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PREFACE

These are the confessions of a practicing statistician. They ex'

:r=c to public view what I am likely to do with a set of data- I

nr-r therefore live to regret setting pencil to paper. Yet there does

rr:( scrm to be a book that tells ¡ student how to attack a s€t of

:¡: r There are books on the analysis of variance, therc are books

:E f,oopüametric statistics, there are books on this and that, but

¡::ü technique should I use on the data? This book attempts to go

:q:nd any specifrc discipline and consider the variety of techniques

úr¡ can be brought to bear on a problem- The statistical problem

-- :hc central focus, not a particular theorctical approach.

This book is written for M.S. and Ph.D. etudents of statistics

¡ b b¡ve some knowledge of the analysis of variance, nonparametric

x¡¡L.tics, etc., but who are stil l unclear ou what to do when con'

h:ted with data. It is hoped that this book will be useful as well to

:r.:lo6ists. social scientists, and engineers who know some st¡tistics

rcrC r¡ut to handle their own data analysis.

It willbe immediately apparcnt that this book in no way covers

:ic complete range of statistical problems and ideas. Designs morg

::;rplex than the two-way classifica¡ion (e.t., three-way classifica-

;¡:os and Latin squares) are not included, uor is multiple regression.

l5c bope is that the rcader will grasp the basic ideas behind the

mpler analyses and thus understand how to cope with the more

¡¡.uplex situations. Unmentioned are problems where the basic ran-

üa rariables are binary valued or categorical. Also, no attempt has

:¡¡n made to incorporate the techniques of multivariate analysis or

iue scries analysis.

Since the statistical techniques based on normal theory have

icn so central to the development ¡nd teaching of statistics, the

Í.octuFe of each chapter (or subchapter) is to fi¡st prcsent the nor'

u.rJ theory methods and then investigate what happens when the
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vl Pretace

normality assumption and other assumptions break down. In most

chaptere, this leadg to sections oD nonnonnality, unequal variances,

and dependence.

Exercises are included ¿t the eud of each ctrapter. Sone ¡re

theorctical, and others involve data analysis. The lstter weFe Ee-

lected for their relevance ¡nd interegt ftom my fileo of pnojects at the

Stanfo¡d Medical Cente¡.

Rupert G. Miller, Jr.

l,ondon, England

St¡nford, C¿liforni¿
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Chapter I

ONE SAMPLE

The simplest problem is that of a sampre from a singre popuration
where the aim of the statistical analysis is to estimate, or test a
hypothesis about, the location of the population. Many of the tech-
niques for detecting and correcting departures from assu¡options are
illustrated in this basic setting.

l.l. Nonnal Theory.

Let y1,..., t/r, be iudependentty distributed as N(p,oz).* tror hypoth-
esis testing the null hypothesis is .Es : p = h and the alteraative
could be either one-sided Et : F > ,¡o or two-sided Et : p * po.
ftom the estimation point of view the probrem is to estimate ¡r aud
construct a confidence interval for it.

The variables y; may themserves be combinations of other vari-
ables. For instance, wheu obsemations u and u are taken on subjects
paired to eliminate the effect of nuisance variabres, yd may be the
paired difference u; - t i for the r'th pair, and the nuil hypothesis
of no difference has po = 0. or, in a difierent setting, the ratio
yi = uilui may be the natural variabte i¡ which case rb : I night
be the null hypothesis.

The likelüood ratio test of Eo : F - ,h vs. Et : F t' pa leús

' 
tM(F,o'l de¡ote¡ a ¡oraar digtributio¡ with meen p and.rariance ar.



Chopter 1: ONE SAMPLE

to Süude¡ü'E (1908) t atatistic

.  g-Pn,-  _" - t l ' f i '
(  r . l )

which has a Student's ú distribution with n - I df.*'*+ Theoretical

hypotheais testing says reject the null hypothesis if l¿l > tf,l-2r, *h"'"

til-2ri"tbe upper 100 (c/2) percentile of the ú distribution and a is

the preselected siguificance level.

A formal hypothesis testing framework is coneeptually very use-

fr¡l and has led to great advances in statistical theory. However, I

dou't remember ever having fixed a aud having tested a hypothesis.

Instead, I report the P value, which is the probability under the null

hypothesis of obtaining a result equal to, or more extreme than, the

obsened. In this case P = 2P{tn-t > l¿l}, where Ú¡-1 has a ú distri-

bution ou r3 - I df and ü is the obsened value of the statistic (l.l).

p is a measrüe of the credibility of the null hypothesis. The smaller

p is, the less likely one feels the null hypothesis can be true. For

discussiou of the P value see GibbonE aud Pratt (1975) and Pratü

and Gibbons (1981, Chapter I, Sectiou 4).

Bayesiau statisticia¡rs would report a difrereut measure of the

credibility of the null hypothesis, namely, the posteúor probability

of its beiug correct. However, this requires kuowing the púor proba-

bility of the null hypothesis being true aod the probability measure

over the alternative hypotheses. I am never fortunate enough to kuow

these. DeGroot (19?3) has tried to bring the P value and Bayesian

philosophy closer together by givi¡lg examples i¡ whic.h the P value

can be iuterpreted as a posterior probability.

Believers in likelihood would report the entire likelüood frr¡c-

tion. I have been involved iu situations where calculatiug the likeli-

' t = Dt, liln c'= Dl=r(y, - il'lb - tl.

" 
c¿Ít de¡ote¡ degreer of freedom.



Section 7.7: No¡mal Theory s

hood fi¡nctiou was informative and helpful. It indicates which alter-
natives are compatible with the data and which are not. However, it
involves more work than computing a P value - a fr¡nction must be
tabled or a graph d¡awu. Also, it requires tbe assunption of a para-
metric model. For routine scientific reporting, the P value is aimpler
and is more uearly universally r¡¡derstood by scientific investigators.

Some might argue that even with the P value classical hypoth-
esis testing is being practiced because statements such as "p S .06"
or nP S .01" will appear in scientific articles and results are not
published unless P < .05. I would say that the inch¡sion of state-
meutg like "P < .05n is more a result of imprecision or extensive
tables being r¡navailable rather than hypothesis testhg with a = .05
being practiced. Also, I rarely make a more refined statement like
"P = .00ln beeause, exeept for certain t¡ouparametric distributions,
the accuracy of such a statemeut depends on aD assunption about
the form of the distributiou very far out in the tails. Robustness of
far out tails of a distribution is not easily guaranteed and reports
such as "P: .001n may be overly optimistic.

It cannot be denied that many jo'roal editors and investigators
use P < .05 as a yardstick for the publishability of a result. This
is unfortunate because not only P but also the sample size and the
magnitude of a physically importaut üfference determine the quality
of an expérimental finding. For an e:rperiment ¿[s srmpte size may
be necessarily small due to limitations of time and/or mouey, and
a finding with P = .10 may be far more strikiug than a result in
another paper which has P = .05 but much larger sample size. The
larger ¡[s semple size the smaller P has to be to warrant attention.
This involves the power of the test and the probability of detecting
small differences of no practical worth. Differences eau be hishty
statistically siguificant and yet be of such small magnitude as to have
no practical significauce. Also, with large aanple sizes the analysis
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may be detecting a small bias in the experiment rather than a tme

difference.

The ú statistic (f .f) can be r¡sed as a pivotal statistic to cou'

struct a cott6dence interval on Po:

poes*q\" \ ' f r . (  1.2)

Often in the scientific literature a do-it-yourself confidence interr¿l

is reported. Namely, the mean t 8nd the sü¿ndard error elvfi te

presented, sometimes with a "*" sigB betweeu them' A¡oed with

these, the eample size, and a ü table one could constnrct (1.2)' but

most times a rough mental calculation of the mean plus and minus

two standard error¡ suffices for the reader. Similarly, in graphs the

cr¡stom is to plot the mean as a point and a vertical line whose

extent measureE pl¡s and minus one stagdard error (see Figure l.l)'

Unfortr¡nately, I have the feeling that most readers unconsciously

constirre the vertical line to be the go%, 96%, or 99% co"ffrlence

interval on ,¿0.

occasionally, when the intent is to convey the variability of ,

the data, the vertical line will denote plus and mimrs one standard

deviatiou. More sophisticated plots, called box'and-whister ploüs, I

can be used to describe the variability in tbe data. For details see '

I\rkey (1977).

The ü statistic (1.f) can also be used to test the one'sided al'

ternative Ht : tt > ps. In this case the P value is P : P{tn-t > ú}'

The corresponding one'sided confidence interval is

t to>g-t i -  ¡16-

u

r

i

(1.3)

i

I¡
I

Howeyer, one should use and report one-sided ú tests and P values

only when one is absolutely certain o priori of the direction of the

difference if it is to occur.



Section 7.2: Nonnormolity 6

t.2. Nonnormdity.

1.2.1. Effeet

What happeus when .F(y), the cdf of y, is not uormal?* For large
samples the ú analysis is reseued by the central limit theorem:r*

, / "0-rd!N(o,o2l ,

aud also

t  1o,

where o2 - Yat(y), oo as ,¡ -+ @,

t = ,/i(g - m)le 4 ¡v(0, r). (1.6)

since úfr-, -- za wherc zd is the upper l00o perceutite of the normar
distributiou, the ú analysis will be valid in the limit.

' 'cü" de¡otc¡ c¡m¡l¡tirrc distributb¡ fu¡ctio¡.
rr 

"-{ t ¿¡d s 3n de¡otc oD'Fert€¡ce i¡ dirtrib¡tio¡ ¡nd i¡ probabiüty,
rccpectively.

1
F

(1.{)

(1.5)

---

f + snli

V-stG

Flgure
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How large is large? The an¡wer to this is inextricably linked
with how nonnormal F is. To üscrxs this it is neeessary to intro-
duce the two paraneters that play a central role in the effects of
nonnormality. They are the s.kenmess

u

and the &urüosis

(1.7)

(r.8)

of the distribution.

For the normal distribution 1r : 12: 0. For a distribution with
a right tail heavier than its left 1¡ will be positive. As an example, the
exponential distributiou with lil(y) = ffu): )exp(-)y), ), y ) 0,
has ?r = 2. Similarly, for a distribution skewed to the left 71 will be
negative. When the tails of the distribution contai" more mass than
the normal, the kurtosis 72 will be positive. For example, the two-
tailed exponential (Laplace) distribution f(y) = (f/2)exp(-)lyl),
) ) 0, -oo < t/ ( *@, h* ?, = 3. The ú distribution with z ü,
which also has heavier tails than the normal, has 72 = 6l@ - a)
fo¡ u ) 4, whereas the stubbier tailed uniform üstribution has 72 :

-1.2. For any distribution 12 > -2.

In the numerator of the ú statistic (l.l)

E(r) = tt, Var(¡) =

for any distribution f'(y), and also

( l .e)

n@l: f t ,  n$)=! , ( l . ro)

where fr(ü), 12(g) arc the skewness and kurtosis of the cü of g.
Ftom (1.10) one can infer that a kurtosis effect is wiped out rapidly
whereas skewuess vonishes more gradually. For most distributions

o2

n

I
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the ceutral limit theorem rzill have had time to weave its magic ou g
by n: 10, except possibly for a slightly skewed appeara¡rce.

In the denominator of the ú statistic

E(ez¡:  oz,  var(e2) = u (**T),

which transform approximately to

E(,)o"- i (*  *T),

var(a) =+(3+r)

E(t) : -#* ' (#)  ,
var(r) : r * : (,. lrl).r (#)

Fory2 > 0 the couvergeDee of a to a will be slower than prophesied
by the uormal distribution whereas for 12 < 0 it will be faster.

Except in the case of the normal üstribution the numerator and
denominator are stochastically depeudeut. The asymptotic correla-
tiou betweeu fl and e is

\/q;-+2'
which vanishes only if ?r : 0.

(1.13)

Power series exp^""ions for the momeuts of ú appear in the work
of Geary (1936, 1947). The leading terms in the meau aud variance
are

( l . l  l )

(1.12)

(1.11)

,

:

(

G
i-
,f

c

c
(

L¡

c
I

G

lc

.(-

i¿
I

tr

c

V
E
l¡J

i
=
a

This suggests that ?z has little effect ou ú but that 71 may have a
larger effect.

The Monte Carlo sampling work of Pearson (lg?g) is in accord
with the (later) moment calculations of Geary. Peareon considered
different distributions with 71 rangrng between 0 and .? and ?z be-
tween -.5 a¡d 4 and sample sizes n = 2, 6, 10, 20. For 7¡ and 12 in

rÉ
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these ranges their effect on the distribution of ltl is small. For 12 ) 0 .
the actual two-sided P values tend to be smaller than the stated p r
values based ou the ü table, and for h < O the actual P values can be I

larger than the stated ones. Nonzero ,f¡ tends to make the P values
larger than the values calculated from the ú tables. Later work by
Gayen (1949) indicates that for values of ?r, ,¡2 outside these rauges
(i."., 7t ) l,,lz > {) the robustness of ú deteriorates rapidly for amall ;
n.

The situation is worse for one-sided P values based on ú rather
than ltl. The ekewness of , has the leading term (from Geary, 1936,
re47)

!

(  r .15)

The skewness is in the opposite direction from the parent populatiou;

this is caused by the correlatiou (1.13) between fi and a. The tail
probabilities in the skewed directiou of ¿ will be underestimated by
the ú table and overestimated in the opposite direction. These mis-
calculations cancel each other i¡ obtaining two-sided p values, but
for one-sided values the effect can be worrisome. As an illustration,
Gayen (1949) showed that for n : t0 p{t < -2.262} is .064 for a
distribution with ,y¡ = 12: I rather than the nominally stated .025.

These calculations are confirmed in the Monte Carlo work of
Pearson and Please (f975), who tabulated the fractions of samples
falling above, below, and outside the appropriate a = .05 and .01
ú critical limits for various combinations of n - 10, 20, 26, 11 -
0 (.2).8, md ?z iu the range -1 to 1.4.

The special case where V;: ui - u; tends to be more robust.
If the u aud u distributions are identical except for location, or at
least have approximately the game skewness 7¡(u) = ?¡(ü), then the
differencing operatiou on u - u will caucel out the ske\pness effect so
that 7¡(y) = 0, or in the approximate case'lr(r) e 0. The kurtosis

r r (ú)= - '#*r(#)



Seetion l.p: Nonnormolity g

rz(y) will most liliely be nonzero, but since its effect ou the p vatues
is less than zr(g), the ü test should be more robust for this special
case.

Efron (1969) studied extensively the behavior of the ú statistic
under the condition that the y¡ are symmetrically distributed, which,
of course, implies 1r(y) : 0. His results suggest that under the
symmetry assumption the ü test ofteu teuds to be conservative; i.e.,
the true P values are less than the nominally stated ones. The efiect
is not large except for extreme distributions like the Cauchy.

Although this discussion points out that the user ¡nnnef go too
far wrong with the ú statistic, the reader should not come away with
the irnpression that it is the best thing to use. For distributiou¡ other
than the normal it is not the most efficient procedure and for some it
can be very inefficient. Ineftciency means that the power of the test
is not as great for altenative distributions as for other procedures
more tailored to the underlying üstributions. correspondingly, the
P values do not tend to be as impressively small when based on the
ü statistic as when they are deúved from the specially designed tests.
This meens that whereas the ú test is somewhat robusü for valiüty,
it is not ¡obusü for efrcieaey.

For example, if for a positive random variable it is quite clear
from plotting the tail of the sample cdf (i.e., t - f(f)) on log paper
(i.e., linear x logarithmic scales) thaü f is au exponential distribu-
tion, then the most powerful one-sided procedure uses t without a to
compute a P value from the gamma distribution. If the data do not
unequivocally demonstrate au exponential distribution buü the üs-
tribution does have a loug upper tail, theu ¡ f¡nnsformation like log
or Bquare root (see section 1.2.3) before the f statistic is computed
will produce sharper results.

A¡other type of non¡ormality that can occur is the appeara¡rce
of ouülie¡s. These are observed values which are substantiaily remote

)
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from the main body of the data but 3rnn6t be discarded as being

erroneouE measureltrents, miscalculations, etc' They are judged uot

to have come from the distribution goveraing the rest of the data.

Yt¡hetber outlying values are outliers or merely extreme obser'

vations from a heavy-tailed distributiou is a ñnzy issue in many

cases. Typically, aberrant values are considered outliers if they are

few in nunber aud the rest of the sanple looks normally distributed

with them removed. In Moute Carlo studies outliers are frequently

modeled by having 96% of ¡[¿ semple come from a unit nornal dis-

tribution and 5% from a normal üstribution with p = 0 aud a = l0'

Mixture distributions where with probability p the obsenation is dis'

tributed as ff(¡¡,42) and with probability I - P 8s ff(p'(ta)2) are

referred to as conüaminated normal d¡leüribuüio¡s'

The efiect of outlier¡ on the sample meaB caD be noticeable,

particularly if more Gccur in one tail than the other. However, the

dra¡natic impact is on the eample variance. Because the differences

fron the mea¡l are squared in the sample variance' squares from

outliers can eonstitute a substantial fraction of the slrm of EquareE

eveu though they are few in uunber. The result is to inflate the

denominator of the ú statistic and consequently to dampeu or wipe

out an otherwise siguificant mean difference. Thus neither the mean

nor the variauce, especially the latter, is resisü8nü to outliers'

An excellent treatise on outliers is Barnett aud Lewis (1978)'

!.2.2. Detectio¡

My recornmendation for detecting nolrnormality is probit plotting.

Probit plotting is facilitated by probit paper' which is specially con-

stnrcted graph paper available from many compnniss under the name

probabil i tyornormalprobabil i typaper.onescaleisl inear,andthe

other scale is desigued to transform the cumulative normal distribu-

tiou functiou into a straight li¡e. A piece of probit paper resembles

L

I

I

I

f

I
I
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Flgure 1.2
;

Fig.re 1.2 with many more lines for scale divisio*. since the cu- 
{

mulative norual distribution would require au inffnite linear strip to ,
reach 0 and I the probit scale is cut off, usually at .0001 and .9g9g.
Note that most papers use a percent scale .01 to gg.gg.

The paper is used i¡ the following fashion. Form the ordered ;
values U(r)  < Uel  <. . . (  ü(r , )  f rom the sample Ut, . . . ,yrr .  Abov" i

the abscissa value y1;¡ ou the linear scale plot a point at the or¡lin¿¡s i
value d/(n* l ) .  There is nothing sacred about the choice of  i l@+l) ; ,
another simple possibility is (; - l)ln. The usual choice iln for
plotting the sample cdf is excluded because it goes ofi the scale at
d : n' chernoff and Liebermau (l9s{) have studied the optimal i
selection of the ordinate value from the point of view of estimating
a, but since the graph in this instance is merely intended for visual i
inspection of the tails of the distribution, the most computationally
convenient choice suffices. ou a computer it doesu't matter. but for r

hand plottin1;l@ + f ) is quite easy.

The points ca¡ be connected by straight rines if the plotter so
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desires, but this is not trecessar:r' If a y value is repeated in the

sample, then the sequeBce of points (or line) will proceed atraight up

at that value.

The abscissa value at whicb the sequence of points (or line seg'

meut) crosseE the ordinate value 50% is ¡¡s snmple mediau' and in

tbe case of the uo¡mal distribution this is a'u estimate of ¡r' though

not the best oue' The difierence between the 84% and 50% points

ou the abscissa t*árcr between the 50% and 16% points) is a quick

estimate of a for the normal distributiou'

The observer is interested i¡ how well the points (U1'f i/(n+f ))'

d : 1, "' ¡T,couform to a straight line' Deviation in the tails' not

fluctuation in the middle, is what is important for inferences on ¡r. A

samplel ikethatdepictedinFigurel.3isi¡rdicativeofaüstñbution

with 11 > 0. The more it beuds at the top the shakier the ú test

gets, particularly oue'sided P values' Figures l'4 and 1'5 illustrate

samples from distributions with h) O aud ?z ( 0' respectively'

Outliers give a slightly difiereut appearauce in probit plots' al-

though the differeuce is uuclear at times' $pically' the body of the

data follows a straight line ou probit paper, but there are a few values

too far to the right (or left) as in Figure 1'6'

I

1.3

I
I

I

I-r--
Figure
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Flgure

Flgure 1.6

I make an efrort to obtnin a probit plot of the data before using
the ú test in any ki¡d of crucial analysis. If the aualysis requires many
different ú tests on different data sets, I at lcast try to plot some of the
rrpresentative sets. Alternatively, one can ask the computer to do
the plotting if it has a graphics routine for displaying O-r(r/(n + f ))
versus y14.*

The reader should be aware that log-probit paper exists as well.
ltis has a normal probability scale o¡ oue axis and a logarith-ic

)
I

1.4

t
I

i

I

I

l

I

/

/

' O(.) i" thc cdf for /V(0, l).
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Flgure l.O

scale (1, 2, or 3 cycles for base 10) on the other. It is useful for exam-

ining whether the data are normally distributed after a logarith-ic

transformation.

Probit plotting is a special case of general quantile-quantile or

Q-Q plotting. For further discussiou see Wilk and Gnanadesikan

(1e68).

If a deviation from normality cnnnot be spotted by eye ou probit

paper, it is not worth worrying about. I uever use the Kolmogorov-

Smirnov test (or one of its cousins) or the y2 tesl as a preliminary test

of normality. They do not tell you how the sample is differing from

normality, and I have a feeling they are more likely to detect irregu-

larities in the middle of the distribution than iu the tails. If plotting

is impractical for large data bases atrd some normality screet'i''g de-

vice is required, I would be inclined to conpute either the sample

estimates of 71 and 72 or the Shapiro-Flancia test atatistic, which

are described uext.
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The sanple estimates of 71 and ?z are

i,: *it,, -r)'f [:8," -0,']" ,
(1.16)

u
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z,
=

* Dl=r(r¡ - r)'
iz= -3.

[* DL,(v' - s)']'
These convey informatiou about what type of departure from nor-

mality is occurring, and their values could be conpared with the

rarrges (see Section 1.2.f) in which the ú test is knowu to be robr¡st.

Mental allowauce cau be made for the sampling variability in these
estimates. Tables of critical points for testing ?r = 0 orf2 = g

appear iu Pearson and Hartley (f970), but preliminary testing does
not geem germa¡re.

For testing normality Shapiro and Flancia (1972) proposed the
test statistic *'=ffi,
where U(r) < .. .  S U1"¡ and

(1.17)

(1.18)¡ . -  mi
h= 

(DLW, 
tui= E(26¡)

with z1r¡

normal distribution. The ifls¿ [shind the statistic (f .l7) is that if

the y; are uormally distributed, theu the correlation between the yqrl

and their expected values under normal theory should be very high.

Rejection of normality should be for low values of W'.

Since the correlatiou coeffreient is loeation and scale invariant,

the expected values can be taken to be those for order statistics

from a unit normal distributiou. Tables of rn¡ are available in Harter

(1961) for n = 2(l)100(25)300(50)100; values for additional n > 100

can be for¡nd iu Harter (1969b). A small table of critical values for
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in the statistic

where

W' is given bY SbaPiro and Ftancia'

The statist ic W' is a simplification of a statistic W proposed

earlier by Shapiro and Wilk (1965)' Since the Y(0 are not indepen'

deut, Shapiro and Wilk take their covariance stnrcture into account

( l . le)

(r .20)

mf=(-r , ' " ,mn) '

aod v is the covariance matrix of (y(r)' ' ' ' 
' /("))' 

currently available

tables of a for ff (see shapiro and wilk, lg65) are not uearly as

extensive as those for m cited previously'

Shapiro, Wilk, aud Cheu (1968) have showu the Shapiro-Wilk

testtobethebestcurreutlyavailableprocedurefortestingnormality.

There are also tests especially desigued for detecting outliers

(see Barnett and Lewis, 1978' Chapters 2 and 3' and Miller' 1981'

Chapter 6). However, I am inclined to use ouly a procedure resistant

to outliers (see Sections 1'2'3, uNonparametric Techniques" and uRo-

bust Estimationn) if there is any possibility of their presence rather

thau to nrn a PreliminarY test'

1.2.3. Correction

T*ansfotmatione One nethod of handliug data that are suffi'

ciently nonnormal to be worrisome is to seek a transformation that

will convert the data into a aarnple that looks approximately normally

distributed. With positive data' if they are uot approximately sym-

metrically distributed, they are practically always positively skewed'

For this circumstance the most commonly ernployed transformations

are the logzrithmic ttansformation z - log y (to the base 10 or e)
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and the sgu¿¡e rcot transfotmation z: \/y. These are special cases

of the power family

^*0,
) :0.

(1.21)

!n practice, one would simply compute z = V^ when ) I 0, but the

representation (f.2f) shows how logy fits into the fanily. The log

and aquare root transformations are more frequeutly used than other

members of the power family becatxe tables for them are readily

available and many electronic calculators now have these routines

programmed into the hardwa¡e so that the mere touch of a key will

produce the transformed value. Of course, in large computers auy

menber of the family is equally good.

Power transformations are mainly used only on positive random

variables. The family can be generalized to

,

(1.22)

which may be useful in instancea where there is a fi¡ite negative lower

bound to the possible value of the variable. However, for vaüables

assuming positive and uegative values it is more customary to use

nonparametric methoda, which will be described shortly. Adütion

(or subtraction) of a small constant may also improve the normality

of the transformed values even for etrictly poaitive variates, particu'

larly those that can take valueg close to zero.

There are other special pur?o8e transforms r¡seful in data aual'

ysis tike sin-l VF for the binomial estimator and tnnh-r r for the

sample correlatiou coefficieut from a bivariate normal distribution.

These are designed to nake the variance of the estimator relatively

free of the unknowu parameter, and at the anme time they seem to

f  (*cJr- t .  

^+O,, : l  ¡  '
t los(y+c),  l :0,
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improve the normal approximatiou. However, they are not particu-
larly pertineut to the current discussiou.

Selectiou of the appropriate trrnsformation depends mostly on
guessworlc and experience. There has been theoretical work doue
to systematize the search for the best transform, and three notable
articles in this direction are I\üey (f957), Box and Cox (tO6l), and
Hinkley (f975). Howeyer, I would say that at the present day the
most commou practice is to let ex¡rerience suggest a transform and
then to check via a probit plot whether the guess is reasonably suc-
cesful. Wheu there are two or more Barnples there is au empirical
method for selecting a variauce stabilizing transformatiou. Since sta-
ble variances and normality frequeutly seem to walk hand i¡ hand,
this method offers a substitute for guesswork i¡ the multieample
problem, discr¡ssed in Chapters 2 and 3.

For hypothesis testing the uull hypothesio Eo : E(gl : po
transforms u¡der z : g(Vl iuto .Es : E(zl : gjtd. Those of
an exact mathematical mind will shudder at sueh cnrdity, but the
correspondence is sufrcieut for practical purposeE. Moreover, if z
is more normally distributed than g, the transformed hypothesis
frs : E(z) : glul is probably a better statement of the null sit-
uatiou thao the original null hypothesis. As an illustratiou, if the
basic variable is a ratio y : ulu, then the log trrnsforu z: logy
sometimes produces more Gaussian looking data, in which case the
null hypothesis ̂Es : E(V) = I transforms to Es : E(z) = 0, i.e.,
E( losu) = E( logu).

If the null hypothesis is stated i¡ terms of medians, theu it
tra¡sforms exactly r¡nder mouotone f¡ansfe¡m¿tious. That is, .Es :
median V : po is precisely equivalent to Ío : nedian 2 : g(¡41 for
z: g(V), g monotone.

Ttansformations seldon are helpfirl in trying to handle outliers.
An outlier typically rema.ins au outlier after the square root or log-

I
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arithmic transformations. Transformatious strong enough to pull

outliers into proximity with the rest of the data compress the data I
toomuch.BetteraYeDuesforhandlingoutl iersarethroughnonpara.

metric nethods or robust estimators.

Nonparameúric ?bchnigues An alteraative approach for handling

nonnormality is to r¡se a uonparametric test statistic in place of the ',
ú statistic. There are many possible nonparanetric tests, but I will

meutiou ouly the three I consider most useñ¡|.

The frrst and eimplest is the siga teat. Initially let me asume

the underlying cdf is conti¡ruous in order to avoid ties. The uull

hypothesis is that the median 4 of the distribution equals a specified 1
value 4s; i.e., I[o , P{U < tlo} : P{V > tlo} : }. No assumptiou i

of normality or eyeu symmetry about 7e is needed in the underlying

model. The test statistic is :

n

S: D I{v¡> no), (1.23)
d=l

where
( l  i fy¡) t ¡s,  I

I {v¡> no} = {  (1.24)
[0 i fy¡<ro;  ' l

i.e., S is the number of y; which exceed 7e.

Under ̂ Es the statistic .S has a binomial distribution with pa'

rameters n and p: ,.The lower one'tailed P value is

(1.25) :

and this can easily be obteined from binomial tables (e.9., Harvard,

1955, or Owen, 1962). An analogous e:rpression holds for an upper

P:i( ; )  ( ; )" '

L--
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oue-tailed P value, and the two'sided P value for S < !

also ca¡¡ be extracted easily from tables. For S > ! transpose ,9 a¡d

n -,S in (1.26). For large n (viz., n > 25) the uormal approximation

P : i (;) (;)" **r" (;) (i)"

c-! !

# 
sff(o ' l )

(1.26)

(r.27)

gives quite accruate P values.* Even for n a¡ small as l0 I dou't hes-

itate to resort to the approximation (f .27) if tables are not available.

For upper tail P valuec subtractiou (additiou for lower tail) of t in

the numerator as a continuity correctiou will refine the approxima-

tion.

Whereas the ü test is aEsociated with tbe estimator ! for the

locatiou of the population, tbe sign test is related to the mediau m

of the sample. Confideuce iutenals for the populatiou mediau cau

be determined from (1.26) or (f.27) by figruing out the range of 4

for which P is greater than a. lf eol2 is the critical value for .9, i.e.,

the largest integcr such that

Ét;l(l)".
n

r
I-J

|a¡-2oll

(l) (l)"= " (1.28)

. [ , - , ( -#t) ]  =",( ,2e)
theu (y1r"¡, ¡rlt:/{(n_etr_¡¡) is the (2 100(f -a)%) confideuce interval

for the population median 4, where 9(r) < "' < 9(r,) are the order

statistics. Tables are available iu Owen (1962).

t 
"n¡t de¡otet tis approrimaiety distributed ¿s.n



Section l.p: Nonnormolity Zl

The siga test is not very efficient for many distributious i¡r com-
parison with the ú test or the signed-¡enlr [ss¡, which is the next test
to be discussed. It often throws away too much information, although
for some very heavy-tailed distributions it is well to iguore the data
except for their signs. For instance, the sign test is asymptotically
optimal for the two-tailed erponential distribution, and it is better
than the ú test or signed-r^"t test for the cauchy distribution. The
siga test very effectively obliterates the effect of outliers.

I tend to'se the sign test as a quick test or ¡ s¡¡ssning device.
If the data are clearly statistically significant aud the sigu test will
prove this, it is a marvelous device for hu¡riedly getting the client
out of yoru office. He or ihe will be happy because the data have
received au official stamp of statistical significance, and you will be
happy becarue you ca¡¡ get back to your owu regearch. It is also
ruefr¡l for rapidly sc¿nning data to acquire a feeling as to whether
the data might be statistically significa¡t. If the sign statistic and
approximation (1.27) produce a normal deviate which is near to being
significant, theu a more refined analysis may be worthwhile. If, on
the other hand, s is nowhere close to being significant, it is very
trnlikely that a significant result can be produced by more elaborate
mealut.

until now I have kept the question of ties locked in the closet,
but unfortr¡nately they can, and do, occur. For calculating a p value
the only ties that cause trouble are those in which y equals the null
median 46. For confidence interv¿ls other ties c^n cau.se problems,
but the reader is left to extrapolate the null discussion to the broader
case.

If the possible values of u and ü ane discrete and reratively
few, then iu the paired data problem where ! = u - u a num-
ber of the observations may equal the ¡ull median 0. The conü-
tional approach is to exclude the zeros and to consider the question

,

E--
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P{v > Olv * O} ? P{y < Oly * 0I. But this may be a worthless

question to answer lÍ U - 0 a high proportion of the time. If ¿ and u

are frequently identical, it may be unimportant which is selected, and

other considerations such as cost or side-effects in medical applica-

tions may be more influential in the selection procesE. A aigniñcance

level attached to the conütional data may be misinterpreted by the

uDwary.

For a small proportiou of ties the conditional approach is easy

and acceptable. A consery¿tive stance would be to cousider the zeros

as having small yalues in the directiou opposite to the shift of the

rest of the data. If the sign test still gives a delightfully small P

value, then one is quite content about the ties, but oue may not be

so lucky. A less self-peualizing procedure is to score each zero as

one-half in calculating S. At no time would I r¡se randomizatiou to

break the zero ties.

For a study of handling ties ir nonparametric tests the reader

is referred to Putter (1955).

Wheu the analysis requires more than the sign test, my favorite

is the Wilcoxon (1945) signed'rank úesü. The null hypothesis is that

the underlying cü is symmetric about a specified value p6, usually

zero. Symmetry about ¡6 is used in the test procedure 8o a falsely

significant result can be produced by asymmetry eveu though the

mean or median equals ,¿o.* To avoid tie¡ at the outset assume the

underlying cdf is contiuuous.

Subtract the hypothesized mean from each obse¡vation; i.e., let

zi = V; - ¡r¡. Take the absolute values l"tl, "',lz"l and order them

lrlttl S "' < l"lt"). Ideutify with each absolute value its rank from I

up to n. For e¡ let r¡ be the rank of its absolute value. The Wilcoxou

sigried-ranlr statistic is the sum of the rmlrs co¡tesponrling to positive

I

' The test is conaistent against altern¿tiver for *'hicb Pl¡r * gt > Ol * ll2.
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observations, i.e.,

SR+ : !r f{a; > 0}, (1.30)

(1.32)

(1.33)

i=f

l l  i f  z ;>o,
r{ r ¡>o}=to 

i fz;<0.

t,
t
i

!(1.31)

Since the sum of all tbe ¡nnl¡s equals n(n * f)/2, equivaleut statis-

tics are the sum of the negative ¡nnlcs or the differeuce between the

positive and the negative raokc.

An alte¡uative representatio¡ for the Stilcoxou sigued'ranf stat'

istic, which the reader cau verify with a little thought or mathemat'

ical induction, is

$B+ : i i I{z¡+ zi > o},
Ét i=l

( l  r i 'z ;*z¡)0,
I {z¡+ z i  >O} = |  ,

[0 i fz;*z¡10.

In most instancec (1.30) is the easier way to compute SB.r', but (1.32)

is theoretically convenieut for computiug moments and studying dis'

tribution theory. The representation (1.32) is due to I\rkey.

The probabilities P{.9fu : r} can be geuerated tbrough necur'

sive schemes, and tables are readily available. Two compendia con'

taiuing signed-rank tables are owen (1962) and Pearsou and Hartley

(1972). They give cunulative probabilities for Yalues of n up to 20

and 15, respectively. Beyond this the normal approximation

SR. - "(1+r)"':-- 
-J--= 

s JV(0, r) (1.31)

/'f*?fr"u
is sufrcient for conputing one' or two'tailed P values'
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Theestimatorassociatedwiththesigued.ran}statist icisthe

Eodges.Lehmann(1963)estimatot,whichisthemedianofthen(n*
1)/2 valuee (y; + g¡ll2 where i can equal i' The connection is sug'

gestedbytherepreseutat iou(r .32).This leadsintothef ie ldofro.

bust estimators for symmetric distributions, which is discussed next

in Sectiou 1.2.3.

Altbough it is not for¡nd frequently, a confidence interval for the

populatioumediaocanbecoustructedfromthesigued.rankstatistic.

tn" t> 100(l - a)%) interval consists of all values of ¡r such that

when,9E1 is computedfor z¡ : l l i -  P,i= 1," ' ,n, tbe trro-sided P

value is greater than or equal to c' It is a bit tedior¡s to figure out

the interral through guesswork or trial and error' which is probably

the reasou for its lack of popularity. However, there ia a graphical

procedure due to l\üey which Sreatly simplifies this process' On a

piece of graph paper plot tbe n points llt'" ' 
' lln oD the ordinate axis'

Through each point y¡ draw two lines iu the right half'plane' one with

slope*l , theotherwitbslope- l .Thegel i ¡eswi l l i ¡ tersect" t (?)
pointeintherigbthalf.plane.TheseintersectioDsandtheoriginaln
points give a total of n(n * l)/2 points whose ordinates constitute

ihe collectiou {(t¡ + vilz]}' The median of these ordinal values

is the Hodges'Lebmann estimator' n art2 is the tt]lit"t value for

S81 (i.e., the largest integer sucb th* P{Sn+ S t'T' and SE+ 2

n - ,rt'l Eo ) < a), theu the ert2 * I smallest ordinate in the

collection is the lower confidenee limit aod tbe n(n + l)12 - 
"t'

larsest (i."., r¡!2 * I from the top) ordinate is the uPper limit' For

n = 6, ,rt, :3 the procedr¡re is ilh¡strated in FigUre 1.7. Note

that the Hodgee-Lehmann estimator ueed not be the midpoint of the

coufidence interval.

Whatghouldbedoneaboutt ies?Forthesigued'rnnl¡testt ies

betweeu values of z = g ' tto with the same absolute values but

opposite sigus causes problens as well as those for which a = 0' The

i
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Flgure 1.7

zeroE can be dropped and the test performed conditionally without
them as in the case of the sigu test. Pratt (1959)has pointed out that
anomalies ca¡¡ oceur with this approach but the circumsta¡rceE seem
rare. The more major questiou is whether it is worth investigating
any shift of the conütional distributiou if the probability of a zero
value is large. For nonzero ties the successive ¡m}e ca¡ be averaged
and the ayerage rank assigned to each obse¡r¿tion i¡ the tie. This is
equivalent to expanding the definition (1.33) to

I {z¿+ z¡ > 0}:

iÍ. z;* z¡ ) 0,

í f  z¡*  z i  =0,

í f  z;*  z¡  10.

the usual tables can

(1.35)

For a emall number of average renks be used
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with impunity. The variance of SAl corrected for ties is

(1.36)

where g is the uumber of tied grouPs and t¡ is the size of the lth

group. The square root of (l'36) can be substituted into the de'

nominator of (f.3a). However, the number of ties bas to become

considerable before the co¡rection term in (1.36) makes much üffer'

eDce.

Pratt (1959) has tbe most thorough discrusion of ties for the

signed-r^',lt test, and it is an article worth reading' He proposes a

modiñedprocedureforbandl ing'erot ieswhichdeletestheranks

assigued to zeros. Curetou (1967) gives the uull mean and variance

for pratt's statistic, aud Rahe (19?4) provides small s^-ple tables.

conover (1972) gives sone theoretical efficiencies for the different

procedures.

As with the sign tect, the sigaed.rant test is good for handling

heavy-tailed distributions and outliers. Also, it is asymptotically

optimal for the logistic distribution. Its asymptotic relative efrciency

with respect to the ü test for the normal distribution is f .

There are other Donparametric tests which, like the sigued aud

signed.r^nktests,sumasetofscoreEfortheposi t iveobservat ions.

Animportantexampleisthenormalscorestest(see[¿[¡¡enn,lg75¡
pp. 96-9?). This test requires specialized tables even for the com-

putatiou of the statistic and therefore is iDconvenient to use, even

ou a large computer. Also, the normal scores test outperforms the

signed-renlr test for short-tailed distributions like the uniform, but

these are not as much of a worrj¡ as the heavy-tailed distributions

where the signed-rank d.oes better (see Hodges and Lehm^''., 196l).

of the class of linear r^nl¡ tests the sigu and the signed-ra"lt tests

are by far the most important for applications'

} ["," 
+ r)(zn + r) - 'ef,utr- lX¿¡. t,]
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The last lronpara¡netric test to be mentioned is of a different

type' I t is theFisber(1935)permutat ionüeeü.Thenul lhypothesis

is tbat the uuderlyios tdf is symmetric about pe' The test is linked

with the estimator g Jot" it uses ? = DLr( Vi- pd as a test statistic'

Under .Eo the values *(f¡ - po) are equally lüely so the 2" different

values of ? with all possible sign chauges Di=r +(y¡- p¡) are equally

lüely.* These r 
"ulo", 

can be ordered f1r¡ I "' = 
1,'", 

and the

one-sided p value equals the nunber of f values equal to or more

extremethaotheob,"rv"dinthattai ld iv idedby2".Thetwo.sided

P value equals the uumber of f values equal to or more extreme than

the obsened in both tails üvided by 2"'

The test is clurnsy to carry out unless the observed T value is

so large positively (or uegatively) that only a few easily recoguiz'

able cases exc"ed it' For this reanon it is seldo:n used' However'

the idea behind the test can be extrenely useful in situatious more

complicated than the one sample problem' In a complex model the

stat ist ic ianmaybeabletoconstructascorefr¡nct ionwhichshould
be sensitive to detecting the type of alternatives suspected' Under

the null hypotbesis it will usually be random as to which Sroup 8¡r

obse*ation belougs so the computer can generate all possible values

of the score f'nction that will be equally likety 
'nder 

randomization

theory. If the total uumber of permutations is too large eveu for

the computer, tbe computer can at least generate a large number of

random permutations wbich will give an estimated P value'

Thereignoreasonthepermutat iontesthastousethestat ist ic

ú - tto.It could just as well use the trimmed mean' which is to be

mentioned shortly' If the regular meau difierence ii - tto were divided

by ,lr/nto give the ú statistic' the ordering of the values would be

undistu¡bed because the term DL'(y¡ - tt4\2 io Di='(!'¡ - g)2 :

. If there ¡re ls value¡ of yi which equai po, the¡ the problen redoce¡ to

considering 2"-¡ diffe¡e¡t possible tal¡er of f'

E-
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Dl=r(y¡ - ,r,o)2 - n(ú - ,to)z is constaut under aiga changes. This

would not be tnre if the sample was first trimmed so it may be best

to employ a standardized statistic if using the trimmed mean.

The permutatiou technique can be r¡sed to constnrct a confi-

dence interval for ¡r by calculating the range of ¡ra values which fail

to give a P value less tha¡r or equal to o. The computations are

usually too cumbersome, however, unless n and a are quite small.

Ties cause uo problems for the permutation test. Zeros are

treated in a conditional fashiou as though the sample were smaller

and had no zeros although one could replace them by a small uumber

to see what effect breaking the ties might have on the P value.

The permutation test does not reduce the effect of large obser-

vations as the sigu and signed-re"k tests do. Not surprisingly, it ie

asymptotically equivalent to the ü test. However, for small sarnples

it can give more robust P values than the ú ratio.

A variation of the pernutation idea is to sample with replace'

ment from the obseped values. Thic is called the booüsürap method.

For details see Efron (1979, 1982).

Robusü &;timation The field of robust estimation for the locatiou

of a symmetric distributiou has undergone intense investigation since

the late 1960's. Major works that will permit the reader to euter the

literature of this field are Andrews et al. (1972) and Huber (1977,

1e8l) .

The three principal categories of robust estimators are the tr,

M, and 8-estimators. An Lesüimaüor is a linear combinatiou of

order statistics. The mediau, the mean, and the trimmed mean are

the most important s¡nmples of f,-estimators. A¡ M-esúimaüor is

the root of the equatiou

D +((r,, - olls) : o,
d=l

t

(1.37)
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where the ú function and scale estimate S are selected by the statis-

ticiau. Somi naximum likelüood estimators, like / for the uormal

distribution, are special cases since the derivative of the log lüelihood

(i.e., f'(x) l/(a)) is a ry' function. The mediao is slso an M-estimator.

Finally, R-estimatoñr are linired to rank tests. The primary example

of a¡ 8-estimator is the Hodges-Leh-an¡ estimator.

Besides the meüan the most important robust estimator for

applications is the t¡immed mean. Let ó be some small proportion

such as .10 or .05. The trimmed meau !¡ discards ón (assumed here

to be an integer) obserations from eacb tail and conputes the meau

of the ¡s6eining obserr¿tions.t If y(r) S ... I U¡r,¡, then

)

t  n-6n
_trur : (r - ü)n ,-firrrn'

(1.38) I

The trimmed mea¡r eliminates the effect of tail observations, be they

from a heavy-tailed üstributiou or outliers. Howeyer, unless the

trimming is used to remoye really aberrant values, I have frequeutly

found that the change from the meau has beeu only slight and is of

little interest to the investigator. See Stigler (1977) for comparisons

on real data.

The appropriate variance for use with the trimmed mean is the

winsorized variance. Generally, wi¡sorization (named after C. P.

Winsor) replaces tail order statistics by a smaller (larger) order

I Thb technique is ¡s€d ia judging diviag competition¡ shcrc thc higheat and

lo¡'ect scores f¡om the juilges ¡re dis<¡riled bcforc computiag the ¿r'eratc

¡core fo¡ the diw. Thir average ccorc b then muhiplied by thc degree of

difrculty of the ilive.
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statistic. Specifically, let

where the fractiou ó is the same as for the trimmed mean. Then

rgw:;k*rrr ,

l [- 
n-6n 

I= 
; ['" 

ü(ón+r) *,t*, Y(t) + tn vo-6d|1

is the winsorized tnean, aud the winsorized ¡¡ariance is*

, l ' l

"* 
: 

o - ufu- tlD(*ro - sw)2'
r  r -= 

G-2ry1,.:l) |''"(','"*', - rñ2
n-in I

+ D (rtrl -gwl2*6n(y6-r"¡-Iwl2l.
d=ón*l I

For symmetric distributio¡.E a consistent estimate of the asymptotic

variance of the trimmed mean is af;,ln, i.e.,

.ffir1g¡¡ : !"*. (1.12)

(1.10)

(1.11)

This is most easily established through the influence firnction (see

Harnpel, 1971).

' Sone authors use (l - 26)tn ot (l - 2ó)l(l -261n - fl for thc de¡omi¡ator

of afi,. Expressioa (1.{l) ellow¡ sta¡da¡il programr for the va¡ia¡cc to be

applied to the wi¡sorized ranplc; the calcul,¡teil vz¡i¿¡ce is the¡ co¡¡ected

by the factor (l - 2ó)-t.

L_-

i
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Asymptotically valid tests and confidence inte¡vals for the mean
p of a symmetric distribution cau be constn¡cted from the relatiou

frl7A4¡r(o,r). (1.13)

For small sample sizes one might want to use a ü interval such as

I r -ü lz!<p<gr+üt2Y. (1.11)

lbkey and Mclaughlin (1968) suggested that the degrees of freedom
be talren to be v : n(l - 26) - r, i.e., one less than the number of
observations entering the trimmed mean. Monte carlo work by Gross
(1976) for n : l0 and 20 substantiates that this is approximately
correct for normal distributions. t\rrther substantiation can be found
in the Monte carlo atudy of yuen and Dixon (1923) on the two
sample problem. r'or a variety of heavy-tailed d.istributions Gross
also fo'nd that the intervals (1.1d) with the suggested degrees of
freedom are conservative; that is, the true coverage is higher than the
nominally stated coyerage. For exampre, for the cauchy distribution
the true coverage is g7.6% when n : l0 and 9?% when n = 20 with
a:.05andá=.10.*

The class of M-estimators has received a great deal of theoret-
ical attention, but M-estimator' are not standardly 

'sed 
in prac-

tice at this time, although this may be changing. A prominant ,14-
estimator is the I\key bisguare (or biv,-eigr t) estimator, which uses
the / ftrnction

,l@) = ,  l r l  (1,

lr l  > t ,
(1.45){: ' , '- 

*r

For thege calculationr, Grosr (r9?6) used ¡ i¡ste¿d of ¡ - r i¡ the denomi-
¡ator of (1.41) and his criticat constant f[., inrteed oÍ fílt.

L--
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and the scale estimate

,9 : ¡t 'MAD'

= t.median{ly¡ - 
-1,

d=l, ' " ,n) ,  
( l '16)

wbere m is the sample mediau and the arbitrary constant ¡t is com'

monly 7.1,8.2, or 9.0 (see Andrews et al., 1972). This estimator has

good efrciency for the normal distribution and a variety of heavy-

tailed distributious. other frontnrnner¡ are the siDe wave estima'

tor of Andrews, the redescending linear segmeut estimator of Ham-

pel, and the nonredescending linea¡ segment estimator of Huber.

Gross (1976) studies the confidence interr¿l procedures associated

with each of these estimators, with the exception of the last oue of

Huber.

The aforementioued robr¡st estimators are preücated ou the

assumption that the underlying distribution is symmetric about itg

media¡r. Symmetry is fundamentally rued in the estimators and their

variance estimators. S¡hat does one do if the empirical distributiou

appeam asymmetric? No corresponding body of theory of robust

estimators exists for asymmetric distributious at the present time.

Some hardy souls recommend coutinued ¡se of symmetric robust

estimatorE on the gro¡nds that it is difficult to tell from the sample

whether the true ¡nderlying distribution is aymmetric, but I cannot

recommend this. I would be more likely to seet a transformation that

symmetrizes the body of the data and then apply a robust estimator

to the transformed data.

1.3. Dependence.

Although anything is poasible, there are painly jrut two types of

dependeuce which arise in the applications envisaged in this book.

O,fteu the scieutiEc investigator may be unaware of the importance

to the statistical analysis of factors that can cause theae depeudeu-

cies so it is the responsibility of the statisticia,B to ferret out by

É-

)
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cross-exanination of tbe investigator and/or exami¡atiou of the data

whether anY effect exists.

The 6¡st type of depeudence is caused by a blocting effect. The

n data points !t,' ' ' ,lln mú have beeu collected in eubgroups' For

instance, some y may come from experiments otr one day' others

from üfierent days. or some y may be obserations ou animals in

the same cage or litter whereas other y come from differeut cages or

litters. The investigator usually will be cognizant of factors built into

the experiment such as days, lab techniciaus, or litters, but may not

be careful about informing the atatistician of the presence of these

nuisance factors.

Maybeanuisaneefactorhasnoeffect ,butoneshouldnot just

as¡me this. For ¡nbalauced blockiug the estimates cnn be biased,

and the error variance is always distorted. The standard way of

detecting and correcting for block effects is to remodel the problem

into a higher-way classificatiou with fixed and random effects. since

this solution is fairly 
'niversally 

r¡nderstood and covered to some

extent in later chapters of this book, it is not discussed in detail

now.

The other type of dependence cau come from a sequenee effect'

Thesequeneemaybeint imeorEpace.Theobservat ionsmaybe
taken serially in time in which case observatious close together in time

may be stochastically dependent due to slow ra,ndom variations in the

experimental couditions or instrunentation, or due to an observa'tion

having a ürect efiect on the next su66sgding observatiou. Similarly,

observations ou objects located physically next to each other may be

dependent through greater similarity of local conditious or through

direct interactiou between the objects'

we shall examine the simplest possible sequeBce efrect where

I



3¿ ChoPter 1: ONE SAMPLE

thereisaser ia|conelat ionof lagl .That is, ford=1,. . .

vi - N(tL,o2\'

Cov(Y;, V;+tl = PPz,

Cov(y¡,ü¡+j) = 0, i  + 0,L'

Thedepeudencecouldofcourseextendtolagsgreaterthaul( i 'e ' '
Cov(y¡,td+i) = Pio2, i > l), but this simplest case is an impor'

ta¡tonefordataanalysisandwil l i l lustratethediff icult ies.Insome
problems the serial correlations P2,0s,' '' may be uouzero but appre-

ciably smaller tban p1 in magnitude and thus not affect the analysis

as much as P¡. HoweYer, for general serial dependeuce one is forced

into time series analysis, which is beyoud the ecope of this book'

1.3.1. Efrect

One cau readilY comPute

E(g):  t ' , (1.18)

and show that Var(02) * 0 aE t¡ 4 oo' Since g is norrrally dis-

tributed, this establishes that

Jr@ - P)- 4 r1o, r+2pyl.
e

(1.4e)

The convergence (1.19) still holds even if the y¡ are uot normally

üstributed by tbe central limit theorem for m-dependent random

variables (see Flaser, 1957, p. 219) so loug as y¡ and ¡/;1¡ are inde'

pendentfor¡>1.

Thelimitingvariance|*2ncaubesubsta$tiallydifrerentfrom

I even for moderate values of p1. This will produce diserepancies in

thePvalue.For instance, i fp l=| thel imit ingstandarddeviat ion

v*(s) ="]lr+ zar (r - *)] '

E(e2) =" ' ( t  -+),
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is r.29 instead of I so for a ú value equal to 1.96 the actual two-

sided P value is .13 whereas the investgiator unaware of ¡ would

state P = .05. Clearly, the effect of p1 on the P value can be most

uapleasant.

Gastwirth and Rubin (1975) study the effects of serial depen'

dence on robust estimators.

1.3.2. Detection

The methods of detection are the ssne as for examining the assoeia-

tion betwee¡r any pair of variables, which in this case are ü¡ aud ü;+r.

One can plot the pairs (y¡,9¡+r), i :  1, " ' ,n- l ,  aud/or eompute

the sample serial correlatiou coefficient

;i Di=i(rt - 9XY;+r - i), r=W

It is the size of rr that is important and not whether it is statistically

different from zero' Thus a preliminary test of Pt = 0 has little value'

but for those so inclined a good reference is T. Sl. Anderson (1971).

The distribution theory for serial co¡relatiou coefficients is very

difrcult. Tables of critical values for the circular serisl correlation

coefrcient are available in R. L. Anderson (1942), Dixon (toll), and

T. W. A¡dersou (t971., p. 3fg). Under the null hypothesis and

normal theory the circular seúal correlation coefficieut

(1.50)

I

It
I

I

!

I

I
I(
a

(1.5r)

rphere {n1¡ = y1 by deñnition, ic approximately distributed as r -

(f/n) where r is the ordinary Pearson product-nomeut correlation

coefrcient based on n * 3 obseFation¡. This approximation is sat-

isfactory for n ) l0 and is very good for n ) 23. For details see

Henna¡¡ (1960, pp. 85-87) or T. S¡. Andersou (1971, pp. 338-311).

L-
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If there is any possibility of correlatiou existing for greater'lags,

one would also want to examine the paira (V;,v;+il, d = l, "' ,n- i,
for ¡ > I and/or compute 12, rs, etc.

1.3.3. Conectio¡

The best hope is for n to be large euough to permit substituting

r¡ for pr i¡ the variance and correcting the de¡ominator of the ü

statistic. That is, for large n,

ffisIV(o,r). (1.52)

With considerable loes in efieieucy, one can divide the data into

g consecutive groupE with I consecutive obserratioDs in each group

(n = g. l) and theu use the group average8 as g approximately

indepeudent data points. By grouping, the serial correlatiou has

been reduced,to ¡lk approximately, but the number of observations

has also been reduced by the factor f.
The sigu test a¡rd sigued-rant test can¡rot rescue r¡s iD this case.

In fact, they are in alnost as much trouble as the ü test. An excellent

paper ou this topic is by Gastwirth and Rubi¡ (1971).

Lettiug p = O for uotatioual aimplicity the asymptotic variance

of the sigu atatistic ie

l r  \
Avar(s) : " ( i+2cov(r{vd>0},  r { r ¡+t  t0}) /  '  

( r .53)

and, aimilarly, the asymptotic variance of the sigaed'rnnk statistic is

Avar(sft) : *(# + 2 cov(r{yi * ü¡ > o},

r{v¡+r*t t r>o})) ,
(1.51)

whe¡e j and t are taken to be far enough renoved from d, d + I and

each other so as to index r¡ncorrelated obsereations. Ttansfornatioo
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of tbe positive quadrant to a wedge-shaped region for iudependent

coordinates easily gives I
I

ICov(f{y; > 0}, f{y+r > 0}):

aud, since Cov(y; * yi,V¡+t * yt): nlL,

Cov(f{y¡ +yi > 0}, f{r;+t *Vr> 0}):

These combine with (1.53) aud (f .5a) to make

8ln 'Pr

2z- '

air-r (p¡12)

(1.55)

(1.56)

(1.57)
Avar(s)="(i .+) ,

Since

Avar(sR..) : 
"' (* * 

siD-rler/z)) .
I

t
I

I

f ,t-' n SY't-' (?) 12pt (1.58)

for p¡ 2 0, the efrect of positive p¡ is the greatest on ú a¡¡d the least

on S, but gtill the effect ou $ can be appreciable. For instance, with

pr = 3 the limiting staodard deviatiou of the aign teet is .6 instead

of .5, so for a reported P value of .025 the actual P value would be

.051, double the reported value. For the signed-ro''L test the actual

value would be .063.

Gastwirth and Rubin atudy more geaeral forms of serial corre-

latiou for Garusiau pFocesses and for procesEes with two-tailed ex-

pouential distributions. In all cases studied the sigu and signed-rank

statistics are not appreciably better than the ü statistic.

Exercises.

l. Show that the normal theory likelüood ratio test of .86 : p: Ito
ys. .Er : p + tto is equivalent to the two-sided ú test.
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2. Use the result iD (l.ll) to ehow that the asymptotic correla-
tion between g and e2 Íar !tr...,y,. independently, identically I
distributed is

'lt

(t, + 2¡t¡''

where ?r and ?2 are the population ekewness and ku¡tosis.

3. Show that tl¡e Trrkey representatiou (f .32) and (f .$) for SRl

is correct.

4. Show that for indepeudently, identically, continuoruly distri-

buted l l ¡ , - - - ,Un

Var(SE1) =
n(n* l ) (zn+l)

5. For Ur,...,Vn ideuticolly distributed with Var(y;) = 12, '

Covly;,y¡+r) : pp2, and, Cov(y¡,yd+i) : O, i # 0,1, show
that for the sample meaD , and variance a2

(a) var(s)  = *  [ l  +2n(r-  *) ] ,

(b) E(az) = o2 (r - +) ,

6. In an experiment at Stauford Medical Center, douor bloorl was 
'

collected into bags containing ACD (an anticoagulant acid cit-
rate dextrose solutiou) *d others 6s¡f¿ining ACD phx ade-
niue to investigate whether the addition of adenine would better
preseree the cryoprecipitates.* The r-or¡nts of AHG (antihe- i
mophilic gobulil) in douor paired bags were dete¡mined at the

' Sumnary Report RFP NEI-67-I{, 'Effect of ACD-¡de¡ilc enticoagoleat i
o¡ i¡ viúro ¡¡d i¡ vivo poteacy of cr¡oprecipitate¡" bV J. G. Poo! Divisioa
of Eeuatolory, St¿nford Udrrorsity, for the Natio¡rl Ecart l¡stit¡te.

21
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tine of admi¡istratiou to t2 hemophilic patieuts.

ACD: 58.5 82.6 50.8 16.7 49.5 26.0

ACD+A:63.0 18.1 58.2 29.3 17.0 27.7

ACD: 56.3 35.7 37.9 53.3 38.2 37.r

ACD*A:22.3 43.0 53.3 49.5 4l.r 32.9

Run a ú test for the hypothesis of ¡o adenine effect.

For the data in Exercise 6 construct a probit plot of differeuces.

Do you thinlr the uorm,ality assunptiou is gatisfied?

Cousider the differences in Exercise 6.

(a) Compute the ¡neüan and rr¡¡ a sigu test.

(b) Compute the Hodges-Lehman¡ estimator and run a

aigued-raok test.

(c) Conpute a trim¡red mea¡ and nrn a ú test with win'

sorized standatd deviatiou by trimming two data points

from each tail.

Which of these estimatort and associated tests, or tbe mea¡r

and ú test of Exercise 6, is most appropriate to report for these

data?

Consider the 16 differeuces (i.e., -12.7, !8.6, etc.) in the paired

data of Exercise ll for Chapter 3 to be indepeudent. Test the

hypothesis of no difference in the tritiated thymidiue levels be-

tween air and 02-exposed nice. Select the test you cousider

most appropriate, and give the reasou(s) for your selection'



Chapter 2

TWO SAMPLES

The previous cbapter dealt with the comparison of a sarnple and a

theoretical parameter. Wben the theoretical parameter is a control

or standard value, this value is often uot known precisely under the

particular conditions of the experiment, so the investigator also ob-

tains a series of eontrol obserTationt. If the e:rperimental and control

obsenations are paired on nuisance characteristics in order to elimi-

nate their efiects, then individual differences should be computed for

each pair, and the problem remains a one sample problem of com'

paring the mean differeuce with zero' When it is not necessary to

pair the experimental and control series, the problem becomes a two

sample problem.

other problems in which both sets of data would be called ex-

perimental arise as well. The criterion for haudling them aE one or

twosampleproblemsiswhetherthereisanynaturalpaiúngbetween

the data sets whicb should be ta,ken into account in the analysis.

2.1. Normal TheorY.

I\: pt # ttz or I\ : ¡t1) |t '2'

In order to mathematically derive a test the severe assumption
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o1, = ol : o2 ¡simposed ou the model. Under this condition of equal

variances the likelihood ratio test of the two'sided alternative leads

to the ü statistic

t- (2.r)

(2.3)

(2.{)

where fi: Dilr !;¡ln;, d = 1,2, and a2 is the pooled variance

,  |  [ ' '  ^  "  I
e- =;g4lltr" -ti2 +I(rzi -tü'l' (2'21

- ' li=t j=r J

Uuder .E0, (2.1) has a ú distributiou with n¡+nz-2 df so a one-tailed

P value is given by P{ú,.r1r, z-2 ) ú}' The two-sided P value would

add the areas in both tails.

For coufidence intervals the pivotal statistic is

'r/* * #
so a two-sided 100(f - a)% confidence interYal for p1 'tl2is

pt - th € It - g, + ti!r!^r-r' rlpTnr,

where ,i(l*^r-ris the upper f00(a/2) percentile of the ú distribution

with n1 + n; - 2 df. Though infrequently used, a one-sided interr¿l

could also be constructed.

2.2. NonnormalitY.

2.2.1. Efrect

The effects of uon¡ormality on (2.f) a're similar but not identical to

the efiects ou the oue sample ü statistic. Tbe reader should therefore

be faniliar with Sectiou 1.2.1 before pursuing the discl¡ssion here'
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As in the one eample case the t analysis is Yalidated in the

limit by the central limit theorem. For srnall samples, however, the

skewDess and to a lesser extent the kurtosis of the populations cau

have some effect. Coutiuue to assu:¡re o! = ol since the effect of

three momeuts of ü, which were derived by Geary (1947) aud Gayen

(le5ob):
EQ)e },V'rrr(Yr) - r@)l|1'

vt '

(2.5)

?

u
I

1

t
I
¡

E(t-s(ú))r=r-"Jrt# ry - 3(rr(sr) - trfurD")\,

where v1 : (lln¡l + (lln2l, v2 = ltr + n2 - 2'

Inmanyex¡lerineutalapplicationstheassrrmptionthatl l(y¡)
= :nfuzl and rz(yr) = n@z) would seem warranted. If this is the

case,thentheexpression¡ in(2.5)clear lyshowthatthekurtosis
parrmeters bave little effect ou the ú statistic and wheu the sample

sizes are approximately equal (i'e', n1 o t'z) the skewuess parameters

cancel each other approximately' Thus for equal sample sizes the ú

statistic is more robust in the two sample problem thau in the one

sample problen. It therefore behooves the investigator to perform a

balanced e:rperiment if at all possible'

These theoretical considerations are supported by the Monte

carlo work of Pearson (1929) for 11(y1) : tt(yz) between 0 and '7,

nfut) = lz(Uzlbetween -.5 and 4, and samplea sizes in the range 5
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to 20. and of Pearson and Please (1975) for 7¡(y¡) : f(Vz) between
0 and .8, nfut\: lz(Vz) between -l and 1.4, aud equat sample sizes
between l0 and 25.

For n¡ and n2 not approximately equal, the skewness of the
mean with the smaller sample size dominates the numerator of the ü
statistic. since 12 is a weighted average of the two sample variances,
I .e. .

,z -bt-r) '?+(nz-t) '7
nt lnz-2 '

"3:*=ptru -ni2,  i=1,2, (2.7)

(2.6)

v,'here

the variance for the larger sample tends to dominate the denomina-
tor of the ú statistic. since the dominating mean and dominating
variance are independent, there is less dependence between nurnera-
tor and denominator in the two sample case than in the one sample,
and the skewness of ú remains in the direction of the skewness of the
mean with smaller sample size. Recall that in the one sampre prob-
lem the direction of skewness was reyerEed by the correlation between
numerator and denominator. Even for n¡ arrd n2 not approximately
equal the kurtosis has only a minor effect ou ú.

More serious distortion of the P values ca¡r occur when 7¡(y1)
does not approximately equal i¡fuzl.The leadi''g terms do uot can-
cel out in this ca{re even for equal rample eizes. I'ortunately, this case
does not seem to occur frequently. when it does occur, it is ques-
tionable whether an analysis of the mean vatues is &n appropriate
comparison for the two populations with quite different shapes.

Although the P value from a ú statistic is reasonably tnut-
worthy, it still may not be the best statistic to use for nonnormal
distributions. sharper results in terms of increased poy,¡er or smaller
P values may be obtainable through alteraative parametric or non-

t

I

I

-¿É-



11 Chapter 2: TWO SAMPLES

parametric procedures.

Just as in the one sample case, outliers cart distort the mean

difference and the ü statistic. Their major impact on the statistic

(2.1) is to inflate the variance estimate (2.2) and thereby depress the

value and correspouding statistical sigaificance of (2.1).

2.2.2. Detection

For a full discussion of detecting nonnormality the reader is referred
to Section 1.2.2. One sample nethods can be applied to each of the

two samples. Probit plots of each sample are a worthwhile way to

scrutinize the data.

The presence of more thau one sample does not aubstantially

alter the problem except through the advent of variance stabilizing

transformations. Their use is described in Sectiou 2.3' The connec'

tiou between variance stabiliziug transfomations and nonnormality

is mninly empirical. It often happens in practice that the trausforma-

tion that best etabilizes the variance also improves the appearance of

uormality in the data. Skewed long tails in the samples affect both

the variances and the probit plota. Thus methods for detectiug and

correcting inequality of variance are iu a broad seuse also methods

for detecting aud correcting nonnormality.

As in the one sample problem, outliers can be detected as well

through probit plots.

2.2.8. Cortectlon

Thansformations As mentioned previously, transformations can

be very useful in improving the normality of tbe data. For positive

data the logarithmic and equare root t¡ansformations a¡e the most

frequently employed because of easy access to tables, special keys ou

electronic calculators, and readily available commands on large conn-

puters. Slhen some of the data ta,ke values close to zero, addition
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of a small constaat to each obserration before it is traasforned may

increase the effective¡ess of the transformation. Other transforman

tions are of course possible, and for a full discr¡ssion tbe ¡eader is

referred to Section 1.2.3.

Selection of a tra¡sformatiou is still mainly guesswork and expe-

rience, or is suggested by exani¡atiou of the variances (see Sectious

2.3.2 and 2.3.3). Probit plota of the transformed data are a worth-

while check ou tbe wisdom of the selection.

Ttansformations are uot cr¡stomarily useñrl i¡ cor¡ecting for out-

liers. Nonparanetric tec"hniques and robust estimators are better

suited for haudling outliers.

.l\lonparametric Technigues As in the oue sample problem there

are tb¡ee principal Doupatr^metric tests. The ün¡o sample median test

is the two aample analog of the sign test. For reasous ¡ot entirely

clear it is not used with the frequency of the sign test. The two san-

ple Srilcoxou test is by far the more commou. Nevertheless, the two

sample median test is a quick, easy, and robnst tegt. To execute the

test combine the two samples i¡to one and calculate the median rz¿

of the combined sample. For n1* n2 odd, the median is an obserra-

tion from one of the samples; for n1 * n2 even, it is the average of

the niddle obse¡vationc. Separate the data into the original sanples

aud withi¡ each sample count the number of obser"ations aboye a¡¡d

below m". The eor¡nts can be neatly summarized in a 2 x 2 table:

a b

c d

Sanple I

Sample 2

a*b

c*d

N=a+b+c+da*c b+d

(2.8)

ts
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Obsenatious with values equal to mG a;re analogous to ties with

zero in tbe sign test and are a source of annoyance. It is hoped

that there are few of them. My prefereuce is to exclude the values

tied with nr," including the value m" itself when n¡ * n2 is odd. A

consenative approach would place all the ties in each sample in the

ürection opposite to sigUificance; i.e., make cd - óc as close to zero

as possible. For large number of ties the reader is left to decide for

himself or herself. The¡e does not seem to have been as extensive a

study of ties in this two sample problem as i¡ the one sample case.

Once the 2 x 2 table has been created, the aualysis can proceed

as for a2x2 coutingency table. The quickest analysis is to compute

the x2 statistic
rv( lad-ücl- f )2

t" + alt '  + d)(c + c)(D + d)'

Under the null hypothesis of no difference between the populations

this has a limiting ¡2 distributiou with oue df as ñt, r.r,2 + @'

Various rules of thumb exist for how large nl and n2 have to be

for the x2 approximatiou to be %lid. For min{n¡,,tuzl 2 l0 and

min{c,b,c,d) ) 2, I feel tbe X2 approximatiou is quite good for

practical purposeE. Tbe sometimeE 8u88ested mle that the expected

number in each cell should be at least 5 is unnecessarily conservative.

The P value computed from the upper tail of the ¡2 distribution

with one df is a two-sided P value since the test rejects wbeu the first

sample has larger values than the second and vice Yer8a. For a one-

sided P value take the square root of (2.9) and assigu it a + or - sign

depeuding ou whether population I or 2 has larger values. Tables

of the uormal distributiou can then be used to obtain a one'sided P

value.

There is disagreemeut over whether it is best to i¡clude the

Yates' (1931) continuity con*tion Nlz iD the uumerator of (2.9).

Since the aim here is to accurately approximate the P value for the

--

(2.e)
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exact analysis to be discussed next, its use is justiñed. When ma¡y

ralues of the ¡2 statistic are being computed as a scree¡ring device for

detecting possible üfrereuces in large sets of data, then it is best to

leave it out. The uncorrected statistic has a false positive rate closer

to the nominally stated c. Also when pooling separate X2 with one

df as in cooperative studies, it may be best to use the uncorrected

¡2. For a full discr¡Bsion of the controversy the reader is referred to

lr{antel and Greenhouse (1968), Grizzle (1967, 1969), a¡rd Conover

(1971) with appeuded comments.

For a finer analysis with small aample sizes there is Fisüer's

(1931) exsrrt test.* tlsder the null hypothesis the conütioual distri-

butiou of the table eutries given the four marginal totals is hyperge-

ometric; i .e.,

P{o,b,c,dl  a *  b,c *  d,a *  e,6 + d}:  f : : l f i l l ,
("1,) ' (2.r0)

-  
(o + ü)!(c + d)!(c1.c) ! (D + d)! .

JV!c!ü!c!d!

A one-tailed P value is obtai"ed by summing the probabilities (2.10)

for each table equal to and more extreme than the obserYed with the

same marginal totals. For example, if the observed table is

(2.1r)

(2.r2)

It is not always clear how to obtain a two'sided P value. The

:
Éc
É
o
J

o
t¡

L¡l

c¡

3

:
()

G

É¡

:
tt)
c
l¡¡

:
=
a

Ilr

L:

ul

f-*

:

-J

:
c¡

then oue would sum the probabilities for the tables

l- s-T-tl I- 6-T-il l-T-l-o_l
L---l-----------J | |

l r lz l lz ls l l r le l

ü Thb test war atso proposed by Irwin (1935); i¡ ¿dilitio¡ ¡ee Yatc¡ (193{).
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remainder of the sequence of tables is

r¡l-t-l E-T-6 I ftT-s I
[ r l r l lz ls l l6 l l l

(2.13)

In this csse the two t0bles on the left would be cousidered more ex-

treme than the obseryed. In other examples, howeyer, some eriterion

may have to be introduced to measure the degree of disagreement

with the null hypothesis of questionable tables. One criterion might

be the size of tbe y2 statistic (2.9), or equivalently, the size of lad-bcl.

Another would be the size of the probability (2.f0). It would be un-

fortunate if the scientific conclusion rested on which criterion were

setected. Wben o * ó = c * d, there is no ambiguity becarxe of the

symmetry ia the sequence. A convention, which is sometimes used

and avoids the aforementioned dilenma when n¡ { n2, íe to simply

double the one-tailed P value to get a two-tailed P value.

Computation of the probability (2'10) is usually easy. The uum'

bers are usually not large (otherwise the x2 approximation could be

¡sed) and a great deal ofcancellatiou occurs. Some ofthe better elec-

tronic calculators have special keys for IV!, and some programmable

oues have programE for calculating (2.10). Once one probability has

been computed, the values for ueighboring tables can be generated

quickly by multiplicatiou and divisiou with the appropúate integers

to give the uew factorials.

Finney et al. (f9ffi) nt. a set of tables of critical values for

Fisher's exact test. The tables are easir to use but unfortunately

they are not always readily available.

The most popular ¡¡pq sample test next to tbe ü tegt is tbe

Y
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Wilcoxon (1945) rcnk test. Its asymptotic efrciency compared to

tl¡e ú is quite high for the normal distúbution (i.e.,3lr = .95), aud

it is more efficient than the ú for maoy heavy-tailed distributious.

Compared to the ú its asynrptotic efrciency never drops below .864.

Outliers have no appreciable effect on it. It is quick and easy to

compute, and good tables are readily ar¿ilable.

The Wilcoxon statistic can be computed in either of two ways.

Oue method depends ou ranking. Combi¡e the two sarnples

into oue set of n1 * n2 observations. Order the obserations from

smallest to largest U(r) S Vel < "' S ü(nr+n¡), and assigu d to the

rth largest obeervation. L€t Rl l¡e the sum of ¡[s ¡nnks attached to

the observations from the first sample and, similarly, let Il2 be the

rank sum for the second sample. The Slilcoxon statistic is either 81

or R2, or possibly Rt - Rz when n¡ = nz. Since

Rt*Rz:W, (2.1{)

any one of these statistics contains all the information on the rank

sums.

The Mann-Whitney (194?) form of the Wilcoxon statistic is

nt n,

u =DD¡{rtt > azi),
d=l j=!

( I if y¡; ) Azi,
r{yt ;>v2i l : l^

[0 i fV¡<uzi .

(2.  I  5)

where

(2.16)

This can usually be quickly computed by taking each 91; obse¡ration

and scauing the second sample to cor¡nt bow many Íz¡ rralues are

smaller than y1;.

The counting method (2.15) is related to the ranliug procerlure

-- 
_

J
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through
nt=!{n\!r) +u.

r{rt¡ > lril. =
I
2

if y¡ = Yr¡.

The argument for (2.1?) is simple' If all tbe gli preceded all the yzi'

the rank sum tr|1 toolib" nr(nr +\12 and U would be zero' Each

time a Uz¡ comes before a y¡¡ it increases the rank of g¡¡ by one and

the sum U bY one'

The easiest way of handling ties is to assign an average rank

to each of the tied observations' For example' if y11 = '3' 9r2 = '6'

Uzt = L.l, llz2: .6,then yrz and Yzz would each receive the average

rank gcore 2.b. Tbis is equivarent to e:rpanding the definition of the

indicator fi¡nctiou i¡x (2'16) to include

(2.17)

(2.18)

For small numbers of ties tbe or¿lina¡y tables aud large sample ap

proximatio¡B can be used without alteration with no serious effect

outheinference.Foramoderatenu¡nberof t iesthetablescaust i l l

be used to get an idea of the P value' but one must be aware that the

variability of the Wilcoxou statistic has been reduced' A correction

tothevarianceoftheWilcoxonetat ist ic,condit ionalonthepattern

of ties, can be made [see (2'20)] but the ties must be srüstantial

before the correctiou reaches appreciable maguitude. Numerous ties

can, of course' leave the inference in doubt' An excellent paper on

the efiect of ties on the Wilcoxou statistic is Klotz (1966)'

GoodtablesoftheWilcoxonstat ist icarerrsual lyreadi lyavai l .

able. Nfany textbooks coutain abbreviated tables in their appendices.

Oweu (1962) and Pearsoa and Ha'rtley (1972) 
""t¡ 

t6¡¡a'in a set'

Wbenrrsingwhatevertablesareavai lable,onemustcheckprecisely

what isbeingtabled.somegivetai lprobabi l i t iesorcr i t icalvalues

for R1, others fot U '

Asymptotically, [t (aud E1 or Bz) has a uormal distribution'
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t lnderthenullhypothesisofuodiffereucebetweenthepopulations

its exact mea,s and variance are

where ff = nr +n2. The large sample approxinatiou is very good by

the time n1 aIId n2 are at least 10, and it can be used rpith imprrnity

for somewhat smaller sanples provided neither one is quite small'

When ties are preseut aud are handled by means of (2'18)' the

exact mean and varianc e of (I ,conditional on the pattero of ties' can

be calculated. The conditional mean of U is still n¡n212' For tbe

calculatiou of the variance, let z¡, ''' , zm be the distinct values in tbe

combined sample of yr¡ and Yzi, and let tt,"',Ú- be the numbers

of observations that equal each of these values' In the case of an

observation with no other equal to it, t¡ = 1' Theu the conditioml

variance of U is

(2.20)

(2.1e)
F
I

1

t
i(
I

Experiencewi l l teachthereaderthatthet iecorrect ionfactor l -

l¡3rttl -¿¡)/(lvs - ff)l does uot become substantially less than one

very fast.

tton (2.1?) the variance of .Br is the Earne as that of U' The

nean of 81 differs from that of U by the additive factor nr(nr +\ 12'

BeforeleavingtheWilcoxoustat ist ic,severalremarksarein

order.

Firat,unl iketheouesanplesri lcoxonsigued.ran}test,there

isuoassunptionofsymnetryoftherrnderlyingdistributions'Sym.

metry does not play a role iu the two aanple problem'
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Second, the statistic Uln1n2 is estimati¡g the probability

P{y, > y2} in the continuous case' and P{g1 > Vz} + i P{U, = g2],

when the distributions have discrete mass points. For the continu-

ous caEe the test will be consistent agnins¡ auy alteraative for which

P{y, > y2} difters from }. The statistic [Ilnln2 is a special case of

a two sampte U-statistic in the sense of Hoeffding (1918).

Third, the estimator for the difference in location of the two

poputations associated with the Wilcoxou ¡rnlr st¿fistic is the two

sample Hodges-Lehmann(1963) estimatot. This estinate Á¡¡¿ is the

median of the collection of n1n2 values {yt;- ltzi, i - 1,"',nt, i :

l r " '  ,nz\ .

A confidence interval for the true difference A in locatiou of the

two populatious can be coustucted from the Wilcoxon statistic.* In

the Mann-Whitney form the conffdence interval consists of all values

of A for which U(A) : DEr Di:r I{n; - Á > vz¡} does not differ

signiñcantly from the uull mean nfi212. This is teüous to construct

uumerically, but a graphical method due to Moses (see TValker and

Lev, 1953, Chapter 18) greatly simplifies the calculation. Plot the

nrn2 points (Ur¡rVzi), d : l, "'rrt!, i : lr"' ,rr2 ou a sheet of graph

paper. Let u"l2 be the lower tail critical point for the U statistic

based oD n1,n2 observations; i.e., uol2 ie the largest integer such

that P[U S ualz I .E0] < alL. ln large samples

uotz =ry -tU- *rl rltl2 ,, (2.2t)n1n2(n1+ n2+ |

t2

where l12 is a coutinuity correction nd zol? is the upper 100(o/2)

perceutile of a normal üstribution. Slide a 45o line along the y¡ axis

until uol2 points lies to the right of tbe line a¡¡d oue lies on it; call

' The ¡¡derlying essumptio¡ is that the ahaper of thc two dictribitio¡s ¿rc

thc ¡amc *cept for thei¡ locatio¡. Th¡¡ A is the iliffe¡e¡ce bcfwee¡ thc

Bealrr or the differe¡cc¡ betgee¡ the medi¡¡s.
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ü"yrvaluewherethel inecnossestheyraxisAu's imi lar ly ' letA¿

bc the yr value at which a 45" line through (Ur,g) has uol2 points to

the lcft of it and one on it. The interral betweeu a¿ and a7 is the

eoufidence interval for A. The procedure is illustrated in FigUre 2'l

rith n¡ - n2 - 3, uolz -- l.

Flgure 2.1

The third and finat Do¡rparaFetric test to be mentioned is Pit'

man,s (1937) permutation test. It illustrates the geueral princi¡le

of permutation inference. Select a statistic that should be sensitive

to the type of alteroative hypothesis of interest. For the two sam'

ple problem , It - !2 b t prime candidate' Compute the value of

h - úz for the observed sanples, and also tlu ("'"+'"t) hypothetical

values obtainable by dividins the combined sarnple of size nt * nz

into all possible pairs of subsets of sizes nr a¡rd n2. under the null

hypothesis of no difiereuce between the populations tbe conditional

probability, given the combined sanple, of each possible pair of sam-

ples is ("'fr)-'. If the observed h - úz lies far out in the tail(s)

of the ,*g. óf possible yalues, theu it is judged signiñcant. The
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positive one-tailed P value is the number of values h - úz greater

than or equal to the obserred divided Uy ("t"+,"'). A two-tailed P

value uses lh - gzl.

The permutation test is not used much because it is computa-

tionally unwieldy except for small sample sizes or for obvior¡sly very

extreme values of út-ú2. Large electronie computers aid in this prob-

lem, but even they cau be taxed if n1 and 12 aita moderately large.

Generation of random permutatious in the computer to estimate the

P value is a solution to this dilemma, but for the simple two sample

problem it seems sinnpler to use something else, like the TVilcoxon

or ú statistics. Asymptotically, the permutation test is equivalent to

the ú test.

lnstead of random permutationo the bootstrap method of ¡am-

pling could be used; see Efrou (1979, 1982).

Robusü Estimation Discussion of robusü estimatiou in the two

sample problem is limited here to just trimmed means. For more de-

tails on robust estimators in general the reader is referred to Section

1.2.3, nRobust Estimation.n

As in the one sample problem, there is an underlying assump-

tion that the cdf for each populatiou is symmetric about its meüan.

Without this assumptiou the rationale for the estimators aud the

distribution theory break down. If the assumption appears to be

grossly violated, the statistician may be able to fi¡st f¡engferm ft[s

data to achieve better symmetry.

In the two sanple problem one simply repeats twice what is

done ia the one sample problem and pools the variances. Specifically,

let d be the trimming fraction, where it is assumed that ón¡ and dn2

are integers. For d : 1,2, let

J

t
I

i

I

i
I

'  
n;-ón¡

_rr
Yri : (! _ 261n ?- gd(i)'

'  j=án¡+l
(2.22)
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rhere üi1r¡ 3 Aip¡ 3 "' ( y;(r,¡) are the order statistics for the dth

sample, and let

,  I  r -a?v ; : C _dC-4 [ór(r;{r",+ s - úw;12
n¡-6n; ' l

+ I (yrul - gw¡12 + án¡(ü;(,,,-5,,i) lw)21,
j-6n¡*r

where

,
l

W;=
I

ni

l ' n¡-ón¡

lón; g46n,".1¡ + D
L t=án¡*t

lrt - Irz

(2.23)

(2.2r)

(2.25)

- f2 is

(2.26)

ü;6¡ + ¡,,¡ g¡(",-r",)l

Then the pooled sample variance is

-, _ (n, - rltfut + (y_ t):Ír,
ow- 

nr+n2-z '

and the appropriate trimmed ü statistic for testing Eo: Ft

tT:

Yuen and Dixon (1973) have provided evidence that (2.26) is ap

proximately distributed as a ü distribution with (f - 2ó)(n¡ + n2) - 2

df.

The pooled variance (2.26) and the ú statistic (2.261are based on

the assumption that the two population cdfs f¡and F2 are identical

(and symmetric) except for a location shift. Without the identity

assumption the probtem is analogous to the case of o! ¡ ol (see

Section 2.3). It should be mentioned that for this problem there

is a statistic utilizing trimmed means with unpooled variances that

is aualogous to Welch's approximate ü' statistic (see Section 2.3.3,
nOther Tests"). For details the reader is referred to Yuen (1971).



Chapter 2: TWO SAMPLES

2.3, Unequal Varianceg.

The model is that  the y¡ ,  d:1,2,  i :1, . . . , r i ; ,  are independent ly
distributed N N(p¡, af) without the assr¡mption o2r: ol.

2.8.1. Effect

Under this model

(2.27)

and this is also tme asymptotically without the assrunption of nor-
mality. * Í-,et n1ln21 n aE r?lrr4 

- 
oo. Theu

s2--n! : f - r?+ 
nr- l  

. r?L 
R o I  a

n1in2-z '  n1*n2-z " t ¡*"¡+ U*oí '  
(2 '28)

aud this too is true asymptotically for non"ormal distributions. Thus
with or without the assumption of normality,

r t  -  úz- r  ( r , ,  -  r r ,*-"*)  ,

Gr-gz)-( l l -pz) (2.2e)

Ln(0. r  o?+a:3\.
HAT¿A'-r+R ) '

The asymptotic variance of ú, instead of being equal to one, is

AVar(t) =
0+n

(2.30)R0+r '
where 0 : o?1o7.

How do different ralues of d efrect AVar(t), and how, iu turn,
does this affect the large sample inference?

t n-t denotcg sis distributed ¿s.t

I
,l
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Note fust that wheu B = I (i'e', nl -- n2)' AVar(t) - f' This

mearut that wheu ¡¡s sample sizes are equal' iuequality of variance

does uot afiect the i¡ference asymptotically. If the saurple sizes are

nearly equal, the ü test can tolerate large disparities in the variances

(viz., ratios of 'l and up) without showing major ill effects' Thus it

pays to balance the experimeut as closely as poasible'

Consider another case: 0 = 2, B = 2' Here the variance for

the ñr¡t population is twice as large as for the second' but the first

population also has twice as large a sample' In this case AVar(ú) = '8

so the asymptotic sta¡rdard deviatiou is approximately '9 instead of

1. The efiect ou the P value is not large' A reported two'sided P

valueof.0swouldinactual i tybeP=.03' InhisTable10.2.3Scheffé
(1959, p. 3a0) gives more exanples to ilh¡strate the efrects on P for

varying 0 aud E'

The worst situation is wbere the variance of population I is very

much larger thau for population 2 (i'e'' o! >> o!) and the sample

size fol'the first population is much smaller (i'e', n1 << n2)' The

least information is available on the larger variance. h thi' case ú

would be handled as though it had n1* n2 - 2 ü' which would be

large because of n2, whereas ü is approximately behaving like

(2.3r)

becanse Iz - Pz o o,e? = ol, nzl(ua tz) 3 l' and lln2 = o' lf

n¡ell(n1+ n2) is ,malir"tttiv e to ol' the ratio in (2'31) behaves like

a normal variable with varian ce ollolinstead of 1, and if n1e!l(n¡+,

n2) is large relatite lo ol, it behaves like a ú variable on n1 - f df

-rrl,infi.J 
Ay ,/6, +;;1;o. In either case the variabilitv is greater

than tbat hypothesized by a ü distributio¡r otr n¡ * n2 - 2 df' As au

illustrative exanple from Table 10.2.3 in scheffé (1959, p' 340), the

actual siguificauce level for large n¡' nz is '22 instead of '05 wheu

\-
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ú=5and R:U6.

2.9.2. Detectio¡

It is far harder to decide wbether af equals a! than it is to correct

for their inequality. The problem is that the standard textbook test

based on alle2, having an lF distribution is extremely aensitive to

departures from normatity aud cannot be relied upon. Chapter 7

considers this problem in detail, and alteruative robust test proce-

du¡es are described. All involve extra computatiou. Siuce the efrects

on ú are uot large uuless the variance disparity is sizeable and the

e:rperimeut is badly r¡nbalanced, prelininary tests of o! -- o! seem

to be a fruitless pastime. Worrisome difrerences in the varia¡¡ces that

are detectable to the naked eyeball lead one to correct for qnequal

variances without the intermediate step of decidi"S whether o? : o7.

2.8.8. Correctio¡

Ttansformations Ttansformations are often useful in eliminating

inequalitiee between variances. The analysis is then conducted in the

transformed scale, although the results are wually reported in the

origiual scale.

Selection of a transformation can be facilitated by the following

simple large sample relationship. consider a smooth function 9(y)

of the random variable V. lf V iu fairly tightly distributed about its

mean ¡r, then in the ex¡lansiou

s(y) : g(r¿) + fu - t'ls'(r¿) + 0((y - p)2) (2.32)

the second order term will not be substa¡rtial compared with the

linear term. Rewriting this as

I
t

i

g(vl - g(p) e (v - ti g'U') (2.33)

I
I

I
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suggests that

E {lgfu) - g(,r)12} s var(s)[g'(p)]2. (2.34)

Since E[g(y)] = g(t ), the term on the left in (2.31) approximates

var[g(y)] so *

sP[g(y)] = sP(y) lg'(,¡) l. (2.35)

The preceding approximations ean be jrutiñed asymptotically

tt vL¡,1(tt, a2). This procedure for obtainins v"r[g(y)] i¡ the limit

is L¡own as the delta method. Two important special cases of (2.35)

are the approximations for the logarithmic and sguare root transfor-

matiou variances. For log V, g'(Vl: l/g; thus

SD(losy) = (2.36)

The ratio on the right iD (2.36) is the coefr,cient of variation of y.

Many measured variables have a eonstant coefficient of variation, or

constant pereent error as it is sometimes called, in which case the

log transforrn is appropriate. For .,,/V, g'fu) = ll2{V; tb:'lo

sD(Jvl = (2.37)

With Poisson data, the variance equals the meau so the sguare root

trnnsform should stabilize the variances.

The relationship (2.35) is quite helpful wheu there are two or

more samples, for then it is possible to plot ,i YE' ft to see if any

empirical relationship holds betweeu the sample standard deviations

and means. If, for exanple, the staodard deviatiou increases aa Eome

power of the meatt, then (2.35) auggests tryins a power transforrla-

tion with the power increased by oue. Fiddling with the trausforma'

sD(v)
lL

sD(vl
2\¡ t r '

t 
"SD(y)' denote¡ tbe ct¡¡dsril dwiatior of y.



oo Chopter 2: TWO SAIUIPLES

tion by 
"dding 

a constant to the variables may improve the stability

of the variauces.

In the two sa:nple problem there are just two points (r1, g1) and

bz, ú) so only a little infornation is available througb this proce-

dr¡re. However, if ¡ inereases as fl increaseE, a power transfomation

like log or Equare root may work, whereas if e decreases, a differeut

type such as g(y) : llv would be required. Visual inspcctiou of tl¡e

samples may give some added indication of the proper transforma'

tion. Inereasing standard deviatiou with i¡creasiug mean is ofteu

aceompanied in practice by samples skewed to the right with long
upper tails. Examinatiou of the upper tails of the samples may shed

some light on whether I Bquare root tra¡sforuatiou, or the stronger

log transforuation, is required.

Othet Tests The other method of correction is to rlee a difrer-
eut test. This problem (i.e., two norual populatious with af * "l;
flo : pt = tL) is a classic one in statistical history and is referred

to as the Behrens-Fisher problem. Varior¡s methods, including fidu-
cial probability, have beeu proposed for haudling it. Schefré (1970b)

nicely summarized tbe current state of kuowledge. In earlier work
(1913, f9fi) he gaye a solution that has ao exact ú distributiou but
which is not really suitable for practieal work. It employs artiñcial

randomization, and iu his 1970 paper Scheffé recommended agnins¡
its usage. The best solution from the practical point of view is the
following approximate one.

The practical procedure is Welcü'¡ tt test. It rues the statistic

t '= l t - !z (2.38)

Since a!4o!, alLol, ú' is asymptotically distributed as IV(0,f)
when n1, n2 + @. Thus for large samples the denominator in (2.3S)

is correctly estimating the staüdard deviation of the nrrnerator, and
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this asymptotic convergence is varid even if the popurations are non-
uormal.

The exact distributiou of ú' r¡¡der.Es depeu& o¡ tbe'¡known
ozt ao.d o2r' welch (1917,1949) proposed approxinating its distri-
butiou by a ú distributiou with suitabry choseu degrees of freedom
for small or noderate sampre sizes. werch's approximatio¡ for the út
distribution and satterthwaite's (1946) approximation for the distri-
bution of a li¡ear combination of y2 variabres emproy the same idea.
It is to approximate the distributiou of the variance combination

t?, t7
|11 n2 (2.3e)

by the distribution of a frvariabre murtipried by o2lv,where a2 and
z are chosen so that the first two moments of o2y2riv agree with the
first two moments of (2.89).* In this case

ft

I

,, (*. *) = #*#, (2.40)

The two vari-
go 02 = E(o2y2rlv) should be chosen equal to (2.10).
ances are

"*(;i . *) =
v*(!,?):+

(2.{l)

(2.12)
Equating (2'12) with (2.{l) shows that v shourd be choseu to be

o= (Íi)'+ fr (*)'
#*#) '(

(2.13)

' "X?' de¡oteg a ¡t variable (or distribntioa) with u df.
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This gtill involves the u¡known paraneters, but a! can be

tuted aa an estimate of o!. This leads to assuming that ú'

approximate ú distribution with

i
I

substij
h"" ut

i

t

(Íi * 
-i)'v= (2.11,

f
i
a

tablei

.= (*)'+ # (;i)'
degrees of freedom. P values cau then be calculated from ú

with the degrees of freedom equd to the integer nearest ú.

It may not be Decessary to actually calculate i. A little algebri

establishes that 
;
;

min{n¡ -1,  nz- l }  < ü1nt*n2-2.  (2.151

The extreme df may be sufficient to establish the siguific*." o[
nonsignificance of the sample. If ¿t has a high P value even for n¡ *

nz - 2, then the sample difference cannot be statisticatly aignificani

for ü. Similarly, if tt gives a low P value for min{n¡ - l, 
"2 

- l}l

then the difference mr¡st be eyen more significaot Íor 0. Results o[

Hsu (f938) show that, wheu the populatious are normal, use of the

min df is a consenative procedure. Namely, I
I

(2.16)

where z = miu{n1 - l, n2 - l}.

Ttansformations and Slelcb's approximate ú' test are the proj

cedures I most frequently r¡se to handle unequal variances. The an1
p:oximate ú' test should enjoy the robustness propertiea of the ü tes{

with equal variances, but serious nonno¡mality of the data may moti-i

vate oue to use either the trimmed ú' test or the nonparametric tests;

described earlier. The Wilcoxon rank test is also affected by unequal;
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variances, but guesswork and gome results of Potthoff (1963) suggest

that the efrects are small.

2.4. Dependerlce.

There is little more to be said than what appeÍ¡rs in Sectiou 1.3.

The effect ou ft and a; of a serial correlatiou within each sample is,

of course, the same as in the one sample problem. In large sam'

ples it could be approximately corrected by subsüituting estimates of

the conelation coefficients i¡ the expressions for the variauces or by

r-rouping the data.

Dependence between the aanpleE can occur as well. This is

the case if the obserr¿tious in the two samples are paired through

the presence of a random block effect. For example, in biological

erperimenta where oue observatiou is before and the other is after

t:'eatmeut ou a patient or animal there is almost always a substantial

efrect due to patient or animal variability. Pairing through other

block effects (viz., time, technician, litter, etc.) occurs as well. The

solution for pairing is always simple. Taking the differences betweeu

the paired obseryations eliminates the block effects and reduces the

problem to a one sample comparison of the mean difference with

zero.

Other types of dependence besides pairins could occur between

the sarnples. If the blocks contain more than just oue observation

from each population in each block, then the analysis is forced into a

higher-way classification. More complex types of intersample depen'

denee must be handled on an individual basis. It is the responsibility

of the statistician to cross-examine the experimenter for tbe possi'

ble preseuce of any factors that might cause dependeuce between (or

within) the samples.

For theoretical work on the effects of various types of depeu-

desce on the two sample Sfilcoxon rnnlr test eee Serfliug (1968) and

t

il

¡
¡
l

I

I

I
I
i

t
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Hollander et al. (f974).

Exercises.
1. show that the two sample uormal theory likelihood ratio test

oÍ H¡ i Pr : p2 Yersrr Et : ltt f p2 wifh o? : oZ is equivalent

to the two-sided two sanPle ú test'

2. Show that for indepeudently, identically, continuously distúbu'

ted y¡,  d = 1,2, i  = 1,. . . ,n¡,  the lytrnn-$i / [ i tney u stat ist ic

has variance
n1n2(n1+ n2 + l)

t2

Hint: Prove and use the fact that

EII(vr¡> ur¡lr(Yr¡ > tr¡)l = 
l

for i / lc, where I(') is the inrlicator function (2'16)'

3. Prove that for Welch's t'test

min{n¡ -  l ,nz- l }  < ü 1 nt+ n2 -  2,

where the approximate degrees of freedom 2 are giveu by (2.11).

4. Note: This exercise will be more understandable after reading

about randon effects in Chapters 3 and'l'

An investigator wants to compare Ileatments .¡{ and B. o¡r

n1 subjects paired values for Tteatments A and B (i.e., one for

each treatment) are available. Ou n2 different subjects only the

value for Tteatment A is available, and ou another n3 subjects

only the Tteatnent I is ayailable. There is assumed to be

random variation between aubjects (i.e., there is a ra,ndom effect

a; for subject i) as well as random variation in the paired values

within subject i (i.e., there is error edi for the jth obserration

ou subject d). Normality of ralrdom efrects aod errors and equal
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error variances should be assu¡ned.r

construct a welch ¿'-rype statistic (with approximate distribu-
tion theory) for testing the hypothesis of no d.iffereuce between
Tteatment¡ .Á and B.

5. In a stanford Medical center study to investigate the effec-
tiveuess of streptokinase in dissotving btood clots in the heart,
many different blood vatues were measurcd inclurling the follow-
ing partial thromboplastin times (prr) ou patients who were
recaudized (i.e, the clot dissorved; R) a¡d ou those who were
not recanalized (NR).t*

R : { l  8690 7{ l{6 67 621955 r05 46 9{ 26 ror Tzug88
ff8:  31233625 g5 2gg718

(a) R'n a ú test for the hypothesis of no difference in prr for
those patients who were recanatized versus {:hose who were
not.

(b) R'n a ü teet on the Equare root transforms of the data.
(c) Run a Wetch's ú, tesü.

(d) Ruu a median ¡2 test.

(e) Run a Wilcoxon ¡anlr [sst.

(f) Which test(s) do you consider most appropriate?
6. In a study of cellular imn'nity in infectioru mononucreosis, two

groups of healthy eontrols were co¡sidered. One group con-
sisted of 16 Epstei¡-Barr virus (EBV) seropositive donors. and

' Sec Etbohm, G. (f9?0), Or comparilt EG¡¡, b the paired case sith i¡-
completc datl responsec, Bioactritr oE, 2gg-g0{, for the gelerar probrem.

" Alde¡a¿¡, E. L., Jutzy, K. R., Berte, L. 8., Millcr, R. G., trtbdmal, J. p.,
creger, w. P., and Eliastam, M. (lgE{). Ra¡domized comparison of i¡tr¡.
vleDou! r¡ersus intr¡coro'¿ry rtreptolinase for ryoc¿rdial i¡fa¡ctio¡. Amer
ic¡¡ Joura¡l oÍ Cardir.r,logr 6a, lrt-tg.

ca
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the other of 10 EBV seronegative douors. These two groups

werecomparedforlymphocyteblastogeuesiswithphytohemag.
glutinin and several EBV and eontrol antigens.* The followins

stimulatiou indices are with the P3HR-I vin¡s conceutrate as

antigen.

Seropositive : 2.9 12.l2'6 2'6 2'8 15'8 3'2 l'8

7.8 2.9 3.2 8.0 1.5 6.3 1.2 3.5

Serone gative : '1.5 l'3 l'0 1'0 l'3 l'9 l'3 2'l

2.1 1.0

Select what you consider to be an appropriate ¡ps snmple test'

and test for no üfierence between seropositive and serouegative

donors with regard to P3HR-I concentrate'

' Nüoslelei¡el, J., Ablashi, D. V.,lacnbcrg, R' A', Neel, E U'' Miller' R' G''

aadStwelr,D.A.(t9?8).Cellula¡immonityi¡i¡fectio¡¡mo¡o¡¡clcogi¡.

tr. Speciffc reactivity to Epstcin-B¿¡¡ vi¡¡¡ rntigenr ¡¡il cor¡cl¿tio¡ vitL

cli¡ical e¡<l haemotologic parametet¡. Joo¡a¡t of lamanologr Itl' 1239-

12ll.

!

I

I
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Chapter 3

ONE-WAY CTASSIFICATION

In discussing problems th¡t involve more than two populations one

may a¡r well consider the general case of f populations because the

ideas and methods are the same whether there are three, four, or

more populations. The data now consist of a double anay {y¡}
of observations where g;¡ denotes the jth observation in the sample

from the rth population.

The model cusüomarily chosen for data in a one-way classifica-

tion is

Y; i=tr*a;*c¡¡ , (3.1)

where ¡r denotes a general overall m€nnr p; = p * a; denotes the
mean of the ¡th population, and e¡ is random (unexplained) varia-

tion. An important distinction in the model assumptions and aseoci-
ated analyses arises over whether the conclusions from the statistical
analysis are to apply strictly to the f populations in the experiment

or whether they are to apply to a wider cla.ss of populations of which

the f populations are a nepresentative subset. In the first instance
the / populations are viewed as fixed, whereas in the second they are
considered random.

To illustrate this point consider an experiment comparing the
effects of three d*g", each of which is a new compound developed
by the laboratory. Information is desir€d on the comparative effects
of these three agents, and there arc no other compounds of interest
at the moment. In this case the three populations would be assumed

;
t

r l

r l
i l

,t
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fixed. Similar sets of variables that are usually considered frxed are

treaümeni regirnens, types of disease, sex' age groupings, etc. In each

of rhese cases the populations included in the experiment comprise

the entire spectrum of possible populations of interest or at least

most of the spectrum.

On the other hand, variables that ¡re usually considered random

are people, anirnals, days, etc. This is because the ones selected

for the experiment are not so important in themselves. They serve

lnstead as Fepresentatives of the whole class of all people, all animals,

and ali days" Conclusions based on them will be applieri to the whole

class.

llow a variable should be treated (i.e., ñxed or random) depends

on how wide the inference is to be. C'lonsider an experiment compar'

ing the measunemenüs made by five different lab technicians. trf the

five are the only five ernployed in the laboratory a¡rd the compara-

biliry of their results is all that maüters to the iab director, then the

five populations (i.e", technicians) should be assumed fixed' If, on

the other hand. the five werc selected to rnvestigate the eonsistency

between technicians in general in performing these measurements,

then the inference extends beyond ¡ust these five and they should be

considered random.

It is often the case in experimental work that people, animals,

days, etc., ere not actually selected randomly from a larger popu-

lation. They are what become available to the investigator at the

time of the experiment" Usually it is safe to assume their availabil'

ity is the result of a process that is sufficiently haphazard to assure

that no bias is involved. llowever, if their representaüiveness is in

question, then they cannot be used for' the estimation of the class

characteristics in the fashion described in this chapter.

This chapter is divided into separate subchapters depending on

whether the population effects are assumed to be ñxed or random.

Y

!

t
I¡
I
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FIXED EFFECTS

3"1. Normal Theory.

The complete model is

1
I

i l

I
t

l l ; ¡  = P;* e;¡ ,

g; i : t t*a¡*e;¡ ,

(3.2a)

(3.2ó)

(3.3)

for t  = 1," ' ,1,  i  = 1," ' ,n; ,  wherc the e;¡  are independent ly dis-

tributed as N(0, o2l. To avoid identifiability problems the parame-

ters c¡ are consürained by Dl=r n¡o; = 0.Ú In a balanced design with

equal sample sizes the subscript r is dropped from n. The general

statistical task is to construct point and interval estimates for the

Fi, or ¡r and od, or to test hypotheses about the ¡r¡ or od.

8.1.1. Analyeis of Variance (ANOVA)

The likelihood ratio approach leade to the standard analysis of vari-

ance displayed in Table 3.1.

Often the sum of squares for populations in Table 3.1 is com-
/-¡  ^\puted in the form (Dt rni úí.) - N g?. and the ernor sum of squarcs

obtained by subtraction.

The mean sum of squares or mean EquareE (l|4S) for any effect

is the effect'E sum of squares (SS) divided by its degrees of freedom

(df),i.e", MS = SSldÍ. Most packaged computer programs print out

the MS column to the right of the columns in Table 3.1 and give the

F ratio as well. The mean squares for error

I

¡

62 = Lrs(E) = 
tr= áÉ,rr 

- ,u¡lz

t Another conatraint ¡ometin¡e¡ uced i¡ Dl-, o, - 0. In the balanced derign
the two constraint¡ are the came.
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is the ANOVA estimate of the variance of the underlying normal

distributions. lt is the generalization to .[ populations of (2.2) since it

pools the variability estimatee from n¡ithin each of the .[ populatious'

Table 3.1. ANOVA Table n

VDT SSdf

Mean (M)

Populations (A)

Error (E)

Total

NV?
I

D"r(st' - 9.")z
¡'=l

I ¡ :

f f,{v" - v¡12
d=l j=1

In¡

DDrí
d=l j=l

I

I -  l

N_I

/v

fn the special c¡se of a balanced design (i.e., n; = n) the ex-

pressions in Table 3.1 simplify. In particular, SS(á) = n Dl=r(g¡. -

g. .12= ("Dl=, f i )  -  Ng?,n=nl ,andN -I- l (n- l ) .

The distribution theory for the sums of squs¡es in Table 3.1 is

quite simple:

ss(M) - o' ,? (

ss(A) - o2 x?-t

ss(E) - o' x'N-

Np2

02

l r
I tJ

\

J¡

(3.4)

' "VDT' abbreviate¡ "variation due to.' "df" abbrerrieter 'degrcec of

freedom." 'SS" abbrevi¡t¿¡ '¡um of rqueree."

,V = Dl-, n¡ = tot¿l aample rize.

g¡. = ;l DlLrui = ¡ample rrprn of dth population.

t . = * DÍ-t D;:t 9¡i = overall remple mean'
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and the thrce sums of squares are independent.* The expected mean
squares a¡e

(3.5)

E(MS(E)I = 02.

The lilrel¡üood ratio üesú or F to,t of the null hypothesis ̂ t[e :
o¡ E 0 vs. the very general alternative II¡ : a; I 0 compares the
ratio

(3.6)

with the percentage points of an F distribution with (/- l) df iu the
numerator and .ü - r df in the denominator. The upper tail of the
F distribution gives the significance level. There is no differentaüion
between one and two-tailed significauce levels in the F test because
of the general n¿ture of the alte¡native^

3.1.2. Multiple Comparisons

The likelihood ratio test is intuirive beeause of the E(Mg) in (8.5).
under the alternative hypothesis, the F r¡tio tends to have larger
values than if it had a central F distribution. Although numerous
optirnality properties have been established for the .F test. it has
several deficiencies.

The first is that if you eonclude the poputation means are nor
all equal, the test does not tell you which means differ from which
other ones. This deficiency motivated the development of multiple
comparisons, which was pioneered by John T\rkey aud Henry süeffé.

' 'x?(62\' denoter a ¡2 di*ribution (or wariable) with ,, degrecr of freedom
¡nd noncentrality perameter 62, thar i¡. the distribution of Di-, yÍ, *h"r"
the y; ere independently dirtributed u N(p¡,o2), i = 1,". ,u. and ó2 =
Di-, PT lo''

E(MS(M)I:o2+Np2,

Dl=r n¡ o3E(MS(AI) = o2 * 
(/ _ l) ,

)
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A treatise on the work in multiple comparisons is giveu by Miller

(1981). For a shorter syuopsis see Miller (1985)'

If the sampte sizes are equal (i.e., n; = n), the procedure I would

use in preference to the F test is the TÚkey studentized raage úesü'

It hinges on the probability statement

Plt;-  t t¡ ,Éi i¡- i r ' .*  q?,ra-r lh, foral l  i , r ' )  -  1-o, (3'7)

where Qllb-tl is the upper l00a percentile of the studentized range

distribut'ion with I variables entering the numerator range and I(n -

l) df for the error standard deviation in the denominator.f Good

tabtes of the studentized range spPear in Harter (1960, 1969a), Miller

(1981), Owen (1962), and Pearson and Hartley (1970)'

The overall significance of the difrerences in the .[ means is the

probability that a studentized range variable 9l¡1n-t¡ exceeds the

observed value max¡ í16lg;.- g¡'llAl' Ondinarily, signiñcance of

an individual difference 9¡.- gr,. would be ass€ssed by calculating the

p value of 1f@1fi lg;.- gi,.llt from rhe upper tail of a t distribution

with /(n - l) df. However, the most extreme difference rnax¡(9i.) -

min¡{g¡.} necessarily tends to be larger than the difference betrveen

two sample mea¡ul because of the selection of the largest and smallest

mearls out of the set. Allowance for the multiple comparisons is

made by using the studentized range distribution instead of the Ú

distribution to evaluate the statistical significance of any individual

difrercnce.

Conñdence intervals for each of the (l) m"an differences are

given by the intervals inside the probabiity aign in (3.7)" Theated

I A ¡tudentized nnge v¡riable {¡,, i¡ dictributed r¡ lrüx¡,¡r¡¡. ",¡{lg¡ -y,'l)

l (x?.  4 ' t ' ,  where yr , ' " " ,9¡  ¡ re independent iV(0,1),  x3 hat a ¡2 di t t r i '

bution with v df, and ¡] and lr," ' , l l l  ere independent'
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individually, the mean difrerences wouid have confidence inte¡r,als

,¡d - ¡r¡, € g;. - gí' *q(:-r\A (3"8)

but since there are a number of such intervals, the probability of al!
of them being correct is less than I -o. This latter probability can be
appreciably less than I - a even for moderate values of r" switching
from multiplying Al,/-" bv rt ,?(i.'rl to muttiplying by Ql,t"._tl
increases the length of the intervals, but makes the probability of ail
the intervals being simultaneously corrcct equal n - c. In choosing
whether to use the intervals (3.7) or (8.8), the starisüician needs to
decide whether it is the erro¡ rate on individual rnean comparisons
that is important to the investigation or whether it is the correctness
of the whole group that is paramount.

If the design is unbalenced (i.e.,
Tukey-Kramer inte¡vals are available.
mately I - a

n¡ # nl, ühe approximate
With probability approxi-

pi-t i,€ r;.-Í;,.:r qf,¡t t, [ i  (* * 
"lr)]" '

for al l  r,  rt .  ( l .o)

The quantity inside the square root bracket in (3.g) can be inter-
preted either as tl¡e sum of the samplc size reciprocals for the vari-
ance of a mean difference corrected by the factor l/z to convert to
the studentized range, or as the harmonic mean of n¡ and nd, in-
serted for n in (3"7). These intervals. were origrnaily proposed by
T\rkey (1953) and Krarner (1956), but they have not been used ex-
tensively because no proof existed that their probabiiity coverage is
approximately I - a" However, Dunueüt (lg80a) has sho*,n this to
be true through Monte carlo work, and recently Hayter {lgga) has
proved that the probability coverage is in fact always conseruative
(i.e., 2 I - o). Earlier Kurtz (1956) had established this for rhe ca-qe
f = 3 and L. D" Brown in an unpublished lg7g proof for I = 3, 4.
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and 5.

Alternative conservative procedures have been proposed by

Hochberg (197{) based on the studentized maximum modulus and

by SpjOtvoll and Stoline (19?3) based on the studentized augmented

range. However, these confidence intervals are always broader than

the Ttrkey-Kramer intervals. Gabriel (1978) has proposed an almost

conservative procedure based on combining separate confrdence in-

tervals^

scheffé (1953) gsve aD important interpretation of the F statis-

tic that for balanced or unbalanced designs leads to the probability

statement

P{r; - tt;, € !¡ - f¡r. * ((I - l) Ff-r,n-)tl"

u(*  *  
* \" ' ,  

for  a l l  i , l )  > I  -  c,

where Ff_r.n_t is the upper l00o percentile of the F dist¡ibution

with f - I df in the numerator and N - / in the denominator. The

simultaneous confidence intervals in (3.10) are obtained by project-

ing the F staüistic confidence ellipsoid onto the coordinate axes for

Iti - lli,. For a balanced desigu the Ttrkey studentized range inter'

vals given in (3.7), and for an unbalanced design, the Tükey'Kramer

inrervals (3.9) are shorter than the Sehetré intewals given in (3.10).

The Bonfer¡ oni intervals

t  i -  t t , ,  €{ ; . -s. ' . *q l : ' f  ,  ( : .* : )" '  (3.rr)
\n¡  n i ' /

also appty to balanced or unbalanced designs and are surprisingly

good if K is not too large. The constant K in the probability al2K

for which the upper ú percentage point is required is the number

of confidence intervals being computed. In the one'way classification

this is usually X : (I\, but it could be less if some mean comparisons

are a priori noü of interest. The justification for all K intervals

(3.10)



Section 3.7: Normal Theory 76

being simultaneously corect eomes from the Bonfer¡oni inequality
in elementary probability:

K

P{^n Azñ.. .  nAr}  2 r  -  Dp{r Í } ,
¡'=l

where At denotes the complement of á;.

Special percentage points of the ú distribution are required in or-
der to use Bonferroni intervals" Tabl6 are available in Dunn (196l)
and Miller (1981) and charts in Moses (1978). A number of pro-
grammable electronic calculators have routines for calculating t per-
centage points and of course computerc do as well.

Both the Ttrkey (3.7) and Scheffé's (3.10) probability sratemenrs
also include confidence intervals on all possible contrasts without
changing the overall probability I - a. A eo¿ürasü is any liner com-
bination of the population me¿ns Dl=r ri ¡r¡ for which Dl=r r¡ = 0.
Mean differences (viz., ¡r;- pf ) ar€ contrasts, and they arc the para-
metric comparisons customarily of inte¡est in data analysis. On oc-
casion, however, the populations may subdivide into groups having
similar characteristics (defined independently of the data) in which
ca.se comparisons of.group averages such as

(3.12)

(3.13)ttitl _ ps * t\* ttd
23

may also be of interest, and these too are contra.sts.

For a balanced design the T\rkey intervals for contrasts are

f , ,  u,. É,, e;..tel,¡1o-rh;f 1,,1, (8.r4)
d=l d=l

and the Scheffé intervals for balanced or unbalanced designs are

Í  I  I  I  otr /2

Du u,€ Dc; 9¡. :b ((/ - l) F|-rx-,y't 'ó f t 9i I (3.15)
d=r i=! ' t '-" 

\fr " '/
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The probability that all the intervals in {3'la) [or (3't5)i are simulta-

neously correct for all possible eontrasts is I .-o. Although the T\rkey

intervais are shorter than the Scheffé inte¡vals for mean differences,

the Scheffé intervals can be shorter for other contrasts like (3.13)-

If the number of contrasts of interest is small, the Bonferroni

intervals

I  I  I  I  
" \ l /2p',r, t E', s''*q!::f a 

Ef l r (3.16)

where K is the total number of mean differences and contrasts of

interestn may be competitive in length to (3.1a) and (3.15).

3.1.3. Monotons Alternativee

A second deficiency of the F test ts that it has uniform power against

alternatives in all possible directions" The power is constant for all

alternatives (pr,'" ',¡r¡) that yield the same noncentrality parame'

ter 62: Dl=r n;(p¡ - plzlo2 where p : Dl=, nipíl N .Thereforc, it

cannot be especially sensitive to alternatives in anyparticular direc-

t ion"

If there is auxiliary information available in the experiment

about the direction in rvhich the alternative might lie. then it is more

sensible to use a specially designed test with increased power in that

direction. The all-purpose F and studentized range tests cannot win

in competition with a test against a special alternative when, in fact.

the special alternative ia true. Of course, if the special alternative

is incorrectly selected and a different. far removed alternative holds

true, then the special test will fail miserably'

A case in point involves monotone alúerzaúives. ft may be

known that if Ft = pz = "' = ¡r¡ does not hold. then ¡r1 3 pz 3
."" 3 ttt (with strict inequality at some point) does hold"r This

L

I The original rubccriptc labeling the populationr might h¿ve to be ctranged
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could be the case, for example, if the s€quence of populations is de-

termined by 
"o 

increasing sequence of dosage levels of a drug or by

staging of disease severity (e"g., stages I to IV of Hodgkin's disease).

If the auxiliary informaüion is in quantitative form with a value c;

such as dosage level associated with population r, then it is appropri'

ate to apply regression analysis, which is discussed in Chapter 5. If,

however. the extra information is qualitative as with staging of dis-

ease, then an analysis appropriate to a general monotone alternative

should be employed to increase the power of detecting an increase in

the means.

Bartholomew (lg59a,b, 196la,b) developed the likelihood ratio

approach to monotone alternatives, and earlier Brunk (1955, 1958)

had studied the associated estimation problem. Maximum likelihood

estimates of the mean parameters can be derived under the restric-

tion p1 S ... S Fl on the parameter space. These estimates are

computed by taking a (weighted) average of any successive pair of

sample means thaü are not in the correct monotone order. This

process is continued until a monotonic sequence of sample means is

obtained. The order in which the averaging procestt is performed

is immaterial because the end result is always the same monotonic

sequence^

Although the maximum likelihood estimateE are easily calcu-

lated, the corrcsponding.likelihood ratio test has a complicated null

distribution that necessitates the computation of special tables. Ta-

bles have been produced for balanced designs (see Chacko, lg63; Bar-

low et al., 1972; or Nelson, 1977), but the r¡nbalanced case remains

hopeless. Also, the behavior of this test under alternative hypotheses

and under departures fiom assumptions has not been studied exten-

sively. For a summary of what is known in this area the reader is

to produce thic ordering, but er long er the change ir dict¿ted by auxiliary

a priori information end not the data, the chenge ir okay.

i
I
t
I

,
;

1
tl

r4
¡ ¡'a, I
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referred to the excelleni treatise on ühis approach by Barlow et al.
(\1972't.

[hcause of the disadvantages associared with the maximum like-
lihood approach I arn inclined to use e second approach due to Abel-
son and rükey (1963), which is very ear¡y computationally and does
not require special tables. The power of this second test is good and,
in general,, its properties are more obvious.

Abelson and T\rkey advocated selection of a eontrast thaü would
be sensitive to the type of altemarives considered likely. The t statis-
tic associated with the contrast c = (rr, . . . , c¡) is

r8

l

(3.17)

where ó is given by (3.8). This sratistic has a noneentral f distribu-
tion with N - I df and noncentraliry parameter¡

(3.18)

In the balanced case the sample size n factors our of tbe de-

(3.1e)

which is the square of the corrclation coefrcient betneeu the direction
in which the test is looking (i.e., c) and the rear direction (i.e., p).

' A noncenrra¡ ¿,(á) rranablc i¡ distribut€d u yl(ot7a!1u)r/2, where g ir
distributed as N(¡t,ot) s,ith ó = plo, x? her a ¡2 di¡tribution with y df.
end y and X?, u" independent.
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If the direction of p from rÍ16 wene known, the power ryould be
maximized by choosint ei = c(p; - t t l , ;  -- l , ' . . , / ,  for arbitrary

c ) 0" When ¡ is unknown but hypothesized to lie in a region

R, Abelson and Tirkey adopt a ma:rimin approach and rccommend

selecting c' satisfying

EH 
t'("', t) = max p¡ t'(", r). (3.20)

They discuss the geometry of finding the ma"ximin contrast which for
convex B lies on a boundary. For monotone alternatives the region
is r? = (plp, < Fz S .." < p¡|, and Abelson and T\rkey have tabled
the maximin contrasts c' for I 520.

Having to use special tables in a journal is a nuisanee, and there
are other simple eontrasts whose efficiency is very high. The linear
conúrasús are the sets of coefficients for estimating the slope in a
regression with equally spaced values of the independent variable"

The l inear cr , . . . ,cr  ane displayed in (3.21) for . I  = 3( l )7,  where
they have been normalized into integer form.

(3.21)

+3

More weight can be assigued to the extremes in an effort to detect
a slow increase. The linean2 contrast doubles the weight at the end
values as in (3.22) for I :7.

I=7: -6 -2 - l  0 +l  +2 +6. (3.22)

I=3

I=4

I:5

/ :6

I=7 +3

+5

+2

+2

+3

+l

+l

+l

- l

- l

- l

-3

-3

-2

-2

-5

-3

0

- l  + l

0

- l  + i

0

The l¡nea¡-2-4 contrasú doubles the penultimate value and quadruples

¡
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the last coefrcient as in (3.23).

I=7: -12 -4 - l  0 +l  +4 +12'  (3 '23)

Any of these contrasts are easy to remember and use in conjunction

with the test statistic (3.17)'

Abelson and T\rkey define efficiency to be the ratio of the resPec'

tive minr2. lvith this definition the efficiency of the linear contrast

retative to the ma:cimin contrast is 84% at I = 5, but it falls off

rapidly for targer f. The linear-2 contrast has over 90% efficiency up

to.[ = ll and then drops to 80% at r: 18. The linear-2-4 m¡intains

efficiency greater than 95% through I = 2O.

For a discussion of contrasts üo measure quadratic effects see

Section 4"1.3.

3.2. NonnormalitY.

3.2.1. Effect

Lack of normality has very little effect on the signifrcance level of the

P test, even less than in the two sample case.

The aysmptotic robustness of the F test follows from the mul-

tivariate cenrral limit theorem which establishes that (3.6) has an

asymptotic ¡2 distr ibution with I - I  df as ni * oo, t = l , '" ' ,  f ,

for any underlying distribution with finite variance. The robu^stness

improves with increasing f because the central limit theorem also

smooths the sum (of squares) in the numerator as f "* oo'

In a series of papers by Pearson (1931), Geary (1947)' Gayen

(1950a), Box and Andersen (1955), and others, Monte Carlo eam'

pling and moment catculations have been employed to further sub-

atantiate the robustness of the F test" The reader is referred to

Scheffé (1959, Section 10.3) for a thorough discussion of the prBent

state of knowtedge. ln particular, Scheffé's Table 10.3.2, which is
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Box and Andersen's Table 2, clearly indicates the insensitivity of the
significance level to tf between 0 and I ¡nd 72 berween - I and I
when f = 5, J = 5. The effects can be morc serious, however, for a
badly unbalanced experiment.

The robusüness of the studentized range has not been as thor-
oughly süudied. It may be a b¡t more sensitive to nonnormality
than the F tesü because the numerato¡ is determined by the extrcme
means max¡{ü¡}."d mind{ti.i. However. as long as no n¡ is too
small, the eentral limit theorem should be making the ft. approxi-
mately normal and the studentized range should be approximately
con'ect. A paper in this area is R. .4,. Brown (lg7a).

The Abelson-Tbkey monotonicity test should also be insensi-
tive to nonnormality since it only needs !j=tcí !l¡. to be normally
distributed^ The cenrral limit theorem and the averaging by the
c; should help achieve this. The worst situation woutd be where ¡
few means dominate the contrast as in the rinear-2-4 contrast. This
would be further aggravated if the dominating means werc based on
just a few obserwations"

The reader should rcmain awa¡e that although the significance
levels for the normal theory tesüs ar€ robust for validity. these tests
may not be the most powerful for nonnormal distributions. That
ts, they are nonrobust for efrciency. Tlrnsformations to improve
normality or other tesüE can lead to more efficient procedures for
nonnorm al distributions.

t
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3.2"2. Detection

The same devices for detecting Donne¡¡¡ality are available to the
statistician as were previously available for the one and two sample
probfems (see sections 1.2.2 and2.2.2). My recommendarion would
be to make .[ separate probit plots, one for each sample, but carcura-
tion of the skewness and kurtosis in each sample is also s€nsible when
it is feasible to carry out the extra computations. I would certainly
not use some omnibus test over all the samples such as a combined
goodness-of-ñ¿ x2 test or a multisample Kolmogorov-smirnov üest.
but separate Shapiro-Francia tests could be computed.

3"2.3" Correction

Tbansformations Power transformations (1.21) in general and the
square root and logarithmic trrnsformations in particular arr use-
ful for handling positive-valued randonn variables with heavy upper
tails. For ¡ full discussion of transformations the rcader is referred to
section 1.2.3. Even though the P value from a üest on the unrrans-
formed data is reasonably robust, the power of the test and accuracy
of individual confidence intervals can be improved through use of a
transformation.

The choice of a particular power transformation is ¡ided in the
I sample problem by the empirical association between normality
and stabilized variances. How to choose a trnnsformation to stabi-
lize the variances between populations is discussed in section B.B.B.
whichever transformation is selected by the graphical method pro-
posed there, willprobably also make the samples look more normally
distributed. one can che& this by probit plotting the transformed
data.

Nonparametric Twhaigues Although iü is not frequently uti-
lized, there is a median test for the one-way classification due to
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G. W" Brown and Mood (1948) (or see Mood, 1950, pp. 89g-406).
As in the two sample problern (see section 2.2.8, nNonparametric

Tecbniques"), compute the medinn trrc for the total combined sam-
ple (y¡ i , ¡  = l , ' " "ofn i  = 1,"  " , t i l ,  Then within each sample count
the number of observations falling above and below the median. (The
simplest way of handling any observations tied with the median is
to discard thern") The counts can be arranged in a 2 x 1 table ¡s in
(3"24). (Note that ühe torals nr may not qurre agree with the original
sample sizes due to some observations being discarded for equaling
the median.) .

T
-- - ----'t

J

1

o = El=r d,
(3.24)

ó = Dl_r üd

fl = Dl=, t;

Under the null hypothesis of no differences between the .t popu-
lations, the conditional distribution of (or, . . . , o¡) given the marginal
totals is a multivariate hypergeomeric. This is too difficult to work
with to obtain an exact test ¡s in the two sample probrem, but the ¡z
statist ic for the equali ty of f  proport ions ¡ i1 = otlnt,. .-, i t  = atlnt
rs available:

7ff i "

1fr"

6Í

where í  = olN.
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¡2 distribution with / - I df if none of the cell entries is too small.

Nemenyi (1963) has proposed an analog to the studentized nange

test for sign statistics (see Miller, 1981, p. 184, or 1985), but this is

never used.

Cochran (1954, Sections 6.2 and 6.3) and Armitage (IOSS) have

proposed a test for trend in binomial proportions, which for mono-

tone altematives could be applied to (3.2a) in conjunction with the

conrra-srs (3.21)-(3.23). This tesr is also described in Armitage (1971,

pp" 363-365).

Of the nonparametric tests the .best known and most widely

used is the Krusfral-wallis üesü (1952). It is the analog of the f'test

using Wilcoxon ranks" Replace each observation y;¡ by its rank rfu

in the combined sampte of N = Dl=r n¡ observations' For each pop-

ulation compute the average ¡rnk scorc n.= Dilr&¡ln;. As all

the sample sizes become targe the average rank vector (Rt"," ' , fu. \

has a limiting multivariate normal distribution. Under the null hy-

pothesis the limiting covaúance matrix has the pFoper form for the

sum of squares Dl=r "¡(&'.- 
n.Y to have a limiting ¡2 distribution

with .t- I df except for a multiplicative constant,, This constant can

be determined theoretically without resorting to a sample estimate

of dispersion as in the denominator of the P test. The resulting

statistic is

KW =fi#.4f -,(a - n)',

: (",-*t É"'o') 
- a(/r + r)'

(3.26)

whose P value can be determined from the upper tait of a ¡2 distri-

bution with I - I df if none of the sample sizes is too small. Kruskal

and Waltis (1952) give some exact probabilities for /:3 and n¡ ( 5;

similar tables sppear in Kraft and van Eeden (toes, Table F), Hol-
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lander and Wolfe (1973, Table A.7), and Lehmann (1975, Table I)"
Extended tables for f = 3(n; S 8), 4(n; < 4), 5(n; ( 3) are given by
Iman et  a l .  (1975).

Wl¡en ties are present, average ranks can be used (see Section
2.2.3, uNonparametric Techniques"). If ties occur excessively, the
denominato¡ of KIU can be multiplied by the correction factor I -

[tr3,(t! - t;)/(fft - /V)], just as in (2.20), where ú; is the number
of ties at the ¡th distinct value"

For deciding which populations differ, Nemenyi (1963) proposed

a multiple comparisons method based on Scheffé- type projections of
the Kruskal-Wallis statistic (see Miller, 1981, pp. 165-172). Dunn
í1964) t¡^sed the same test with Bonferroni critical constants. A
slightly more powerful procedure is to reject the equality of F,' and
F;' when

&.t> rfl- [{I#-UJ"'[; (3.271

chere {i,- is the upper 100a percentile of the studentized range
listribution for a range of f variables and infinite df for the standard
Ceviation in the denominator. This test is a rank analogue of the
Iuley-Kramer test (see Section 3.1.2).

A test I like just as well as the Kruskal-Wallis and Nemenyi tests
.s a rauk analogue to the studentized range test due üo Steel (1960)

a.rd Dwass (1960) (see Miller, 1981, pp. 153-157). It is based on the
comparison of each pair of populations by the Wilcoxon statistic" It
:s easiest to describe i¡ i¡e \,lnnn-Whitney forrn so let

a

(*. *)1"',

t¡ i Ía'

(Ji,, - DD/{yu > yr't},
j= l  É=l

(3.28)
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where

Ilv;¡ > Y,''¡) =

if y¡¡ ) y;'¡,

if y;i = g;'k, (3.2e)

The l/2 in (3.29) is the standard tie correction, but there should not

be too many ties in order for the subsequent distribution theory to

hold. In onder to standandize for unequal sample sizes let

Chapter 3: ONE'WAY CLASSIFICATION

ü;;, - !L!-
ñ;n;r

Then the Súeel-Dw¿ss úesü compares

lqn, - | l2l

with the asymptoüic critical value

(3.30)

(3.31)

(3.32)

In (3.31) the quantity ll2 is the theoretical mean of Ü;v under .tfs;

in (3.32) QÍ,o" it the upper l(X)a percentile of a studentized range

distribution for f variables in the numerator and infi¡rite df in the

denominator, and (n; + nr' + llll2n;nr'' is the varianee of Ü¡;' under

Hs.* lf (3.31) equals or exceeds (3.32) for any r, d', .6[s is rejected,

and any pair of populations for which this happens is declared sig-

nificantly different.

For equal sample sizes (i.e., nd = n) limited small sample tables

for the sum of ranks distribution for I = 3, n = 2(l)6 are given

in Steel (1960), and a more extensive table rYith I = 2(l)10, n =

6(l)20(5)50,100 based on the asymptotic approximation for the rank

critical values Bppeam in Miller (1981)"

. The rariance ir multipliedby l/2 in (3.32) bccauae the denomin¿tor of ¡

rtudentized range conaistr of en e¡tim¡te for the standard deviation of ¡

numerator mean, not the ctrnd¿rd devirtion of a difference of two r¡can!.

L

,i,*(r#;;.1)"'
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This test has the advantage that the comparison of population

d with r' is not affected by the data from the other populations as it
would be in comparing 4. with ñ¡," in the Nemenyi-type technique

(3.271. However, somewhat more ranking is required to carry out

the Steel-Dwass test" Koziol and Reid (1977) have shown th¿t the

Nemenyi-type test (3.27) and the Steel-Dwass test (3.31) and (3.32)

are asymptotically equivalent for aequences of alternatives tending

to I/0.

Simultaneous confidence intervals for the location differences be-

üween pairs of populations can be constructed with the Steel-Dwass

ranking by the graphical method described in Section 2.2.3, "Non-
parametric Techniques,' when the critical const¡nt

I

(3.33)

is substituted for uo12 in (2.211.

The Krusk¡l-Wallis, Nemenyi, and Steel-Dwass teEts do not uti-
lize any prior information on the ordering of the populations (if it
exists), but there is s rant test for monotone altematives due to
Jonckheere (1954), which was proposed somewhat earlier by Terp
stra (1952) in a less accessible journal. I.et U¡;' be defined as in
(3.28). Then the tesü statistic is

ry -f ,-  o?,*[n¡ni '(q-+-n" + l) ] ' /2

M:Du.n.
dlr"

(3.34)

The rationale being the statistic is that if p¡ ( . . " 3 t4, then U;¡

should be larger than its null mean for r > ¡'. Summation of the

two sample Wilcoxon statistics over the I(I - l)12 pairs where d > r'

should accumulate any stochastic tendencies for the y;¡ to incrca-se

rs ¡ increases. The sample sizes cen be unequal, and for alternativee

in the direction /r S . .. 3 tu the null hypothesis should be rejected
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for large values of lu{. The null mean i.g

(3.35)

{3.36)

If n,rne of the nd arc üoo small, a normal approximation to the distri-

bution of M will suffice. For additional details the reader is referred

to Jonckheere (lo5l) or llollander and \['olfe {1973" pp. 120-123},

For small sample tables see Hollander and Wolfe 11973, Table A'8).

Chacko (1963) has given ¿ ¡onk analogue to Bartholomew's test,

A rank test in the spirit of the Abelson'Tukey contrast tests

would utilize a linear comb¡natiou of the population nnnk scores 8s,

for example, L = Dl=r;rq, where the R¡. are the rank' scores r¡sed

in ühe Kruskal-Wallis test an<l the populations are assumed to be

indexed in increasing order. The mean and variance of .& are

r,ry + l )  I ( I  + l )
EíL)= ' ' ' - ' ' ¡ .  ' , ,

{ t r  + r)  P(t  + t \2 (3.37)

where .N = DÍ=, nd, snd the null variance is

v.ar(r,) ={1#!(áf)

;l [t't,t 
+ B] f "31'",. t,]

rvhere ,V = DÍ=r n¡" Asymptotically, f, is normally

values of (L - E(LlllNar{L)lUz can be comparcd

normal critical values.

Theoretically, it would be possible to perform a permuúaüion

úest on the F ratro {3.7) by calculating its value for each of the

lVl/n1!"."n¡! different divisions of the "ü total observations into

samples of sizes ñ1, '",n¡ and rejecting the null hypothesis if the

observed ratio is one of the oli largest. Except for the minuscule

48 I

distributed so
with standard
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sample sizes this is too l¡borious for actual use even with the aid

of electronic behemoths^ Expressious for the permutation moments

provide justification for use of the normal test theory test (see Box

and Andersen, 1955).

^Robusú Estimation Ringland (1983) examines robust multiple

comparisons based on M-estimates.

3.3. Unequal Variances.

3.3,1. Effect

By far the best article about the effect of unequal varianes on the F

test is Box (t95aa), and the rcader should refer to this. When the

variances differ between populations, the numerator and denomina-

tor sums of squares in the F ratio (3.7) are distributed as weighted

sums of squares of independent normal random variables. Since the

weights are unequal, the distributions are not X2. Box develops the

distribution theory for quadratic forms of this type and applies it to

the one-way classification.

To get a glimpse ofthe effect ofunequal variances on the F test,

it suffices to examine the large sample case where all the ni are large.

The denominator mean sum of squares is converging to its expected

value, which is

[ , In¡ l , I

" lF;Iltr'¡ -s¡)21 = 
"-f{"' 

- tlo?, (3.38)
t^"  'd=l¡=l  J "  ' , '= l

where ar2 is the variance of the obsen'ations from the rth population^

Since il - | = Dl=r(rr - l), the expectation (3.38) is a weighted

average of the o¡2; call it a2. The expectation of the numerator menn

F
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t

I

I

surn of squares under .tlo is

t r r I

" [*É*,(so-o) 'J
g¡ - tiz _ NE(s _ u)'1,

(3.3e)

rá: tÉTH'" -n¡lo?'

The last expressiou in(3"39) is a different weighted averag€ of the a!;

call it al.

When the n; are all equal, the two weighted averages agree (i.e.,

o3 = o2)"This means the F ratio is centered near I ¡s it should be.

But the variance of the numerator is

Dí (3.40)
6a

Under ¡2 theory asauming equal variances, the quantity in brachets

in (3.a0) should be l, but it obviously exceeds this when the of differ.

Thus the actual variance is larger than the theoretical varianee for
the case of equal af , and the upper tail of the distribution of the F
ratio has more mass in it than anticipated by ühe X]_, distribution.

For an observed F ratio the actual P value is larger than the one

calculated from the tables, but numerical studies indicate that the

effect is not large. This conclusion is also born out in small samples
(see Box, 1954a or Scheffé. 1959, Section 10.3)"

When the n; arc unequal, the effects can be more serious. Sup
pose the larlge o2¡ happen to be associated with the large n¡. Then
in o2 oÍ (3.3S) the large o! receive greater weight, whercas in al of

(o? - o')' I
I
J
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13-39) the small a! receive g"earer weight. The expectation of the
numerator mean squares is, thercfore, less than the expectation of
the denominator, and the center of the distribution of the F ratio is
shifted belo*' l" The actual P value is less than the one stated from
the tables. If the large o! are associated with the small n;, the shift
goes in the opposite direction. The actual p value exceeds the re-
ported one. and it can increase dramatically above its nominal level
without too much disparity in the variances. The reader is referred
to Table 4 in Box (l95aa) or Table to.4.z in scheffé (19s9) to inspect
the potential danger.

Falsely reporting significant results when the smail eamples have
the larger variances is a seúous worry^ The lesson to be learned is
to balance the experiment if it is at all possibte, for then unequal
variances (and other departurcs fipm assumptions) have the leasü
effecü.

A small study of the effect of unequal variances on the studen-
tized range test has beeu published by R. A. Brown (1924)" The
results are similar to those cited for the F test.

For an Abelson-T\¡key monotonicity test it is reratively easy to
see what will happen. The variance of the contrast !f-, c¡ y;. in
(3.17) is

(#rÉ,",-')"r)

(3.41)

and the square of the denominator is converging in probability to

(3.42)

Even with the n¡ equal, if the large af occur at the ends of the
range where the e; are largest, the actual variance is larger ihan the
normalizing one so the stated P value is üoo small. The linear-2 and
linear-2-4 are the most sensitive to this. If the smaller sample sizes
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also occur at the ends, the effect ie magnified. A reverse effeet on

the P value pertains when the large or2 occur in the middle. No

numerical work on quantifying these comments has been carried out.

9.3.2. Detection

Use of a preliminary üest of homogeneity of variances is not recom-

mended" The three standa¡d tests for equality of variances, which are
based on normal theory, are those of Bartletü, Hartley, and Cochran,

but each of tbese is extremely sensitive to departures from normal-
ity. There are robust tests, but they all involve eubstantial extra
computation. This problem is the subject of Chapter 7.

It is best to avoid the problem of preliminarily testing variances.

It is harder to decide the isssue of equality or the lack thereof than

it is to corect for inequality if visual inspection suggests that this
might be warranted.

8.3.3. Correction

Tlensformations are extremely useful in correcting unequal variances

when the size of the variance is related to the size of the mean. Flot
the .[ pairs (g¡., t i) ,  r = l ,  ' . .  ,1, where

,3 = ,i, itru - t; )2. (3.43)

This is depicted in Figure 3.1. Often the e¡ tend to incrase with

increasing fi;.. With luck the statistician can make a guess on an

approximate relationship r = á(g) between the srandard deviations

and the mearul. In this case the asymptotic relation

sD(g(y)) = sD(y) lg'(p) l, (3.44)

L

which was derived in Section 2.3.3, motivates trying the trnnsforma-
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t ron

g(y) = Í' ¡i;rn" (3.45)

\!hen ¡ increases approximaüely linearly with g (i.e", r E og), the

relation (3.45) suggests trying loggr or log(y+c). For a rno¡e curved

relationship like ¡ ? ar¡$, (3.45) suggests the square root trnns-

formarion ,fr o, 
"fu 

+ 
"- 

Wbatever transformation is selected, the

prudent, statisüician checks the variances of the tr*nsformed data to

ascertain if the transformation has in fact stabilized the variances.

Tbansformations are not a-s useful when the da{,a can be both

positive and negaülve. and when the variances do not have a mono-

tonic relationship with the means. For these conüingencies the alter-

native nonparametric tests are available. The Brown-Mood median

test and the Krushal-Wallis rank test (see Section 3"2.3) should be

falrly insensitive to moderately unequal varianees, hut no study of

this has been published to date.

Tamhane (1979) and Dunnett {1980b) compare various Welch-

type (see Section 2.3.3, "Other Tests") procedurcs that have been

proposed fbr the multiple comparisons problem with o! f o2.

For monotone alternatives one can substitute the sample esti-

l

Flgure t, l
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mats el for the unknown o!, i  = 1"' . ' f ,  in the variance (3.a1) for

Dl=r c; g¡.. A Satterthwaite (1946) approximation could be used to

approximaüe the degrees of freedom of this variance estimate.

3.4" Dependence.

Dependence in the data caused by blocking or grouping of the obser-

vations is ea.sily bandled. Extra parameters are added to the modei

(3.1) to represent the nuisance effects. The model then becomes a

two-way or higher-way classification, and the appropriate analysis

for these more complex designs should be applied.

The presence of serial correlation within or between ühe sam-

ples from the different populations is a much more serious affair.

Box (1954b) studied the effects tn a two-way classification, and the

results are interpretable for the one-way classification as well. Serial

correlation within ühe samples from each population badly distorts

the siguiñcance level of the F test. The reported P value üends to

be too large or too small depending on whether the correlation is

negative or positive^ The effect of serial correltaion in blocks acnoss

the populations is mueh less seve¡e. For further details and numer-

ical results the reader is referred to Box (1954b) and Scheffé (1959,

Sect ion 10.5).

The techniques available for detection of serial correlation with-

in population samples is the same as in the one sample problem (see

Section 1.3.2). It 's just that there are more samples in the one-

way classification. Successive paim (y¡,g;,j+r) can be plotted for

each population sample for visual inspection, or the serial correlation

coefficients can be computed.

It is well to know if serial correlation ie present go that it is

known whether the significance level of the F test is ehaky. However,

if the F test is in trouble, there is precious little that can be done

to rescue the situation. Esüimates of the correlations can be plugged
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into the expressions for the mean and variance of the F ratio, and

for large data sets grouping may help (see Section 1.3.3). Since the

median and rank tests arc ¡lso in trouble from s€rial dependence in

the one sample problem, it is lüely that they arc in trouble in the

one-way classification as well and cannot bail out the analysis.

RANDOM EFFECTS

3.5. Normal TheorY.

The discussion here focuses on the situation where the f populations

in the experimenü are not the only ones of interest" They are merely

representatives of a wider class of populations from which they have

been setected. The experimenter and statistician are primarily seek-

ing inferential statements about the broad class of populations.

The claseical model is

Yi i :  P*a;*e;¡ ,  r= l , "" ,1,  i :  l , (3.46)

wherc the random variables o¡ and ¿i, are distributed 8s

N(o,o!),

N(0,o!1,

{ ' " } '

Whereas in the fi,red effects model the analysis concentrates on esti-

mating and testing the population differenes ad - od" for the random

efiects model estimating and testing the variances af and dr2 are usu'

atly the primary concern. In some instances an estimate of ¡r or each

population mean p * o¡ may also be desired.

ai independent

eii independent

(o¡) independent of

(3.47)
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3.5.f, Estimation of Variance Components

The ciassic approach is to use the expected mean squa¡es of the

ANOVA table (Table 3.1) under the randorn effects model and the

method of momentsto estimate o] and o!,. lt is a simple computation

to show that

lt

I

I

I

E(Ms(A)) = o: +ofi- n ("'

E(MS(Ell = o:.

Equating the moments to the obsen¡ed mean squares and solving the

pair of equations gives

0! = MS(EI,

^2 N(I  -  l ) [Ms(A) -  MS(El l
u:---vc- 

Nr-D!;=t"?

For a balanced design (i.e., n; = n) the exprcssions for the estimates

simplify to
62 = MS(EI,

^, MS(AI - MS(tEl
oi= --

With the modiñcation that if ól is negative it is replaced by zero,

these estimator¡ are the ones most commonly used in practice.

For a balanced design the estimators (3.50) possess certain opti'

mality properties. The vector [9. , SS(E), SS(A)l is a complete. min'

imal sufficient statistic for (p, o2", oZ). The estimators (3.50) are

therefore the uniform minimum variance unbiased estimaüors. With'

out the assumption of a normal distribution they are the unifonrn

minimum variance quadratic unbiased estimators {e'g.. see

Graybill, 19?6, pp" 614-615 or Searle, 1971, pp' 405-406). Still there

are biased estimato¡s that have more desirable properties from the

point of view of mea¡¡ squarcd error loss [i.e., EV: - t?)21" These

(3.48)

(3^4e)

(3.50)
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alternative estimators deserve to receive greater attention in appli-
cations.

The Ilodges -Lehmann (1951 ) estimator

o?= ss(E)
(3.51)I ( " - l )+2

has the smallest mean squared error loss in the class of estimators of
the form c x SS(E) where c is a eonsrant,

The maximum likelihood estimators of o!, o! erc

6? = MS(EI,

ai =: [ ( ' -  
i )  * ,n,  - ,*(") ]  ,  

(3 52)

if (l - rt)MS(A) > M^9(E), and

^,  r f l  l \ -  .  .1a:=; 
[ | . t  -  i )us1e¡+(, , - r ) ¡¿s(E)J ,  (3.53)

Ü2o = 0'

if (l - I-rlMS(Al < MS(E). The esrimate of 02.- in (3.58) is a
pooled estimate of eror; if MS(A\ is nor large enough to indicaüe
that oj > 0, then SS(A) is added to SS(E) in the nume¡ator of d!.
The expressions (3.52) and (3.53) can be written as

I

ó,2 = 
-io {#gh, 

ss(E) + ssr},

a =:t"P-ffi1., (3.54)

t[

ü

where (o)+ = max(o,0). These maximum likelihood estimators have
uniformly smaller mean squared errcr loss than the unbi¡sed estima-
tors (3.50) but they in turn can be dominated by more sophisticared
estimators.
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improve upon (3.54) by choosing the denominator constants in a

more optimal fashion.
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The Klotz'Milton' Z*ks ( 1969) etimatotz

b7 = minf -- ¡f-tsl - ff(E') + ss(A) I
I ¡F-rl ;¡' --J;+ r - l'

^, I rss(A) ss(E) I +o;=; [ r+l  " / ("JIJ '

Finally, the Süeir (1964) esüimaüo¡s

.n .  I  ss(E) SSiE)+ss(A)
aá = mrnt 16 _ t¡  *2, 

--- In +T-'
ss(El_+ {ggF ss(Lfl 

},
^2 _ _:_ l r  (y(ü_- ss(E) \+óÍ=min{; \7+r -¡ ; - i l /  '

! /ss(¿)=+ {s(¡4 -,9t(I ' '  
* ' '

n\  I+2 
'b- \ )  

l '

(3"55)

(3.56)

imprcve upon (3.55) by including the one df variation in ühe gtand

mean if it does not difler much from zero.t Since only one df is

invotved, the amount of improvement is apt to be only slight.

In their excellent psper Klotz et al. (1969) give proofs of the

preceding statements on mean squared error loss and numerical com-

parisons of the estimator:. They also consider some formal Bayes

estimatorr. In a later paper Portnoy (19?l) considers formal Bayes

estimators in greater dePth.

C. R. Rao (1970, 1971, l9?2} introduced the concept of mini.

mum norm quadratic unbiased estimators {MINQUE)'

. Selection oÍ ze¡o ir erbitrery. Any other value po thet h¡s ronr ¡ultiffcation

independent of the drt¡ can be u¡ed' ln thi¡ event SS(M) ir replaced by

In(g.--  po) ' .
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For wor* on nontregative r¡nbiased estimaton, sce laMotte
(1973) and Pukelsheirn (1981).

Alternaüive estimaton for the unbalanced desiga (i.e", q I n)

are not considered here. The unbalanced case is moFe complex than
the balanced. The rcsults that exist arc considerably messier and go
beyond the intent of this book. The reader is rcferred to Chapters
l0 and l l  of Searle (1971).

3.5.2. Teets for Variance Components

For A balanced design

)

i

I{

i
I

ss(M) - (o2 + noll r? (;*),
ss(A) - (o? + no!) yj-r,

ss(E) - 02 x?'.-u,

(3.57)

under the normal theory assumption, and the three sums of squarcs
ere independent.

A common problem is that of testing for the pres€nce of popu-

lation variability, that is, H¡ : o2o = 0 vs. H¡ : o! > 0. A test that
is uniformly moet powerful similar ¡nd invariant aud is almost the

füelilrood ratio test is to reject HoÍo¡ large values of M9(AlllrÁg(E)
(see Herbach, 1959). This is the same ratio as (3.6), and under IIs
this ratio has an F distribution with df I - I and I(n - l) for nu-
merator and deuominator, respectively. Under the dternative rI[¡,
the distribution is not a noncentral F as in the fixed effects model.
l-nstead, from (3.57) it is distributed asr

Fl-r,l(¡-r). (3.58)

] "F"t,ur' dcnote¡ ¿n f v¿riable (or dirtributioa) with z¡ rad u2 dÍ for
numcr¡tor ¡nd denominetor, rerpcctively.
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The parameter o! enters through a multiplicative factor to a central

F variable rather than through a noncentrality parameter. Power

calculations are thus obtained from tables of the central F or beta

distributions.

Spjotvoll (1967) studies the structure of optimum tests of Ilo :

o2loZ ( Ao.

Although their general use is not recommended because of their

extreme sensitivity to nonnormality (see Section 3.6-2), confidence

intervals can be constructed based on the distribution theory (3.57)"

In particular, a confidence interval for ol can be obtained from

ss(E) .2-;T- - Xt(n-t) '

and a confidence intervat for of;lo! from

sJXl * ^12 ' .* FÍ-r,r(¡-r)'
MS(EI -' o! + no2"

jtnrttol - ¡zs(E)) * "'"+

(3.5e)

(3.60)

The ratio 
"7lo? 

measures the size of the population variability rela-

tive to the error variability inherent in the data. In some problems

this ratio may be the parameter of intercst, but in others a confidence

interval on o2o alone may be required. This is a much more difficult

problem" Bulmer (1957) has a complicated method for constructing

an approximate confidence interval, and Scheffé (IOSO, pp. 231-235)

discusses this approach iu detail. Another method that should yield

a rougher approximation is üo employ a Satterthwaite approximation

(see Secüion 2.3.3, uOther Tests"):

(3.61)

The degrees of freedom v in the apprcxtmation a¡e selected by equat'

ing the second moments of the random variables on the two sides of
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(3.61). This yields
I

ssl¿') ,-d- - X-¡t-t

(3"62)

No confidence intenals linked to the more sophisticated esüima-
tors (3.54) - (3.56) have been developed.

In the unbalanced design

ss(A) * o? x?-t (3.63)

under Hs : o! = 0. Under H1 : o? > O, SS(A) does not have a ¡2
distúbution but instead a weighted combination of ¡2 distributions.
The ratio MS(A)IMS(E)can still be used to test Ils : o2o = 0 because
under llo it has an Fl-r,,v-¡ distribution, but the distribution under
the alternative is mone complicated than in the balanced case.

A normal theory confidence interval for o2, based on

(3.64)

is available, but no eonfidence intervals have been developed for o!
or o!lo! in the unbatanced case.

3.5.8. Eetimation of Indlvidual Effecte

In most cases the primary statistical problem in a one-way classiñca-

tion with random effects is to estimate or test hypotheses about the

two sources of variability, namely, error (ol) and populations (al).

Occasionally, one wants to estimate or test p, and also at times to

estimate the individual population means pi = lt * a;, r : 1,..., f.

The latter problem is relevant when specific actions or calculations

are to be made for eech individual population on the basis of its es-

timated mean value" For examples of this the reader is referred to

Efron and Morris (1975).

I
I

I

I
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The standard maximum likelihood approach would be to esti-

mate ¡r; = tt+ oi by gn. However, if for f estimators ¿ü¡ of the f

parameters ¡r; the criterion of performance is the sum of the aquared

error losses Dl=r(lr, - P¡12, then empirical Baya estimators do bet-

ter.

Under the distribution structure (3.47), the Bayes estimator of

p; for the balanced design isla

Whereas the risk of the set of ma:rimum likelihood estimators (g¡')

equals lo2rln, the Bayes risk for the set of Bayes estimatorE (3.65) is

fi;= tt* (t - #*") 
(s¡.- p),

:(ufi-^,r) u* (ffi"¡r,

b?(,-  "3 \
n I  ot+no2"l '

a3: *É,0'  -  ut ' -o: '

(3.65)

(3.66)

The Bayes e¡timator (3.65) corrects the population sample mean

toward the theoretical overall mean by an amount proportional to

the size of the two components of variability olln md o!. The

savings in risk of (3.66) over lo2rln can be considerable for small ol

relative ro o!ln.

Of cource, the parameters p, o7, oZ arc unknown in any prac'

ticat problem unless there is prcvious dat¡ or euxiliary information

availabte. fiowever, they can be estimated fiom the data and this

leads to empirical Bayes estimatom. James and Stein (1961) showed

that, in the case of known p end o! ln but unknown o!, the estima'

tors

i,;= t * (t - #rA) 
(g¡,'-p), (3.67)

wherc

(3.68)
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uniformly (over fixed o;) improve on the risk of the maximum likeli-
hood estimators provided f > 3. The Bayes risk (averaging over the
o¡) for the esüimaton (3.67) is

(3.6e)

(see Efron and Morris, 1973a). One can substiüute an independent
estimate of o,2 based on l4S(E) into (3.67), and Lindtey (1962) sug-
gested substituting 9.. as an estimate of p. The Lindley form of the
James-Süein estimator is

.  I  ( r -3)  ss(E') \ ,_ _ \fi;: a. * (t - i6i-?, ft,) (r¡ - r..), (B.zo)

which shrinks each sample mean towa¡d the grand mean in propor-
tion to the relative sizes of the sums of squares.

The empirical Bayes estimator (3.70) Eeems most rclevaut for
application to the one-way classification (provided I > 4)" There is
a large literature on these estimators and variants of them which the
reader may wish to pursue. He or she is referred, in particular, to
James and Stein (1961) and Efron and Morris (197J)" The lamer
authors include a discussion of unbalanced designs as well.

The original work of Stein (1956) and James and Stein (1961)
was for the fixed effects model (3.2), uot the random effects model
(3.46). They established the exisüence of estimators that domi-
nate the ma:<imum likelihood estimaüors in terms of the sum of the
sguared error losees uniformly over all values of the mean vector
(ttt,..., p¡l for I > 3. Lindley waa one of the ñrst to give an empiri-
cal Bayes interpretation to the J¡mes-Stein estimaüors" His remarks
Bppear in the discussion following Stein (1962). Efron and Morris
in their aforementioned series of articles amplify the empirical Bayes
interpretation of these estimaton.

Although the estimators (3.70) improve on the ma:cimum like-

(?') ;#;a.)
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lüood estimators in the fixed effects cas€, they have not received

widespread acceptance. The examples in which they have been uti'

lized have morc of a random effects flavor" It is not clear why there

is hesitation in using the empirical Bayes estimato¡s (3.70) in fixed

effects problems. Perhaps therc is some distnrst of the loss function

that adds all the squared errom- The estimation of any given mean

is subjugated to the estimation of the whole eet of means. Concern

for the individual mean may inhibit using an estimate substantially

different from the obeerved sample mean. Efron and Morris (tSZt,

1972) discuss this point and introduce modifications of the empirical

Bayes estimators.

Another handicap of the estimators (3.70) is that no tests or

confidence prccedurcs are available for use in conjunction with them"

Some theoretical work (viz., Stein, 1962; Joshi, 1967; Faith, 1976;

and Morris, 1983) has appearcd, but it has not been reduced to

practical form for everyday usc. The work of Dixon and Duncan

(1975) is very relevant but is not entirely practical.

3.5.4. Eetimation of the Overall Mean

The estimate for the overall mean p in the balanced case is b = ll'..
Its variance is

I

(3.71)

Tests and confidence inten'als for p can be constructd from 9.. End

MS(AllIn since fl.. is normally distributed and an unbiased estimate

of (3.71) is IvIg(AllIn The df for the ú statistic is f - l.

ln the unbalanced case therc are s€veral choices of estim¡tors for

¡r. One is the weighted averate of the population mcarut 9.. = (l//V)

Dl=r n¡9¡, and another is the unweighted average g'. = (llIl



Dl=, f¡.. The variances for these two estimators are

Var(g..) =

Var(g.l) =
(3"72l.

and either one úilI be estimated by substituting estimates for o!
and of. The relative sizes of o"2 and a! determine whiü variance
in (3-72) is smaller and thus which esti¡nator is to be preferred. If
o!  >> of; , then Var(g..)  < Var(gl) ,  and i f  o!  << of; , thereverse is
true-. By substiruring eerimates for o! nd of, ínto (9J2) one can
assess whether either estimator is definitely euperior to the other.

It is possible to go even further and determine the weights {¿';}
that give the estimator !l = DI;=rtú;g;.lDl=, ú, with the smallest
estimated variance. In this case ri¡ is a fi¡nction oÍ ó! and af. My
experience has been that this approach produces a less satisfactory
estimator than ü.. or fl.l. The noise in the weights ó¡ introduced by
the estimaües ól and ól tends to produce an unstable result. There
is some theoretical work that substantiates this assertion for small
sample sizes like ni ( 9 (see Graybill and Deal, lgs9, and Norwood
and Hinkelmnnn, lg77).

3.6. Nonnormality.

3.6.1. Effect

LacL of normality can occur in both the variablec a; and the vari-
ables c¡. r¡t 1z,o denote the kurtosis of the distribution governing
the o¡, and ,y2,, the kurtosis for the er¡" The corresponding skew-
ness parameters arc not introduced here because their effects on the
distributions of the statistics are not as profound"

t:-

J
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Confidence intervals and tests for o! bas€d on the assumption

(3^73)

are very nonrobust. This is created by the dependence of the variance
of SS(Ello| oo 1r,r, which is not accounted for by the X2 dietribu-
tion. For greater detail the reader is referred to Chapter 7.

The tesü of the null hypothesis IIs : o!:0, which assumes that

ilrs(Al N - r-MS(EI = 
r- l

ss(E) q-;7- * x'N-r

Dl=r n¡(f¡. - g.)z

Df=r Dl:r fu¡¡ - s¡)2
(3.74)

I r

is.distributed as F¡-¡,¡v-r, is quite robust. This mr¡st be the case
becaus€ it coincides with the fixed effects test of Hs: a; = 0, which
is known to be robust (see Section 3.2.1)" Under IIs the oi are
nonexistent (o2o = 0,12,n = 0) so they do not affect the distribution
of (3.7a). Since the fl¡. are sample means with .y2(g;.) = 12,ln¡, the
effect th¿t the ,y2,¿ might have on the numerator is dampened eo thd
distribution of the numerator is nearly ¡2. There are usually ptenty
of degrees of freedom for estim¡ting o! in the denominatot w ^t2.c
does not appreciably affect the distribution of the ratio (3.74).

UqdeR the üte,qq\tl'<< q2" > 4-, (Le Rqb\stqess'{Re(shes q,\ss,

12,o + 0. Unless the n; are very small or o! >> a|, the population
variable o¡ dominates t;. in controlling I;. : oi * ?;. . The effect of

?2,a on a; has not been dampened by any averaging process and

"*(*É," , - . ) , )  
=d(** ?) (sz5)

\ '  ' r '= l  /  \

The kurtosis 'Iz,n thus hac a substantial effect on the variance of the
numerator of (3.7a). Since the c¡ cancel out of the denomiantor of
(3.74), the denominator crnnot correct for the change in the variauce

of the numerator. This leads to nonrobustuess of the distribution

of (3.7a). Conñdeuce intervds for of;lol or tests of the hypothesis



Section 8.6: Nonnormality fO?

Hs : of;lo! S Ao bas€d on (3"7a) are, therefore, very sensitive to
departures from normality. For numerical confirmation of this the
rcader is referred to Arves€n and Schmitz (1g70) and Arvesen and
Layard (1975).

No numerical worL has appeared on the effects of nonnormality
on the distribution of the alternative estimators (9.S4)-(8.56) for o!.
However, one would guess that ?2,o has a considerable influence.

The effect of nonnormality on the performance of the empirical
Bayes estimato¡¡ of ¡r; = p * a; is less clear. Some work in this
direction would certainly aid in determining whether they should be
used ¡outinely in practice.

The effect of 12," a¡rd ?z,o on the estimates of the overall mea¡r
and their estimated standard ernors is more straightforward, but no
numerical work has been published.

3.6.2. Detection

Lack of normality of the c¡ ia easy to spot when there are enough of
them. The situation is simply an /-fold rcpetition of the one sample
problem; thereforc, the rcader is rcferrcd to Section 1.2.2. probit

plots of !;i, i = 1,"',n¡, for each of the population eanrples should
reveal any skewness or kurtosis in the error distribution.

Detection of 12,a I 0 ia more difficult. Tlpically, .f is not all
that large so there arc not many variables a;. One can make a probit
plot of the fl¡., i = 1,...,1, but this does not allow one to see the
empirical distribution of the a¡ directly. Each a; is contaminated
by the addition of a;., which clouds the picture of the behavior of
the c¡. Since tests or confidence intervals on o! are usually more
of interest than those on o!, and since ,y2,6 eubsteutially affects the
normal theory tests in the nonnull case, this leaves the normal theory
techniques in an unfortunate eituation.



I

106 Chapter 3: ONE"WAY CLASSIFICATION

3.6.3" Correction

A suitably chosen transformation may rmprcve the normality of the

data. With the use of a transformat¡on there may be some difficulty

in the interpretation of the v¡riances on ühe transformed scale. It

may be nece$ary to inversely transform the variance estirnates back

into the original scale (see Section 2.3.3, "Transformationsn).

The main alternative to normal theory for asse.ssing the vari-

ability in vaúance component estimates is the jackknife" This tech-

nique is decribed below and in Chapter 7. A¡vesen (1969), Arvesen

and Schmitz (IOZO), and Arvese¡r and Layard (19751 h¡ve studied

its applicaüron to variance component problems. Miller {1974a) has

described the more general uses of the jackknife, which was proposed

by T\rley {1958) for robust interval esüimat¡on.

Consider interval estimation on o! in the balanced design. kt

0=oZrnd

0=!( i r¿s(A) -Ms(E)) , (3.76)

The jac&ftnife systematically deletes e¡ch of the f population samples

in its turn and recomputes (3.76) each time with one population

missing. lret A-¿ be the estimate (3"76) computed frorn y;¡, r =

1,"" , ¡  -  l ,  *  + 1,  " ' ,1,  i  = l , '  " '  tn.  The next step is to form the
quantities

i t=t i - ( I - l )0- t ,  &:1,- . . , r ,  (3.7?)

which have been called "pneudo-values" by T\rkey. Then i¡,'"',6¡

are to be treated as approúmately independently, identically dis-

tributed random variables so that

e-e

¡ÉDD!=r(6r-61'
nl rV(O,1), (3.78)
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where 6 : D'r=ri¡/1. tn* with probability approximately I - o,

eei*, r"12 (3.7e)

where zol2 is the upper 100(o/2) percenüite of a unit normal distri-

bution.

For 0 : (o? + no!) lo! : I * n(oll o!) the same procedure

can be applied with á : Iufg./.llMi(El" Jackknifing tends to re-

duce the bias in 0 as well as provide robrut eonfidence intervals.

In variance ratio problems use of the log transformation - that is,

d = los(^/S(A)|MS(E)); 0 = log((o2, + noz,lloz,l - is likely to im-
prove the normal approximation (3.79). Any confidence interval for

0 can be converted to a confidence interv¡l for ollo! by subtracting

I from the endpoints and dividing by n.

Arvesen (1969) and Arves€n and L"y"rd (1975) have considered

the modifications necessary for handling jackknifing in unbalanced

designs.

Jackknifing is not likely to work well on the nonsmooth alter-

native estimators (3.54)-(3.56). Unless an estimator admits I power

series expansion in certain basic v¡riables, the jackknife technique

is likely to go awry (see Miller, 1964, 19744). The jackknife should
do well on smooth formal Bayes eatimatom such Es those of Portnoy
(1971; see Arvesen, 1969, p. 2092).

3.7. LJnequal Variances.

Under Hs : o! = 0, the effect on the robustness of the F teat if
ol varies from population to population is the same as for the fixed
effects model. The reader is referred back to Section 3.3"1. For

a balanced desigu (i.e., n¡ = n) the effects are minimal, but the

distortion can be serious for unbalanced experiments.

tn:T Dli* -il',.1.  .  t  í= l
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The effects on v¡rious point and interval estimates for o! when

o?,¡ * o3 te unlnown. I have not seen any work concerning the

.ff..t, ou the empirical Bayes estimatorE of {¡l+c;}' The effects on

the estimators g.' *d t.'. of ¡r are calcul¡ble; see P' S' R' S' Rao et

al. (1981) for numerical results'

Detection would be the same as for the ñxed effecte model (see

sections 3.3.2 and 3"3.3). Plotting ti veñ¡rF !¡. is the best hope of

detecting sYstematic change.

Since estimation of ol ndlor al is often the primary problem,

use of noDparametric techniques is obvi¡ted Es a corFective device.

Tbansformation may even perturb the problem too much to be useful.

p. s. R. s. Rao et al. (1981) study estimators modiñed for unequal

o3,;"

3.8. Dependence.

As opposed to the models prcviously considered in this book, depen-

dence between observations is already present' Since

Cov(y¡, yd¿) : E[(o¡ + ¿¡X¿¡ + e;¡)l: s! (3.s0)

for j f t, the

population is

correlation between two obse¡vations from the same

This within population correlation coefficient is called the inür¿class

eonelation coefficíent, and it is a parameter that has been studied

classically in statistics (see Kendall and stuart, 1961, pp. 302-304).

Observations in difierent populatiotur 8¡e' of coume, independent un'

der the model.

Blocking beeawe of the presence of a nuisance effect is easily

handled through a higher-way classification model, but any other

(3.81)

L
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kind of dependence outside the model spells big trouble. Serial cor-
relation between the c¡, or between the o;, can have a substantial
effect. Unfortunately, little or nothing has been written on this or
on what to do about it.

Exercises.
l. For the one-way classification with ñxed effects, ehow that

EII'lg(A)l = o2 *DI;=t"i"? .
I -  I

2. For the balanced one-way classification with fixed effects, show
that SS(A) - o2 x?-Jó2), where 62 : nDlcr"? lo'.

3. L€t gr, . . " , g,n be independently, identically, continuously dis-
tributed, end let & be the ranl of y; in the sample. Show
that

(") ¿(&') = (n + r)12,
(b) var(R¡) = (r + l)(n - rllr2,
(c) Cov(R¡, &,) = (n + l)/12, ; * i ' .

Hint :  P{R¡ -  t }  = l ln,  k= 1, . . . , r r"

4. Use the results of Exercise 3 to establish that for a one-way
classification rant analysis

(") s(&.) = (tr + rl l2,
(b) var(ft.) = [/v(/v + l)/l2n¡l- (tr + rllrz,
(c) Cov(f;,'.), ñ.,.) = (/V + rllt2,

where ¡y = DL, n; and (8r.,..", E¡.) is the average rnnl vector

[see the discussion preceding (3.26)1.

5. Us€ the results of Exercisc 4 to establish that for the line¡r ranl
statistic L = Dlr=r¡ ñ... [.." the discussion prceding (S.SZ)]

(al E(LI= (&Y@,
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(b) var(r) = ryf+P (rt, É) - 
(rv+rr{1(t+r)2.

For the oDe.way classification with random effects, show that

, / I \

EIMS(AII = o? + fi¡ -li (iv' - E"? ) 
,2.

For the balanced one.way classific¡tion with random effects,

show that SS(A) - (o? + no!l¡a?!-,

prove that S/(z * 2) minimizes the mean squarcd error among

the cla$ of estimator¡ cS for o2, where c is a constant and

S - o2 xZr.

A clinical method for evaluating trunk flexor muscle strength in

üildren was needed to assist physical therapists in accurately

assessing streugth in pediatric patients. In this Stanford study

tn¡nk flexor muscte atrength walr measu¡ed in 76 girls 3 to 7

years of age"* Muscte strength was graded on a scale of 0 to 5

using modified manual muscle testiug methods. These methods

attempted to minimize the amount of hip flexor muscle octivity

during tn¡nk ffexion while altowing more isolated action of the

abdomiual trunk flexors.

The means and standard devi¡tions (g*s) for the girls grouped

by years of age (n : l5 in each group) a¡e summarized in the

table.

6.

7.

8"

9.

Age34567
.9 4.8*0s

(a) Run an ANOVA test of the null hypothesis of no age effects.

(b) usc T\rhey studentized rante intervals to decide whiü age

gnouPs differ"

'  Baldruf, K. L., Swcnron, D" K., Medeiror, J' M', rnd Radtlr ' S' A' (lgt{)"

Clinical rrserrment of trunl flocor mu¡cle dren$h in healthy girlt E to 7

yearr of tge. Phyticú Thenpy, Oa, l20t-120t"
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(c) Apply ¡ linc¡r-2 contr¡st teat for monotone ¡lten¡atives to
test for muscle grade increasing with age.

10. Plasma bradylininogcn levels werc measured in norm¡l sub.
jects, in patients with ¡ctive Hodglin's disease, rnd in patients
witb inactive Hodgkin's disease" The globutin bradylininogen
is thc prec'Eor substsnce for bradylinrn, which is thought to
be a chemical mediator of inflamm¡tion. The data (in micro
gra'oE of bradykininot€n per milliliter of plasma) erc displayed
in the table. The medical inveotigator¡ s¡nted to tnow if the
three goupo differed in their bradytininogen levels.r cerry out
the statietical analyeie you consider to be moet appropriate, and
etate your conclu¡ions on this queation.

' Eilam, N., Johnron, P. K", Johnon, N. L., ¡¡d Crcgc,r, W. p. (1963).
Bradylininoge¡ lsvcl¡ in f, odgkin'r di¡e¡r. Crracr+., tt, 6El_0S{.
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Normal Active Inactive

Controls Hodgkin's Discase Hodgkin's Discasc

5.37

5.80

4.70
5.70

3.40
8.60
7.48

8.77

7.15

6.49

4.09
5.94

6.3{f

9.24

5.66
4.53

6.51
7.00
6.20
7.O4

4.82

6.73
5.26

5.37

10.60
5.02

14.30

9.90
4.27
5.75

5.03

8.74

7.85

6.82

7.90

8.36

8.72

6.00
4.76

5.83
7.30

7.52
5.32
6.05

5.68
7.87

5.68

8.91

5.39

4.40
7.r3

3.96

3.04

5.28
3.40

4.10
3.61
6.16

3.22

7.48

3.87
4.27

4.05

2.40
5.81

4.29
2.77

4.40
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ln an experiment on the efiects of oxygen toxicity in newborn

mice, littermatcE were aeparated ¡t birth into üamben con'

taining air or nearly 100% oxygen. Paire of nunsing mothers

were ewitched between the üambel! every 12 hours to ¡void

oxyten intoxication of the mothers. This experiment was re-

peated 4 times with the newborn mice in the chambers for 24

hours. The amounts of tritiated thymidine incorporated into

the pulmonary DNA (dp-/pg DNA) in the air ¡nd O2'exposed

mice arc displayed in the table. Additional experiments were

n¡n for 36, 48, and 72 hours"r

Estimate the variance component in the differcnces due to ex-

periments by the method of moments from the ANOVA Table

I [i.e., (50) with I = 4, n: 41. Assume no nuraing pair effect.

Northway, W. 8., Jr., Petriceh, R., and Sh¡hini¿n. t. (1972). Quentitetive
upectr of oxygen toxicity in the nesborn: Inhibition of lung DNA rynthetir
in thc mou¡e. Pediúrict, 60,67-72.
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Experiment
Nursinr Litter

Pair - Mother Air 02 Difierence

MtMs

MzMt

rt.2
26"1

t4.2

7.3

Mt

Mg

Mz

Ma

23.9 -12.7

7.6 18.6

16"6 -2.4

14.3 -7.0

MtMs

MzMt

t7.4 19.3

16.8 14.9

15.6 1.6

12.6 4.6

Mt

Ms

M2

Mt

-1.9

1.9

14.0

8.0

MtMt

MzMt

12.6 {.6

20.4 ll.2

6.6 8.8

19.2 16.4

8.0

9.2

-8.2
2.8

M¡

Ms

Mz

Ma

MtMs

MzMt

u.2 7.8
13.5 9.8

12.6 r3"3

7.4 5.4

M¡

Mg

Mz

Mt

3.4

9.7

-o.7
2.O



Chapter 4

TWO.WAY CLASSIFICATION

With a two-way classification there are two distinct factors afrecting

the observed responses. Each factor is investigated at a variety of

different levels in an experiment, and the combinations of the two

facto¡s at different levels form a cross-classification.

The simplest linear model for an obs€rvation y;¡ üaken at level

¡ of Factor A and level ¡ of Factor B is

Yi i=tr*a;*  f ¡*c;¡ , (4.r  )

where p is the overall mean, c¡ is the unexplained variation, and o;

úd Pi are the effects for Factors A and B, respectively. The more

general model

!¡i = tt* o¡ * F¡ + aP;¡ t c;¡ (4.21

allows for au interactive effect op¡¡ between the Factors A aud B at

the levels combination (t,f). Sometimes more than one observation is

taken at the (r, j) combination of levels so a third indexing subscript

& is added to y and c (i.e., y¡¡ and a¡r).

The assumptions that should be imposed on {a;}, {É¡}' and

b\;¡l are dict¡ted by the types of factors involved in the experi'

ment. As in the one-way classiñcation, it is necesEary to distinguish

between llxed and random effects. Different trcatments, types of dis'

ease, age groupings, sex, etc., are typically considered to be fixed

effects, and the statistical inference extends only to those included
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in the experiment. Ou the other haud, patients, days, batcheE, etc.,
rre russc\\y ssssidcred is br xseselS :eprctnstcti.rr* {¡s¡u I \ltger
population; thus they are handled as random effects.

In a two.way classification each factor can be either fixed or
random. If both factors are fixed, the model is called a fixed efrerts
model" When both are random, it is called ¡ random effeets model,
and when there is one of each, it is a mixed efrects model. In Churchill
Eisenhart's (1947) terminology, these arc rcferrcd to as Models I, II,
and III, respectively. The sections of this chapter discuss the fixed,
mixed, and random effects models.

FIXED EFFECTS

1.1. Normal Theory.

When Factor A has f levels (i.e., r - 1,"..,.1) and Factor B has J
levels ( i .e., i  :1,.",J), the crpss-array of (r,¡) combinations has
.I"/ cells. I.e¡ p;i be the mean for the cell (r,j). Any arbitrary set of
/"/ means {p¡¡} .- be exprcssed in the form

P;i=P*o¡*0¡*af¡¡ ,

where the eonstraints

(4.3)

I
r
f -di  

= u'
d=l

I

D"gr¡ = o for all ¡,
d=l

t

DF¡ =0,
j=l

t

D"\r¡ = o for all i,
i=t

(4.4)

are imposed on the o, p, and ap parameters. These parametens,
subject to the constraints ({.a) are defined in terms of the A¡ ae
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follows:

(4.5)

r I

P¡=|Du,,-u,
' j=l

af;i = tr;¡ - a;- fl¡ - p.

When the model (a.l) is selected for the andysis, a strcng re-

etriction is imposed on the structurc of the P¡; namely, the efrects of

the two factors must be strictly adütive. Whether this assumption is

warranted in an experiment needs to be carefully considered. Models

intermediate between the atrictly additive and completely arbitrary

models can and will be studied.

4.1.1. Analysle of Varlance (ANOVA)

To start, consider the balanced full model

ü¡ir = F * a¡+ 0¡ + aP;¡ * e¡¡¡

)

(4.6)

with n replicate observations per cell (i.e., & = 1,"',n). Because

the parameter sets l"¡1, l0¡1, 1"0¡¡l are completely orthogonal in

this balanced desigu, the likelihood ratio tests of the null hypothesea

Hs:oP¡¡=O, Ho:f¡  =0, andl ls:o¡=0 (4-71

lead to the analysis of vEriauce displayed in 'fable 4.1.
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Customarily, SS(A) is computed in the fo.- (rrl Dt, r? ) -
\  

t " t . " /

by subtraction.

Table 4.1. ANOVA Table for a balanced two-way classiñcation. a

VDT
Mean (M)

Factor (A)

Factor (B)

Interactions (AB)

Error (E)

nIJ g?.
t

n.r f(r;." - e^..12
¡=l,

nrf(1.;. - s.^.12
j=t
I '

(/- rXJ - l) nf,f(urr. - 9¡.. - e"¡.+r...12
i=l j=fl

I t t ¡

IJ(n - r) DEf,(v,i, -ú¡¡.12
d=i j=l f=¡

I

¡ -  l

J-r

Total IJn
I t r r

DDlv?;,
i=l j=l l=l

The mean squa¡es column (i.e., M,5 = SSldÍ) is usually also

printed out in packaged computer prog"ams along with correspond-

ing F ratios.

The distribution theory for the sums of squa¡es in Table 4.1 is

'  g¡i = * Dl-, y,¡.,
o, = *f¡ ' - ,Dl-,1, i . ,
g¡  =*Dj- ,Dl- ,v,r . ,
s = # Dj-, Dl-, El-, Y,r.'
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very similar to the one-way classification:

and the five sums of squares arc independent. The e:rpected mean
squa¡es ane

ss(M) -o,x\(#),

ss(.4) -o2x?-t(t#) ,

ss(B) -;xzr-t(+O),

ss (A Bl - o2 xzu -tt (, -, (ürj 
=' " u3),

ss(E) - o2x?t(,_tt,

E6,sSWD: o2 *O!y,

E(MS(All = o2 *"!=D!='7? .
(I - t)oz '

E(MS(B)) = o2 +!$=:0¡ .(l - t¡oz '

E¡vrs4Bll = o2* l¡!,-f i-^il', .(r - IXJ - rlo2 '
E(MS(ED = 02.

(4.8)

,

)

i
I

(4.e)

The appropriate F statistics for teoting the null hypotheses in
(1.7) by the likelihood ratio method are, respectively,

, : f f i ,  F: f f i ,andF'  =f f i .  (4.r0)
In their numerators the F etatistics in (4.10) have (f - IXJ - l),
(J - l), and (/- l) degrees of fieedom, respectively. Their common
denominator has .IJ(n - t) df. Each F statistic in (4.10) has a
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central F distribution under the associated null hypothesis and a

noncentral F distribution under the alteraative'* The tests reject

for large values of F so the upper tail of the F distribution Sives

the P value. This P value is multisided because the alternatives are

general. There is no analog to the one-sided P v¡lues of Chapters I

and 2.

If the estimated interaction eftects (i.e., &¡ = I¡i'- 9¡'- !'¡'+

t...) are statistically siguificant, the interpretation of the estimated

main effects ( i .e., d; = !; . .  - Í" 'and F¡ = g'¡ '  -  9') becomes less

straightforward than if the interactions are insignificant. The pres'

ence of iuteractions means that, for example, a treatment effect (i'e''

level of Factor A) has to be evaluted in terms of the conditions or

types of patienrs (i.e., level of Factor B) to which it is to be applied^

The interactions could be so large as to switch the trcatment of choice

depending upon the conditions or patients. Mere statistical signif'

icance of the estimated main effects is not enough to substantiate

the superiority of one or more treatments. On the other hand, the

estimated interactions can be statistically signiñcant but insufEcient

in size in comparison to the estimated main effects to cloud the issue'

To ascertain their impact, one has to examine the sets of estimates

lA¿1,li¡l,and {fiij} as well as the sums of squares'

Consider uext the case of an unbalanced design where the num-

ber of replicates n¡¡ in cetl (r, j) varies with the cell. Assume n; ) I

for all cells.

If the two-way ctassificatiou is badly r¡nbalanced with the cell

sample sizes diffeúng by onders of magnitude (e'g', l0 or morc obser'

vations in some cells and only I or 2 in others), the prudent analysis

is to resort to multiple rcgression on a large computer' The X matrix

. A noncentr¡l Il,,,,r(62) wri¿ble (or dLtribution) is dirtributed ec (¡1, (ó2)

lv)l(x?"lvz), wbere the noncentr"t x?r(ó') nariable ¡nd the *nttzl y2""

v¿riable are indePendent,.
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in the regression model Y = xF * ¿ for the two-way classification
should be constructed of l's, 0's, and -l's to inserü or leave out
the appropriate parameters for each cell and to incorporate the con-
straints (a.a) by expressing some parameters as negative sums of
the others. For greater detail on this approach the reader can read
Draper and Smith (1981, Chapter g).

Unfortunately, even with this subterfuge, the analysis is murkier
than in ühe balanced case. The parameter sets ane no longer orthogo-
nal, so the sequence in which the hypotheses in (4.7) are tested makes
a difference. For example, one has to decide whether one is going to
test the SS(A) adjusted for ap End t (or perhaps just a{usred for É
if the ap are insignificant) or the SS(á) unadjusted againsr SS(E)"
The size and significance of the other factors sffect the choice of test
for a factor. No single partition of sums of squares is possible" The
regression p¡ogram has to be run repeatedly with sets of parameters
inserted or deleted to obtain the appropriate sums of equares for dif-
ferencing. Some packaged computer programs will do this for you
either automatically or with the proper commauds.

One hopes to avoid this predicament aud be in ¡ positiou where
the following approximate analysis sufrces. Compute e¡ch cell mean
gi¡. from all the observations in the cell, and, similarly, compute the
ernor sum of squares from all the observations in the cells of the
two-way classification:

I  t ¡ . i

ss(¿') = D DD(r,¡. - t¡i")2,
d=l j=l f=l

I  t ¡ i i  I  t
(4.1l)

,

=DDDs?¡r- DDn¡¡el¡.  .
d=l j= l  l= l i=r j-r

However, in computing the oüher entúes in the ANOVA table, the
f¡. are treated as though they were all averages of n' observations
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where the n' is the h¡rmonic mean of the {n¡¡}:

(1.12)

This leads to the approximate analysis of variance displayed in Table

4.2.

Table 4.2. Approximate ANOVA for an unbalanced

two-way classification o

VDT SS

Mean (M)

Factor (A)

Factor (B)

Interactions (AB)

Error (E)

n'IJ(gl.)2
I

n'r D(ri.. - s:..12
¡=f
t

n'rD(r;.. - s:.)2
,r=, 

,
(/ - rXJ - l) ','f f,{rri - si.- si¡.+ si..lz

I t ¡ ¡ j

N - Ir DDD(y.i. -e¡¡.)'
d=l j=l l=l

I

I - r

J- l

The sums of squares in Table 4.2 do not add exactly to the

total sum of squares, but the discrepancy should not be too great.

Only SS(E)lo2 hts precisely a ¡2 distribution. All the other sums

of squares (divided by o2l have approximate noncentral (or central

under Hd x2 distributions. The sum of square SS(E) is indepen'
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dent of the rcst, but the others losc their interindependence. The
approximate F tests of (a.7) employ the usual ratios (4.10).

Although the prcceding analysis is only approximate, it is easy
to carry out and to interprct. Rankin (lg7{) has shown that it does
not give misleading resulte provided the ratios of eample sizes do not
exceed 3" He also studied ¡ modiñed analysis in whiü the numerator
degrcss of freedom arc adjusted for the irregularities in sarnple sizes.

When there is just a single obeervation per cell (i.e., n¡¡ = rr =
l), the analysis of variance in Table 4.1 reduces to that in Table 4.3.
Notice that the row for "Error, has vanished from this table since
there are no rcplicate observations for measuring erFor. This leaves
the statistician in a pichle becaus€ there is no denominator for the
F statistics in (a.10).

The statistician has two choices.

The first is to close hie or her eyes, crcss his or her fingers, and
use S,S(,,48) * * enor sum of squarcs. This leads to

, :m and r=#{A (4.13)

being used as the test statistics for the last two null hypotheses in
(4.7). If therc a¡e no inüeractions, the ratios in (a.lB) have (noncen-
tral) F distributions with J - I and r - I df in their numerarors,
respectively, and (f - IXJ - l) df in their denominators"

All this is find provided there are no interactions" In some
experiments the assumption op¡¡ = 0 may be justiñed because of
the nature of the factors. A synergistic reaction between them would
not be conceivable. However, if interactions a¡e indeed prcsent, they
inflate the sum of squarcs in the denominator aud unduly dampen
the significance of the numerator sum of squarcs. Of counse, if the
ratio is significantly large as judged by the central F distribution,
the issue of whether the main effects are rcally even morr significant

t



r20 Chapter l: TWO'WAY CLASSIFICATION

is academic.

Table 4.3. ANOVA table for a balanced (n 
- l)

VDT
Mean (M)

Factor (A)

Factor (B)

rJ g?.
I

r !(tr. - s..12
d=l
t

r!(o.i - s..12

I

I - l

J- l

i=t ,
Interactions (AB) (I - IXJ - l) f f(nl - t¡ - I'¡ + 9)2

d=l j=l

Total

In other instances it mitht be argued that the m¡in efects ¡re

only of intercst if they arc substantially larger than the interactions'

The F ratios (4.13) rcflect the relative siz€c of the main effects and

interactions, but computing P values from an F distribution un-

der such circumstances is a fantasy. When interactions are ptesent,

ss(AB) has a noncentral ¡2 distribution, and the ratio¡ in (4.13)

have doubly noncentral F distributions.r

The alternative choice available to the statisticia¡ is to try to

split SS(,48) into two components of which one soaks up most of

the interactive effects and the other is mainly pu¡e er"or. T\rkey

' g¡.= iDt¡-rttri,
g.¡=i f , f - ,vr i ,
g.. = h Dl-, Drl-, r,,i.

. A doubly noncentral F"r'zQ?,631 rariable (or dirtribution) ir dirtributed

r¡ [x?, G?)lvillx2"r(6ill"rl where the noncentral rari¡ble¡ x?'(6f) ¡Dd

x?'"6¡ ¡ are in dePendent.

IJ
IT

DDu3,
j=t j=l
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(1949) proposed separating from .49(AB) one degrce of fre+dom for
nonadditivity which would engulf most of the interactive effects in
a quadratic model. Specifically, if the response surface is postulated
to be quadratic in the main effects, i.e.,

Pi¡x(p*o;*p¡12,

then expansion and rearrangement of terms gives

(4.14)

F;¡ d p2 t (2pa;+ 
"3) + Qpfl¡ + p?) * 2a¡p¡, (4.15)

so the inüeraction a;p¡ is multiplicative in naturc" A single square
term thaü is sensitive to detecting interactions of this form is

(4.16)

Scheffé (1959, Section 4.8) provides a mo¡e rigorous derivation
of the statistic (4.16) and shows th¿t when therc are no interactions,
,SS1 and SS(E) - SSr arc statistically independent and have ¡2 dis-
tributions with I and (/- tXJ - l) - I df, respectively. Thus one
can test for the preEence of interactions by comparing the ratio

(^I- lxJ- l ) - l SSr
(4.17)ss(E) - ssr

with the critical values for an F distribution with I and (I - IXJ -
l) - I df. If interactions arre pnesent and generally multiplicative in
nature, then S.9¡ should soak up most of them and leave SS(E)- SSr
relatively uncontaminated, eo it should be possible to use the latter
sum of square for legitimately testing the main effects.

T\rkey (1955) and Abraham (1960) extended this ide¡ to Latin
Equa¡es. In Problem 4.19 Süeffé (1959) indicated how to generalize
this method for testing other forms of interactions in the general
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linear model. Later Milliken and Graybill (1970) elaborated on this

generalization.

Occasionally a single obeeration ie missing because, for exam'

ple, a slide has been dropped or an animal has been lost for reasons

unrelated to the experiment. When the experiment is otherwise bal-

anced with n > l, I would run the approximate analysis in Table 4.2

with n' : n" ln other words, consider each cell mean as being based

on the full n obseryations and compute SS(E) fiom the observations

available in each cell. However, if n = l, this snnnot be done because

gü. cannot be computed for the cells with missing data"

For a single observation per cell experiment with a lot of missing

data, there is nothing to be done other than to reeort to running the

data through a multiple regression progtam. However, with a single

missing value in cell (t,Í), one can substitute

0u:
IR¡t  JC¿-T (4.r8)( r - lxr- l )

for the missing observation, where B¡ is the sum of the nonmissing

observations in rcw k, C¿ ie the sum of the nonmissing observations

in column l, and ? is the total sum of all the nonmissing observations

in the .[ x J array. The sums of squares given in Table 4.3 can then

be calculated, but the df for interactions (áB) should be rcduced by

one to (I- IXJ - l) - l. Approximate f' tests can then be performed

by computing the usual ratios"

If one desires moFe accuracy, it is possible to compute an exact

analysis of variance without resorting to multiple regression. For

details the reader is referred to Kempthorne (1952, pp" 172-Úal.

An iterative procedurc using (4.18) is available when two or

more observations are missing and n : l; see Cochran and Cox

(1957, pp" ll0-ll2). When n ) 1, an approximate analysis (see

Table a.2) is usually satisfactory for several missing values provided
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all cell meam can be estinated"

1.1.2. Multlple Comparlsone

The idea and methods of multiple comparisons wene introduced in
Section 3.1.2. The reader may waot to refer back to this section or
to a fuller discussion in Miller (1981).

Essentially all the methods introduced in Section 8.1.2 extend
to the two-way classification with the only change being in what is
used for A2. n the¡c is more than one observation in all, or at least
some, of the cells. then

(4.1e)

where SS(E) has z = N - IJ df and f = DL, Dt¡=rn;¡.With jusr
a singte observation for each cell, then

(4.2o1

with y : (I - lX/ - l) df. The appropriate subtracrions should be
made in the numerator and denominator of (a.20) for missing obser-
vations and deletion of single degrees of freedom for nonadditivity
(see Section 4.1.1).

For a balanced design (i.e., n; = n) the Túkey Ínúervals are

oi-od,€l¡ . -gr , . . '  ^  A

-9i," g¡, (4.21)

wlrere q?,, is the upper l00o percentile of a süudentized range dis-
üribution for .I numerator v¡riables with y df in the denominator
aud á is given by (a.19) or (a.20). When a design is slightly unbal-
anced and the approximate analysis given in Table 4.2 is used, then
(4.21) can be applied with n' rcplacing n. The coverage probability
of (a.21) for all pairs r and i' is exactly I - o in the balanced case

;
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and is approximately the same in the unbalanced case. As the de-

sign becomes mone unbalanced, the coverage probability deteriorates

(see Dunnett, 1980a); extension of the T\rkey'Kramer intervals (3.9)

to the two-way classification should afrord better protection in this

case.

For badly unbalanced designs where one has to rcsort to employ'

ing muttiple regression, the Scüeft inte¡vals provide the simultaneous

confidence intervals

od - od, € &; - d.' * [(I - ll4f-t,"ltl' a\"T,(XrX)-ttrnlt 12, U.22)

where c¡., is the vector containing l, -1, and interspersed zeros that

pick out the contrast o¡ - orr. The error variancea Ü2 is the residual

sum of squares divided by the degrees of freedom N - I J or lV - I -

(I - l) - (J - l) depending on whether interactions ane included in

the model. Bonferroni intervals are obtained by substiru¡ing tll2K

with K = (l) for ((I- l)FLr ,ul'l ' io (4"221, and these can be shorter

than the Scheffé intervals"

For special tables of percentage points to use in conjunction

with these methods. see Section 3.1.2.

More general contrasts can be handled as well. The Scheffé

and Bonferroni methods merely substitute the appropriate c into

,r17t X)-rc, and Bonferroni must modify K to include the requisite

number of contrasts. The I\key intervals for balanced, or almost

batanced, designs must append the multiplicative factor DLn lt;l/2

[see (3"14)J.

Similar intervals could be constructed for Factor B. The symbols

f , i, aurtd J are simply substituted for c, t, and f'

If multiple comparisons are m¡de for both Factors A and B, it

is not true th¡t the combined coverage would have probability I - o

(or greater). I'he critical constants would have to be substantially
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changed to achieve this. However, it is rare that one is interested in

multiple comparisoru of both factors, and even rarer (never?) that

one wagts to be so conservative as to have simultaneous coverage on

both sets of comparisons.

4.1.3. Monotone Alternatives

The general theory for monotone mearu of normal distributions dis-
cussed in Section 3.1.3 is available for use in the two-way classifica-

tion.

With balanced, or nearly balanced, designs, either the likelihood

ratio approach or the contrast approach can be applied. The only
changes from the one-way classification a¡e that f¡.. based on nJ

observations, or ti. based on n'J observations, is substituted for !;.,
and &2 from (4.19) or (a.20) is used for the estimate of the variance
with its corresponding degrees of freedom.

For an extremely unbalanced design, the likelihood ratio ap
proach fails, not for any theoretical neason, but just for lack of ex-
plicit formulas and tables" However, the Abelson-T\rkey approach
is still possible. For the regression estimates dr,...,ri¡, which have
been produced by the computer, one simply calculates the linear
combination cTA = DLrc¡ó¡, where the c; are given by (3.21),
(3.22), or (3.23). The v¡riance of the contrast is then estimated by
62 cr({ X)-tc. If in running the regression pFogram one of the o;,
sary, eJ, has been deleted to incorporate the constrainü Dl=ra¡:0
by setting ar = - ¡Li a;, the contrast should be computed as

Dl=-i(rr - ci&; with a corresponding adustment in the estimated

variance.

When the design is balanced, it is possible to test for more
general types of monotone altematives than just linear increasee (or
decreases). One rarely, ifever, goes beyond quadratic effects to cubic
and higher order effects so the discussion is limited to just quadratic

)
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effects.

The contrasts that measure a quadratic effect and are orthog'

onal to the linear conürasts and general mean for .I : 3 to 7 are

displayed in (a.23). These come fiom the values of the second order

orthogonal polynomial that have been normalized into integer form.

For additional det;ails on orthogonal polynomials and their construc-

tion, the reader can study Draper and Smith (1981, Sections 5.6-5.7)

or other sources.

I  =3

I=4

f=5

f=6

I =7

+1-2+l

+l. l- l+l

+2 - l  -2 - l  +2 (4.23)

+5 - l  -4 -4 - l  +5

+50-3-4-30+5

As with linear constrasts, one slmply calculates f,f'=r c;y;'- and

the estimated variance is ó2 f,f-, c!lJn, where ó2 is given by (a.19)

or (n.zo).

Since the linear and quadratic constrasts arc orthogonal, it is

possible to subdivide SS(A) into linear, quadratic, ar¡d remainder

sums of squares. tet (f¡,"',h) denote the linear conürast from

(3.21) *d (gt, ' . ' ,qr l  the quadrat ic constant from (4.23).  Then,

wherc the last term ftSS(A) is obtained by subtraction. The three

sums of squareE on the right hand side in (4.241are independently

distributed, and under lls have central ¡2 distributions with l, l,

and f - 3 df, respectively. Each can be tested against rUS(E). Sig'

nificance of the first and/or second sum would indicate the presence
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of a linear and/or quadratic effect, and significance of the third sum

would substantiate the existence of other effects.

If the column effects ate considered to have monotone alterna'

tives as well as ühe rows (or instead of the rows), the same analysis

can be apptied to the columns with p¡ playing the rnle of ó¡, J for

f, etc"

The possibility of interaction between Factor A and Factor B

with monotone alternatives can be tested also. The size of the linear

contrast in column j ir Dl=r 4g;¡., where (1r, "',lt) is given by

(3.21). Since the overall linear eontrast it Dl=, (g;.., the effect of

the ¡th column on the linear contrast is measured by the difference

It;v;i.- !a.t . : D ¿..(yu. - r;..),
¡'=l i=l ¡i=l

I

= D 4@;¡. - I;.. - g.¡.+ ü...1,
d=l

I
: D Q?fl;¡.

¡l=l

The sum of squares

(4.25)

(4.26)

is sensitive to a A linear x B interaction, and under llo it has a x2
distribution with J - I df and is independent of the leftover inter-

action sum of squanes [i.e., SS(áB) - SS(A¿B)]. It can be tested

against MS(E) to determine if interactions of the ibrm A linear x B

are present.

A similar contrast and sum of squarcs could be constructed

for A quadratic xB interactions. The coefficients (gt,'"',g¡) would

be chosen from (a.23). The interaction sum of squares can be fur'

ss(A¿B) - " Dl=' [D!'-tfgl- t'-I:
D'otq

l
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üher subdivided inro ss(A¿B) + Ss(/eB) + [ss(AB) _ ss(, ¿B) _
ss(, qB)J' where each of the three sums of squaFes has an indepen-
dent ¡2 distribution on J - l, J - l, end (/-gXJ - l) df, respectivel¡
under lle.

For monotone alternatives in both directions, one can form the
A linear x B linear conürast

(4.27)

with corresponding sum of squares

!  Í r  \  r  l t  \
Dr, lDq*t I = D q lDe¡s;¡.|,j=t \¡=r / , '=l \¡- l

T ': 
E\4t¡íF'¡'

^^, . "(DL, Dl=r4tiv,i)ss(Aü¿t jLGr tI;tr)?, (4.28)

where gr,. . .,fÍ) an¿ Vr," " ", t!) are the appropriate linear conürasüs
from (3.21). under Hs, ss(A¿B¿i has a singte df ¡2 distriburion,
which is independent of the remaining interaction sum of squares"
Similarly, SS(AqB¿\, SS(A¿Bq), SS(4Bo), can be separared our
from the parent sum of squares SS(AB).

If the design is not fully balanced but is nearly ao, the preceding
analysis can be carried out with n' rcpracing n [see (4.12)l and with
g¡' being computed from however m&ny observations are prcsenü in
the (r , ¡ )  cel l .

If n¡¡ = n = I aud tbe populations have an e priori ordering,
calculation of (a.28) offens En alternative to Tükey's one degrce of
freedom for nonadditivity.

If there is an actual quantitative variable associated with the
rows and/or columns (i.e., Factor A and/or Factor B are quantita-
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tive), then the techniques of regression analysis in Chapter 5 are ¡lso

available and are usqally superior. r

4.2, Nonnormality.

1.2.1. Effect

The rcader is referred bacl to Section 3.2"1 for the discussion of the

effects of nonnormality in the one-way classification because there is

little or no difference for the two-way classification. In the balanced,

or nearly balanced, two-way classiñcation the tests for row (or col-

umn) effects arre essentially the same as one'way tests except that the

ernor sum of squales has been corrected to rcmove the column (or

row) effects and, when n¡¡ ) l, interactions" Basically, nonnormdity

has very little effect on the F, studentized range, and lineer contrast

tests as dong as the eize of the design (i.e", IJn) is not too small.

The preceding optimistic remsrks must be tempered for badly

balanced experiments. Heavy-tailed or contaminated distributions

may produce unusual observations (outliers) in the thin part of the

design and thereby distort the tests and estimctes.

Welch (1937) and Pitman (1938) compared the moments of a

beta statistic corresponding to an F statistic (4.13) under normal

theory and under permutation theory when there is a single observa'

tion per cell (i.e., t¡ü = l) and no interactions (i.e., ofl¡i = 0). The

agreement was shown to be good, thereby giving crcdence to the

normal theory analysis for general distributions. This work is sum'

marized in Kempthorne (1952, Chapter 8). Related material and

discussion appeañr in Box and Andersen (1955) and Scheffé (1959,

Chapter 9 and Section 10.3)"

Welch (1937) also studied the permutation moments for a Lstin

squeres analysis.
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1.2.2. Detection

It is more difficult to detect nor,r'ormality in the two-way classifica-

tion than it is in the one-way classification or one and two sample

situations. The probiem is that each cell in the two-way array rep-

resents a difierent population so there are only a few observations,

sometimes just oue, for each population' One cnnnot make probit

plots, or perform tests, for each separate population'

The only recourse is to pool residuals from all the cells. When

there are multiple observations per cell, one can use the ¡Y diflerences

¡iih = !;¡t- 9;¡. and make a single probit plot as in Section l'2'2'

Test statistics could be computed, but their ordinary associated sig'

niñcance levets would be fouled up by the dependencies between the

rdjr caused by the subtraction of the cell means' However' these

dependencies do not cause any substantial difficulty with the pro-

bit plot because the empirical distribution function of the residuals

is a consistent estimator for the undertying error distribution (see

Duan, l98l). The residual distribution function should give an ac-

curate picture of the ürue error dist¡ibution and enable one to decide

whether it is sufficiently close to normal'

with just a single observation per cell, it may not be possible to

distinguish between nonnormality and interactions. When interac'

tions are assumed not to exist, the residuats r;i = V;i- it-";- fl¡'^o

be used in a plot of the residual distribution functiou as mentioned in

the preceding parsgrsph. However, if here are some unusual values

and/or the plotted quantiles do not fall approximately on a straight

line, one cannot be sure whether the lach of fit is due to a nonnormal

error distribution or the pF$ence of some interaction terms. There

is no way to incorporate general interactions and have any residuals

left. but one could estimate inte¡actions with special structure (like

afl;i q ai\i \ la T\'rkey) and catculate the residuals r;i: yii - fu;i'

where ¡r¡ is the estimated cell mean including the special interaction
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term. It is not clear that all this efrort would be warranted nince

the effects of nonnormality are not sevete unless the departure is

extreme.

1,2.8. Correction

Tlansformaüions Tbansformations arc poseible, but they do not
seem üo be as frequently used with the two-way classification as with
the one-way or one and two sample problems. The ¡eason is that
transforming the date may destroy an additive linear model and
create interactions where none existed before.

On the other hand, one may get lucky and reduce both nonnor-
mality end nonadditivity at the same time. For example, with the
quadratic model

!;i = 0t* a; * l¡ * c;¡12, (4.2e)

which was mentioned earlier in (a.la) with regand to nonadditivity,
a Equare root transformation will exactly produce an additive linear
model and norm¡l ernoñ¡ (provided the e;¡ are normally dietributed).

Nonparametric Tecltnigues It is not often that a nonparametric
technique is used in place of an ANOVA analysis for a two-way clas-
sification. Nonparametric methods aFe mone work to mn and usually
do not provide as much information. Also, special stn¡cture on the
design and model is typically required in order to apply nonparamet-
ric meühods.

The one technique you will occasionally see is Fhl:ednan's (lgg7)
rank test. It assumes that there is a single obseryation per cell (i.e.,
n;i = t). If therc ¡re more observ¡tions per cell, theu the analysis
is run on the cell means /;i. and auy information in the within-cell
variation is ignored. Also, the analysis aasumes that no interactions
are present. With these restrictions, the analysis for the presence
of row effects proceeds by replacing each obs€rvation V¡ in the jth

I



TEE Chapter l: TWO-WAY CLASSIFICATION

cotumn by its rank R¡¡ in the set of r observations in column ¡. Then

the test statistic is I

Q= n.1,,

-  3J(I  + l ) ,

(4.30)

where k.= Dl=r&¡lJ and R. : Dl=r R¡.lI = (I+ t)/2" The

statistic (4.30) is just the usual row sum of squares computed for the

ranls with the proper scale factor in the denominator for it to have

a limiting X2 distribution with I - I df as the number of columns

tends to infinity. Tables of the cdf of Q with the small sarnple sizes

J = 2( l )13for /= 3,  J :  2( l )8 for  I  = 4,and J = 3,4,5 for  f  = 5

appear in Hollander aud Wolfe (tozs, Table A"l5)" Tables for f : 3,

/ = 2(l)15 and I = 4, J = 2(l)8 have been given by owen (1962)

and Lehmann (1975).

when ties are present averag€ ranks can be used. If ties occur

excessively, the denominator of Q can be modiñed to account for this^

For an exact expression see Hollander and Wolfe (1973, p' ta0)'

It is possibte to make multiple comparisons based on (ñ¡',"",

Rt.l. For derails see Miller (1981, pp^ 172-178) or Hollander and

Wolfe (1973, pp. l5l- l5a).

For testing against ordered alternatives Page (1963) proposed

the statistic L = Dl=, d&., where stochastically larger variables are

assumed to correspond to iucreasing t. The mean and variance of L

are I(/ + l)2l4 and (I - l)P(' I  + l)2lv4J, respectivelv'

When n;i = n = I and no interactions arc pres€nt, rank testa

other than Friedman's test are also available" Some of these are based

on the (l) siped-renh statistics for comparing trcatments r and r',

¡, ¡' = 1, . . . , f. where the pairing is provided by the columns (see, for
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example, Hollander and Wolfe, 1973,pp. 167-173). For references to

additional tests see Hollander and Wolfe (1973, Chapter 7).

If it is also important to test the null hypothesis of no main

effects for the other factor, one of the aforementioned tests can be

run with the roles of rows and columns being interchanged. One

drawback to rank tests in the two-way classiftcation is that there is

no rvay to test both rows and columns in a single, unified analysis.

For a ¡nnk analysis when therc are missing observations (i.e.,

n¡¡ ( l), see Skillings and Mack (1981).

Analysea that utilize the within-block (column) rankings for all

observations when n¡ ) I exist but are more complicated. For de-

tails the reader is referred to Benard and van Elteren (1953), Noether

(1967, Section 7.6), and Bmnden and Mohberg (1976). Since I have

never used these tests in practice, I cannot comment on their effec-

tiveness"

A different rank approach is the method of alignd ran^ks. This

was introduced by Hodges and l,ehmann (1962) for the case of just

two treatments (i.e., I : 2l and was extended to the full two-way

classification by Mehra and Sarangi (1967). The idea is to eliminate

the block (column) effects by "aligning: the blocks. Usually this

is accomplished by subtracting from each observation the median or

meanof thecolumn for which it is a member. All ¡,1 : Dl¡=rDt=rni¡
aligned observations are then combined and ranked. An appropriate

ANOVA-type statistic for the rnnks is selected to measure the dif-

ferences betweeu the average ranks for the rows (i.e., levels of Factor

A). The distribution of this statistic is considered under permuta-

tions of the observations within columns" Under some conditions

this statistic has an asymptotic X2 distribution with f - I df. As in

the preceding analyses, it is necessary to asEume that no interactions

are present. Lehm¡nn (1975, Section 6.3) gives a clear prcsentation

of the use of aligned ranks in the balauced case nü E n: l.

I
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Many other nonparametric tests exist beside those alrcady men-

tioned, but they are rarely used in pracüice" trncluded among these

are sigg tests and permutation tests. For the former see Miller (1981,

Section 1.2)" With the latter, the signiñcance of the observed f' ra'

tio is evaluated with respect to its permutation distribution rather

than normal theory. Because the computation required to carry out

the analysis is excessive except for the smallGt designs, permutation

tests are not used in practice for two-wsy classifications. However,

rhe moment calculations by Welch (193?) and Pitman (1938) under

the permutation distribution give credence to the robustness of the

F test (see Section 4.2.1).

Robusú Estimation Robust methods have not really come to the

two-way classification so far. One paper using tests analogous to

M-estimators is Schrader and Hettmansperger (t980)'

4.3. (Jnequal Variances.

4.3.1. Effect

The main article on the effects of unequal variances in the two-way

classification is Box (1954b), where just the model with no inter-

actions and a single observation per cell is considered. Basically,

the effects are not large unless the departure frpm homoscedastic'

ity is quite extreme. If the variances differ from row to row but

are constant over columns, theu J E]=rtyt' - t )2 is behaving as in

a balanced one-way classifrcation (see Section 3.3.1), and for the F

test o( the nutl hypothesis f;[s : ai = 0, the actual P value is greater

than the nominally stated one (i'e., Pactual > Pstated) but not by

much. For the test of no column effects Ha : 0¡ = 0, the reverse is

true (P""¡rral ( Pstatea) but again not by much.
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1.3.2" Detection

When there is just a single observation per cell (i'e', n¡¡ = l), there

is littte that can be done to detect unequal variances. If the ob

served values bounce around more in some rows than others, one

might interpret this as unequal variances, particularly if the vari'

ability appears to be greater for larger (positive) effects. However, it

is impossible to distinguish heteroscedasticity from interactions.

When n¡ ) I for each of the cells, then it is possible to com'

pute an error variance e2;¡ in e¡ch cell, and the methods of Section

3.3 become available. In particular, plotting rl, vs' Í;¡' will reveal

whether there is any change in the variance due to increasing size of

the variable. At no time would I consider ¡rnning a formal test on

the equality of the cell variances (see Chapter 7).

4.3.3. Correction

One could apply a transform¡tion to the data to try to stabilize the

variances. An appropriate transformetion might be suggestud by

the ptot of e.?¡ vs. ü;¡. in designs where n¡ ) I (see Section 3'3'3)'

Howver, there is the danger that transforming the data may destroy

an additive model and create interactions. The best of all worlds is

to find a transformation that creates normality, stabilizes variances,

and eliminates interactione.

The nonparametric tests mentioned in Section 4'2'3, "Nonpara'

metric Techniques,' such as Fliedma¡'s ¡nnk test, should be even less

sensitive to heterogenow variances than the F tests, but no research

has been done on this to date.

4.4. Dependence.

In designs with multipte observatiogt per cell dependence within cells

eould be created by the pnesence of au unaccounted for extra nui'

sance factor that forms blocks of obserations. Observations grcuP

t

t
!
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ing themselves into cluste6 is an indication of tl¡e existence ol such

a variable. The remedy for this ailment is relatively straightforward

- use a higher-way (e.g., three-way) classiñcation for the analysis.

The problem of serial corrclation, created for example by ob-

servations being taken in a time Eequence' is far more serious in its

implications and is f¡r more difficult to detect and contct. The

principal paper on the eftects of serial correlation in the two-way

classiñccrion is Box (1954b). see also Andersen et al. (1981).

The case of no interactions and a single observation per cell

with a first order serial correlation between rows within columns is

studied by Box (1954b). Specifically' suppose that Cor(yü,y;+ri)

= p¡ for all i, ¡, and all other correlations are zeno. with this

probability structure, the F test of Ho: a; = 0 is not at all seriously

affected. Thus treatment comparisons are not eubstantially alfected

by serial correlation between the treatment measurcments within a

block (i.e., column). On the other hsnd, the F test of Hs z p¡ = O

is drastically affected with P"",,ral ) Pstat¿ for Pr ) 0 and the

reve6e fo¡ pt < 0. T[us serial comelations among the mesurements

on each treatment can destroy the validity of treatment comparisons.

If, for example, the time sequence in which the ob'servations

are taken is known, one can plot the successive time pairs and see

if any association is discernible. The presence of row (or column)

efiects may, however, obscure the appearance of the time association.

Unfortunately, even if detected, there is no known correction for a

serial effect.

In repeated measurements designs a replicate within row ¡ for

Factor A is ¡ subject who rcceivee all levels (i.e., colunns) of Factor

B. Use of the same subject for different levels of Factor B produces a

correlational stmcture between columns that is usually assumed to

be of a special form. Some of the relevant literature on the analysis of

repeated measunements is Geisser and Greenhousc (1958) and Huynh

a
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and Feldt (19?0, 1980). For a study of general corrclations in a two-

way design with n replicates per cell see Olkin ¡nd Vacth (1981) and

Walters and Rowell (19821.

MIXED EFFECTS
Although it is more customary to discuss the random effects

model before the mixed effects model, the order is revemed here

because the goals of a mixed effects analysis are Eo similar to those of

fixed effects. Main interest centers on testing the equality of different

levels of the fixed effects factor (e.g., Factor A) because these are

different treatments, products, etc. The other factor (e.g., Factor

B) is a nuisance factor, such as days, subjecte, and plots of ground,

whose levels are viewed as random because they are representatives

of a potentially larger group. Testing and estimation of the levels for

the random effects factor are not of prime importance.

4.6. Normal Theory.

The model is

Viik = tt  I  o;* ü¡ * ob;¡ * e;¡¡, (4'31)

for ¡ '= l , ' " " ,  I ,  i  = 1," ' ,  J,  k = 1,"" ,n¡"  The f ixed ef fects {a;}
are assumed to satisfy the constraint !r{=, a¡' = 0 for identifiability.

The distributional assumptions are

0¡ independent N(0, af),

q¡¡ independent N(0, ar2),

{ü¡} independent of {e¡r}.

What about assumptions on the interactions {aó¡}? llistori'

cally, there was a controvercy over the choice of proper conditions. In

the original version of his textbook, Mood (1950) assumed th¡t the

I

(4.32)
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aü¡ are distributed as N(O,olr), independently of each other and

the c;¡¡. On the other hand, R. L. Anderson and Bancroft (1952) in

their textbook assumed normality and independence from the c¡t,

but the) u\rornposeüüt tols\r¡nt E'r=rst¡¡ =${sr trth j' T\is

creates dependence between the ab¡ within each j lerel. The ra'

tionale for the constraint had its roots in the fixed effects structure.

The consequeuce of the difference in assumptions is that one is led

to different denominator sums of squares in testing for the presence

of Factor B main effects (i.e., Ilo : o! = g¡.

This issue was more or less rcsolved by the publication of an

arricle by Cornfield and T\rkey (1956). In this ¡rticle they derived

the expected me!¡n squanes under sampling f¡om a finite populaüion

model. Their results agreed in form with Anderson and Bancroft so

imposition of the consüraint is usually accepted to be appropriate.

Searle (1971, Section 9.7) discusses both models.

Scheffé (1959) has the mosü general model in whiü he assumes

only that  the vectors (b¡,abt¡ ," '  ,abt i l ,  j  = l '  ^" ,J,  are indepen'

dent multivariate normal random vectors that satisfy !f=, oó;¡ = 0

for each 1^ This atlows abti,"",abti to be dependent on ü¡. Gray'

bill (1961), on the other hand, assumes that the interacüions có¡,

¡ = 1, "' ,.I are independent of the main block effect ó¡" With the

assumption that the oü;¡ are identically distributed, this gives the

covariance structure

Var(aü¡) =(l - '1)o1r,

Cov(aó,r, aó;,¡) = -I"?, for i I i' .
(4.33)

There are only inconsequential differences in the distribution theory

for the sums of squares between the Scheffé and Graybill models so

the Graybill n¡odel is adopted here for its simplicity.

For a balanced desigu (i.e., n;¡ = n) the ANOVA Table 4.1
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is rctained in the mixed efiects aaalysis of variance. The central
question is what is the distribution theory for its entries. The answer
is

I

ss(M) - lo? + nrozr)2fi (#h),

ss(.A) - (o? + noz,r)¡fi-, (:;Hf),
ss(B) * (o? + n lo!)yz, _r,

SS(ÁB) * (o? + no2,rly2._r)(r_r),
SS(¿) - o2"x|¡6_1¡,

and the five sums of squares arc independent.

(4.34)

(d^86)

The null hypotheses of no interactions and no Factor B (eolumn)
effects ane now stated in terms of varianee components, namely, fls :
o?t:0 and Hs: o! = 0, respectively. For these rwo hypotheses one
uses the same F ratios as in the fixed effects case, namelyn

n MS(ABI , ,_ l" Ig{B)
f= (4.35)

respectively. The only difference from the fixed effects case is in the
calculation of power. Under the alternative hypotheaee

MS(,48l
vs(E') -
MS(Bl
MS(EI 

*

( t  .  g)F1r-r¡1r-r¡ ,  I  t  (a- t t ,

( t .#)  Ft- t , r t1o-t ' ¡ '

where the F distributions a¡e centrar F distributions with their re-
spective df, whereas for fixed effects these rations would have non-
centr¿l f'disüributions and no multiplicative factors.

For testing the null hypothesis Hs : a; = 0 of no Factor A
(row) effects, the test statistic is different from the fixed effects ratio
Ms(A)lMS(E). Because of the multiplicative facror o!+no!^in rhe
distribution of ss(A) [see (4.3a)], it is necessary üo divide by a sum
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of squares with the same factor. The distribution of the interacation

sum of squares SS(,48) has this factor so the ratio

(4.37)

is the appropriate statistic. Under Ils the ratio (4.37) has a cen'

rral F distriburion with r - l, (I - lxJ - l) df for numerator and

denominator, respectively, and under the alternative hypothesis it

has a noncentral F distribution with the noncentrality parameter

nJ DI;=t"?l(o3 + noz"rl.

If one feels rather sure that no interactions are presenü (i.e.,

o?t = 0), then it is possible to use the fixed effects ratio n4s(A)/

MS(E) for testing Hs: a; = 0. This usually provides more degrees

of freedom for the denominator. One could even pool the SS(ÁB)

and ss(E) if <legrees of freedom are scarce" To do this I would

need to have MS(IB) nearly equal to L{S(EI and not merely have

nonsignificance for MS(ABI I I{S (E) -

Under Scheffé's more Seneral model for the block (column) and

interaction effects, the distribution theory of SS(A) and SS(.'48) is

more complicted. Their ratio does not have an F distribution. The

only way to obtain an exact test of Hs : a; = 0 is to convert the prob

lem into one in multivariate analysis, and this leads to Hotelling's ?2

test (see Scheffé, 1959, pp. 270-274). However, Scheffé eschews this

procedure and suggests the use of the ratio (4"37) 8¡t an approximate

test under his model.

The preceding analysis of the mixed effects model has been

based on the assumption of a bal¡nced design. What if the n¡¡ are

not all equal? For mild imbalance I would recommend ¡sing the ap

proximate ANOVA presented in Table 4.2,with n' given by (a.12)'

in conjlnction with the preceding analysis for a mixed model. If you

asked me what to do for badly unbalanced designs with random block
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and interaction effectg prcoent, I would probably shrug my shoulders
and say "l don'ü know" or 'Use a fixed effects analysis." Searle (1971,

Chapters t0 and ll) struggles with this problem but has no simple
solution.

The design with n¡ = n : I causes less of a dilemma for the
mixed effects model than it does for the fixed effects model" With

mixed effects the interaction mean squanes MS(,$) is the Bppro-
priate denominator in the F ratio for testing the primary null hy-
pothesis Hs : a¡ = 0, whe¡cas with fixed effects it was a substitute
for the unavailable MS(EI. W¡th fixed effects the uge of MSQaBI
in the denominator was questionable, but for mixed effects it is the
denominator we want.

A single missing value in an otherwise b¡lanced design with
n = I could still be estimated by (a.18).

For maximum likelihood estimation in the mixed model see Sza.
ürowski and Miller (1980) aud the references contained thercin.

Multiple comparisons among the o; can be handled as well un-
der the mixed ellects model. The only differ¡nce from fixed effects is
rhat MS(,48) is used as the estimate of o2. In particular, the ?blrey
intewals for a balanced design are

ai - ai,€ s;.. - w.. * e?p-¡1r-t, (ry)"', (4.s8)

rvhere ú,1r-r¡1, -r¡ is the upper l00c percentile of a studentized range
distribution for .[ variables with (I - IXJ - l) df. For a mildly
r¡nbalanced desigu the approximate MS(r,4Bl fipm Table 4.2 can be
used in (4.38) with the harmonic mean n' of (a.12) substituted for n
and gí?.. for fl¡.. " The probability coverage I - o for all the inten'als
(4.38) with ¡ I I will deteriorate as the imbalance incrcases when
the harmonic mean n' is used (see Dunnett, 1980a).

For jwt a single confidence interval (4.38) can be calculated

t
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*itn ¿i/ j , l t  t- t¡rt  in place of sir¡-r)(¡-r¡ '  For a l imited,number K

of comparisons the Bonfe¡roni intervals, which utilize 
'?!!flg-¡rt

instead of el,e-rl(t-r), aÉ available' For K < (l) thae intervals

can be shorter than the T\rkey intervals.

Simultaneous confidence intervals arc ¡lso available for more

general contrasts. The Schefté or T\rkey intervals [i'e", (3'14) or

(3.15), respectivelyl can be computed with i\4S(ABl Íor b2, nJ for

n, and (/ - IXJ - l)  for the df.

For monoúon e alternatives the linear contrast methods of Sec-

tions 3.1.3 and ¿.t.3 can be applied to the balanced, or approximately

balanced, mixed model. The only difference from these earlier sec'

tions is that the variance estimate of DLr c¡f;.. is MS(AB)DI;=.t? I

n.l for balanced designs. For mildly unbalanced designs the variance

of Dl=r c¡!i. is estimated by MS(A$ DLt c!ln'J tYherc MSIAB)

and n' are given by lbble 4.2 and (4.12)' respectively"

Although attention usually centerc on the ñxed effects in a

mixed moclel, estimating the variance components of and o2o, mary

also be of intercst in some circumstances. The method of moments

estimataru

(4.3e)
6?t =

MS(ABI - MS(EI
- ¡

n

with n. in place of n for nearly balanced designs, are rcminiscent

of Section 3.5.1 and are forcrunners of Section 4.7. Normal theory

methods, in parüicular the method of Satterthwaite (1946), could be

applied to produce confidence intervals for o!, and o!6, but thes€ ere

not especially recommended because of their sensitivity to normality'

The jackknife method (see Section 3.6.3) should provide more rcbust

results. To apply the jackknife one would successively delete each of

the Factor B levels (columns).
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4.6. Departures fnom Assumptions.

Virtually nothing has been published on the effects of varior¡s depar-
turee from the underlying assumptions for the mixed effects model.
IVhat we are to believe must be inferred from the known results on
frxed efrects and random efrects models.

For aonnormal e;¡¡, aü¡, and ó; tbe effects on tests about the
a¡ should be minimal for balanced, or nearly balanced, designs. The
block effects are eliminated, and the introduction of the random in-
teractions does not change the character of the tests that much from
the fixed effects case.

If appreciable nonnormality is present, there is not much that
can be done about it" Perhaps a transformation will improve the
analysis. The common ranl tests require that no interactions be
present. If this is the caae, then the nonparametric tests described for
fixed effecüs cen be applied. For details on these corrective procedures
the reader should consult Section 4.2.3.

The situation is different for the effects of nonnormality on tests
and confidence intervals for o!, o2o5, tnd o!,. Herc the analysis can
be led into catastrophic emors. Escape ie through morc rcbust pro-
cedures such as the jackknife. For details see Sections 3.6, 4.8, and
Chapter 7.

What about unegual yanances? This could occur either in the
c;¡, ab;¡, or ü¡ variables. For tests on ai the effect of different ol
and ol¿ on the analysis should be very similar to the fixed effects
case with a single observation per cell studied by Box (lg54b) since
the interaction sum of squares is us€d in the denominator of the f'
statistic. The efrects of differcnt o! on testing Es : o!6,= 0 and
Hs : o! : 0 should be eimilar to the one-way classification (see
sections 3.3 and 3.7) since jlds(El is used in the denominarors of the
associated F statistics.
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For substantially unequal variances about the only hope of cor' i
rectíon is to frnd a transformation that stabilize the variances and 

I
does not destrny the model (see Section 3.3'3). i

No particularly insightful comments can be made on dependeace

within the e;¡, oü¡;. and ü¡ in the mixed effects model. The rcader

may wish to read, or re¡ead, the discussion in Section 4.4^

RANDOM EFFECTS

4.7" Normal Theory.

The random effects model is not fraught with questions about as'

sumptions as is the mixed effects model. Very simply, it is

Yiik = P * a;+ ó¡ + ab;¡ *  e;¡¡ , (4.40)

for i  = 1,"" ,1,  i  = 1," ' ,  J,  k = I , "" ,n¡r  wherc the random

components are distributed as

aó independent /V(0,t:),

b¡ independent iV(0,oó2).

ob¡i independent ff(O,o&),

eijk independent" N(O,o:),

(4.41)

with independence between the different lettered variables.

Concerns have been exprussed over the rcasonableness of as'

suming that the interaction term aü;¡ is tossed into the model in'

dependently of o; and ó¡^ However, uncorrelatedness, which with

normality becomes independeuce, does seem to emerge from finite

sampling models that deñne the interaction to be a fi¡nction of the

main .A and B effects. For details the reader is referred to Scheffé

(1959, Section ?.a) and Cornfield and T\rkey (1956)"
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The problem usually of interest is to estimate the eomponents

of variance o2o, of,, al¿, and ol' Howe*'er. on Eome rare occasions es-

timates of the individual components o¡, ó¡, and oó¡ may be desired.

These two problems are trcated in the order cited.

The model (4.40) is referred to as a crcss-clEssifrcation model.

A slightly different and equally important model is the nesüed model.

For this latter model see (l.l4) and the related discussion.

1.7.1. Estimation of Variance Componente

The standard meüüod of moments estimators for a balanced design

(i.e., n¡¡ = n) are based on the expected mean squa¡É for the sums

of square appering in Table 4.1. These expectations are

EIMS(A\| = o: + no!6 + nJ ol,

EIMS(B\| = o: + no!5 + nlo!,,

EÍMS(AB\|=o3+nol6,

ElMs(Ell= o!,

so the associated estimators arp

(4.42)

MS(AI - Itrs(AB)ó?=

63=

6?t =

(4.43)

a: = MS(EI"

The credentials of the estimators (a.aa) ¡rc that they are uni-

form minimurn variance unbiased estimatoru (UMVUE) under nor'

mat theory, and uniform minimum variance quadratic unbiased es'

timators (UMVQUE) in general; see Searle (tOZt, pp' 405-406) for

additional discussion and rcfercnces. They do, however, suffer the

embarrassment of sometimes being negative, except fo¡ 0, which is

4-.
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atways positive. The actud ma:<imum likelihood estimators would

occur on a boundary rather than being negative (see Herbach, 1959).

Personally, I would alwaye adjust an estimate to zeto rather than re-

port a negative value.

It should certainly be possible to construct improved estima'

tors along the lines of the Klotz-Milton-Zacts [see (3.55)] estimators

used in the one-way classification. However, the details on these

estimators have not been worked ouü by anyone for the two-way

classification.

Similarly, it should be possible to construct formal Bayes esti'

matons, but the details have not been worked out for the two-way

classifrcation. For discussion and references on Bayes estimatons in

the one-way classification see Klotz, Milton, and Zacks (t009), Port'

noy ( tOZt),  an¿ Searle (1971, p. a08).

See C. R. Rao (1970, 1971, 1972) for MINQUE est imation.

LaMotte (1973), Pukelsheim (1981), and others have investi-

gated nonnegative unbiased varianee component estimators'

An approximately balanced desigu can be handled by the pre-

ceding approach with the Table 4.2 approximate ANOVA replacing

Table 4.1. On the other hand. extremely unbalanced designs are a

horror story. A number of different methods have been proposed

for handling them, but all involve extensive algebraic manipulations.

The üechnical detail required üo carry out these analyses exceeds the

limitations set for this book so the rcader is referred to the best ex-

position of this area, namely, Searle (1971, Chapters l0 and ll). I

hove not had any experience with the different methods discussed by

Searte so I cannot recommend any one over another.

On occasion Factors A and B are such that it makes no r¡en8e

to postulate the existenee of interactions so the terms oü¡ should be

dropped from (4.40). In this cwe o2o5 üsappears from (4.42), and

I
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the estimators for o! and o! in (l.n) can use t{,9(El in place of
MS(,$).Alternatively. one can add SS(ÁB) and SS(E) and divide
by /J(n - 1) + (¡ - IXJ - l) to form a combined estimate of o2".
This combined estimate can then be substituted for MS(,48) in the
expressions for bi and A! in (a.a3).

Another variation on rhe model (4.40) gives rise to the ¡esúed
model. In my experience the nested model for components of vari-
ance problems occurB morc frequently in practice than does the croes-
classification model. In the nested model the main effects for one
factor, say, B, are missing in (4.40). The rcason is that the entities
creating the different levels of Factor B arc not the eame for different
levels of Factor A. For example. the levels (subscript r) of Factor A
might represent different litters, and the levels (subscript ¡) of Factor
B might be different animals, which arc a different set for each titter.
The additional subscript t might denote repeated measunements on
each animal.

To be specific, the formal model for the nested design is

gi iL= P*a;*6;¡*e;¡¡ , (4.44)

with

a; independent /V(0,a:),

b;i independent /V(0,oó2),

e;ik independen¿ N(0,o:),

(4.45)

rnd independence between the different lettered variables. It is cus-
tomary with this model to r¡se the eymbol t ratber than oü because
the interpretation for this term has changed from synergism or in-
teraction to one of ¡ main effect nested inside another main effect.

For a balanced design Jhe method of moments estimators are
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based on the sums of sguanes

I

ss(A) = nr !(t¡.. - 9...)2,
d=f

TT

ss(B):"D!to; i  -e¡.12,

|=' j='*
.s.e(E) : D DD(yr¡* - I;i.)z,

i=l  j=l  l=l

which have degrees of freedom I-1, I(J - l), aud IJ(n- l), respec'

tively. The mean squares corresponding to (4.46) have the expecta'

tions
E(tMS(Al) = o2 + no!, + nJ o!'

E(MS(Bl l=o2+not,
E(MS(El l :  o: ,

so the estimators ¡rt

(4.471

al=*e¿s(A)-Ms(B)),

at  : :Ws(B) -  MS(El l ,

a: = MS(EI.

(4.46)

(4.48)

The increasing tier phenomenon exhibited in (4.47) holds for

nested designs with more than two effects. The only complication

arises when one or mone of the estimates are negative. This is an

indication that the corresponding variance components are zeFo or

negligible. One might want to reaet any negative estimates to zero'

combine the adjacent eums of squar€g, and subtract the combined

mean squares from the mean Equares higher in the tier'

Extension of these ideas to the unbalanced design does not rep

res€nt as formidable a task for the nested desigu as it does for the

crossed desigu. The details for the casc of two factons are given explic'
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itly in Graybill (1961, pp. 354-359) and Searle (1971, pp' a75-a76)'

The sums of squares (4.46), apprnpriately modified for unbalanced

designs, form the basis for the analysis. It is even possible to allow

for varying numbers { of ievets of Factor B for differeut levels of

Factor A.

1.7.2. Tests for Variancs ComPonents

under normal theory the distúbutions of the sums of squares ap

pearing in Table 4.1 are rather easy to derive and describe:

ss(M) - (o! + no!6+ nlo|, + nJo2"l'

, l  nIJ¡P \xi\;z ¡iffi "ro{it"r,) 
'

SS(,4) - (o! + no!6+ ntollYl-r,

ss(B) * (o! + no26+ nlotlxl-t,

sS(AB) - (o! + no|¿lx?t -¡(J-r¡ r

ss(E) - o|x?t' '-tt,

and all five sums of squares are independent'

To test the hypothesis llo : olt = 0' one uses the F ratio

MS(ABllI'rS@\' To test Hs : oza = 0' one usually uses the F

ratio MS(A)lMS('481, unless a decision has been made to combine

ss(AB)andss(E) inthedenominatorbecausea], isbe| ievedtobe

zero. An analogous F statistic provides ¡ test for Hs : o3, = 0' Under

the alternative nonnull hypotheses, these ratios are distributed as the

appropriate ratios of muttiplicative constants frcm (4'49) times cen-

tral F random variables. (For detaits see secton 3.5.2.) Thus power

calculations arc made from central F tables in contrast to noncentral

F tables for fixed effects models.

The F tests of Hs: e!5 = 0 and Hs: o! = 0 mentioned in

the preceding parsgrsph are uniformly most powerful similar tests.

,

(4"4e)
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However, they are not likelihood ratio tests, which are mone compli-

cated becar¡se of boundaries to the parameter space. For details and

proofs of these assertions the reader is referred tc Herbach (1959)

and Gautschi (1959).

Although their general use is not recommended because of their

extreme sensitivity to nonnormality (see Section 4'8), confidence in'

tervals can be constn¡cted based on the distribution theory (4.49).

For o! a confi.dence interval can be derived from ^SS(EIlo2 
*

X?l¡(r,-r). Siim\aü, conhüence intetva\s on rttios of pa$,icu\ar com-

binations of variance components ca¡r be obtained by taking the ap

propriate ratios of mean sums of squares from (a.aO) as, for example,

I

-  Fr- t , ( r - t ) ( r - r ) .  (4.50)

(4.51)

However, the problem of calculating confidenee intervals for o!6, o!,,

and ol separately is far more difficult. The complicated method of

Bulmer (1957), which is described in Scheffé (1959, pp. 231-235), is

available. However, the approximate method of Satterthwaite (1946)

may produce just as good results. The idea behind this method was

described in Sections 2.3.3, "Other Tests," and 3.5'2, and it easily

extends to the two'way classification.

The nearly balanced design can be handled by the usual dodge

of inserting n' for n (see Table 4.2), but tests and confidence intervals

for poorly balanced designs constitute a wasteland.

The distribution theory for the sums of squares (4.46) used in

conjunction with nested designs is straightforward and aimple:

ss(A) - (o? + no! + n! o!)yz, -r,
ss(B) - (o2 + nollyjrt-rr,

ss(E) - o|xltb-tt,

and all three sums of squares are independent.
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To test the hypothesis Ifo : o! = 0 one uses the F rr;rio MS(B)I

MS(E), and to test lfo : o! -- 0 the apptopriate ratio is M9(All

W(p). In all nested designs the higher line in the tier is always

tested against the next lower line. If a conclusion is reached that

ol = O, then the test of Hs : ol = 0 could be imprcved by combin'

ing SS(B) and SS(E) to form ¡ denominator sum of squares with

I(J - l) + /J(n - l) degrees of frcedom. Under alternative hypothe'

ses these F ratios are distributed as central F ratios multiplied by

the appropriate ratio of variances. This can be exploited to pro-

duce confidence intervals on some variance ratios. HoweYer, one still

needs to rely on the approximate Satterthwaite (1946) approach for

constructing intervals on individual components (see Sections 2.3.3,

"Other Tests,o and 3.5.2).

1.7.3. Estimation of Individual Effecte and Overall

Mean

For the two-way crossed classification with random effects intercet

almost always is focused on eetimating and testing o!, o2o5, of , and

o!. However, it is not inconceivable that in some cases there might

be interest as well, or instead, in estimating the cell meaus pii :

Fla;*b¡*ab;¡ .

The classical approach would be to use the estimates fi¡¡ = g;t' .

However, viewed as a collection of estimates, one could do better (in

terms of mean squared error) through the James-Stein (1961) and

Lindley (1962) approach. The idea would be to shrink the individual

estimates toward the common mean as in

i';¡ :9... + (l - SXgr. - 9...), (4.52)

wherc the shriDking factor .S depends on the sums of squares SS(E),

SS(AB), SS(A), and SS(A). Unfortunately, the specific details on

the construction of an appropriate .9 have not been rvorked out for the
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two-way classification as they have been lor the o\e-vay c\ass\hcat\ou

(see Sect ion 3.5.3).  
I

Alternatively, attention might center on estimating ol, "' ,ol'

or, equivalently, on ühe levels of Factor B. Again, specific estimators

have not been proposed to date for handling this situation.

In the nested design one sometimes wants an estimate and con-

fidence interval for ¡r. One typically uses tt = 9.... ln the balanced

case this estimator has variance

o3 
- "3- *tJ-

IJn ' IJ I '

This can be estimared by MS(AllIJn. ln the unbalanced case aD

estimate for tbe variability of g...can be obtained by substituting

estimaües A3, At, and ól ínto the exprrcssion for the vaúance of 9... '

Alternative estimato6 using different weights may be worth consid'

ering in the unbalanced case. For a pertinent discussion see Section

3.5.4.

4.E. Departures firom Assumptions.

The effects of nonnormality in any of the sets of underlying random

variables {e;¡r}, {oó;r}, {ó¡}, {a;} can be devastating to the distri '

bution theory for the sums of squar€3 involving them. The kurtoses

of these variables have a substantiat impact on the variances of the

sums of squar$. Confidence intervals, even those ba.sed on Satterth'

waite's approximation, are not to be trusted. Tests on or2 are also

very sensiüive to nonnormality. The exceptions to this general non-

robustness ¡re the variance ratio tests for the p¡eEence of a variance

component, such as

MSIA) < rra
MS(M > rr-r '1r-r)(. '-r) (4.54)

( l .se¡

for il[s I oz * 0. The denominator is converginS by the law of large
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numbers to the correct normalizing consta¡rt under the null hypoth-

esis. Also, under the null hypothesis, the variablc corFesponding

to the component being tested are not prcsent and the averaging

over the other variables in the various row, column, and cell means

dampens the effects of the kurtoses in the numerator. The larger the

design, the better off one is in this regard.

For a fuller discussion of the effects of nonnormality on the

distribution of variance estimates se€ Section 7.2.

Detection of nonnormality in anyühing but the e'¡¡ is usually

hopeless. The reason is that, unless / and/or J are awfully large,

there are just too few á¡ = 9d.. - ü..., 6¡ = g.¡. - 9..., o. iü¡¡ -

9;¡.- !l¡.- 9.¡.+ !... to infer anything. In addition, á; and 6¡ contain

mixtures of the interactions oü¡¡ so that an uneontaminated view of o¡

and ü¡ is impossible. There may be enough ¡csiduals r,iir = yíik-g;i.

to spot nonnormality in e¡r through a combined probit plot (see

Sect ion 4.2.2).

There ane no outstanding suggestions for how to cope with non-

normality in the random effects two-way classification. Possibly, a

fortuitious transformation could be uncovered. For balanced designs

application of the jackknife may be feasible (see Section 3.6.3).

So little is known ebout the effects of unegual yeriaaces and

dependence on the random effects analysis in the two-way classiñ-

cation that no discussion is possible. Techniques for detection and

correction of these assumption failures are nonexistent, except for

what can be carried over f¡om simpler designs.

Exercises.
l. Verify the expectations in (1.9) for the two-way crossed fixed

effects model.

,
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Verify the distribution theory for SS(A) and SS(E) etated iu

(a.8) for the two-way crossed fixed effects model"

For a balanced two-way classifrcation with n = l, prove that

T\rkey's SS for nonaddivitity

'I

,i
I

i t

I

5.

^ [tl, Dl=, a,i;íF,¡]'
SS¡:f f i '

ie dietributed us ozy! under Hs: ap;¡ = O.

Hint: Condition on {ó¡} and (É¡}" Use the independence of

líPt;¡l from {ó¡} "nd {É¡}"

4. For a two-way crossed mixed model with ^[ (fixed) rows' J (ran'

dom) cotumns, and n replictions per cell, show that

E(MSIA\) = o? + no2o6+nJ Di¡+"? '

For ¡ two-way crossed mixed model with .t (fixed) rows, J (ran'

dom) columns, and n replications per cell, show that under the

Graybill model (4.33)

ss(A) - (o2 + nolrjlfi-, l+Et,"3)
\  dr2+n"k )

Hint: Show that {9¡.. - g ..} has the same covariance structune as

lz; - zl, where the z;, r = 1, "'f. are independently, nornally

distributed with equal variances.

For a two.way nested mixed model, i.e',

g; ik=U*a;+ó¡¡*e¡r ,

wi th ¡  -  l ,^ '  ' r I ,  i  = l ,^ ' ' ,J ,  k:  lo"^, f ,  )  l ,  Df=rod = 0,
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b;i independent /V(0, af ),

c;ik independen¡ N(O,o2l,

{ó"} and {e¡r} independent,

constn¡ct a test of IIo : rrd = 0, d : 1,"',f, vs. .f,l¡ : c; f 0.

Note: {o;} might be different treatment effects, {ü;¡} might be

subject effects with different subjects for each treatment, and

{r¡¡¡} might be rcpeated measurements on eactr subiect.

7. Verify the expectations in (4.471for the twoway nested raudom

effects model.

8. Verify the distribution theory stated in (a.51) for the tweway

nesüed random effects model.

9. In a study of platelet production, 40 rats were equally sepa-

rated into altitude chambers, the experimental group at 15,000

ft. and the control group at sea level. Half of the rats were

splenectomized (i.e., spleen removed), and the other half were

nonsplenectomized. Various blood parameters were measured

over a succession of days.+ The fibrinogen levels (in mg%) on

day 2l are reported in the table. Some data arc missing.

Determine if there arc significant effects due to altitude end

eplenectomy.

'  Rand, K. H., Anderron, T., Lukir, G. A", end Creger, W. P' (1970). Effect

of hypoxia on platelet level in the rat. Clinictl Beccerct, lt, 178 (abstract).

i

i

t
I
¡
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Splenectomy
Yes No

Altitude 528 43{

444 &il
338 312
942 575
Slit8 472
331 444

288 575

3t9 384

29t 272
254 278

382 350

24t 350

291 4G6

r75 388

24t 426

238 344

269 425

10. The ability of radiologis[s to visualize vascular structures has :
pmgressed through tlre development of contrast cgents and ra-

diographic imaging technolory. Using digital subtraction an-

giography with rreasure¡nents fro¡n a ¡lrodified CT scanner, a

Sta¡rford study comparcd 6 contrast agents iqjected sequentially

int,o the arteries of dogs at l0 minute intervals. Although this I
time inten'al was considered eufficient to eliminate aay residual i
effect from a previous iqjection, an extra period Latin square de- i
sign with G dogs was used to permit süatistical testing for resid- ;
ual effects as well as main effects. The design and the values for i

the opacilication index computed fronr photon abaorption are

I

Control
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displayed in the table.

A full analysis ir¡dicated no period and rcsidrral effecüs.* In your

analysis discard the data from the extra period and assume no

period effects. Test for differences in contrast agents (A, B, C,

D, E, F).

t

Dog

Period
I

2

3

4

5

6
I

A 363
c 349
B 212
E 203
f¡ 221
D 272
D 368

B 259 C 300

D 326 E 236

c280 D3@

F 246 A267

A 265 B 189

E 3l l  F 238

E 321 F 267

D 407 D22r F 156

F 286 A267 B 254

E 427 F 227 A 234

B 291 C 287 D 319

c 413 D 364 E 251

A442 8262 Q225

A 422 B 263 Q 257

For the data in Exercise I I of Chapter 3 allow for a nursing

pair effect, and estimate by the method of moments its variance

component in addition to the components for experiments and

error.

Burbank, F. 8., Brody, W. R., Eall, A., and Keyee, G. (1982). A quanti '

t¡tive in vivo cornpari¡on of ¡ix contr¡st agentc by digital rubtrectiou en'

giography. Inveúigrtive RúIiologr, 17, 6lG-616. For tcchnicrl det¿il¡ on

the ANO\? for ex4ra period l,atin rquare derignu ree Lucaa, E. L. (1957)'

Extra- period Latin-e quare chan ge- over deri gn, J o urn il of D aity Scien ce, lO,

225-2A9, or Cochran, W. G. and Cox, G. M. (1957)' Experimentil Dai6na,

Second Edition, Wiley, New YorL, Sec. {.65a (pp. 139-l{l).



Chapter 5

REGRESSION

With each value of the variable y there may be associated the value

of another variable r. Both variables may be of equal stature and

interesü, and the statistical problem is to investigate the relationship

between them. In oüher instances, the variable t may be a baseline

value against which the value of the primary variable y should be

compared, or r msy be an explanatory variable whose effect on the

primary variable y should be adusted for or standardized. The ap

propriate analyses for these situations are the topics of this chapter

and the next.

A common süatistical problem involves repeaüed measurements

r¡nder different conditions. For example, r might be the pretreaü-

ment value for a patient and y the posttreatment value. Similar

paired seütings include studies of twins or rnea¡iurements on the two

arms (or legs) of each subject, where the two twins or extremities

receive different treatments. In Chapter I it was suggested thaü the

comparison between c and y be handled as a one sample problem by

computing the difference y - z for each pair. This is typically the

appropriate approach, but it does assume that, except for random

error, the c and y values lie on a line with slope I whose intercept is

the average difference between the variables. This underlying model

is displayed in Figure 5.1.

Another situation, somewhat less commonly encountered, is

where the z and g values follow a ray emanating from the origin

t
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as in Figure 5.2. In the difference model of Figure E.l, x and y are
related by y = A * z, where A is constant except for,random vari.
etion, but in the model for Figure 8.2, g = etrt wherc p is constant
except for randomness in the data.

Y=A+r

Flgure 6.1

Flgure 6.2

f'
I
a
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Flgure 5.t

The ratio or multiplicative model y = px can be handled in one

of the following ways. The first possibility is to take logarithms of r

and y and use the methods of Chapter l. This is appropriate if the

erroñ¡ look normal and homoscedastic after the log transformation.

A second possibility is to use ratios, üaken singly ss.Vilq and then

averaged or as the ratio of averages g/e. This is the subject of Chap

ter 6. The third possibility is to treat the analysis as a regression

problem in which the intercept is known to be zero. This approach

is considered in this chapter.

Figurc 5.3 illustrates the most general linear relationship be-

tween z and y, namely ! = s + flx. Estimation and testing of the

intercept o and the slope p lie in the domain of regression analysis,

which is the topic of this chapter. Because of the increase in com-

plexity of the analysis, it is tl¡e least preferable method for handling

paired values, but at times it is unavoidable. Although the differ-

ence model g = A * z is often appropriate for euch measunements es

post vs. pre, and left vs. right, it is more typical for the full model

! = a * pz to be required when ¿ is an explanatory variable suci

a¡r 8ge or weight, and not the same me8¡turement as g at a different

{
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time, site, etc.

In regression analysis, given the value of r, the variable y is

assumed to fluctuate randomly about the central value a * flx. The

distribution theory of the estimates and üests takes the z values to

be fixed. lf, in fact, ühe ¡ values are ühemselves random variablea,

the same analysis pertains, but it is now a conditonal analysis, con-

ditioned on the observed valueg of the z variable.

If, in addition to inherent va¡iability, the y variable is measured

with inaccuracy, there is still no change in the analysis" The un-

explained variability about the regression line simply has another

component added to it. However if the r variable is measured with

nontrivial error, the standard analysis should not be used because

it leads to biased estimates. For this neason this chapter is divided

into two parts. The ñrsü describes the standard regression model and

analysis, and the second is devoted to the error:s-in-ya¡iables model,

which is a term often used for the siüuation where the z variable

contains neaaurement error.

This chapter considers only the case of a single variable z lin-

early relaüed to y. Polynomial rcgression and regression with more

than one predictor veúable are all topics in multiple regression, which

is beyond the intended scope of this book. There are many excellent

books on multiple rcgression, and I especially recommend Draper

and Smith (1981).

:

' l

(
I

a

3

'c
,c

lt

:
¿

4-.
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REGRESSION MODET

6.1. Normal Linear Model.

5.1.1" One Sample: General Intercept

The standand model assumes th¿t the observations Ul,"" yo satisfy

yi=ü*f lx¡*e¡, (5.1)

where the e¡ arc independently distributed as ff(O,o2). Although

(5.1) is stated simply in terms of the observed r¡ and y;, the inves-

tigator usually has in mind that, given an c value, the variable y is

normally distributed with

(5.2)

and

(5.3)

The parameter a is the intercept on the y'axis when ¡ = 0, and É

is the slope of the regression line (5.2). The linear relationship (5.2)

is assumed to hold over a range of z values, buü this range may be

limited. Assumption (5.3) requires the variance to be constant over

this range.

No assumption has been stated about xr,"",zrr. They can be

fixed values such as dosage levels in a bioassay or selected consecutive

time points. At other times the td value may be whatever comes

along with y;. Examples of this are the age and weight of the subject

or the ambient temperature at the time of measurement. In this

latter context where the c¡ may themselves be random, they are

nonethetess thought of as being fixed in the analysis" The distribution

theory is conditioned on the observed values of c; therefore, the

resulting tests and conñdence intervals are conditional ones.

D(vlr l=p(r l=a*0s

Var(y l t )  = o2(xl=o2.
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In rcgression analysis with explanatory variables, the variable g

is often referred to as the dependent variable and the variable ¡ as the

independent varíable. This can be confusing to the novice because of

the independence assumption on the y;" Alternative terminolory is

to refer to y as the respoase v¿riable and c as the prdictot variable-

When c is a ba.seline or other explanatory variable, the usual

statistical problem is to estimate o and ¡1. Sometimes one also wants

to test whether the intercept and slope equal certain preconceived

values, such as 0 for a end I for É. Since the (conditional) mean of

y depends ou r, the problem on occasion is to estimate the mean of

y at a standardized value rs, i.e., ,r(ro) = a * prs" This is called

the predicú ion problem, and the neverc€ of this is the calibration

problem. In calibration ühe problem is to estimate the value re for

which ¡r(ze) equals a specified value ¡16 (i.e., ze = (po - a)/p). This

type of problem occurE frequently in bioassay.

When neither variable is subordinate, the problem is to investi-

gate the relationship beüween r and y. If the investigator computes

the correlation coefficient r between ¡ and y, he or she is examining

the extent of the linear relationship beüween z and y. In the case of

bivariate normally distributed variables, there arc two nonidentical

linear r'egressions, namely,

E(vlr l=a*0t , (5.4)

D(, I yl - a' + ty. (5.5)

These lines are distinctly different as indicated in Figure 5.4. How-

ever, testing whether the correl¡tion is zero is equivalent to testing

whether f l=}andP':9.

The least squaFm and maximum likelihood ettimates of o and

:
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fl are

(5.6)

where the computational formulas

f,{" - ¡Xv¡ - t) = Drrr, - nÍ9,
j=f ¡'=l

¡ñ

D(" - ¡12 =Dr? - tÍ2,
d=l d=l

may be used. The bias'corr€cted ma:rimum lihelüood estimator of

o2 is*

' The mucimum likelihood cctim¡tc of oz hr¡ thc denomi¡¡tor n r¿ther th¡n

t- ?ithe ttttct desqroisrto¡ mrhe¡ thc estimttc unbi¡¡ed"

(5.7)

x = e'+9'y

Flgure 6.4



r i
ñ2= '  E(ur-a- i r ; | , ,n-2 +

=+iirt  -nsz-i ' i t ,-r) ') ,  (5.8)
t -2t¡=,  ,=í ' '  

'  , '

= *{E,t - nsz- tD'#=,i;rjY# s'l' 
}

For bivariate normally distributed variables (r,v), the maxi-

mum likelihood estimate of the cortelation coefficient p = Cov(c, y)

lsD(xlsD(sl is
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(5.e)

where the formulas (5.7) may be used for eomputation. The estima-

tor r is called the pmduct-moment eonelation coefrcient.

The estimators (ri, p¡ t 
"t. 

a bivariate normal'distribution with

means (o, fl) and variances-covaúance given by

var(r i )  ="( : .*á=),

Cov(r' 
:' ' 

( -t \i ,ol ="\tE¡^=q¡, (5'ro)

var(É) ="'('E#,-ry)

The variance estimator 62 isdistributed independently of (ri,É) *d

has a scaled ¡2 distribution with n - 2 df, i.e.,

g#t 
-x2o-2. (5.1l)
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If the model were recast as

yd:o'*F (x;-r)+a' , (5.12)

¡yhere f, = fl and a. = a * Bn, then the least tquaFes and maximum

likelihood estimateg

át=9, f l t=f (5.13)

would be independently and normalty distributed with means (o" F')

and variancee

(5"14)

d-ao

t

Var(ri') = +,
v.,(É') = fT#t:*

The models (5.1) and (5.12) are the same, but the independence of

ri' and ¡it permits easier derivation of some expressions for tests and

confidence intervals. The formula and the distribution theory for Ü2

rcmain unchanged under this model formulation'

If one wants to üest the null hypothesis that the intercept a has

a specified o0, N for example wherc as is 0, the ratio

(5.1 5)
I

has aú distr ibut ionwith n-2 df  under Hs:a = oo. one-sided

or two-sided P values for the observed value of the ratio can be

calculated from t tables or computer rcutines for the ú distribution'

The corresponding 100(l - o)% confidence interval for o is

a E d ! r^122a(i .,E# _=F)"', (s.r6) i

where ti\isthe upper 100(c/2) percentile of the ú distribution with

n-2df.
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The ratio
i -Po (5.17)a\frlETÍ''-F

is used to test that the slope p has a specified value É0, as for example

where ps is l. Under Ho : 0 : ps, the ratio (5"17) has a ú distribution

with n - 2 df. The corresponding confidence interval is

(5.18)

Sometimes one wants to test a joint null hypothesis 116 : o = oo,

0 = fo, which amor¡nts to specifying the line ao * flos. An example

might be the 45" line with os = 0 and 0o : l" The classical test is

to compare the value of Ú - lo)r.l|.t G - pollzaz with the critical

points of an F distribution on 2 and n-2 df, where i = (a, 0lT,

Éo = (ae,Éo)r, and $is the covariance matrix for p given by (5.10)

withouü the scalar multiple 42. Joint confidence intervals for o and É

can be obtained by projecting the confidence eltipsoid for p = (o,0lr

generated by the equation (b- ilrf'G- pllzíZ = Ff,n-zonto the

coordinate a:res (see Scheffé intervals in Section 3.1.2 or Miller, 1981,

pp. 58-60):

pep*f i \a( r !
l-.i=l )" '

a E d* (2Fí,^-21'p, (:.  EÉ;w)"' '

P e fl *,(ztf,n-21',', (t#;rp)"' -
(5.1e)

Shorter intervals are obtained by substituting the Bonferroni critical

constEnt til-rrf6- (zFi,^-zlrl2 in 1s.to¡; see Section 3.1.2. With either

critical constant, the intervals (5.19) have a probability exceeding

I - o of jointly containing the tme paramter values o and É.

If one is willing to have the test statistic and confidence in-

tervals expressed in terms of the reformulated, but eguivalent, null
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hypothesis lls : o' = a3, 0'= pf , where c! = ao* lo7, the compu-
tations simplify and the confidence intervals shorten. The classical
test statistic is now

- oB)2 + (5.20)

which has an F distribution with 2 df for the numerator and n - 2
df for the denominator under I/s. However, the shortest conñdence

interuals, which have probability exactly equal to I - o of containing

a' and p', tre

["t^' (8,',-,)') G'- o'rf /rr',

/ r \ r tz
a'€ d '  *1^l f l "uü 

\ ; )  
,

P' e P' * lmli,n-2ü ( 
--+- -.) 

t"

\Dt ' ( ' i - - r l2 I  '

(5.21)

where l*!¡7,"-, is the upper l00a percentile of the studentized maxi-

mum modulus distribution with two independent variables in the nu-
merator and r¡ - 2 df for the denominator.r Good tables of lmli,^-,
are available in Hahn and Hendrickson (1971), and these sre repro
duced in Miller (1981). The interval for f : f in (5.21) is ühe
same arl in (5.19) except that lmli,"-o is smaller than (2Fí,^-)rl2

ñd t7l-12.** The interval for a' in (5.21) amounts to a confidence

interval for the value of ühe regression line a * pr at, z : f , whereae

the interval in (5.19) is a confidence interval for the rcgression line

A ¡tudentized maximum modulu¡ variable lmlr," ir di¡tributed ar max{lg¡1,

-  -  . , lu r l l  I  k ' "  l  r ) '  1" ,  where yr , .  .  " ,  l t  L are independent lY (0,  l ) ,  ¡ l  har a ¡2
disüribution with v df, and X2" r;nd lt¡...¡ l lr ere independent,.

The crit ical conrt¡nt l^l i,^-, can be u¡ed in place oÍ (ZFt,^-z)U'¡n (S.tS)

a¡ well. The probability of the interr¿l¡ (5.19) with lmli,"-2 jointly covering
the true parameteru ir rtill greeter than or equal to I - o. Thi¡ followa from
Sidák'¡ inequality (ree the firrt inequalty in Corollary 2 to Theorem 2 in
Sid¿k, 196?). However, l^lí '-" ir only rl ightly ¡m¡ller than ti l{r.

aa

I
I

I

¡
I
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valueat x=0.

In general, the sample correlation coefficient (5.9) has a com-

plicted distribution that depends on the parameter p (see T. W.

Anderson, 1958, p. 69; C. R. Rao, 1973, p. 208, or other multivariate

or general texts). llowever, one can verify dgebraically that

t--=r{n-z f l (5.22)
{r-7¡ a r l l ! : { r ; -n l2

The ratio (5"22) can be used to test ühe null hypothesis I/s : p = 0
(and, equivalently, Ho:0 = 0 and Ho: t = 0) because tmder "Elo
(5.221has a t distribution with n - 2 df [see {5.17)1. For nonnull

values of p the transformed correlation coefficient

(s.23)

has an asymptotic normal distribution with mean tanh-tp*[plz(n-

l)J and variance llb - 3). Approximate tests and confidence inter-

vals can be constructed with the aid of this transformation, which is

due to R. A. Fisher (1921).  (See Gayen. 1951, and Hotel l ing, 1953,

for the correct moment expansions). Unfortunately, the a-eymptotic

nonnull variance of (5.23) is sensitive to the assumption of normality.

This makes confidence intervals based on this approach dangerous to

use in practice indiscriminately (see Section 5.3).

On occasion the investigator may want to estimate the value

of the regression function at a specified value rs of the independent

variable and surround the estimate with a confrdence interval. I'his

is referred to as the prdiction prcblem. The specified 16 ean be

an interpolated value (i.e., within the range of c1, "',x,.l or an ex-

ürapolated value ( i .e. ,  outside the range of z¡" ' ,xn|.  ln the case

of extrapolaüion, the conformity of the regression fimction to a line

over the extended range comes into question. The commonly used

tanh-rr : Iros (-l+)

ñ-.
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estimate for the regression vdue p(zs) : o * lxo is

f r tbol=d+Pzs,

and the associated conñdence interual is

{5.241

p(rot ed+ f)zo*ügü(*. 
##;)" '  ,  (s.zs)

which is easily derived from (5.14).

On rare occasions there is intercst in scveral different values
for cs or possibly a continuous range of values. The estimates are
the obvious ones obtained from it@l = d + ix, but, with regard to
confidence interuals, what is called for is a confrdence band on the
regrcssion function. The ñrst band to be proposed was the Working-
Hotelling (1929) band:

tr(x)ed+ pz+eFi^,2),nr(:. 
t t#W)"' .  (5.26)

The probability that the intervals (5.26) are correct for all z between
-oo and *m is I  -  a (see Mil ler,  lg8l ,  pp. l l0-- l l4).  l f  the inter-
vals for only a few ¡ are used, then the probability exceeds I - a
somewhat.

Because the bands in (5.26) are hyperbolas (see Figure 5.5), they
are üime-consuming to calculate and draw by hand. For computer
graphics this is not a problem. Easier bands to construct by hand
are the straight-line bands (see Figure 5.0) of Graybill and Bowden
(1e67):

wherc l^lí."_z is the upper l00o percentile of the studentized mEx-

t

imum modulus distribution with two independent variables in the
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numerator and n - 2 ü i¡ the denominator. See Hahn and IIeu-

drickson (1971) for tables of lmli,^-r" The intervals (5.27) are easily

derived from (5.21). They ane namower than the intervals in (5.26)

for z r¡ear f and *oo, but they are somewhat wider for middling

values of c between f and *o.

The reverse problem, which is called the calib¡ation problem,

Flgure 6.6

Flgure

t
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is to decide whiú value of c leads to a speciñed value p6. From

the regression line it follows that zo : (Po- allP' so the st&ndard

estimate is
^ Po-a¡o = L6:.  (5.28)

This is a biased estimate due to p occurring in the denominator (see

Chapter 6). Based on the second order term in the power series

expansion

l= l  +$-r l l l \  +G--p\ '  /2\+. . .  (5.2e)
8 p 

-Pt\p ' ) -  2 \pE) '  '

an a-djusted estimate that reduces the order of the bias is

io: r . (* i ) ( '-r;a=) (s'o)

A confidence interval for c¡ can be constructed by realizing that

the ratio
(e+ ixo- ttol2

"(*.*-frk)
(5.31)

has an F disrribution with I and n-2 df. setting (5.31) equal to

Ff,n_z and solving the resulting quadratic equation in co for the two

roots yields a confidence interval in most caaes. The two roots are

(po - s) + (Ffi"-z)r ,rul:o - e) + F;f - ,  (5.32)
0$-el

whercf

e=
Ff,n-2b2

0'Di=r@; - n)'

E+

t Note that (Ffl,.-r)t lz =fn!!2.

(5.33)
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However, the roots can be imaginary, in which case the confidence
interval is the entire rcal line. Also, when is does not lie between
the roots, the confidence rcgion consists of the two infinite iutervals
above and below the two rpots.

The aforementioned confidence interval prccedure is crcdited
to Fieller (1940, 1954). For grcater detail the reader is referred to
Chapter 6 or to Miller (1981, pp. l17-120) for discussion and figures
on a closely related problem.

The ratio

ilD?=r(r, - ,l2lu2
(5.34)

appearing in (5.30) and (5.33) is the estimated coefficient of varistion
of ¡i [denoteaW ÑG\. When it is small (..g., < .10), the rcgression
slope p is accurately determined. In this case the bias correction in
(5.30) is negligible (e.t., < .02) and can be ignored. Also, in this
caÍ¡e r in (5.33) is small (..g., < .05), so the confidence interval

o

(5.35)

gives a good approximaüion to the fully exact interval (5.32). The
factor multiplying til-zrin (5.35) is Ghe estimated standard devi¿tion
of (po-{)lp obtained by the delta method (see Section 2.3.3 "Thans-
formations"). For additional detail see Chapter 6 or Finney (1978,
pp. 8G-82).

It may be that several or many values of ps (and corresponding
ca) are of interest, not just a single one. The confidence bauds (5.26)
or (5.27) can be used to construct confidence interv¡ls for arbitrarily
mauy values c(p), that have probability at least I - o of all being
simultaDeously corrrct. The procedurc is to draw a horizontal line
through the value p on the vertical axis. The r=gion of c values
where the horizontal line is contained inside ühe band constitutes the

co e io *,iL?,fri [* . ffi;5] "'

i
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confidence region for x{¡t1.,

If the Working-Hotelling bands (5.26) arc used, the confidence

interval for r(p) is given by (5.32) with (2Fro,, -r)'l 'replacing
(Ff,o-z)'|2" Pathologies in ühe confidence region (i.e., the confidence

interval ie the entire real line or two infinite intervals) crn occur

just as for a single value zs. However, for a small coefficient of

variation Ñ@ [see (5.3a)], ühis does not happen. For quite small

Ñtpl the inrervals (5.35) with (2Fro,, -")'l ' replacing ti{22 are good

approximations to ühe exact intervals. Figures illustrating these ideas

for the Working-Hotelling bands can be found in Nfiller (toSt, pp.

l  l8- l  le)"

Similar comments hold for the Graybill-Bowden confidence

bancl (5.27). When Ñtil is quite small. the confidence interval is

approximately

lp-s l

Calibration problems often arise in the following context. Two

ways of measuring the same quantity a¡e available. One ia veta ac-

curate, time-consuming, and possibly expensive; the other is more

variable, ea-sier to obtaiu. and usually cheaper. The one may be a

direct mea¡rurement, and the other an indirect measurement. The

laboratory develops a standard line by laboriously obtaining a series

of paired values (r ; ,g;1, i  = 1," . ' ,n,  where a; is the direct or more

accurate measurement and y; is the indirect or more variable mes-

surement. The regressi.rn line & + 0x is estimated from these paired

values. F\rrther readings on unknown amounts of the eubstance are

obtained by measuring just with the indirect or more variable pnoce-

dure and converting the nreasured y to z by i = (,V - dl | fl. Typically,

a süandard line is used to calibrate a number of additional mea-sure^

ments.

r(pt e tf * t*tí,,-2fr,!-h .
] 

(s ao)



Section 5.1: Normal Linea¡ Model lEf

Usually only the point estimates i = (y - Alli ¡¡e of interest

to the laboratory, but at times some idea of the variability in the

method is desired. If the standard line is accurately determined with

small Ñ(il, then an approximate standard deviation for á is

(v - slz (5.37)
grDl^=r(r¡

Expression (5.37) is similar to the standard deviation factor appear'

ing in (5.35). The difference is the extra "1" which enters the variance

due to the variability in the single y measuFement about its mean

value ¡r(c). llote that the size of (5.37) will vary somewhat depend-

ing on whether the observed y is at the low or high ends of the range

or in the middle.

An exact confidence interval for zs corresponding to a single

additional observation yq is given by (5.32) with an additional "1"

added inside the braces to include the variability in the fls measure-

menü. Simultaneous confidence inüe¡vals corresponding to an arbi-

trary number of additional measurements exist (sei Lieberman et al.,

1967, and Scheffé, 1973) but seem to be rarely used.

The theory of calibration is extensive and has only been touched

upon here. Alternative prucedures, such as regression t on !, (see

Krutchkoff, 1967) or adopting a Bayesian approach (see Hoadley,

1970, and Hunter and lamboy, l98l), exist in the literature. Histor'

ical perspective and references are given in the Hunter and Lamboy

(1981) article and in the discussion articles that follow it, especially

Rosenblatt and Spiegelrnan (1981).

5.1.2" One Sample: Zero Intercept

Not often, but every now and then, one knows that a = 0 from a

priori considerations about the experiment or a graphical plot that

strongly indicates the data follow a ray emanating from the origin.

t12

'
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In such a situaion the reduced model is

and

Typically, the

applied.

E(sl")=p(x)=Pr

V*(yl")=o2(zl=oz.

z¡ and y; values are all positive when this

(5.38)

(5.3e)

model is

The ma:<imum likelihood estimate of the slope is

(5.40)

The bias-corrected ma:cimum likelihood estimate of tbe variance ts

a2 = ;:,},r, - o,¡t,,

t [+.,2 _ (Dl=r c;s¡)2.|

" - | l.?^" Di=r t3 J

The estimator É has a normal distribution with mean

variance
^o2Var(É): ¡."-=.

Li=l ei

The variance estimate ó2 is distributed independently of p

a scaled ¡2 distribution with n - I df, i.e.,

ln- l l i2 q

7- -xi- t '

For testing a null hypothesis Eo: F = ps, the ratio

(5.41)

É and

(5.42)

and has

(5.43)

(5.44)
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which has ¡ ú distribution with n - I df, provides P vdues. The

associated 100(l - o)% confidence inte¡vel is

pep*t7l-21 (5.45)

Since the values of the mean function ¡r(zi - px tJ different

values of c arc simply known scalar multiples of each other, there

is no distinction between a confrdence interval for a single cs and a

confidence band for many z. Flom (5.45) it followe directly that

,4x)e l;'*ti\+L (5"46)
Y Di=r'3

with probability exactly I - a for any number of c.

In the calibration problem the invers€ estiamte for ¡ is

(5.47)

For a poorly determined É the biased reduced estim¡te

J

^l t

0

(5.48)

might be more accurate. Ftom (5.a5) the confidence interval for z(¡r)

is simply

(5.4e)

provided the values in the denominator have the same sign (usually

positive). When the calibration involves a variable y, the invense

estimate from the standard line has the same form á = y I P as (5.17),

but the confidence intervals differ from (5.49). For an accurately

determined standard line with small &(Él = Al0 (Dl=, ,?)'l', 
^

n(P)e 
e.r:fiñ,'

p

B
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approximate standand deviation for i is

9[,  *- ' "  1" ' .pl [- 
, 
i,D?=,,?]

5.1.3. Multisamplee: General Inüercepts

With I Eeparate populations the full model is

l i ¡=a¡1.P;r ; ¡*e;¡

for  r  = 1," ' ,1,  i  = 1," ' ,n¡ ,  whete the c¡ are

independently, identically distributed as il(0, a2).

(5.50)

In classical analyais of variance this model would be discussed

under the heading analysis of covariance. It is a one-way classifica-

tion in the population intercepts with a single covariate z¡¡. Before

the advent of large computers, specialized computational techniques

were devised for aualyzing experimental designs with single or mul-

tiple covariates. The computational techniques were based on the

simple analyses of variance for the desigas (viz., one'way ANOVA,

etc.) relating the intercepts of the regression liues. With our cur-

rent computers which can speedily spit out large multiple regression

analyses, these specialized methods are no longer so relevant.

Usually the first major question to be addressed is 'Are the

slopes equal?n lf fu : '.. = fr, then the family of f regression

lines is conveniently restricted, and comparisons between regression

lines greatly simplify. With unequal slopes, any bizarre collection of

lines is possible with irregular criss-crossing like the game of "Pick

Up Sticks." In general, whether the mean for one population is

higher or lower than the mean for another depends on which values

of ttre independent variable c are under consideration. With equal

slopes, differences between populations are characterized solely by

the differences in the intercepts a¡, " " ,dI.

(5.51)

aseumed to be
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A graphical plot of the dat¡ will frequently indicate whetber
the assumption of equal slopes is ¡t all reasonable. A formal test of
the null hypothesis Ho : Ft = . ' . = p¡ is canied out as follows. The
estimate of the common slope p t¡¡der the null hypothesis .Eq is

:
It
I

!

,,
I

t
I

wherc z¡. : (lln¡l Di:, rü, etc. This is a weighted combination

p=

of the separate slope estimatee

Under lls the sum of the weighted squared differcnces

I .

D,,.'G, - il'
i=f

is distributed as o2 times ¡ ¡2 veriable with .t - I df. When (5.56)
is divided by / - I ¡nd the pooled estimate b2, tbe ratio has an F
distribution with f - I and Df=r(rr - 2) df. Typically, one wants
to accept the null hypothesis unless 3he P value calculated for the
obsewed ratio is so small as to prcclude this decision.

The pooled estimate á2 refencd to in the preceding paragraph

is

6,2 = {2rá,8,r" - ó¡ - i,*;¡t',

(5.52)

(5.53)

with weights

(6.54)

(5.55)

(5.56)

(5.57)
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where iV : Df=, n;, 0; is given by (5.54), and

ó; = 9¡. - 0¡E;. .

The estimate ó2 is a weighted combin¡tion

a2:EIú_-üt
Dí='(t¡ - 2)

of the separate error variance estimates

'?=#,8t"-ri¡- 
l l¡ '¡¡ l '

for the different samples with weights equal to the rcspective degrees

of f reedom ni-2,  r  = 1, . . . ,1.

An altemative test of Hs : lt : .'. = 0t is a T\rkey-Kramer-

type multiple comparisons procedure (see Section 3.1.2). This test

would reject I/o for large values of

Under llo the distribution of (5.61) is appr.oximately that of a stu-

dentized rarlge of f variables with N - 2I df for the error vaúance

estimate. Tables of the etudentized range 8ppe8r in Harter (1960,

1969a), Miller (1981), Owen (1962), and Pearson and Ilartley (1970).

If there were any reason to suspect monotone alternatives for the

slopes in the event that the slopes we¡e unequal, a statistic exploiting

this information could be applied (see Section 3.1.3).

If the decision is made that the slopes arc egual, then the anal-

ysis proceeds on the basis of the restricted model

!;¡ = o¡*, Pz¡¡ * ei¡. (5.62)

(5.58)

(5.5e)

(5.60)

(5.61)
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The maximum likelihood estimator for p is given by (5.52). For
ot , . . . ,o¡  the MLE are

^at i ; :9; . - fA; . , (5.63)

i : l, ...,1, which differ from (5.58) because of the common slope
estimate. The estimator for o2 becomes

(5.64)

(5.65)

f , , -" ,  I  n I  o,  Ir l- ¡/ - r- r tDD v?¡ -Dn;e?. - i'Df{"i - no)'l .
- 

Lj=t j=r ¡'=l i=l j=¡ J

The estimators (á1, .. . ,át l  have a mult ivariate normal distr i-
bution with mean (o,,.. .,a¡) and variances-covariances

var(á;) ' [t =,t3' 
-l 

,:"'L^*mJ '
Cov(d¡,d¡,)=" ' [g l

[Dí=' Di:'("¡¡ - ¿t)'J

The variance estimator A2 ir independent of (á¡, . . . , d¡) and

(N-I- t laz . ,----A: -X'w_t_t. (5.66)

The classical ANOVA test of Hs : a1: ... : o, comparcs the
rcsidual gum of squares uuder the model (5.62) with the correspond-
ing residual sum of squsres under .t[e. Under I/e the MLE for É
changes üo

(5.67)



wherc n.. = D!;=tD']Lrri¡lN, ,t". The difference in the residual

sums of squares is given by

I l la l

ss(c; Ho) = D",s,'. - Ns?"* it'DD(r,¡ - t¡)z
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¡'=l i=l j-l

I ¡ .

- i'D!{"¡ - t'12.
d=l i=l

SS(c;¡/o)..--_-_
U - rla2

(5.68)

Under Ife the ratio

(5.6e)

has an f. distribution with f - I and N - I- I df fornumerator and

denominator, respectively.

In many instances the independent variable means :ü;.,

¡ = l, .. ',f , are roughly equal and/or the squares of thes€ means are

small relative to !l=, Di:r(r¡¡ - r;12. Either event ensurrcs that

and the otber covarinnces Bre all approximately zero. Thie covari-

an:e structure is identical to the one-way classification with unequal

sample sizes, so the T[key-Kramer method of multiple comparisons

can be applied (see Section 3.1.2). With probability approximately

var(ó¡-á¡,)  =;( : .+:)  ,  i * i , ,
\ nr' nit /

Cov(r i ;  -ár , , , i í , -dn) =t ,  i * ; " ;n '

l -c,

ü; - aí,€ ,i; - á;'* q?,n-r-'L[f * f' '  J|ln; '  n,,

. (z;.- t;,.)2 1't''mJ

(5.70)

(5.71)

for all ; * i' , where ef ,x-t.t is the upper a percentile for the stu-

dentized range of .I variables with N - I - I df for the error variance

L
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estimate. The last ratio under the square root iu (5.71) should be

small relative to the two preceding terms for the cov€rage probability

to be approximately correct.

For testing Hs i a1 = .. ' : o¡ against montone alternatives,

one can use an appropriate contrast Df=r.;ó¡ (eee Section 3.1.3).

The varianee of f,f=, c;ó¡ can be derived from (5.65).

Although comparisons between populations with a common

slope arc usually ch¡racterized by differences between intercepts, in

bioassay there is meaning in converting a difference in intercepts into

a difrerence in z values. Specifically, for two populations the ratio

Arz = (5.72)

is the amount that must be added to an z value in population I to

achieve the same effect ac an r value in population 2, i.e.,

p{x+ Arz) = lu1-kl, (5.73)

where p¡(cl = o¡* pz, i = 1,2. If the z scale is, in fact, the logaúthm

of a drug dose, then prz = exP(A¡2) is called the relaúive potency of

the two drugs and is the factor by which a dose level of dmg I must

be multiplied to produce the eame effect as an identical amount of

drug 2 (see Finney, 1978, pp. 79-80). The relative potency Prz can

be greater or less than one depending on whether A¡2 is positive or

negative.

Point and interwal estimation for A12 is very similar to the cal'

ibration problem for just one population. The commonly used point

estimate of A¡2 is

(5.74)

^wherc p ir gi".o by (5.52) and ó;, d = 1,2, by (5.6Ít). If p cannot be

accurately estimated, then nontrivial bias ca¡r creep into Árz due to

;  dz-dt
al2 = ----f-r

p
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p b"ing in the denominator, and the bias'adusted estimator

:

(5.75)

(5.76)

may offer an imprcved estimaüe. F\rlly exact Fieller intervals analo-

gous to (5.32) are

.  @2.- gt^ l
rt'- rz- + -T---

l0 _ r, l
(Ffr-r-,) ' l 'al(*,+ *)( t _rffi

.  (gr . -  gr . )2 1" '
'i[U.-¡r,r - t+J

+-

where

c' :

É(r - . ' )

iq
l ' f  ^ ,  ,  .0 '

¡ r / l  - f  -  ¡ (5.77)
P' D',=rDil, (";¡ - t;')2

Absurdities such as the confidence intervel being the whole axis (in

the case of imaginary roots) or two semi'infinite intervals [when Á12

lies ouüside the roots (5.76)l can occur jusü as for (5-32)- For ruell'

estimated É the factor e'is small, and the intervals

(5.78)

arz€Á,2*úf t - r - r+[+.+
lilL"t n2

give a good approximation to (5.76). The intervals (5.78) are always

well defined. rnone intuitive, and easier to explain-

When there arc morre than just two populations, the preceding

formulas apply for poiut and interval estimates of the log rrclative
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potency A¡¡ between any two populations d and ¡'. With more than

two populations, it may be the case that one population, say, r :

l, is a standard population against which all others are compared.

This would limit the estimation üo the .[ - I log relative potencies

Arz, . . . , Ar¡. If it is important to have simultaneous conñdence in

all the intervals, the siguificance level o in (5.76) or (5.78) can be

changed to alK, wherc K is the number of relative potencies being

considered [see(3. I 2)] "

5.f.4. Multieamplee: Zeto Intercepts

In the model where the intercepts are known to be identically zero

(i.e., a; = 0), the individual slope estimates ¡¡e

t

and the combiued estimate of p under the hypothesis .[fo : py : " ' :

J¡ is

f i :D'='* ' i t .' Di=r 0¡ '

1rI 1rts,
l-tt Li=ts;iVii= 

-LJry:, 
"l '

where
t¡ i

u; =ln!¡.
j=t

For different É; the estimate oÍ. o2 is

(5.7e)

(5.80)

(5.81)

(5.82)
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The individual slope estimates i, uu independently normally

distributed with means É¡ "nd 
variances o2ln;, r'= l, "",1, r€spec-

tively. The ratio (N - Ilí2lo2 has a ¡2 distribution with /V - I df

¡nd is independentof p1," ' ,nr. When Ho: h = " ' :  p¡ is true,

the combined estimate É h"" 
" 

normal distribution with mean p and

variance 02lD!;=tu;.

The classical test of the null hypothesis I/s i 0t ='' ' - p¡ relies

on the statistic

Dln!,,¡(i¡ - Pl' (5.83)
$ - r¡az

which has an F distribution with f- I and rV- I df. A T\rkey'Kramer

type multiple comparisons procedure would compare i

li - inl (5.84)

with the precentage points of a süudentized range of f vaúables with

N - I df for the error variance estimate (see Section 3.1.2). For

monotone alternatives En appropriately selected (see Section 3.1.3)

linear combinatioo Dl=, c;É¡ with estimated variance d'DI;=rr?lti

would yield a ú statistic.

In a bioassay with two lines, the ratio Pt2 : \zl|t gives the

relative potency of the two preparations, namely, the factor by which

a dose of preparation I must be mulüiplied to give the same rsPonse

¡s Bn identical dose of preparation 2. That is,

ubnrl = p2(rl. (5.85)

The customary estimate of enis Fzlh, but one msy wEnt to make
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¡ bias correction in

^02Ptz = 
V;

(5.86)

A fully exact Fielter iuterval can be constructed by eolving for the

roots of

(rz- Ftp,ztz = FÍ,¡,t-t. (#r. #q), 
(5.8?)

but for a good assay the interval

. ra2 1U2
pnéi,.+til ',L|:]--- + :=92"=-l (s.ea)

'-' lirl [li:, nl¡ ' DiLr r?¡ J

should suffice. For multiple relative potencies the significanee level

can be reduced Jo alK, whe¡e K is the.number of potencies being

considered [aee (3.12)1.

In the parlauce of bioassay this type of analysis with o¡ = 0 is

referred to as a slope ratio Esssy. Finney (1978, Chapter 7) studiee

ühe morc general situation where di = a # O.

6.2. Nonlinearity.

God has not decreed that all rcgrcssions should be linear. Many are

not. The mean Fegrression fi¡nction p(rl might be quadratic at px*

1c2, exponential u"-|t, Power oxq , ot eomething else.

If for rcasons exterual to the data the form of the nonlinear

tegreasion is theoreticdly known, then one typicdly has two üoices.

The original scales for the variables can be maintained, and a nonlin-

ear negnession andysis can be applied. For an exposition of nonlin-

ear regression analysis see Draper and Smith (t9St, Chapter l0). tn

many iustances one can also transform one or both variables so that

D
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the transformed relationship is linear. For example, with the expo'

nential relation v = dc-F'¡ tüing the logarithm of y produces a lin-

ear relation. Whether one uses a nonliuear analysis or a linear aualy-

sis after transformation depends on several factor:, an important one

being the availability of a good noulinear rcgression computer rou-

tine. Often the linear analysie ¡f¡s¡ ¡¡rnsformation is quicker and

easier even if the nonlineEr routine is avBilable. When both ¡outes

are equally open,the choice ghould depend on the appropriateness of

the error structure. Do the elTotr se'em mo¡e normal, homoscedastic,

and free of outliers under the trensformed or untransformed model?

Even this criterion becomes blurred when one admits the poosibility

of weighted linear or nonlinear regression.

The remainder of the discussion in this Eection is focused on the

situation where the model is not known for sure a priori.

5.2.1. Effect

The effect of your or the computer's blindly ñtting a line¡r rcgreseion

to data from ¡ nonliner model is that the fit of the line to the data

will be poor. Point and interval estimateE of o ¡nd p will be so

much rubbish, and the estimates of p ¡nd c in the prediction and

calibration problems may be badly biased. How badly ofr you are

depende on the range of c values. Over a narnow , range even rn
exponential or logarithmic function can be indiscer¡ible from a linear

fi¡nction. However, over a broad rante of c where the curvature of
p(c) is influential the misc¿lculation can be considerable.

In some data sets there is such substantial sc¡tter in the y ü-
rection that it is a moot point as to whether the model is linear or

nonlinear. A linear ñt will do ss well as anything for these dat¡ sets.

6.2.2. Detection

Detection of nonlinearity is usually by eyc. A plot of the data with

the estimated rcgression line itbl : e + ix drawn on it typically
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Flgure 6.7

reveals whether the y vdues hover around the line over the whole

range of ¡ values. If the linear model holds, the y values should

not be systematically above or below the estimated line for different

regions of z values.

If a plot of the data is not rrcadily available, the eame sort of

examination by eye can be performed on the residuals r;= gi - A -

0r;, i = 1,.,.,n. These should be ondered by their ¡ values from

small z to large z. If these residuals exhibit long nrns of positive

values alternating with long runs of negative values, there is evidence

of nonlinearity. For example, if you try to fit a line to data from

I concave quadratic regtession function, ühe residuals tend to be

negative for low r, positive in the middle, and negative for high z"

This is illusirated schematically in Figure 5.7. The opposite pattern

of + - * signs holds for convex quadratic functions.

Plotting the pairs (r¡, t;), ¡ = 1, "' , r, of independent variable

b
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values and residuals is a very eflective method for spotting nonlin-

earity. If the model is correct, the residuals should jump randomly

above and below the z-axis and not exhibit any discernible pattern.

This sort of human inspection is not possible when a decision

on linearity vs. nonlinearity needs to be made automatically by a

computer. If a large number of rcgression lines need to be estimated

routinely, one may want the computer to compute each estimated line

and flag those for which there is evidence of nonlinearity. One could

try to rnimic the eye inspection internally in the computer, but an al-

ternate approach is simpler and probably better. The approach is to

embed the linear model in a larger ¡nodel with an additional psram-

eter (or parameters) which for nonzero values produces nonlinearity

in the model. For example, a * px is r special case of a * flz * 1x2,
and increa-sing the value of l1l induces increasing curvaturc into the

model. The particular choice of a larger model usually reflects in-

terplay between computational simplicity and the type of nonlinear

departures one is anticipating. Once the larger model is selected,

the data are tesüed for nonlinearity by testing whether the added

curvature parameter is zero" Execution of this leads into multiple or

nonlinear regression.

This latter numerical approach can be applied as well even when

visual inspection is possible. It may be desirable in equivocal cases,

but often a plot of the data can settle the issue without further

calculation.

5.2.3. Correction

The correction for nonlinearity is to chauge the model. Therc are
several ways to accomplish this.

One can attempt to retain the simple straight line analysis by
transforming either the z or y variable. Which variable is selected
depends on what trnnsformation will linearize the data. For instance,
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with slowly increasing concave shaped positive date the log transfor'

mation of the z-axis from the model y -- ü* flz to ! = a *pa where

z = log r may produce linea¡ data. On the other hand, for poeitive

data which decays away a!¡ z incrcases the üange from y = a * flz

to z = a + gxwhere z =logy may yield a line¡r fit.

There are various graph pspen¡ that will assist you in search'

ing for or checking on a linearizing transformation. log'linear paper

allows one to examine the effects of transforming either r or y by

logarithms. Log-log paper gives a check of the modet !! = ac|.

For bounded response variables like perrcentages or prcportions, sig'

modial regression functions are common, and probit and logistic pa'

pers with linear or log scales ¡re useful in checking on the model.

It is more common to transform the y variable than the c vari'

able. The logarithmic transformation z = loty is frequently used,

and another common one is the reciprocal transformation z = lly.

Rather than using a hit-or-miss search for the appropúate transfor'

mation one can use the systematic, analytical approach of Box and

Cox (196a). For positive dat¡ (i.e., y > 0) they consider the family

of power transformations

f# )#0,
z-y(r)-1 )  '

( logY, ) = 0,
(5.8e)

in conjunction with the linear model and suggest m¡ximizing the

normal likelihood or adopting a Bayesian analysis. Specifically, ex'

cept for constantg the log likelihood of the observations maximized

overcandÉis

losLms'(I) = -|  los

+ ()  -  l ) i lory¡,
d=l

[E,rl^'- 
¿(r) - it^),,)']

(5.e0)
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where ¿(r) 
"¡t¿ 

,(r) are the usuEl intercept and stope estimators (5.6)
l \ \

applied to yr!^r, d:1,".. ,r¡.  A numerical search rcutine wil l  rcveal

the ma:cimizing value of ) or a close approximation thereof.

As stated for (5.89), the power transformation family is ap-
plicable only for positive observations. For data that include some

negative values it may be possible to add a constant c to make all
the data positive beforc transform¡tion as in (1.22)"

For greater detail on the Box-Cox method of locating a lineariz-
ing transformation the ¡cader should consult their original article.

Andrews (l97lb), Atkinson (1973), and Carroll (1980) cousider tests

associated with the power parameter. The teader should be c¡u-

tioned that the Box-Cox estimates are nonrobust. This is discussed

in Section 5.3, along with the controvensy over the apprcpriate vari-

ability estimates ¡s¡ ¿(r) and p(r).

After the data h¡ve been transformed to linearity, the questions

of normality, homoscedasticity, and independence of the errors need

to be addressed. If the errorE were normally distributed with equal
variances for the original data, they may not be after the transfor-

mation. It is hoped that the neveñe will be true. In many instances
the data look morc normal and homoscedastic after the transforma-

tion than beforc. Achieving the correct model takes precedence over
compliance with assumptions about the error stn¡cture.

In some problems it is not possible to find a satisfactory lineariz-
ing transformation. The correct model may really be quadratic or a
mixture of exponentials or some complicated function. This is by no

mearu¡ the end of the world. lt eimply mea¡u¡ you need to penetrate

beyond the scope of this book into the ¡ealms of multiple rcgression
and nonlinear regression. For guidance sce Draper and Smith (1981).

It also mearts you will probably need a large computer, particularly

for nonlinear regression.
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6.3. Nonnormality.

5.3.1. Effect

The effects on the intercept and slope estimates and their distribu-

tions from sampling underlying distributions with nonzero kurtoses

are relatively minimal. The impact of distributions with tails th¡t

are somewhat longer or shorter then the normal or Ere skewed is

similar to the one sample problem; see Section 1.2.1.

The eflects on the aample correlaüion coefficient are more pro'

nounced. The null distribution of r [namely, that (3"221 has a f

distributioul is relatively undisturbed by sampling from nonnormal

distributions with nonzeno skewness and/or kurtosis. Thr¡s tests of

0 : 0 are relatively robusü. However, the validity of the asymptotic

variance for (5.23) being equal to lll" - 3) depends crucially on the

assumption of normality and can be quite different for nonnormal

distributions. I'his makes confidence interval construction for p sen'

sitive to the assumption of normality. For a quantitative assegsment

of these effects and earlier references by E. S. Pearson and others,

see Durcan and Layard (1973).

Outliers are a disaster story. They can be really trcublesome.

It does not matter whether they are generated by a heavy-tailed

distribution such as the Cauchy or by a contaminated normal distri-

bution. If there are points that lie at a distance from the body of

the data, they can exerü an undue influence on the estimates. This

is particularly true for the slope estimate p. The relative position of

the r value(s) associated with the outlier(s) in relation to the other

observed z values plays a crucial role. Outliers with t near the ends

of the r range unduly increase or decrcase l- Oo the other hand,

outliers with z near the middle 6f rhe range have little impact on ¡i'

However, these can still affect d.

These qualitative assertions about outliers can be quantiñed

t

4-.
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through examining the effect of deleting ¡n observation (z¡, y;). For
a multiple linear regression model y =XF +e with full rank, the
estimator /-¡ with the ¡th observation deteted is related to the full
estimator i = (XrX)-tXry by

where X is the nxp design matr ix wi th rows x¡,  t  = 1, . . " ,n,  of
independent variables (usually Ekt E l), ñ¡; = q(X"X)-t*| is the
rth diagonal element of the hat matrix H = X(XrX)-tXr, and
ri = gi - x;i is the ith residual (see Miller, 1974b, Lemma 3.2). In
the case of linear regression (5.91) rcduces to

i - i- = i, 
*,t*tx)-'{,

&-d-;=, jh( : - ( .#)  ,

B-i- , :*(H) ,

r i=yi-d- 0x¡,
t¡

S¿¿: D(". - Í12,
l=l

.  I . ( r ¡ -z l2
n; i=- ' f -_;--

n D¿t

(5.e1)

(5"e2)

wherc

(5.e3)

The change from l-; to p in (5.92) is easily interpretable. The
larger the absolute value of the residual r; is, the greater the üange
will be, but the amount of change is influenced by the position of
z¡ relative to t. This enters both through (z¡ - rllS., and through
I - á¡;. The larger lx; - tl is, the greater the change will be, with
no change whatsoever when z; = ¿.

Cook (1977, 1979) proposed as an overall criterion for judging
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the influence of the rth observation the ratio

ü

(5.e4)

where ó2 equals yr(I - H)V/(" - p) in general and (5.8) in rhe
case of simple linear rcgression with p = 2. Clearly, the size of D¡ is
affected by the magnitudes both of the residual r¡ and of á¡¡/(l -á¡;),
which measures how centrally located the z; value is. Hoaglin and

':Velsch (1973) have suggested separately examining the ñ¡¡ for high
values to identify points of high leverage on the estimates and the r;
to determine whether leverage has been applied.* Otheru, notably
Box and Draper (1975), Davies and Hutton (1975), and Huber (1979,
1975), have also contended that large á;¡ identify points of sensitivity
in the design.

Andrews (l97lb) was the first to sound the alarm that the Box-
Cox procedure for selecüiug a transformation is sensitive to outliers.
The estimates of ) and (c, pl zre unstable under small perturbations
of the data. Andrews (l97lb) and Carroll (1980) proposed more
robusü tests.

Bickel and Doksum (1981) established by asymptotics and sim-
ulations that i and (a(i),p1i¡¡ 1i..., @,pl compured from y(i)l are
highly correlated and (,i(i), É(i)) n"" a subsranrial extra variance
component due to ) being estimated. This has raised a controversy
as to whether one should make inferences on the regression parame-
ters unconditionally as in the Bickel-Doksum theory or whether one
should operaüe conditionally given the value of i (see Box and Cox,
1982). The latter is the procedurc if one chooses a linearizing trans-

' Note th¡t 0 S á¡¡ 3 I end fi-, h¡¡ = p) thur p/n ir en average ralue for
h¡¿.
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formation by the hit-or-miss search method. C¡rrpll and Ruppert

(l98lb) have shown that in the prediction problem there is ouly a

smatl increase in mean squared error due to not knowing ) in es-

timating the conditional medi¿n of y on the original scale given rs.

Also, Doksum and Wong (1933) have established that the usual tests

of hypotheses behave as though ) were known in terms of level and

power.

6.3.2. Detection

Detection of outliers can usually be accomplished by eye from a plot

of the data. Also, the impact of an outlier on the slope estimate can

be judged by noting how far eway the td Essociated with the offending

y; lies from ?. Quantitative assessment of a potential outlier and

its impact is embodied in the residuals ¡i = gi - & - Éc¡ and the

hat matrix diagonal valuee á;d, ¡ = l '" ' ,n [see (5.93)]. The r;

and ñ¡; are particularly useful wheu visual inspection is not possible.

tbrmal tests of significance for outliers in regtession arc considered by

Andrews (lg7la). The work of Andrews and others is fully discussed

in Barnett and Lewis (1978, Section 7.3).

Detection of distributions morc or less kurtotic than the normal

is not so important because the efrecüs on the regression estimates

and tests are minimal. However, one can make a probit plot of

the residuals r¡, t  = 1," ' ,n. (See Section 1.2.2 i f  probit plott ing

is unfamiliar.) The ri a¡e correlated due to the subtraction of the

estimated regression line values, but the empirical cdf of the residuals

is a consistent estimate of the underlying distribution function (see

Duan, l98l); Pierce and Kopecky (1979) and Pierce and Gray (1982)

consider goodness-of-fit tests in the rcgrcssion setting.

5.3.3. Correction

For the correction of nonnormality therc arc alternative nonparamet'

ric regression prccedurcs based on the meüan rather thsn the mean.
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G. W. Brown and Mood's (1951) regression coefficient estimators are

obtained by dividing the z; values into two groups at their median
m, and then solving the equations

l

F
I

I

'ji$ii(vr - 
a - bx;l = !i$p{vr - o - 6l,¡1,

!$¿y{v;-a-üz;}=0,

É="rtir{++}'

(5.e5)

for o = d, b = É. For distinct z; Theil (1950) iutroduced the slope

estimator

(5.e6)

Sen (1968) generalized the Theil estimator to nondistinct r;. The

Theil-Sen estimator is described in Holl¡nder and Wolfe (1973, Chap

ter 9). Andrews (1974) proposed a robust estimator based on medi-
ans, and A. Siegel (1982) has ¡ robust repeated medians estimator.

However, these median-based estimators are seldom used in practice.

In estimating regression coefficients, coru,umerl usually'do not worry

about a lack of normality - with the exception of concera about

outliers.

Outliers need to be reckoned with because of their possible sub'

stantial impact on the regression coefficient values. Most practi-

tioners fit tbe least squares line, examine the residuals, trim any

observations that appear to be outlying and influential, and refit the

least squares line to the observations left after túmming. With very

few trimmed observations, the variance estimates are typically com-
puted as though the remaining untrimmed observations constituüed

the whole sample.

In an important paper Ruppert and Canoll (1980) have tried
to form¡lize this process and study it. Their results are disturbing.

This procedure is inefficient for normal or near normal distributions

and also for very heavily contaminated distributions. In the latter

case the outlierc tend to mask themselves by substantially distorting

;
i

i
I



201 Chapter 5: REGRESSION

the initial least squares estimate of the regression line. In addition,

the asymptotic variance is not analogous to a trimmed mean becar¡se

of a component that depends upon the estim¡tor used to ñt the line

initially. This component is impossible to estimate without enor-

mous samples because it requires density estimation, and its effect

is nonnegligible. This leaves the aforcmentioned trimming procedure

in a very unsatisfactory state unless the amount of trimming is very

minimal.

Ruppert and Carroll (1980) have identified an initial estimator

for the regressi..,n line that gives the trimmed sample regression es-

timator an asympüotic variance analogorn to a trimmed mean. Un-

fortunately, this initial estimator requires specialized computation

involving nregression quantiles' as defined by Koenker and Bassett

(1e78).

A variety of other robr¡st regrssion estimatons have been pro-

posed and championed by different investigators" Bickel (1973) con-

sidered a class of Lestimators (see Section 1.2.3, "Robusü Esüima-

tion," for terminology.) Various M-estimators for rcgression coeffi-

cients corresponding to differrnt rl functions have appeared in the

literature. Huber (1977,1981) gives a general discussion, and Gross

(1977) studies the bisquare estimator in considerable detail. Also,

R-estimatorB ane well represented. For rcferences on 8-estimators

see Bickel (1973) and Jureékovd (1977). Most of these ̂ L, M, and

,E-estimatorc are computationally cumbersome. Since packaged pro-

grams are not commonly available, they are seldom used in practice.

As noted at the beginning of this section, the nonnull distribu-

tion of the sample correlation coefficient is E€nsitive to departurcs

from norm¡lity. If one is wedded to the product moment corrclation

r given by (5.9), ühen far morc robust confidence intervals can be con-

structed by jackknifing or bootstrapping the transformed correlation

tanh-lr. For descriptions of these procedurcs and their ass€ssment

|t
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see Duncan end Layard (1973) and Efion (1981). It should be men-
tioned that jackknifing is not resistant to outliers. Tbimming is best
to remove their effects (see Hinkley, 1978, and llinlley and Wang,
1980). Devlin et al. (1975) cousider the general problem of robuet
estimation of conelation coefficients.

A¡ alternative estimator used with some frequency for nonnor-
mal looking data is Kendall's coefrcient ¡. This is a nonparametric
measure of the degree of associ¡tion betweeu c ¡nd y used in lieu of
the correlation coefficienü. In spirit it is related to the Mann-Whitney
form of the two sample Wilcoxon rank statistic.

Define

b

I

(5.e7)

The function T is an indicator function that scores I for concordant
pairs in which xi - ,i üd yi - g¡ both have the same sign and scorcs
0 for discordant pairs. let

?=*D i  r ( r ; ,x¡ ;e i ,v i l ,
\2/ ¡=¡ ¡=¡1¡

which is an $timate of

a
I
I

r=z(r-

(5.e8)

(5.ee)

(5.loo)

p: Pl(q - xzlln - y2) > 0).

The statistic

; )

estimates Kendall's r coefrcient

¡=P-( l -p) , (5"101)

which varies from -I úo *t like úhe correlation coefficíent and mea-
sures tbe association between z and g" For the bivariate normal
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distúbution r is related to P bY
I

2--su¡
1f

- r  p. (5.102)

(5.103)

Hollancler and wolfe (1973, Table A.2l) give the upper tail of

the cdf for K: (;)i under the null hypothesis of no associ¡tion for

n = 4( l)40. Owen (1962) gives a smal ler table [v iz. ,  n = 2( l) l2 l

for T. Asymptotically, i has a normal dístribution with mean and

variance
E(i \  = g,

var(f)=ffi,
under Ho. P values for testing no association between e and y are

readily obtained from the small sample tables or the large sample

normal approximation. A confidence inüerval for r can be computed

as well; for details see Ilollander and Wolfe (1973, Chapter 8).

When üies are present for either the z or y observations or both,

the score function should assip the value l/2 when ("¡ - ,¡Xy¡ -

gi) : 0.* For a small number of ties the effect on the null distribution

is minimal. However, for larger numberc of ties the null variance is

smaller than (5.103). For a corrected variance see Hollander and

Wolfe (1973, p. 187).

There are other nonparametric measures of association. A pro'

minent one is Spearman's rank correlation coefrcient in which the

observations are replaced by their ranks and ttre usual Pearson prod-

uct moment correlation (5.9) is then computed. For details on Spear'

men's coefficient and ¡eferences on the other nonparametric measures

available, consult Holland and Wolfe (1973) or most any standard

nonparametric textbook.

' Some texts recommend changing the denominator in ? ar well; see Gibbon¡

( le? l ) .
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Flgure

When one or both variables are binary or diüotomized, there
are special correlation coefficieuts defi¡ed to cover these situations;
see Walker and Lev (1953, Chapter ll) and Bishop et al. (1975,

Sect ion l l .2) .

6.4. Unequal Variances.

The standard linear regression analysis is based on the assumption
that the erron c; in (5.1) all have the same variance a2. This, of
couñ¡e, need not be the case. Although any sort of heteroscedasticity
is possible, it is likely that if there is a departure from equality it will
be monotonically related to the regression mean value. Specifically,
for data with positive z ¡nd y, the variance of y may tend to increase
as the mean of y increases. This phenomonen is illustrated in Figure
5.8 where the shaded region indicates plus and minus two standard
deviations.

6.E

plx l*Zalx l

p. lx l -  2alx l
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The situation wherc the error variance is related to the mean

regression has been modeled in the literature by

Var(c¡)  -  o? =ozV(p{x;¡ , \ ) (5.104)

wherc, for example,

V(p(e),))  = lp(r¡) l )

i

(5.105)

is a family of possible üoices for V (see Box and Hill, 1974). Impor'

tant special cases of (5.105) are ) = I and 2.

5.4.f. Effect

The effects of nonhomogeneity of variance are usually not dramatic

¿nless the disproportionality between the variances is particularly

severe. Even with unequal variances the usual least squares estima-

tors (5.6) are unbiased, and under a variety of mild assumptions they

are consistent. They no longer have any optimality properties, but

most practitioners do not lose too much sleep over this. [n multi-

pte regression there ane rare occasions in which the st¡ndard least

squares estimator coincides with the best linear r¡nbiased estimator

(see Zyskind, 1967; Waüson, 1967; Kruskal, 1968).

For normal erroñl the intercept and slope estimators are nor-

mally distribute<l, and for nonnormal errors they can be asymptoti-

cally nornrally distributed. The troublesome aspect is that the esti-

mates of their variances are screwed up. The mean squares for error

62 given by (5.8) estimates a mixture of different variances and the

formulas (5.10) no longer apply. For example, the actual vaúance of

0is
Di=r(tt - nlzo?

[Dl=r('¡ - Ellz '

and this is estimated bv 62lDtr(t; - r)2. However, if the weighted

and unweighted averages of the variances 8¡e spp¡oximately equal,

(5.106)
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(5.107)

then the usual estimate for the variance of p should not be gnossly in-
accurate. This should be the case if the z; are roughly eymmetrically
distributed about !.

For a regression wherc the intercept a is known to be zero, the
effect on the varianc e of i from a fan-shaped error structure such as
Figure 5.8 is considerably rponre. The actud variance of Fl is

lDL, '31''
(5.108)

whereas the usual estim¿te of its vBriance is approixmately estim¡t-
ing

* Di=' "3
Di=t "3 

' (5.loe)

Since large oj correspond to large a;, the weighted average f,!,
,?o'lDi=r 

"3 
definitely exceeds rhe unweighted average D?=to? ln,

so (5.108) is larger than (5.109), possibly considerably larger. Thus
the usual estimaüor for the variance of p may be badly underesti-
mating the true variability.

5.1.2. Detection

Detection of heteroscedasticity is often relatively easy through a plot
of the data or examination of the residuals. The fan-shaped behavior
depicted in Figure 5.8 is readily detectable from a scattergram of
the data. Other sorts of nonhomogeneity of variances can usually
be spotted as well. When a graphical display ie not available, or
even when it is, the residuals can be examined. If they are ondered
arcording to increasing values of c, the fan-shaped errors arc revealed
by the increasing size of the residuals. Other forms of inequality of
variances lead to systematic changes in the siz6 of the residuals.
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There are formal tests for the homogeneity of the error variances

based on analysis of the rcsiduals. I do not feel a need to use them

because if the disparity in the variances is not blatantly obvious from

a scattergram or the residuals, it is not worth trying to correct. How-

ever, for readerc who are less laid back about the problem and would

like a significance test the following refercnces sbould be valuable:

Anscombe (1961), Bickel (1978), C¿rroll and Ruppert (l98ta), 8nd

Cook and Weisberg (1983). Anscombe Bssumes normally distributed

erro6. Bickel does as well, but he also considers more robust tests

as do Carroll and RupPert.

5.4.3" Correction

If correction for heteroscedasticity is the prudent cout:e of analysis,

one might be extraordinarily lucky and find a transformation that

both stabilizes the variances and creates a more linear model. How-

ever, in most instances one has to resort to a weighted least square$

analysis.

In a weigüüed leasü sgua¡es analysis the sum of squares to be

minimized is

D',(r , -o-o ' ,1 '
j=f

where u; = !lo?. If God or the Devil were willing to tell us the

values for w;, ¡' : 1, '"' ¡n, the solution would be

i

(5.n0)

where

d,=gr- f l . In,

á _ Dl=r n;(¡;_-lglt/,_ is)
Pv - 

Dtr n ¡(z¡ - z. l2 I

, - EL-t tt* ., - 
ü=-f a'!!

"' - 
DLr, 

I eür - 
Dl=, *; '

(5.1l  r )

(5.1l2)

Since most of us cannot get help fiom above or below, we are faced

with having to estimate the unknown weights.
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One approach is to select a sensible system of weights involv-

ing the unknown regression parameters. For example, with positive

data the variance at r may be roughly proportional to the mean

of r, so u; = (a + lr¡l.-r. For constant coefEcient of variation

w; = (a + 0s¡l-2. Both are special cases of (5.105). After selection

of an appropriate weight structure, minimization of (5.110) can be

achieved through an iterative p¡ocess. Initial estimates ,io, Éo (".g.,

nnweighted least squares estimates) are substituted for a, p in u;,

and for the first iteration the estimates d¡. Ér are calculated from

(5. l l l )  and (5.112).  The one step est imates d¡,  Ér are then used

as the initial estimates in the weights, and the p¡ocess is repeated.

Convergence of the sequence of estimates d*, P*, t = l, 2," "', to &,¡,

É¿ is not a problem for smooth weight functions, but local, rather

than global, minima can be trcublesome.

Amemiya (1973) evalutes the performance of the one step esti-

mates dr, fr, where the aforementioned iterative prccedure is sto¡>

ped after the first step. Bement and Williams (1969), Jacquez et al.

(1968), and F\rller and R¿o (1978) also study one itep estimators for

the rrlated problem where there are multiple observations at eaü

distinct r value. When there a¡e repeated y values at each differ-

ent z, sample variance estimates (".S., 
"3) 

can be substituted for the

unknown o!.

Under mild conditions on the o2; and the r;, the estimators

&a, 0a are asymptotically normatty distributed as n + oo. Their

variances and covariances are estimated by

G(a,) : a3 [r¿¡4 + ¡r#;azJ,
6(ao, flal =;a [-_--re-=] , (s.ll')- "'a Lti=r ra',.(",. - r.af J '

G(,r") : a [¡':-¡;á _ rJu],

I
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where estimates ri'; of the weights üi are used in the calculation and

(5.1l4)

The rationale for using n - 2 in the denominator of (5.114) has been

totally lost; thus n might just a-s well be used instead. Also, the

basis for using ü distribution critical points has disappeared; normal

critical values are justified by the asympüotics.

Instead of using weights involving the unknown parameteñr, €rn-

pirical weights can be substituted. For example, if the variances are

considered to be proportional to the square of the menns, rather than

using ru; = (o * 0r¡\-2 in the iterative process, one can substitute

ui = ylz. If there are values of y¡ close to zero, the estimation may

be improved by adding a small positive constant to the observed y¡

in the weights [i.e., r,; - (c + yi)-2]. The use of empirical weights

has the big advantage of eliminating the necessity for iteration.

My ñrst preference is to use an unweighted analysis unless ab-

solutely forced by the data to abandon it. In my experience un-

weighted estimates tend to be more stable than weighted estimates

in the sense that small perturbations in the daüa do not produce

much change in the estimates. However, if a weighted analysis is the

order of the day, I would be more likely to use empirical weigbts than

go through an iterative process. With much less fuss and bother, the

empirical weights seem to prcduce estimates that are as reasonable

as the estimates obtained through iteration. I do not know of any

theoretical work or simulation to substantiate this, but the work of

Berkson (1955) on the minimum logit X2 estimators is rrlated sup

portive evidence. I have had no experience with one step estimatore

(see Amemiya, 1973), but they may also do as well as the estimates

obtained from a full iteration.

Any of the weighted estimators can be disturbed by outliers just

a'" = 
*É 

r,,r, - ri.¡ - iax;)2.
i
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as for the unweighted estimators. There has been some theoretical

work on robust estimators for hetercscedastic linear models (see Car-

roll and Ruppert, 1982), but judicious trimming ie probably what ia

mainly used in practice.

An unusual consequence can come from weighting when the

intercept o is known to be zerc. Consider the heteroscedastic ¡nodel

y; - Bx;* e; (5.1l5)

Var(c;) = o;2. The weighted least squaree ctimate of É is

(5.1 l6)

where u; a llo!.
e¡ ) 0, the weight
simplifies to

For the special case in which o? = ozlllc¡ with
ürd can be taken equal to llx;. ln ühis event po,

that is, the ratio of the sample means. More generally, as long as o!

is proportional to a known power of l¡r(z¡)l (i.e., o! = o2l0ql\|, the

weights are known (i.e., ur; = lc;l-r), and no iteration or empirical

weights are required in the estimation procedure.

If the c; are fixed, or viewed as conditionally fixed, the va¡iabil-

ity of Éo, is estimated by

,ñ - Dl=rY; - üt ' -  Dl=r c;  r ' (5.1l7)

(5.1l8)

(5. l le)

As long as the weights ürj a¡e known powers of r¡, the usual nor-
mal and X2 distr¡bution theory goes through for (5.116) and (5.119),

respectively.
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R¡tios of sample mearur arc treated in Chapter 6. In the context

there, the sample mean t is viewed as a random variable, and its

variaiblity is taken into account in estimating the variation of glr"

Thus, in the special case where r¡ is random and u;: lln;,Jhe¡e

may be some question over whether to estimate the conditional or

unconditional variauce oÍ 0..

6.6. Dependence.

Dependence beüween the y observations can creep into a rcgression

model in a variety of ways, but the brief discussion here is limited to

a few main possibilities.

If the pairs of observations (z¡,yi) are collected in different

blocks, as for example, on different days, from different patients,

or with different equipment, one FegFession line may not adequately

model the data. The obserrations within a block may be more closely

related than between blocks and the regression relationship may vary

between blocks. Ignoring this blockint may still provide nearly un-

biased estimates of the regression coefficients if the z values are sp.

proximately balanced with regard üo blocks, but the estimates of

variability can be fouled up.

When blocking is known to be presenü, the wise statistician

investigates whether there is any block effecü. This can be accom-

plished by fitting a separate regtession within each block. The actual

variability between blocks for the estimated intertepts and slopes can

be compared with the average of the variabilities estimated internally

from the regressions within the blocks. Formal tests of equality can

be executed by computing F statistics or studentized range statistics

(see Sect ion 5.1.2).

If the rcgressions are judged to be different between blocks, it

may be more app¡opriate to think of the slopes and intercepts within

blocks as being random effects raüher than as fixed effects in Section
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5.1.3. This is especially termane when the blocks can be viewed as
random effects like days or patients. The statistical model would be

!;¡ : a;* b;r;¡ * e;¡, (5.120)

r  = 1, . . . ,É,  j= 1, . . . , r i  ( "  = DLrr¡) ,  where the (o; ,ó;)  are inde-
pendent and have a bivariate (normal) disüribution, and the ¿ü are

independently [of themselves and the (o;,ü¡)l normally distributed.i

The separately est imated ó¡,  t ; .  ¡  = 1,. . . , t ,  can often be treated

as independently, identically distributed random variables, and their

meatu and variances estimated by

d¡

É
o
-lo
<J

o

:o
(t',

€
r¿¡

-
z,
=t

)

I

I

i

LrJ

o<:
(-)

J 
arl

r.-i

:3
c) -¡(ó '
=*

ci

^ l ¡

: i ,^ ,  r  I  
(5 '121)

G(¡ ')=*1*=¡I , t , - iü ' .

These estimates are especially appropriate when the vqriation in the
af and r¡ between blocks can be viewed as random. Weighting

the o; and ü¡ by their within-block estimatm of variability is not
recommended" This ignores the variability between blocks and tends
to produce unstable estimators (see Section 3.5.4).

When there are two or moFe Fegression-. to be comparcd and
each coutains block effects, the just described prccedure of ¡ndivid-

ually estimating the intercepts and slopes within blocks and then
treating these estimates as the basic random variables in a multiple
sample problem is often very useful.

An extreme form of blocking can occur when replicaüions (two

or more) are taken at ea¡h distinct z value. If the replicate observa-

'  An appropriate rmdiffc¡tion ¡hould be m¿de to (5.120) ¡nd the rubrequent
analyoie if either the rtoper or interceptr are judged to be equal between
block¡.
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tions arc taken under the same experimental condition, on the same

patient, for example, they may exhibit less variability than the over- ¡r
all variation about the regression line. To treat tl¡em as independent

observations in a standard analysis may lead to inconect estimates

for the variability of the regression estimators.

To be more specific, consider the case of r replicate observations

ateachofÉdist inctcvalues.Thetota|samp|esizenequalsr&.Let

the model be

l i ¡=a* Fn; le i i ,  (5.122)

¡  = 1, . . ' , t ,  i  = 1," '  t?;where

c; i  = f ;+ gi i .  (5.123)

The variable fi is the error for the group of observations at r¡' as a

whole, and g¡ denotes the replication error within the group. The

distributional assurnptionE a¡e that fi is distributed as .ü(0, ojl, Ui i
is distributed as ff(O, o;), 8nd the /,' Bnd 9ü are all independent.

The r replicates at c¡ are no longer independent because of the com-

mon factor /¡ representing their communal experimental condition,

patienü, etc.

If tbe n observations a¡e (incorrectly) substituted into a stan-

dard analysis, the error Eum of squares can be written as 
i

h¡k¡

f  f (v"  -a-0r; l '=f  ! (u"-s¡)2
d=l j= l

(5.124)

wherc the least squares estimat$ simplify to

9..- f l r ,

Df=,("r - ¡Xg;.- g'.)
Df=,(t¡ - ¿)'

d=! j=l

L

+' ! ( r r . -d-  i r ¡ l ' ,
d=l

o=

(5.125)
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From (5.124) it should be cle¡r that ó2 [i.e., SS(E) l(" - 2)l is esti-
mating

tc(r - r)ol + r(k - z)loz, + (o3 l¡ll
¡k-2

since y¡ - 9¡. = g;i - l¡ and t¡. = c * flx;+ f¡* l;. .
(5.126) can be rewritten as

I

(5.126)

Expreesion

_2 2 , r (k-21o'=oí+o|; t i . (6.r27)

The esrimare of the variabitity in p [i.e., GtÉl¡ is rryins ro
estimate

DLr D;=t @¡¡ - n")2

=pt*,?'#] ,,*_*, (5.,28)
f  . rh-z," ' r1 I=lo7-,  -=+al : - r --  
f t , t  _z - ; l  t [ , ( "d_,)r '

whereas the actual variance of É is

(5.12e)

Thus the variance oj of the block compouent in Var(p) is being
underestimated by the factor (L - z)l(rk - Zl.

A similar effect occurs for á.

The way to detect this is to compare the replication vari¡uee
estimate

r ¡?
;2 \f(v" -s¡')z- rePf t(r - l) H ,=,

(6.130)
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with the (suitably scaled) regression variance estimate based on the

means 9d., i.e.,

h

,o?rs=¡!D,r¡.-r i- id'"

If (5.131) is much larger than (5.130), this indicates the presence of

a nonzeno o] in (5'l3l)' under Ho : oj = 0 the ratio rá!",la'npl

has an F distribution with t - I and k(, - l) df, but this test is

extremely sensitive to the assumption of normality (see Chapter 7).

When there is evidence that the replication variance is smaller

than the regression variance, the safest analysis is to average over the

replicates and run the regression on the mean values 9;', ¡ = 1,'' ' , &'

The incentive for not doing this unless absolutely necessary is the

considerable toss in degrees of freedom from r& - 2 to k - 2'

Another type of dependence can be created by baseline ad.usü-

ment. Although this adustment procedune m8y arise in multisample

and cross-classification probtems as well, it seems to occur more fre-

quently in regression contexts in my experience. It occurs when the

recorded observation y; is actually a measured value u¡ that is di'

vided by a baseline measurement u6 or has a baseline measurcment

subtracted from it. That is,

gi = uiluo or ud : üi - uor (5.132)

r'= 1,...ti, and these adjusted values yi 8re felt to have a linear

relationship with the independent variable values r;, i = l,' ' " , r'

If the investigator has been wisc enough to measure uo with

far greater accuracy than u¡ by taking more replicates, obsewing

longer, etc., then for practical purposes üe GaD be considered to be

a constant and no dependence is introduced. On the other hand, if

Var(us) is nearly the same size as Var(u¡), then dependence has been

(5.131)
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created between the y; by the commt¡nal uo. This needs to be ta,ken
into account in the analysis.

With the ratio adjustment V; : uiluo, the estimated regrcs-
sion coefficients of y oD z are algebraically equal to the regression
coeff ic ients of u on s divided by uo ( i .e. ,  ó,  = &"luo, i ,  = p" luo¡.

Similarly, ó2 is the mean square ernor for u regressed on c divided by
ufr  ( i .e. ,  A3=o||" i l .  Theusual  testsof  ¡ /o:a=0 and.Hs :  f l=0
are valid, but tests of any nonzeno values are conditional on us. The
custornarily esüimated variability of ri and É do." not include a com-
ponent from the variability in us. To incorporate this, the method
in Chapter 6 for estimating the variability of a ratio needs to be
applied. An estimate of the variance of ue is required for this.

With the subtraction adjustment yd = üd-uo, the usual estimate
of É and 62 a¡e undisturbed since uo ca¡rcels out, but dr = d" -uo.
Clearly, Var(rio) : Var(ti.) * Var(us). The first componenü can be
estimated from the standard rcgression analysis, but an estimate of
the second has to be obtained elsewhere. If us is in fact an aversge
of a group of m baseline values, G("0) can be calcutated from the
sample variance of the group divided by *.

The final type of dependence to be mentioned is serial core,
Iation. Conceru for this arises most frequently when the index ¡
measures time. The z variable may itself be time or a function of
time. The model is still (5.1), but the e¡, which are fl(O, oz), may
have Cov(c;,ei+i) = pjoz I 0 for j > l.

Although the standand regression coefficient estimators rcmain
unbiased, the usual estimates of variability can be quite inaccurate.
Durbin and Watson (1950, 1951, lg7l) proposed a test for .Fs : pi:_
0, i > l, based on the statistic

Dl=-rt(t;+t - ¡;12DW= (5.133)
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wherc ¡;= &- irr, ¡ = 1,"',t¡ are ühe ¡esiduals from the stendard

regression analysis. The null hypothesis is rejected for small values

of DW. For details see the original sounces or Draper ¡nd Smith

(1981, Chapter 3). Adjustment for serial cortelation draws one into

the domain of time series analysis, which is beyond the scope of this

book"

ERRORS.IN.VARIABLES MODEL

In this model the measurtments on both variables are subject

error. Specifically,
x;=u¡*d¡,

y;=v;*e; ,
(5.134)

where u¡ and od are the true ¡th values of the first and second vari-

ables, respectively. However, we can only observe z; and y;, which

are ud and u¡, respectively, with the observational ernoñt d¡ and c¡

attached. The true underlying va¡iables u and u are related by the

linear relation

u=a*fu,

which could just as well be reverced to

(5.135)

r r=ao+tu, (5.136)

where 9' = ll0 and c' - -o10. The etandard distributional

sumptions on the errorE are

d¡ independenr (O,o1l,

ei independent (0, o2"1,

{d;} independent of (t;}.

(5"137)

Bcfore launching into a discussion of the statistical analysis as-

eoci¡red with the model (5"134)-(5.137), it is important to try to
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delineate when ühis model is appropriate and when the already dis-

cussed regression model is more valid.

The errors-in-variables model is popular in economic analysis

where all the economic variables entering the model arc measured

with uncertainty" The goal of the analysis for economists is to deter-

mine the relationship between the underlying variables.

The errors-in-variables analysis is also especially appropriate

when comparing two different techniques for measuring the same

quantity, where both techniques experience erroñ¡ in reproducibility.

An example would be measuring cardiac output by the dye-dilution

and thermodilution methods; neither method eüibits substantially

less variability than the other when repeated measu¡ements are ob-

tained. In this situation, one usually wants to know whether both

methods are providing ühe same reading except for noise, which is

the hypothesis lls : o = 0, f = l.

If one of the variables, sey r, is the gold standard of measure-

ment, then a standard regression analysis may be mone appropriate.

By "gold standand" is meant that the value of this variable is uni-
versally accepted as the true value, even though it may not be any

more rep¡oducible or accurate than the other variable. In this cir-

cumstnnce, everyone wants to know how the new variable y relates to

the old accepted variable z" When the gold standard measurement

is also less variable, therc is no question about the analysis; it should

be a regression analysis.

When the problem is to predict y from z, the correct analysis

is a regression analysis. With mean squared ernor, E(g | ,) is the

optimal predictor. Under normal theory for u, u, d, and c (see Section

!
I

I
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5.6), E(y I r) is linear in r, but

E(ylr l :E(a*gutel t ) ,
= o* f lE(ulr l ,

=d* t(#q) u'* o(#q) ' '
(5.138)

which difiers from a + Fx.* For nonnormal distributions, the last li¡e

in (5.13s) is srill ühe optimat linear predictor. In either case the least

squares regression line is correctly estimating (5.138) [see (5.lal)].

Another instance in which regression analysis is the correct anal'

ysis is referred to as the Be¡ksn model of a conürolled experiment.

Here ühe firsü variable is under the control of the investigator, and he

or she actually sets the value c;' However, the tn¡e u; determining

ud may differ from z¡ in that the delivered voltage may not equal the

set voltage, the drug dilution may not be exact, etc' In these cases

where the investigator is setting z; and not having it measurcd for

him or her, Berkson (1950) showed that one should apply regression

analysis.

For a fuller discussion of these issues, the reader is referred to

rhe gold standard reference for this araa whicb is Madansky (1959).

Given that the errors-in-variabtes model is appropriate, a dis-

tinction arises over the character of the u; (or u;) values. If they are

nonrandom quantities that should be viewed as ¡nknown (design)

parameters of the data, then therc are n* 4 parameters in ühe model

to be est imated, namely, u1 (orur),  ' "  ,  uo (or ut) ,  d (or o ') '  p (or

fl'\, o1, and o2r. This submodel is referred üo as a finctional rcla'

tionshipbetween z antl y. The alternative is for the u¡ (or u¡) to be

viewed as random quantities generated by a distribution with mean

,¡o (or ¡rr) and variance ol (or ol). The u; (or u¡) are considered to

:

.  p"  = E(u).
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be independent of d; and e;. This is called a sürucüural telationship

between u and y. In my opinion, the choice of the words "functionaln

end "structural" is very unhelpful mnemonically, but wc are stuck

with them for historical rea^sons.

The presentation here is limited to the structural relation case.

In my experience most applications involve random u;. There are

diflerences in the analyses, except for the most important special

case where ¡= o!lofi is known. Kendall and Stuart (1961, pp.383-

3S8) is a good reference for a discussion of the firnctional relation

case.

Before giving the analysis for a structural relation model, it is

instructive to see what happens with the usual regression analysis.

Consider the slope estimator:

; Dl=,(¿¡ - ¿)(Y; - 9)o : --=fl..= 
r1r_ 

__V '
Di=,(u¡ t d¡ -¿ - dX" * fu; t e;- a - Prr - e)

,  (5.139)
l=,(u;*d;-ú-ü2

- ---!ÉE-i='(": "I'li 8'-
- 

* Dl=,(ui - ü)2 + * DLr(,r¡ - ü' * Rz'

T

where

I
8r: l

n

I
Rz: I

n
(5.140)

Since úhe ui, d;, and e¡ are independent, fll and Ilz converge to zero

as n -+ m. Thus

lnnl
fnfta, - d){u; - ü) + f{rr * d; -ü - d)( '¡  -  u)1,
l- i=r i=l J

[ r8," ' -ú)(d;-d]

PLP(#a) (5.141)

The usual regression slope estimator is asymptotically biased down'

ward from I by the inaccuracy in the t measurement. The degree of
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asymptotic inconsistency depends on the rclative sizes of o! and o!.

However, it is correctly estimating the slope in (5.138). similarly, ó

is estimating the intercept in (5"138) rather than o'

5.6. Normal TheorY.

In addition to the assumption that the {d¡}, {'¡}, *d (t"' or u¡)

are all independently distributed, it is postulated that their respec'

tive distributions are atl normal. This creates a bivaúate normal

distribution for the pair of observable variables ('¡,y¡)'

The maxim um likelihood approarl to estimation of the P8¡8m-

eters in the structural errors-in-variables model maximizes the prod-

uct of the bivariate normal densities for (z¡,U;), ¡ = 1,"",n, with

respect to the five parameters ¡r¿, ps, o!, o!,, and a¡v' The MLE

are the usual sample means, variances, and covariance, each with

denominator n. Since these five parameters ¡re functions of the six

parameters a, g, p,,, ozu, o2¿, nd o! in tbe model, the equations rclat'

ing the bivariate normal parametens to the model parameters deñne

the MLE of the model par8meters when estimates are substituted:

i '= I '

d+f t ¡ .=g,

6!+a!=a!,
p 'a?+a!:aj ,

i&3 = o'r,

wherc* '**

. The aix parameten at, /, pr, o3, o2,¡nd ol could be ured indead; they

lead to equetionr analogour to (5.1{2).

" Some ¡trtirtici¡n¡ mey prefer to uec the denomin¡tor n - I in á'!r, O2r, ud

i'r" The ectim¿t€! ó end É ¡re invr¡riant under the choicc'

(5.142)
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zz-_lSr-  =r2o;=;11t,-El  
'' '  

¡ '= l

+2 l+,  r io;=:Llv;-r) ' ,
" d=r

^ I .1..
6rr=; l f t ; -n l (y¡-ü1"

" i=l

(5"143)

since (5.142) consists of five equations in six unknown¡. there
is clearly a difficulty. The parameters are nonidentifiable. Extra
information is needed to picl out a unique soluüion. The sort of
information that is usually avairable involves knowledge about aj
nd o!" This can take the form rhat either one or their ratio is
known. Tlpically, replicates have been run for the measuremenr
process$ on ¿ and y for previous data or even on the currcnt data.
using this information to establish a value for tbe relative sizes of
the error variances through the ratio X = oSlol usually produces a
more stable result than trying to tightly estimate the absolute siz€
of o2o or o!.

when replicates have been run in the experiment, they shourd
be averaged and the averate values used in the errors-in-variables
analysis" otherwise, the dependence between difierent data points is
being ignored. since the dat¡ exhibit variability in both the z cnd
y variables, the usual standard error bars. like those in Figure l.l,
should be displayed borh horizontaily and vertically. This is depicted
in Figure 5.9 along with the structural line.

on rane occasions one knows the value for ) without having to
separately estimate it. I encountered this once when the measure-
ment processes wene identical excepü for the eite of uampling, so l
was necessarily equal üo one.

The analysis to follow is r€stricted to the case of known l. For

t
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Flgure 6.9

a discussion of the other cases, see Kendall aud Stuart (lg6l, pp.
380-382) and Birch (1e64).

Since ól ud A! must satisfy 
^ 

= A?103, the term ló! can
be substituted for dr2 in the fourth equarion of (5.1a2)" The third
through fifth equations can then be manipulated td eliminate ól and
ój. This yields the following quadratic equation lor p:

:l

:

i'ü., + p (^a2 - a3) - 
^ü,1 

- o.

The solutions to (5.14,t) are

(5.144)

(5.145)

From the last equation in (5.142), É must have the same sign u bxr. i
Since 2ón, is the denominator in the ratio in (5.145), it follows that i
thenumeratormustbeposi t ive.This impl iesthct thecorrcctroot
in (5.1a5) is the "*o root because the squarc root term is larger than ,
the preceding term.

?l' + anTrf't'(03 )a
ty2A
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The roots of (5.laa) arc eometimes wútten in the form
t

where

The correct root has the same sign B í¿ti that is,

'+," and if dr, < 0, use '-." See Madansky (1959,
erroru in the literature on this eign calculation.

Once p has been determined from (5.115)-(S.l4Z), rhe esti-
mates of the other parameters follow immediately from the equations
(5.1a2):

fr.: r,
ó=g-pr,

63 = órrli,
a1 = a2 - (a"rl p),
a!=al- fó,r"

i=u*1U2+^lr l2,

u :al-  ^a2- 2on

(5.146)

(5.147)

if Aq ) 0. use
Appendix) for

4

c3
E.

C-

Alühough the estimators (5.145) and (5.1a8) ye¡e derived under
the assumption of normal distributions, they have ¡ mone nonparam-
eteric quality to them. Inspection of the equations (5.112) reve¿ls
that they are meüüod of moments estimators, wherc u, d, and e
can have any distributions with finite second moments. Also, Dem-
ing (19a3) and Lindley (19a7) have derived these estimators from
weighted leasú sguares points of view. They are in fact the orthogonal
regression estimators when the variable scales are Bpprcpriately ad-
justed for o! nd o!. Actually, the history of errors-in-variables anal-
ysis extends back into the nineteenth century (see Madansy, lg5g,
Appendix for early references).

When the error variances ratio I : o? | o2¿ is known, the M LE for
c, p obtained by ma:rimizing the likelihood with respect to u¡, . . . , u¡
a, fl, o2¿, and o! in the functional errors-in-variabtes model coincide

L+'
f:\ :

ci

r , ; l

<il

I

I

( ¡ ,
g

tj.i

l
z,
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with those given in (5"145) and (5.1a8). For details of the derivation,

the reader is referred to Kendall and Stuart (1961, pp. 383-386) or

Graybi l l  (1961, pp. lE9-l9l) .

Additional refercnces for the reader who wishes to delve more

deeply into errcrs-in-variables analysis are Sprent(1966) on I gen-

eralized least squares approach, Lindley and El-Sayyad (1968) on a

Bayesian approach, T. W. Anderson (1976) on connections with si-

multaneous equations in econometrics, and Gleser(1981) and Chan

and Mak (1983) on a multivariate model.

What about tests and confidence intervals for the unknown pa-

rameters in the structural er¡prs-in-variables model? The results here

are a little spame.

Creasy (1956) gave the interval

I

ran-r(#)

. (i)''

ü1
-2

(5.14e)

-' {"'rl' - úf'##rw]'' }'
wherr

with n
is the upper 100(o/2) percentile of the ú distribution

df. This interval has probability nearly I - o of be-
ing correct and can be converted into an interval on p. The "nearly'
comes from omitting any probability associated with ltan-r (Plr/\)-

¡*'t (0 | {ill > n la in order to avoid additional roots of a túgono- I
metricequation;fordetai lsseetheorigina|Creasyrcferenceor
Kendall and Stuart (1961, pp.388-389).

The large sample variances and covariance of ri and É can be

)
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estimated by

,,G1a¡ - a3 2tü,t + i"a| * ff1aia\ - a!,1,
vn¡

oit

,,61a, pl = -*O?aj - a?rl.

The expressions in (5.150) a¡p de¡ived form the influenee functions

for ó and i; ¡be details are given in Ketly (1984). Use of (5.150)

with normal critical constants will produce approximate confidence
intervals and tests. However, thes€ conñdence intervals and tests are
dependent on the normality assumption; see Section 5.7.

There are no classical methods for obtaining conñdencc inter-
vals and tests for o!, ol, and ol (or ol). This is just as well because
whatever they might be would be very sensitive to departures from
normality. Jackkniñng and bootstrapping the data are the best cur-
rently known rnethods for assessing the variability in the estimates.
For related discussion on inference with variances aee Chapter 7.

If it is known a priori that o = 0, then the nonidentiñability
problem v¿uishes. The d term disappears fiom the first two equa-
tions in (5.142) ao the estimate of i is glr (i.e., the ratio of the
sampte means). To assess the variabitity (and bias) in B the meth-
ods of Chapter 6 can be applied.

When o = 0, estimates of o!, ol, and ol cen be obtained from
the last three equations in (5.142) as well. For ill-behaved data, it
can happen that one of theee variance estim¡t€s is negative. For
example, i > O and in, < 0 yields A2 < O. bhir 

-""* 
that the

actual m¡:rimum for the lilelihood must occur somewherc on the
boundary of the admicaible parameter region.

Before clooing, a second technique should be briefly mentioned.
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It was introduced by Wald (1940) in the context of a functional

relationship (i.e., u¡ fixed), but therc is no reason i¿ s¡nnot be applied

in a structiral relationship setting. Wald's original idea was to divide

the data into two groups according to the ordering on the z-scale.

Nair and Shrivastava {19421441, Nair and Banerjee {1912/u), and

Bartlett (1949) generalized this to three groups. Since three groups

seem to be more effective than two, the technique is described using

three groups"

The group mea¿ method orders the data lexicographically ac'

cording to the values x;, i = l,""on. and then divides them into

three roughly equally sized groups. An underlying assumption of

the method is that the noise terms d; are small compared to the

variation in the u¡ so that the data are actually divided into three

groups containing the smallest third of the u¡, the middle third, and

the largest third. No u¡ should be in the wrong group, or. if there

Ere some mistakes, they should be insignificantly few. [,et Í1, t2, lg

(h < tz < is) and {t, ú2, !s be the means of the r end g variables

in the ühree groups. Then the group mean estimate of the slope is

I

i=94,xE- Í t

and the intercept estimate is

(5.15 I  )

&=l-pn, (5.152)

where t, g are the means for all the data" Note that the slope

estimate (5.151) ignores the middle third of the data; it dso treaüs

the data asymmetrically in that the z variable determines the th¡ee

SrouPs.

Wald (1940) 
"od 

Bartlett (1949) considered the distribution

theory for ó, É under the assumpüion that the d; and c¡ are normally

distributed"
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6.'f . Departures fFom Assumptions.

Nonline*ity is best spotted though a plot of the data and the esti-

mated linear structural relation. Residuals can be examined as well
just as for regression. In this case, one can actually look at residuals

in either direction, namely, yi - A - pr; o,

, ; -  d ' -  P'y l ,
(5.153)

To my knowledge, no formal tests for nonlinearity have been
proposed in the errors-in-variables model other than to embed the

linear model in a larger model and to test the added parameters

for significance. Even this ie difficult because of the complexities

involved in ñtting aud testing etructural or fi¡nctional relations for

models other than a simple straight line. Some work has been done
on the quadratic model u = 0o t Fp * fzu2, but it falls outside
the intended scope of this book. It is primarily concerned with the
functional relation model. For recent work and earlier rcfercnces. the

reader is referred to Wolter and F\rller (1982).

Nonnormaliüy of the underlying d, e, o? u(u) distribuüions is
not a serious threat to the accuracy of the estimates of a, p, oj,
o?, o?r, or ol except for the effects of outliers from contaminated
or heavy-tailed distributions. The estimates defined by (5.142) are

method of moments estimators as well as being maximum likelihood

estimatorr under the normality assumption so their calculation is not
dependent on the norurality assumption. However, outliers can dis-
tort the sample moments entering (5.142) and thus affect the values
of the eetimators. The position and magnitude of an outlier tovern
its impact on the estim¡tors just as in regression.

Diagnostics for the errors-in-variables analysis is nowhene as

t
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wetl developed as for regr',ession analysis. Plotting of the d¡ta is

the best meanE of spotting outliers. E:<amination of the ¡esiduals

ci - A - 9". or ri - ,it - ptgi anil t\eir rc-lat-ive positions determineil

bv ("; - r)llD?=t@¡- zl2],l' o, (v,- g)/[Di=t fu;- gl2l'12 mav be
useful as well.

At this point in time, judicious trimming is the only antidote
used for outliers. Robr¡stics have not yet come to enors-in-variables,
but some proposals are given in M. L. Brown (1982).

Although the estimators themselves arc modestly robust to a
lack of normality (except for ouülien), this is not true for their dis-
tribution theory. The confidence interval (5.149) and the asymptotic
variancea (5.150) ane very dependent on the normality assumption.
This was shown in the work of Kelly (198a), who derived the in-
fl,uence functions for d and p a"nn"a by (5.1a8) and (5.145), re-
spectively, under a general distribution F for (c,g). [n ¡ simult,tion
ctudy ahe compared the estimates of the variability in d and p for
the normal theory estimatorE (5.150) with estimators based on the
influence function and the estimators obtained by jackkniñng and
bootstrapping. The normal theory and influence fi¡nction estimators
performed very poorly. The influence function estimates were con-
sistently much too small. The normal theory estimators also tended
to underestimate but by not quite so much. The jackknife and boot-
strap did much better with the jackknife always being somewhat
conservative. The bootstrap behaved a bit erratically.

Since the jukknife yields the preferred estimators of variability
at this time, it ehould be described explicitly. Delete in succession
each datapoint (c;,9;), j  = 1,.. . ,n. With the ¡th datapoint deleted,
let ó-¡ and É-; be the estimates calculated from (5.145) and (5.1a8)
with the sample moments based on n - I data points" The poeudo,

I .

t '
I
I
l
I '

I
I

i ¡
t ,

I
I
I
I
I
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values are defined by

á;=n&-(n- l ) , i - ¡ ,

F,=np-(n- l )É¡,
(5. t54)

for ¡ = 1,...,n, where ó and É a¡e the estimetors b¡sed on all n
data points. Then the jaclknife variance and covrriance estimator¡
are

t

(5.155)

where ó = Dl=, ó¡/n and I = D?=r \rln. The expressions in
(5.155) a¡e also the variance and covariance estimates for the jack-
knife estimators ó¡ = ó and 0t : fl. The v¡riability estimates
(5.155) used in conjunction with the apprcximate bivaúate normal
distr ibution for r i  -o and p- p (or r i¡ -o and fu - i l  yield ap
proximate confidence intervals or regions for o and p"

Brillinger (1966) was the finst to suggest applying the jackknife

to the linear structural rrclation problem.

The reader should be warued that the jackknife is not resistant
to outliers. Therefore, any influential outliers ahould be trimmed
before jackknifing.

Nothiug has been published on what happens or what to do
when the obseruational errcrs have uaegual yariaaces. A common
situation is where of, and or2 increase as u and u i¡crcas€" In par-
ticular, the observational er¡orE may have a constant coefrcient of
variation. If ¡ transform¡tion is found that both stabilizes the enor
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variances and maintains or creates a linea¡ relation between u and
u, the problem is resolved, but most of the time we are not so rucky. r

Dependence between daüa points in ühe errors-in-variables
model - r'ho knows anything?

Exer''clses.

l. Verify that the expressions in (5.t0) are the variances-covari-
ance for d, p for fixed e1, "..,xn and independently, identically
(but not necessari ly normally) distr ibuted cr,.." ,cn.

2. Verify the relationship berween r and itfrA given in (5.22).

3. Use the probability equality

P{a'e &'*. lmli,n-2i0lnlr l2 '

and

0' e f'*lmli,^-2&Qls,,¡tlzy = I - o,
to prove that

r{" + pz e & + iz *, l*tt,,-ra(#
.1"-¿l \ .  . .  )
.  

W )for 
al l  , ] : ,  -  o,

where Sx¿= Dl=r(rr - rl2.

Hint: Figure out the projections of the eonfidence rectangle onto
(1,, - f), or, for P{A} and P{B} above, show rhat A c B and
A) B.

4. Use the delüa method to show that asymptotically

v". f4-  d\  o2 f r  (po-=?.-  l r ) ' f
\ -f 

)= r L;+ --pzs* 
J

as n + 6, 5"" * oo [s€€ expression (5.35)1.
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Hint: Use the Taylor s€rieE expansion

g(u,u) = g(F,n) + (u - üf10',r)+ (u - dftelr,") +.. . ,

where p: E(ul and r -- E{v).

For the multisample regression problem with common slopen
obtain an exprcssion for v.. (Df=, 

"rur), 
wherc the intercept

estimates ó;, r '  = lo. . . , f ,  are defined by (5.63) and c¡, d =

1,...  ,  / ,  constitute a eontrast.

Use the delta method to justify the bias.adjusted estimator Á12

siven in (5.75).

Verify the value of E(g I c) given in (5.138) for the normal
theory erus-in-variables structural model"

lbr the er¡ors-in-variables structural model with known errcr
variances ratio ) = o2lo?, derive equation (5"144) and the esti-
mates (5.148) from the relations in (5.142).

In the data in Exercise 6 of Chapter l, donor blood was collected
into paired bags containing ACD and ACD+A"

(a) Compute the product moment correlation coefficient r
for the 12 paired values.

(b) Does the size of r have any implication for whether a
paired or unpaired t test should be run?

(c) Is r statisticlaly siguiñcantly different from zero?

(d) Compute Kendall's rn'k correlation coefficient i.

(e) Is i statistically significantly different from zero?

For the data in Exercise 9 of Chapter 3, regrcss the girls' muscle
grades on their (Sro"p) ages. Is the va¡iability in the 5 mean
values about the regression line consistent with the variabilty

within age groups?

7.

8.

9.

10.

- I

)
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The 6 commercially available contrast agents used in the ex-

periment described in Exercise l0 of Chapter 4 are chemically

different. Ilowever, the investigator felt that the only quantity

that affected the opacification index was the amount of iodine in

each agent" The iodine concentrations (mg Ilmll in the agents

ane as follows:

l l .

A=400 B:32O C:400

D=480 E=370 F=282

A (.r\\ rsr(5sis s( t\c. qx\rt. pesisd Lr\rs, rq\rsR. dr\c, isdisltss

that there are no period or residual effects, but there are dog
e$ec\,r. Bsr t\e >\rlsr$r s{ t\is rxrrúrn üistlrü t\r ü¡l,¡ $orn
the extra period.

(a) Calculate a linear regression between opacification in-

dex and iodine concentration. Obtain estimated standard

deviations for the regression coefficient estimates.

(b) Is the investigator justified in his claim that the iodine

concentration in the agent determines the opacification in-
dex?

(c) Is there any evidence of nonlinearity between the opaci-

fication indices and iodine concentrations?

12. Blood volume in ¡ newborn can be calculated by injecting dye
and then dividing the amount injected by the concentration

mesured in the blood. The oprical density (OD) of the dye is
measured at wavelength 620. However, other color agents in
the blood have density curres overlapping this wavelength. Be-
cause of this it is necessary for the blood volume calculation to
subtract from the optical density at wavelength 620 an estimate
of the density without dye predicted from the density measured
at wavelengthT40, which is unaffected by the dye.
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The optical densities (without dye) at wavelengths 620 and 740
for 36 newborns on phototherapy for jaundice are presented in
the table. A prediction equation from whiü the OD 620 can
be estim¡ted from the OD 740 is desircd.

(a) Obtain the regression estimates &, p, and.02.

(b) Is OD 740 signiñcantly rclated to OD 620?

(c) Does any ad,iustment need to be made for departures

f¡om assumptions?

(d) What is your final prcdiction equation?

I

í
t

It
I
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Newbom Od 620 OD 740 Newborn OD 620 OD 740
0l
02
03

04
05
06

07

08

09
l0
l l

t2

l3
t4
l5
l6

t7

l8

28
t4
37

84
28
38

98

2l
44

l l8
42

60

106
62

49
38

26

46

l4
7

r2
40
l l
t6
64

I

22
74

t8

3l

48

42
22
l8

I

23

l9
20
2l
22
23
24
2E
26
27
28
29
30
3l
32
33
34
35
36

269
36 t7
48 20
54 30
56 31

135 74
40 16
2t8
48 l9
30 l0
22u
50 30
188
35 16

24t 124
73 29
40 l l
42 20

13. Premature babies arc extremely susceptible to infections. At the
Stanford Medical Center Intensive C¡re Nursery, kanamycin is
used for the treatment of sepsis. Because kanamycin is ineffec-
tive at low levels and has potentially harmful side effects at high
levels, it is necessary to constantly monitor its level in the blood.
The standard procedurc is to take blood samples from a baby's
heel. Unfortunately, fiequent eamples leave badty bruised heels.

Kanamycin is routinely administered through an umbilical
caüheter" An alüernative procedurc to a heelstick for measuring
tbe serum kanamycin level is to reversc the flow in the catheüer
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and draw ¡ blood sample from it' However, physicirns are teluc-

tant to rely on measunements from the catheter because prox'

imity to the site of infusion and residusl amounts of kanamycin

on the watl of the caüheter might elevate the levels'

A study of 20 premature babies was conducted to see if kanamy-

cin levels measured in blood drawn from the heel and the cathe'

ter are equivalent.* The data from simultaneously drawn sam-

ples are presented in the table. Since the prcparation and assay

pFocesss are identicat for both blood samples, it is reasonable

to suppose that l = ollo! equals I in a stmctural errors-in-

variables model.

(a) Estimate the intercept a and slope p in a structural

erors-in-variables model by normal theory maximum like-

lihood under the assumPtion I = l'

(b) Esrimare rhe variability in ri and É uy tle jackknife

method.

(c) Would you conclude that the two methods are equiva'

lent?

I For additional det¿il¡ on thir úudy ree Miller, R' G', Jr' (1980)' Kenemycin

|eve|einPremtturrblbiel,Biotati¡t icrCerebook,Vol.t(TechnicalReport

No. 5?, Divi¡ion of Bio¡tati¡ticr, Stanford University)' pp^ 127-112'

t

I

I
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Baby Heelstick Catheter
23.0 28.20l

a2
03
0{
05
06
07
08
09
l0
l l

t2
l3
t4
l5
l6
r7
l8

l9

20

3:f.2

16.6

26.3
20.0

20.0

20.6
18.9

17.8
20.0
26.4

21.8

14.9
t7.4

20.0

t3.2

28.1
26.9
18.9

13.8

26.0

16.3

27.2

29.2

l8.l

22"2

t7.2
18.8
16.4
24.8

26.8
15.4
14.9

l8.l

16.3
31.3
31.2

18.0

15.6



Chapter 6

RATIOS

For two variables z ¡nd y, interest may center on the ratio of their
means qlp, where p = E(x) and n = O(ü. The meen ratio is
pertinent when one wants to know the average amor¡nt of variable
y per unit of variable z. An example might be the protein content
of cells per unit DNA. The mean ratio is also involved when the
parameter of interest is the percentage üange or relative üange
between experimental (y) and control (z) conditions. Percentage
change is defined by

t

x l(X),

and ¡elaüive ehange is defined by (6.t) without the factor lfi).

For a sample of pairs (r;,y;|, i = l, . " . ,Í, an obvious estimator
of qlpis glz, whe¡e ¿ and ! are the sample means. This estima-
tor, which is the ratio of ühe sample menus, will converge to qlp u
n + 6, but ühe estimator (t/")Dtrfu;lr;|, which is the mean of
the sample raüios, will not. The latter estimator ie consistent for the
expectation E(v | ,). The two quantities E(y | ,) and E(yl I E(z) are
rarely equal. They can be nearly equal or quite far apart, as de-
termined by the joint distribution of ¡ and y. The investigator and
statistician should have clearly in mind which quantity they want to
estimate. In most cases it is the ratio of the population means 4/p.

The ratio of the mean'r¡ estimator g/r came to the fore twice in
Chapter 5, onee in the regression model as a weighted least squa¡es

(=) x,n)=(;- , ) (6.1)
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estimator when o = 0, and once in the errors'in'vaúables model as

the MLE of f when a = 0. The values ,d were asumed to be fixed

in the regres.sion modet, but the probability structure Íor gln in the

structural errcrs-in-variables model was basically the same as that

considered in this chapter.

R¿tio estimators play an important role in survey sampling.

However, the context in which they are used in sample surveys is

a bit different from that being considered here. The probability

framework frequently postulated for survey work is sampling without

replacement from a finite population of N units. Moreover, often

the objective is to estimate i, the finite population mean of the y

variable. The finite population mean X may be known from a more

complete surrey or cencus (possibly obtained previously), or it may

be known through routine tabulation of other population statistics.

When i is known, the ratio-type estimate (gln)X can be a more

acurate estimate of f than the simple estimate fl-

In suruey sampling the ratio estimator has been generalized to

stratiñed samples and other moFe complex sampling sc-hemes. An

excellent refercnce on the we of ratios in sample surveys is Coüran

(1977, Chapter 6). With minor modificction from finite to inñnite

population sampling, most of the discussion in Cochran's book ap

plies to the situation being considered in this chapter.

6.1. Normal Theory.

The one sample problem with paircd daúa is the primary focus of

attention. I'et (x;,g;), ¡ = 1,"',n, be n independent pairs of values

that are distributed according to a bivariate normd distribution with

mean vector and coveriance matrix given by

I

(;) and (:i, ":i), (6.2)
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respectively" The problem is to test whether e = nlp has a speciñed

value ds, or to construcü a confidence interval for 0.

The maximum likelihood esüimaúor of e is A = glz. This is

an obvious and intuitive estimator, but it has some difficulties as-

sociated with it. For one, it is not an unbiased estimator. In fact,

its expectaüion does not even exist in an absolute sense. For sam-

pling from distributions oüher than the normal, its expectation can

exisü. and in the next section modified estimators that reduce the

bias in small samples are discussed. For another, the distribution of

g lt is exceedingly complicated and unsuited to confidence interval

construction or hypothesis testing (see Geary, 1930; Fieller, lg32;

Marsaglia, 1965; and Hinkley, 1969). However, a trick allows one to

construct confidence interv¿ls and test hypotheses.

Paulson (1942) explicitly described the following procedure for

constructing a conñdence interval on 0 : qf p. Earlier Fieller (1940)

had used the same idea in a regression context [see Section 5.1.1,

(5.31)-(5.33)]. Precursors of the procedure appesr in Geary (1930)

and Fiel ler (1932).

Under the bivariate normal model, the variabl€s !; = g; - e r;,

i = l, "' ,n, are indepeudently normally distributed with mean

(6.3)

I

t t -0, , - , , - ( ; ) r=,

and variance

Consequently, the ratio

- 20or, + 02o!.

[-":n Di='(,¡ - ,l'f"

ol (6.4)

(6.5)

has e ú distribution with n - I df. In terms of the original variables,
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(6.5) can be written as

g-e,
(6.6)

[:('3 - 2e c,, * err?))'l '

where a2r, el,, and r- arc the sample vaúe¡rces and covariance for the

z, y variables.*

The 100(l - o)% confidenee region Íor qlp consists of dl values

e for which the absolute values of (6.6) does not exceed tll:r, or

equivalently, for which the square of (6.6) does not exceed Ff,.-1. ln

most instances the conñdence region has upper and lower limits (0u

and 0¿, respectively) which are the roots of the quadratic equation

(g - cnlz = 
|ri"-r{ "!, - 

20c,, + e2e2,l.

This can be rearranged to

t' (o' - ,'fl"-,*)
(6.8)

(6.7)

- ze (w - rfl"-' ?)
.  (" - Fro-r*) : '

(6.e)

r12
(Ff,,-rlr l, l* A,, - 2A 4, + A2 s?l - Fflr-, 4*r;t?,

+

If the

ative,

n, (r - pf,^-r#)

quantity inside the radical in (6.9) should turn out to be neg'

then the rcots of the quadratic equation are imaginary, and

'  ,? = Dl-,(", -r)zl@- l), 13 = El-,(v, -i l ' lb -l), ead e', =

Dl-,(", - ¿)(v¡ - gll b - t)-
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the entire real line constitutes the conffdence interval. Also, if d does
noü lie between ev nd e¿, then the confidence rcgion consists of
the whole real line except for the points between e¿r 8nd c¿, i.e.,
two semi'infinite intervals. These latter two pathologies are not apt
to occur unless the sample size is unusually snall and the data are
particularly variable. *

when n is large, the higher order terms in n become negrigibre
rclaüively, so the interval simplifiee to

0 *til-z,UtUl - 20e, * iz"z¡ttz (6.10)

Since (Ff"- ,)rl2 = tl!-2r, rhe more n¡tural t critical constant is used
in (6.10). The quanrity murtiprying rhe ú criticar consrant iu (6.10)
is the large eample standand devation of á : g/e, whiü one courd
also obtain through the detta method.

To test the hypothesis .86 : e = 0o that 0 has a epecified value
0s, ore can check whether fo ties in the confidence region, or, if the
roots (6.9) have not been computed, one can simply compute (6.6)
with e6 substituted for 0 and check whether the absolute value of the
ratio exceeds ql-2r. If the specified value is 0o = l, this procedure
rcduceg to the ordinary one sampre ú test of the mean equaring zero
for paired differences.

Multiple ratios can arisc in two coDtexts.

The first is where more thau two variabres ane measured. Here
the¡c arc pdimensional vectors of obserrations ¡l and means ¡, and
ühe objects of intercst are the ratioa of the mean corrdinates Ulp¡,

L
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i, j = 1,..",p. This leads into the arena of multivariate analysis"

Scheffé (1970b) investigated the construction of simultaneous confi- I

dence intervals for all ratios of interest

The second context in which multiple retios aris€ is in the

comparison of ratios for differcnt populations. For population r,
j  :  l ,  . . .  ,  f  ,  the rat io A;:  g¡ ln;  est imatee the mean rat io e; :  ni l t t ; .

Interest may center on the equality of 0¡,' ' ',0L or the lack thereof.

No special procedures have been developed for handling this prob-

lem. If the sampies are not small" then the 0; 
"t" 

approximately

independently normally distributed with means d; and variances

hrl,-2c,o,r¡+o!o|,1-
(6.1l)

Sample moment estimates can be substituted for the unhnown pa-

rameters in (6.11)" Ad hoc test procedures and confidence intervals

can someüimes be created on this basis, but inequality of the vari-

ances (6.11) for different r is a thorn ln one's side. The large sample

model stmcture is essentially that of a one-way classification with

unequal variances beüween populations so ühe discussion in Section

3.3 is relevant.

Malley (1982) considered the multiple comparisons aspects of

both types of multiple ratio problems and üheir combination.

Although paired data are mone common for ratio problems, the

case of tnpaired dat¿ does arise on occasion^ In thie case the t;, i =

1,. . ' ,m, ane a.ssumed to be independent ly distr ibuted as N(¡t ,o! l

and the yi ,  i  = l , ' . . ,n,  as independent Nln," j l  var iables. The z¡

and y¡ are also assumed to be independent. The two sample sizer m

and n need not be equal as with paired data.

The ma.xfm um ¡ikelihoocl estimator oÍ A = q I p is li = g/z just as

with paired data. If it is possible to assume thaü the two population

variances are equal (í.e"" o! - o! -- t2), then the confidence interval
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and test procedure closely parallel those for paired data with zero

correlation and are based on exact distribution theory.

I.r."J s2 be the pooled estimate of variance with m *n-2 df, i.e.,

E2=
(m-r)* ,+(n-r) f i

t

I

n-2 '

[8,"' 
- ntz +8,*- o,']

(6.12)

The 100(l - al% confidence interval consists of all values e for

which the ratio

(6.13)

does not exceed the critical constant t*i^-, = (Ff-+,. -r)'l' io

absolute value. The values of 0 where the ratio actually equals the

critical constant are the roots of the quadratic equation

t, (r, - Ff,^+n-z*) - zel,sl* (0, - F?,m+¡-z*) = 0, (6.14)

which are

ns * (Fi^+o-r)rt2, [* (* * *) - Ff,^+n-z*
(6.15)

,, (, Fí^*^-r#a)

The conñdence interval for d is the intervel between the two roots

(6.15) except when the following two pathologies occur. If the quan-

tity inside the radical in (6.15) is negative, then the entirc real line

constitutes the confidence interval. fi A = gln docs not lie between

the two roots, then the confidence region consists of all values below

the lower root and above the upper root. Neither of these oddities

is apt to happen unless r is large relative tom,n, and ¿.

g-cr
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For large sample sizes the roots (6"15) are approximately

I*,*:^-"ú (: .u:)" .

{n'wlrl íb'@l . O'(g)
-61{=- t ' - i  92 

- '

I

(6.16)

The quantity multiplying the t critical constant in (6.16) is the delta

method estimate of the standand deviation of gln. The square of it

[i.".,  ̂ O21y/e)] can be written in the form

(6.17)

where {p@l = sl1fi an¿ ,O(g) = tlJÁ. Expression (6.17) is

easily remembered as

&'@ lrl = ñ'tn¡ + ñ'@1, (6.18)

where CV(z) denotes the coefficient of variation of z [i.e., CV(zl =

SD(zllE(z)1. For a ratio of independent means the squares of the

coefficients of variation add (approxinrately) as in (6'18). This holds

true even if the variances of c ¡nd y are different.*

To üest the hypothesis ¡/o ; e = 0o the ratio

can be compared with a t¡¡n-z percentile or can be used to calculate

a P value from the same table. When the hypothesized value ús is

l, the statistic (6.19) reduces to the usud two sample ú statistic for

unpaired data [see (2.1)1.

Wl¡en it is not possible to assume that the variauces for r and y

are equat (i.e., o! * orrl, difficulties similar to those encor¡ntered for

the two sample ú statistic arise. See the next section for discussion.

. A ¡imilar interpretation c¡n be given to (6.11) if e coefficient of cov¡ri¡tion

i¡ deflned.

(6.19) ,
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Multiple ratios iuvolving independent eamples may present
themselves for analysis. They must be dealt with on an ad hoc basis.
No echemata for their analysis have been written down anywhere.

O.2. Departures fnom Assumptions.

The bivariate normal is not the most satisfactory distúbution for
modeliug paired data in problems involving the ratios of me¡ns. Most
data in mean ratio problems are positive and possibly skewed to-
ward higher values, wheres the bivariate normal is symmetric along
its principal ¡xes and has infinitely long tails in ¡ll directions. In
many other types of problems the infinitesimal probability on the
negative part of the axis does not caure any difficulty but here it
does. Expectations, vaúances, mean Equared ertors, etc., for r¡tios
fail to exist in the ¡bsolute (kbesgue) sense because of the density
where the denominator can be close to zero. There are methods of
circumventing this, but the difficulty is a nuisanee.

Alternative models rssume that z and y arc related by

Ui=o* Pz;*.e; , (6.20)

where E("¡ | r¡) = 0 and the conditional variance is allowed to
depend on z through a power relationship, i.e.,

Var(e¡ l t ; )  =ál t ¡ t ¡ , (6.21)

)

where ó, I > 0. This permiüs the fan-shaped behavior displayed
in Figure 5.8. The marginal distribution of c is usually assumed to
be either I gamma distribution or a log normal distribution.* Both
these distributions are skewed to the right.

Much of the research on ratio estimation has been concentrated
on reducing the bias in the estimator jli creúed by the fact that

I The r¿ndom y¿ri¡ble ¡ ha¡ ¡ log normel di¡triution if lo6 a ir normelly
distribut¿d.

t_
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for most distributions E(r-') * tt-'. A variety of estimaton have
been proposed of which thrce are applicable to the situation being I

considered in this chapter.

Beale's (1962) estimato¡ ie

When E(gln) exists absolutely under the model, the delta
method gives

o"=![1i(l?/"Í-' l lr I t+(s l lnnzl l '

Tin's (1965) esüimaúor is

"( Í )  - !+ ' : ( f r ) -?( i )  . , ( : )  ,
=Í[ ' .#- f f i . , (*)J

(6.221

o,=f, l ' . :  (X-i l |  (628)

t, = 
?,+ (' - ,, (7) + (s - ', (}) (6 24) ;

. ; [, ' 
- , ' (uu,) + 2ft - ti l- ', (#) + (g - o)'(0)]

+ o(max{(z - t iz,(g - n)'}),

The Beale and Tin ettimatorc, each in its own way, ane clearly de-
signed to eliminate the l/n bias term in (6.25).

The third estimator, the jack&nife, was introduced by Que-
nouille (1949), to reduce the bias of a serial correlation estimator.

Quenouille (1956) briefly considered the reciprocal of I mean, but it
was Durbin (1959) who first studied in detail the application of the
jackknife to ratio problems" If the data are randomly divided inüo

(6.25)

.¿
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two g¡oups of size n/2 {assumed to be an integer), the jackknife is

defined by

6,=2lrq\ . -  \ (gL+g?),  (6.26)
' - ' \nJ 2\¿,  nzl '

where td, gd Ere the means for the lth group. flowever, intuition and

pspers by J" Rao (1965) a¡rd J. Rao and webster (1966) indicate that

the fulljackknife (see Section 5'7) defined by

i r=n¿-(n- (6.27)

where ¡l-; -- g-;ln-¡ is the ratio with the ith pair (r¡,y;) deleted

from the data, constitutes an imprcvement, albeit slight"

When the sampling is from a ffnite population and the mean X

of the ¡ variable is known, there exist unbia.ced estimators proposed

by Hartley and Ross (1954) and Mickey (1959), and an approximately

unbiased esrimator by Nieto de Pascual (1961), but these ¡re not

applicable to the problem being considered here"

There have been a number of papers comparing various subsets

of these estimators under sampling from the bivariaüe normal model

(6.2), the regression model (6.20) and (6'21) with r either Samma

or log normal, and a setection of actual finite populations. The list

includes Tin(1965), J. Rao and Beegle (1967), J. Rao (1969)' P.

Rao (1969), Hutchinson (1971), P' Rao and J. Rao (1971) as well as

others.

Although the estimatorc eB, C¡, and ó¡ have smatler bias than

6, they tend to have increased variability. Since the mean squared

erpr is the sum of the variance and the square of the bias, the effect

on overall performance is unclear. The Monte Carlo and theoretical

results that have been obtained about the MSE are eonfusing. The

superiority or inferiority of any one estimator seems to depend on the

particular sampling model. In general, 0", i,r, and e¡ tend to do a bit

J
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better than e , but any difference is very slight if it exists at ¡ll. The

variabilitiea in the three bias-reduced estimatorg incrcase relative to

the unadusted ratio estimator as I in (6.21) incrpases. There is little

to choose betwen e 
",0r, 

and 0¡ as they dl perform essentially the

Eame. The jackknife estim¡tor requires mone computation, which is

a disadvantage, and it is morc err¿tic for small samples.

My impression from having tried the bias-reduced eetimaton in

a few biostatistical problems ie that the conection for bias is usuelly

relatively very amall in maguitude. The amount of change is of no

consequence to the investigator. This would seem to be in agrcement

with the prtviously cited studiee. However, it should be remarked

that the etudies indicate improvement should occur with the use

of bias-reduced estimators when therc are multiple strata in ñnite

population sampling.

I¡ss attention has been paid to the sL,ewness and kurtosis of

A = gln and the three bias-reduced estimators. A few resutts are

mentioned in J. R¡o (1969). The asymptotic norr¡ality of ú fot .oy

dietribution of (x,y) with finite c€cond moments ie guaranteed by

the biva¡iate central limit theorem for (t,l) *d the asymptotic nor-

mality of a continuously differentiable function of sample means (see

C. R. Rao, 1973, Sectiou 6a.2). Scott and Wu (1981) establish the

asymptotic normality u¡der finite population campling. For small

to moderately sized samples there is some evidence that for pooitive

r,y the distribution of gln is positively skewed. This skewness is

primarily caused by small values of t.

The statistic (6.6) ig the basis for testing hypothercs and con-

structing conñdence intervals. It is a one rample ú statistic (6.5).

Thus the effects of skewn6s, kurtosis, end outliers on tests and cou-

fideuce intervals are similEr to those mentioned in Section 1.2.1.

There has been no work to dete on robust estimation pnoce-

dures especially designed for ratio eatimation to counter the effects
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of heavy-tailed distributions.

Several pEpeñ¡ (viz., J. Rao, 1969, and p. R¡o and J. Rao, lg7l)
have indicated that ühe estimate

*rr l -2ad"r+e24l (6.2s)

of the variance used in (6.10) is a biased estimate. lt c¡n be bi¡sed
positively or negetively depending on the model. However, it is e
consistent estimate of the corrcct asymptotic vari¡nce for any u¡der-
lying distribution with fiuite second moments. Therefore, in large
samples the interval (6.10) muet be correct even if the distribution
for c and y is not a bivariate normat.

An altemative estimate of the variance is provided by the jack-
knife estimate of variance (see section 5.2). Its application to ratios
is described in detail in coüran (1972, section 6.17) and Mosteller
and r\rkey (1977, sectiou 8c). The performances of the jackknife
variance and (6.28) were compa¡ed in J. Rao and Beegte (1967), J.
Rao (1969), and P. Rao and J. R¿o (l9zl). The rcgults on which
one is superior arc inconclusive. The two variance estimators seem
to perform similarly except that the jackknife can be morc erratic in
small samples. The jackknife mcy tend to ove¡esüimate the variance
of d and (6.28) to underestim¡te the variance. crearry, the jackknife
requires considerably mo¡e computation.

For 
'npaired 

data the effects of normality and nonnormality
on the distribution oÍ gln arc analogous to the pa¡red data case just
discussed. The central limit theorem provides approximate normality
for gln in moderate to large samples. In smaller aamptes therc may
be eome positive skeweness. Outliers can be troublesome.

The pivotal statistic (6.13) and the test etatistic (6.1g) are two
sample ú statistics based on the assumption of equal variances for c
and y. If this assumption is false, the effects arc anarogous to those
described in Section 2.3.1 for the two sample problem.

l-
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When the evidenc e for oj being substantially different from ol

is sufficiently strong, 8n Eppropriate reaction is to us€ Welch'e ú'

statistic (see Section 2.3.3, "Other Tests"). The sample variances r!

and r! are not pooled as in (6'12), and the test statistic

is used in place of (6.19). The approximate degreeo of frcedom ¡sso'

ciated with (6.29) are

('j +'44)"o=ffi
Since the pivotal statistic for confidence intervals

(6.2e)

(6.30)

(6.31)

has varying 0, the degrees of fredom associated with it should be

the conservative lower bor¡nd min(m - l,n - l).

There have been no studies of the effects of dependent structutts

such as seriat correlation on the ratio g/e for paired or unpaired data.

One is left to infer what one can from the one sample problem.

Exercises.

l. Use the delta method to justify the large eample standard devi'

ation estimate for e employed in the conñdence interval (6.10)

[see also (6.28)1.

2. Use the deita method to justify the approximation (6.17)-(6.18).

3. Show how

(a) Beale's estimator (6.221,
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(b) Tin's estimator (6.23),

(c) the jackknife estimator (6.26)

eliminate the l/n bias term from E(glnl.

A study of structural evolutionary change utilized the speciñc
¡dherence of lymphocytes to specialized lyrnphocyte-binding
high endothelial venules (HEV) in lymph nodes.i When sample

lymphocytes from other vertebrate species are perfused thrcugh
mice, their exact nu¡nber is unknown lxl the number of sample
cells adhering to HEV must be scaled by the number of standard
cells also adhering to HEV.

The table gives 59 number pairs of sample (y) 
"ttd 

standard (z)
cells a.lhered to HEV.

(a) Compute glz.

(b) Compute an estimated standard deviationÍot glt.

(c) Compute Beale's estimator (6.22).

(d) Compute Tin's estimator (6.23).

(e) Compute the jackknife estimator (6.26).

' Butcher, E., Scollay, R., and Weirrman, I. (1979). Evidence of continuou¡
wolutionary change in ¡tructure¡ medieting ¡dherence of lymphocyter to
rpecialized venule¡. N¡ture (London) 2tO, {90-{98.

t

4.



260 Chap0er 6: RATIOS

Standsrd Samplc Stendard grrnplc

I
0
3
I
I
4
4
I
3
2
0
2
3

t l

I
I
3
I
I
1
2
3
0
3
I
I
2
I
t
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5. In a study of diabetes, 2l patients, characaterized as normal,
mild diabetic, and Eevere diabetic by a previous grucose toler-
ance test, were subjected to a constant glucce infusion.* Their
steady'state values before and during the infusion and the in-
eneases A (= during - before) arc given in the table.

The investigator was intrested in whether there were any differ-
ences in the insulinogenic index aIlaG between the B groups.
What is your arxtwer to this question?

t Rcrven, G. ¡nd Miller, R. (lg6s). study of the relationrhip betveen 6tucorc
¡nd in¡ulin rclponr€r to ¡n orrl 6lucore lo¡d in m¡n. Di¡b¿c¡ lz, 56G-56.

)

L
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Glucose Conceutration (G) Insulin Concentration (I)

Beforp During AG Beforr Durins LI

Petients With Norm¡l Glucme Tolerance

86
80
73

8l
84

82

82

88

l3l
105
93

93
94

98

154
164
185

254
175

157
320

160 64 26 53
r74 94

137 64

166 85

153 69

170 88 24 210

164 82 24 5l

Paticnts With Mild Diabetes

l l  46

l6

28

72
67

27
36
56

29
36

186

27

5l

188
70

46

134
104

46

l6
62
l8

17
46

6l
24

t2 48

198 l l0

300 169

238 l3:l

lgÍf 100

220 t27

187 93

2t7 ll9

379

126
370

286

486

194

t72
195

129

166

2t 72
76 264
32 102
18 64
29 163
34 138
30 76

49
26

44
44

32

22

12
l l l
44

6t
90

8Íl
46

Patients With Severe Di¡betec

330 176 26

324 160



Chapter 7

VARIANCES

The previous chaptera in this book have been predominately con'

cerned with the egtim¡tion and teating of mean v¡lues. The only

exceptions to this have been the estimation and testing of the vari-

ances of random effects in Chapten 3 and 4. This preoccupation

with means is c¡used by moot questions in applications being con'

cerned with differtnces in location of different data s€ts. However,

questions about variebility do arisc either as the primary issue 8s in

random effects variance component problems and in deciding which

of sever¡l measurements is morc reproducible, or as a secondary issue

as in deciding whether to pool sample variances.

This chapter focus€s on inference¡ about v¡riances for one, two,

and more than two populations. The first Eection describes the sta'

tistical methods based on the assumption of an underlying normal

distribution. Since all of these normal theory prccedures are so very

sensitive to departures from normality, the second section on nonnor-

melity contains considerable discussion of ¿lternative robust methods

that a¡c safer to usc in applications.

7.1. Normal Theory.

Consider the one sample problem ñrst. l*t h,"',g¡ be indepen'

dently distributed as iV(¡r,o2).

I
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To test the hypothesis .¿Io : 02 = ofr against the two-sided alter-

native H¡ : o2l afr, the ratio ,

is used, where 12 is tbe sample variance. Under rYo this ratio has a

¡2 distribution with n - I df so the test rejects when

,, .'r*5_,;," or o3tÉ_ .,,,

(7.r)

(7.2)

wherc x!^!;r"n ""¿ x'^1('are the lower ¡nd upper 100(a/2) per-

eentiles of a ¡fi-¡ distribution. The test (7.2) is called a ¡? üesü and

is essentially the likelihood ratio test. The latter uses slightly differ-

ent critical constants. A two-sided P value is obtained by doubling

the probability in the lower or upper tail of the ¡]-, distribution

beyond the observed value of (n - llsz1fi.

For a 100(l - a\% confidence interval the pivotal statistic t2lo2
yields the interval

(7.3)

A slightly shorter interval could be obtained by not restricting the

probabilities in each tail to be equal (see Mur'dock and Williford,

le77).

For a one-sided test against H1 : o2 < o! or H1 : o2 > ofr there

is just one inequality in (7.2) with the whole significance level c

being placed in one üail. Similarly, a one-sided P value is calculated

form the single tail i.r the direction of the alternative. One-sided

confidence intervals can also be obtained.

Problems of comparison of two or morc variances aris€ more

frequently ühan the one sample problem just discussed. For multiple

L.
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samples, let y;1,...,Ud¡¡ be independently distributed as lY(¡r¡,al),
j = 1,...,1, with independence between the samples for different i.
The sample vaúances

I

(7.4)

are unbiased estimat$ of the corresponding population vari¡nces o!,
r :1, . . . r1.

In the case of two samples (/ = 2), the likelihood ratio of ^EI6 :
o? = ol versru¡ H¡ : o! { ol leús to the ratio

(7.5)

which has an F distribution with nr - I and n2 - I degrees of freedom
under IIs. The two-sided F test would reject lle when (7.5) exceeds
the upper 100(a/2) pertentile or falls below the lower 100(a/2) per-
centile of the F distribution:

"? = 
*= i,ru - s¡12

fi. ri:Jit?)-, or #, n!r,,n2-,. (7.6)

The actual likelihood ratio test uses slightly difrerent critical con-
stants in (7.6). A two-sided P value is calculated by doubling the
probability in the tail of the F¡,-¡,,,2-r distrbution beyond the oh.
served t?|t7.

A 100(l-o)% conñdence interval is constructed from the pivotal
rxtio (s2, I o!) | (sl I oll :

0t F:!:\^,-,, (:i) . "J . at F:,:if)-,, (:i) . e T)

One-sided tests, P values, and confidence intervals can be com-
puted.
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The reader will h¡vc noticed by now tbat ratios of estim¡tes

and parameters are playing a key role in these variance problems

whereas differences were central to mean problems. This is because
questions about dispersion a¡e ones of scale changes which lead to

multiplicative factors.

For f > 2 eamples there are three tests that share the limelight.

Ba¡tlett's (1937) üesü, which is a slight modiñcation of the like-
lihood ratio test, rejects the uull hypothesis Hs z ol = . . . = o! when
the statistic

a

exceeds the upper l00o perrcentile of ,J;, distriburion with /- I df
for large samples, wherc il : Dl=, n;, nln'is the natural logarithm,

-d "f,ool 
is the pooled sample variance, i.e.,

I

Mt = (N - r)ln'foot - f{"r - l)ln c!

t2'f,ool = Fi H,"t 
- t)'3'

For smaller samples M¡ is approximately distributed as

(r + Alyz,-r,

A=#rt(É"-) 
'!]

(7.8)

(7.e)

wherc

(7.10) 
,

(7.1l)

(7.121 :

For very small q tables are given in Pearson and Hartley (lg70).

The next two üests are not as general as Bertlett's test in that
the sample sizes need to be equal (i.e., n¡ = n).

Haúleyb (1950) üesú compares the statistic

h-
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where

" l " t  
= ma:r{r f , '  " ' ,sz l l ,

t l ¡o=min{r ! , "" ' ' t? | ,
(7.13)

with the upper l00a percentile for the distribution of this ratio r¡nder

I/0. Tables of this ma:rimum F ratio were given by David (1952) for

a = .05, .01, f = 2(l l l2, and n - t  = 2(l)10, 12, 15, 20, 30, 60,

oo. These tables are reprcduced in Owen (1962) and Pearson and

Hartley (1970).

Cochran's (1941) üesú compares the statistic

with the upper l(X)o percentile for the distribution of this ratio under

Ilo. Tables are given in Eisenhart and Solomon (19a7) for a =.05,

.01, r= 2( l )12,  15,20, 24,n,40,60, 120, o,  and n- |  = l ( l )10,

16, 36, 144, oo, and these are reproduced in Pearson and Hartley

(1970) for ^l up to 20.

The statistics M1 and Ms do not lend themselves to the de'

velopment of multiple comparisons procedures, but M2 does. In

particular, with probability I - a

h @ = #, = r, (#) ror a' i,i',

(7.14)

(7.15)

where Mf is the upper l(X)a percentile of tbe Mz distribution for 1

populations with n - I df for each rf.

No techniques have appeared iu the literature ühat are tailored

to testing the null hypothesis IIs z o! = . . . = a! against the ordered

attemative H7 : o! S ol S "' 3 o? with etrict inequality at least

once.
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7.2. Nonnormality.

1.2.f. Dilect

The effects ol nonnorma\ity on the distúbution theor\es tot the test
stat ist ics (7.1),  (7.5),  (7.8),  (7. t21, and (Z. la) rre carastrophic.  For
each test the actual significance level can be considerably different ,

from the nominally stated level. For a heavy-tailed distribution the
probability of rejection under Ils greatly exceeds a, and for a short-
tailed distribution the probablity is considerably less than o.

Pearcon (1931) ñrst pointed out this senritivity in the two sam-
ple problem through the use of sampling expeúments. These results,
were later confirmed theoretically by Geary (1942), Finch (1950),i
and Gayen (1950a). Box (1953) found the effects to be even more
extreme with three or mone populations. Pearson and Please (lgz5)l
carried out extensive simulations for one and two samples.

To given en indication of the magnitude of the effect, Gearyi
(1947) in his Table I gives the probabiliry .lGO of rejecting I/s in large
samples with an o : .05 F test when lls is true but the underlying
distribution has kurtosis 1z = 2. Box (1953) in his Table I showq
that for the M test this increases to .315 for r = 5 and then td
.489 for.Í = 10. On the other hand, for 12 - -l Geary and Box
give .0056, .0008, and .0001 for f = 2, 5, and 10, respectively, as the
actual signiñcance levels for a 5% level test with large samples.

The effect of skewness (i."., lr I 0) on the actual significance
levels of the variance tests is much less extreme. some values arq
given in Table I of Finü (1950), aud nume¡ous figures are given in
Pearson and Please (1975). :

The reason for this hypersensitivity can be seen in the variance,
of a single sample varianee ¡2. If the oboervations gr, . . . , y' entering:
,' = Dl=r(V; - !)2lb - l) are independently disrributed according

I
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to a general distribution F(y), then

E(ezl - o2,

var(e2) = n (** *) ,
(7.16)

where n = n(yl is the kurtosis of f'(y). The distribution rheory
for the test statistic (7.1) is based on the normdity of the y¡, whiü
implies ühat the variance of 12 is 2oa l(n- l) [i.e., (2.16) with .¡2 = gl.
Nothing informs the critical points in (7.2) that the variabitity of e2
is larger than this when 12 > 0 and is smaller than this when 72 < 0.

Similar phenomena occur for the other test st¡tistics (Z.S), (Z.g),
(7.12), aud (7.1a). Their variability is grcater or less than thar pre-
supposed by normal theory depending on whether T) O or ,|2 ( 0.

This situation is very different from the ú tests of Chapters I
and 2. There the stEnda¡d deviation of the numeraüor st¡tistic is
correctly estimated by the denominator regardless of whether the
dat¡ arc normally distributed.

The ANovA F tests of chapters B ¡nd 4 for location differences
do not have the same sengitivity to nonnormatity as the F test based
on (7.5) because the numerator mean sum of squanes is computed
from mean values in whiü the kurtosis is diminished [see (1.10)1.
The denominator mean sum of equares scales the st¡tistic to have
the correct approximate expectation. Also, the denominator usually
has sufficiently large degrees of fieedom that its variability is not an
important factor.

In short, F tests for location are reasonrbly robust, but F tests
for dispersion are not.

7.2.2. Detection

The problem of detecting nonnormality when the infercnce is con-
cerned with variances is no diflerent than in the one sample, two sam-

b
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ple, and one-way classification designs for location inference. Probit

plots of the data in each sample are especially recommended, and

tests of normality are also available. The reader is referred to Section

1.2.2 fo¡ a full discussion of these graphical and tesüing procedures.

7.2.3. Correction

Therc is an abr¡ndance of nonpa?ametric rat:ú úesüs for the two sample

dispersion problem. Unfortr¡nately, none of them is much good for

applications.

Perhaps the best known is a test proposed by Fleund and Ansari

(1957), Barton and David (1958), and Ansari and Bradley (1960). It

essigns rank I to the smallest and largest observations in the com-

bined data set from the two samples, rank 2 to the second smallest

and second largest, etc. The test statistic is the sum of the rnnks

associated with the observations in one of the samples. Small sam-

ple table.s and large sample menns and variances are available. For

greater detail and discussion the reader should consult Hollander and

Wolfe (1973) or Gibbons (1971).

For this test to not give misleading results the population medi-

ans must be equal. Moses (1963) gives examples of what can happen

when the medians are not equal. Since medians betryeen two popu-

lations are hardly ever known to be equal in applications, the worth

of this prucedure is in question. Moreover, there is no escape from

this judgment by subtracting the sample median from the data in

each sample, i .e. ,  by ranking l t ¡  -  m1, j  = 1, "  " ,  ñ1, combined with

gz¡ -  m2, j  = 1, " ' , t r2,  where m¡ and mz ure the medi¡ns of {y l¡}
and {yz¡}, respectively. Standardization by median subtraction pro-

duces a test which is not distribution-free.

S. Siegel and T\rkey (1960) proposed a teat with a different rank-

ing scheme from the aforementioned one, but it is essentially equiva-

lent to the Ansari-Barton-Bradley-David-Freund test (see Gibbons,

I
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1971, Hójek and sidák, 1967, or Klotz, 1962).

There have been a number ofother rank tests based on squared

central ranks, normal scones, etc. For a complete list of rcferences

eee Hollander and Wolfe (1973, Chapter 5). However, all these
tests require some asoumption concerning known or equal medians,

and these assumptions cnnnot be rela:ced while still preserving a
dietribution-free test. In addition, it can be argued that rnnk tests
do not malce sense without a rcstriction on the locations because
¡ monotonic transformation, which pneserves the ranks, can create
unequal siz€g of variation between two populations with identical dis-
persions but unequel locations. For an example and discussion see
Moses (1963).

Box (1953) prnposed a procedure based on grouped daüa. Select
I gtoup size t, and divide each sample n¡ into gd groups of size t.

Hopefully, t can be selected so that gi. k, which has to be smaller
than n;, is very close to n¡ for all i because the rcmaining ni - (g¡ .e)

observations are discanded in eacb sample. For the * observations
in the jth group of the r'th sample, let rl; be their sample variance.

The r!r. arc identically distributed within each population, and they
are all independent. Define

z¡¡  =loge!¡ ,  ¡ '= 1, . . . r1,  i  = l r . . . ,g i . (7.17)

Since

E(z¡¡) s loso!,

)

(7.18)

with the approximation improving as t increases, Box's proposal is

to treat the a;¡ as obs€rv¿tions in a location problem in order to
test hypotheses ebout the o¡2, ¡ = l, . . . , I, or construct confidenee

intervals. For f = I and 2, ú tests and confidence inte¡vals can be

applied, and for f > 2 the techniques of analysis of variance, multiple

comparisons, and monotone alternatives are appropriate.
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The log transformation is applied to t!¡ in (7.1?) in order to

make the distribution of a;r' more symmetric. However, without it

E(r;¡) would exactly equal a¡2. Thus there is a trade-off in the use or

nonuse of log in terms of whether symmetrization is more important

than an exact expectation or vice venra.

A major quest¡on is how to select t" As t is incrcased, the

symmetry of the distribution of sl;.or log{t is improved and (7.18)

becomes morc exact, but the number of groups g; in each sample

decreases so the ú a¡rd ANOVA analyses lose power and the conñdence

intervals become broader. Shorac} (1969) ¡ecommends selecting t

as large as possible buü not exceeding l0 while preserving reasonable

sizes for gt , . . - ,gr.  I  would suggest having & at least 5 i f  at  al l

possible, and then seeing whaü increasing t does to the g;.

Clearly, this method throws away information. Some obeerva-

tions may be discarded, and no comparisons are made beüween the

gt¡ in different groups within a sample" Also, different groupings of

the data within each sample have the potential to produce substan-

tially different answers. Nonetheless, simulation studies show that

this technique works satisfactorily in au inefficient mnnner. If one

can afford to be inefficient because of an overabundance of data. this

technique is easy to apply and interpret.

Moses (1963) suggested applying nonparametric rank tests to

the Box t ! ¡ ,  i  :  l , ' . . ,  I ,  i  :  l , ' . . ,g; .  For example,  run the

Wilcoxon rank tesü on the h * 92 values of rr2r. in the two sample

problem. Shorack (1966) extended this idea to obtaining point and

interval estirnates. The power of this test in the two sample problem

is compared with other competitors in Miller (1968) and Shorack

(1969). Like the original Box test, it is r€liable but inefficient.

There are three approximate rubusü üesüs that do not have the

unrealistic assumptions of the nonparametric rank tests applied to

the y¡ and utilize the dats in an ungrouped fashion.

I
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The first is a simple idea due to l¡vene (1960). The Leveae
t test is to trcat the values zii -- (g;i -I;.)2, i = l,...,rrd in each
sampfe d, r'= 1,.--,1, es though they are independently, identically,
normally distibuted under fl0, and to apply the usual ú and ANOVA
tests 8nd confrdence intervals to them"

Clearly, the z¡ do not satisfy the asaumptions imposed on them.
Within a sample they are not independent because of the common

fl;., but the correlation is of order l/n!. They are not identically

distributed under IIo unlees ni= n, but any departure from this has
a minor effect. They arc not normally distributed, but the ANOVA
procedures for locstion inference are reasonably robust for nonnor-
mality.

In spite of worries over the assumptionr, the Monte Carlo stud-
ies reportcd in Levene (1960), Miller (1968), Shorack (1969), and
M. B. Brown and Forsythe (1974), demonstrate that the Levene ¡
test performs quite sctisfactorily. It has reasonably good roburt-
ness for validity against non¡ormal distributions. However, its power

against heavy-tailed altematives is not quite as good as that of the
Box-Andersen and jackknife tests described next.

Levene (1960) also proposed applying the preceding idea to
zii = lyii - 9¡1, z¡i = lotlyu - ti.l, "nd 

zii = lgii - go¡t/2, but

ühe test with z;r' = (V;¡ - g¡.12 is the generally accepted version. A
small difficulty with using z¡¡ = lUi¡.- g;.1 i" pointed out in Miller
(1968). M. B. Brown and Forsythe (197a) consider variations on the
Levene approach with different location estimates.

Box and Andersen (1955) applied permutation theory to con-

etruct approximate robust test¡. To understand their procedure, con-
sider the hypothetical two eample dispersion problem with known
population mea¡ul, which for simplicity arc assumed to have been
subtracted already from the observations.

The moments of the test etatistic are considered under two dif-
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ferent distribution theories. Normal theory ürsumes th¡t the data ere
normally distributed. Permut¡tion theory raoumer that the two gam.

plee have been randomly selected without replacement fiom u¡....,
üor+rnz where

t r l  = 9t l r" ' rú¡r  = 9l¡¡ru¡¡* l  =t ! I2 l ¡ ' " ' ru¡¡*¡¡  =!2¡z- (7.19)

Each of tne ("i]"t) poosible combinations is equally likely.

R¡ther than computing the moments of thc p = sl,ls! statistic,
it is simpler to calculate the moments of the ¡elated retio

bec¡us€ the denomin¡tor rem¡ins constant for the permutetion dis-
tribution. To rrject for small or large I is equiv¡lent to rcjecting for
small or large f.

The theo¡ctic¡l mean of B is the samc whethei it ir computed
under the assumption of ¡ normal dietribution or under the permu-

tation distribution:

E¡t@l = Ee(Bl: #,
wherc /V = nr * nz. However, the theoretic¿l variances differ.
the normal distribution

r'  ,ñ\ 2n1n2
Yaril[ó, = 

¡21¡y *r¡,

and under the permutation distribution

varp(a) = ffi['. I (i=) (b -s)],
wherc

(7.241

(7.20)

(7.221

(7.21)

Under

(7.231
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The variance (7.23) can be made to equd the variance (7.22) if new

sample sizes n! and ni art r¡sed in (7.22) where nl = dnt, ni, = dn2,

and

(7.28)

The mean of B remains unüanged under this substitution since

"ilbi+ "i) 
= ntlN. Thus the normal theory distribution for B

can be made to approximate the permutation theory distribution for

B by redeñning the sample sizes as described.

This suggests the following approximate Box-Andense¡ úesü. It

is called the APF-tesü by Shorack (1969). Calculate the usual F

statistic (7.5), buü compa¡e it with the critical points of an F distri-

bution on

'=['.;("#fo) ,'-',]

d(n¡ -  l )  and d(n2 - l )

degrees of freedom where

(7.26)

(7.27)

(7.28)

and

,= 
[ t+] ta,-r) ]

Because of the closeness of the first two moments, the normal theory

critical points are good approximations to those that would have

been obtained for the permutation distribution.

The Monte Carlo studies in Box and Andersen (1955), Miller

(1968), and Shorack (1969) demonstrate that the Box-Andersen test

maintains the correct approximate signiñcance level under the null

hypothesis for ¡ variety of heevy and short-tailed distributions and

has superior power to the other competitive tests with the exception

of the jackknife, which performs approximately the same.
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Box and Andersen also considered the I > 2 sample problem.

For .f samples the analogous prccedure is to compan áM, with criti- f

cal points from e ¡]-, distribution, wherc á ir gi".o by (7.271and 12

in(7.28) is calculated by summing over all f samples in the numerator

and denominator.

Layand (1973) proposed a somewhat different statistic for the

I>2prob|emwhicha|soinvo|ves8nest imateofthepopu|at ion

kurtosis.

There is no possibility of a permutation distribution in the one
sample problem, but a different approach yields an analogous proce-

dure. From (7.16)

Varl¡2) = 20' (t I \
n- l \  

+r tz)  (7 '2e)

for any underlying distribution. Since the variance of ¡2 is exactly :
2or l(n - l) under normal theory, the variance oI s2 for an arbitrary

distribution is approximately equal to the normal theory variance

with degrees of freedom i1r, - l) where

(7.30) 
,

and the sample estimate of the kurtosis is

^ nDt ' (v¡-g) '
iz=;#-3.  (7.31)

[Dt'('¡ - tl']

Thus i(n -llP lo2 is approximaüely distributed as a ¡2 variable with

áb - l) degrees of freedom. Tests or confidence intervals for o2 cen 
i

be constmcted fiom this pivotal statistic.

The jaclr&nife is the final procedure to be mentioned. It is a
general technique that has already been suggested in this book for

,= ( '* io,)
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corrclation coefrcient (section 5.3.3), the errors-in-variables model

(Section 5.7), and ratios (Section 6.2). A general rcview of the jack-

knife is given by Miller (l97aa). lts speciñc application to the one

sample variance problem is described in Mosteller and T\rkey (tmS,

lg77), to the two sample problem in Miller (1968)' and to I > 2

populations in Layard (1973)'

The sample variances could be jackknifed directly, but jackknif-

ing their logarithms produces better rcsults. Thus for population r

let f ;  - logo! and 0¡ = logrf '  the pseudo-values for i  :1," ' ,ni

are defined by

6;¡ -- n;it; - (t¡ - l)e¡,-¡, (7.32)

where the estimat e 0;-,-; = log s;2,-i has the jth observation in sam-

ple I deleted. The l¡ ehould be trcated as independent observa-

rions (even though they are not), which are identically distributed

in sample i with approximate mean e;. For the one and two sample

problems ú statistics can be computed from the i¡¡ to test hypothe-

ses and construct confidence intervals for d1 and et, ez, respectively

(see Chapters I and 2). Taking antilogs of the endpoints transforms

any confidence interval back into a confidence interval in the original

variance scale. For f > 2 populations a one-way ANOVA can be used

for test ing Hs: e1= " '= d¡ ( i .e. ,  Hs:oi  = " '  = of) .  Mult ip le

comparisons and monotone alterntives techniques sre also available

(see Chapter 3, "Fixed Effects").

The simulations of M. B. Brown and Forsythe (197a) suggest

that for very unequat aample sizes in the two sample problem (e.g.,

n2 = 2nt with n1 = 10, 20) the actual signiñcauce levels for the jack-

knife exceed the nominal levels when the distribution is heavy'tailed.

This may be due to pooling somewhat lnequal variances calculated

from pseudo-values. Given a choice one would prefer a balanced ex-

periment. However, if this is not the case, then the variation in the

pseudo-values should be ex¡mined to determine the best method for
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their statistical analyeis.

The logarithmic transformaüion seems natural to use with the

sample variance because it keeps the variance estimate associated

with each pseudo-value (i.e., antilog í¡) positive and it is the vari-

ance stabilizing transformation. Cressie (1981) gives a theoretical

foundation for this selection, and empirical work supports its use.

The Monte Carlo studies in Miller (1968) and Layard (1973)

establish the jackknife as a robust procedure for testing equality of

variances thaü has power equivalenü to the Box-Andersen test. Each

test in its own way is using the data to estimate the fourth central

moment of the underlying distribution. This moment controls the

variation in s2. Levene's r test is also doing the same thing but not

quite as effectively.

Since the jackknife and Box-Andersen tests arc esseutially equi-

valent in performance, wbich one should be chosen in practice? The

choice may be made on computational grounds. Since neither is part

of the standard computer packages, it may be a question of which is

easier to program and implement.

Even though the jackknife and Box-Andersen tests are robust

for heavy-tailed distributions, they are not resistant to outliers. Sin-

gle or multiple aberranü values can grossly distort a2 because the

deviation is squared. The impact of an outlier is greater on ¡2 than

on g. The jackknife and Box-Andersen tests can be misleading if one

or more ,l haue been affected by outliers. TFimming the outlier(s)

is the only known recouñrc, but the efect of this on ühe performauce

of the tests has not been studied.

To counteract the effects of outliers, one might consider ¡lüer-

native measures of dispersion that are mone resistEnt to outliers.

Unfortunately, this area is not well developed. Huber (1981) dis-

cusses L, M, and R-estimators of scale. My discussion is limited to

brief descriptions of two estimators whose values arc invariant under
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c.hangea in the most extrcme observation8 and therefo¡e a're rcsistant

to outliers.

For a single samPle Y1,
(MAD) is defined bY

, go the median abgoluüe deviation

MAD=median{|g¡-ml} , (7.33)

where m = median{y¡}. t" wonds, MAD is the median of the absolute

deviations of the observations from th.eir median. It estimates the

corresponding quantity deñned in terma of population values' To

date, the application of MAD reemE to be limited to providing a

scale estimate for us€ with M' estimators of location (eee Section

1.2.3, "Robust Estimation" ).

The inüerguarúile rx¡lrge (IQR) is the seveuty'fifth percentile of

the sample minus the twenty-fifth percentile. lt estim¡tes the corre'

sponding perc.entile differcnce in the population. For ¡ normal distri'

bution the poputation interquartile range is related to the standard

deviation by
IQR = 1.35o (7.34)

(to two decimal accuracy) and to the population MAD by

IQR = 2MAD. (7.35)

Both MAD and IQR have aeen limited use in applications. Nei'

ther has been i¡vestigated as a tool for testing the equality of dis'

persion between PoPulations.

7.3. Dependence.

When therc is known blocking in the data due to obs€rvations being

taken at different times, witb different equipment, etc., this must be

taken into account in the statisticsl analysis. V¡riances need to be

calculated within blocks. If there are enough blocks, this may be

It
I
I
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a blessing in disguise because then a Box type approach using the
variation between block variances forms a basis for inference.

Little is known about the effects on variance tests for other
types of dependence between the observations and how to properly
correct for them. For example, serial dependence in the data changes
the expectation [see (1.48)l and variance of 12, but appropúate mod-
ifications to the procedures mentioned in this chapter have not been
worked out.

Exerrcises.

l. Derive the normal theory likelihood ratio statistic for testing
Hs: o!  z 02, í  = 1, . . " ,1,  versus f t :  o!  # o2. How is th is
statistic similar to Bartlett's M¡ statistic (7.8)?

2. Show that for Ur,...,yo independently, identically distributed,

var(sz) = o1 (-3- + ?) ,
\n-r  n/

wbere 12 is the sample varianee, o2 is the popütation variance,
and ,yz is the population kurtosis.

3. Show that for !t,...,y,, independently, identically distributed
thecorrelat ionberween (g;-g)2 and (y¡  - I l2, i+; , ,  isof  the
order l /n2.

4. For the data in Exercise 5 of Chapter 2, test the equaliüy of
variances between the R and NR groups by

(a) the F test, r

(b) the Box-Andersen test, i

(c) the jackknife test. i
:

5. For the dat¡ in Exercise l0 of Chapter B, test the equality of :
variances between the three goups by

-¿
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(a) Bartlett's M1 test,

(b) the Box'Andersen test,

(c) the jackknife test'

6. Thermodilution cardiac output (TDCO) measurements are

commonly employed as a useful a{junct in the management of

cr i t ical ly i l lpat ients.TDCosoftenexhibi tconsidersb|everia.

tion in clinical settings' Prior to this study there had been no

clinical studies revealiug when to perform TDCOs in relation to

the respiratory cycle.f In this Stanford study 32 patients were

prospectively studied to compare TDCOs measured at peak'

inspirat iou,atend'exhalat ion,andatrandomtimesinsponta-

neouslybreathingo¡mechanical lyvent i latedpat ients.Three

TDCOmeasunementswercobtainedateachofthe3di f terent

times in the respiratory cycle in each patient' The data for 12

spontaneously breathing patients are displayed in the table'

Determinei fanyofthethreet imesshowsigni f icantmore(or

less) variation in their 3 values than the others'

I Stwcn¡, J' E', Raffin, T'A', Mihm, F' G', Rorcnthel' M' E" and Stetz'

C. W. (1985)' Increa¡ed reproducibility of thermodilution cardiac output

fr¡errurement¡ incl in ic¿lpract ice'Journ¡ lof theAnpric¿nMedic¿IAtso-

ciation, in Preer'
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Patient End-E:rhal¡tion Pcü-Inrpiratirn Random
ol

u
üt

0{

o5

06

07

08

09

t0

l l

t2

6.9{ 6.57 6.38

6.44 6.24 5.0S

7.18 6.85 6.9)
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two rampler, {O-{1.

Notation: ¡r. 20.
cdf, 5.

X2",61'

Sújcd Iúa tr¡

7fiQ2¡,2r.
4f ,2,70,

- ,50.
Ii,, rr, 99.
F r ,r , . (62), l tz"
F"r22(6?'61)' t?f'
MS,69.
N (p,ot l ,  l .
lo,  l r .
11,",72'
SD(y),59.
s,70.
a2r2.

o2rr 2ll.

.?,211.
ct1,211.

lmlt,", 171.
t"(6),  78.
vDT,70.

9'  2.

0¡ , l%.
0'¡ ,126'
g , l2o.
9¿i ' , l f r"
g:" ,120.

I ¡.' 120.
9. .  , l2o.
9i.., tzl.
9?¡. ,121'
0?. ,121.
_!-, ó.

- ! ,5.

One de¡rec of frecdom for
nonedditivity, lZ.

Onc remplc: general intcrcept,
t68-18r.

Onc rample v¡ri¡nce problem,
259-2@"

Onc rample: zerc iatercept, 18l-16{.
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3fO Subject Inder

Oprcification index, 162-10t.
Optical denrity, 2:16-23t.
Ordered value¡, l l .
Outlierr,9-10, l2-l l, 18-19, 4{, {5,

199, 231, 253, 271.
Overall rrren, ertimetc of, 10.1, l5t,

Oxygen toxicity, t l5-116.

P value, 2, t, 8, 19-20.
Percent error, 59.

Percentage chan6e, 241,
Permutation tect, 27-2t, 88-89.

Pitman'r permutation teú, 53-54.

Pooled rample variancc, 11,262.

Power family, 17.

Prediction problem, 169, l l í ln.

Predictor v¿riable, 169.

Probi t  paper,  l0- l l .
Probi t  p lotr ,  10-12, t9,  l l ,15,

82, 107, 136.
Product-moment conel¡tion

coefficient, t5, l7l.

Preudo-valuer, l0t.

Q-Q plotting, l l .

Quadretic effectr, 132.

R¡ndom block effect, 6t.

Randorn effectr, 6E, 95-l I l , t50-159.
model,  l18.

Ranking, 49.
Ratior, 241-251.
R-e¡timator¡. 29.
Regreuion model, 166-167, 168-2?o.
Relative change, 241.
Relative pot€ncy, 189-191, 192-19t.

Repeated mearu¡e derignr, 112-lft.
Reristant, 10.
Rerponre rrarieble, 169,

Robu¡t estimation, 2E-32, 5{-55,
89, 140.

Robust for efficiency, 9.

UMVERSIDAO NAC]ONA
-Lit^tt  

^"r"ta 
t t  t l3l ' lol lc^s

/sPle
Robu¡t for velidity, 9.

Semple ¡eri¡l correletion coeftcient,
35.

Srtterühw¡ite'r ¡2 epproúmetion,
6l-{2, 100-10t.

Scheffé intervah, 71, lt0.

Scheffé model, l{,1.

Sequencc effect, Et-E?.

Seri¡l correlation, t,l-E7, 9+95,
l l l ,  laz,219-220.

Scrirl corclrtion coefficient, 0t.

Seriel dependenet, 276.

Shapiro ¡nd Wilk tcrt, 10.

Shapiro- tlancia datirtic, l*-15.

o, ertimate of, 12.

Single mirring rralue, 128.

Signed-nnk rt¡t¡rtic, 23, t6-t7.
altcrn ¡tive rcprerentation, 2t "

Signed-rank teet, E9.

Sign datirtic, 36-37.

Sign terü, lVf\39.

eiin-t ,/f , tz.

Skewnerr, O, 7, 12, 4t, t2.
t€üt, 15.

Slope, 168.

Slope ratio auay, l9t.

Splenectomy, 16l-162.

Square rcot trancformation(r),
17, 11,82.

Stand¡rd error, l.

Standard line. 180.

Steel-D¡v¿¡r tert, 86.

Stein egtim¿ton, 98.

Stmctur¡l relationrhip between
x rnd 9,222.

Studentized m¡xirrn¡m modulu¡
diatribution, 174.

Studentized range dirtribui.ion, t5.

Studentized r¡nte t€rt, 91.
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Sum¡ of lquaner, dictribution theory
for. 70-71.

Survry rampling,2{2'

t distribution, 0.

¿ rtati lt ic, 5, 6-9, {1.

I  ter t ,37,39, &5.
with winsorized ¡tend¡rd

deviation, 39.

tanh- l r ,  17.
Te¡t¡ for r¡eri¡ncc comPonentr'

155-157.
Test of equal alopee, 185-186.

Thermodilution cardiac outPut
(TDCO),277.

Tie¡,2l-22,2+m,28'  f f i .

Tier correction, 85.

Tin'¡ catim¡tor, 250.

Tr¿n¡form¡tions, 16-19, {4-{5,
58-60, 82,92-9t ,  108, lE7, l l l ,
150,159, 190-198.

Tran¡formed correlation coefr cient,
175"

Trimnpd me¡n, 29-El, t9, 5{-55.

Trimmed regressionr, 20t-204.

Trimmed ü ¡t¿tistic, 55.

Trit i¿ted thymidine, 39, l l5-116.

Tlunk flexor mu¡cle drength, ll2.

Tukey-Kramer intervah, 73, 188' 192.

Tukey dudentized range, l{7.
intewah, 129.
tat,,72.

2 x 2 contingency teble, {6.

Subiut Indez 317

Two remple mcdi¡n tett, {5-{}.

Two remple t teat, 61"

Two remple Wilcoxon renl telt,6$.

Two remple v¡riance prcblem,
2W-%t.

Two-t¡iled exponential dirtribution,
6.

Unequel vlriencel, 5G4t, 89-9{'
109-110, l l0-l{1, 149-150, 159,
207 -21 1, 233 -23 1, 25+-28 1.

Uniform di*ribution, 0.

Uniformly mod powelul inv¡ri¡nt
test, 9t.

ttniformly mort powerful ¡imilar
tert,98, 155.

Uniform minimum v¡riancc quedratic
unbi¡sed ertimaton, 90' l5l.

Uniform minimum r¡¡rirnce unbi¡¡ed
edimatorr, 90, l5l.

Unpaired d*r,248-219.

Veri¡nce¡. 259-276.

Weighted leart rqurrer enelYrir,
2r0-2rr.

Welch'¡ t' rtatirtic, 55.

Welch'¡ ú' te¡t, 60, 6{, 65.

Wilcoxon rank tert, 49,65.

Wilcoxon rigned-nnk tñt, 22-X.

Winrcrized rrran, t0.

Winaorized variance, 29-31.

Working-Eotell ing band, 176.
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