continuous variables. 
I believe all SEM programs have the capability of analyzing categorical as well as coarsely-
ordered continuous variables (e.g., a three-choice Likert scale). Mplus seems to have the 
most options for such analyses. For more information on this topic and suggestions for ana-
lyzing such models (as well as very non-normal data) see Finney & DiStefano (2006).

Differences across Programs

If you have run our examples on a software program other than Amos, you may have found 
minor differences in your estimates versus those presented in this book (see, for example, 
differences in output at www.tzkeith.com). One likely reason for this difference is that differ-
ent programs calculate covariances differently. Amos, for example, uses N in the denomina-
tor (the maximum-likelihood estimate), whereas LISREL uses N − 1 (the unbiased estimate). 
The differences should be minor, however, especially with large samples. If you get substan-
tially different results, double-check your analyses, because one of us is in error!

Causality and the Veracity of Models

It is fitting to end this section with one more discussion of causality, a fascinating topic. 
I have tried to find a middle ground on the issue of causality and the degree to which we 
can make valid inferences of causality with nonexperimental research methods. No doubt 
some readers will think I’ve gone too far, overstating the degree to which we can make 
such inferences. Others will think I’ve understated the case. This issue will continue to be 
debated and is certainly not settled in this text. Nevertheless, you should be aware of some 
fascinating developments in this realm. Pearl (2009; 2011), for example, details advances in 
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understanding and demonstrating causality; see also Shipley (2000) for some of these issues 
translated to biology. As in Part 1, my thinking is that we should use causal language (e.g., 
examining the effects of this variable on that outcome), but that we should be obvious about 
what we mean by that language. It may be useful to add a statement like this to your research 
write-up (slightly modified from Chapter 8):

It is important to note that the data used in this research are nonexperimental in 
nature; there will be no (nor could there be) experimental manipulation of depression 
to determine its subsequent effect on achievement. As a result, it should be understood 
that all statements that discuss the “effect” of one variable on another, or that focus 
on variables that “explain” an outcome are dependent on the validity of the model. In 
other words, if the model is a reasonable representation of reality, the estimates result-
ing from the model indeed show the extent of the influence of one variable on another. 
If the model is not a reasonable representation of reality, the estimates are not accurate 
estimates of those effects.

At the same time, we should always be attuned the things that will help us avoid omitting 
an important common cause, including theory and previous research, along with, perhaps, 
the use of longitudinal data and models. Likewise, nonequivalent overidentified and longi-
tudinal models can help us avoid (or even test) problems in incorrect causal ordering, and 
should be exploited.

ADDITIONAL RESOURCES

These last few chapters have provided an introduction to SEM, perhaps just enough to make 
you dangerous. To become well-versed in conducting SEM studies you should get experience 
conducting such studies, supplemented by further reading. I hope you have enjoyed this 
adventure into the fascinating world of nonexperimental analysis via SEM (and MR). I also 
hope you will experiment with these methods and seek to develop your initial skills more 
completely. The sources listed next are good starting points.

Introductory Texts

I have mentioned several introductory textbooks that are worth your review:
Hoyle, R. H. (Ed.). (1995). Structural equation modeling: Concepts, issues, and applications. 

Thousand Oaks, CA: Sage.
Kline, R. B. (2011). Principles and practice of structural equation modeling (3rd ed.). New 

York: Guilford.
Loehlin, J. C. (2004). Latent variable models: An introduction to factor, path, and structural 

analysis (4th ed.). Hillsdale, NJ: Erlbaum.
See also:

Maruyama, G. M. (1998) Basics of structural equation modeling. Thousand Oaks, CA: Sage.
Raykov, T., & Marcoulides, G. A. (2012). A first course in structural equation modeling (2nd 

ed.). New York, NY: Routledge.
Schumacker, R. E., & Lomax, R. G. (2010). A beginner’s guide to structural equation modeling 

(3rd ed.). New York, NY: Routledge.
For an excellent, historically oriented annotated bibliography of path analysis and SEM lit-

erature, see:
Wolfle, L. M. (2003). The introduction of path analysis to the social sciences, and some emer-

gent themes: An annotated bibliography. Structural Equation Modeling, 10, 1–34.
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More Advanced Resources

If you want to advance your knowledge about SEM beyond the basics, I recommend the 
journal Structural Equation Modeling, published by Taylor & Francis. You may also be 
interested in joining the SEMnet listserve. For information, go to www.gsu.edu/~mkteer/ 
semnet.html or, for the archives, https://listserv.ua.edu/archives/semnet.html. Some worth-
while books include:
Bollen, K. A. (1989). Structural equations with latent variables. New York, NY: Wiley. (a classic 

reference text)
Bollen, K. A., & Long, J. S. (Eds.). (1993). Testing structural equation models. Newbury Park, 

CA: Sage.
Hancock, G. R., & Mueller, R. O. (2013). Structural equation modeling: A second course (2nd ed.). 

Charlotte, NC: Information Age.
Hoyle, R. H. (Ed.). (2012). Handbook of structural equation modeling. New York, NY: Guilford.
Kaplan, D. (2009). Structural equation modeling: Foundations and extensions (2nd ed.). Los 

Angeles, CA: Sage.
Marcoulides, G. A., & Schumacker, R. E. (Eds.). (1996). Advanced structural equation model-

ing. Mahwah, NJ: Erlbaum.
Marcoulides, G. A., & Schumacker, R. E. (Eds.). (2001). New developments and techniques in 

structural equation modeling. Mahwah, NJ: Erlbaum.
Mulaik, S. A. (2009). Linear causal modeling with structural equations. Boca Raton, FL: Chap-

man & Hall/CRC.
Schumacker, R. E., & Marcoulides, G. A. (Eds.). (1998). Interactive and nonlinear effects in 

structural equation modeling. Mahwah, NJ: Erlbaum.
For more depth on the topic of CFA:
Brown, T. A. (2006). Confirmatory factor analysis for applied research. New York, NY: Guilford.
For more depth on the topic of longitudinal analysis:
Little, T. D. (2013). Longitudinal structural equation modeling. New York, NY: Guilford.
McArdle, J. J. (2009). Latent variable modeling of differences and changes with longitu-

dinal data. Annual Review of Psychology, 60(1), 577–605. doi: 10.1146/annurev.psych. 
60.110707.163612

For more depth on the topic of LGM:
Bollen, K. A., & Curran, P. J. (2006). Latent curve models: A structural equation perspective. 

Hoboken, NY: Wiley.
Duncan, T. E., Duncan, S. C., & Strycker, L. A. (2006). An introduction to latent variable growth 

curve modeling: Concepts, issues, and application (2nd ed.). Mahwah, NJ: Erlbaum.

Books about Specific SEM Programs

Several texts are program specific and are valuable if you want to go beyond the examples 
presented in the user’s guide to your program:
Beaujean, A. A. (2014). Latent variable modeling using R: A step-by-step guide. New York, NY: 

Routledge.
Byrne, B. M. (1998). Structural equation modeling with LISREL, PRELIS, and SIMPLIS: Basic 

concepts, applications, and programming. Mahwah, NJ: Erlbaum.
Byrne, B. M. (2006). Structural equation modeling with EQS: Basic concepts, applications, and 

programming (2nd ed.). New York, NY: Routledge.
Byrne, B. M. (2010a). Structural equation modeling with Amos: Basic concepts, applications, 

and programming (2nd ed.). New York, NY: Routledge.
Byrne, B. M. (2010b). Structural equation modeling with Mplus: Basic concepts, applications, 

and programming. New York, NY: Routledge.
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Reporting SEM Results

SEM results are obviously complex, and writing up SEM results is often a challenge. You need 
to provide enough detail so that other researchers can reproduce your results, but it is easy to 
go overboard and report too much detail, resulting in a research report that is too long and 
uninteresting. How do you decide what you should report? First, model exemplary research 
in your area of interest. Then, turn to these references:
Boomsma, A. (2000). Reporting analyses of covariance structures. Structural Equation Mod-

eling, 7, 461–483.
Hoyle, R. H., & Panter, A. T. (1995). Writing about structural equation models. In R. H. Hoyle 

(Ed.), Structural equation modeling: Concepts, issues, and applications (pp. 158–176). 
Thousand Oaks, CA: Sage.

McDonald, R. P., & Ho, M.-H. R. (2002). Principles and practice in reporting structural 
equation analyses. Psychological Methods, 7, 64–82.

Cautions

Finally, several references to remind you to be cautious in your use and reporting of SEM 
results:
Cliff, N. (1983). Some cautions concerning the application of causal modeling methods.

Multivariate Behavioral Research, 18, 115–126.
Freedman, D. A. (1987). As others see us: A case study in path analysis. Journal of Educational 

Statistics, 12, 101–128.
MacCallum, R. (1986). Specification searches in covariance structure modeling. Psychologi-

cal Bulletin, 100, 107–120.
Steiger, J. H. (2001). Driving fast in reverse: The relationship between software development, 

theory, and education in structural equation modeling. Journal of the American Statisti-
cal Association, 96, 331–338.

In Chapter 17 we did a quick review of the dangers of MR, path analysis, SEM, and non-
experimental research in general. Another danger of latent variable SEM is related to its 
complexity. Like all such methods, it is open to abuse. This section of the book includes a 
basic introduction to SEM and by no means make you an expert. 

If you have read, understood, and worked through this section of the book, you should 
be fairly well equipped to be a good consumer of SEM research. You understand the pri-
mary dangers of nonexperimental methods and SEM; these dangers (e.g., omitted common 
causes) constitute the most likely serious problems with nonexperimental and SEM stud-
ies that you will encounter. You also have a beginning understanding of what you, and the 
researchers, should be looking for in SEM studies.

It is easy, however, to suspend critical judgment as you read research using complex sta-
tistical methods. The authors, after all, are the experts. Can’t we assume they know what 
they are doing? Don’t be “seduced by sophistication” (Wampold, 1987, p. 311). Yes, it may 
be harder to be a savvy consumer of SEM research, but it is just as necessary as with other 
research methods. Of course, you should also keep in mind that there is no perfect research; 
no study is immune to criticism, and your standard should not be unrealistically high.

These cautions are even more important for those conducting SEM research. SEM is not 
magic. No matter how sophisticated our analyses, they cannot turn bad data into good or a 
poor design into a powerful one. Even SEM cannot create a silk purse from a sow’s ear. As 
with other research methods, “the manipulation of statistical formulas is no substitute for 
knowing what one is doing” (Blalock, 1972, p. 448). 

For those who wish to conduct SEM research, this section may have provided just enough 
information to make you dangerous. I hope these chapters have excited you about the power 
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and possibilities of SEM and to try out the method to test research questions of interest to 
you. If you want to play around with the method, you should, but I encourage you to work 
with someone who is more knowledgeable and experienced. If you plan to use SEM on a 
regular basis, further reading is needed. I hope this section will guide you in that process. 
Be vigilant! But don’t let the need for vigilance deter you from exploring further. SEM is a 
fascinating and powerful methodology. Experiment with it!

I once made a t-shirt with the caption “Happiness Is a Latent Variable”; an updated ver-
sion of the accompanying model is shown in Figure 21.9. I trust by now you understand the 
various meanings of this statement. At the most basic level, in the model the variable Happi-
ness is, in fact, a latent variable. More broadly, in the real world, happiness is a latent variable: 
it’s not something we can measure exactly, but we do get indicators of it from many different 
behaviors. Finally, the statement is meant to say something about latent variable SEM. It is 
challenging, humbling, fascinating, and satisfying. I hope you experience some of the same 
enjoyment I have from learning and applying the method! 
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Figure 21.9 Happiness is a latent variable.
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My Web site that accompanies this book (www.tzkeith.com) includes the data used as 
research examples throughout the book. It includes a folder for each chapter in the book; the 
data sets that are used for a single chapter are included in the folder that corresponds to the 
chapter in which they appear. Most fi les appear in several formats. Raw data fi les are available 
as SPSS “.sav” fi les, and are also generally available in some other format, as well, including 
Excel format (“.xls” or “.xlsx” fi les), and as plain text fi les (usually with the extension “.txt” 
or “.dat”). If you can use the SPSS fi les, they generally have the most information (e.g., value 
labels, missing val ues). My second choice for these raw data fi les would be to use the Excel 
fi les (except for the large NELS data set).

Research examples in Part 2 of the text use a mix of raw data and matrix data (means, 
SDs, and correlations). Suggestions for raw data, above, apply to the raw data files for Part 2 
chapters. Matrix files, analyzable by all SEM programs, generally appear both as Excel files 
and as SPSS files. Plain text versions (useful, for example, by Mplus) of all data sets are also 
available. These usually use the extension “.dat” or “.txt.”

NELS Data

The NELS data set used throughout the book is included in the folder labeled “NELS.” Your 
fi rst choice for analysis, if you can use it, should be the spss fi le: “n=1000, stud & par_3.sav”. 
I have converted the original SPSS fi le to several different formats: SYSTAT, SAS Transport, 
and plain text. The conversions were done using the program DBMS/COPY. If you can use 
the SPSS fi le, I recommend doing so because it is the original form of the data. The fi le is also 
saved as an SPSS portable fi le (extension .por). The SYSTAT and SAS fi les are also clean and 
easily usable (although users of both programs should be able to use the SPSS fi le as well). 
For more information about the NELS data, including how to obtain the full data set, visit 
the National Center for Education Statistics Web site (nces.ed.gov/surveys/nels88/). While 
you are there, check out the other data sets you can get access to; you’ll be amazed at all the 
data available to you!

The variable labels for all the variables in the NELS file are listed in the searchable word 
file “nels by ffu vars.docx”. The table of variable names, positions, and variable labels was cre-
ated using the DISPLAY LABELS command in SPSS. A quick perusal of these labels should 
give you an idea of the power and scope of these amazing data. Variable names that start with 
BY are from the base year, when the students were in the 8th grade. The prefix BYS means 

 Appendix A
Data Files
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the variable is from the student file; BYP means the variable is from the Parent File. Variables 
that start with F1 are from the first follow-up, when students were in the 10th grade. Com-
posite variables created by NELS generally do not have the S or P designation. Composites 
that I created for various purposes start with variable 1379, ParentEd.

The abbreviation R in the variable labels refers to the respond ent. Thus, the variable 
BYS8A, labeled R LIVES IN HOUSEHOLD WITH FATHER, means that the respondent 
lives in a household with his or her father. The name shows that this is a base year (BY, 8th 
grade) student (S) variable. The variables are listed in the order in which they appear in the 
data set. If you want, once you get the data in your statistics program, you should be able to 
arrange the variables in alphabetic order.
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Appendix B
Review of Basic Statistics Concepts

This appendix is intended as a brief review of some basic statistics concepts that are assumed 
in this book. It skims the surface of a broad range of material and is intended as a conceptual 
overview and memory jogger, not an in-depth treatment. If you need more background or 
review, a number of excellent introductory textbooks are available. One of my favorites is 
Howell’s Statistical Methods for Psychology (2010).

Why do we need statistics? You may have wondered about that as you signed up for or 
sat in a statistics course, but reconsider the question now. Suppose you were to conduct an 
experiment in which you examined the effect of a specific type of therapy on the depressive 
symptoms of depressed adolescents (compared to those in a no-treatment control group). 
Assume that you used random assignment to treatment groups and that the random assign-
ment was effective. After six months of treatment, you collect data on a measure of depres-
sion. Why calculate statistics? Why not just eyeball the data to determine whether your 
treatment worked?

If almost every person in the experimental group performed better on this posttest than 
did every member of the control group, there is indeed no reason to calculate statistics. You 
simply graph the data (e.g., Figure B.1) and any reasonable person will agree that you have 
demonstrated the efficacy of the treatment. Your data will pass the “interocular trauma test”; 
the data will hit you between the eyes.

Social science research is rarely this clear, however. What is more common is considerable 
overlap between the two groups so that reasonable people eyeballing the data will likely dis-
agree as to whether the treatment was effective or not (e.g., Figure B.2). That’s why we need 
statistics: to help us determine whether the difference between groups is big enough, unusual 
enough, so that we can say with assurance that the treatment worked or, more generally, that 
the relation between two variables (in this case, treatment and outcome) is large enough so 
that we can assume it did not happen by chance. 

This sort of reasoning is related to the notion of null hypothesis significance testing. A 
little more formally, when we test to determine whether two groups are statistically signifi-
cantly different, the underlying logic goes something like this. First, we assume that in the 
population the groups are not, in fact, different. We then calculate the statistic of interest 
(e.g., the difference between the two means) and ask this question: if, in fact, the two groups 
are not different in the population, what is the probability of getting a difference this large by 
chance alone, given the size of the sample? If the chance of getting a difference that large is, 
say, 25%, few researchers will be willing to say the groups differed; that is, they will say you 
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could not reject chance as the cause of the differences between groups. Many researchers 
require that we obtain a difference large enough so that it occurs less than 5% of the time 
by chance. Others require that the difference be large enough so that it occurs only 1% of 
the time by chance. These rules of thumb are, of course, the values of p < .05 and p < .01, 
commonly used as benchmarks for deciding that something is statistically significant. When 
we say something is statistically significant, what we are saying is “it would be very unusual 
to get this kind of difference if chance variation were the only thing going on. We’d only get 
a difference this large five times (or one time) out of a hundred. Therefore, there must be 
something other than chance operating. Because I used random assignment to form groups, 
that other thing can only be the treatment; therefore, I can conclude that the treatment prob-
ably worked.” The same logic applies to tests of correlation coefficients, regression coeffi-
cients, F values, and so on.

This logic is not always pretty and has been criticized for years (e.g., Cohen, 1994), but it 
works fairly well and has served the social sciences well. It definitely should be augmented, 
however, with a focus on effect sizes and confidence intervals, as discussed later in this appen-
dix and throughout this book.

BASIC STATISTICS 

Mean

How would you describe a set of scores? Suppose your professor tells you that you got a 
score of 123 on an exam for which the total possible points were 140. Would you be happy or 
upset? Unless your professor always uses a 90%-equals-an-A type scale, you’d probably want 
more information. You’d want to know what the average score was on the test. In statistics, 
we generally define “the average” as the mean. The mean of a set of measures is the simple 

Figure B1 A large difference between groups. If data always looked like this, we’d rarely need statistical 
significance tests.

Figure B2 Data more commonly look like this. Without statistical tests, it’s difficult to tell whether the 
two groups are really different.
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arithmetic average: Sum the scores and divide by the number of scores to get the mean. Here, 
I will symbolize the mean using the symbol M.

Variance and Standard Deviation

Suppose the mean of scores on this test was 110. Now are you happy or disappointed? Prob-
ably happy; you scored above the mean, but how much above the mean? Is your score just 
above the average or well above the average? In addition to needing some idea of what the 
average is, you need some idea as to what the variability is in a set of scores. If 99% of people in 
the class scored between 100 and 120, you’d probably be pretty happy; you scored well above 
the mean. The range of scores is indeed one measure of variability, but in statistics we more 
commonly use the variance as the measure of variability in the set of scores.

Conceptually, the variance (V) is the average, squared, variation in a set of scores. Subtract 
the mean score from every score in the set. If you sum this number [ ( )]∑ −X M , you get a 
value of zero because the negative values for those who scored below the mean cancel out the 
values for those who scored above the mean. To get around this problem, we can square each 
deviation prior to summing and then, to get the average, divide by the number of scores:

V
X M

N
=

∑ −( )2

In fact, with variance, as with many statistics, we generally divide by the number of scores 
minus 1 (N—1), rather than N. The reason is that we are generally calculating a sample vari-
ance, and using N—1 gives us a better estimate of the population variance than we get using 
N. The new formula is

V
X M

N
=

∑ −
−

( )2

1

The variance, although useful, is not in the original unit of measurement, because we had 
to square the deviations from the mean to calculate the variance. To convert back to the origi-
nal metric, it is easy to take the square root of the variance; this new measure of variability is 
referred to as the standard deviation ( )SD V= . The standard deviation is useful in mea-
surement because it is a measure of variability that is in the original units of measurement. 
If you know that your score on the statistics test was 123 and that the mean and SD of the test 
were 110 and 5, respectively, you now know that you scored more than 2 standard deviations 
above the mean.

z scores are scores transformed into standard deviation units. If my score was 2 standard 
deviation units below the mean, my z score will be –2; a z score of 1.5 means a score 1½ SDs 
above the mean; a z score of zero corresponds to a score exactly at the mean. z scores are the 
parent of all other types of standard scores, and you can easily convert from z scores to other 
types of standard scores.

Distributions

As you know, many natural and social phenomena have frequency distributions that conform to 
a normal, or bell, curve. Figure B.3, for example, shows the frequency distribution for students’ 
scores on the base year Science test in the NELS data on the accompanying Web site (www.
tzkeith.com). Each bar on the histogram represents a 2.5 point range of scores on the test, and 
the height of the bars represents the number of students with scores in this range. As you can see, 
the data conform fairly closely to the normal curve superimposed over the histogram.
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When data conform to a normal curve, this curve can be described fairly accurately using 
the mean and standard deviation of the data. [You can improve this description further 
by focusing on skew (whether the distribution has an extended tail in one direction or the 
other) and kurtosis (the flatness or peakedness of the distribution.)] When data conform 
to a normal curve, there are also well-defined relations between the distribution and statis-
tics that describe the distribution. So, for example, approximately 68% of people will score 
between 1 SD above the mean and 1 SD below the mean (as shown in Figure B.4); approxi-
mately 96% will score between 2 SDs below and 2 SDs above the mean (Figure B.5), and so 
on. You can also use this information to determine the percentile rank of a particular score. 

Figure B3 Frequency distribution of scores on the Base Year Science test from the NELS data. The data 
conform well to a normal curve.
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Figure B4 Sixty-eight percent of cases are between negative and positive 1 SD around the mean in a 
normal curve.
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Say you scored 1 SD above the mean on another test. Fifty percent of people score below 
the mean, and 34% score between the mean and 1 SD above the mean (68% divided by 2). 
You therefore scored higher than 84% of people on this test (50 + 34). This information 
is summarized in Figure B.6. (These normal curves were drawn using P. B. Stark’s SticiGui 
tools, at stat-www.berkeley.edu/users/stark/Java/Html/, using the normal probability tool.) 
Thus it appears that your score on the statistics test—more than 2 SDs above the mean—
was very good!

This is nice, but you may want to know the percentage corresponding to, say, 1.75 SDs 
above the mean. Alternatively, you may want to know where on the normal curve (in stan-
dard deviation units) a score at the 98th percentile will be. For this purpose, you can turn 
to the z distribution or a z table (or a variety of tools available on the Web). There you can 
look up a z of 1.75, and you will find a value of .9599, meaning that a z of 1.75 is higher than 
95.99% of other scores. In this book, I have encouraged you to use electronic versions of such 
tables. For example, click on a cell in Excel and then click on “Insert” and “Function.” Find 
the function called “NORMSDIST” (for normal, standard distribution) and use it. Type in 
1.75 and Excel will return a value of .9599. I also recommend the SticiGui tools mentioned 
above (see Figure B.7). Return to your score of 123 on the statistics exam, which was 2.6 SD 
above the mean. What is the corresponding percentile rank? According to Excel, this value 
corresponds to a percentile rank of 99.53. Nice work!

Standard Error

Suppose you take a random sample of five cases from NELS for the base year Science test 
scores and compute the mean of these five scores. Will the mean be identical to the mean 
for the full sample of 1000? No, it will vary to a certain extent, because we took a small 
sample from a larger group. The first time I did this the mean of the five cases was 53.50, 
the second sample of 5 had a mean on the Science test of 51.47, and the third sample had 
a mean of 47.55. If I do this over and over, what do you think we will find? If we plot 
these means in a frequency distribution, what will it look like? If you answered “a normal 
curve,” good for you! Yes, we will get a normal curve of means. The frequency distribu-
tion and normal curve for 200 such samples is shown in Figure B.8. It’s more narrow 
than the normal curve of original scores because means are more stable than individual 
scores. The SD of the normal curve of means was 4.59 versus 10.6 for the distribution of 
individual scores.

–5 –4 –3 –2 –1 0 1 2 3 4 5
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Highlighted area: 95.5%

Figure B5 ± 2 SDs around the mean encompass approximately 96% of cases in a normal curve.
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The reason for this exercise is that when we select a sample from a population we are 
assuming that the sample information (in this case, the sample mean) reflects the popula-
tion. You can see from the histogram, however, that this assumption is sometimes more 
accurate and sometimes less accurate. Not all of our five-person-sample means were close 
to the overall mean. What is interesting is that the SD of this distribution of means provides 
useful information about the amount of variability (the amount of error) in the distribution 
of means. A narrow curve with a small SD tells us that most of our samples provide fairly 
accurate estimates of the real mean. A wide curve with a large SD tells us that many of our 
estimates will be error laden. Because this standard deviation reflects the error likely inherent 
in any estimate of the mean, it has a special name: the standard error of the mean.

In practice, we don’t repeatedly take smaller samples from a larger population. Instead, 
we can estimate the standard error from the characteristics of a single sample and the size of 
the sample. Other things being equal, the larger the n for each subsample is, the more nar-
row the normal curve of means. Thus, as sample size increases, the standard error decreases. 
In addition, we can estimate the standard error of many different statistics, regression 
coefficients, for example, and use this information to test these parameters for statistical 
significance. 
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Figure B7 The 96th percentile corresponds to 1.75 SDs above the mean.
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Figure B6 One SD above the mean corresponds to the 84th percentile. That is, 84% of people score at 
or below a standard deviation above the mean.
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Confidence Intervals and Statistical Significance

Because our normal curve of means has the same properties as other normal curves, we can 
apply our knowledge of normal curves to this one. Because 68% of cases are between –1 
and +1 SD around the mean, we know that 68% of the means in our sample of means are 
between 47.31 and 56.49 (the overall mean of means ± the SE, or 51.9 ± 4.59). Now, if we were 
to sample a single mean only, we could use this information in reverse. Our first mean that we 
sampled was 53.50. I could add and subtract the SE from this value and make a statement 
about the likely value of the overall mean, something like “if we were to collect repeated sam-
ples from this population, two-thirds of the time (68% is slightly more than two-thirds) the 
mean will be between 48.91 and 58.09 (M ± SE, or 53.50 ± 4.59). ” Or “there is a 68% chance 
that the true mean is between 48.91 and 58.09.” (In reality, if we sample a single mean, we will 
likely get a slightly different estimate of the SE of the mean, but we will continue to use the 
value 4.59 for this illustration.)

Sixty-eight percent isn’t the most convenient number to use. It would be more convenient 
to talk about 90% of the time (or 95%). Because we know the properties of a normal curve, 
however, it is easy to make this transformation. To encompass 90% of the curve, we multiply 
the SE by 1.65; to encompass 95% of the normal curve around the mean, we multiply the SE 
by 1.96. We call these bands of error around our means (or any other statistic) confidence 
intervals, the 90% confidence interval (CI), or the 95% CI. CIs are extremely useful for giving 

Figure B8 Means of 200 random samples of five cases each, Science test, NELS data.
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you an estimate of the likely range of a parameter and how error laden our estimate of the 
parameter likely is.

The standard error of a statistic can also be used to test its statistical significance in a 
variation of the t test. You may be most familiar with the t test as a test of differences between 
group means (discussed later in this appendix), but the t test is also a general statistical 
formula, in which a statistic (e.g., a regression coefficient) is divided by its standard error:  
t = statistic/SEstatistic. We can test all sorts of questions with the t test. The t in the t test is 
actually a series of distributions depending on sample size (with large sample sizes, the t dis-
tribution mirrors the z distribution), and we can look up in a table (or Excel or a probability 
calculator) the probability of obtaining a given t with a certain sample size. If the probability 
of obtaining a t by chance is small (say less than a 5% chance), we say that the parameter is 
statistically significant.

Degrees of Freedom

Most statistics that we use are accompanied by degrees of freedom (df ). Conceptually, degrees 
of freedom are what the name suggests, the degree to which a given parameter is free to vary. 
Return to the example where we drew five cases from the NELS data (the Science test) and 
calculated a mean. The values of the five cases were 45.23, 47.66, 47.38, 60.39, and 66.84, and 
the mean was 53.50. Given the value of this mean, how many of the five cases could have 
different values? Say the first value was 44.23 instead of 45.23. Could we still get the same 
mean? Yes, we could if, for example, the final value is 65.84 instead of 66.84. In fact, four of 
the five scores (N—1) could change and we could still get the same mean (by adjusting the 
final score). This is the essence of degrees of freedom—how much maneuvering room you 
have in your data or the number of independent pieces of information in your data—and 
the reason we often use N—1 in formulas instead of N. As you will see in Part 2, SEM is an 
exception to the use of N for calculating degrees of freedom.

CORRELATIONS

Correlation coefficients describe the degree to which two variables are related, that is, the 
degree to which they are co-related. Correlation is one of the most fundamental concepts 
in statistics, and it underlies everything presented in this text. But think for a minute, if the 
correlation coefficient did not exist, how could you come up with such an index, a single 
number that accurately describes the degree to which two variables are related?

You’d probably start by graphing the two variables together. Figure B.9 shows a scatterplot, 
a graph of a group of high school students’ scores on two variables: scores on an intelligence 
test and scores on an achievement test. Note the data point in the upper-right corner of the 
plot. This point belongs to the 24th individual in the data set; that person obtained a score 
of 145 on the Intelligence test (the horizontal or X-axis), and a score of 86 on the Achieve-
ment test (the vertical or Y-axis). Each other data point represents one person’s scores on 
the two measures. Would you say that these two variables are fairly highly co-related? Yes; it 
is apparent that people who obtain a high score on the Intelligence test also generally earn a 
high score on the Achievement test, and those who score at a low level on one test generally 
score at a low level on the other test. This, then, is one aspect we might look for in a correla-
tion coefficient: it should tell us the degree to which the rank order stays the same for the two 
variables, whether high scores on one variable are matched with high scores on the other, 
and so on. 

We could get a little more sophisticated and a little clearer, however, by making sure our 
two variables are on the same scale. Figure B.10 shows a scatterplot of the same two variables, 
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Figure B9 Plot of 30 people’s scores on an Intelligence and an Achievement test. The scatterplot shows 
that the two tests are closely related.
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after converting them to z scores. Now the two scales are directly comparable. And we can 
now ask the degree to which the z scores stay the same on the two tests. This reasoning is 
likely similar to that of Karl Pearson when he invented what we now know as the Pearson 
product moment correlation: to what extent do the z scores for two different measures stay 
the same versus the extent to which they differ?

Given this description of the correlation coefficient, let’s develop a formula. The kind of 
formula we’re talking about would index the degree to which two sets of z scores stay the 
same versus differ. In other words, we are interested in the average difference in these scores. 
We could subtract each person’s z score on one instrument from his or her z score on the 
other to get an idea of this degree of difference. Then square these values (because if we were 
simply to sum them, the negatives would cancel out the positives), sum them, and divide by 
N—1 (see the discussion of variance for the use of N—1 instead of N). Our formula is now

∑
−

−

( )z z

N
x y

2

1

(Cohen et al., 2003). If you calculate this coefficient for the data shown in the scatterplot, 
you obtain a value of .44 (the data for this example are contained in the files “IQ Achieve.sav” 
and “IQ Achieve.xls” on the Web site www.tzkeith.com).

What does this value mean? If the two measures are perfectly related, that is, there is no 
difference at all in the z scores, our formula returns a value of zero. If, in contrast, the two 
scales are perfectly inverted so that every person who scored high on the first test scored 
low on the second test (and vice versa), we obtain a value close to 4. Finally, if the two tests 
are unrelated, with scores on the Intelligence test providing no information whatsoever 
for scores on the Achievement test, then our formula produces a value around 2. Our scale 
ranges from 0 to 2 to 4. Although we are getting close, this is not a very logical scale, so let’s 
make a few adjustments.

We can easily transform the scale into one that makes more sense:

r
z z

N
x y= − ∑
−

−











1
1

2 1

2( )

We divide the previously obtained coefficient by 2 and subtract that value from 1. With 
these changes, our correlation coefficient is .778 (r = .778). Furthermore, our new correla-
tion coefficient is much more logical. It ranges from 0, meaning that the two variables are 
unrelated, to 1, meaning that the two variables have the exact same z scores. In addition, 
the scale tells the direction of the relation. If it is positive, this means that high scores on 
one scale are paired with high scores on the other scale. If it is negative, high scores on one 
scale go with negative scores on another scale.

Another formula for r that also makes it obvious that we are comparing z scores is

r
z z

n
x y=

∑

−1

We will not normally calculate r using either of these formulas (there is a formula that 
allows some computational short-cuts), but they make it obvious that we are looking for 
similarities and differences in the z scores of the two scales (for more detail, see Cohen et al., 
2003). Even better, we can calculate the correlation coefficient using a statistical program. 
Let’s check the value above against the value calculated by SPSS. This value is also .778, as 
shown in Figure B.11.
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The Pearson correlation coefficient can range from -1.0, suggesting a perfect relation, 
but with high scores on one scale paired with low scores on the other scale, to +1.0, suggest-
ing a perfect positive relation. A correlation of zero between the two scales would suggest 
no relation between the z scores; that is, the z scores between the two tests are unrelated. 
These relations are illustrated in Figures E.12 through E.14, which show scatterplots of 
large negative (B.12, r= -.905) near zero (B.13, r =-.067), and large positive (B.14, r =.910) 
correlations. 

Statistical Significance of r

Correlation coefficients can be tested for statistical significance using the formula 

t r N r= − −2 1 2/ . You can then look up the value of t with N—2 df to determine how 
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Figure B11 Correlation (and its statistical significance) of Intelligence and Achievement scores.
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Figure B12 Scatterplot of a high negative correlation (r = –.905).
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Figure B13 Scatterplot of a near zero correlation (r = –.067). The two scales are virtually unrelated.
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Figure B14 Scatterplot of a high positive correlation (r = .910).
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likely it is to get a value of this size given a “true” population value of zero. Using the cur-
rent example, the correlation between an Intelligence and an Achievement test, we obtain a 
t value of 6.56.

t
N

r
=

−

−

=
−

−

=

=

2

1
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with 28 df. The correlation is indeed statistically significantly different from zero (p < .001).
In your reading, you will come across other varieties of correlation coefficients, such as 

Spearman’s rho and the point–biserial correlation. Spearman’s rho is appropriate when the 
variables are rankings; the point–biserial correlation is appropriate when one variable is 
continuous and the other dichotomous. How are they calculated? In fact, these two types 
of correlations (along with phi, a correlation with two dichotomous variables) are simply 
short-cuts for the correlation coefficient we derived above, Pearson’s r. They are holdovers 
from the days when we calculated statistics by hand and, given the nature of the data (e.g., 
dichotomous), one could take a few short-cuts in the calculation. In this era of computers, 
you can calculate these three types of correlations just as easily using the standard r. Stated 
differently, these three types of correlations are really no different than Pearson r, but with 
different types of data. For more information, see Howell (2010).

T-TESTS

If you come to this book with a background in psychology or education, you may well have 
more experience with t tests and analyses of variance than with regression. It is likely, for 
example, that much of the research you read uses these methods. It is easy to think that these 
methods that are so appropriate for experimental research do something fundamentally dif-
ferent than does regression. This is not the case; the t test and ANOVA are simply subsets of 
multiple regression, illustrated early in this text. Here I will briefly review the use of these 
methods and illustrate them with computer output.

These statistical analyses (t tests and ANOVA) are especially useful in experimental 
research, in which participants are assigned to one group or another and given different 
experimental treatments. The primary difference between the t test and ANOVA is that a 
t test is appropriate when there is only one independent variable and there are only two 
groups, whereas ANOVA can be used with more than two groups and more than one IV.

As an example, suppose you were interested in the effects of cognitive behavior therapy 
(CBT) on the depressive symptoms of adolescent girls. Perhaps you set up an experiment in 
which each girl from a sample of 40 depressed girls is assigned, at random, to a CBT group 
or to a waiting list (members of which will receive treatment following the experiment if the 
treatment proves effective). The simulated data are included in the dataset “t test.sav” and “t 
test.xls” on the Web site. Some of the cases are shown in Table B.1. The first column shows 
the group (1 = experimental, or CBT, and 0 = control, or wait list), and the second column 
shows the girls’ scores on a measure of depressive symptoms following treatment (a high 
score represents more depressive symptomology and thus is bad).
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Figure B.15 shows a portion of the results of a t test conducted on these data using SPSS. 
After treatment, the average score for the control group was 59.65 on the measure of depres-
sive symptoms versus an average score of 49.25 for the experimental group. Given that a 
high score on the measure represents greater depression, the experimental group indeed 
showed less depression than the control group. Is this difference between groups statistically 
significant? The second table in the figure shows the results of the t test. The t associated 

Table B.1 Portion of the Data from the t Test Example

Group Depress

0 66
0 63
0 44
0 56
0 62
0 65
0 35
0 62
0 76
. .
. .
. .
1 60
1 56
1 59
1 47
1 47
1 49
1 45
1 63
1 57
1 30

Group Statistics

20 59.65 9.599 2.146

20 49.25 10.915 2.441

GROUP  Treatment group
0  Control

1  CBT, Experimental

DEPRESS  Depressive
symptoms

N Mean Std. Deviation
Std. Error

Mean

Independent Samples Test

3.200 38 .003 10.40 3.250 3.820 16.980
Equal variances
assumed

DEPRESS  Depressive
symptoms

t df Sig. (2-tailed)
Mean

Difference
Std. Error
Difference Lower Upper

95% Confidence
Interval of the

Difference

t-test for Equality of Means

Figure B15 t-test results for the simulated CBT therapy experiment.
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with the difference between groups was 3.20. With 38 (N—2) degrees of freedom, the prob-
ability of obtaining a t this large by chance is .003, or 3 out of 1000. Using common rules of 
thumb for statistical significance, the difference between groups was indeed statistically sig-
nificant. Because girls were assigned at random to the two groups, we have effectively ruled 
out other plausible explanations for the difference (e.g., that girls who received treatment 
were less depressed to start with) and can conclude that the CBT treatment was probably 
indeed effective. (In this book we will come to call such ruling out of alternative explanations 
by a different name: ensuring that there are no common causes of the presumed cause and 
the presumed effect.)

The general formula for a t test is t = (Me – Mc)/SEe–c or the difference in means between 
the experimental and control group divided by the standard error of that difference. It really 
doesn’t matter which group is subtracted from which, because you are primarily interested 
in the absolute value of t. The df are N—2.

Although this process of comparing means seems very different from the process of cor-
relating two variables, they are, in fact, the same process. As I will show in the main text, you 
will get the same essential results if you correlate the two variables (group and depressive 
symptoms scores) that we got with the t test.

Effect Sizes

It is interesting to know that the two groups are statistically significantly different, but is the 
difference large, small, or somewhere in between? This is, in my opinion, one advantage of 
regression approaches: with multiple correlation and standardized regression coefficients, 
we automatically get an index of the magnitude of the effect. There are a number of mea-
sures of effect size that are common for two-group experimental research; the most common 
is likely d. The formula for d is d = (Me – Mc)/SD or the difference between the two groups 
divided by the overall standard deviation (think of d as somewhat like a z score). For the 
present example, d is .910 [d =(49.25 – 59.65)/11.431]; ignore the sign). According to com-
mon rules of thumb, d’s above .80 are considered large (small = .20, medium = .50, large = 
.80; Cohen, 1988), although it is possible and desirable to have different rules of thumb for 
specific areas of research. According to these generic rules of thumb, CBT therapy in our 
simulated data had a large effect on depressive symptoms.

ANOVA

Analysis of variance is appropriate when there are more than two groups in an experiment or 
when there is more than one independent variable. It can also be used to analyze data from 
experiments with one IV and only two groups and will give the same results as the t test.

Consistency with the t Test

Figure B.16 shows the results of an ANOVA for the therapy–depression example above. The 
lower table shows that for the ANOVA, like the t test, the difference between the two groups 
on the posttest was statistically significant. The F statistic was 10.239 with 1 and 38 degrees 
of freedom; such an F is unlikely to occur if there are no real differences between groups  
(p = .003). The F is equal to t 2 and shows the same level of statistical significance as does the 
results of the t test.

The general formula for F is F
V
V= betweengroup

withingroup
, the variation between groups divided by the 

average variation within groups. You can actually calculate the variance of the group means 
(times the n in each group) to get the Vbetween and take a weighted average of the variances of 
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the groups to obtain the Vwithin. F statistics require two values for degrees of freedom, gener-
ally corresponding to the treatment and error (within group). The total df for the ANOVA is 
equal to N—1. The df for the treatment is the number of groups minus 1, and the df for the 
error term is equal to the dftotal—dfgroup.

It may seem that we are doing something different with a t test, which compares 
group means, versus ANOVA, which analyzes variances. But the general formula for F above 
shows that the variance in the numerator of the equation is the variance of group means. Yes, 
the processes are essentially the same. I will demonstrate in the text that ANOVA can 
be accomplished through multiple regression. As you read the text itself, you should note the 
general similarity of the formula for F in ANOVA and that for F for regression. Both divide the 
variance explained by the independent variable by the variance left unexplained.

Effect Sizes, h2 and f 2 

A number of measures of effect size are available for ANOVA. Shown in Figure B.16 is eta 
squared (η2 = .212). η2 is a great measure of effect size for our purposes, because as we will 
see, it is equal to R2 from a regression solution to the same problem. Common rules of 
thumb for η2 are small = .01, medium = .10, and large = .25. Another common measure 
of effect size, Cohen’s f (or f 2) may be calculated from η2 using the formula f 2

1

2

2=
−
η

η( )
. As 

noted in Chapter 4, a common rule of thumb for f 2 is that .02 represents a small effect, .15 a 
medium effect, and .35 a large effect (Cohen et al., 2003, p. 95).

Factorial ANOVA

To take our therapy–depression example a little further, suppose you were interested in 
whether CBT had positive effects for depressed adolescent boys as well as girls. You could 
conduct a new experiment using both boys and girls. You are not sure, however, whether CBT 

Between-Subjects Factors

Control 20

CBT,
Experimental

20

0

1

GROUP  Treatment
group

Value Label N

Descriptive Statistics

Dependent Variable: DEPRESS  Depressive symptoms

59.65 9.599 20

49.25 10.915 20

54.45 11.431 40

GROUP  Treatment group
0  Control

1  CBT, Experimental

Total

Mean Std. Deviation N

Tests of Between-Subjects Effects

Dependent Variable: DEPRESS  Depressive symptoms

1081.600 1 1081.600 10.239 .003 .212

4014.300 38 105.639

5095.900 39

Source
GROUP

Error

Corrected Total

Type III Sum
of Squares df Mean Square F Sig.

Partial Eta
Squared

Figure B16 ANOVA results for the simulated CBT therapy experiment. The results are the same as for 
the t-test, although F = t2.
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will have the same effect for both sexes, so you add Sex as a second independent variable. In 
the parlance of ANOVA, you now have a design appropriate for analysis via a 2 × 2 factorial 
ANOVA. The analysis will determine the effect of CBT, the effect of Sex, and whether there 
are differential effects of CBT for boys and girls (the interaction between Group and Sex in 
their effects on Depressive Symptoms).

Figure B.17 shows some of the output from the 2 × 2 ANOVA. The data are in the files “cbt 
2way.sav” and “cbt 2way.xls” on the Web site. As shown in the bottom table of the figure, Group 
(CBT versus Control) had a medium to large effect on Depressive Symptoms in these simu-
lated data and this effect was statistically significant (η2  = .192, F = 18.091 [1, 76], p < .001). An 
examination of the means shows that adolescents in the experimental (CBT) group had fewer 
depressive symptoms at posttest than did the control group. Sex had a small effect that was not 
statistically significant (p = .069); nor was the interaction statistically significant (p = .563).

The data are graphed in Figure B.18, an excellent way to summarize data from this type 
of experiment. It is clear that both boys and girls in the experimental group benefited from 
the CBT therapy. It appears that boys in both groups show somewhat fewer symptoms than 
do girls, but the ANOVA tells us that this difference is not statistically significant. The fact 
that the two lines are basically parallel reaffirms the nonsignificant interaction term from the 
ANOVA and shows that CBT had similar effects for both boys and girls. 

I hope this quick review has gotten your mind back into statistics so that you are ready 
to begin exploring multiple regression and structural equation modeling. If you need addi-
tional review, Howell (2010) is excellent. For an even more gentle review, Kranzler (2011) is 
an excellent resource.

Between-Subjects Factors

Control 40

CBT 40

Girls 40

Boys 40

.00

1.00

GROUP  CBT
vs Control

.00

1.00

SEX  Girls vs
Boys

Value Label N

Descriptive Statistics

Dependent Variable: DEPRESS  Depressive Symptoms

60.500 11.4455 20

54.650 13.0557 20

57.575 12.4754 40

48.850 8.2798 20

45.800 9.7257 20

47.325 9.0480 40

54.675 11.4900 40

50.225 12.2149 40

52.450 11.9936 80

SEX  Girls vs Boys
.00    Girls

1.00  Boys

Total

.00    Girls

1.00  Boys

Total

.00    Girls

1.00  Boys

Total

GROUP  CBT vs Control
.00  Control

1.00  CBT

Total

Mean Std. Deviation N

Tests of Between-Subjects Effects

Dependent Variable: DEPRESS  Depressive Symptoms

2101.250 1 2101.250 18.091 .000 .192 18.091 .987

396.050 1 396.050 3.410 .069 .043 3.410 .446

39.200 1 39.200 .337 .563 .004 .337 .088

8827.300 76 116.149

11363.800 79

Source
GROUP

SEX

GROUP * SEX

Error

Corrected Total

Type III Sum
of Squares df Mean Square F Sig.

Partial Eta
Squared

Noncent.
Parameter

Observed
Powera

Computed using alpha = .05a. 

Figure B17 Results of a factorial ANOVA to compare the effects of CBT versus no therapy on the 
depressive symptoms for boys and girls.
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Figure B18 Graph of means for the factorial ANOVA example.
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Appendix C
Partial and Semipartial Correlation

In earlier chapters we touched on the topic of semipartial correlations and noted how they 
are related to ΔR2 and to t. I also mentioned partial and semipartial correlation when we first 
raised the issue of the meaning of “controlling for” in Chapter 2. In this appendix, we will 
focus in more detail on the topics of partial and semipartial correlation. I have placed this 
topic in an appendix for several reasons. It does not really fit in with the flow of the other 
chapters, and it is a topic that will not be of interest to all readers of the text. In addition, 
although the topic fits better in Part 1 of the text, it will be more understandable following 
an introduction to path and SEM models.

PARTIAL CORRELATIONS

Partial correlations are correlations between two variables, with other variables taken into 
account. You may also hear partial correlations described as the correlation between two 
variables with the effects of other variables removed or other variables controlled. Let’s use 
an example to illustrate.

Example: Optimism and Locus of Control

Figure C.1 shows the correlations among several variables from the NELS data. Optimism is 
a composite I created from a series of 11 questions about students’ outlook toward the future 
(F1S64A through F1S64K; note that F1S64L was not used): “Think about how you see the 
future. What are the chances that:

You will graduate from high school?
You will go to college?
You will have a job that pays well?
You will be able to own your own home?
You will have a job that you enjoy doing?
You will have a happy family life?
You will stay in good health most of the time?
You will be able to live wherever you want in the country?
You will be respected in your community?
You will have good friends you can count on?
Life will turn out better for you than it has for your parents?”
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Students with high scores on the composite had a fairly optimistic view of the future, 
whereas those with low scores were more pessimistic about the future. A dichotomized ver-
sion of this variable was used in Chapter 10 to illustrate logistic regression. F1Locus2 is a 
locus of control scale; students with an internal locus of control had high scores, whereas 
those with an external locus had low scores. Par_Inv is a measure of parent involvement in 
education, defined as the educational aspirations parents have for their children along with 
the extent that they communicate with their children about school and education. BySES 
and ByGrads are the SES (Family Background) and GPA composites we have used previously.

You could easily create this composite as the mean of the 11 items, but here I have used 
a subset of the NELS data that just includes the relevant variables. The reason for doing so 
was to create a dataset with no missing data so that all of the different methods below would 
treat the missing data in the same way (listwise deletion of missing data). With different 
methods used some of the estimates of partial and semipartial correlations would differ 
across methods. The data are in the file “nels optimism partial 11 item.sav” on the website 
(www.tzkeith.com).

The output shown in Figure C.1 is from the SPSS Partial Correlation procedure. The 
top half of the table shows the correlations among the variables used in the analysis, with-
out controlling for any other variables. Thus the first column, under “Control Variables” 
says “none” for this portion of the Table. Previously in this text, I noted that simple Pear-
son correlation coefficients are sometimes called zero-order correlations. Thus, the note 
at the bottom of this table labels these correlations as zero-order (Pearson) correlations. 
This simply means that these are correlations with no other variables controlled. The pri-
mary correlation of interest is between the variables Optimism and Locus of Control: .36. 
Adolescents who have a more internal locus of control are also more optimistic. Note also, 
however, that these primary variables of interest also show small to moderate correlations 
with the other variables, most in the .2 to .3 range. Thus, it is likely that once we control 
for, or remove the effects of, these variables the correlation between Optimism and Locus 
will decrease. 

Correlations

.299

.000
799

.204

.000
799

.364

.000
799

.315

.000
799

1.000
.
0

-none-a

par_inv Parent
Involvement & byses
SOCIO-ECONOMIC
STATUS COMPOSITE &
bygrades GRADES
COMPOSITE

optimism Level of
optimism, 10th grade
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Significance (2-tailed)
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COMPOSITE
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CONTROL 2
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bygrads
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COMPOSITE

Cells contain zero-order (Pearson) correlations.a. 
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.204

.000
799

byses SOCIO-
ECONOMIC STATUS
COMPOSITE

Correlation
Significance (2-tailed)
df

1.000
.
0

.342

.000
799

.253

.000
799

.391

.000
799

.299

.000
799

bygrads GRADES
COMPOSITE

Correlation
Significance (2-tailed)
df

.284

.000
796

1.000
.
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Significance (2-tailed)
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.
0
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Significance (2-tailed)
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Figure C.1 Zero-order correlations among Optimism, Locus of Control, Parent Involvement, SES, 
and Grades. The lower half of the table shows the partial correlation of Optimism and Locus of Con-
trol with the other variables controlled, or “partialed out.”
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The lower portion of Figure C.1 shows the partial correlation between Optimism and 
Locus, controlling for Parent Involvement, SES, and base year GPA. As expected, once these 
background variables are controlled, the partial correlation is lower than the zero-order 
correlation (.284, or .28 rounded). I’ll symbolize this partial correlation as prOptimism–Locus · 

Parent,SES,Grades = .28 with the pr symbolizing partial correlation and the dot symbolizing “con-
trolling for. . . .” If this sounds a lot like regression coefficients, it should. We spoke of the 
coefficients in MR as representing the effect of one variable on another, controlling for one 
or more background variables. These regression coefficients from multiple regression are 
sometimes also referred to as partial regression coeffi cients. The difference is that partial 
correlations are correlations; that is, they have no direc tional quality, no implication of cause 
and effect or the prediction of one variable from another. In the introduction to path analysis, 
I referred to an agnostic model; partial correlations are like agnostic regression coefficients.  

Understanding Partial Correlations

If you recall our initial discussions of multiple regression, the phrase “with the effects of . . . 
removed” should also sound familiar. Recall that in Chapter 3 we used this phrase to describe 
the residuals. There we described the residual from the regression of Grades on Homework 
and Parent Education as representing Grades with the effects of Homework and Parent Edu-
cation removed. Are partial correlations, then, related to the residuals in some way? Yes. One 
way of calculating partial correlations is to regress each variable of interest (Optimism and 
Locus) on the control variables (Parent Involvement, SES, and Grades) and to save the resid-
uals. These residuals then represent Optimism and Locus of Control with the effects of the 
control variables removed. The correlation between these two residuals is then equivalent to 
the partial correlation of Optimism with Locus, with the effects of Parent Involvement, SES, 
and Grades removed. The correlation between the Optimism and Locus residuals (with the 
effects of SES, Parent Involvement, and Grades removed from each) is shown in Figure C.2; 
the value (.28) is the same as the partial correlations in Figure C.1. 

Figure C.3 demonstrates the relation between residuals and partial correlations using 
path analysis. Recall that the disturbances in path analysis are the same as the residuals in 
MR. Thus the disturbance d1 represents Optimism with SES, Parent Involvement, and GPA 

Correlations

.284**1

.000

801801

1.284**

..000

801801

Pearson Correlation

Sig. (2-tailed)

N

Pearson Correlation

Sig. (2-tailed)

N

Opt_Res Optimism
Unstandardized Residual

Loc_Res Locus
Unstandardized Residual

Opt_Res
Optimism

Unstandardized
Residual

Loc_Res
Locus

Unstandardized
Residual

Correlation is significant at the 0.01 level (2-tailed).**. 

Figure C.2 The correlation of Optimism and Locus residuals (controlling for SES, Grades, and Parent 
Involvement) is equal to the partial correlation between Optimism and Locus, controlling for these 
background variables.
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controlled; d2 represents Locus with these three background variables controlled. The cor-
relation between these disturbances, then, is the partial correlation of Optimism with Locus 
of Control, with SES, Grades, and Parent Involvement taken into account, or controlled. 
Figure C.4, the solved path model, shows that the value .28 is again the same as the par-
tial correlations from the partial correlation procedure and from the correlation between 
residuals. 

Uses of Partial Correlations

Why would you use partial correlations? One potential reason is when you want to take obvi-
ous control variables into account without making causal statements about the two variables 
of interest. Alternatively, you may be interested in whether the correlation between two vari-
ables is spurious, the product of each being affected by one or more common causes. To use 
the present example, you may be interested in whether the correlation between students’ lev-
els of optimism and their locus of control is nonspurious or the extent to which the correla-
tion remains after taking into account the background variables (potential common causes) 
of SES, Parent Involvement, and Grades. From an explanatory standpoint, you might be 

Figure C.3 Partial correlation in path analytic form. The correlation between the disturbances (resid-
uals) is a partial correlation.

Family
Background

Parent
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Locus of
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d21

Eighth Grade
GPA

Optimism

d1
1

Parent
Involvement
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Control

d2

Eighth Grade
GPA

Optimism

d1.044

.141

.198

.168

.219

.086

.342

.391

.419

.284

Family
Background

Figure C.4 Solved path model shows the equivalence of the partial correlation with the estimates in 
the previous figures.
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interested in the effects of all these variables on each other, but be unable to decide whether 
optimism affects locus of control or the reverse. Although the model shown in Figures C.3 
and C.4 will not help you decide which variable was the cause and which the effect, it will 
allow you to determine that the variables are still related in some way, after controlling for 
other relevant variables (assuming these are the relevant variables). Another possible mean-
ing of partial correlations in the path models is that we recognize that there may also be other 
common causes of these two variables not taken into account in the model.

Partial correlations are also sometimes used in research on mediation (cf., Baron & Kenny, 
1986). As discussed in both Parts 1 and 2 of this text, I think most questions of mediation are 
more easily tested via the indirect effects in path analysis and structural equation modeling, 
however.

Semipartial Correlations

With semipartial correlations (also known as part correlations), the effects of the back-
ground or control variables have been removed from only one variable of interest. An 
example is shown in Figure C.5, which illustrates the semipartial correlation of Locus with 
Optimism, with the effects of SES, Parent Involvement, and GPA removed from Optimism 
(but not removed from Locus of Control). The correlation between the disturbance/residual 
of Optimism and the variable Locus of Control is equivalent to this semipartial correlation:  
srLocus–(Optimism•Parent,SES,Grades) = .27. (In this method of representation, the parentheses around 
both Optimism and the control variables illustrates that the control variables are partialed 
from Optimism, but not Locus of Control; the sr stands for semipartial correlation.) 

Given this description of semipartial correlations, it should also be possible to compute 
them using the residuals from multiple regression. It is. Again, our interest is in the correla-
tion between Locus of Control and Optimism, with the background variable effects removed 
from Optimism. This means that we should correlate the Optimism residuals (SES, Grades, 
and Parent Involvement controlled) with the original Locus of Control variable. The value 
.271 is shown in Figure C.6. This value is the same as that shown in the path model.

Many statistics programs do not compute semipartial correlations directly; there is, for 
example, no semipartial correlation procedure in SPSS. In Chapter 5, however, you saw sev-
eral methods of getting semipartial correlations as a result of MR output. It is possible in 
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Figure C.5 Semipartial, or part, correlations in path analytic form. The effects of the control variables 
have been removed only from Optimism, not Locus of Control. The semipartial correlation is equal to 
the correlation between the Optimism disturbance and the Locus variable.
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some programs, for example, to request semipartial correlations as a part of the MR output. 
Recall, also, that squared semipartial correlations are equivalent to the unique variance of a 
variable entered last in a regression equation, that is, ΔR2.

The only tricky part about using MR to calculate semipartial correlations is understand-
ing which of the two variables being correlated has background variables controlled and 
which does not. Unlike partial correlations, semipartial correlations are not symmetric. That 
is, srLocus–(Optimism • Parent,SES,Grades) ≠ srOptimism–(Locus • Parent,SES,Grades). When using MR to calculate 
semipartial correlations, the outcome or dependent variable is uncontrolled (or outside the 
parentheses), whereas the variable controlled is considered one of the predictor variables. 
From Chapter 5: “Conceptually, a semipartial correlation is the correlation of Y with X1, 
with the effects of X2, X3, and so on, removed from X1. It may be symbolized as sry-(1 • 23), with 
the parentheses showing that the effects of X2 and X3 are removed from X1, but not from Y” 
(p. 88). Thus, to calculate srLocus–(Optimism • Parent,SES,Grades), we would need to regress Locus of 
Control on SES, Parent Involvement, Grades, and Optimism.

I regressed Locus of Control on SES, Parent Involvement, and Grades in a simultaneous 
regression and then sequentially added Optimism to the regression. Figure C.7 shows that 
the change in R2 for the addition of Optimism was .073. Recall that the semipartial correla-

tion is equivalent to ∆R2 270, .or .073= , again consistent with other estimates within 
errors of rounding. Think about what this means: The semipartial correlation squared is 
equal to the unique variance that Optimism explains in Locus of Control, after the other 
variables have been taken into account. This should make sense when you focus on Fig-
ure C.5 as well. We’ve already removed any effects that SES, Grades, and Parent Involvement 
have on Optimism; what then is the unique aspect that Optimism can explain in Locus of 
Control? 

Figure C.8 shows the table of coefficients from the second part of this same regression. 
The final three columns of the table list the original correlation between each of the four 
variables (SES, Grades, Parent Involvement, and Optimism) and Locus; the partial cor-
relation between each variable with Locus, with the other three variables partialed out of 
both the dependent and respective independent variables, and the semipartial (part) cor-
relation of each variable with Locus, with the other three variable removed only from the 
independent variable side of the equation. Thus, the first part correlation (Optimism, .271, 
bolded), shows the semipartial correlation of Optimism with Locus of Control, with the 
effects of SES, Grades, and Parent Involvement removed from Optimism. The coefficient 

Figure C.6 Calculating semipartial correlations via residuals. The Locus of Control variable is cor-
related with the Optimism residual.
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Correlation is significant at the 0.01 level (2-tailed).**. 
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for Parent Involvement, in turn, shows the semipartial correlation of Parent Involvement 
with Locus of Control, with SES, Grades, and Optimism removed from Parent Involve-
ment, and so on. 

Finally, and as noted in Chapter 5 (p. 107, note 1), it is possible to calculate the semipartial 
correlations from the values of t given in the output for each coefficient:

sr t
R

N ky( )1 234

21

1
⋅ =

−
− −













For the Locus of Control–Optimism semipartial correlation, the value of t (from Figure C.8) 
is 8.366 (also bolded), and the equation is

sr t
R

N kLocus-(Optimism SES,Grades,Parent)⋅ =
−
− −

=
−

1

1

8 366
1 16

2

.
. 77

801 4 1

271

− −
= .

(with R2 and df from Figure C.7).

Figure C.7 Calculating semipartial correlations using multiple regression. The square root of the 
change in R2 when Optimism is entered last in a regression is equal to its semipartial correlation with 
Locus (the outcome), with the effects of the background variables removed from Optimism.
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Figure C.8 Additional output from the multiple regression. Some programs (e.g., SPSS) will produce 
semipartial correlations on request. It is also possible to calculate semipartial correlations from the 
t values.
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USES OF SEMIPARTIAL CORRELATIONS

In my experience, the most common use of semipartial correlations is in attempts to 
describe the unique variance of a predictor in accounting for some outcome. Given the 
adequacy of the variables in the model, the squared semipartial correlations provide esti-
mates of the unique variance of each independent variable in explaining the outcome. 
The sr2 values are equal to the ΔR2 values obtained when each variable is added last in the 
regression equation.

Semipartial correlations (not squared) can also be used to describe the relative importance 
of the variables in a regression. In such usage (and, again, given the adequacy of the regression 
model), they are interpreted in much the same way as b’s, as representing the relative direct 
effects of each variable on the outcome. Indeed, some authors recommend the semipartial 
correlations over regression coefficients for this purpose (e.g., Darlington, 1990).

Conclusion

Partial and semipartial correlations are useful adjuncts to multiple regression analysis and 
can be useful procedures by themselves. Although the primary focus of this book has been on 
using multiple regression and related methods in an explanatory fashion, research questions 
do not always fit this mold. We sometimes are interested in the extent to which a set of back-
ground variables explains the existing correlation between two variables, that is, the extent 
to which the relation may be spurious. Alternatively, we may be interested in demonstrating 
that a correlation still exists after controlling for such background variables or that a key 
variable predicts an outcome after controlling for background effects. Partial and semipartial 
correlations are useful in these cases. In this short appendix we have approached these con-
cepts from several different orientations; it is not necessary that you understand all these dif-
ferent methods of obtaining and explaining partial and semipartial correlations. One or two 
of them should resonate so that you feel comfortable with and understand these concepts.
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Appendix D
Symbols Used in This Book

Symbol Definition

a Intercept in a regression equation

AIC Akaike information criterion, a measure of fit in SEM

b Unstandardized regression coefficient

BIC Bayes information criterion, a measure of fit in SEM

CFI Comparative fit index, a measure of fit in SEM

CI Confidence interval

CoVxy  Covariance of X and Y

d   Disturbance in SEM, same as the residual in MR; d is also used to symbolize a 
measure of effect size when comparing two groups in experimental research

df Degrees of freedom

e Error

f 2  A common measure of effect size, used in both ANOVA and MR. Calculable from R2

F  The product of ANOVA, used to test the statistical significance of R2, or the differ
ence between groups in an experiment

g  Number of groups in a categorical variable. g is also commonly used to represent 
a general intelligence factor

k Number of independent variables in a regression

M Mean

MI Modification index in SEM

N Number of participants, sample size

P Probability

r  Correlation coefficient; Pearson product moment correlation; zeroorder correla
tion. r is also sometimes used to represent unique and error variances (or residuals) 
in SEM and CFA

rtt Reliability coefficient

R Multiple correlation coefficient.

R2  Squared multiple correlation. The variance explained in a dependent variable by a 
set of independent variables 
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RMSEA Root mean square error of approximation, a measure of fit in SEM

SD Standard deviation

SE Standard error, as in SE of a regression coefficients (SEb)

sr  Semipartial correlation, equal to ∆R2  when a variable is added last to a regression 
equation

SRMR Standardized root mean square residual, a measure of fit in SEM

ss  Sums of squares, a measure of variation, used to calculate R and determine the 
statistical significance of a regression equation

t  As in t test. t tests are used to test the statistical significance of regression coefficients, 
means, and many other parameters

T scores Standardized scores with a M = 50 and SD = 10

TLI  TuckerLewis index, also known as the NNFI, the nonnormed fit index, a measure 
of fit in SEM

u Unique and error variance in SEM and CFA

V Variance

X An independent variable

Y A dependent variable

Y′  The predicted Y

z  As in z scores. Standardized scores with M = 0, SD = 1. The basis for all other types 
of standard scores

a Alpha, the probability level

b Beta, the standardized regression coefficient

D Delta, used to symbolize change, as in DR2

h2 Etasquared, a measure of effect size in ANOVA that is equivalent to R2

χ2 Chisquare, a common measure of fit in SEM models
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Appendix E
Useful Formulae

Formula Purpose

F
ss df

ss df
= regression regression

residual residual

/

/
Test the statistical significance of a regression

F
R k

R N k
=

− − −

2

21 1

/

( ) /( )
Test the statistical significance of a regression

R
ss

ss
2 = regression

total

Calculate R2

b
M a

M
Y

X

= =
−rise

run
The unstandardized regression coefficient, or the slope of the 
regression line

t
b

SEb

= Test the statistical significance of a regression coefficient

Y a b X b X e= + + +1 1 2 2 General form of a regression equation

β β= =b
SD

SD
b

SD

SD
x

y

y

x

, Converting from standardized to unstandardized regression 
coefficients, and vice-versa

SD V V SD= =, 2 Converting from standard deviation to variance

r
CoV

SD SDxy
xy

x y

= Calculate a correlation from a covariance

β1
1 2 12

12
21

=
−

−

r r r

r
y y Formula for calculating β in a regression with two independent 

variables

R
r r r r r

ry
y y y y

⋅ =
+ −

−12
2 1

2
2

2
1 2 12

12
2

2

1
Formula for calculating R2 in a regression with two indepen-
dent variables



568 • APPENDIX E

f 2 = 
R

R

2

21− Cohen’s f 2, a common measure of effect size, calculated from R2

F
R R k k

R N k
=

− −
− − −

12
2

1
2

12 1

12
2

121 1

/

/( )

Statistical significance for change in R2 (DR2), used to test the 
statistical significance of variables added sequentially to the 
regression equation

f 2 = 
R R

R
y y

y

. .

.

12
2

1
2

12
21

−

−
Cohen’s f 2, a common measure of effect size, calculated from 
change in R2

V r Ve = −( )1 tt

Formula for calculating the error variance from the reliability 
of a measure and its total variance. Used for single-indicator 
latent variables in SEM

r
z z

n
x y=

∑

−1
Formula for the Pearson correlation coefficient
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 accidents, path modeling and 264–5 

 Achievement Effect model 381–2;  see also  peer rejection 

effects on Kindergarten students: latent variable SEM 

example 

 AIC  see  Akaike Information Criterion 

 Akaike Information Criterion (AIC) 301, 311–12 

 Amos (Analysis of Moment Structures) SEM program 

283, 371, 532; homework and math achievement: latent 

means in SEM 425–34, 453; Parent Involvement path 

model using the Amos program 284–9 

 analysis of covariance (ANCOVA) 440, 446; categorical and 

continuous variables and 153–4, 187 

 analysis of variance (ANOVA) 15–17, 182–3; for analyzing 

growth data 510, 512; categorical variables and 111–12, 

126; cognitive behavior therapy (CBT) and 553–6; 

factorial 554–5; latent means in SEM and 424–5; 

regression and 3;  see also   t  tests 

 ANCOVA  see  analysis of covariance 

 ANOVA  see  analysis of variance 

 Aptitude-Treatment Interactions 150–3, 158; steps for 

testing for 152–3;  see also  categorical and continuous 

variables 

 assumptions  see  regression assumptions and diagnostics 

 Attribute-Treatment Interactions  see  Aptitude-Treatment 

Interactions 

  b  (unstandardized regression coeffi cient) 183; versus β 

(standardized regression coeffi cient) 36–8 

 backward elimination regression  see  stepwise multiple 

regression 

 basic review of statistics  see  statistics (basic review of) 

 Bayes Information Criterion (BIC) 301, 311–12, 314; aBIC 

(sample size adjusted BIC) 301, 311–12, 314

  bell or normal curves 541–3 

 benchmarks for statistical significance ( p  < .05 and 

 p  < .01) 540 

 β (standardized regression coeffi cient) 14–15, 183–4; 

direct calculation of 41–2; versus  b  (unstandardized 

regression coeffi cient) 36–8 

 bias: in categorical and continuous variables interactions 

141–50; predictive 142–4, 149–50; research example: 

investigating test bias (curriculum-based assessment, or 

measurement) 144–9 

 BIC  see  Bayes Information Criterion 

 bifactor model (for DAS-II) 357–60 

 bivariate regression  see  simple (bivariate) regression 

 categorical and continuous variables 129–60, 180; analysis 

of covariance (ANCOVA) 153–4; Aptitude-Treatment 

Interactions (ATIs) 129, 150–3, 158; centering and cross 

products 133–4; curriculum-based assessment (CBA), 

or measurement (CBM) example of test bias 144–9; 

effects of categorical subject variables 154–5; extensions 

and other examples 140–1; interactions 132–7; 

interactions and cross products 155; interpretation 

135–7; multiple regression analysis 134–5, 141; 

statistical signifi cance 137–41, 155–7; summary 158, 

186–7; test (and other) bias 141–50, 158; testing 

interactions in multiple regression (MR) 133;  see also  

sex, achievement, and self-esteem: categorical and 

continuous variables example 

 categorical dependent variables  see  logistic regression 

(LR) 

 categorical independent variables 108–60, 532; complex 

110; criterion scaling 118–19, 126–7; dummy variables 

109–16, 122–4, 126–7; Dunnett’s test 114–15; effect 

coding 116–18, 124–7; effects of 154–5; methods and 

issues 125–6; other post hoc tests 115; simple 109–10; 

summary of coding methods 126–7, 186; types of/

description of 108; unequal group sizes 120–5;  see 

also  false memory and sexual abuse: categorical 

variables example; family structure and substance use: 

 Subject Index 
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categorical variables example; sex, achievement, and 

self-esteem example of categorical and continuous 

variables 

 Cattell-Horn-Carroll theory 353 

 causality 19–20, 245, 248–51;veracity of models and 532–3 

 centering 133–4 

 CFA  see  CFA II: invariance and latent means; 

confi rmatory factor analysis 

 CFA II: invariance and latent means 455–92; description 

of invariance testing/subtests with means 455–7; 

factor structure 457; higher-order models/steps 481–5; 

invariance testing steps without means 479–81; single-

group, MIMIC models and MG-MACS approach 485–9; 

step 1: measurement invariance, confi gural invariance 

458–61; step 2: measurement invariance, metric 

invariance 461–3; step 3: measurement invariance, 

intercept invariance 463–9; step 4: measurement 

invariance, residual invariance 469–71; step 5: structural 

invariance, factor variances equal 471–3; step 6: 

structural invariance, factor covariances equal 473; 

step 7: structural invariance, factor means equal 473–4; 

steps (table/summary of) 477–8, 489; summary 489–90, 

524; variance/covariance matrix of measured variables 

474–6, 479;  see also  Kaufman Assessment Battery for 

Children—Second Edition (KABC-II) 

 CFI  see  comparative fi t index 

 CI  see  confi dence intervals 

 Δχ2 224, 298–9, 301, 311–12, 314; versus ΔCFI when 

testing invariance 463, 469

    χ2 224, 294–5, 297, 311–12, 314; in multi-group models 

410–11

  coeffi cients:  b  (unstandardized regression coeffi cient) 

versus β (standardized regression coeffi cient) 36–8; 

regression 32–3;  see also  regression coeffi cients 

 cognitive behavior therapy (CBT), effects of on 

depression symptoms of adolescent girls ( t  tests and 

ANOVA) 551–6 

 collinearity  see  multicollinearity 

 common causes 171, 180, 187, 244; assumption of 318; 

danger of 268–73, 417–19, 516–17; true experiments 

and 273;  see also  continuous independent variables; 

Parent Involvement in high school GPA: path analysis 

example; path modeling/analysis 

 comparative fi t index (CFI) 295–8, 310, 312, 313 

 conditional growth model (explaining growth) 504–8;  see 

also  latent growth models (LGM) 

 confi dence intervals (CI) 13–14, 540, 545–6 

 confi gural invariance model 458–61;  see also  CFA II: 

invariance and latent means 

 confi rmatory factor analysis (CFA) 3, 332–70; adding model 

constraints and  z  values 352–3; additional uses of model 

constraints 363–8; also known as the measurement 

model of latent variable SEM 332–3; defi ning/description 

332–3; hierarchical models and 353–63; latent means 

in SEM and 424–5; model fi t and model modifi cations 

347–53; modifi cation indexes 347–50; residuals 350–2; 

summaries 368–9, 519–20; testing competing models 

342–7;  see also  CFA II: invariance and latent means; 

Differential Ability Scales (DAS-II) CFA example; 

hierarchical models 

 constraining parameters in multi-group models 409–13 

 continuous independent variables: interactions and 

curves 161–81; common cause 171; curvilinear 

regression 172–80; interactions between 161–8; 

language and 171–2; mediation 169–71; moderation 

168–9; probing an interaction between 164–7; 

summary 180;  see also  homework curvilinear effects on 

GPA and continuous variables; TV viewing time and 

effects/interactions on achievement 

 continuous variables, categorizing 18, 167–8, 226–7 

 control variables 108 

 correlated errors 394–5 

 correlation coeffi cients 540 

 correlations 20–1, 546–51; Pearson correlation coeffi cient 

548–9; statistical signifi cance of  r  549, 551; versus 

covariances 292, 293;  see also  partial correlations; 

Pearson correlation coeffi cient; semipartial correlations 

 covariances 20–1; versus correlations 292, 293 

 criterion scaling 118–19, 126–7 

 cross-loading model (for the DAS-II) 342–4 

 cross products 133–4, 161–3;  see also  categorical and 

continuous variables; continuous independent variables 

 curriculum-based assessment (CBA), or measurement 

(CBM) example of test bias 144–9 

 curves  see  continuous independent variables: interactions 

and curves 

 curvilinear regression 172–80;  see also  continuous 

independent variables; homework curvilinear effects 

on GPA: continuous variables example 

 danger in latent variable models 417–20 

 danger in path analysis: common causes and 268–73, 516–

17; dealing with 277–8; paths in the wrong direction 

275–7, 517;  see also  Parent Involvement in high school 

GPA: path analysis example; path modeling/analysis 

 DAS-II  see  Differential Ability Scales (DAS-II) CFA 

example 

 data fi les 537–8; Excel format 537; matrix fi les 537; 

National Education Longitudinal Study (NELS) data 

537–8; plain text fi les 537; raw data fi les 537; structural 

equation modeling (SEM) 537 

 data problems diagnosis 195–200; distance 196; infl uence 

199; leverage 196–9; uses 199–200 

 data requirements, for latent growth models (LGM) 

508–9 

 data sets, working with extant data sets 21–3 

 degrees of freedom ( df ) 183, 292, 294–5, 546; calculation 

steps for 294, 434 
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 dependent variables  see  endogenous (dependent) 

variables; logistic regression (LR) 

  df   see  degrees of freedom 

 diagnostics  see  regression assumptions and diagnostics 

 Differential Ability Scales (DAS-II) CFA example 

333–42; additional uses of model constraints 363–8; 

average covariance matrix for the DAS-II for (ages 5 

through 8) 336; bifactor model 357–60; cross-loading 

model 342–4; description/uses 333; hierarchical 

models 353–63; the initial model: background 335–7; 

the initial model: standardized and unstandardized 

results 337–42; model fi t and model modifi cation 

347–53; structure of 334–5; summary 368–9; testing 

competing models 342–7; three-factor combined 

nonverbal model 344–53;  see also  confi rmatory factor 

analysis (CFA) 

 direct effects 255, 257 

 directionality 303–6;  see also  nonequivalent models 

 discriminant analysis, versus logistic regression 228 

 distributions 541–3 

 disturbances, variance of 283–4 

 dummy variables/coding 109–16; analysis and 122–4; 

latent means in SEM and 436–40; regression analysis 

with 112–13; summary 126–7;  see also  categorical 

independent variables 

 Dunn-Bonferroni post hoc test 115, 122 

 Dunnett’s post hoc test 114–15, 122 

 dynamic modeling 531–2;  see also  longitudinal models 

 Early Childhood Longitudinal Study: latent growth model 

for math scores 493–512; background/description of 

study 493–7; conditional growth model, or explaining 

growth 504–8; data requirements 508–9; other 

methods of analyzing growth data 510–11; steps for the 

model (review) 500; summary 511–12; unconditional, 

simple growth model 497–504; variations in model 

specifi cations 509–10;  see also  latent growth models 

(LGM) 

 effect coding 116–18, 124–5, 126–7 

 effects: in a latent variable SEM 380–1, 400–401; of 

categorical subject variables 154–5, 158; common 

causes and indirect effects 68–70; multi-group models 

413–16; Parent Involvement path model (Amos SEM 

program) 287–9; rules of thumb and 62–3; violence 

and effect for African Americans and whites 140–1; 

 see also  direct effects; indirect effects; total effects; TV 

viewing time and effects/interactions on achievement: 

continuous variables example 

 effect sizes 540, 553; of  n  2  and  f  2  554 

 EM  see  expectation-maximization (EM) algorithm 

 endogenous (dependent) variables 252, 263, 318–19;  see 

also  path modeling/analysis 

 EQS SEM program 282 

 equilibrium 318, 419 

 equivalent models 301–3 

 errors 318–31; assumptions and 318; correlated 394–5; 

latent variable SEM and errors of measurement 327–30, 

394–5; nonindependence of 191–2; of reliability/effects 

of 319–23; summary of 330–1, 518–19; of validity/

effects of 323–7 

 estimation 254–6; full information maximum likelihood 

(FIML) estimation 526–9; maximum likelihood 

estimation 525–6 

 ethnicity latent variable SEM  see  homework on high 

school GPA model: latent variable SEM; multi-group 

homework model across ethnic groups 

 Excel format fi les 537 

 exogenous (independent) variables 252, 263, 318–19, 

419, 518;  see also  path modeling/analysis 

 expectation-maximization (EM) algorithm 528–9 

 explanation, versus prediction 19, 72–3, 184 

 exploratory factor analysis 333 

 extant data sets 21–3 

 factorial analysis of variance (ANOVA) 554–5 

 false memory and sexual abuse: categorical variables 

example 110–20; ANOVA and follow-up 111–12; 

criterion scaling 118–19; Dunn-Bonferroni post hoc 

test 115; Dunnett’s test 114–15; effect coding 116–18; 

Fisher least signifi cant difference (LSD) post hoc test 

115; g—1 dummy variables 115–16; post hoc probing 

113–15; regression analysis with dummy variables 

112–13; was multiple regression necessary? 116;  see also  

categorical independent variables 

 Family Background, Ability, Motivation, and 

Coursework on Achievement: path analysis example 

244–66; background 244–8; cautions 248–50; direct 

effects 255–7; indirect and total effects 257–61; 

interpretation 261; jargon and notation 250–2, 

263; means, standard deviations, and correlation 

among the school learning variables 264; steps for 

conducting path analysis 252–5; summary of 261–4; 

 see also  path modeling/analysis 

 family structure and substance use: categorical variables 

example 120–5; background 120–2; dummy variable 

coding and analysis 122–4; effect variable coding and 

analysis 124–5; Fisher’s LSD, Dunn-Bonferroni, and 

Dunnett’s post hoc tests 122 

 FIML  see  full information maximum likelihood (FIML) 

estimation 

 Fisher least signifi cant difference (LSD) post hoc test 115, 

122 

 fi t measures  see  measures of fi t 

 formative measures 532 

 forward selection regression  see  stepwise multiple 

regression 

  f  2 , effect sizes and 554 

  F  table 183 
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 full information maximum likelihood (FIML) estimation 

526–9 

  F  values 540 

 g—1 dummy variables 115–16, 126 

 growth models  see  latent growth models (LGM) 

 happiness, as a latent variable 535 

 Head Start latent variable SEM example 388–9, 424 

 hierarchical linear modeling  see  multilevel modeling 

(MLM) (or, hierarchical linear modeling) 

 hierarchical models 353–63; bifactor model 357–60; 

comparing the hierarchical models 360–3; higher-order 

model justifi cation and setup 353–4; higher-order 

model results 354–7; total effects 356–7 

 hierarchical regression  see  sequential multiple regression 

 higher-order models: CFA II: invariance and latent 

means and 481–85; steps for testing for invariance of 

(summary) 483–4 

 histograms 541–3 

 homework and math achievement: latent means and 

intercepts in SEM 425–34, 453–4; Amos (Analysis 

of Moment Structures) SEM program 425–34; 

calculating degrees of freedom 434; displaying means 

and intercepts in SEM 425–8; estimation of means and 

intercepts in single group SEM models 428–34; missing 

values 433; related points 432–3 

 homework and math achievement: simple (bivariate) 

regression example 4–15; confi dence intervals 13–14; 

the data 4–6; interpretation 10; regression analysis 

6–9; regression equation 9–10; regression line 10–12; 

standardized regression coeffi cient (Beta) 14–15; 

statistical signifi cance of regression coeffi cients 12–13 

 homework and parent education: example for regressing 

grades on 27–76; assumptions of regression and 

regression diagnostics 54;  b  versus  β  36–8; cautions 

40–1; common causes and indirect effects 68–70; 

comparison across samples 38–41; controlling 

for . . . 35–8; data 27, 28–30; direct calculation of  β  

and  R  2  41–2; fi gural representation 34–5; formal 

interpretations 33; four independent variables 

64–74; least squares 52–3; multiple  R  31; partial and 

semipartial correlations 36; predicted scores and 

residuals 47–50; prediction versus explanation 72–3; 

real-world interpretations 34; the regression 27, 30–1; 

regression coeffi cients 32–3; regression equation = 

creating a composite? 54; regression line 50–1;  R  2  and 

(importance of) 70–2; rules of thumb: magnitude 

of effects 62–3; testing the difference between two 

regression coeffi cients 63–4; three independent 

variables 57–64; two independent variables 26–43; 

why  R  2  not equal to  r  2  +  r  2  44–7;  see also  regression 

assumptions and diagnostics 

 homework curvilinear effects on GPA: continuous 

variables example 173–80; controlling for other 

variables 177–8; the data: homework and homework 

squared 174–5; graphing the curve 175–7; the 

regression 175; testing for additional curves 178–80 

 homework effects on GPA path modeling using SEM 

programs 289–306; comparing competing models 

298–301; equivalent and nonequivalent models 

301–6; longitudinal models 308–9; nonrecursive 

models 306–8; overidentified models 289–98; 

reliability errors and 320–3 

 homework on high school GPA model: latent variable 

SEM 391–408; competing models 401–3; correlated 

errors 394–5; effects on homework, indirect and total 

effects 400–1; fi t indexes 395–6; fi t indexes alternative 

models for 401–3; interpretation 398–9; latent variable 

panel models 406–8; model modifi cations 403–6; 

results 395–8; single-indicator latent variable 394; 

standardized output 395, 397–8; unstandardized 

coeffi cients 397, 399–400; variables/model summary 

391–4;  see also  latent variable SEM; multi-group 

homework model across ethnic groups 

 homoscedasticity 192 

 hot fl ash latent means SEM example 436–53; analyzing 

matrices versus raw data 450–1; calculating degrees of 

freedom 451; comparing the two approaches 446–50; 

MG-MACS approach 440–53; single group/dummy 

variable approach 436–40; testing main effects and 

interactions 448–50 

 identifi cation, path modeling and 251–2 

 independent variables: four in multiple regression 64–74; 

three in multiple regression 57–64; two in multiple 

regression 26–56;  see also  exogenous (independent) 

variables 

 indirect effects 257–61; in a latent variable SEM 380–1, 

400–1;  see also  effects 

 intelligence tests for children  see  Differential Ability Scales 

(DAS-II) CFA example 

 interactions 132–41, 186–7, 425; among latent variables 

522, 530–1; Aptitude-Treatment Interactions (ATIs) 

150–3, 158; cross products and 155; statistical 

signifi cance and 155–7; understanding 138–40;  see 

also  categorical and continuous variables; continuous 

independent variables: interactions and curves; 

moderation; sex, achievement, and self-esteem example 

of categorical and continuous variables 

 intercept invariance model 463–9;  see also  CFA II: 

invariance and latent means 

 intercepts  see  latent growth models (LGM); latent means 

and intercepts in SEM 

 intervening (mediating) variables 273–4 

 invariance testing  see  CFA II: invariance and latent 

means 

 jargon and notation: path modeling and 250–2; summary 

of 263 



SUBJECT INDEX • 587

 KABC-II  see  Kaufman Assessment Battery for Children—

Second Edition 

 Kaufman Assessment Battery for Children—Second 

Edition (KABC-II) 456–90; description of subtests 456; 

factor structure of 457; higher-order models 481–5; 

invariance testing with means 455–79; invariance 

testing without means 479–81; single-group, MIMIC 

models and MG-MACS approach 485–9; summary 

489–90;  see also  CFA II: invariance and latent means 

 language, causal 171–2 

 latent growth curve modeling  see  latent growth models 

(LGM) 

 latent growth models (LGM) 493–513; background/

description 493–7; conditional growth model, or 

explaining growth 504–8; data requirements 508–9; 

meaning and alternative names of LGM intercept and 

slope variables 511; other methods of analyzing growth 

data 510–11; summary 511–12, 524–5; unconditional, 

simple growth model/steps 497–504; variations in 

model specifi cations 509–10;  see also  Early Childhood 

Longitudinal Study 

 latent means and intercepts in SEM 424–54; calculating 

degrees of freedom 434; displaying means and 

intercepts in SEM 425–8; estimation of means and 

intercepts in single group SEM models 428–34; 

missing values 433; multi-group mean and covariance 

structures (MG-MACS) approach 436, 437, 440–54, 

523–4; multiple indicators and multiple causes 

(MIMIC) model 437, 448, 522–3; overview: two 

methods of estimating 434–6; single group/dummy 

variable approach 436–40; summary of 522–4;  see also  

CFA II: invariance and latent means; homework and 

math achievement: latent means and intercepts in SEM; 

hot fl ash latent means SEM example; latent growth 

models 

 latent variables (factors) 252, 283–4, 310; defi ning 328; 

errors of measurement and 327–30, 518–19; happiness 

as 536;  see also  confi rmatory factor analysis (CFA); 

latent variable SEM; structural model; unmeasured 

variables 

 latent variable SEM 328–31, 371–423; assumptions 419; 

competing models 381–4; components of a full latent 

variable SEM/review 371–5; correlated errors 394–5; 

dangers 417–20; error 519; fi t indexes alternative 

models and 401–3; indirect and total effects 380–1; 

initial model results 377–81; the latent SEM model/

understanding the model 328–30; measurement model 

375, 376; mediation 380; model fi t indexes summary 

378, 395–6; model modifi cations 384–6; mother’s 

emotional expression on child outcomes latent variable 

model 421–3; multi-group models 408–17; omitted 

common causes 417–19; panel models 406–8; path 

in wrong direction 419–20; single-indicator latent 

variable 394; standardized results 377–81; structural 

model 375–7; summaries 386–7, 420–21, 520–2; 

unstandardized fi ndings 379–80;  see also  CFA II; 

confi rmatory factor analysis (CFA); homework on 

high school GPA model; latent growth models; latent 

means and intercepts in SEM; multi-group homework 

model across ethnic groups; peer rejection effects on 

Kindergarten students 

 lavann SEM program 383 

 least squares 52–3 

 LGM  see  latent growth models 

 linearity assumption 188;  see also  nonlinearity 

 LISREL (Linear Structural Relations) SEM program 282, 

532 

 logistic regression (LR) (with a categorical dependent 

variable) 214–28; appropriate use of 227–8; 

categorizing a continuous variable 226–7; conducting 

the LR and understanding the output 222–6; multiple 

regression analysis/problems 215–19; predictions and 

214–15; summary 239–40; transforming the dependent 

variable to log odds 219–22; versus discriminant 

analysis 228;  see also  optimism versus pessimism: 

logistic regression (LR) example 

 longitudinal models 308–9, 531–2;   see also   panel models 

 MANCOVA  see  multivariate analysis of covariance 

 manifest or observed variables 252;  see also  measured 

variables 

 MAR  see  missing at random 

 math scores  see  Early Childhood Longitudinal Study: 

latent growth model for math scores 

 matrix fi les 537 

 maximum likelihood estimation 525–6 

 MCAR  see  missing completely at random 

 mean 540–1 

 means and intercepts in SEM  see  latent means and 

intercepts in SEM 

 measured variables 252, 283–4; error and 518; formative 

measures 532; variance/covariance matrix of measured 

variables 474–6, 479;  see also  manifest or observed 

variables 

 measurement invariance steps  see  CFA II: invariance and 

latent means 

 measurement model 375, 376; defi ning 332–3;  see also  

CFA II: invariance and latent means; confi rmatory 

factor analysis (CFA); Differential Ability Scales 

(DAS-II) CFA example; latent variables; latent variable 

SEM 

 measures of fi t 292, 294–8; advice for 310–12; alternative 

models for fi t indexes 401–3; comparing competing 

models 311–12; evaluating a single model 310–11; 

model fi t/fi t index summaries 296, 312; summary of 

latent variable SEM 378, 395–6; three-factor nonverbal 

model (for the DAS-II) 347–53 

 mediation 169–71, 180, 187, 380; intervening 

(mediating) variables in path analysis 273–4;  see 
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also  continuous independent variables; intervening 

(mediating) variables; latent variable SEM 

 metric invariance model 461–3;  see also  CFA II: invariance 

and latent means 

 MG-MACS  see  multi-group mean and covariance 

structures (MG-MACS) approach 

 MI  see  multiple imputation 

 MIMIC model  see  multiple indicators and multiple causes 

(MIMIC) model 

 missing at random (MAR) 526–8 

 missing completely at random (MCAR) 526–8 

 missing not at random (MNAR) 527–8 

 missing values 433, 526–9; expectation-maximization 

(EM) algorithm 528–9; full information maximum 

likelihood (FIML) estimation 526–9; missing at random 

(MAR) 526–8; missing completely at random (MCAR) 

526–8; missing not at random (MNAR) 527–8; multiple 

imputation (MI) 528–9; planned missingness 529 

 MNAR  see  missing not at random 

 model constraints 352–3, 363–8 

 model modifications: confirmatory factor analysis 

(CFA) 347–53; latent variable SEM 384–6, 403–6 

 moderation 140, 168–9, 180, 187, 425; among latent 

variables 522, 530–1;  see also  continuous independent 

variables; interactions 

 modifi cation indexes 347–50; relation to Δχ2 349

  mother’s emotional expression on child outcomes: latent 

variable model 421–3 

 Mplus SEM path model program 282–3, 284, 532 

 multicollinearity 200–3;  see also  regression assumptions 

and diagnostics 

 multi-group homework model across ethnic groups: 

latent variable SEM 408–21; background 408–9; 

comparison of models for 412; constraining parameters 

across groups 409–12; effects across groups 413–16; 

measurement constraints 412–13; summary 416–17 

 multi-group mean and covariance structures 

(MG-MACS) approach: CFA II: invariance and latent 

means 485–9; latent means in SEM and 436, 437, 

440–54, 523–4 

 multilevel modeling (MLM) (or, hierarchical linear 

modeling) 228–40, 531; for analyzing growth data 

510–12; background/defi ning 228–9; multiple 

regression (MR) analysis 229–39; summary 239–40; 

 see also  socioeconomic (SES) effects on student 

achievement multilevel modeling (MLM) example 

 multilevel SEM 531;  see also  multilevel modeling (MLM) 

(or, hierarchical linear modeling) 

 multiple imputation (MI) 528–9 

 multiple indicators and multiple causes (MIMIC) model 

437, 448, 485–9, 522–3; assumptions of 488;  see also  

CFA II: invariance and latent means; latent means 

and intercepts in SEM; single group/dummy variable 

approach 

 multiple  R  31 

 multiple regression (MR) 183; advantages of 18–19, 23; 

assumptions underlying MR 188–9; categorical and 

continuous variables, interactions, and curves 186–7; 

categorical variables in MR 186; explanation and 

prediction 184; four independent variables 64–74; 

problems with 208–12; moderation, mediation, 

and common cause 187; regression assumptions 

and diagnostics 54, 188–203; relationship to other 

statistical methods 15–17, 23; sample size and power 

203–8; “standard” 182–4; summary of 182–212; 

three independent variables 57–64; three types of 

(simultaneous, sequential, stepwise) 185–6; versus 

structural equation modeling (SEM) programs 

309–10;  see also  categorical and continuous variables; 

categorical independent variables; continuous 

independent variables; multiple regression (MR); 

regression assumptions and diagnostics; sequential 

multiple regression; simple (bivariate) regression; 

simultaneous multiple regression; stepwise multiple 

regression 

 multivariate analysis of covariance (MANCOVA) 436, 

440, 446, 452, 510 

 National Center for Education Statistics (NCES), Web 

site 537 

 National Education Longitudinal Study (NELS) 

15–17, 191–2, 309; categorical variables 109; data 

files 537–8; descriptive statistics for variables 78; 

distributions and 541–5; extant data sets 21–3; three 

independent variables 58;  see also  headings under 

homework 

 NELS  see  National Education Longitudinal Study 

 nonequivalent models 303–6;  see also  directionality 

 nonindependence of errors 191–2 

 nonlinearity 189–91 

 nonrecursive models 250–1, 306–8 

 normality of residuals 193–5 

 normal or bell curves 541–3 

 null hypothesis signifi cance testing 539–40 

 OpenMx SEM program 283 

 Optimism and Locus of Control: partial and semipartial 

correlations example 557–64 

 optimism versus pessimism: logistic regression 

(LR) example 214–27; appropriate uses of 227–8; 

categorizing a continuous variable 

226–7; conducting and understanding the output 

222–6; multiple regression analysis/problems with 

215–19; questions to students about the future 214; 

transforming the dependent variable to log odds 

(logistic regression) 219–22; versus discriminant 

analysis 228;  see also  logistic regression (LR) (with a 

categorical dependent variable) 

 overidentifi ed models, Homework effects on GPA path 

modeling using SEM programs 289–98 
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  p  < .05 and  p  < .01 benchmarks for statistical signifi cance 

540 

 panel models, latent variable SEM 406–8 

 parameters, sample size, and power 203–8, 530 

 Parent Involvement in high school GPA: path analysis 

example 270–8; background 270–2; common causes 

and 272–3; dealing with danger 277–8; intervening/

mediating variables 273–4; paths in the wrong 

direction 275–7; unreliability and invalidity 277 

 Parent Involvement path model using the Amos program 

284–9; data matrix of variable statistics 284–5; effects 

(summary) 287–9; estimating parent involvement 

285–9 

 partial correlations 36, 557–61; example: Optimism and 

Locus of Control 557–9; understanding 559–60; use of 

560–1 

 path in the wrong direction danger 275–7, 419–20, 517 

 path modeling/analysis 3, 187, 243–66; of accidents 

264–5; assumptions 267–8, 318; basics of 515–16; 

categorical and continuous variables 132, 155, 157, 180; 

cautions 248–50; danger of common causes 268–73, 

417–19, 516–17; danger of paths in the wrong direction 

275–7, 419–20, 517; direct effects 255–7; exogenous 

and endogenous variables 252; four independent 

variables 69; identifi cation 251–2; indirect and total 

effects 257–61; intervening/mediating variables 

273–4; jargon and notation 250–2, 263; measured 

and unmeasured variables 252; presumed effects of 

one variable on another (diagram) 515; reciprocal 

causal relations 276–7; recursive and nonrecursive 

models 250–1; sequential multiple regression 86; 

sequential regression to estimate total and indirect 

effects 258–61; step 1: developing the model 252–4; 

step 2: checking the identifi cation status of the model 

254; step 3: measuring the variables in the model 254; 

step 4: estimating the model 254–5; step review in 

a path analysis 278–9; summary of 261–4, 515–18; 

three independent variables 58; true experiments and 

common causes 273; two independent variables 47, 

51; unreliability/invalidity 277; using SEM programs 

517–18;  see also  errors; Family Background, Ability, 

Motivation, and Coursework on Achievement: path 

analysis examples; Parent Involvement in high school 

GPA; structural equation modeling (SEM) programs 

 Pearson correlation coeffi cient 548–9 

 peer rejection effects on Kindergarten students: latent 

variable SEM example 373–87; Achievement Effect 

model 381–2; competing models 381–4; fi t indexes 

summary 378; indirect and total effects 380–1; initial 

model results 377–81; latent and measured variables 

used to estimate 373–5; measurement model 375, 

376; mediation 380; model modifi cations 384–86; 

standardized results 378–9; structural model 375–7; 

summary 386–7; unstandardized fi ndings 379–80 

 plain text fi les 537 

 post hoc testing 113–15; Dennett’s test 114–15, 122; 

Dunn-Bonferroni 115, 122; Fisher least signifi cant 

difference (LSD) 115, 122 

 posttraumatic stress disorder (PTSD) testing 110–20; 

 see also  false memory and sexual abuse: categorical 

variables example 

 power, number of parameters, and sample size 203–8, 530 

 predicted scores 47–50 

 prediction: versus explanation 19, 72–3;  see also  stepwise 

multiple regression 

 predictive bias 129, 142–4; steps 149–50;  see also  

categorical and continuous variables 

  R  31, 183 

 R (a free statistical programming language) 283 

  r , statistical signifi cance of 549, 551 

 RANOVA 510 

 raw data fi les 537 

 Reading Comprehension on Delinquent Behavior 

invalidity example 323–8 

 reciprocal causal relations 276–7;  see also  path modeling/

analysis 

 recursive and nonrecursive models 250–1, 302, 306–8, 318 

 reduction technique 332–3;  see also  confi rmatory factor 

analysis (CFA) 

 regression assumptions and diagnostics 188–203; 

assumptions (1-7 summarized) 188–9; diagnosing 

data problems 195–200; homoscedasticity 192; 

multicollinearity 200–3; nonindependence of errors 

191–2; nonlinearity 189–91; normality of residuals 

193–5;  see also  data problems diagnosis; multiple 

regression (MR) 

 regression coeffi cients 32–3, 180, 540; assumptions of 

318, 419; categorical and continuous variables 138–41; 

statistical signifi cance of 12–13; testing the difference 

between two 63–4;  see also  path modeling/analysis 

 regression equations: creating composites and 54; 

summary of 183–4;  see also  multiple regression (MR) 

 regression lines 50–1 

 reliability 319–23; effects of unreliability on path 

results 320–3; homework example 320–3; meaning/

importance of 319–20;  see also  errors 

 residual invariance model 469–71;  see also  CFA II: 

invariance and latent means 

 residuals 47–50; latent variable SEM 385–6; normality of 

193–5; three-factor combined nonverbal model (for the 

DAS-II) 350–2 

 resources: books about specifi c SEM programs 534; 

cautions about use and reporting SEM results 535–6; 

introductory texts 533; more advanced resources 534; 

reporting SEM results 535 

 RMSEA  see  root mean square error of approximation 

 root mean square error of approximation (RMSEA) 297–8, 

301, 302, 310, 312–13, 438, 440, 443, 459, 476, 485; adjusted 

for number of groups in a multi-group analysis 411
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   R  2  183, 184; direct calculation of 41–2; importance of 

70–2 

  R  2  not equal to  r  2  +  r  2  44–7 

 samples, comparing 38–41 

 sample size, number of parameters, and power 203–8, 

529–30 

 scatterplots, correlations and 546–51 

 self-esteem  see  sex, achievement, and self-esteem: 

categorical and continuous variables example 

 self-reported sexual abuse and posttraumatic stress 

disorder (PTSD)  see  false memory and sexual abuse: 

categorical variables example 

 SEM  see  structural equation modeling 

 semipartial correlations 36, 561–3; example: Optimism 

and Locus of Control 561–3; uses of 564 

 sequential multiple regression 81–95; analysis 81–3, 

94; block entry 91–2; comparison to simultaneous 

regression 83; for estimating total and indirect effects 

258–61; interactions and curves 93; interpretations 

93–5; order of entry importance 83–6; other uses for 

89; path model of 86; problems with  R  2  as a measure of 

effect 87–9; purpose 94, 102–5; regression coeffi cient 

interpretations 89–94; socioeconomic (SES) variable 

and social studies achievement 81–95; strengths 95; 

summary of 94–5, 185; total effects 86–94; unique 

variance 92–3; weaknesses 95 

 SES  see  socioeconomic (SES) effects on student 

achievement: multilevel modeling (MLM) example; 

socioeconomic (SES) variable and social studies 

achievement 

 sex, achievement, and self-esteem: categorical and 

continuous variables example 130–58; analysis of 

covariance (ANCOVA) 153–4, 158; Aptitude-Treatment 

Interactions (ATIs) 150–3, 158; centering and cross 

products 133–4; data/background 130–1; effects 

154–5, 158; extensions and other examples 140–1; 

interactions 132–7; interactions and cross products 

155; interpretation 135–7; multiple regression analysis 

134–5; statistically signifi cant interactions 137–41, 

155–7; summary 158; testing bias 141–50; testing 

interactions in multiple regression 133; verbal skills 

and memory strategies 150–2 

 sexual abuse  see  false memory and sexual abuse: 

categorical variables example 

 simple (bivariate) regression 3–25; advantages of 

multiple regression 18–19; causality 19–20; confi dence 

intervals 13–14; correlation and covariance 20–1; 

defi ned 4; extant data sets and 21–3; interpretation 

10; prediction versus explanation 19; regression 

analysis 6–9; regression equation 9–10; regression 

line 10–12; relation of regression to other statistical 

methods 15–17; standard deviation 20; standardized 

regression coeffi cient (β) 14–15; statistical signifi cance 

of regression coeffi cients 12–13; variance 17–18, 20; 

 see also  homework and math achievement; simple 

(bivariate) regression; statistics (basic review of) 

 simple growth model, unconditional 497–504 

 simultaneous multiple regression 79–81; the analysis 

79–80; interpretation 80–1; purpose 80, 102–5; 

socioeconomic (SES) variable and social studies 

achievement 79–81; strengths and weaknesses 81; 

summary 185 

 single-group/dummy variable approach, latent means in 

SEM and 436–40 

 single-group MIMIC and MG-MACS models 485–9;  see 

also  CFA II: invariance and latent means 

 single-group SEM models: estimation of means and 

intercepts in 428–34;  see also  homework and math 

achievement: latent means and intercepts in SEM 

 single indicators, latent variable model SEM 394 

 slope 11, 133, 138, 145–6, 168, 232, 237–8, 425, 427, 448, 

496–7, 499–500, 502, 511; see also bias: in categorical 

and continuous variables interactions; interactions; 

latent growth models (LGM); latent means and 

intercepts in SEM; moderation

  social science research 539 

 socioeconomic (SES) effects on student achievement: 

multilevel modeling (MLM) example 229–40; adding 

a level 1 covariate 236–7; adding a level 2 covariate 

235; adding the cross-product to test the interaction 

of school-level and individual-level SES 237–9; 

background 228–9; MLM analysis of the effect of SES 

on achievement 232–9; multiple regression analysis 

229–32; next steps 239; separate regression lines by 

school 230–2; slopes and 232; summary 239–40; 

unconditional model 234;  see also  multilevel modeling 

 socioeconomic (SES) variable and social studies 

achievement: sequential multiple regression and 

81–95; simultaneous multiple regression and 79–81; 

stepwise multiple regression and 95–106 

 SPSS data fi les 537 

 SPSS software 48, 283 

 SRMR  see  standardized root mean square residual 

 standard deviation ( SD ) 20, 541 

 standard error 543–6 

 standardized regression coeffi cient (β) 14–15 

 standardized results, of a latent variable SEM 377–81, 395–7 

 standardized root mean square residual (SRMR) 297, 310, 

312, 314 

 “standard” multiple regression (MR) 182–4 

 statistical signifi cance 539–40, 545–6; categorical and 

continuous variables and 137–41, 155–7; of  r  549, 551; 

regression coeffi cients and 12–13 

 statistics (basic review of) 539–56; analysis of variance 

(ANOVA) 553–6; benchmarks for statistical 

signifi cance ( p  < .05 and  p  < .01) 540; confi dence 

intervals 540; confi dence intervals and statistical 



SUBJECT INDEX • 591

signifi cance 545–6; correlation coeffi cients 20–1, 

546–51; covariance 20–1; degrees of freedom ( df ) 546; 

distributions/normal or bell curves 541–3; effect sizes 

540, 553, 554; factorial ANOVA 554–5; mean 540–1; 

null hypothesis signifi cance testing 539–40; reasons 

for using statistics 539; social science research and 

539; standard deviation ( SD ) 20, 541; standard error 

543–6;  Statistical Methods for Psychology  (Howell) 539; 

statistical signifi cance 539–40; statistical signifi cance 

of  r  549, 551;  t  tests and analysis of variance (ANOVA) 

551–4; variance ( V ) 17–18, 20, 541 

 stepwise multiple regression 95–106; adding variables 

to the equation 97; adjusted  R  2  100; alternatives to 

101; analysis 96–7, 101; cross-validation 99; danger: is 

inappropriate for explanation 97–8; deciding which 

variable to add at each step 97; degrees of freedom 

danger 100; interpretation 102; lack of generalizability 

101; not necessarily the best predictors 100; predictive 

approach 98–9; purpose 102–5; socioeconomic (SES) 

variable and social studies achievement 95–106; 

strengths 102; summary of 101–2, 185–6; weaknesses 

102;  see also  prediction 

 SticiGui tools (P.B. Stark, Web site) 543 

 structural equation modeling (SEM) 3, 180, 187, 241–536; 

advanced resources 534; books about specifi c SEM 

programs 534; cautions about use and reporting SEM 

results 535–6; data fi le formats 537; introductory texts 

533; the latent SEM model 328–30; multilevel summary 

531; reporting SEM results 535;  see also  latent variable 

SEM; path modeling/analysis; structural equation 

modeling (SEM) programs 

 structural equation modeling (SEM) programs 282–

317; advantages of 289–301; advice: measures of fit 

310–12; advice: MR versus SEM programs 309–10; 

Amos (Analysis of Moment Structures) 283; basics 

of 283–4; comparing competing models 298–301, 

311–12; correlations versus covariances 292, 293; 

effects 287–9; equivalent models 301–3; estimating 

using the Amos program 285–9; evaluating a single 

model 310–11; longitudinal models 308–9; Mplus, 

283; model fit and degrees of freedom 292, 294–5; 

nonequivalent models (directionality revisited) 

303–6; nonrecursive models 306–8; other measures 

of fi t and summary of fi t models 295–8; overidentifi ed 

models 289–98; Parent Involvement path model 

using Amos 284–9; summary 313–14; types of with 

websites 282–3;  see also  Homework effects on GPA 

path modeling using SEM programs; latent means 

and intercepts in SEM; Parent Involvement path 

model using the Amos program; path modeling/

analysis 

 structural invariance model: factor covariances equal 473; 

factor means equal 473–4; factor variances equal 471–3; 

 see also  CFA II: invariance and latent means 

 structural model 329, 375–7;  see also  latent variable 

SEM; structural equation modeling (SEM); structural 

equation modeling (SEM) programs 

 test bias  see  bias; predictive bias 

 texts, introductory resources 533 

 theory trimming 279 

 three-factor combined nonverbal model (for the DAS-II) 

344–53 

 TLI  see  Tucker-Lewis index (TLI, also known as the 

nonnormed fi t index) 

 total effects 257–61, 356–7; in a latent variable SEM 

380–1, 400–1;  see also  effects 

 Trait-Treatment Interactions  see  Aptitude-Treatment 

Interactions 

 true experiments, common causes and 273 

  t  tests 15, 183, 551–3; cognitive behavior therapy (CBT) 

and 551–3; consistency with analysis of variance 

(ANOVA) and 553–4; consistency, with the  t  test 553–4; 

 see also  analysis of variance (ANOVA) 

 Tucker-Lewis index (TLI, also known as the nonnormed 

fi t index) 295–8, 310, 312, 313–14 

 TV viewing time and effects/interactions on achievement: 

continuous variables example 162–8; the data: 

centering and cross products 162–3; points to consider 

167–8; probing an interaction between continuous 

variables 164–7; the regression 163 

 unconditional, simple growth model 497–504; steps 

for (review) 500;  see also  latent growth models 

(LGM) 

 unmeasured variables 252, 283–4;  see also  latent variables 

(factors); latent variable SEM 

 unreliability/invalidity 277 

 unstandardized results/coeffi cients, of a latent variable 

SEM 379–80, 397, 399–400 

 validity 323–7; accounting for invalidity 323–7; 

convergent 333; divergent 333; meaning and 

importance of 323–4; Reading Comprehension on 

Delinquent Behavior invalidity example 323–8;  see also  

confi rmatory factor analysis (CFA) 

 values, missing  see  missing values 

 variables: exogenous (independent) and endogenous 

(dependent) 252, 318–19; intervening (mediating) 

273–4; measured and unmeasured 252;  see also  

categorical and continuous variables; categorical 

independent variables; continuous independent 

variables; latent variables; latent variable SEM; manifest 

or observed variables; variance/covariance matrix of 

measured variables 

 variance ( V ) 17–18, 20, 541;  see also  standard deviation 

 variance/covariance matrix of measured variables 474–6, 

479;  see also  CFA II: invariance and latent means 
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 variances of disturbances 283–4;  see also  structural 

equation modeling (SEM) programs 

 veracity, causality and the veracity of models 532–3 

 violence, and effects on African Americans and whites 140–1 

 Web sites: National Center for Education Statistics 

(NCES) 537; P.B. Stark’s SticiGui tools 543; for SEM 

path model programs 282–3; www.tzkeith.com 

(author’s) viii, ix, x, 4, 11, 15, 21, 24, 27, 43, 127, 140, 

157, 159, 229, 264, 283, 335, 369, 377, 392, 453, 490, 

512, 532, 537, 541, 548, 558 

  z  distributions 543 

  z  scores 541 

  z  tables 543 

  z  values 352–3 
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