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CHAPTER 1 

An Introduction to General Linear 

Models: Regression, Analysis of 

Variance, and Analysis of Covariance 

1.1 REGRESSION, ANALYSIS OF VARIANCE, AND 
ANALYSIS OF COVARIANCE 

Regression and analysis of variance (ANOVA) are probably the most frequently 

applied of all statistical analyses. Regression and analysis of variance are used 

extensively in many areas of research, such as psychology, biology, medicine, 

education, sociology, anthropology, economics, political science, as well as in 

industry and commerce. 

There are several reasons why regression and analysis of variance are applied so 

frequently. One of the main reasons is they provide answers to the questions 

researchers ask of their data. Regression allows researchers to determine if and how 

variables are related. ANOVA allows researchers to determine if the mean scores 

of different groups or conditions differ. Analysis of covariance (ANCOVA), a 

combination of regression and ANOVA, allows researchers to determine if the 

group or condition mean scores differ after the influence of another variable 

(or variables) on these scores has been equated across groups. This text focuses 

on the analysis of data generated by psychology experiments, but a second reason 

for the frequent use of regression and ANOVA is they are applicable to experi

mental, quasi-experimental, and non-experimental data, and can be applied to most 

of the designs employed in these studies. A third reason, which should not be 

underestimated, is that appropriate regression and ANOVA statistical software is 

available to analyze most study designs. 

ANOVA and ANCOVA: A GLM Approach, Second Edition. By Andrew Rutherford. 
© 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc. 
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2 AN INTRODUCTION TO GENERAL LINEAR MODELS 

1.2 A POCKET HISTORY OF REGRESSION, ANOV A, AND ANCOV A 

Historically, regression and ANOVA developed in different research areas to address 
different research questions. Regression emerged in biology and psychology toward 
the end of the nineteenth century, as scientists studied the relations between people's 
attributes and characteristics. Galton (1886, 1888) studied the height of parents and 
their adult children, and noticed that while short parents' children usually were shorter 
than average, nevertheless, they tended to be taller than their parents. Galton described 
this phenomenon as "regression to the mean." As well as identifying a basis for 
predicting the values on one variable from values recorded on another, Galton 
appreciated that the degree of relationship between some variables would be greater 
than others. However, it was three other scientists, Edgeworth ( 1886), Pearson ( 1896), 
and Yule (1907), applying work carried out about a century earlier by Gauss (or 
Legendre, see Plackett, 1972), who provided the account of regression in precise 
mathematical terms. (See Stigler, 1986, for a detailed account.) 

The t-test was devised by W.S. Gosset, a mathematician and chemist working in the 
Dublin brewery of Arthur Guinness Son & Company, as a way to compare the means 
of two small samples for quality control in the brewing of stout. (Gosset published the 
test in Biometrika in 1908 under the pseudonym "Student," as his employer regarded 
their use of statistics to be a trade secret.) However, as soon as more than two groups or 
conditions have to be compared more than one t-test is needed. Unfortunately, as soon 
as more than one statistical test is applied, the Type 1 error rate inflates (i.e., the 
likelihood of rejecting a true null hypothesis increases-this topic is returned to in 
Sections 2.1 and 3.6.1). In contrast, ANOVA, conceived and described by Ronald A. 
Fisher ( 1924, 1932, 1935b) to assist in the analysis of data obtained from agricultural 
experiments, was designed to compare the means of any number of experimental 
groups or conditions without increasing the Type I error rate. Fisher ( 1932) also 
described ANCOVA with an approximate adjusted treatment sum of squares, before 
describing the exact adjusted treatment sum of squares a few years later (Fisher, 
1935b, and see Cox and McCullagh, 1982, for a brief history). In early recognition of 
his work, the F-distribution was named after him by G.W. Snedecor (1934). 

ANO VA procedures culminate in an assessment of the ratio of two variances based 
on a pertinent F-distribution and this quickly became known as an F-test. As all the 
procedures leading to the F-test also may be considered as part of the F-test, 
the terms "ANOVA" and "F-test" have come to be used interchangeably. However, 
while ANOVA uses variances to compare means, F-tests per se simply allow 
two (independent) variances to be compared without concern for the variance 
estimate sources. 

In subsequent years, regression and ANOVA techniques were developed and 
applied in parallel by different groups of researchers investigating different research 
topics, using different research methodologies. Regression was applied most often to 
data obtained from correlational or non-experimental research and came to be 
regarded only as a technique for describing, predicting, and assessing the relations 
between predictor(s) and dependent variable scores. In contrast, ANOVA was 
applied to experimental data beyond that obtained from agricultural experiments 
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(Lovie, 1991 a), but still it was considered only as a technique for determining whether 
the mean scores of groups differed significantly. For many areas of psychology, 
particularly experimental psychology, where the interest was to assess the average 
effect of different experimental manipulations on groups of subjects in terms of a 
particular dependent variable, ANOVA was the ideal statistical technique. Conse

quently, separate analysis traditions evolved and have encouraged the mistaken belief 

that regression and ANOVA are fundamentally different types of statistical analysis. 
AN COVA illustrates the compatibility of regression and AN OVA by combining these 
two apparently discrete techniques. However, given their histories it is unsurprising 
that ANCOVA is not only a much less popular analysis technique, but also one that 
frequently is misunderstood (Huitema, 1980). 

1.3 AN OUTLINE OF GENERAL LINEAR MODELS (GLMs) 

The availability of computers for statistical analysis increased hugely from the 1970s. 
Initially statistical software ran on mainframe computers in batch processing mode. 
Later, the statistical software was developed to run in a more interactive fashion on 

PCs and servers. Currently, most statistical software is run in this manner, but, 
increasingly, statistical software can be accessed and run over the Web. 

Using statistical software to analyze data has had considerable consequence not 

only for analysis implementations, but also for the way in which these analyses are 
conceived. Around the 1980s, these changes began to filter through to affect data 

analysis in the behavioral sciences, as reflected in the increasing number of psychol
ogy statistics texts that added the general linear model (GLM) approach to the 
traditional accounts (e.g., Cardinal and Aitken, 2006; Hays, 1994; Kirk, 1982, 1995; 
Myers, Well, and Lorch, 2010; Tabachnick and Fidell, 2007; Winer, Brown, and 
Michels, 1991) and an increasing number of psychology statistics texts that presented 

regression, ANOVA, and ANCOVA exclusively as instances of the GLM (e.g., Cohen 
and Cohen, 1975, 1983; Cohen et al., 2003; Hays, 1994; Judd and McClelland, 1989; 
Judd, McClelland, and Ryan, 2008; Keppel and Zedeck, 1989; Maxwell and Delaney, 
1990, 2004; Pedhazur, 1997). 

A major advantage afforded by computer-based analyses is the easy use of 
matrix algebra. Matrix algebra offers an elegant and succinct statistical notation. 
Unfortunately, however, human matrix algebra calculations, particularly those 
involving larger matrices, are not only very hard work but also tend to be error 
prone. In contrast, computer implementations of matrix algebra are not only very 
efficient in computational terms, but also error free. Therefore, most computer
based statistical analyses employ matrix algebra calculations, but the program 
output usually is designed to concord with the expectations set by traditional (scalar 
algebra) calculations. 

When regression, ANOVA, and ANCOVA are expressed in matrix algebra terms, a 

commonality is evident. Indeed, the same matrix algebra equation is able to 

summarize all three of these analyses. As regression, ANOVA, and ANCOVA can 
be described in an identical manner, clearly they share a common pattern. This 
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common pattern is the GLM. Unfortunately, the ability of the same matrix algebra 
equation to describe regression, AN OVA, and AN COVA has resulted in the inaccurate 
identification of the matrix algebra equation as the GLM. However, just as a particular 
language provides a means of expressing an idea, so matrix algebra provides only one 
notation for expressing the GLM. 

Tukey ( 1977) employed the GLM conception when he described data as 

Data = Fit + Residual (l.l) 

The same GLM conception is employed here, but the fit and residual component 
labels are replaced with the more frequently applied labels, model (i.e., the fit) and 
error (i.e., the residual). Therefore, the usual expression of the GLM conception is that 
data may be accommodated in terms of a model plus error 

Data = Model + Error (1.2) 

In equation (1.2), the model is a representation of our understanding or hypotheses 
about the data, while the error explicitly acknowledges that there are other 
influences on the data. When a full model is specified, the error is assumed to 
reflect all influences on the dependent variable scores not controlled in the 
experiment. These influences are presumed to be unique for each subject in each 
experimental condition. However, when less than a full model is represented, the 
score component attributable to the omitted part(s) of the full model also is 
accommodated by the error term. Although the omitted model component incre
ments the error, as it is neither uncontrolled nor unique for each subject, the residual 
label would appear to be a more appropriate descriptor. Nevertheless, many GLMs 
use the error label to refer to the error parameters, while the residual label is used 
most frequently in regression analysis to refer to the error parameter estimates. The 
relative sizes of the full or reduced model components and the error components also 
can be used to judge how well the particular model accommodates the data. 
Nevertheless, the tradition in data analysis is to use regression, ANOVA, and 
ANCOVA GLMs to express different types of ideas about how data arises. 

1.3.1 Regression 

Simple linear regression examines the degree of the linear relationship (see Sec
tion 1.5) between a single predictor or independent variable and a response or 
dependent variable, and enables values on the dependent variable to be predicted from 
the values recorded on the independent variable. Multiple linear regression does the 
same, but accommodates an unlimited number of predictor variables. 

In GLM terms, regression attempts to explain data (the dependent variable scores) 
in terms of a set of independent variables or predictors (the model) and a residual 
component (error) . Typically, the researcher applying regression is interested in 
predicting a quantitative dependent variable from one or more quantitative 
independent variables and in determining the relative contribution of each 
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independent variable to the prediction. There is also interest in what proportion of 

the variation in the dependent variable can be attributed to variation in the 
independent variable(s). 

Regression also may employ categorical (also known as nominal or qualitative) 

predictors-the use of independent variables such as gender, marital status, and type of 

teaching method is common. As regression is an elementary form of GLM, it is 

possible to construct regression GLMs equivalent to any ANOVA and ANCOVA 

GLMs by selecting and organizing quantitative variables to act as categorical 
variables (see Section 2.7.4). Nevertheless, throughout this chapter, the convention 
of referring to these particular quantitative variables as categorical variables will be 
maintained. 

1.3.2 Analysis of Variance 

Single factor or one-way ANOVA compares the means of the dependent variable 

scores obtained from any number of groups (see Chapter 2). Factorial ANOVA 

compares the mean dependent variable scores across groups with more complex 

structures (see Chapter 5). 
In GLM terms, ANOVA attempts to explain data (the dependent variable scores) in 

terms of the experimental conditions (the model) and an error component. Typically, 
the researcher applying ANOVA is interested in determining which experimental 
condition dependent variable score means differ. There is also interest in what 

proportion of variation in the dependent variable can be attributed to differences 

between specific experimental groups or conditions, as defined by the independent 
variable(s). 

The dependent variable in AN OVA is most likely to be measured on a quantitative 
scale. However, the ANOVA comparison is drawn between the groups of subjects 
receiving different experimental conditions and is categorical in nature, even when 
the experimental conditions differ along a quantitative scale. As regression also can 
employ categorical predictors, ANOVA can be regarded as a particular type of 

regression analysis that employs only categorical predictors. 

1.3.3 Analysis of Covariance 

The AN COVA label has been applied to a number of different statistical operations 

(Cox and McCullagh, 1982), but it is used most frequently to refer to the statistical 

technique that combines regression and ANOVA. As ANCOVA is the combination 
of these two techniques, its calculations are more involved and time consuming 

than either technique alone. Therefore, it is unsurprising that an increase in 

ANCOVA applications is linked to the availability of computers and statistical 
software. 

Fisher (1932, 1935b) originally developed ANCOVA to increase the precision of 

experimental analysis, but it is applied most frequently in quasi-experimental 

research. Unlike experimental research, the topics investigated with quasi

experimental methods are most likely to involve variables that, for practical or 
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ethical reasons, cannot be controlled directly. In these situations, the statistical control 
provided by ANCOVA has particular value. Nevertheless, in line with Fisher's 
original conception, many experiments may benefit from the application of 
ANCOVA. 

As ANCOVA combines regression and AN OVA, it too can be described in terms of 
a model plus error. As in regression and ANOVA, the dependent variable scores 
constitute the data. However, as well as experimental conditions, the model includes 
one or more quantitative predictor variables. These quantitative predictors, known as 
covariates (also concomitant or control variables), represent sources of variance that 
are thought to influence the dependent variable, but have not been controlled by the 
experimental procedures. AN COVA determines the covariation (correlation) between 
the covariate(s) and the dependent variable and then removes that variance associated 
with the covariate(s) from the dependent variable scores, prior to determining whether 
the differences between the experimental condition (dependent variable score) means 
are significant. As mentioned, this technique, in which the influence of the experi
mental conditions remains the major concern, but one or more quantitative variables 
that predict the dependent variable are also included in the GLM, is labeled AN COVA 
most frequently, and in psychology is labeled ANCOVA exclusively (e.g., Cohen 
et al., 2003; Pedhazur, 1997, cf. Cox and McCullagh, 1982). An important, but seldom 
emphasized, aspect of the ANCOVA method is that the relationship between the 
covariate(s) and the dependent variable, upon which the adjustments depend, is 
determined empirically from the data. 

1.4 THE "GENERAL" IN GLM 

The term "general" in GLM simply refers to the ability to accommodate distinc
tions on quantitative variables representing continuous measures (as in regression 
analysis) and categorical distinctions representing groups or experimental condi
tions (as in ANOVA). This feature is emphasized in ANCOVA, where variables 
representing both quantitative and categorical distinctions are employed in the 
same GLM. 

Traditionally, the label linear modeling was applied exclusively to regression 
analyses. However, as regression, AN OVA, and AN COVA are but particular instances 
of the GLM, it should not be surprising that consideration of the processes involved in 
applying these techniques reveals any differences to be more apparent than real. 
Following Box and Jenkins ( 1976), McCullagh and Nelder ( 1989) distinguish four 
processes in linear modeling: ( 1) model selection, (2) parameter estimation, (3) model 
checking, and (4) the prediction of future values. (Box and Jenkins refer to model 
identification rather than model selection, but McCullagh and Nelder resist this 
terminology, believing it to imply that a correct model can be known with certainty.) 
While such a framework is useful heuristically, McCullagh and Nelder acknowledge 
that in reality these four linear modeling processes are not so distinct and that the 
whole, or parts, of the sequence may be iterated before a model finally is selected and 
summarized. 
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Usually, prediction is understood as the forecast of new, or independent values 
with respect to a new data sample using the GLM already selected. However, 
McCullagh and Nelder include Lane and Nelder' s ( l  982) account of prediction, 
which unifies conceptions of ANCOVA and different types of standardization. Lane 
and Nelder consider prediction in more general terms and regard the values fitted by 

the GLM (graphically, the values intersected by the GLM line or hyper plane) to be 
instances of prediction and part of the GLM summary. As these fitted values are often 
called predicted values, the distinction between the types of predicted value is not 
always obvious, although a greater standard error is associated with the values 
forecast on the basis of a new data sample (e.g., Cohen et al., 2003; Kutner et al., 
2005; Pedhazur, 1997). 

With the linear modeling process of prediction so defined, the four linear modeling 
processes become even more recursive. For example, when selecting a GLM, usually 
the aim is to provide a best fit to the data with the least number of predictor variables 
(e.g., Draper and Smith, 1998; McCullagh and Nelder, 1989). However, the model 
checking process that assesses best fit employs estimates of parameters (and estimates 
of error), so the processes of parameter estimation and prediction must be executed 
within the process of model checking. 

The misconception that this description of general linear modeling refers only to 
regression analysis is fostered by the effort invested in the model selection process 
with correlational data obtained from non-experimental studies. Usually in non
experimental studies, many variables are recorded and the aim is to identify the 
GLM that best predicts the dependent variable. In principle, the only way to select 
the best GLM is to examine every possible combination of predictors. As it takes 
relatively few potential predictors to create an extremely large number of possible 
GLM selections, a number of predictor variable selection procedures, such as all
possible regressions, forward stepping, backward stepping, and ridge regression 
(e.g., Draper and Smith, 1998; Kutner et al., 2005) have.been developed to reduce 
the number of GLMs that need to be considered. 

Correlations between predictors, termed multicollinearity (but see Pedhazur, 1997; 

Kutner et al., 2005; and Section 11. 7 .1) create three problems that affect the processes 
of GLM selection and parameter estimation. These are (i) the substantive interpreta
tion of partial coefficients (if calculated simultaneously, correlated predictors' partial 
coefficients are reduced), (ii) the sampling stability of partial coefficients (different 
data samples do not provide similar estimates), and (iii) the accuracy of the calculation 
of partial coefficients and their errors (Cohen et al., 2003). The reduction of partial 
coefficient estimates is due to correlated predictor variables accommodating similar 
parts of the dependent variable variance. Because correlated predictors share associ
ation with the same part of the dependent variable, as soon as a correlated predictor is 
included in the GLM, all of the dependent variable variance common to the correlated 
predictors is accommodated by this first correlated predictor, so making it appear that 
the remaining correlated predictors are of little importance. 

When multicollinearity exists and there is interest in the contribution to the GLM of 
sets of predictors or individual predictors, an incremental regression analysis can be 
adopted (see Section 5 .4 ). Essentially, this means that predictors (or sets of predictors) 
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are entered into the GLM cumulatively in a principled order (Cohen et al., 2003). After 
each predictor has entered the GLM, the new GLM may be compared with the 
previous GLM, with any changes attributable to the predictor just included. Although 

there is similarity between incremental regression and forward stepping procedures, 
they are distinguished by the, often theoretical, principles employed by incremental 

regression to determine the entry order of predictors into the GLM. Incremental 

regression analyses also concord with Nelder's (McCullagh and Nelder, 1989; 

Nelder, 1977) approach to ANOVA and ANCOVA, which attributes variance to 
factors in an ordered manner, accommodating the marginality of factors and their 
interactions (also see Bingham and Fienberg, 1982). 

After selection, parameters must be estimated for each GLM and then model 
checking engaged. Again, due to the nature of non-experimental data, model checking 
may detect problems requiring remedial measures. Finally, the nature of the issues 
addressed by non-experimental research make it much more likely that the GLMs 

selected will be used to forecast new values. 
A little consideration reveals identical GLM processes underlying a typical 

analysis of experimental data. For experimental data, the GLM selected is an 
expression of the experimental design. Moreover, most experiments are designed 
so that the independent variables translate into independent (i.e., uncorrelated) 
predictors, so avoiding multicollinearity problems. The model checking process 
continues by assessing the predictive utility of the GLM components representing the 
experimental effects. Each significance test of an experimental effect requires an 
estimate of that experimental effect and an estimate of a pertinent error term. 
Therefore, the GLM process of parameter estimation is engaged to determine 
experimental effects, and as errors represent the mismatch between the predicted 
and the actual data values, the calculation of error terms also engages the linear 
modeling process of prediction. Consequently, all four GLM processes are involved in 
the typical analysis of experimental data. The impression of concise experimental 

analyses is a consequence of the experimental design acting to simplify the processes 

of GLM selection, parameter estimation, model checking, and prediction. 

1.5 THE "LINEAR" IN GLM 

To explain the distinctions required to appreciate model linearity, it is necessary to 
describe a GLM in more detail. This will be done by outlining the application of 
a simple regression GLM to data from an experimental study. This example of a 
regression GLM also will be useful when least square estimates and regression in the 
context of ANCOVA are discussed. 

Consider a situation where the relationship between study time and memory was 
examined. Twenty-four subjects were divided equally between three study time 
groups and were asked to memorize a list of 45 words. Immediately after studying 

the words for 30 seconds (s), 60 s, or 180 s, subjects were given 4 minutes to 
free recall and write down as many of the words they could remember. The results 
of this study are presented in Figure 1.1, which follows the convention of plotting 
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Figure 1.1 The number of words recalled as a function of word list study time. (NB. Some 
plotted data points depict more than one score.) 

independent or predictor variables on the X-axis and dependent variables on the 
Y-axis. 

Usually, regression is applied to non-experimental situations where the predictor 
variable can take any value and not just the three time periods defined by the 
experimental conditions. Indeed, regression usually does not accommodate categori
cal information about the experimental conditions. Instead, it assesses the linearity of 
the relationship between the predictor variable (study time) and the dependent 
variable (free recall score) across all of the data. The relationship between study 
time and free recall score can be described by the straight line in Figure 1.1 and in tum, 
this line can be described by equation (1.3) 

( 1.3) 

where the subscript i denotes values for the ith subject (ranging from i = 1, 2, . . .  , N), 

Y; is the predicted dependent variable (free recall) score for the ith subject, the 
parameter {30 is a constant (the intercept on the Y-axis), the parameter /31 is a regression 
coefficient (equal to the slope of the regression line), and X; is the value of the predictor 
variable (study time) recorded for the same ith subject. 

As the line describes the relationship between study time and free recall, and 
equation (1.3) is an algebraic version of the line, it follows that equation (1.3) also 
describes the relationship between study time and free recall. Indeed, the terms 
(/30 + f31X1) constitute the model component of the regression GLM applicable to this 
data. However, the full GLM equation also includes an error component. The error 
represents the discrepancy between the scores predicted by the model, through which 
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the regression line passes, and the actual data values. Therefore, the full regression 
GLM equation that describes the data is 

( 1.4) 

where Y; is the observed score for the ith subject and c; is the random variable 

parameter denoting the error term for the same subject. Note that it is a trivial matter of 

moving the error term to right-hand side of equation (1.4) to obtain the formula that 

describes the predicted scores 

( 1.5) 

Now that some GLM parameters and variables have been specified, it makes sense 
to say that GLMs can be described as being linear with respect to both their parameters 

and predictor variables. Linear in the parameters means no parameter is multiplied or 

divided by another, nor is any parameter above the first power. Linear in the predictor 

variables also means no variable is multiplied or divided by another, nor is any above 
the first power. However, as shown below, there are ways around the variable 

requirement. 

For example, equation (1.4) above is linear with respect to both parameters and 

variables. However, the equation 

( 1.6) 

is linear with respect to the variables, but not to the parameters, as /31 has been raised to 

the second power. Linearity with respect to the parameters also would be violated if 

any parameters were multiplied or divided by other parameters or appeared as 

exponents. In contrast, the equation 

( 1.7) 

is linear with respect to the parameters, but not with respect to the variables, as Xl 
is X; raised to the second power. However, it is very simple to define Z; = Xl and 
to substitute Z; in place of Xl. Therefore, models such as described by equa

tion (1.7) continue to be termed linear, whereas such as those described by 

equation ( 1.6) do not. In short, linearity is presumed to apply only to the 

parameters. Models that are not linear with respect to their parameters are 
described specifically as nonlinear. As a result, models can be assumed to be 

linear with respect to their parameters, unless specified otherwise, and frequently 

the term linear is omitted. 

Nevertheless, the term "linear" in GLM often is misunderstood to mean that the 
relation between any data and any predictor variable must be described by a straight 
line. Although GLMs can describe straight-line relationships, they are capable of 

much more. Through the use of transformations and polynomials, GLMs can describe 

many complex curvilinear relations between the data and the predictor variables 

(e.g., Draper and Smith, 1998; Kutner et al., 2005). 
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1.6 LEAST SQUARES ESTIMATES 

Parameters describe or apply to populations. However, it is rare for data from whole 
populations to be available. Much more available are samples of these populations. 
Consequently, parameters usually are estimated from sample data. A standard form of 
distinction is to use Gr�ek letters, such as a and [3, to denote parameters and to place a 
hat on them (e.g., fi, /3), when they denote parameter estimates. Alternatively, the 
ordinary letter equivalents, such as a and b, may be used to represent the parameter 
estimates. 

The parameter estimation method underlying all of the analyses presented in 
Chapters 2-11 is that of least squares. Some alternative parameter estimation 
methods are discussed briefly in Chapter 12. Although these alternatives are much 
more computationally demanding than least squares, their use has increased with 
greater availability and access to computers and relevant software. Nevertheless, least 
squares remains by far the most frequently applied parameter estimation method. 

The least squares method identifies parameter estimates that minimize the sum of 
the squared discrepancies between the predicted and the observed values. From the 
GLM equation 

Y1 = /30 + {3,x, + f,1 

the sum of the squared deviations may be described as 

N N 

Lf,� = L (Y1 -/30 - /31X1)2 
i=l i=l 

( 1.4, rptd) 

( 1.8) 

The estimates of [30 and /31 are chosen to provide the smallest value of I:;':,, 1 f,7-
By differentiating equation (1.8) with respect to each of these parameters, two 
(simultaneous) normal equations are obtained. (More GLM parameters require more 
differentiations and produce more normal equations.) Solving the normal equations 
for each parameter provides the formulas for calculating their least squares estimates 
and in turn, all other GLM (least squares) estimates. 

Least squares estimates have a number of useful properties. Employing an estimate 
of the parameter [30 ensures that the residuals sum to zero. Given that the error terms 
also are uncorrelated with constant variance, the least squares estimators will be 
unbiased and will have the minimum variance of all unbiased linear estimators. As a 
result they are termed the best linear unbiased estimators (BLUE). However, for 
conventional significance testing, it is also necessary to assume that the errors are 
distributed normally. (Checks of these and other assumptions are considered in 
Chapter 10. For further details of least squares estimates, see Kutner et al., 2005; 
Searle, 1987.) However, when random variables are employed in GLMs, least squares 
estimation requires the application of restrictive constraints (or assumptions) to allow 
the normal equations to be solved. One way to escape from these constraints is to 
employ a different method of parameter estimation. Chapter 12 describes the use 
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of some different parameter estimation methods, especially restricted maximum 
likelihood (REML), to estimate parameters in repeated measures designs where 

subjects are accommodated as levels of a random factor. Current reliance on 
computer-based maximum likelihood parameter estimation suggests this is a recent 

idea but, in fact, it is yet another concept advanced by Fisher ( 1925, 1934 ), although it 

had been used before by others, such as Gauss, Laplace, Thiele, and Edgeworth (see 

Stigler, 2002). 

1.7 FIXED, RANDOM, AND MIXED EFFECTS ANALYSES 

Fixed, random, and mixed effects analyses refer to different sampling situations. 
Fixed effects analyses employ only fixed variables in the GLM model component, 
random effects analyses employ only random variables in the OLM model compo

nent, while mixed effects analyses employ both fixed and random variables in the 
OLM model component. 

When a fixed effects analysis is applied to experimental data, it is assumed that all 
the experimental conditions of interest are included in the experiment. This 
assumption is made because the inferences made on the basis of a fixed effects 
analysis apply fully only to the conditions included in the experiment. Therefore, 

the experimental conditions used in the original study are fixed in the sense that 
exactly the same conditions must be employed in any replication of the study. For 
most genuine experiments, this presents little problem. As experimental conditions 
usually are chosen deliberately and with some care, so fixed effects analyses 
are appropriate for most experimental data (see Keppel and Wickens, 2004, for 
a brief discussion). However, when ANOVA is applied to data obtained from non
experimental studies, care should be exercised in applying the appropriate form of 
analysis. Nevertheless, excluding estimates of the magnitude of experimental 
effects, it is not until factorial designs are analyzed that differences between the 

estimates of fixed and random effects are apparent. 

Random effects analyses consider those experimental conditions employed in 
the study to be only a random sample of a population of experimental conditions and 
so, inferences drawn from the study may be applied to the wider population of 
conditions. Consequently, study replications need not be restricted to exactly the 
same experimental conditions. As inferences from random effects analyses can 
be generalized more widely than fixed effects inferences, all else being equal, more 
conservative assessments are provided by random effects analyses. 

In psychology, mixed effects analyses are encountered most frequently with respect 
to related measures designs. The measures are related by virtue of arising from the 
same subject (repeated measures designs) or from related subjects (matched samples 
designs, etc.) and accommodating the relationship between these related scores 
makes it possible to identify effects uniquely attributable to the repeatedly measured 
subjects or the related subjects. This subject effect is represented by a random variable 

in the GLM model component, while the experimental conditions continue as fixed 
effects. It is also possible to define a set of experimental conditions as levels of a 
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random factor and mix these with other sets of experimental conditions defined as 
fixed factors in factorial designs, with or without a random variable representing 
subjects. However, such designs are rare in psychology. 

Statisticians have distinguished between regression analyses, which assume fixed 
effects, and correlation analyses, which do not. Correlation analyses do not distin
guish between predictor and dependent variables. Instead, they study the degree of 
relation between random variables and are based on bivariate-normal models. 
However, it is rare for this distinction to be maintained in practice. Regression is 
applied frequently to situations where the sampling of predictor variables is random 
and where replications employ predictors with values different to those used in the 
original study. Indeed, the term regression now tends to be interpreted simply as an 
analysis that predicts one variable on the basis of one or more other variables, 
irrespective of their fixed or random natures (Howell, 20 l 0). Supporting this approach 
is the demonstration that provided the other analysis assumptions are tenable, the least 
square parameter estimates and F-tests of significance continue to apply even with 
random predictor and dependent variables (Kmenta, 1971; Snedecor and Cochran, 
1980; Wonnacott and Wonnacott, 1970). 

All of the analyses described in this book consider experimental conditions to be 
fixed. However, random effects are considered with respect to related measures 
designs and some consideration is given to the issue of fixed and random predictor 
variables in the context of ANCOVA assumptions. Chapter 12 also presents recent 
mixed model approaches to repeated measures designs where maximum likelihood 
is used to estimate a fixed experimental effect parameter and a random subject 
parameter. 

1.8 THE BENEFITS OF A GLM APPROACH TO ANOV A AND ANCOV A 

The pocket history of regression and ANOVA described their separate development 
and the subsequent appreciation and utilization of their communality, partly as a 
consequence of computer-based data analysis that promoted the use of their common 
matrix algebra notation. However, the single fact that the GLM subsumes regression, 
ANOVA, and ANCOVA seems an insufficient reason to abandon the traditional 
manner of carrying out these analyses and adopt a GLM approach. So what is the 
motivation for advocating the GLM approach? 

The main reason for adopting a GLM approach to ANOVA and ANCOVA is that it 
provides conceptual and practical advantages over the traditional approach. Concep
tually, a major advantage is the continuity the GLM reveals between regression, 
ANOVA, and ANCOVA. Rather than having to learn about three apparently discrete 
techniques, it is possible to develop an understanding of a consistent modeling 
approach that can be applied to different circumstances. A number of practical 
advantages also stem from the utility of the simply conceived and easily calculated 
error terms. The GLM conception divides data into model and error, and it follows that 
the better the model explains the data, the less the error. Therefore, the set of predictors 
constituting a GLM can be selected by their ability to reduce the error term. 
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Comparing a GLM of the data that contains the predictor(s) under consideration with 
a GLM that does not, in terms of error reduction, provides a way of estimating effects 
that is both intuitively appreciable and consistent across regression, ANOVA, and 
ANCOVA applications. Moreover, as most GLM assumptions concern the error 
terms, residuals-the error term estimates, provide a common means by which the 
assumptions underlying regression, ANOVA, and ANCOVA can be assessed. This 
also opens the door to sophisticated statistical techniques, developed primarily to 
assist linear modeling/regression error analysis, to be applied to both ANOVA and 
ANCOVA. Recognizing ANOVA and ANCOVA as instances of the GLM also 
provides connection to an extensive and useful literature on methods, analysis 
strategy, and related techniques, such as structural equation modeling, multilevel 
analysis (see Chapter 12) and generalized linear modeling, which are pertinent to 
experimental and non-experimental analyses alike (e.g., Cohen et al., 2003; 
Darlington, 1968; Draper and Smith, 1998; Gordon, 1968; Keppel and Zedeck, 
1989; McCullagh and Nelder, 1989; Mosteller and Tukey, 1977; Nelder, 1977; Kutner 
et al., 2005; Pedhazur, 1997; Rao, 1965; Searle,1979, 1987, 1997; Seber, 1977). 

1.9 THE GLM PRESENTATION 

Several statistical texts have addressed the GLM and presented its application to 
ANO VA and ANCOV A. However, these texts differ in the kinds of GLM they employ 
to describe ANOVA and ANCOVA and how they present GLM calculations. ANOVA 
and ANCOVA have been expressed as cell mean GLMs (Searle, 1987) and regression 
GLMs (e.g., Cohen et al., 2003; Judd, McClelland, and Ryan, 2008; Keppel and 
Zedeck, 1989; Pedhazur, 1997). Each of these expressions has some merit. (See 
Chapter 2 for further description and consideration of experimental design, regression 
and cell mean GLMs.) However, the main focus in this text is experimental design 
GLMs, which also may be known as structural models or effect models. 

Irrespective of the form of expression, GLMs may be described and calculated 
using scalar or matrix algebra. However, scalar algebra equations become increas
ingly unwieldy and opaque as the number of variables in an analysis increases. In 
contrast, matrix algebra equations remain relatively succinct and clear. Consequently, 
matrix algebra has been described as concise, powerful, even elegant, and as 
providing better appreciation of the detail of GLM operations than scalar algebra. 
These may seem peculiar assertions given the difficulties people experience doing 
matrix algebra calculations, but they make sense when a distinction between theory 
and practice is considered. You may be able to provide a clear theoretical description 
of how to add numbers together, but this will not eliminate errors if you have very 
many numbers to add. Similarly, matrix algebra can summarize succinctly and clearly 
matrix relations and manipulations, but the actual laborious matrix calculations are 
best left to a computer. Nevertheless, while there is much to recommend matrix 
algebra for expressing GLMs, unless you have some serious mathematical expertise, 
it is likely to be an unfamiliar notation. As it is expected that many readers of this text 
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will not be well versed in matrix algebra, primarily scalar algebra and verbal 

descriptions will be employed to facilitate comprehension. 

1.10 STATISTICAL PACKAGES FOR COMPUTERS 

Most commercially available statistical packages have the capability to implement 

regression, ANOVA, and ANCOVA. The interfaces to regression and ANOVA 

programs reflect their separate historical developments. Regression programs require 

the specification of predictor variables, and so on, while ANOVA requires the 

specification of experimental independent variables or factors, and so on. ANCOVA 

interfaces tend to replicate the AN OVA approach, but with the additional requirement 

that one or more covariates are specified. Statistical software packages offering GLM 

programs are common (e.g., GEN STAT, MINITAB, STATISTICA, SYSTAT) and 

indeed, to carry out factorial ANOVAs with SPSS requires the use of its GLM 

program. 

All of the analyses and graphs presented in this text were obtained using the 

statistical package, SYSTAT. (For further information on SYSTAT, see Appendix A.) 

Nevertheless, the text does not describe how to conduct analyses using SYSTAT or any 

other statistical package. One reason for taking this approach is that frequent upgrades 

to statistical packages soon makes any reference to statistical software obsolete. 

Another reason for avoiding implementation instructions is that in addition to 

the extensive manuals and help systems accompanying statistical software, there 

are already many excellent books written specifically to assist users in carrying out 

analyses with the major statistical packages and it is unlikely any instructions 

provided here would be as good as those already available. Nevertheless, despite 

the absence of implementation instructions, it is hoped that the type of account 

presented in this text will provide not only an appreciation of ANOVA and ANCOVA 

in GLM terms but also an understanding of ANOVA and ANCOVA implementation 

by specific GLM or conventional regression programs. 





CHAPTER 2 

Traditional and GLM Approaches to 

Independent Measures Single Factor 

ANOVA Designs 

2.1 INDEPENDENT MEASURES DESIGNS 

The type of experimental design determines the particular form of ANOVA that 

should be applied. A wide variety of experimental designs and pertinent ANOVA 
procedures are available (e.g., Kirk, 1995). The simplest of these are independent 

measures designs. The defining feature of independent measures designs is that the 

dependent variable scores are assumed to be statistically independent (i.e., uncorre

lated). In practice, this means that subjects are selected randomly from the population 
of interest and then allocated to only one of the experimental conditions on a random 

basis, with each subject providing only one dependent variable score. 

Consider the independent measures design with three conditions presented in 

Table 2.1. Here, the subjects' numbers indicate their chronological allocation to 

conditions. Subjects are allocated randomly with the proviso that one subject has been 

allocated to all of the experimental conditions before a second subject is allocated to 

any experimental condition. When this is done, a second subject is allocated randomly 

to an experimental condition and only after two subjects have been allocated 

randomly to the other two experimental conditions is a third subject allocated 

randomly to one of the experimental conditions, and so on. This is a simple allocation 

procedure that distributes any subject (or subject-related) differences that might vary 
over the time course of the experiment randomly across conditions. It is useful 

generally, but particularly if it is anticipated that the experiment will take a consider

able time to complete. In such circumstances, it is possible that subjects recruited at the 

start of the experiment may differ in relevant and so important ways from subjects 

recruited toward the end of the experiment. For example, consider an experiment being 
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Table 2.1 Subject Allocation for an Independent Measures Design 
with Three Conditions 

Condition A Condition B Condition C 

Subject 3 Subject 2 Subject l 
Subject 5 Subject 6 Subject 4 
Subject 8 Subject 9 Subject 7 
Subject 12 Subject 10 Subject 11 

run over a whole term at a university, where student subjects participate in the 

experiment to fulfill a course requirement. Those students who sign up to participate 

in the experiment at the beginning of the term are likely to be well-motivated and 

organized students. However, students signing up toward the end of the term may be 

those who do so because time to complete their research participation requirement is 

running out. These students are likely to be motivated differently and may be less 

organized. Moreover, as the end-of-term examinations approach, these students may 

feel time pressured and be less than positive about committing the time to participate 

in the experiment. The different motivations, organization, and emotional states of 

those subjects recruited at the start and toward the end of the experiment may have 

some consequence for the behavior(s) measured in the experiment. Nevertheless, 

the allocation procedure just described ensures that subjects recruited at the start and 

at the end of the experiment are distributed across all conditions. Although any 

influence due to subject differences cannot be removed, they are prevented from 

being related systematically to conditions and confounding the experimental 

manipulation(s). 

To analyze the data from this experiment using t-tests would require the application 

of, at least, two t-tests. The first might compare Conditions A and B, while the second 

would compare Conditions B and C. A third t-test would be needed to compare 

Conditions A and C. The problem with such at-test analysis is that the probability of a 

Type 1 error (i.e., rejecting the null hypothesis when it is true) increases with the 

number of hypotheses tested. When one hypothesis test is carried out, the likelihood of 

a Type 1 error is equal to the significance level chosen (e.g., 0.05), but when two 

independent hypothesis tests are applied, it rises to nearly double the tabled signifi

cance level, and when three independent hypothesis tests are applied, it rises to near! y 

three times the tabled significance level. (In fact, as three t-tests applied to this data 

would be related, although the Type 1 error inflation would be less than is described 

for three independent tests, it still would be greater than 0.05-see Section 3.6.) 

In contrast, ANOVA simultaneously examines for differences between any 

number of conditions while holding the Type 1 error at the chosen significance 

level. In fact, ANOVA may be considered as the t-test extension to more than two 

conditions that holds Type 1 error constant. This may be seen if ANOVA is applied 

to compare two conditions. In such situations, the relationship between t- and 

F-values is 

2 -F t(df) - (l,df) (2.1) 
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where df is the denominator degrees of freedom. Yet despite this apparently simple 
relationship, there is still room for confusion. For example, imagine data obtained 
from an experiment assessing a directional hypothesis, where a one-tailed t-test is 

applied. This might provide 

((20) = 1.725, p = 0.05 

However, if an ANOVA was applied to exactly the same data, in accordance with 
equation (2.1) the F-value obtained would be 

F(l,20) = 2.976, p = 0.100 

Given the conventional significance level of 0.05, the one-tailed t-value is significant, 

but the F-value is not. The reason for such differences is that the F-value probabilities 

reported by tables and computer output are always two-tailed. 

Directional hypotheses can be preferable for theoretical and statistical reasons. 
However, Mac Rae ( 1995) emphasizes that one consequence of employing directional 
hypotheses is any effect in the direction opposite to that predicted must be interpreted 

as a chance result-irrespective of the size of the effect. Few researchers would be 
able, or willing, to ignore a large and significant effect, even when it is in the direction 
opposite to their predictions. Nevertheless, this is exactly what all researchers should 

do if a directional hypothesis is tested. Therefore, to allow further analysis of such 
occurrences, logic dictates that nondirectional hypotheses always should be tested. 

2.2 BALANCED DAT A DESIGNS 

The example presented in Table 2.1 assumes a balanced data design. A balanced data 
design has the same number of subjects in each experimental condition. There are 

three reasons why this is a good design practice. 
First, generalizing from the experiment is easier if the complication of uneven 

numbers of subjects in experimental conditions (i.e., unbalanced data) is avoided. In 
ANOVA, the effect of each experimental condition is weighted by the number of 
subjects contributing data to that condition. Giving greater weight to estimates 

derived from larger samples is a consistent feature of statistical analysis and is 
entirely appropriate when the number of subjects present in each experimental 
condition is unrelated to the nature of the experimental conditions. However, if the 
number of subjects in one or more experimental conditions is related to the nature of 

these conditions, it may be appropriate to replace the conventional weighted means 

analysis with an unweighted means analysis (e.g., Winer, Brown, and Michels, 1991 ). 
Such an analysis gives the same weight to all condition effects, irrespective of the 
number of subjects contributing data in each condition. In the majority of experi

mental studies, the number of subjects present in each experimental condition is 

unrelated to the nature of the experimental conditions. However, this issue needs to 
be given greater consideration when more applied or naturalistic studies are 
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conducted or intact groups are employed. The second reason why it is a good design 
practice to employ balanced data is due to terms accommodating the different 
numbers per group canceling out, the mathematical formulas for ANOVA with 
equal numbers of subjects in each experimental condition simplify with a reduction 
in the computational requirement. This makes the ANOVA formulas much easier to 
understand, apply, and interpret. The third reason why it is good design practice to 
employ balanced data is ANOVA is robust with respect to certain assumption 
violations (i.e., distribution normality and variance homogeneity) when there are 
equal numbers of subjects in each experimental condition (see Sections I 0.4.1.2 
and 10.4.1.4 ). 

The benefits of balanced data outlined above are such that it is worth investing some 
effort to achieve. In contrast, McClelland ( 1997) argues that experimental design 
power should be optimized by increasing the number of subjects allocated to key 
experimental conditions. As most of these optimized experimental designs are also 
unbalanced data designs, McClelland takes the view that it is worth abandoning the 
ease of calculation and interpretation of parameter estimates, and the robust nature of 
AN OVA with balanced data to violations of normality and homogeneity of variance 
assumptions, to obtain an optimal experimental design (see Section 4.7.4). Never
theless, all of the analyses presented in this chapter employ balanced data and it would 
be wrong to presume that unbalanced data analyzed in exactly the same way would 
provide the same results and allow the same interpretation. Detailed consideration of 
unbalanced designs may be found in Searle (1987). 

2.3 FACTORS AND INDEPENDENT VARIABLES 

In the simple hypothetical experiment above, the same number of subjects was 
allocated to each of the three experimental conditions, with each condition receiving a 
different amount of time to study the same list of 45 words. Shortly after, all of the 
subjects were given 4 minutes to free recall and write down as many of these words as 
they could remember (see Section 1.5). 

The experimental conditions just outlined are distinguished by quantitative differ
ences in the amount of study time available and so one way to analyze the 
experimental data would be to conduct a regression analysis similar to that reported 
in Section 1.5. This certainly would be the preferred form of analysis if the theory 
under test depended upon the continuous nature of the study time variable (e.g., 
Cohen, 1983; Vargha et al., 1996). However, where the theory tested does not depend 
on the continuous nature of the study time, it makes sense to treat the three different 
study times as experimental conditions (i.e., categories) and compare across the 
conditions without regard for the size of the time differences between the conditions. 

Although experimental condition study times are categorical, it still is reasonable to 
label the independent variable as Study time. Nevertheless, when categorical com
parisons are applied generally, the experimenter needs to keep the actual differences 
between the experimental conditions in mind. For example, Condition A could be 
changed to one in which some auditory distraction is presented. Obviously, this would 
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invalidate the independent variable label Study time, but it would not invalidate 
exactly the same categorical comparisons of memory performance under these three 
different conditions. The point here is to draw attention to the fact that the levels of a 
qualitative factor may involve multidimensional distinctions between conditions. 
While there should be some logical relation between the levels of any factor, they may 

not be linked in such a continuous fashion as is suggested by the term independent 

variable. So, from now on, the label, Factor, will be used in preference. 

2.4 AN OUTLINE OF TRADITIONAL ANOV A FOR 

SINGLE FACTOR DESIGNS 

AN OVA is employed in psychology most frequently to address the question-are there 
significant differences between the mean scores obtained in the different experimental 
conditions? As the name suggests, ANOVA operates by comparing the sample score 
variation observed between groups with the sample score variation observed within 
groups. If the experimental manipulations exert a real influence, then subjects' scores 
should vary more between the experimental conditions than within the experimental 
conditions. ANOVA procedures specify the calculation of an F-value, which is the 
ratio of between groups to within groups variation. Between groups variation depends 
on the difference between the group (experimental condition) means, whereas the 
within groups variation depends on the variation of the individual scores around their 
group (experimental condition) means. When there are no differences between the 
group (experimental condition) means, the estimates of between group and within 
group variation will be equal and so their ratio, the calculated F-value, will equal 1. 

When differences between experimental condition means increase, the between 
groups variation increases, and provided the within groups variation remains fairly 
constant, the size of the calculated F-value will increase. 

The purpose of calculating an F-value is to determine whether the differences 
between the experimental condition means are significant. This is accomplished by 
comparing the calculated F-value with the sampling distribution of the F-statistic. The 
F-statistic sampling distribution reflects the probability of different F-values occur
ring when the null hypothesis is true. The null hypothesis states that no differences 
exist between the means of the experimental condition populations. If the null 
hypothesis is true and the sample of subjects and their scores accurately reflect the 
population under the null hypothesis, then between group and within group variation 
estimates will be equal and the calculated F-value will equal 1. However, due to 
chance sampling variation (sometimes called sampling error), it is possible to observe 
differences between the experimental condition means of the data samples. 

The sampling distribution of the F-statistic can be established theoretically and 
empirically (see Box 2.1). Comparing the calculated F-value with the pertinent 
F-distribution (i.e., the distribution with equivalent dfs) provides the probability of 

observing an F-value equal to or greater than that calculated from randomly sampled 
data collected under the null hypothesis. If the probability of observing this F-value 
under the null hypothesis is sufficiently low, then the null hypothesis is rejected and 
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BOX 2.1 

The F-distribution for the three-condition experiment outlined in Table 2.1 can be 
established empirically under the null hypothesis in the following way. 

Assume a normally distributed population of 1000 study scores and identify 
the population mean and standard deviation. (The mean and standard deviation 
fully describe a normal distribution, so on this basis it is possible to identify the 
1000 scores.) Take 1000 ping-pong balls and write a single score on each of the 
1000 ping-pong balls and put all of the ping-pong balls in a container. Next, 
randomly select a ball and then randomly, place it into one of the three baskets, 
labeled Condition A, B, and C. Do this repeatedly until you have selected and 
placed 12 balls, with the constraint that you must finish with 4 balls in each 
condition basket. When complete, use the scores on the ping-pong balls in each 
of the A, B, and C condition baskets to calculate an F-value and plot the 
calculated F-value on a frequency distribution. Replace all the balls in the 
container. Next, randomly sample and allocate the ping-pong balls just as 
before, calculate an F-value based on the ball scores just as before and plot the 
second F-value on the frequency distribution. Repeat tens of thousands of times. 
The final outcome will be the sampling distribution of the F-statistic under the 
null hypothesis when the numerator has two dfs (numerator dfs =number of 
groups - 1) and the denominator has three dfs (denominator dfs = number of 
scores per group- 1 ). This empirical distribution has the same shape as the 
distribution predicted by mathematical theory. It is important to appreciate 
that the score values do not influence the shape of the sampling distribution of 
the F-statistic, i.e., whether scores are distributed around a mean of 5 or 500 
does not affect the sampling distribution of the F-statistic. The only influences 
on the sampling distribution of the F-statistic are the numerator and denomi
nator dfs. As might be expected, the empirical investigation of statistical issues 
has moved on a pace with developments in computing and these empirical 
investigations often are termed Monte Carlo studies. 

the experimental hypothesis is accepted. The convention is that sufficiently low 
probabilities begin at p = 0.05. The largest 5% of F-values-the most extreme 5% 
of F-values in the right-hand tail of the F-distribution under the null hypothesis-have 
probabilities of :::;0.05 (see Figure 2.1 ). In a properly controlled experiment, the only 
reason for differences between the experimental condition means should be the 
experimental manipulation. Therefore, if the probability of the difference(s) observed 
occurring due to sampling variation is less than the criterion for significance, then it is 
reasonable to conclude that the differences observed were caused by the experimental 
manipulation. (For an introduction to the logic of experimental design and the 
relationship between scientific theory and experimental data, see Hinkelman and 
Kempthome, 2008; Maxwell and Delaney, 2004.) 

Kirk (1995, p. 96) briefly describes the F-test as providing "a one-tailed test of a 
nondirectional null hypothesis because MSBG, which is expected to be greater than or 
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Figure 2.1 A typical distribution of F under the null hypothesis. 
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approximately equal to MSWG, is always in the numerator of the F statistic." (MSBG 

and MSWG denote the mean squares of between and within groups variance, 

respectively, and the F-ratio is the ratio of these two mean square estimates. Mean 

square estimation is described in Section 2.5.) Although perfectly correct, Kirk's 

description can cause confusion and obscure the reason for the apparently different 

t- and F-test results mentioned in Section 2.1 .  As Kirk says, the F-statistic in ANOVA 

is one-tailed because MSBG, which reflects experimental effects, is always the 

numerator. MSBG is always the numerator because when the null hypothesis is false 

MSBG should be greater than MSWG and the calculated F-statistic should be > 1.  

(MSBG and MSWG are expected to be equal and F = 1 only when the null hypothesis 

is true.) As F = 1 when the influence of the experimental manipulation is zero and any 

influence of the experimental manipulation should provide F > l ,  only the right-hand 

tail of the F-distribution needs to be examined. Consequently, the F-test is one-tailed, 

but not because it tests a directional hypothesis. In fact, the nature of the F-test 

numerator (MSBG) ensures the F-test always assesses a nondirectional hypothesis. 

The MSBG is obtained from the sum of the squared differences between the condition 

means, but squaring the differences between the means gives the same positive 

valence to all of the mean differences. Consequently, the directionality of the 

differences between mean is lost and so the F-test is nondirectional. 

2.5 VARIANCE 

Variance or variation is a vital concept in ANOVA and many other statistical 

techniques. Nevertheless, it can be a puzzling notion, particularly the concept of 

total variance. Variation measures how much the observed or calculated scores 

deviate from something. However, while between group variance reflects the devia

tion amongst condition means and within group variance reflects the deviation of 

scores from their condition means, it is less obvious what total variance reflects. In 
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fact, the total variance reflects the deviation of all the observed scores from the mean 
of all these scores. 

Before this can be illustrated, some definitions are necessary. The most frequently 
employed measure of central tendency is the arithmetic average or mean (Y). This is 
defined as 

(2.2) 

where Y; is the ith subject's score, :z::::::1 Y; is the sum of all of the subjects' scores, 
and N is the total number of subjects. The subscript i indexes the individual subjects 
and in this instance it takes the values from 1 to N. The L�=I indicates that 
summation occurs over all the i subject scores, from I to N. In turn, the population 
variance ( a2) is defined as 

(2.3) 

Therefore, variance reflects the average of the squared deviations from the mean. 
In other words, the variance reflects the square of the average extent to which scores 
differ from the mean. Equation (2.3) defines the population variance. However, it 
provides a biased estimate-an underestimate-of the variance of a sample drawn 
from a population. (This is due to the loss of a df from the denominator because the 
mean, which is based on the same set of scores, is used in this calculation-see 
Section 2.6). An unbiased estimate of the sample variance (s2) is given by 

2 L�=l (Y; - Y)2 s =-�----
N-l 

(2.4) 

Nevertheless, while formulas (2.3) and (2.4) reveal the nature of variance quite well, 
they do not lend themselves to easy calculation. A useful formula for calculating 
sample variance (s2) is 

2 
:z::::::, Yf- [(I:::, Y;)2 /N] 

s = ----�----� 
N-l 

(2.5) 

The standard deviation also is a very useful statistic and is simply the square root of the 
variance. Consequently, the population standard deviation (a) is given by 

(J = :z::::::1 (Y;- f)2 
N 

and the sample standard deviation (s) is given by 

s= 
:z::::::, Yf- [ (L�=l Yi)2 /N] 

N- l 

(2.6) 

(2.7) 
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The relation between total variance, between group variance, and within group 
variance can be illustrated using the hypothetical experimental data presented in 

Chapter 1. Figure 2.2 and Table 2.2 present the data provided by the 24 subjects over 

the three experimental conditions. (Note: In Table 2.2, the subject number does not 

reflect the chronological assignment to groups as in Table 2.1. Instead, the convention 

is to label the subjects in each experimental condition from 1 to NJ, where NJ denotes 
the number of subjects participating in each condition.) 

Table 2.2 Hypothetical Experimental Data and Summary Statistics 

Subjects 30s Subjects 60s Subjects 180 s 

sl 7 sl 7 sl 8 
s2 3 s2 11 s2 14 
s3 6 s3 9 s3 10 

s4 6 s4 11 s4 11 

s5 5 s5 10 s5 12 

s6 8 s6 10 s6 10 

s7 6 s7 II s7 11 

s8 7 s8 11 s8 12 

Total 2::�1 Yii 48 2:Y; 80 L�1Yi 88 

2:YJ 304 2:Y;2 814 L�I Yl 990 

Mean (Yj) 6.00 yj 10.00 yj 11.00 

Sample SD (s) 1.51 s 1.41 s 1.77 

Sample variance (s2) 2.29 s2 1.99 s
2 3.13 
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condition . 
Dependent variable scores (number of words free recalled) by experimental 
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Figure 2.2 presents subjects' dependent variable (free recall) scores plotted 

against the experimental condition under which the scores were recorded. The 

means of conditions 1 (30 s study time), 2 (60 s study time), and 3 (180 s study time) 

are marked on the right Y-axis by T, 2, and 3. Table 2.2 provides summary statistics 

for the same data. 

The vertical spread of the scores in Figure 2.2 provides some sense of the between 

groups and within groups variance. Between groups variance reflects the differences 

between the means of the experimental conditions (see distances between T, 2, and 3 
to the right of the graph). Within groups variance reflects the (average) spread of 

individual ,scores within each of the experimental conditions. Examination of 

Figure 2.2 suggests that the 180 s condition has the greatest within group variation 

and the 30 s condition has greater within group variation than the 60 s condition. These 

assessments are confirmed by the statistics presented in Table 2.2. 
A numerical subscript is used to identify the experimental conditions in formulas, 

etc. The subscriptj indexes the experimental conditions, and ranges from 1 top, where 

p is the number of experimental conditions. In this example, the j indicator values are 

1, 2, and 3, indexing, respectively, the 30 s, 60 s, and 180 s conditions. 

The use of the N (or N - 1) as the major denominator in formulae (2.2)-(2.7) 
reveals that these variance estimates reflect the amount of deviation from the mean, 

averaged across all of the subjects' scores. However, the initial variance estimates 

calculated in ANOVA, known as sums of squares (SS), are not averaged in this 

fashion. 

Total sum of squares is conceived as the deviation of all the observed scores from 

the general mean (the mean of the experimental condition means). For this calcula

tion, the only modification to formula (2.5) is to exclude the denominator 

N (""N Y.) 2 
SS _ ""'r2 _ L..i=I I total-�; 

i=l N 

= 2108 -
(216)2 

24 
SStotal = 164.000 

(2.8) 

Within group variance is conceived in terms of the average of the separate spreads 

of scores from the mean in each of the experimental conditions. The separate 

experimental condition variance estimates averaged over all of the scores in each 

experimental condition are provided in Table 2.2. These estimates can be obtained 

by applying formulae (2.5) and (2.7) to the scores in each of the experimental 

conditions. Again the components of the within group sum of squares can be 

calculated using the numerator of equation (2.5), as shown in equation (2.9) below. 

(2.9) 
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Notice that as the group or experimental condition under which the dependent 
variable scores were obtained now is relevant, the j subscript is included in the 
equation. (N denotes the total number of subjects participating in the experiment 
and the subscript j is used here to refer to the number of subjects in each condition. An 
alternative is to use n to denote the number of subjects per condition.) 

For the 30 s experimental condition, this gives 

(2.10) 

304- [4!2] 

In fact, this value is simply 

(N1- l) (s2 ) = 7 (2.29) = 16.03 (discrepancyis due to rounding error) (2.11) 

Similar calculations for the 60 s and 180 s experimental conditions provide the 
other components. The within groups sum of squares is calculated by summing 
the separate experimental condition sum of squares estimates 

SSwithin groups= SS1 + SS2 + SS3 

= 16.000 + 14.000 + 22.000 

= 52.000 

This estimate of error variance is known as a pooled error variance estimate. As well 
as being an average of the experimental condition error variances, equation (2.11) 
reveals that the pooled error variance estimate is weighted by the individual experi
mental condition dfs. As each individual experimental condition dfs is equal to the 
sample size minus 1, it often is said the pooled error variance estimate is weighted by 
sample size. It is also possible to estimate an unpooled error variance, which simply 
averages the individual experimental condition sample variance error estimates. 
However, the calculation of unpooled error variance estimate dfs employ 
Satterthwaite's (1946) solution, which is a little involved. Of course, with balanced 
designs, both pooled and unpooled error variance estimates are identical. However, the 
use of pooled error variance estimates becomes less tenable as the experimental 
condition sample variance error estimates diverge. 

Between groups variance is conceived in terms of the average of the differences 
among the means of the experimental conditions. However, these differences are not 
as simple as the mean of the 30 s condition minus the mean of the 60 s condition, and 

so on. Instead, the variance attributable to the differences between the condition 
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means and the general mean are estimated. Although experimental condition means 
are obtained by averaging over all the subjects in the particular condition, each 

experimental condition mean is regarded as the score each subject in that experi

mental condition would record if error variation was eliminated. Consequently, 

in each experimental condition, there would be N1 experimental condition mean 
scores. 

The fact that 

p 

SS between groups = L NJ(Yj - f G) 2 

J=l 

= 8(6-9)2 + 8(10- 9)2 + 8(11- 9)2 

SSbetween groups = 112.000 

SSrotal = SSbetween groups + SSwithin groups 

(2.12) 

(2.13) 

can be verified easily by substituting any two of the estimates calculated for two of 

the terms above 

164.000 = 112.000 + 52.000 

The sum of squares calculations estimate the variation attributable to between 

groups and within groups sources. The next step in traditional ANOVA calculation is 

to estimate the average variance arising from between groups and within groups 

sources. This step requires SS denominators to provide the averages. The denomi

nators are termed degrees of freedom and the averages they provide are termed mean 

squares (MS). 

Degrees of freedom represent how many of the data points employed in construct

ing the estimate are able to take different values. For example, when sample variance 

is calculated using N as a denominator, underestimates of variance are obtained 

because in fact, there are not N dfs, but only (N - 1) dfs. When the correct dfs are used 

as the denominator, an accurate estimate of sample variance is obtained. 

The reason there are (N - 1) and not N dfs is one df is lost from the sample variance 

because a mean is used in the sample variance calculation. Once a mean is determined 

for a group of scores, it is always possible to state the value of the "last" score in that 

group. Internal consistency demands that this "last" score takes the value that 

provides the appropriate sum of scores, which, when divided by the number of 
scores, gives the previously calculated mean. For example, for the set of scores 4, 6, 4, 
6, and 5, the mean is 25/5 = 5. If we know there are five scores, the mean is 25 and that 
four of the scores are 4, 6, 4, and 6 (which add to 20), it stands to reason that the other 

score from the set must be 5. As variance estimate calculations also use the previously 

calculated mean and the individual scores, the "last" score is not free to vary-it must 

have the value that provides the previously calculated mean. Therefore, only (N- 1) 
scores are really free to vary and so, there are (N - 1) dfs. 
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For the between groups SS, although three experimental condition means are 
involved, it is their variation around a general mean that is determined. With balanced 
data, the general mean is the average of the three experimental condition means. In 
this situation, the means are the data points contributing to the general mean and for 
the reasons described above, one df is lost. Consequently 

Between groups df = p - 1 

=3-1 
=2 

The within groups SS is comprised of the variation of scores from the experimental 
condition mean, over the three different conditions. As a separate mean is employed in 
each condition, a df will be lost in each condition. 

df experimental condition I = (Ni - l) = (8 - l) = 7 
dj experimental condition 2 = (N2 - 1) = (8 - 1) = 7 
dj experimental condition 3 = (N3 - l) = (8 - 1) = 7 

Within groups 4f = 3(Aj - 1) 
= 3(7) 

= 21 

Armed with the sums of squares and dfs, the mean squares can be calculated by 
dividing the former by the latter. The ratio of the between groups MS to the within 
groups MS provides the F-statistic. The last item provided in the ANOVA summary 
table (Table 2.3) is the probability of the calculated F-value being obtained by chance 
under the null hypothesis given the data analyzed. This p-value associated with the 
calculated F-value is provided by most statistical packages. However, if the ANOVA 
is calculated by hand, or the statistical software used does not output the associated 
p-values, the table of critical F-values for a= 0.25, 0.10, 0.05, and 0.01, provided in 
Appendix B may be employed. As the probability associated with the between groups 
F-value is less than 0.05, the null hypothesis (H0), which states that there are 
no differences between experimental condition means can be rejected, and the 
experimental hypothesis (HE), which states some experimental condition means 
differ, can be accepted (also see Section 2.3.2). Further tests are required to identify 
exactly which experimental condition means differ (see Chapter 3). 

Table 2.3 ANOV A Summary Table 

Source SS df MS F p 

Between groups 112.000 2 56.000 22.615 <0.001 

Within groups 52.000 21 2.476 

Total 164.000 23 
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2.7 CONFIDENCE INTERVALS 

Confidence intervals also are useful statistics and with ANOVA now described, the 
description of confidence intervals is much easier. A confidence interval specifies the 
range within which it is expected that a particular estimate will occur. For instance, it can 
be stated with different probabilities (or degrees of confidence) that any population 
experimental condition mean will be within a specified range. Usually, a 95% confi
dence interval is set. A 95% confidence interval denotes that 95% of the time, the range 
will include the population experimental condition mean and that the population 
experimental condition mean will not fall within the specified range 5% of the time. 

As well as the estimate of the population experimental condition mean (i.e., 
the mean of the experimental condition based on the sample data-the data in the 
experiment), two other statistics also are required to determine a confidence interval. 
The first is the critical F-value for a= 0.05 with numerator df = l and denominator 
dfs = (N1- 1 ). The second statistic required is an estimate of the standard error. The 
sample standard error (se) can be defined as 

s 

se=--
VfiJ 

(2.14) 

where s is the sample standard deviation (see Section 2.5). The standard error is a 
variance estimate and so it may be calculated in two ways: by assuming homogeneity 
of variance across experimental conditions or by employing separate estimates of the 
experimental condition variances. The data presented in Table 2.2 indicate variance 
homogeneity and so the standard error calculation also will assume homogeneity of 
variance. In such circumstances, the best estimate of standard error is given by 

MSe 
se=--

VfiJ 

Therefore, the confidence interval of any of the experimental condition means is given 
by 

CI± JF(a;l,Nrl)� (2.15) 

f2A76 CI± JF(o.os;J,7)V7s 
CI ± J5.59J0.875 

CI ± 2.21 

The 95% CI for the 30 s experimental condition means is 6 ± 2.21, so there is a 95% 
likelihood that the population experimental condition mean will fall somewhere 
between 3.79 and 8.21. The 95% CI for the 60 s population experimental condition 
mean is 10 ± 2.21, so there is a 95% likelihood that the population experimental 
condition mean will fall somewhere between 7.79 and 12.21. As the 95% CI for 
the 180 s experimental condition means is 11 ±2.21, there is a 95% likelihood 
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that the population experimental condition mean will fall somewhere between 8. 79 
and 13.21. 

In addition to Cis for individual means, it is also possible to apply the same rationale 
to differences between experimental condition means. In such circumstances when 
variance homogeneity is assumed, the CI is defined exactly as it was above for 
experimental condition means and so, the differences between means will have 

exactly the same CI 

(2.15, rptd) 

Therefore, there is a 95% likelihood that the population difference between the mean 
of the 30 s experimental condition and the mean of the 60 s experimental condition is 
4 ± 2.21, or between 1.79 and 6.21. There is a 95% likelihood that the population 
difference between the mean of the 60 s experimental condition and the mean of the 
180 s experimental condition is 1±2.21, or between -1.21 and 3.21. As this range 
includes 0, it implies that zero difference is a likely outcome and so this difference 
cannot be significant. With regard to the last comparison, there is a 95% likelihood 
that the population difference between the mean of the 30 s and the mean of the 60 s 
experimental condition means is 5 ± 2.21, or between 2. 79 and 7 .21. (A potential 
problem caused by this sort of use of Cis is considered in Section 3.6.4.1.) 

2.8 GLM APPROACHES TO SINGLE FACTOR ANOVA 

2.8.1 Experimental Design GLMs 

GLM equations for ANOVA have become common sights in statistical texts, even 
when a traditional approach to ANOVA is applied. However, when a GLM equation is 
provided in the context of traditional ANOVA, the labels structural model, experi
mental effects model, or experimental design model can be employed. The equation 

(2.16) 

describes the GLM underlying the independent measures design ANOVA carried out 
on the data presented in Table 2.2. Y;; is the ith subject's dependent variable score in 
the }th experimental condition, the parameterµ is the general mean of the experi
mental condition population means that underlies all subjects' dependent variable 
scores, the parameter 11.1 is the effect of the jth experimental condition and the random 
variable, e;;, is the error term, which reflects variation due to any uncontrolled source. 
Therefore, equation (2.16) is actually a summary of a set or system of equations, where 
each equation describes a single dependent variable score. 

Predicted scores are based on the model component of GLM equations. Therefore, 

inspection of equation (2.17) reveals predicted scores ( Y;;) to be given by 

Y;; = µ + 11.1 (2.17) 
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As µ is a constant, the only variation in prediction can come from the effect of the j 
experimental conditions. Consequently, experimental design GLMs predict only as 
many different scores as there are experimental conditions, so every subject's score 
within an experimental condition (Yu) is predicted to be the mean score for that 
experimental condition (fj) 

Y;j = yj = µj 

For the data listed in Table 2.2, the µj estimates are 

Yi= 6, Y2 =IO, andf3 =II 

Equation (2.16) defines the general mean as 

2=)=1 µj 
µ= 

p 

(2.18) 

(2.19) 

This reveals µ as the mean of the separate experimental condition means. Of course, 
with balanced data, this is also the mean of all dependent variable scores. Applying 
equation (2.19) to the data in Table 2.2 provides the estimate of the general mean, Y G 

- 6+!0+11 
YG = =9 

3 

which is identified by the dotted horizontal line in Figure 2.3. The estimate of the 
effect of a particular experimental condition, �, is defined as 

(2.20) 

Equation (2.20) reveals the effect attributable to each experimental condition to be the 
difference between the mean of the particular experimental condition and the general 
mean. 

15 

12 

Y scores g· .. ······························· ········································· YG 

6 

30 s 60 s 180 s 

Figure 2.3 Dependent variable scores by experimental condition. 
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In Chapter 1, the regression GLM fit to the data was illustrated by the regression line 
that followed the path through all of the predicted scores. (NB. the regression 

predicted scores are not necessarily the means of the three experimental conditions.) 
The fit of experimental design GLMs also can be illustrated by plotting a line through 
all of the predicted scores - the experimental condition means. Figure 2.2 plots the 
experimental design GLM line that follows a path through these estimates - the 

experimental condition means. (As convention dictates, the dependent variable is 
plotted on the Y-axis and the factor levels, i.e., the experimental conditions, are plotted 
on the X-axis.) 

However, the experimental design GLM line differs in important ways from the 
regression GLM line presented in Figure 1.1. To begin with, the factor levels (i.e., 
the experimental conditions) have a qualitative (i.e., categorical) rather than a 
quantitative representation in the experimental design GLM. This reflects the 
interest in the differences between the factor levels rather than the way in which the 
quantitative value of the predictor and dependent variables vary together in a linear 
fashion. The regression GLM estimates only two parameters - the Y-axis intercept, 
{30, and the regression coefficient, /31, and both of these estimates apply to all of the 
data. The experimental design GLM described by equation (2.16) may appear to 
estimate only two parameters, µ and a1, but, in fact, a1 describes each experimental 
condition mean in terms of its deviation from,µ, so a1 actually summarizes as many 
effect estimates as there are experimental conditions. Moreover, as each effect is 
estimated as a deviation between each experimental condition mean and the general 
mean, the order in which the factor levels (i.e., the experimental conditions) are 
plotted along the X-axis is inconsequential. Usually, experimental conditions are 
presented in an order consistent with the theoretical or practical account, but, in 
contrast to the regression GLM, there is nothing in the experimental design GLM 
that prescribes the order of factor levels. As the shape of the experimental design 
GLM line is determined by an arbitrary order of experimental conditions, it 
emphasizes the point that the term linear in GLM does not necessarily refer to a 
straight line. 

Given equations (2.19) and (2.20) and balanced data, it follows that 

p 

2:a} = o. (2.21) 

}=I 

As can be seen in Table 2.4, applying equation (2.18) to the data listed in Table 2.2, 
provides the estimates of the three experimental condition effects and confirms 
equation (2.19). However, when unbalanced data is analyzed, the different numbers 
of subjects in the experimental conditions must be accommodated. Consequently, 
equation (2.21) becomes 

p 

L(N;aj) = 0 (2.22) 

i=I 

Experimental effects summing to 0 is more than just a logical outcome of the 
calculations. In fact, it is a mathematical side condition required to allow unique 
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Table 2.4 Estimates of the Three Experimental 
Condition Effects and Their Sum 

1X1 6-9 

IXz 10-9 
� 

IX3 11 -9 

p 
� 

Lj=I IXj 

-3 

2 

0 

estimation of the experimental design GLM parameters. This constraint is required 
because the experimental design GLM is overparameterized-it contains more 
parameters (µ, o:1, o:2, and o:3) than there are experimental condition means (30, 
60, and 180 s) from which to estimate these parameters. One way of dealing with the 
problems caused by overparameterization is to set a constraint or side condition that 
all experimental effects sum to zero. Indeed, ANOVA may be defined as the special 
case of multiple regression that includes the side condition that experimental effects 
sum to 0. 

Equation (2.16) summarizes a set of GLM equations that predict each subjects' 
score. Bearing in mind that each subject in each experimental condition is predicted to 
obtain the same score (2.17), the predicted experimental condition means can be 
described by the GLM equations 

r.,1 = 9 + ( - 3) = 6 

Y.,2 = 9 + ( l) = lO 

r.,3 = 9 + (2) = 11 

In contrast to predicted scores, the estimated BiJ terms (8;1) representing the 
discrepancy between actual and predicted scores may be different for each subject 
(see Table 2.5) 

(2.23) 

The average of all of these experimental errors squared provides the Mean Square 
error (MSe) 

(2.24) 

where N1 is the number of subjects in each experimental condition and pis the number 
of experimental conditions. The denominator of equation (2.24), p(Nr l ), gives the 
degrees of freedom for the ANOVA MSe 

52/3(8- 1) = 52/21 = 2.476 
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Table 2.5 Calculation of Error Terms, Their Squares, and Sums 

-
Yu-Yu 

- - 2 eu eu (eu) 
£1,1 7-6 1 

£2,1 3-6 -3 9 

e3,1 6-6 0 0 

£4,1 6-6 0 0 

£5,1 5-6 -1 -
£6,I 8-6 2 4 

£7,1 6-6 0 0 -es,1 7-6 1 1 

£9,2 7-10 -3 9 

£10,2 11-10 1 -
£11,2 9-10 -1 

£12,2 11 -10 1 1 

£13,2 10-10 0 0 

£14,2 10-10 0 0 

£15,2 11-10 1 -
£16,2 11 - 10 

£17,3 8- 11 -3 9 

£18,3 14- 11 3 9 

£19,3 10-11 -1 

£20,3 11- 11 0 0 

£21.3 12-11 

£22,3 10- 11 -1 1 

£23,3 11 -11 0 0 

£24,3 12 - 1 1  

I: 0 52 

The experimental design GLM can be used as a basis for partitioning variance in 

traditional ANOVA. Employing equations (2.20) and (2.23) allows equation (2.17) to 

be rewritten as 

(2.25) 

Moving the general mean (Y 0) to the left-hand side of equation (2.25) gives 

(2.26) 

Equation (2.26) defines the variation between the dependent variable scores (Yij) and 

the general mean (f 0) as comprising variation due to experimental conditions 
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Table 2.6 Calculation of Variation Due to Experimental Conditions 

Conditions (Yj-Yo)2 (Yj-Yo)2 

30 s (6 -9)2 (-3)2 
60 s (IO - 9)2 12 

180 s (I I -9)2 22 

'"E/ - - 2 j=I (Y;- YG) 

(Y1- Y0)2 

9 
I 

4 

14 

(Y1 - Y c) and variation due to errors (Yu -Y1). However, to obtain accurate variance 

estimates the number of scores contributing to each estimate must be included. 

Although experimental condition means are obtained by averaging over all the 

subjects in the particular condition, each condition mean is regarded as the score 

each subject in that experimental condition would record if error variation was 

eliminated. Consequently, in each experimental condition there would be N1 scores 

equal to the mean. Therefore, the SS partition is 

(2.27) 

Equation (2.27) and the account of variation due to experimental conditions should 

seem familiar, as exactly the same argument was applied to the estimation of the 

traditional ANOVA between groups SS. The calculation of the variation due to 

experimental conditions for the data in Table 2.2 is presented in Table 2.6 

So, 

p 

Experimental conditions SS = L N1(Yi - Y G)2 
}=I 

(2.28) 

Experimental conditions SS= 8(-3)2 + 8(12) + 8(22) = 8(14) = 112 

Therefore, the sum of squares due to the experimental conditions (i.e., the experi

mental effects) is also the average of the square of the differences between unique 

pairs of experimental condition means. 
The sum of squares calculations for the experimental effect above provides a value 

identical to that calculated for traditional ANOVA presented in Table 2.3. As degrees 

of freedom can be defined for the experimental design GLM as they were for 

traditional ANOVA, the mean square values also will be identical to those calculated 



OLM APPROACHES TO SINGLE FACTOR ANOVA 

for traditional ANOVA and presented in Table 2.3 

Experimental conditions MS= Experimental effect SS/df 

= 112/2 

=56 

37 

(2.29) 

With the error sum of squares and MSe calculated previously, it is clear that the 
components of equation (2.26), based on the experimental design GLM, and the 
components of the traditional ANOVA equation (2.15) are equivalent 

SStotal = SSbetween groups + SSwithin groups 

It is left to the reader to confirm that 

p N 

LL (Yu-Yo)2 = 112 + 52 = 164 
}=I i=l 

2.8.2 Estimating Effects by Comparing Full and Reduced 

Experimental Design GLMs 

(2.15, rptd) 

In Chapter 1, it is explained that the same statistical procedures underlie regression 
and ANOVA, but that concise experimental analyses are a consequence of the 
experimental design acting to simplify the processes of GLM selection, parameter 
estimation, model checking, and prediction. In conventional regression or linear 
modeling, an aim is to try and find a minimal set of predictors that accommodates the 
maximal amount of dependent variable variance. More predictors always can 
accommodate some more variance--even when the predictors have no significant 
or meaningful relationship with the dependent variable measure. Therefore, a tension 
exists between finding a minimal set of predictors and accommodating the maximal 
amount of dependent variable variance and a whole set of linear modeling procedures 
and criteria have been established to aid the comparison of different GLMs of the 
same data and identify the best GLM (Draper and Smith, 1998). 

As much of conventional linear modeling involves comparing different GLMs of the 
same data, it follows that comparing of full and reduced GLMs to estimate experimental 
effects is more in the spirit of conventional linear modeling than any of the other methods 
of experimental effect estimation so far described. However, just as simplified linear 
modeling processes are used to apply a GLM to experimental data, so the comparison of 
full and reduced experimental design GLMs to estimate experimental effects applies a 
distilled form of linear modeling processes to analyze experimental data. 

In Chapter I, the GLM conception was described as 

Data = Model + Error (1.2, rptd) 

Linear modeling processes attempt to identify the "best" GLM of the data by 
comparing different linear models. The GLMs are assessed in terms of the relative 
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proportions of data variance attributed to the model and the error components. 
With a fixed data set, the sum of model and error components is a constant (i.e., the 
data variance), so any increase in variance accommodated by the model component 
will result in an equivalent decrease in the error component. 

Consider the experimental design GLM for the independent single factor 
experiment 

yij = µ + 'Xj + f,ij (2.16, rptd) 

This full model employs the general mean, µ, and includes parameters a1 to 
accommodate any influence of the experimental conditions. Essentially, it presumes 
that subjects' dependent variable scores (data) are best described by the experimen
tal condition means. The full GLM manifests the data description under a nondi
rectional experimental hypothesis, which may be expressed more formally as 

'XJ =/=- 0, for somej (2.30) 

This states that the effect of some experimental conditions does not equal 0. An 
equivalent expression in terms of the experimental condition means is 

µ =/=- µ1 for somej (2.31) 

This states that some of the experimental condition means do not equal the general mean. 
It is also possible to describe a reduced model that omits any effect of the 

experimental conditions. Here, the reduced GLM is described by the equation 

Yij=µ + f.ij (2.32) 

which uses only the general mean of scores(µ) to account for the data. This GLM 

presumes that subjects' dependent variable scores are best described by the general 
mean of all scores. In other words, it presumes that the description of subjects' scores 
would not benefit from taking the effects of the experimental conditions (a1) into 
account. The reduced GLM manifests the data description under the null hypothesis. 
By ignoring any influence of the experimental conditions, the reduced GLM assumes 
that the experimental conditions do not influence the data. This assumption may be 
expressed more formally as 

ll.j = 0 (2.33) 

which states that all of the experimental conditions have zero effect. An equivalent 
expression in terms of experimental condition means is 

(2.34) 

This states that the general mean and the experimental condition means are equal. 
As equation (2.20) defines µ as the mean of the separate experimental condition 
means, a longer formal version of the null hypothesis expressed in equation (2.34) is 

(2.35) 

This is termed an omnibus (or complete or overall) null hypothesis because it states 
that all of the experimental condition means are equal. 
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If the full GLM, which accommodates the experimental condition effect(s), 
provides a better description of the data, it should have a smaller error component 
than the reduced GLM. Moreover, any reduction in the size of the error component 
caused by including the effects of the experimental conditions will be matched by an 
equivalent increase in the size of the model component. Therefore, comparing the size 

of the error components before and after adding the effects of the experimental 

conditions to the model component provides a method of assessing the consequences 
of changing the model. Presenting the full and reduced GLM equations together 
should clarify this point 

Reduced GLM: Yij = µ + eij 

Full GLM: Y ii = µ + lf.J + eii 

(2.32, rptd) 

(2.16, rptd) 

Any reduction in the error component of the full GLM can be attributed only to the 

inclusion of the experimental condition effects, as this is the only difference between 
the two GLMs. 

The reduced GLM defines errors as 

(2.36) 

Note that the difference between equations (2.22) and (2.35) is simply whether each 
subjects' dependent variable score (Yij) is taken to deviate from the pertinent 
experimental condition mean (µ1) or the general mean (µ). Of course, as GLM 
errors sum to 0, interest is in the sum of the squared errors (see Table 2.5). A 
convenient computational formula for the reduced GLM error sum of squares (SSE) is 

�N 2 (L f;)2 
SSERGLM = L..,i=l Y; -

N 

Using the data from Table 2.2 provides 

(216)2 
SSERGLM = 2108- � = 164 

(2.37) 

Note that this is equivalent to SS101ai. described by equation (2.7). The full GLM 
defines errors as 

(2.38) 

(2.23, rptd) 

A convenient computational formula for the full GLM error term SS is 

(2.39) 
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Using the data from Table 2.3 provides 

[482] [802] 
SSEFGLM = 304 -

8 
+ 814 -

8 

=52 

[882] 
+ 

99
0-

8 

As this is equivalent to the SSwithin• described by equation (2.9), it should come as no 
surprise that 

SSERGLM - SSEFGLM = SS1otal - SSwithin = SSbetween 

=164-52=112 
(2.40) 

In other words, including the experimental condition effects reduces the error 
component sum of squares by an amount identical to the traditional ANOVA between 
groups sum of squares. Therefore, the reduction in the error component sum of 
squares, attributable to the experimental condition effects, is given by 

p 

SSERGLM - SSEFGLM = °LN1(µ1 - µ)2 
1�1 

(2.41) 

which, of course, is equivalent to equation (2.28) when the sample statistics replace 
the parameters. Also note that SSERGLM is equal to what traditional AN OVA labels the 
Total SS. This emphasizes that the traditional ANOVA Total SS is actually an estimate 
of the dependent variable scores deviation from the general mean (see Section 2.6). 

An F-test of the reduction in the error component attributed to the inclusion of the 
experimental condition effects is given by 

Therefore 

F = -'-( s_s_E _R_aL_M_-_s _sE_F _a_LM---'..'..) /....:.( d_lf..:.:R=aL= M.:._----=df_,F-=a=LM=) 
SSEFGLM/ df FGLM 

F= 164-52/23-21 =� 
52/21 2.476 

F(2,21) = 22.617 

(2.42) 

A convenient alternative to solving equation (2.40) in a single step is to construct an 
ANO VA summary table (Table 2. 7), similar to Table 2.3. As mentioned in Section 2.6, 

Table 2.7 ANOV A Summary Table for Full and Reduced GLMs 

Source SS df MS F p 
Error reduction due to 112.000 2 56.000 22.615 <0.001 

experimental conditions 
FGLM error 52.000 21 2.476 

Total (i.e., SSERGLM) 164.000 23 
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if the ANO VA is calculated by hand, or the statistical software used does not output the 
associated p-values, the table of critical F-values for ex= 0.25, 0.10, 0.05, and 0.01, 
provided in Appendix B may be employed. 

2.8.3 Regression GLMs 

The experimental design GLM equation (2. l 6) may be compared with an equivalent 
regression equation 

(2.43) 

where Yi is the dependent variable score for the ith subject, {30 is a constant, {31 is the 
regression coefficient for the first predictor variable X 1, {32 is the regression coefficient 
for the second predictor variable X2, and the random variable c;i represents error. No i 
subscript is applied to the regression coefficient parameters, as, in principle, they are 
common across subjects. Often, however, the subscript i is omitted from the predictor 
variables because although each subject provides a value for each variable X, this 
value is common across all of the subjects in an experimental condition. Equa
tion (2.43) describes multiple regression, rather than simple regression, because k = 2 
independent or predictor variables are employed, rather than one. Similar to the 
experimental design GLM, equation (2.43) is a summary of a set of equations, each 
describing a single dependent variable score. 

2.8.4 Schemes for Coding Experimental Conditions 

Dummy, effect, and contrast coding schemes are used to represent experimental 
conditions and other categories of data for GLM analysis. This is done by employing 
as predictors particular sets of quantitative variables that operate in established 
formulas to produce "categorical" analyses. Variables used in this manner also may 
be termed indicator variables. 

2.8.4.1 Dummy Coding 

The dummy coding scheme uses only 1 and 0 values to denote allocation to 
experimental conditions. (p - 1) variables are used and one condition (usually last 
in sequence-180 s), is given Os across all indicator variables and may be termed the 
base condition. The other conditions (30 and 60 s) are denoted by l s  rather than Os on 
variables X1 and X2, respectively. Table 2.8 illustrates the dummy coding of the 
example data from Table 2.2. 

Table 2.9 presents the ANOVA summary table output from statistical software 
when a regression ANOVA GLM is applied to the data presented in Table 2.2 when 
dummy, effect, or contrast coding schemes are applied. However, not all regression 
software provides such AN OVA summary tables and they may need to be constructed 
from the information provided about the overall regression applied to the data. Most 
regression software provides the multiple correlation coefficient (R), its square and an 
adjusted R

2 
value. R2 estimates the proportion of the dependent variable variance that 

can be attributed to the predictors, but unfortunately this statistic exhibits an 
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Table 2.8 Dummy Coding Representing Subject Allocation to Experimental Conditions 

Conditions Subjects X1 X2 Y 

sl 0 7 
30s 

s8 0 7 

s9 0 7 
60s 

s16 0 11 

s17 0 0 8 
180 s 

s24 0 0 12 

Table 2.9 ANOV A Summary Table Output From Statistical Software Implementing 

a Regression ANOV A GLM 

Source SS df MS F p 

Regression 112.000 2 56.000 22.615 <0.001 
Residual 52.000 21 2.476 

R: 0.826; R2: 0.683; adjusted R2: 0.653. 

overestimate bias. The smaller adjusted R2 attempts to eliminate this bias (see 

Pedhazur, 1997). Irrespective of the coding scheme employed, the same values are 

obtained for all of these estimates. 

When a regression ANOVA GLM employing dummy coding is applied to the data in 

Table 2.2, most statistical software provides the estimates presented in Table 2.10. The 

"Variable" column lists the multiple regression equation variables. The variable labeled 

"Constant" is the Y-axis intercept f30 and the variables X1 and X2 are the dummy coded 

predictor variables X 1 and X2 presented in Table 2.8. The "Coefficient" column provides 

estimates of the coefficients applicable to the predictor variables (i.e., /31 and /32) and the 

regression intercept f30• The "Standard Error" column provides estimates of the 

coefficient standard errors and the "Standard Coefficient" column presents estimates 

of the standardized regression coefficients. The" t" and "p (two tailed)" columns present 

t-statistics (some software provides F-statistics) and p-values of tests of the variable 

coefficients (tests of Coefficient and Standard Coefficient are equivalent), where 

Table 2.10 

Variable 

Constant 

X1 
X2 

Coefficient 
(= ----

Standard Error 

Output Pertinent to Multiple Regression Equation for Dummy Coding 

Standard Standard 

Coefficient Error Coefficient p (Two-Tailed) 

11.000 0.556 0.000 19.772 <0.001 

-5.000 0.787 -0.902 -6.355 <0.001 

-1.000 0.787 -0.180 -l.271 0.218 
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with dfe equal to the residual (error) term dfs. Predicted scores are given by 

(2.44) 

Only three experimental conditions are represented by the dummy coding scheme 

used, so in common with the experimental design GLM, there are only three different 
predicted scores-the means of the three experimental conditions. Substituting the 
pertinent X predictor variable dummy codes and the coefficients from Table 2.10 into 
the system of equations summarized by equation (2.44) provides the means of each of 
the three experimental conditions 

Y1=11 + (-5)(1) + (-1)(0) = 11-5 = 6 

Y2=11 + (-5)(0) + (-1)(1) = 11-5 = 10 

f3 = 11 + ( - 5)(0) + ( - 1 )(0) = 11 - 0 = 11 

The 180 s experimental condition is the base condition: the condition coded 0 on 
both dummy predictor variables. However, as this experimental condition is coded 0 
on both X1 and X2 dummy variables, it follows that 

and so 

In short, the variable labeled "Constant" in Table 2.10 is the Y-axis intercept, p0, 
which is equal to the mean of the base condition. Irrespective of balanced (i.e., equal 
numbers of subjects per condition) or unbalanced data, Po equals the mean of the 
base condition. Nevertheless, the t-test of the "Constant," p0, which assesses the null 
hypothesis that the mean of the 180 s condition equals 0, has no corollary in 
ANOVA. 

Equation (2.43) defines the mean of the 30 s experimental condition to be 

However, as 30 s experimental condition is coded 1 on dummy variable Xi. but is 
coded 0 on dummy variable X2, it follows that 

T herefore 
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and so 

This means that testing the coefficient /31 assesses the difference between the base 
condition-the 180 s experimental condition-and the condition coded 1 on predictor 
variable X1-the 30 s experimental condition. Table 2.10 presents at-test assessment 
of this coefficient, t(21) = -6.355, p < 0.001. 

Equation (2.44) defines the mean of the 60 s experimental condition to be 

However, as the 60 s experimental condition is coded l on dummy variable X2, but is 
coded 0 on dummy variable X1, it follows that 

/3X;,1 = 0 

T herefore 

Y2 = /30 + /32X;,2 

and so 

Consequently, testing the coefficient /32 assesses the difference between the base 
condition-the 180 s experimental condition-and the condition coded 1 on predictor 
variable X2-the 60 s experimental condition. Table 2.10 presents at-test assessment 
of this coefficient, t(2 l) = -1.271, p = 0.218. 

As described above, dummy coding sets the condition coded 0 on all predictors as a 
base or reference condition-the experimental condition that is compared to the other 
experimental conditions. This makes dummy coding ideal when all experimental 
conditions are to be compared with a control condition. (Of course, any condition can 
be coded as the base condition so, recoding and reanalyzing the same data with the 30 s 
or 60 s experimental conditions as the base condition can provide a comparison 
between the 30 s and 60 s experimental conditions.) 

2.8.4.2 Why Only (p -1) Variables Are Used to Represent 
All Experimental Conditions? 
When a regression equation represents ANOVA, the predictor variables identify 
allocation to experimental conditions and a parameter is associated with each 
predictor variable. However, rather than requiring p predictor variables to represent 
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Table 2.11 Dummy Coding Representing Subject Allocation to 
Experimental Conditions 

Conditions Subjects x, X2 X3 y 

sl 0 0 7 
30s 

s8 0 0 7 

s9 0 0 7 

60s 
s16 0 0 11 

sl7 0 0 8 

180s 
s24 0 0 12 

p experimental conditions, the ANOVA regression equation needs only (p- 1) 

predictor variables to represent all of the experimental conditions. This is why there 

are only two predictors in equation (2.43). Table 2.11 illustrates the dummy coding of 

the example data from Table 2.2 using p = 3 predictor variables, Xi. X2, and X3. 

Allocation to the 30 s experimental condition is denoted by l s  rather than Os on 

variable X1, allocation to the 60 s experimental condition is denoted by ls rather than 

Os on variable X2, and allocation to the 180 s experimental condition is denoted by l s  

rather than Os on variable X3. However, closer scrutiny of Table 2.11 reveals that three 

experimental conditions are represented even if variable X3 is eliminated. This is 

because allocation to the 30s and 60 s experimental conditions still is denoted by a l on 

variables X 1 and X2, respectively, but now only the 180 s experimental condition is 

denoted by a 0 on X1and a 0 on X2. Variable X3 is redundant for the unique 

specification of the three experimental conditions. Indeed, not only is variable X3 

redundant but it is also necessary to exclude it when regression formulas employ the 

indicator variables in a quantitative fashion. 

The reason why the particular (p- 1) predictor variables are used rather than p 

predictor variables has to do with the linear dependence of predictors. For example, 

consider the matrix A 

This matrix contains three rows, with each row corresponding to the coding over the 

predictors for an experimental condition in Table 2.11. However, in every regression 

GLM, a variable representing the constant, {30, also is used as a predictor. As every 

score is defined with respect to {30, every row contains a I in this predictor column 

indicating the involvement of {30 in defining the score. Therefore, the complete model 
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matrix (Kempthome, 1980) for the regression GLM is 

The matrix B also can be considered as four (predictor variable) column vectors. 

Different scalars (sn) can be associated with each column vector. 

Xo 

,, r : l · · r � i ,, [ i ,, r � i 
The column vectors are defined as linearly independent when the equation 

is satisfied only when all scalars equal zero. (Linear dependence exists if the equation 

is satisfied by a set of scalars that are not all equal to zero.) For matrix B, a set of 

scalars, some of which are not 0, can be found to satisfy this equation. For example, the 

product of the equation below is 0, but all of the scalars in the set applied are non zero. 

Therefore, the set ofX predictor column vectors are not linearly independent. Linear 

dependence occurs when one column vector (representing a predictor variable) is a 

linear function of one or more other column vectors (representing other predictor 

variables) in the matrix. When a matrix of column vectors are linearly dependent, the 

matrix is described as being singular. In the current example, linear dependence arises 

because the column vector representing the predictor variable X3 is included in the set 

of predictors. With X3 included, the predictor variable X0 is a linear function of all the 

others (Xo=X1 + X2 + X3). 
Linear dependency among predictor variables prevents a unique solution to the 

system of normal simultaneous equations upon which GLM parameter estimation is 

based. The solution cannot be unique because due to the relations between the 

predictor variables the same dependent variable variance can be attributed to more 

than one predictor variable. As there is nothing in the mathematical representation to 
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resolve this ambiguity, the mathematical operations fail. (The nature of this failure is 

most evident in the matrix algebra representation. The determinant of a matrix 

decreases as the correlation between predictor variables increases. When predictor 

variables are correlated perfectly, the determinant of a matrix equals 0, linear 
dependence exists and the matrix is labeled singular. Singular matrices have no 

inverse and as they cannot be inverted, the appropriate divisions to obtain estimates 

cannot be implemented.) However, simply eliminating the redundant predictor vari

able X 3 results in linear independence among the remaining predictors (X0, Xi. and X2) 

and allows a unique solution to the system of normal simultaneous equations. 

2.8.4.3 Effect Coding 

Effect coding operates very much similar to dummy coding, but rather than the "last" 
experimental condition being denoted by all indicator variables taking 0 values, it is 

denoted by all of these indicator variables taking the value minus 1. Effect coding for 
the example data in Table 2.2 is presented in Table 2.12. 

The ANOVA summary table output from statistical software when a regression 

ANOVA GLM is applied to the data presented in Table 2.2 using an effect coding 
scheme is presented in Table 2.9. Most statistical software also provides the estimates 
presented in Table 2.13. This table compares with Table 2.10, but with estimates based 

on effect coding. 
As with dummy coding, only three experimental conditions are represented by the 

effect coding scheme, so in common with the experimental design GLM, there are 

only three different predicted scores-the means of the three experimental conditions. 
Substituting the pertinent X predictor variable dummy codes and the coefficients from 
Table 2.12 into the system of equations summarized by equation (2.44) provides the 

means of each of the three experimental conditions 

Table 2.12 

Conditions 

30s 

60s 

180 s 

Y1=9 + ( - 3)(1) + (1)(0) 

Y2 = 9 + ( -3)(0) + (1)(1) 

=9-3 

=9-1 

=6 

= 10 

f3 = 9 + ( - 3)( - 1) + (1)( - 1) = 9 + 3 - 1=11 

Effect Coding Representing Subject Allocation to Experimental Conditions 

Subjects X1 X2 y 

sl 0 7 

s8 0 7 

s9 0 7 

sl6 0 11 

sl7 -I -I 8 

s24 -1 -I 12 
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Table 2.13 SYST AT Output Pertinent to Multiple Regression Equation for 

Effect Coding 

Standard Standard 
Variable Coefficient Error Coefficient p (Two-Tailed) 

Constant 9.000 0.321 0.0 28.019 <0.000 
X1 -3.000 0.454 -0.937 -6.604 <0.000 
X2 1.000 0.454 0.312 2.201 0.039 

The variable labeled "Constant" in Table 2.13 is the Y-axis intercept, /30. Similar to 

the experimental design GLM parameterµ, [30 with effect coding is the general mean 

of the experimental condition means. With balanced data, /30 is also the mean of all the 

dependent variable scores. However, with unbalanced data, /30 is not the mean of all 

dependent variable scores but remains the general mean of the experimental condition 

means (i.e., the unweighted mean of the experimental condition means). The 

significance test of "Constant" assesses the null hypothesis that {30 is equal to 0. 

(This test also can be regarded as an assessment the variation accommodated by the 

inclusion of the general mean, [30 or µ,but this requires a different definition of total 

variation to that presented here.) Some statistical software (e.g., BMDP) includes this 

test of the general mean in the ANOVA summary table. 

Equation (2.44) defines the mean of the 30 s experimental condition to be 

However, as the 30 s experimental condition is coded I on effect variable Xi. but is 

coded 0 on effect variable X2, it follows that 

Therefore 

and so 

This means that testing the coefficient [31 assesses the difference between µ and the 

condition coded I on predictor variable X1-the 30 s condition. As this difference is 

the effect of the 30 s experimental condition, testing /31 tests the effect of the 30 s 

experimental condition. Table 2.13 presents at-test assessment of {31, t(21) = -6.604, 

p < 0.001. 

Equation (2.44) defines the mean of the 60 s experimental condition to be 
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However, as the 60 s experimental condition is coded 1 on effect variable X2, but is 
coded 0 on effect variable X 1, it follows that 

Therefore 

and so 

Consequently, testing the coefficient {32 assesses the difference between µ and the 
condition coded 1 on predictor variable X2-the 60 s condition. As this difference is 
the effect of the 60 s experimental condition, testing {32 tests the effect of the 60 s 
experimental condition. Table 2.13 presents a t-test assessment of f31> t(2 l )  = 2.201, 
p<0.039. 

Unlike the 30s and 60 s experimental conditions, each of which is coded 1 on an 
effect predictor, the 180 s experimental condition is coded-I on both X1 and X2 
effect variables and so it is not possible to determine the effect of this experimental 
condition in the manner described for the other experimental conditions. Never
theless, it was stated in Section 2.8. l that ANOVA may be defined as the special 
case of multiple regression where experimental effects sum to zero. With balanced 
data 

(2.21, rptd) 

Given that two of the three effects are known and it is known that all effects sum to 
zero, it is a relatively simple to determine the effect of the 180 s experimental 
condition. 

If 0t:1 + 0t:2 + 0t:3 = 0, then 0t:3 = -Ot:1 - 0t:2 

With 0t:1 and 0t:2 identified already as -3 (30 s condition) and 1 (60 s condition), 
respectively, it follows that 

()(3 = - ( - 3) - 1 = 2 

and so the effect of the 180 s experimental condition is equal to 2. 
Effect coding defines each of the experimental condition means in terms of their 

difference fromµ. Therefore, the regression coefficient estimates equal the respective 
experimental design GLM Ot'.j parameter estimates (i.e., the effect estimates) in the 



50 TRADITIONAL AND GLM APPROACHES TO INDEPENDENT MEASURES 

experimental design GLM. It is this concordance that gives effect coding its name and 
probably explains why it is the most popular coding scheme. 

2.8.5 Coding Scheme Solutions to the Overparameterization Problem 

In Section 2.8. 1, AN OVA was described as the special case of multiple regression that 

includes the side condition that the experimental effects sum to zero, that is 

p 

�_)N;o:j) = 0 (2.22, rptd) 
j=I 

In fact, requiring experimental effects to sum to zero is equivalent to eliminating one 
of the parameters and redefining the condition previously specified by the eliminated 
parameter in terms of the other conditions. A more formal expression is 

p 

because L(1YjC!:j) = 0, 
j=I 

(2.45) 

The use of only p - 1 predictors, where the "last" experimental condition is defined 
as the negative of the sum of the remaining conditions (so that experimental effects to 
sum to 0) is effect coding. Therefore, the implicit consequence of the side condition 
that effects sum to 0 is made explicit in a regression ANOVA GLM using effect 
coding. Dummy coding does not result in experimental effects summing to 0, but 
instead redefines {30 and the (p - 1) experimental conditions in terms of p, the "last" 
experimental condition. Therefore, both effect and dummy coding schemes constitute 
reparameterization solutions to the overparameterization problem. 

2.8.6 Cell Mean GLMs 

Another solution to the experimental design GLM overparameterization problem is to 
apply a cell mean GLM. Although this approach is popular with some statisticians, so 
far it has had relatively little impact in psychology. 

Cell mean GLMs describe each dependent variable score as comprising the mean of 
the experimental condition plus error. The equation for this type of GLM is 

(2.46) 

In contrast to the experimental design GLM, which expresses experimental 
effects in terms of deviation from the constant µ, the only structure imposed upon 
the data by the experimental design cell mean model is that of the experimental 
conditions. (This feature of the experimental design cell mean model becomes 
more prominent with factorial designs.) As cell mean GLMs do not employ the 
parameter µ, there are only as many experimental condition means as there are 
parameters to be estimated. 
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Apart from solving the problem of overparameterization, the cell mean GLM 

affords another advantage. When overparameterized experimental design GLMs 

are used, it is possible to obtain a unique solution to the problem of estimating 

parameters by reparameterization or estimable function techniques (Searle, 1987). 

These methods of circumventing the overparameterization problem work well 

with balanced data, but with unbalanced data, they can result in ambiguous 

hypothesis tests. In contrast, irrespective of balanced or unbalanced data, when 

cell mean GLMs are applied there is never any ambiguity about which hypothesis 

is tested. 

2.8. 7 Experimental Design Regression and Cell Mean G LMs 

Experimental design GLMs offer a number of advantages for the analysis of 

experimental data beyond those offered by other GLM representations. Experiments 

almost always are conceived in terms of experimental effects-differences in mean 

performance across conditions due to the experimental manipulations. The experi

mental design GLM parameters provide explicit estimates of separate and interactive 

experimental effects in single and multifactor experiments, and also clearly present 

the estimates of the multiple error terms arising in related measures experimental 

designs, so facilitating the accurate assessment of experimental effects. (A more 

detailed account of the benefits of the experimental design GLM is provided by 

Maxwell and Delaney, 2004, pp. B23-B25). The merit of experimental design GLMs 

is supported by the notations employed by the computer programs NAG GLIM, NAG 

GENS TAT (developed from Wilkinson and Rogers, 1973), SYSTAT, MINITAB, and 

S AS, as well as by numerous authors (e.g. Kirk, 1995; Howell, 2010; Maxwell and 

Delaney, 2004; Mccullagh and Nelder, 1989; Searle, 1987, 1997; Winer, Brown, 

and Michels, 1991). 

The text also describes how to implement AN OVA using effect coding in regression 

GLMs. Implementing ANOVAs in such a manner using statistical software packages 

not only emphasizes the GLM nature of ANOVA, but it also provides a way of 

accessing the statistical software's regression diagnostics directly. Typically, regres

sion diagnostics will assess GLM assumptions (see Chapter 10) by applying some 

sophisticated techniques to analyse the regression (i.e., the GLM) residuals - the error 

term estimates. Nevertheless, even a cursory glance at the descriptions of the 

regression implementations of the various ANOVA designs illustrates the disparity 

between the experimental conception and the regression model depiction. As (p-1) 

predictor variables are required to represent a first factor, ( q-1) predictor variables are 

required to represent a second factor and (p-1) x (q-1) predictor variables are 

required to represent their interaction, the simple and explicit match between a GLM 

parameter estimate and an experimental effect is lost. 

In common with regression ANOVA GLMs, cell mean GLMs do not represent 

experimental main effects and interactions as simply and explicitly as experimental 

design GLMs. Due to the over parameterization of experimental design GLMs, the 

main advantage afforded by cell mean GLMs is the elimination of ambiguity over 

hypothesis tests with unbalanced data. This can be extremely useful, but this 
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advantage is lost with balanced data and here, it is argued that good practice in 

experimental design should ensure balanced data. 
Experimental design GLMs are employed throughout the present text to provide 

the benefits outline above. However, readers interested in regression GLMs in general 

and for ANOVA should consult Cohen et al. (2003), while readers interested in cell 

mean GLMs should consult Searle (1987). 



CHAPTER 3 

Comparing Experimental Condition 

Means, Multiple Hypothesis Testing, 

Type 1 Error, and a Basic Data 

Analysis Strategy 

3.1 INTRODUCTION 

In Chapter 2, traditional and GLM perspectives on the estimation of experimental 

effects and error terms for single factor independent measures ANOVA were 

described and the use of ANOVA summary tables-probably the most useful and 

effective way of presenting ANOVA results-was illustrated (Tables 2.3, 2.7, and 

2.9). Each perspective provided identical estimates of experimental effects and error 

terms and culminated in an F-test of the omnibus null hypothesis (Section 2.3.2). 
However, carrying out an omnibus ANOVA usually is only an early step in analyzing 

experimental data. A significant omnibus F-test informs us that there is a difference 

among the experimental condition means that is very unlikely to occur (p :S 0.05) if 

the null hypothesis is true. This is the basis for rejecting the null hypothesis and 

accepting the experimental hypothesis that the experimental condition means are not 

equal (i.e., the experimental manipulations exert an effect). However, when there are 

three or more experimental conditions, accepting the experimental hypothesis on the 

basis of a significant omnibus F-test says nothing about the location of the difference 

or differences between the experimental conditions. 

The sum of squares due to experimental conditions is the sum of a set of (p - 1) 

othogonal comparisons between experimental condition means. This key conception 

of the experimental conditions sum of squares is discussed in Section 3.5 and 

informs a number of topics presented in this and subsequent chapters. However, the 
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relationship between the sum of squares due to experimental conditions and the 
experimental condition means may be expressed more directly. 

Equation (2.28) defined the experimental conditions sum of squares as 

p 
Experimental conditions SS = L Nj (µj - µ) 2 

j=I 
(2.28, rptd) 

This describes the experimental conditions sum of squares as the sum of each 
difference between each experimental condition mean and the general mean, 
squared and then multiplied by the number of subjects in each experimental 
condition. As discussed in Section 2.8.2, the full experimental design GLM predicts 
each subject's dependent variable score to be the experimental condition mean. 
Therefore, equation (2.28) can be regarded as defining the experimental conditions 
sum of squares as the sum of each subject's (squared) deviation from the general 
mean. This reflects the extent to which being in a particular experimental condition 
shifts the subjects' scores away from the general mean they would have obtained if 
no experimental manipulation had been experienced. However, all of the shifts in 
subjects' scores due to the experimental conditions experienced are squared and 
summed and so no information about which experimental conditions cause what 
direction and size of subject score shifts is retained. 

Applying some algebra to equation (2.28) when there are equal numbers of subjects 
in each condition reveals that the experimental conditions sum of squares also can be 
defined as 

up 
N 

Experimental conditions SS = _}_ L (µ1 - µf )2 
p 

(3.1) 

where up is the number of unique pairs of experimental condition mean comparisons, 
where j and j' represent the particular experimental condition means involved in the 
unique pair comparisons. The number of unique pairs of comparisons is given by 

p(p - 1) 
up= 2 (3.2) 

For the experimental data presented in Table 2.2, the unique pairs of experimental 
conditions are presented in Table 3.1. 

These unique comparisons are also pairwise comparisons-----<:omparisons between 
the means of two individual experimental conditions (see Section 3.3 for a formal 
definition). Applying equation (3.1) provides 

Experimental conditions SS = � L ( 6 - 11 )2 + ( 6 - 10)2 + ( 10 - 11 )2 

�(42)=112 

Table 3.1 The Unique Pairs of Condition Comparisons in the Study Time Experiment 

30s vs. 60s 30 s vs. 180 s 60s vs. 180s 
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Therefore, the sum of squares due to experimental conditions is also the average of the 

differences between unique pairs of experimental condition means squared and 

summed. Again the differences over the unique comparisons of pairs of experimental 

condition means are squared, summed and averaged, so no information about which 

unique pair comparisons of experimental condition means cause what direction and 

size of difference is retained. 

The preceding paragraphs emphasize that although there are several conceptions 

and definitions of the sum of squares due to experimental conditions-all providing 

equivalent estimates-this estimate always is a composite of differences between 

experimental condition means. Of course, this is no accident, as the purpose of this 

ANOVA is to test the omnibus hypothesis that all experimental condition means are 

equal (see Section 2.8.2). However, it does have the consequence that after a significant 

omnibus AN OVA, further analyses are required to find out exactly where the difference 

or differences between the experimental condition means lie. In the following sections, 

the standard ANOVA approach to categorical differences between experimental 

condition means is presented. A GLM comparison approach to assessing differences 

between experimental condition means consistent with the comparison of full and 

reduced experimental design GLMs described in Section 2.8.2 is available (e.g., 

Maxwell and ,Delaney, 2004). However, the standard ANOVA approach also fits well 

with a GLM approach to ANOVA and is consistent with the form of presentation 

employed by the majority of articles and books in the multiple hypothesis testing 

literature. Therefore, the standard approach to assessing the differences between 

experimental condition means is employed here. Nevertheless, depending on the 

nature of their experimental hypotheses, some researchers may prefer to examine the 

linear and curvilinear relations (trends) between the experimental condition means (see 

Maxwell and Delaney, 2004; Keppel and Wickens, 2004, Kirk, 1995). 

3.2 COMPARISONS BETWEEN EXPERIMENTAL CONDITION MEANS 

As the conditions in a designed experiment are devised to address particular theoretical 

or practical research issues, pairwise comparisons between experimental condition 

means are likely to be of most interest because they specifically address these issues. 

However, it also may be appropriate to address some issues by comparing the average 

of a set of experimental condition means with either the mean of an experimental 

condition or the average of another set of experimental condition means. Such 

comparisons are termed nonpairwise (and sometimes complex) comparisons. Al

though nonpairwise comparisons involve means from more than two experimental 

conditions, the comparison still is made between two means-between the mean of an 

experimental condition and the average of other experimental condition means, or 

between the means of two separate sets of experimental condition means. As only two 

means are compared in both pairwise and nonpairwise comparisons, the numerator df 

always is equal to 1. Consequently, pairwise and nonpairwise comparisons are termed 

single df comparisons. 

Pairwise and nonpairwise comparisons can be illustrated with respect to the study 

time experiment described in Chapters 1 and 2. Here, it might be predicted that any 
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additional study time increases memory performance, in which case all three 
experimental condition means should differ and pairwise comparisons between 

the means would provide appropriate tests of the theoretical predictions. The three 

experimental conditions mean comparisons of interest are presented in Table 3.1. 

Bearing in mind that for the 30 s conditionj = 1, for the 60 s conditionj = 2, and for 

the 180 s condition j = 3, the three null hypotheses for these comparisons are 

Ho1: µ1 - µ2 = 0 

Ho2: µ1 - µ3 = 0 

H03: µ2 - µ3 = 0 

However, consider the prediction that the average of the memory performance 

observed after study times of 30 and 60 s will differ from the memory 

performance observed after 180 s study time. The null hypothesis for this nonpairwise 

comparison is 

3.3 LINEAR CONTRASTS 

Comparisons between experimental condition means can be expressed as linear 

combinations of the condition means with specified coefficients, c1, where one 

coefficient does not equal to 0 and all coefficients sum to 0. The general form of 

a linear contrast is 

where l/J; is the ith contrast between the µP experimental condition means. With 

respect to the study time experiment, the null hypotheses, Hoi. H02, and H03 can be 

expressed, respectively, as the linear contrasts 

The linear contrast 

l/11 = ( - 1)µ1 + (1)µ2 + (0)µ3 = 0 

l/12 = ( - 1)µ1 + (0)µ2 + (1)µ3 = 0 

l/J3 = (0)µ1 + (-1)µ2 + (1)µ3 = 0 

l/J4 = ( -0.5)µ1 + ( -0.5)µ2 + (1)µ3 = 0 

expresses the nonpairwise comparison null hypothesis H04. Which experimental 

condition means are assigned the negative and positive coefficients makes no real 

difference, but as it is easier to work with positive rather than negative numbers, it 
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usually makes sense to try to assign the negative coefficient(s) to the experimental 
condition(s) with the lower scores. 

Unlike the number of pairwise comparisons available in an experiment given by 
equation (3.2), when p � 3, an infinite number of nonpairwise comparisons can be 
expressed (see Kirk, 1995, p.115, for a useful illustration). Relative to the number of 
comparisons possible in any experiment where p 2: 3, only a small number are 
examined and all should be meaningful in terms of the theoretical or practical issues 
addressed by the experiment. 

3.4 COMPARISON SUM OF SQUARES 

To obtain the sum of squares for a linear contrast, the estimated linear contrast, � ; . is 
obtained by substituting the population means, µ1 with their estimates, the experi
mental condition sample means, Y1. 

(3.3) 

The linear contrast sum of squares is given by 

(3.4) 

where N1 is the number of subjects per experimental condition, �; is the contrast 
or difference between the two experimental conditions being compared and I: cJ 
is the sum of the squared coefficients. Equations (3.3) and (3.4) are applied to 
determine the sum of squares for the linear contrasts ljJ 1 and ljJ 4 in the study time 
experiment. 

ljJ I = ( - 1) µI + ( 1 ) µ2 + ( 0) µ3 = ( - 1 ) 6 + ( 1) 10 + ( 0) 11 = - 6 + lO + 0 = 4 

Therefore 

�2 2 
ss� = 

N11/l; = (8)(4) 
= 

128 
= 64 

I/I; I:cJ ( -1)2 
+ (1)2 

+ (0)2 2 

One df is associated with SSf;, so the mean square for the contrast 

MS� = ssl/I, = 
64 

= 64 
1/11 1 1 

and so 

MSl/I, 64 
F(l 21) = -- = -- = 25.848 ' MSe 2.476 
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t/J4 = ( -0.5)µ1 + ( -0.5)µ2 + (1)µ3 = ( -0.5)6 + ( -0.5)10 + (1)11 
=-3-5+11=3 

Therefore 

and so 

�2 2 
SS� =Nil/Ji = (8)(3) 

= 

72 
= 48 

i/14 L,cJ ( -0.5)
2 + ( -0.5)2 + (1)

2 1.5 

F =
MSi/I, 

=
�

= (1.21) MSe 2.476 
19.386 

Statistical packages usually have the capability to provide the p-value associated 
with a F-value with specified numerator and denominator dfs. Alternatively, the table 
of critical F-values presented in Appendix B can be consulted. 

3.5 ORTHOGONAL CONTRASTS 

The linear independence of regression predictors was discussed in Section 2.8.4.2. 
Linear independence refers to nonredundant information, but orthogonality refers to 
nonoverlapping information. Therefore, orthogonality is a special, more restricted 
case of linear independence (Rodgers, Nicewander, and Toothaker, 1984). Two 
contrasts are orthogonal when the information used in one contrast is completely 
distinct from the information used in the other contrast(s). Contrasts are defined as 
orthogonal if the sum of the products of the coefficients for their respective elements is 
0 and not orthogonal if it is anything other than 0. This method simply defines whether 
or not contrasts are orthogonal-it provides no information on the degree of relation 
between the contrasts. Given p groups, there are only (p -1) orthogonal contrasts 
available in any set of contrasts. However, when p 2 3, there are an infinite number of 
different sets of (p -1) orthogonal contrasts available. Consider the set of contrasts If; 1 

and t/12 

"11 = ( -1)µ1 + (1)µ2 + (0)µ3 

"12 = ( -1)µ1 + (0)µ2 + (1)µ3 

The coefficients for these contrasts are 

1/11 = -1 +I+ 0 

"12 = -1 + 0 + 1 
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the products of the I/I 1 x l/J2coefficients for their respective elements are 

1/11 x 1/12 = ( -l)( -l) + (l)(O) + (O)(l) 

and the sum of these contrasts is 

As the sum is not equal to 0, the two contrasts in this set are not orthogonal. Now 
consider the linear contrasts 

1/11 = ( -l)µi + (l)µz + (0)µ3 

1/14= (-0 .5)µ1 + (-0.5)µ2 + (1)µ3 

The sum of the products of the I/I 1 x I/I 4 coefficients is 

L 1/11 x 1/14 = ( -l) ( -0.5) + (1) ( - 0.5) + (0) (1) 

= (0.5) + ( -0.5) + (0) 

=0 

As the sum is equal to 0, these linear contrasts are orthogonal. 
The I/I 4 linear contrast can be assessed in exactly the same fashion as described for 

the I/I 1 linear contrast in Section 3.4. However, an alternative way to implement 
orthogonal contrasts is to employ the linear contrast coefficients in the manner of 
dummy and effect codes. Such an orthogonal coding scheme for the experimental data 
in Table 2.2 is presented in Table 3.2. Notice that each predictor variable implements a 
particular linear contrast. 

Table 3.2 Orthogonal Coding Representing Subject Allocation to 
Experimental Conditions 

Conditions Subjects X1 (1/11) X2(l/f4) y 

sl -1 -0.5 7 
30s 

s8 -1 -0.5 7 

s9 -0.5 7 
60s 

sl6 -0.5 11 

sl7 0 8 
180s 

s24 0 12 
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Table 3.3 Output Pertinent to Multiple Regression Equation for Orthogonal Coding 

Variable 

Constant 
X1 
X2 

Coefficient 

9.000 
2.000 
2.000 

Standard 
Error 

0.321 
0.393 
0.454 

Standard 
Coefficient p (Two-Tailed) 

0.000 28.019 <0.000 
0.625 5.084 <0.000 
0.541 4.403 <0.000 

Irrespective of the set of orthogonal contrasts used, when a regression AN OVA GLM 
employing orthogonal coding is applied to the data in Table 2.2, the omnibus ANOVA 
always is equivalent to that obtained by all other approaches (see Tables 2.3, 2.7 and 2.9). 
Most statistical software packages also provide the estimates presented in Table 3.3. 

As with dummy and effect coding, only three experimental conditions are 
represented by the orthogonal coding scheme, so only three different scores are 
predicted-the means of the three experimental conditions. Substituting the perti
nent predictor variable orthogonal codes and regression coefficients from Table 3.3 
into equation (2.44) provides the means of each of the three experimental conditions 

Y1 = 9 + (2)( - l) + (2)( -0.5) = 9-2- l = 6 

Y2 = 9 + (2)(1) + (2)( -0.5) = 9 + 2-1 = I O  

f3 = 9 + (2)(0) + (2)(1) = 9 + 0 + 2 = 1 1  

T h e  variable labeled Constant, the Y-axis intercept, f30, reflects the general mean of 
the dependent variable scores. Therefore, only with balanced data does /30 under 
orthogonal coding provide an estimate of the experimental design GLM parameter 
µ-the general mean of the experimental condition means. As with effect coding, the 
significance test of this variable assesses the null hypothesis that /30 equals 0. With 
balanced data, this test is equivalent to a test of f30 with effect coding (see Section 
2.8.4.3 for further discussion of this test), but this test has no AN OVA corollary when 
data are unbalanced. 

Under orthogonal coding, the tests of the coefficients /31 and /32 have simple 
interpretations: each assesses the linear contrast coded by the predictor linear contrast 
coefficients. As indicated in Table 3.2, predictor X1 codes the linear contrast �1 and 
predictor X 2 codes the linear contrast � 4• T herefore, tests of the /3 1 and /32 regression 
coefficients provide direct tests of the � 1 and � 4 linear contrasts. Both t-tests of these 
coefficients indicate significant linear contrasts. Indeed, as 

t(df) = F(l,df) (2.1,rptd) 

it is a simple matter to show that the t-values associated with the /31 and /32 regression 
coefficients for predictors X1 and X2' respectively, are equivalent to the F-values 
associated with the linear contrasts � 1 and � 4 presented at the end of Section 3.4 

For /31 : t = ( -5. 084) 2 
= 25. 848 = F;;;; 

For /32: t = (4.403)2 
= 19.386 =Ff. 
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The total sum of squares for these two orthogonal contrasts is equal to the study 
time experiment omnibus ANOVA sum of squares (SSf, = 64 + SS,i;: = 48 = 

Experimental Conditions SS = 112). This demonstrates that the omnibus ANOVA 
experimental conditions sum of squares is equal to the sum of squares for the contrasts 
in a complete orthogonal set. This equality is reflected in the experimental conditions 
dfs-the set of (p - 1) orthogonal contrasts. The equality is a consequence of the fact 
that all comparisons between p means can be constructed from (p - l) orthogonal 
contrasts and the ANOVA test of the omnibus null hypothesis is equivalent to a 
simultaneous test of the null hypothesis that all possible contrasts among the p means 
are equal to 0. 

If the two orthogonal contrasts � 1 and � 4 sum to the experimental conditions sum 
of squares, then any other contrast will reuse variance already attributed to the � 1 and 
� 4 contrasts. Does this mean that only orthogonal contrasts should be examined? The 
answer to this question is emphatically no. Although there should be economical use 
of nonorthogonal contrasts, it is agreed that research issues and not the orthogonality 
of comparisons should determine which hypotheses are tested (e.g., Howell, 2010; 

Keppel and Wickens, 2004; Kirk, 1995; Maxwell and Delaney, 2004; Myers, Well, 
and Lorch, 2010; Winer, Brown, and Michels, 1991 ). So why do statistics texts 
devote so much space to orthogonal contrasts? Well, the distinction between 
orthogonal and nonorthogonal contrasts is important for understanding the nature 
of the variance attributed to experimental conditions in ANOVA, as well as 
understanding how this variance is used to assess different hypotheses. Orthogonal 
comparisons employ non-overlapping information, but across nonorthogonal com
parisons, information used in one comparison is used again in another comparison. 
There are only (p- 1) ways in which the experimental conditions can differ and so, 
nonorthogonal comparisons simply express the orthogonal comparisons in an 
alternative fashion. Kirk ( 1995, p. 118) provides an excellent illustration of this. 
Consider the three comparisons 

t/Jo1 : µI - µ2 

t/J02 : µ1 - µ3 

t/J03 : µ2 - µ3 

However, note that the comparison tf;03 also can be obtained from the comparisons 1/101 
and lf;02 

This demonstrates that although the way in which comparison 1/103 is expressed 
suggests new information is involved, in fact, exactly the same information is 
involved in comparison lf;03 as is involved in comparisons 1/101 and 1/102. 

Orthogonal contrasts maintain in data analytic terms the conceptual and logical 
distinctions between hypotheses and provide an unambiguous breakdown of the 
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variance attributed to the experimental conditions in ANOVA. This simplifies the 
relationship between hypotheses and data, and facilitates interpretation of the hypoth

eses. However, another reason for considering the orthogonality of contrasts is its 

relevance for multiple hypothesis testing described below. 

3.6 TESTING MULTIPLE HYPOTHESES 

Different hypotheses are tested when different experimental condition means are 

compared. So, when multiple comparisons are carried out, multiple hypotheses are 

tested. Research in this area is driven by three awkward facts-as the number of 

hypothesis tests increases so does the Type I error rate, but controlling the Type 1 error 

rate reduces analysis power and controlling the Type I error rate too strictly can 

reduce analysis power substantially. Multiple hypothesis testing research might be 

characterized as the study of these problems and how to deal with them. 

Fisher ( l 935b) was one of the first to present multiple hypothesis testing procedures 

(Fisher's LSD and the Bonferroni procedure), but multiple hypothesis testing research 
appeared in fits and starts until the 1980s (Harter, 1980), when it began to receive 

greater sustained attention from statisticians in experimental, clinical, and epidemi

ological research (e.g., Shaffer, 1995). More recently, most research on this topic has 

cohered around the Closure Principle (Marcus, Peritz, and Gabriel, 1976). A family of 
hypotheses is closed if the family includes all the hypotheses that intersect with these 

hypotheses (e.g., Westfall et al., 1999). For example, consider the omnibus hypothe

sis, A= B = C. A number of hypotheses are implied or intersect with this omnibus null 

hypothesis. These include the three pairwise hypotheses: A= B, A= C, and B = C. A 

closed procedure applied to these three pairwise comparison tests would allow 

rejection of one or more of the three pairwise tests only if the omnibus hypothesis 

also was rejected. 

Developing an understanding of the multiple hypothesis testing literature is 

difficult for a number of reasons. First, multiple hypothesis testing research provides 

a large and complex literature and too much still is confined to mathematical and 

statistical journals. More accessible accounts of key developments in the multiple 

hypothesis testing literature would be extremely beneficial for those researchers 

expected to apply the contemporary techniques, but who possess expertise in the 

application areas rather than in mathematical statistics. Ironically, researchers 

working in clinical and epidemiological research opposed to controlling Type l 
error when multiple hypotheses are tested (e.g., Aickin, 1999; Pemeger, 1998; 
Rothman, 1990; Saville, 1990; Savitz and Olshan, 1995, 1998) have succeeded in 

making their arguments accessible to a less mathematically sophisticated audience. 

T his achievement seems to be under appreciated by some of those advocating Type 1 
error rate control (e.g., Bender and Lange, 2001). Another impediment to developing 
an understanding of this literature is a lack of consistent terminology for more than 30 

different multiple hypothesis testing procedures (Kirk, 1995), as weII as inconsistent 

and sometimes contradictory recommendations about which multiple hypothesis 

testing procedures should be applied in which circumstances (Keppel and Wickens, 
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2004; O'Neil and Wetherill, 1971; Pedhazur, 1997; Preece, 1982; Toothaker, 1991). 

More recently, genetics and brain imaging research have joined those areas whose 

needs drive multiple hypothesis testing research, with the result that the large, 

complex, and demanding literature on multiple hypothesis testing is beginning to 
separate according to application area (e.g., Dudoit, Shaffer, and Boldrick, 2003; 

Farcomeni, 2008; Turk et al., 2008). 

The focus here is the approach to multiple hypothesis testing in experimental 

psychology (e.g., Keppel and Wickens, 2004; Keselman, Holland, and Cribbie, 

2005; Kirk, 1994; Shaffer, 1995). Although multiple hypothesis testing in 

experimental psychology exhibits some coherence, there is still variation in 

approaches and recommendations. Both aspects should be apparent in the follow

ing sections. First, Type 1 and Type 2 error rates, different approaches to these 

error rates, and the nature of the Type 1 error rate inflation due to multiple 

hypothesis testing are described, as are different conceptions of Type l error rate 

and current definitions of what constitutes a family of hypotheses. This is followed 
by discussion of logical and empirical relations among hypotheses, and the place 

of planned and unplanned comparisons. Subsequently, there is consideration of 

which of the many different multiple hypothesis test procedures available are most 

appropriate and powerful, and finally, a general strategy for analyzing experi

mental data is outlined. 

3.6.1 Type 1 and Type 2 Errors 

A Type l error occurs when a true null hypothesis is rejected. For a Type I error 

to be committed, two events need to occur together-the null hypothesis must be 

true (i.e., the effect does not exist in the population) and the null hypothesis must 

be rejected. A Type 1 error cannot occur if the null hypothesis is false (i.e., the 

effect exists in the population). As described in Section 2.3, an F-statistic 

(representing the effect) is calculated from the data. Comparing this F-statistic 

with the appropriate F-distribution provides the probability of obtaining an 

F-value equal to or greater than that calculated when the null hypothesis is 

true. This provides the probability of observing the effect observed when the null 

hypothesis is true. When the probability of observing an effect when the null 
hypothesis is true is sufficiently low, the null hypothesis can be rejected and the 

experimental hypothesis accepted. T he probability point at which it is deemed 

reasonable to reject the null hypothesis is given by the significance level, a. 

Therefore, when a= 0.05, the probability of rejecting a null hypothesis when the 

null hypothesis is true= 0.05. In other words, when the null hypothesis is true, 

the a and the Type 1 error rate are different descriptions of the same criterion 
point (see Figure 2.1). 

A Type 2 error occurs when a false null hypothesis is accepted. For a Type 2 error to 

be committed, two events need to occur together-the null hypothesis must be false 
(i.e., the effect exists in the population) and the null hypothesis must be retained. 

A Type 2 error cannot occur if the null hypothesis is true (i.e., the effect does not exist 

in the population). 
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Scientists generally regard Type 1 errors as more serious than Type 2 errors. This is 

because a Type 1 error identifies a false effect that can misdirect theory development 

and empirical effort, and requires empirical and theoretical effort to remedy. In 

contrast, when a Type 2 error is made, although a real effect is missed, no misdirection 

occurs and further experimentation is very likely to reveal the effect. T he replication 

of study findings is a key requirement in science and so further experimentation on a 

topic always is likely, especially if the issue is relevant to theory development or has 

important practical relevance (e.g., Bakan, 1966; Clark, 1976). 

The convention in most scientific disciplines is to set a= 0.05. In the classic 

statistical conception, where one test is applied to experimental data, this has the 

consequence of setting the probability of a Type I error= 0.05. The contemporary 

setting of Type 2 error rates owes most to Cohen (1969, 1988, l 992a,b ), who 

argued that researchers should invest as much time and effort ensuring the study 

is able to detect the effect under examination as they spend ensuring they will not 

erroneously report a false effect. In other words, it also makes sense to try and 

minimize the likelihood of a Type 2 error. Cohen defines power as the probability 

of correctly rejecting a false null hypothesis when an experimental hypothesis 

is true 

Power = (I - /3) (3.5) 

where /3 is the Type 2 error rate. Cohen (e.g., 1988) recommends high analysis power 

and his examples indicate a power level of 0.8 is appropriate. When this level of 

power is achieved, equation (3.5) reveals the probability of a Type 2 error= 0.2. 

Setting Type I error rate= 0.05 and /3 = 0.2 confirms that Type 1 errors are regarded 

as more serious than Type 2 errors. 

Another influence on the setting of Type I and 2 error rates is the exploratory or 

confirmatory nature of the study and its data analysis. foreskog (1969) and Tukey 

( 1977) were among the first to distinguish between exploratory and confirmatory data 

analysis. Tukey demonstrated how a variety of procedures, particularly graphical 

procedures, could be used in an exploratory fashion to facilitate and improve 

confirmatory analyses. Since then the concept of exploratory data analysis has 

developed and now the exploratory label can extend to the nature of a study. 

Essentially, confirmatory study and data analysis is about confirming (or rejecting) 

hypotheses derived from theory, as is emphasized in this text, whereas exploratory 

study and data analysis is about exploring the data to outline interesting relationships. 

Exploratory and confirmatory studies may employ the same statistical procedures. 

However, in confirmatory studies, the emphasis is on minimizing Type 1 error, while 

ensuring Type 2 error is held at a level low enough to ensure sufficient power, whereas 

exploratory studies emphasize the minimization of Type 2 rather than Type 1 errors. 

Consequently, in exploratory studies the Type I error rate usually is substantially 

above the established discipline level and so these exploratory study results cannot be 

used to assess theory. Nevertheless, exploratory studies can provide useful insights 

and some indication as to the value of investigating the issues further by conducting 

confirmatory studies and analyses (e.g., Jaeger and Halliday, 1998). 
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The focus here is on Type errors due to rejecting null hypotheses about the 
equivalence of means, but it is worth mentioning that Type 1 errors can be made in 
many other situations. For example, if a null hypothesis concerning a linear relation
ship between two quantitative variables is rejected, then a Type 1 error is possible. 
Indeed, whenever inferences are generalized from samples to populations, Type 1 

errors are possible and just as likely when mean differences are assessed using 
confidence intervals (e.g., Feise, 2002; Hochberg and Tarnhane, 1987), or when 
graphical procedures or any other informal procedures are applied to data and 
inferences are drawn (e.g., see Section 10.5). 

3.6.2 Type 1 Error Rate Inflation with Multiple Hypothesis Testing 

When one statistical test is applied to a data set, under the null hypothesis, the chosen 
significance level (a) determines the Type 1 error rate. For example, if a= 0.05, then 
the Type 1 error rate= 0.05 and the probability of avoiding a Type 1 error= 
( 1 -0.05). However, if three tests are carried out, then avoiding a Type 1 error 
requires that each of the three tests avoids a Type 1 error. If the three tests are 
independent (i.e., orthogonal), then the probability of avoiding a Type 1 error across 
all of the tests is equal to the joint probability of all three (Type 1 error avoided) 
events occurring together. Therefore 

Pr(No Type l errors) = (1-0.05) (1-0.05) (1-0.05) = 0.857 

In more general terms 

Pr(No Type 1 errors) = ( 1 -a)" (3.6) 

where a is the significance level and c is the number of independent tests or 
comparisons over which the Type 1 error rate applies. Equation (3.6) gives the 
probability of no (i.e., zero) Type 1 errors. The probability of at least one Type 1 error 
occurring when a number of hypotheses are tested is given by 

Pr(At least one Type 1error)=1-(1-a)c (3.7) 

Therefore, when a= 0.05 and c = 3, the probability of at least one Type 1 error 
occurring is 

Pr(At least one Type 1error)=1 - (0.857) = 0.143 

There is considerable difference between the probability of a Type 1 error of a single 
test (0.050) and the probability of at least one Type 1 error when c = 3 tests are applied 
(0.143). The cause of this Type I error rate inflation when multiple hypotheses are 
tested is the accumulation of the Type 1 error rates of each of the c individual 
hypothesis tests. Equation (3.7) describes the manner of accumulation of these 
individual hypotheses Type 1 errors. 
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The account of Type 1 error rate presented above assumes orthogonal tests of 
hypotheses. However, when tests are not orthogonal, equation (3.6) underestimates the 
probability of avoiding a Type I error and equation (3. 7) overestimates the probability 
of at least one Type I error occurring. Unfortunately, when hypothesis tests are related, 
the Type 1 error rate also depends on the correlation structures of the tests. As no 
simple formulas exist to estimate Type 1 error rates in these circumstances, nearly all 
discussions assume independent tests of hypotheses and accept that the Type 1 error 
rate will be lower in circumstances where tests of hypotheses are related. 

3.6.3 Type 1 Error Rate Control and Analysis Power 

Equation (3.7) describes how Type 1 error rate accumulates as the number of 
hypothesis tests increase with result that the probability of falsely rejecting any of 
these null hypotheses is greater than that set by the conventional Type 1 error rate. 
Researchers usually want to maintain the conventional low levels of rx and Type 1 error 
rate. To control the increase in Type 1 error rate due to multiple hypothesis testing (i.e., 
retain the conventional 0.05 levels) requires the probability point at which a true null 
hypothesis is rejected to be made more stringent. Of course, as this probability point is 
also that at which it is deemed reasonable to reject the null hypothesis (i.e., rx), 
lowering the probability of a Type 1 error makes rejecting the null hypothesis less 
likely (i.e., the rx p-value is reduced) and so the power of the statistical test is 
diminished. 

One of the first methods proposed to control the Type 1 error rate inflation due to 
multiple hypothesis testing was the Bonferroni adjustment. The Bonferroni adjust
ment is also known as Dunn's procedure. Although the inequality was presented by 
Boole (1854, see Seneta, 1993), Bonferroni (1936) is credited with providing the 
mathematical proof, but, after Fisher ( l 935b ), Dunn ( 1961) was the first to apply the 
inequality to multiple hypothesis testing. T he inequality 

1 - ( 1 - rx t ::::: c( rx) (3.8) 

when rx is between O and 1, states that the probability of independent events occurring 
together cannot be greater than the sum of their individual probabilities. Therefore, 
the sum of the individual event probabilities sets an upper limit on the probability of 
these joint events. Comparing equations (3.7) and (3.8) reveals that the probability 
of independent joint events, 1 - (1 - rx/, equals the probability of at least one Type 1 
error occurring. In short, the probability of rejecting at least one of c null hypotheses 
when all null hypotheses are true cannot be greater than c(rx). Therefore, when c 
hypotheses are tested at rx, setting what will be called a nominal rx maintains 
the actual rx. T he Bonferroni adjustment describes how to obtain the Bonferroni 
nominal rx (Bnrx) 

(3.9) 

Testing and rejecting each of the set of c null hypotheses only when the probability of 
obtaining an effect :::::Bnrx ensures that the probability of a Type 1 error cannot be 
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greater than a. For example, applying equation (3.9) when three hypotheses are tested 
at a= 0.05, provides 

Cl. 0.05 
Bnr:t. = � = -

3
- = 0.01667 

Therefore, when three hypotheses are tested and the Bonferroni adjustment is applied, 
setting nominal r:t = 0.01667 for each of the three tests provides a set of three tests over 
which the actual r:t and Type 1 error rate= 0.05. 

Subsequently, Sidak (1967) suggested using the specific relationship described in 
equation (3.8) to provide a more exact and slightly less conservative nominal r:t, which 
will be termed S0r:1.. (Dunn did not address the Sidak inequality, but due to the link 
with the Bonferroni inequality, the Sidak adjustment sometimes is known as the 
Dunn-Sidak adjustment.) 

S0t1. = 1-(1-r:t.)1/c = 1-\1(1-r:t) (3.10) 

Applying equation (3.10) when three hypotheses are to be tested at an actual r:t = 0.05, 
provides 

S0t1. = 1 - \/(1 - 0.05)= 1 -0.98305 = 0.01695 

T herefore, when three hypotheses are tested and the Sidak adjustment is applied, 
setting a nominal significance level of 0.01695 for each of the three tests provides 
a set of three tests over which the actual r:t and Type 1 error rate= 0.05. In this 
situation, the Sidak adjustment provides a slight advantage. As S0t1. > B0r:1., the S0t1. 
sets a less stringent criterion for significance and so, more hypotheses will be 
rejected using the Sidak adjustment than the Bonferroni adjustment. 

Although the difference between Bonferroni and Sidak adjustments increase as c 

increases, to detect these differences requires the probabilities to be calculated beyond 
three decimal places. Given this relatively slight difference, there is much to be said 
for the simplicity of the Bonferroni adjustment. 

The Bonferroni adjustment also offers another advantage. The Bonferroni nominal 
r:ts sum to the actual r:t and Type 1 error rate. Therefore, provided the nominal r:1.s and 
Type 1 error rates per hypothesis also sum to the actual Type 1 error rate desired, 
different nominal r:1.s can be allocated to each hypothesis depending on the power 
desired to assess each hypothesis. For example, if one hypothesis had much more 
theoretical relevance than the other two (which were equally relevant), greater power 
could be achieved with respect to rejecting this hypothesis with B0t1. = 0.03. The other 
two theoretically less important hypotheses could be assessed with B0t1. = 0.01. 
Nevertheless, as the sum of the three B0r:1.s (0.03 + 0.01 + 0.01) = 0.05, the actual 
Type 1 error rate is maintained at �0.05. 

It should be borne in mind that as the Bonferroni and Sidak adjustments are based 
on inequalities, the actual Type 1 error rates could be much lower than those 
estimated. Bonferroni and Sidak adjustments also assume the c hypothesis tests are 
orthogonal, so their adjustments will be too conservative when hypothesis tests are 
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related. Bonferroni and Sidak adjustments are calculated and then applied to all 
hypothesis tests, so they are termed simultaneous or single-step methods. Never

theless, most of the criticism directed at multiple hypothesis testing Type I error rate 

control is really criticism of the conservative nature (i.e., low power) of Bonferroni 
and Sidak adjustments (e.g., Bender and Lange, 1999; Pemeger, 1998). However, 

more powerful methods for testing multiple hypothesis have been developed and 

some are presented later in this chapter. 

3.6.4 Different Conceptions of Type 1 Error Rate 

One of the main questions in multiple hypothesis testing is over which hypothesis tests 
should Type I error be controlled? Three approaches to organizing Type l error 

control over hypotheses have been proposed. These approaches differ in the way they 

organize hypotheses into the groups over which Type 1 error control is exerted. At the 
conservative extreme is experimentwise Type 1 error rate and at the liberal extreme is 

testwise or per comparison Type 1 error rate. Between these two extremes lies the 
notion of familywise Type 1 error rate. 

Consider the experiment described in Chapter 2 with three experimental condi

tions. A single factor ANOVA applied to the data from this experiment provides a 
significant F-test and so, the omnibus null hypothesis of equal means is rejected. The 
next question is which experimental condition means differ? Applying equation (3.2) 
reveals that with three experimental conditions, there are three unique pairs or 

pairwise comparisons 

p(p- l) 
up= 

2 

3(3-1) 6 
= =-=3 

2 2 

(3.2 , rptd) 

The three unique pairwise comparisons are (1) 30 s versus 60 s, (2) 30 s versus 180 s, 
and (3) 60 s versus 180 s. We shall assume that the experimenter has interest on! y in 

the three hypotheses tested by these three pairwise comparisons. 

3.6.4.1 Testwise Type 1 Error Rate 

Testwise Type 1 error rate is defined individually for each hypothesis test. This means 

that c = 1, as the Type 1 error rate is controlled over each individual hypothesis test. 
Applying equation (3.7) when 11. = 0.05 provides 

Pr( At least one Type I error) = 1 -( 1 -11. )" 

1-(1-0.05)1 

0.05 
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Under the testwise conception, each hypothesis is tested alone, at the conventional 
alpha and Type 1 error rate levels, usually with both alpha and Type I error 
rate= 0.05, irrespective of the number of hypotheses actually tested. Essentially, 
the testwise conception ignores the effect of testing other hypotheses on the Type 1 
error rate. Statistical tables and the p-values typically reported by statistical 
software are based on the assumption that a single hypothesis test is applied to 
the data. For convenience, this can be called the classic statistical conception. 
Employing testwise Type 1 error rate applies the classical statistical conception to 
each test when multiple hypotheses are tested. Unfortunately, it is very likely that 
testwise Type I error rate is adopted unknowingly by many users in multiple 
hypothesis testing situations due to an unwarranted belief in the relevancy and 
accuracy of statistical software. 

3.6.4.2 Familywise Type 1 Error Rate 
Familywise Type 1 error rate is defined over specified groups or families of hypotheses. 
The notion of a family of hypotheses was introduced by Tukey (1953, and until Braun, 
1994, this was an unpublished, but much distributed manuscript). Under this concep
tion, control of Type 1 error rate is exerted across each family of hypotheses. For 
example, in the study experiment described above, the experiment may have been 
conducted to test a main hypothesis manifest in the comparison of the 30 s versus 180 s 
experimental conditions. Subsequently, ancillary hypothesis are tested by the 30 s 
versus 60 s and the 60 s versus 180 s experimental condition comparisons. This 
theoretical perspective provides two families of hypotheses. The first family comprises 
the single hypothesis tested by the planned comparison of the 30 s versus 180 s experi
mental conditions. The second family comprises the two unplanned hypothesis tests 
assessed by comparing the 30 s versus 60 s and the 60 s versus 180 s experimental 
conditions. Applying equation (3.3) separately to each family provides the Type 1 error 
rate per family. For the first family, c = 1, as the Type 1 error rate is controlled over 
the single planned hypothesis test. Applying equation (3. 7) provides 

Pr(At least one T ype 1 error)=1 -(1- ex)" 

1-(1-0.05)1 

0.05 

This is identical to the testwise situation where Type I error rate is controlled 
separate! y over single hypotheses. For the second family of hypotheses , c = 2, as the 
Type 1 error rate is controlled over the two unplanned hypothesis tests. Applying 
equation (3.7) provides 

Pr(At least one Type 1 error)=1 -(1 -ex)" 

1 - (1 -0.05)2 

0.098 
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3.6.4.3 Experimentwise Type I Error Rate 

Experimentwise Type 1 error rate is defined and controlled over all of the hypotheses 
tested in an experiment. In the hypothetical experiment, a total of three hypotheses 

were tested, so c = 3. Applying equation (3.3) provides 

Pr( At least one Type 1error) =1 - (1 - at 

1 - (1 - 0.05)3 

0.143 

The testwise, familywise, and experimentwise conceptions Type 1 error rate 
control demonstrate that Type 1 error rate increases with the number of hypotheses 
over which the error rate is defined. In consequence, testwise Type 1 error rate control, 

operating over individual tests of hypotheses, always provides the smallest Type 1 
error rate. Testwise Type 1 error rate is equal to the a level chosen (usually 0.05). 
Familywise Type 1 error rate always will be greater than the testwise Type 1 error 
rate-provided the family contains more than one hypothesis. Provided a family of 
hypotheses contains fewer than all of the hypotheses tested over the whole experi
ment, the familywise Type 1 error rate always will be less than the experimentwise 
Type 1 error rate. The experimentwise Type 1 error rate is al ways greater than testwise 

and familywise Type 1 error rates. The only exception to this is when the set of 
hypotheses tested over the whole experiment is defined as the hypotheses family (see 

below). In these circumstances, experimentwise and familywise Type 1 error rates 
will be equivalent. 

3.6.4.4 False Discovery Rate 

T he false discovery rate (FDR) is a relatively new and different conception of error 

rate proposed by Benjamani and Hochberg (1995, 2000). FDR is the ratio of the 

expected number of erroneous rejections to the total number of null hypothesis 
rejections-it is the expected proportion of falsely rejected null hypotheses (i.e., false 

discoveries: Type 1 errors). However, FDR control is less stringent than familywise 
Type 1 error rate control and Benjamani and Hochberg have suggested FDR may be 
most appropriate for situations where rejecting a few true null hypotheses would be 

tolerable, as in exploratory research. In line with these ideas, genetics and brain 
imaging research, where hundreds to thousands of multiple comparisons are applied, 
already are making great use of FDR (e.g., Dudoit, Shaffer, and Boldrick, 2003; 
Farcomeni, 2008). However, as psychological research generally and experimental 
research in particular does not need to cope with so many multiple comparisons, the 
case for applying FDR is weaker. Indeed, Keselman, Holland, and Cribbie (2005) 
state that researchers employing FDR should be able to justify why it provides a more 

appropriate form of error control than familywise Type I error rate control (see 

Maxwell and Delaney, 2004, for further discussion of FDR). 
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3.6.5 Identifying the "Family" in Familywise Type 1 Error Rate Control 

There is general agreement that Type 1 error rate should be controlled at the level of 

the hypotheses family. Familywise Type 1 error rate control provides the best balance 
between the costs associated with Type 1 and Type 2 errors. However, what constitutes 

a family is a key issue for familywise Type 1 error rate and its control. 

Tukey (1953) introduced the notion of families of hypotheses, but still seemed to 

regard all hypotheses tested in an experiment as constituting a single family and a 

number of researchers have maintained this view (e.g., Ryan, 1959, 1960). In the first 

text on multiple comparison procedures, Miller (1966, p. 34) states, "The natural 

family ... in the majority of instances .. . is the individual experiment of a single 

researcher" (his italics). Nevertheless, distinguishing between experimentwise and 
familywise error rate seems rather pointless if the family is defined as comprising all 
of the hypotheses tested in an experiment (i.e., when experimentwise error rate= 

familywise error rate). Both Miller (1966, 1981) and Ludbrook (1998) regard the 
individual experiment family as including all of the hypotheses assessed by a global 
statistical procedure, such as ANOVA. In experimental research, this would mean that 

all of the hypotheses addressed by the ANOVA of all the experimental data would 
constitute the experiment family. Miller and Ludbrook's definition can be imple
mented easily when an AN OVA is applied to the data f�om single factor experiments. 
However, the approach has the potential to create problems for theory assessment. For 
example, consider a single ANOVA that addresses a fairly large number of hypothe
ses. All of these hypotheses would be defined as a single family, even although subsets 

of hypotheses may address different theoretical issues. One of these theoretical issues 
also could be addressed specifically with a regression analysis. The single or small 
number of hypotheses addressed by the regression would define a different family of 
hypotheses. In such circumstances, the most frequent outcome would be rejection of 

the regression null hypotheses and acceptance of the null hypotheses tested by the 
ANOVA, due to lower analysis power for the larger hypothesis family. Defining 

hypothesis families by statistical procedures without regard for the theoretical 
issues the study was designed and conducted to address is very likely to create 
problems for the theoretical interpretation of the analysis. It also ignores the matter 

of analyses communalities, for example, as regression and ANOVA are different 
instances of the GLM, are the regression and ANOVA hypotheses really assessed by 
different global statistical procedures? Moreover, when factorial experimental 
designs are used, the recommendation conflicts with the established ANOVA 
convention of treating each main and interaction effect as separate hypothesis 
families (demonstrated by the use of unadjusted p-values for each omnibus F-test in 
factorial ANOVA). Therefore, defining families in terms of the set of hypotheses 
assessed by different global statistical procedures is an unattractive analysis strategy 
because it is likely to create theoretical anomalies and it contradicts standard 
ANOVA practice. 

In only the second text on multiple comparison procedures, Hochberg and Tamhane 

(1987, p. 5) define the hypothesis family as, "Any collection of inferences for which it 
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is meaningful to take into account some combined measure of errors." However, "If 
these inferences are unrelated in terms of their content or intended use (although they 
may be statistically dependent), then they should be treated separately and not 
jointly." (Hochberg and Tamhane, 1987, p. 6). Therefore, theoretical or practical 
issues appear to be the basis for a "meaningful" collection of inferences. Fortunately, 
descriptions of what constitutes a family have become clearer. Shaffer (1995) 

identifies the family in terms of analysis purpose. Westfall et al. (1999, pp. IO and 
16) provide more detail and recommend that hypothesis families should be as small as 
possible and should form a natural and coherent unit. Keppel and Wickens (2004) 
describe a hypothesis family as a set of theoretically (or practically) related hypothe
ses. These descriptions make it clear that a hypothesis family should cohere around a 
theoretical or practical issue. 

One of the difficulties in multiple hypothesis testing is obtaining accurate Type 1 
error rate estimates when hypotheses are related. Defining hypotheses families as sets 
of related hypotheses when most available calculations assume independent tests of 
hypotheses might seem to be a recipe for substantial hypothesis family Type l error 
rate overestimation and an associated loss of analysis power. However, in univariate 
experimental studies, the theoretical relations between hypotheses are of a different 
kind to the logical and empirical relations affecting Type l error rates. The nature of 
the logical and empirical relations affecting Type l error rate estimates and adjust
ments are discussed briefly below. 

3.6.6 Logical and Empirical Relations 

Multiple hypotheses can be related logically, while the hypothesis tests can be related 
empirically. Addressing the logical relations between hypotheses can reduce the 
number of null hypotheses over which Type 1 error rate is controlled and this can have 
substantial consequences for the power of all multiple hypothesis testing methods. 
Indeed, if hypotheses are logically related, accommodating these relations and the 
consequences for the number of possibly true null hypotheses can provide an increase 
in power greater than is provided by other techniques. Empirical relations between 
tests of experimental hypotheses were accommodated by several of the classic 
multiple comparison procedures developed in the 1950s. However, rather than 
addressing the issue of empirically related hypotheses directly, like Bonferroni and 
Sidak adjustments, many recent multiple hypothesis tests simply accept that their 
Type l error rate adjustments, which assume independent hypotheses, will be 
conservative when related hypotheses are tested. 

3.6.6.1 Logical Relations 
Shaffer ( 1986) described the nature and consequences of logically related hypothe
ses (LRH). For example, consider again the hypothetical study time experiment 
with the three experimental conditions, 30s, 60s and 180 s. Here the omnibus 
hypothesis 

(2.35, rptd) 
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states that the means of all the experimental condition are equal. The omnibus null 
hypothesis may be expanded to specify the pairwise hypotheses 

The omnibus null hypothesis is rejected when a significant omnibus F-test is obtained. 

Indeed, when the omnibus null hypothesis is false, logic dictates that at most, only one 

of the three pairwise null hypotheses can be true. This is because 

(la) If µ1 # µ2, then: µ1 = µ3 is possible, but entails, µ2 # µ3 

or (lb) If µ1 of. µ2, then: µ2 = µ3 is possible, but entails, µI oF µ3 

(2a) If µ1 # µ3, then: µ1 = µ2 is possible, but entails, µ2 # µ3 

or (2b) If µ1 of. µ3, then: µ2 = µ3 is possible, but entails, µI oF µ2 

(3a) If µ2 # µ3, then: µ2 = µ1 is possible, but entails, µI oF µ3 

or (3b) If µ2 of. µ3, then: µ 1 = µ3 is possible, but entails, µz oF µI 

In each of the three situations where one pairwise null hypothesis is rejected, the 

logical consequence is that at least one other null hypothesis also must be rejected. 

Therefore, when there are three means and one pairwise null hypothesis is rejected, 

the maximum number of pairwise null hypotheses that can be true= l .  

However, consider situations (la) and (lb) again. (la) shows that when µ1 = µ2 is 

rejected, then µ1 = µ3 is possible, while (lb) shows that when µ1 = µ2 is rejected, 

then µ2 = µ3 is possible. Although the logical consequence of rejecting one pairwise 

null hypothesis in this situation is only one other null hypothesis can be true, it is still 

not known which null hypothesis is true. Moreover, assume situation (la) is true: 

µ1 of. µ2 and µ2 of. µ3, but µ1 = µ2. The first hypothesis test carried out demonstrates 

µ1 of. µ2 and the second hypothesis test carried out demonstrates µ2 of. µ3. Unfortu

nately in situation (la), µ2 of. µ3 was entailed by µ1 of. µ2 and so µ1 = µ3 still may be 

true. In short, when there are three pairwise null hypotheses, rejecting one pairwise 

null hypothesis means that at most only one pairwise null hypothesis can be true, but it 

is not known which of the two remaining null hypotheses is false. Consequently, after 

the first pairwise null hypothesis is tested, only one null hypothesis can be true, but 

even after the second null hypothesis has been rejected, the same pairwise null 

hypothesis still could be true (see Table 3.7). 

Due to LRH, rejection of the omnibus hypothesis limits the number of possibly true 

null hypotheses. Moreover, the rejection of other specific pairwise null hypotheses 

further limits the number of possibly true null hypotheses. As Type 1 error rate control 

refers to the probability of rejecting true null hypotheses, only the number of possibly 

true null hypotheses are of concern-there is no need to exert Type l error control over 

false null hypotheses (see Section 3.6.1). Therefore, Type 1 error rate control must 
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accommodate only the number of possibly true null hypotheses. By focusing on only 
the number of possibly true null hypotheses, the estimate of Type l error rate is 
reduced and so analysis power is increased. When one statistical test is used to 
determine the circumstances for the next statistical test, it can be termed a stepwise 
procedure. 

Shaffer (1986) presented two stepwise procedures to handle LRH. The more 
complex and more powerful of these procedures is known as S2 in the multiple 
hypothesis testing literature. Each time a null hypothesis (or a set of null hypotheses) 
is rejected, the S2 procedure employs the specific knowledge of which hypothesis or 
hypotheses are rejected to determine which and how many null hypotheses still could 
be true. In contrast, the less complex, but less powerful, S 1 procedure does not employ 
specific knowledge of which hypotheses are rejected to determine which and how 
many null hypotheses possibly still are true. Instead, at each stage the S l procedure 
determines the maximum number of null hypotheses that possibly could be true given 
that any one or more unspecified null hypotheses have been rejected (see Sections 3.8 
and 3.8.1.2, and Table 3.7). 

Of course, Shaffer's (1986) account ofLRH is not limited to pairwise comparisons 
between experimental condition means in single factor experiments. Shaffer's LRH 
account also applies to main effect and interaction analyses in factorial experimental 
designs whenever pairwise comparisons are involved. Unfortunately, psychology 
researchers generally have made very little use of the Sl and S2 procedures (and 
another approach presented by Shaffer, 1979) to increase the power of range tests by 
incorporating LRH. 

3.6.6.2 Empirical Relations 
Empirical relations between multiple hypothesis tests can arise from two sources: 
Correlations between dependent variables and correlations due to multiple compar
isons that employ the same treatment group or groups (Westfall and Young, 1993). 
However, as the vast majority of experimental studies apply univariate, rather than 
multivariate, analyses, even when there is more than one dependent variable (e.g., hit 
and false alarm rates), multiple comparisons involving the same experimental 
conditions are the main source of empirical relations in the analysis of experimental 
data. For example, with regard to the study time experiment described in Chapter 2 
and this chapter, the null hypotheses Ho1 and Ho2 

Ho1: - µI + µ2 = 0 

Ho2: - µI + µ3 = 0 

are assessed by the linear contrasts ljf 1 and 1/12 (see Sections 3.2 and 3.3) 

1/11 = ( - 1)µ1 + (1)µ2 + (0)µ3 

1/12 = ( - 1)µ1 + (0)µ2 + (1)µ3 
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Table 3.4 Orthogonal Coding Representing Subject Allocation to 
Experimental Conditions 

Conditions Subjects X1 (1/11) X2 (l/Jz) X4 (1/14) 

sl -1 -0.5 

30s 

s8 -1 -0.5 

s9 0 -0.5 

60s 
s16 0 -0.5 

s17 0 -1 

180s 
s24 0 -1 

The 30 s experimental condition mean is employed in both linear contrasts, but each 
contrast compares it with a different experimental condition mean (the 60 s mean for 
if; 1 and the 180 s mean for if; 2). Therefore, the correlation between these linear 
contrasts is 0.5. The veracity of this correlation can be established by determining the 
correlation between the linear contrast coefficients as described in Section 3.5. 
Table 3.4 presents the coding scheme for the if; 1, 1/12, and if; 4 linear contrasts of the 
experimental data presented in Table 2.2. The correlation between the X1 and X2 
variables is 0.5, confirming the figure above. Variable X4 represents the contrast if; 4, 
which is orthogonal to the if; 1 contrast. This is confirmed by the zero correlation 
between the X1 and X4 variables. However, these correlation coefficients are obtained 
only when there are equal numbers of subjects per condition. When there are unequal 
numbers of subjects per condition (i.e., unbalanced data), the relative numbers per 
condition influence the degree of relation between conditions and more complicated 
statistical procedures are required to obtain parameter estimates. Particularly prob
lematic are those estimates needed for specific comparisons between experimental 
conditions. In such circumstances, it should not be assumed that the often opaque 
strategies adopted by statistical software packages will be appropriate in all situations 
(Searle, 1987, and see Section 2.1 for the benefits of balanced data). 

The example above illustrates the two independent correlations between three 
linear contrasts. However, even in this relatively simple situation, the correlation 
between all three of the linear contrasts is not addressed (although the multiple 
correlation coefficient offers one way of measuring this dependence) nor is the way in 
which the correlation estimates affect the Type 1 error rate estimates. As the 
complexity of the correlation structure increases with an increase in the number of 
experimental conditions and contrasts it can be appreciated why independent 
hypothesis tests are assumed and Type 1 error rate overestimates are accepted in 
the knowledge that they set conservative limits. 
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3.7 PLANNED AND UNPLANNED COMPARISONS 

The classic statistical conception assumes a confirmatory approach with a separate 

experiment designed and conducted to test each hypothesis (e.g., Hochberg and 

Tamhane, 1987). In such circumstances, testwise, familywise, and experimentwise 

Type 1 error rate and rx are equivalent and usually= 0.05. Nevertheless, conducting a 

large experiment designed to test several hypotheses may provide a better scientific 

strategy (Fisher, 1926) and also provides greater statistical and economic efficiency 

(Hochberg and Tamhane, 1987; Westfall and Young, 1993). It is in this context that 

Shaffer ( 1995) states that any single experiment may have several purposes, with the 

consequence that the data set may be analyzed under different hypothesis family 

configurations. 

In psychology and most other research areas, the classic and multipurpose perspec

tives on hypothesis testing have been reconciled. Consistent with the classic statistical 
conception, the experiment will have been designed to test a hypothesis and there is no 

reason to preclude testing this hypothesis according to the classic statistical conception 

just because the experiment also is designed to test other hypotheses. However, an 

experiment cannot have been designed and conducted to test unplanned comparisons, 

so it is appropriate for unplanned comparisons to be Type 1 error rate adjusted. 

The high regard researchers have for a priori predictions receives strong support 

from the philosophy of science (for lucid introductions to Popper, Kuhn, and Lakatos, 

see Dienes, 2008). For Popper and Lakatos, novel theoretical predictions are 
extremely important and valued. A prediction is novel with respect to a theory if 

the prediction information did not contribute to the construction of the theory. Novel 

predictions are necessary for a progressive program of scientific research and their 

corroboration provides conjectural signs of theoretical truth. 

Philosophy of science perspectives award a special status to theoretical predic

tions-predictions derived from theory that has not already incorporated the 

prediction information. The classic statistical conception also awards a special 
status to predictions that experiments are designed and conducted to test (e.g., 

O'Neil and Wetherill, 1971 ). When planned comparisons manifest these features, it 

is appropriate that their hypothesis tests are not Type 1 error rate adjusted. 

Nevertheless, researchers tend to follow a convention that places a limit on the 
number of unadjusted planned comparisons that can be conducted. Usually, the 

number of dfs associated with the particular factor under examination defines this 

limit on the number of unadjusted planned comparisons. This limit also equals the 

number of orthogonal contrasts available with respect to the factor. Kirk (1995) 

recommends testwise Type 1 error rate is applied only to orthogonal planned 

comparisons. Howell (2010) comments that over time statisticians have become less 

concerned about contrasts being orthogonal. T his may explain in part why most 

researchers limit the number of unadjusted planned comparisons, but do not require 

these comparisons to be orthogonal (e.g., Gamst, Meyers, and Guarino, 2008; 

Howell, 2010; Keppel and Wickens, 2004; Pedhazur, 1997; Tabachnik and Fidell, 

2007; Winer, Brown, and Michels, 1991). 

However, there are alternative recommendations. Myers, Well and Lorch (2010) 

suggest that all planned hypotheses should be included in a single family and, consistent 
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with the ANOVA convention, the use of a common error term should define the other 
hypothesis families. Maxwell and Delaney (2004) and advocate a more conservative 
strategy that ignores the recent recommendations on how a family of hypotheses should 
be defined. They state that (irrespective of their nature) all planned hypothesis tests 
constitute a single family over which Type I error rate should be controlled. This 

position is consistent with the views of Ryan ( 1959), who takes the most conservative 

position with respect to planned comparisons. He considers those hypotheses experi
ments have been designed and conducted to test to be no different to those hypotheses 
developed and tested after the completion of the experiment and review of the 
experimental data. Consequently, Ryan advocates that all comparisons should be 
treated alike and advocates the application of experimentwise Type 1 error control. 

In a single factor experiment, the dfs associated with the factor and so the maximum 
number of unadjusted planned comparisons is given by (p - I). For example, if a single 
factor experiment has three levels (p = 3), no more than two (i.e., 3 - I) unadjusted 
planned comparisons should be conducted. In a two-factor experiment, q defines the 
number of levels of the second factor and (q - 1) defines the dfs associated with the 
second factor and the limit on the number of unadjusted planned comparisons applied 
to the second factor. Similarly, (p- l)(q - 1) defines the dfs associated with the factor 
interaction and the limit on the number of unadjusted planned comparisons applied to 
the interaction. A two-factor experiment with three levels of Factor A (p = 3) and four 
levels of Factor B (q = 4) is conducted. With respect to the three experimental 
conditions defined by Factor A, no more than two (i.e., 3 - 1) planned comparisons 
should be conducted. With respect to the four experimental conditions defined by 
Factor B, no more than three (i.e., 4 - 1) planned comparisons should be conducted. 
And with respect to the 12 experimental conditions defined by the interaction between 
Factors A and B, no more than six [i.e., (3 - 1)(4 - l )] planned comparisons should be 
conducted. Therefore, over the whole experiment, a total of 11 (i.e., 2 + 3 + 6) 

planned comparisons could be conducted. Each planned comparison may be consid
ered as the sole member of a hypotheses family. 

There is an implicit assumption that all planned comparisons involve pairwise 
comparisons. This is a reasonable expectation because the experimental manipulation 
of key theoretical factors usually is conceived and designed in terms of differences 
between experimental conditions. It is rare for an experiment to be conceived and 
designed with a plan to address theoretical issues using nonpairwise comparisons and 
similarly, even unplanned comparisons are more likely to be contemplated in terms of 
pairwise comparisons, at least initially. As theoretical interest is most likely confined 
to a subset of pairwise comparisons, usually the limits on the number of unadjusted 
planned comparisons just described are more than adequate for a full analysis of the 
experimental data. 

3.7.1 Direct Assessment of Planned Comparisons 

It is perfectly legitimate to carry out planned comparisons directly, irrespective of the 
ANOVA omnibus F-test outcome. When such direct comparisons are conducted, a 
choice needs to be made about the error term(s) to be used in the comparisons. This 
choice is between the omnibus AN OVA MSe and separate error terms per comparison 
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based on only that data in the two experimental conditions being compared. The 
omnibus ANOVA MSe is a weighted pooled error variance estimate (see Section 2.6) 
- all of the experimental data is involved in providing the omnibus ANO VA MSe error 
variance estimate, with each of the separate group variance estimates weighted by the 
group sample size (i.e., N1 - 1). Statistical estimates improve as a function of the 
sample size upon which they are based, so, when the GLM assumptions are tenable, 
particularly the independent measures variance homogeneity assumption (see 
Chapter 10), the omnibus ANOVA MSe should provide the best estimate of error 
variance. Moreover, being based on all of the experimental data also means that the 
omnibus AN OVA MSe estimate is associated with the greatest number of dfs available 
with the experimental data. Consequently, assuming all else is equal, use of the 
omnibus MSe provides the most powerful multiple comparison tests (see Chapter4). 
When the GLM assumptions are not tenable, particularly the independent measures 
variance homogeneity assumption, using separate error terms based on only the two 
experimental conditions being compared is a valid alternative. Indeed, when related 
measures designs are applied, due to concerns about the nature of the omnibus 
ANOVA MSe error, the recommendation is always to employ error terms based on 
only the data involved in the pairwise comparisons. Concerns about sphericity are 
eliminated in related designs when only two sets of data are compared - when 
pairwise (or nonpairwise) comparisons are assessed, there will be only a single 
difference between subjects' scores, so the sphericity assumption, which is about 
equality of variances of differences, cannot apply (see Chapter 10). However, in 
independent measures designs, the two experimental conditions being compared must 
exhibit homogeneous variances. 

3.7.2 Contradictory Results with ANOVA Omnibus F-Tests and 
Direct Planned Comparisons 

It is possible for a directly assessed planned pairwise comparison to be significant 
when the omnibus F-test is not significant. This is one reason why planned pairwise 
comparisons should be assessed directly. One reason for these different outcomes is 
that omnibus F-tests and pairwise (and nonpairwise) comparisons address different 
questions. For example, with respect to the hypothetical study time experiment, the 
omnibus ANOVA tests the omnibus null hypothesis 

(2.35, rptd) 

whereas the specific pairwise comparisons test the following null hypotheses 

µ, = µ2 

µ, = µ3 

Under the null hypotheses, the probability of observing a difference over three 
experimental conditions need not equal the probability of observing the same 
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difference over only two experimental conditions. An appropriate test of the omnibus 

null hypothesis is provided by the omnibus F-test. However, the F-test numerator is 
the experimental conditions sum of squares - the sum of (p - 1) orthogonal contrasts -

divided by (p - 1) dfs. In other words, the omnibus F-test numerator estimates the 
average influence of the (p - 1) orthogonal contrasts and it is this averaging process 

that can diminish the influence of specific pairwise comparisons, which would be 

significant if considered alone. 
It also is possible for the omnibus F-test to be significant, but no pairwise 

comparison to be significant. This is a direct consequence of the omnibus F-test 
indicating that at least one of the (p - 1) orthogonal contrasts is significantly different. 

However, there is no guarantee that the significant contrast(s) in the set of (p - 1) 

orthogonal contrasts will include a pairwise comparison. It is quite feasible that the 

significant contrast(s) will be one (or more) of the nonpairwise comparisons. (This 
issue arises in the context of Shaffers R test described in Section 3.8.1.2.) 

3.8 A BASIC DATA ANALYSIS STRATEGY 

Experiments are designed and conducted for a whole variety of theoretical and 
practical purposes, and these purposes determine which data analyses are most 

appropriate and direct their application. As varied experimental purposes will require 

varied analyses of experimental data, no single data analysis strategy will be 

appropriate for all experimental situations. Nevertheless, the basic data analysis 
strategy presented should provide some useful guidance, especially for new research

ers, and it also may be helpful in providing an initial analysis to consider and from 
which to develop alternatives. 

The strategy presented below is in the form of three stages, but depending on the 
research purpose some stages may be more relevant than others and some may be 
omitted all together. A number of useful analysis techniques researchers may wish to 
employ are not included (e.g., trend analysis) and some researchers may prefer to 

apply valid alternative techniques. 
One important omission from the data analysis strategy presented below is any 

account of exploratory data analysis. Exploratory data analysis allows the researcher 
to develop an appreciation of their data, particularly by examining data distributions. 
The original account of exploratory analysis is provided by Tukey ( 1977), but strongly 

recommended are concise and more recent introductions provided by Kirk ( 1995) and 
Howell (2010). 

3.8.1 ANOV A First? 

Many statistical texts present the omnibus ANOVA as the first step in data analysis, 
with further analysis contingent upon the outcome of the omnibus ANOVA F-test

further analysis occurs only when the F-test is significant. However, several of the 

classic multiple comparison procedures (e.g., Dunn, 1961; Dunnett, 1955; Scheffe, 

1953; Tukey, 1953) assess hypotheses more specific than the omnibus null hypothesis 
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and were designed to be applied directly to data irrespective of the outcome of the 
omnibus ANOVA F-test. When these multiple comparison procedures are applied as 
designed, appropriate Type l error rates are observed. Frequently, however, these 

procedures are applied only after a significant omnibus F-test and when this is done, the 
probability of a Type l error occurring with respect to at least one of the hypotheses 

tested by the pairwise comparisons is reduced. The Type l error rate diminishes 

because the significant omnibus ANOVA F-test a level sets an upper limit on the 

pairwise comparison Type l error rate (e.g., Bernhardson, 1975; Wilcox,1987, 2003). 

Consequently, rather than testing the pairwise comparison hypotheses at a, a lower 
more stringent criterion is applied, so lowering comparison power-the likelihood of 

detecting a significant difference. The current data analysis strategy advocates apply
ing planned comparisons to data directly, irrespective of the outcome of the omnibus 

ANOVA F-test. As the plan to apply these comparisons is drawn before the data is 
collected, the AN OVA outcome has no bearing on the planned comparisons. Therefore, 

applying an omnibus ANOVA before the planned comparisons is quite acceptable and 
offers practical benefits such as the provision of an omnibus error term in independent 

measures designs. (A different strategy often is applied in related measures designs due 
to concerns about the consequences of omnibus MSe assumption violations for 
pairwise comparisons-see Section 6.7) 

The omnibus ANO VA outcome determines the need to analyze the data further only 
when there are no planned comparisons to assess. There has been such a focus here on 

designing and conducting experiments to test theory or examine practical issues that it 
may seem odd for an experiment to be designed and conducted without a planned 

comparison in mind. Nevertheless, there may be circumstances when theory or 
practical issues do not drive the experiment, or when theory or practical issues make 
such weak predictions that they fail to discriminate between experimental condition 

outcomes. Alternatively, a researcher may decide to follow Ryan's conservative 

recommendations. In such situations, data analysis would start at Stage 2. 

3.8.2 Strong and Weak Type 1 Error Control 

Under the complete null hypothesis, all null hypotheses are assumed true, whereas 
under partial null hypotheses, only a subset of the null hypotheses are assumed true. 
Weak Type I error rate control refers to Type I error rate control only under the 

complete null hypothesis. Strong Type l error rate control refers to Type l error rate 

control under partial null hypotheses (Hochberg and Tamhane, 1987). Fisher's (1935) 

LSD test provides an example of weak Type 1 error rate control, as it controls Type l 
error rate appropriately only under the complete null hypothesis. Therefore, when all 

null hypotheses are true, Fisher's LSD test will reject true null hypotheses only 5% of 

the time, but when some null hypotheses are false, Fisher's LSD test will reject true 

null hypotheses more than 5% of the time. Fisher's LSD test is applied only after a 
significant omnibus F-test, but this means that Fisher's LSD test is applied only under 

partial null hypotheses and so can apply only weak Type I error rate control. The 

Newman-Keuls procedure (Keuls, 1952; Newman, 1939) and Duncan's (1955) 

multiple range test also apply only weak Type 1 error control. All of the techniques 



A BASIC DATA ANALYSIS STRATEGY 81 

recommended below apply the required strong Type 1 error rate control (Shaffer, 

1995). 

Hayter ( 1986) modified Fisher's LSD test to provide strong Type 1 error rate control 

for pairwise comparisons. Ramsey (1993) and Seaman, Levin, and Serlin (1991) 
report that over multiple comparisons, the Fisher-Hayter test is nearly as powerful as 

the REGW and Peritz tests. (The REGW and Peritz tests are two of the most powerful 

multiple comparison procedures, but neither is presented here because their compu

tational demands make them difficult and laborious to apply-for an example of the 

REGW test, see Kirk, 1995.) The Fisher-Hayter test is recommended highly (Keppel 

and Wickens, 2004; Seaman, Levin, and Serlin, 1991) because of its Type 1 error rate 

control, its power, its ability to accommodate unbalanced data, and its ease of 

application. Both Keppel and Wickens (2004) and Kirk (1995) provide excellent 

descriptions of its application. 

3.8.3 Stepwise Tests 

Fisher's LSD and the Fisher-Hayter test sometimes are described as stepwise 

procedures-step 1 is the omnibus F-test and step 2 is the application of the Fisher 

LSD or Fisher-Hayter test. However, stepwise tests of multiple hypotheses really 

began with Holm's (1979) stepdown test. 

Stepdown procedures order the pairwise comparison p-values from smallest to 

largest (from most likely to least likely to be significant). Next, the smallest 

comparison p-value is assessed. If this smallest comparison p-value is significant, 

then its corresponding null hypothesis is rejected and the second smallest comparison 

p-value is assessed. If this second smallest comparison p-value is significant, then its 

corresponding null hypothesis is rejected and the third smallest comparison p-value is 

assessed and so on. The stepdown procedure continues until a comparison p-value 

is assessed as not significant and its corresponding null hypothesis is accepted. At this 

point, the procedure terminates and all of the null hypotheses corresponding with the 

remaining pairwise comparisons are accepted. 

Stepup procedures also begin by ordering the pairwise comparison p-values from 

smallest to largest. However, it is the largest comparison p-value that is assessed first. 

If this largest comparison p-value is significant, then its corresponding null hypothesis 

and all subsequent null hypotheses are rejected. However, if this comparison p-value 

is not significant, then its corresponding null hypothesis is accepted and the second 

largest comparison p-value is assessed. If this second largest comparison p-value is 

significant, then its corresponding null hypothesis and all subsequent null hypotheses 

are rejected. However, if this second largest comparison p-value is not significant, 

then its corresponding null hypothesis is accepted and the third largest comparison 

p-value is assessed and so on. 

One attractive feature of most stepdown and stepup procedures is they require only 

classic p-values. This means that most stepdown and stepup procedures can be applied 

not only across different tests, but also across all types of test that provide classic 

p-values (e.g., Ramsey, 2002). Although it is more useful and now more common for 

stepdown and stepup procedures to be described with respect to the comparison 
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p-values (as above), the stepdown and stepup labels refer to the comparison test 

statistics. As larger test statistics are associated with smaller p-values, this explains 

what are now counter intuitive labels for these procedures. 

3.8.4 Test Power 

Stepwise procedures tend to be more powerful than single step procedures. However, 

Kirk ( 1995) notes that as the number of pairwise comparisons diminish, so too does 

the power of the Fisher-Hayter test-with only four comparisons, the Bonferroni and 

Sidak single step procedures and Holm's (1979) stepwise procedure are more 

powerful than the Fisher-Hayter test. So, clearly, not all stepwise procedures are 

more powerful than all single step procedures in all circumstances. 

Due to the different orders in which stepdown and stepup procedures are applied, 

stepup procedures are likely to assess and possibly reject hypotheses that stepdown 

procedures do not assess, with the result that stepup procedures tend to be more 

powerful than stepdown procedures. However, again, not all stepdown procedures are 

less powerful than all stepup procedures (e.g., Lehman, Romano, and Shaffer, 2005). 

The three most powerful stepwise procedures are Rom's (1990) and Hommel's 

(1988) procedures, closely followed by Hochberg's (1988) procedure (Dunnett and 

Tamhane, 1993; Shaffer, 1995). However, Hommel's procedure is difficult to 

understand and apply (Shaffer, 1995), while Rom's (1990) procedure is actually 

Hochberg's procedure employing more accurate and less stringent (i.e., higher) 

critical p-value levels. 

Hochberg and Rom (1995) describe how to increase test power by employing 

Shaffer's LRH modifications with their stepwise procedures. Therefore, due to its 

power and relative ease of use, Rom's test, implemented with Shaffer's ( 1986) simpler 

S 1 procedure, is the multiple hypothesis test procedure recommended here. After 

discussion with Dror Rom and Juliet Shaffer, a novel and simple implementation of 

Rom's test with Shaffer's S 1 procedure was described by Dror Rom, which he named 

as Shaffer's R test (personal communications, February, 2010). This test is presented 

in Section 3.8.1.2. 
Hochberg's and Rom's multiple hypothesis tests are based on Simes' (1986) 

inequality and the closure principle. Standard AN OVA, with normally distributed data 

and nondirectional hypothesis tests (see Section 2.1 and Chapter 10), typically 

provides positively dependent test statistics. For positively dependent and indepen

dent test statistics, the validity of multiple hypothesis test Type 1 error rates based on 

Simes' inequality is established (e.g., Benjamini and Yekutieli, 2001; Chang, Rom, 

and Sarkar, 1996; Hochberg and Rom, 1995; Samuel-Cahn, 1996; Sarkar, 1998; 
Sarkar, 2002; Sarker and Chang, 1997; Simes, 1986). ANOVA with normally 

distributed data and directional hypothesis tests may provide negatively dependent 

test statistics. Hochberg and Rom (1995) observed that negatively dependent test 

statistics can increase the multiple hypothesis test Type 1 error rates based on Simes' 

inequality, but they also demonstrated the upper bound on this increase differed 

minimally from the true level. Rodland (2006) also reported a strong bound on the 

average deviation between Simes corrected and true Type 1 error rates with negatively 
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dependent test statistics. Rodland also confirmed that the instances where Simes' 

inequality fails more dramatically with negatively dependent test statistics are limited 

to highly artificial (pathological) examples at specific significance levels (Block, 

Savits and Wang, 2008; Hommel, 1983). In short, multiple hypothesis tests based on 

the Simes' inequality provide accurate control of the Type 1 error rate, particularly 

with standard ANOVA. 

3.9 THREE BASIC STAGES OF DATA ANALYSIS 

3.9.1 Stage 1 

The first act at Stage 1 is to apply the omnibus ANOVA and then assess the GLM 

assumptions. The omnibus AN OVA MSe provides the best estimate of error variation 

and provides the most powerful tests when these assumptions are tenable. The second 

act at Stage 1 is to conduct the planned comparisons using the omnibus ANOVA 

MSe-if supported by the results of step 1 (see Chapter IO for GLM assumptions). 

Planned comparisons need no Type 1 error rate adjustment, but attention needs to be 

paid to the limit on the number of unadjusted planned comparisons that can be applied 

(see Section 3.7). 

3.9.2 Stage 2 

At this point attention turns to interpreting the results of the omnibus AN OVA and to 

any specific and theoretically relevant unplanned comparisons. (Any hypotheses 

tested already at Stage 1 should be omitted from Stage 2 analyses.) Investigation of 

unplanned comparisons is warranted by a significant omnibus F-test. However, if 

any of the planned comparisons assessed in Stage 1 are significant, then the omnibus 

F-test may be significant due to these differences alone. Therefore, it is important to 

employ comparison methods that exert strong control over the Type 1 error rate (see 

Section 3.7). Although it is perfectly legitimate to apply nonpairwise comparisons, for 

the reasons described in Section 3.7, it is most likely that pairwise comparisons will be 

of greatest interest. Once all hypotheses to be assessed have been specified, hypothesis 

families need to be constructed (see Section 3.6.5) and the appropriate familywise 

Type 1 error rate control applied to assess these unplanned hypotheses tests. 

Consider a hypothetical experiment with five experimental conditions. According 

to equation (3.2), 5 experimental conditions provide 10 unique pairwise comparisons. 

As each of these pairwise comparisons is assessed by an F-test (see Sections 3.3 

and 3.4 ), 10 classic test p-values are obtained. In order to focus on the application of 

the pairwise comparison tests, it will be assumed that no hypotheses were assessed 

with planned comparisons at Stage 1 and all IO of these unplanned pairwise 

comparisons constitute a single family of comparisons. 

3.9.2.1 Rom's Test 

In the standard application of Rom's (1990) test to such data, the IO classic p-values 

are ordered from smallest to largest, as presented in Table 3.5. Next, the largest 
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Table 3.5 Information Relevant to Hochberg's (1988) and Rom's (1990) Tests 

Rank i, 
Classic F-Test Where Adjustment Hochberg's Rom's 

p-Values i= I, . .  ., m Factor Adjusted rx Adjusted rx 
Po .. . .. ml i m-i+ rxl(m-i + l) rx'ui 

0.0003 l 10 0.0050 0.0051 
0.0036 2 9 0.0056 0.0057 
0.0062 3 8 0.0063 0.0064 
0.0081 4 7 0.0071 0.0073 
0.0124 5 6 0.0083 0.0085 
0.0222 6 5 0.0100 0.0102 
0.0363 7 4 0.0125 0.0127 
0.0593 8 3 0.0167 0.0169 
0.0651 9 2 0.0250 0.0250 
0.1582 10 0.0500 0.0500 

All adjustments assume a:= 0.05. 

p-value, P(mJ. is compared with Rom's adjusted critical value, ix(m). If P(m)::::; ix(m), then 
the null hypothesis, Hm, and all the other null hypotheses, which have lower p-values, 
are rejected. As can be seen from Table 3.5, the classic test p-value for the null Hm of 
0.1582 is greater than Rom's ix'm of 0.0500 and so the null Hm is retained. Attention 
now turns to the hypothesis associated with the second largest classic p-value, H(m-I l· 
If P(m) ::::; ix' (m _ 1), then the (m - 1) null hypothesis and all other null hypotheses with 
lower classic p-values are rejected. However, again it can be seen that the classic p
value for the null H<m _I) of 0.0651 is greater than the ix' of 0.0250. Therefore, the 
(m - 1) null hypothesis is retained and attention turns to H<m-ZJ and so on in this 
fashion until all m null hypotheses have been retained or until the first null hypothesis 
is rejected. When this first null hypothesis is rejected, it and all other hypotheses lower 
in rank (i.e., with lower classic p-values) are rejected also. With regard to the 
hypothetical experimental data presented in Table 3.5, the first null hypothesis with 
a p-value ::::; ix' (m) is the null with i = 3. Therefore, H3 (classic F-test p-value = 0.0062) 
is rejected, as are all other null hypotheses with lower classic p-values. This means 
that the three null hypotheses designated H3, H2, and H1 are rejected (see Olejnik et al., 
1997, for another worked example). 

3.9.2.2 Shaffer's R Test 

When an ANOVA is applied to the five experimental conditions and a significant 
omnibus F-test is observed, it implies that one or more of the null hypotheses assessed 
are false. In Table 3.6, column one presents the number of conditions in an 
experiment, column two presents the initial number of pairwise null hypotheses 
available in experiments with 3-8 conditions and subsequent columns present the 
number of possibly true null hypotheses remaining after one pairwise null hypothesis 
has been rejected, after two pairwise null hypotheses have been rejected, after three 
pairwise null hypotheses have been rejected and so on. For example, when there are 
four experimental conditions, six pairwise comparisons are possible and so at the 
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Table 3.6 Number of Experimental Conditions, Number of Pairwise Comparison Null Hypotheses Available Initially, and the Number 

of Possibly True Null Hypotheses After Each Rejection of One More Pairwise Null Hypothesis 

Experimental Initial 
Number of Pairwise Null 

Conditions Nulls 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 

3 3 1 1 0 

4 6 3 3 3 2 1 0 

5 10 6 6 6 6 4 4 3 2 1 0 

6 15 10 10 10 10 10 7 7 7 6 4 4 3 2 I 0 

7 21 15 15 15 15 15 15 11 11 11 11 10 9 7 7 6 5 4 3 2 1 0 

8 28 21 21 21 21 21 21 21 16 16 16 16 16 15 13 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
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outset, there are six null experimental hypotheses. When any one of these null 
hypotheses is rejected, logic dictates that a maximum of only three null hypotheses 
possibly can be true. When a second null hypotheses is rejected, logic dictates that the 
maximum number of possibly true null hypotheses is still three (see Section 3.6.6. 1) 
and even when three null hypotheses have been rejected, the maximum number of 
possibly true null hypotheses is still three. However, when four pairwise null 
hypotheses have been rejected, the maximum number of possibly true null hypotheses 
drops to two and when five pairwise null hypotheses have been rejected, only one 
pairwise null hypothesis can be true and clearly, when all six null hypotheses have 
been rejected then zero null hypotheses can be true. 

Shaffer's R test applies a short cut method (to reduce the number of hypotheses tests 
required to comply with the closure principle) to implement a hierarchical stepdown 
procedure with a stepup test at each step. At each step (i.e., stepdown), the maximum 
number of possibly true null hypotheses is determined using Shaffer's S 1 procedure 
(see Table 3.6) and Rom's test is applied to assess the significance of the pairwise 
comparisons. 

Shaffer's R test could be applied directly to the pairwise comparisons between 
the experimental condition means. However, the strategy advocated here assumes 
Shaffer's R test is applied only after a significant ANOVA F-test is obtained. Of 
course, applying Shaffer's R test directly to a set of experimental condition means and 
applying an F-test followed by Shaffer's R test to the same set of experimental 
condition means are mutually exclusive approaches-applying both approaches 
invalidates both approaches. 

When the strategy advocated here is applied, it must be remembered a significant 
AN OVA F-test indicates that at least one of the set of orthogonal contrasts assessed is 
significant. (The F-test numerator dfs define the number of orthogonal contrasts 
assessed.) However, as all sets of orthogonal contrasts include a nonpairwise 
comparison, it is possible that the significant F-test is attributable only to a significant 
nonpairwise comparison. In such circumstances, no pairwise comparison is signifi
cant and no follow up test should identify a significant pairwise comparison. This 
possibility is accommodated by Shaffer's R test at Step 1. 

3.9.2.3 Applying Shaffer's R Test After a Significant F-Test 

Consider the hypothetical experiment with five experimental conditions. Apply an 
AN OVA to the experimental data. If the omnibus F-test is significant, conduct all of 
the pairwise comparisons and order these on the basis of their associated classic 
p-values from smallest (ranked 1) to largest (ranked m) as presented in Table 3.5. 

Step 1: The significant F-test indicates a reduction in the number of possibly true 
hypotheses, but it does not identify which (if any) of the pairwise null 
hypotheses should be rejected. Therefore, six pairwise null hypotheses are 
possibly true and it is necessary to identify which pairwise null hypotheses are 
false. This is done by testing the null hypothesis corresponding with the P(I )
value plus the null hypotheses corresponding with the five largest Pu)-values. 
Rom's test applied to these ordered p-values is presented in Table 3.7. The first 
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Table 3.7 Step 1 of Shaffer's R Test 

Ordered p-Values Rank i 

0.0003 1 
0.0222 6 
0.0363 7 
0.0593 8 
0.0651 9 
0.1582 10 

Rom's IJ((;J for 

Six Null Hypothesis 

Tests (see Table 3.5) 

0.0085 
0.0102 
0.0127 
0.0169 
0.0250 
0.0500 

Reject? 

Yes 

No 

No 

No 

No 

No 
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hypothesis to be rejected is that corresponding with P(l)· This is because 
PoJ = 0.0003:::; Rom's a' 6 (for six null hypothesis tests)= 0.0085. As neither 
of the other two null hypotheses' PuJ-values are less than or equal to their 
respective critical a' (i) values (the Rom adjusted significance levels), no other 
hypotheses are rejected at this step. 

When Shaffer's R test is applied following a significant omnibus F-test, the 
first significant pairwise comparison not only indicates that the specific 
experimental condition means differ significantly, but also that a pairwise 
difference contributed to the significant omnibus F-test-it was not due to only 
a significant nonpairwise difference (see Section 3.7.2). Therefore, as Table 3.6 
shows, having rejected only one pairwise null hypothesis, the first of a series of 
six null hypotheses are possibly true and a total of five pairwise null hypotheses 
must be rejected before the number of possibly true null hypotheses drops to a 
maximum of four pairwise null hypotheses possibly being true. 

Step 2: Although a pairwise null hypothesis has been rejected, Table 3.6 still 
shows a maximum of six null hypotheses may be true. Therefore, Rom's test is 
applied again to assess six null hypotheses by testing the null hypothesis 
corresponding with the p(2l-value plus the null hypotheses corresponding with 
the five largest P<o-values (see Table 3.8). The first and only hypothesis to be 
rejected is that corresponding withp(2), as P(2) = 0.0036:::; Rom's a'6 = 0.0085. 

Table 3.8 Step 2 of Shaffer's R Test 

Rom's 1)(1(i) for 

Six Null Hypothesis 

Ordered p-Values Rank i Tests (see Table 3.6) Reject? 

0.0036 2 0.0085 Yes 

0.0222 6 0.0102 No 

0.0363 7 0.0127 No 

0.0593 8 0.0169 No 

0.0651 9 0.0250 No 

0.1582 10 0.0500 No 
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Table 3.9 Step 3 of Shaffer's R Test 

Rom's IX(;) for Six Null 

Hypothesis Tests 
Ordered p-Values Rank i (see Table 3.5) Reject? 

0.0062 3 0.0085 Yes 
0.0222 6 0.0102 No 
0.0363 7 0.0127 No 

0.0593 8 0.0169 No 

0.0651 9 0.0250 No 
0.1582 10 0.0500 No 

Step 3: Two pairwise null hypotheses now have been rejected, but Table 3.6 
still shows a maximum of six null hypotheses may be true. Rom's test 
is applied again to assess six null hypotheses by testing the null hypothesis 
corresponding with the P<JJ-value plus the null hypotheses corresponding 
with the five largest PuJ-values (see Table 3.9). The first and only hypothesis 
to be rejected is that corresponding with p(3), as p(3) = 0.0062::; Rom's 
ct6 = 0.0085. 

Step 4: Three pairwise null hypotheses have been rejected, but Table 3.6 
continues to show that a maximum of six null hypotheses still may be true. 
Rom's test is applied again to assess six null hypotheses by testing the null 
hypothesis corresponding with the P<4rvalue plus the five null hypotheses 
corresponding with the five largest PuJ-values (see Table 3.10).The first and 
only hypothesis to be rejected is that corresponding with P<4l, as P<4l = 0.0081 
::; Rom's ci:6 = 0.0085. 

Step 5: Four null hypotheses now have been rejected, but Table 3.6 still shows a 
maximum of six null hypotheses may be true. Rom's test is applied again to 
assess six null hypotheses by testing the null hypothesis corresponding with 
the P<sJ-value plus the null hypotheses corresponding with the five largest 

Table 3.10 Step 4 of Shaffer's R Test 

Rom's :x(;) for 

Six Null Hypothesis 

Ordered p-Values Rank i Tests (see Table 3.5) Reject? 

0.0081 4 0.0085 Yes 

0.0222 6 0.0102 No 

0.0363 7 0.0127 No 

0.0593 8 0.0169 No 

0.0651 9 0.0250 No 

0.1582 10 0.0500 No 
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Table 3.11 Step 5 of Shaffer's R Test 

Ordered p-Values Rank i 

0.0124 5 
0.0222 6 
0.0363 7 
0.0593 8 
0.0651 9 
0.1582 10 
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Rom's a(i) for 

Six Null Hypothesis 
Tests (see Table 3.5) Reject? 

0.0085 No 
0.0102 No 
0.0127 No 
0.0169 No 
0.0250 No 
0.0500 No 

PuJ-values (see Table 3.11). Table 3.11 presents all of the remaining null 
hypotheses and their corresponding p-values. As none of these ordered 
p-values are lower than the pertinent Rom tx(;J, no hypotheses are rejected. As 
no null hypotheses are rejected, there can be no reduction in the number of 
possibly true null hypotheses and no change to Rom's tx(;J, the testing procedure 
terminates at this point. 

If a pairwise null hypothesis (corresponding with the p(5)-value) had been 
rejected at Step 5, then at Step 6, only four null hypotheses possibly could be 
true and so, Rom's test would be applied to assess four null hypotheses by 
testing the null hypotheses corresponding to the p( 4 )-value plus the three largest 
p(i)-values. In the example just presented, only one pairwise null hypothesis 
was rejected at each step, but rejecting more than one pairwise null hypothesis 
per step is a possibility. However, in these circumstances, all hypotheses with a 
rank higher than the lowest rank hypothesis rejected also are rejected and the 
following step simply employs Rom's test to assess the number of pairwise null 
hypotheses still possibly true given the full number of pairwise null hypotheses 
rejected at that point. 

In the example presented, the final outcome of applying Shaffer's R test is to reject the 
four null hypotheses, Hi. H2, H3, and H4, corresponding with the four P0-4)-values. 
When compared with Rom's conventional procedure (one of the most powerful 
multiple hypothesis testing procedures), Shaffer's R test demonstrates its greater 
power by rejecting an additional hypothesis. 

3.9.3 Stage 3 

After specific unplanned comparisons have been assessed, a researcher may want to 
examine the experimental data even further. The extensive comparisons likely to be 
undertaken at this stage might include comparing a control condition to all other 
experimental conditions, conducting all possible pairwise comparisons between 

experimental conditions and conducting all possible pairwise and nonpairwise 

comparisons between experimental conditions. Each of these three situations is 
discussed below. 
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When a control condition is compared to all other experimental conditions, due to 
the control condition mean being involved in every comparison, each comparison 
has a 0.5 correlation with every other comparison (see Section 3.6.6.2). Dunnett 

( 1955) described a single-step test that accommodates this degree of correlation, 

while controlling the experimentwise Type 1 error rate (see Kirk, 1995 for an 

excellent description of its application). Dunnett's test often is described as being 

appropriate for experiments designed and conducted to compare a control with all 

other experimental conditions. However, if each of these comparisons genuinely 

was motivated theoretically, it would be more appropriate to consider them as 

planned comparisons and to test the hypotheses as described at Stage J. 

When all possible pairwise comparisons between experimental conditions are to 

be assessed, Rom's test and Shaffer's R test may be applied. In fact, due to the 

assumptions that no planned hypothesis tests were carried out and all of the pairwise 

hypotheses constituted a single family of hypotheses, these tests already have been 

illustrated for all possible pairwise comparisons in Stage 2 above. This also reveals 

that while Stage 1 and Stage 2 differ conceptually and in terms of the control of Type 1 

error rate, the only differences between Stage 2 and 3 are conceptual, as both stages 

apply the same Type 1 error rate control. 

The single-step Tukey highest significant difference (HSD) or wholly significant 

difference (WSD) test (Tukey, 1953) is appropriate for all possible pairwise compari

sons between experimental conditions. Although two-tailed tests are the norm, this is 
all Tukey's HSD test can apply. The Tukey-Kramer test (Kramer, 1956; Tukey, 1953) 

accommodates unbalanced data, but still requires normally distributed data and equal 

variances. In common with the Fisher-Hayter test, as the number of pairwise 
comparisons diminishes, so too does the power of Tukey's HSD relative to the 

Bonferroni and Sidak adjustments. However, as the more powerful and more easily 

applied Fisher-Hayter test is applicable to all pairwise comparisons between experi

mental conditions, it is recommended in preference to Tukey's HSD. 

When all possible pairwise comparisons between experimental conditions are to 
be assessed, Scheffe's test (Scheffe, 1953) applies appropriate experimentwise 

Type 1 error rate control. Scheffe's single step test shares all of ANOVA GLM 

assumptions, but it is also one of the least powerful multiple comparison procedures. 

Examining for differences between experimental conditions at Stage 3, and 
sometimes at Stage 2, is called "data snooping." The pejorative label is applied 

because this approach to testing hypotheses compares poorly with planned compari

son hypothesis tests (see Westfall and Young, 1993, Chapter 1, for further discussion). 

However, rather than struggling to retain, or even force, a confirmatory data analytic 

approach, an alternative would be to abandon confirmatory data analysis and replace it 

with an exploratory data analytic approach. Instead of trying to control Type 1 error 

rates, conventional analyses or analyses employing FDR control could be applied to 

explore possible relationships. Although an exploratory approach may indicate 
relations worth investigating in a confirmatory fashion, it is important to appreciate 

and acknowledge that these relationships do not meet the conventional standards for 

statistical significance. 



THE ROLE OF THE OMNIBUS F-TEST 

3.10 THE ROLE OF THE OMNIBUS F-TEST 

91 

Given that specific hypotheses manifest in planned comparisons can be tested directly, 
some authors have questioned the worth of any ANO VA omnibus F-test (e.g., Howell, 
2010; O'Brien, 1983; Rosnow and Rosenthal, 1989; Wilcox, 1987). Although 
habitual application of ANOVA and further analyses only after a significant F-test 
is a poor research strategy, when researchers genuinely want to know if there any 
differences between all of the experimental condition means, then the ANOVA 
omnibus F-test is appropriate. However, if the experimenter only wants to know about 
specific differences between particular experimental condition means, then carrying 
out planned or unplanned comparisons directly is the appropriate strategy. 

The GLM perspective provides another reason to continue applying ANOVA 
omnibus F-tests. An overall F-test reveals if the complete GLM significantly predicts 
the dependent variable scores. In factorial studies, the omnibus F-tests (for main 
effects and interactions) reveal whether particular components of the GLM make 
significant contributions to the prediction. If the overall F-test and the omnibus F-tests 
in factorial studies indicate significant prediction, further analyses are carried out to 
identify how the particular component elements manifest the prediction. Testing an 
omnibus null hypothesis also fits very well with stepwise multiple comparison 
procedures. Applying an ANOVA omnibus F-test can provide additional power for 
some stepwise multiple comparisons (Seaman, Levin, and Serlin, 1991 ), it may be 
required if specific closed procedures are implemented and its calculation conve
niently provides the AN OVA MSe. In short, the GLM perspective provides for the use 
of omnibus F-tests and multiple comparisons as part of a coherent data analysis 
strategy that can accommodate ANOVA, ANCOVA, and regression. However, if the 
aim is only to test specific differences for significance, then conducting planned and/ 
or unplanned comparisons directly may be appropriate. This sort of strategy may seem 
simple and easy at first, but its soon can develop into a piecemeal approach, which can 
be the source of confusion and mistakes in the control of Type 1 error. As the coherent 
rationale underlying the application of planned and/or unplanned comparisons 
directly to experimental data is achieved by implicit reference to the GLM, it seems 
sensible to make this explicit from the start. 





CHAPTER 4 

Measures of Effect Size and Strength of 

Association, Power, and Sample Size 

4.1 INTRODUCTION 

The main approach presented in this text is known as null hypothesis testing. Fisher 

( 1925, 1926, 1935) developed and presented an approach for assessing the null 

hypothesis, but in psychology and other disciplines, what came to be known as null 

hypothesis testing was a combination of Fisher's approach and a much more 

regimented scheme for deciding between null and alternate hypotheses presented 

by Neyman and Pearson (1928, 1933). Although never free of criticism (e.g., Berkson, 

1938), null hypothesis testing soon became the dominant data analytic approach in 

psychology and other disciplines. Nevertheless, recent criticism of null hypothesis 

testing led to serious discussion and debate about statistical reporting, and the 

formation of an APA Task Force on statistical methods (Wilkinson and Task Force 

on Statistical Inference, 1999). There now appears to be a general consensus that 

while null hypothesis testing should be retained, it should be supplemented with 

further information to provide greater appreciation of the effects examined. In 

particular, information on effect sizes should be reported and rather than simply 

stating the a level at which the decision to accept or reject the null hypothesis is made, 

the exact p-value associated with the statistical test should be reported. The provision 

of mean square error values also can be very useful information. In many ways the 

consensus has moved statistical reporting away from the barren application of 

Neyman and Pearson's decision strategy in the direction of the reasoned and 

evidenced argument approach to null hypothesis assessment advocated by Fisher. 

(Lehman, 1993, provides an account of Fisher's and Neyman and Pearson's statistical 

approaches, as do Maxwell and Delaney, 2004, who also provide an excellent 

summary of the recent debate about null hypothesis testing.) 

ANOVA and ANCOVA: A GLM Approach. Second Edition. By Andrew Rutherford. 

© 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc. 
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One of the main concerns and criticisms of null hypothesis testing is that the test 

outcome is influenced greatly by the size of the sample. In fact, as Rosenthal (1987) 
describes, test statistics such as F-values are related to the sample size and the size of 

the effect in the following way 

Test statistic = Sample size x Effect size (4.1) 

Equation ( 4.1) reveals that test statistics can be increased by increasing the sample 

size. In other words, the same effect size could be declared significant in one 

experiment, but not significant in another experiment, simply because the former 

experiment had recruited more subjects. It also reveals that even very small effect 

sizes may be declared significant if the sample size is large enough. As increasing the 

sample size improves the estimates of the experimental condition means and so 

the ability to distinguish between these means, detecting a significant influence of 

a smaller size of effect with a larger sample is entirely appropriate. Nevertheless, 

the facility to compare estimates of effect sizes that are free of the influence of 

sample size would be very useful for both theoretical and practical purposes. In the 

following sections, different conceptions of effect size and different measures of these 

conceptions are presented and discussed. Subsequently, analysis power is considered 

and its relationship with effect size and sample size is described, before a way of 

deciding upon the number of subjects to include in an experiment is presented. 

4.2 EFFECT SIZE AS A STANDARDIZED MEAN DIFFERENCE 

Cohen ( 1969, 1988) defined effect size as the difference between the population means 

of two experimental conditions divided by the standard deviation of this difference 

(4.2) 

(µ1-µ2) represents the difference between the two population means and (J, is the 

standard deviation of the difference between these two population means (often 8-

delta is employed rather than d to designate the effect size parameter). However, 

different experiments conducted in different laboratories may employ different 

dependent variable measures. If the effect sizes observed in these different experi

ments are to be compared, the different effect sizes need to be expressed on a common 

scale. Cohen's estimate of effect size provides such a common scale by expressing the 

difference between the two population means in standard deviation units (cf. z scores). 

When the effect size is estimated from sample data 

(4.3) 

where (Y1 -Y2 ) represents the difference between the two experimental condition 

means and MSe is the mean square error from the omnibus analysis of variance 
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(ANOVA). d is employed when p = 2, but when p > 2,f is employed. f is defined 
with respect to the population means of the experimental conditions 

!= (4.4) 

where µi represents each of the different experimental condition population means, 
µis the general population mean,p is the number of experimental conditions, and <Jr. 

is the standard deviation of the differences between the experimental condition 
population means (Cohen, 1969, 1988). When the effect size is estimated from 
sample data 

f = 2:.,(YJ-YG)2/p 
MSe (4.5) 

where (YJ - Y G) is the difference between each of the experimental condition means 
and the general mean, and MSe is the mean square error from the omnibus ANOVA. 
Equations ( 4.2)-( 4.5) reveal that the effect size increases as the difference between the 
means increases, but diminishes as the standard deviation of the differences between 
the experimental condition means increases. 

Unfortunately, however, sampling error causes d and f to overestimate the 
population effect sizes. Why d and f provide overestimates of population effect 
sizes may be appreciated by considering the situation where no effect exists in the 
population. In such circumstances, although µ1 and µ2 will be equal, it is very unlikely 
that the sample mean estimates, Y 1 and Y 2 will be exactly equal, but, nevertheless, the 
formulas for d and f simply attribute any difference between means to the effect size 
estimate. As this also occurs when a real effect exists in the population, so d and f 
continue to overestimate real population effect sizes. 

The extent of the effect size overestimation is related inversely to the size of the 
sample-the overestimate decreases as the sample size increases. Therefore, any 
adjustment to rectify the overestimate has to include the sample size (i.e., N). An 
adjusted f can be defined as 

Adjusted [= (p - 1) (MSeffect - MSe) = 
J 

(p - 1) ( F 
_ l) 

N MSe N 
(4.6) 

Also note that when p = 2, the adjusted f will be comparable to an adjusted d. 
Tables 2.6 and 2.7 provide the information required to calculate f and adjusted f 

f = fl413 = 1.373 V2.476 
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while 

Adjusted f = {(
3; 1) (22.615 - I) = 1.339 

4.3 EFFECT SIZE AS STRENGTH OF ASSOCIATION (SOA) 

Another way of conceiving of effect size is in terms of the strength of association 

(SOA) between the predictor variable and the dependent variable. As this description 

suggests, SOA has its origin in correlational rather than experimental research and is 

defined with respect to variances, rather than in terms of differences between 

experimental condition means and their standard deviations. 
Many statistical packages provide R2 as a standard part of the regression 

output and R2 is a frequently employed index of SOA (e.g., see Table 2.9). In 

regression terms, R2 is the square of the (multiple) correlation between the 
predictor variables (i.e., the experimental conditions in ANOVA) and the 

dependent variable, and can be interpreted as the proportion of dependent 
variable variance accommodated by, or attributable to, the experimental manip
ulation. In the experimental design GLM context, R2 may be defined as 

R
z = _s_s_E_R_G _LM_-_s_s_E_FG_L_M_ 

SSERGLM 

Applying the estimates calculated in Section 2.8.2 provides 

2 
= 

164 - 52 
= .!...!3. = 0.683 R 164 164 

(4.7) 

Therefore, it may be said that 68.3% of the variance in the dependent variable is 

attributable to the experimental manipulation. 
R2 is equivalent to another SOA measure, 1]2, described originally by Pearson 

(1905). Unfortunately, however, like d and f, R2 and 1]2 overestimate the relationship 
between the experimental manipulation(s) and the dependent variable, with the R2 

overestimate related inversely to the sample size. Wherry (1931) described an 

adjusted R2 that can be defined as 

AdjustedR2 
= 1- -- (1 -R2) 

[N- I ] 
N-p 

(4.8) 

Adjusted R2 is presented as part of Table 2.9. Independently, Kelley (1935) presented 

another SOA measure, c2 as an unbiased alternative to 1J2. In fact, £2 is equivalent 

to adjusted R2 (Cohen and Cohen, 1975). (Current practice is to use lowercase 
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Greek letters to denote population parameters and to denote their estimates from 
sample data by placing a "hat" on these Greek letters. However, this was not standard 
practice when Pearson and Kelley published their work-indeed, Kelley denoted 
the population correlation ratio as, ij, and its estimate squared as, r,2• Therefore, to 

a void the suggestion that 112 or r,2 are estimates of population parameters, no "hats" are 
employed. However, this does require appreciation that 1]2 and r,2 are unusual in 

denoting sample-based estimates of SOA. See Richardson, 1996, for further 

discussion.) 
The final SOA measure to be considered is w2, which Hays (1963) defined as 

(4.9) 

where rr�otaI is the total variance (i.e., the reduced OLM error sum of squares (SS), 
or the sum of the traditional ANOVA effect and error SS) and rr� is the full OLM 
error SS (i.e., the traditional ANOVA error SS). As (rr�otal -rr�) = rr�xpt. effect (i.e., 
the experimental effect). Therefore, w2 is the proportion of the total variance 
attributed to the experimental effect. (Following Keppel and Wickens, 2004, this 
estimate of effect size can be termed as the complete w2 SOA for the omnibus 
effect.) 

�2 When estimated from sample data, w can be defined by 

�2 (SSERGLM - SSEFGLM) -(p - 1) (SSEFGLM/ df FGLM) w = 
SSERGLM + (SSEFGLM/dfFGLM) 

(4.10) 

Equation ( 4.10) also can be expressed in more traditional ANO VA summary table 
terms 

�2 Experimental conditions SS -(p - 1 )MSe 
w = 

Total SS + MSe 
( 4.11) 

or simply in terms of the number of experimental conditions, the F-statistic and the 
number of subjects per condition (in a balanced design) 

�2 w 
(p-l)(F-1) 

(p- l)(F - 1) + pNi 
( 4.12) 

Equations ( 4.10)-( 4.12) show that the -;;;2 estimate addresses the overestimate bias 
by including sample size information. This is expressed as d/s in equation (4.10) 
and as N1 in equation ( 4.12), while the use of MSe in equation ( 4.11) incorporates 
the influence of dfs. Equation ( 4.12) also addresses the overestimation through 
the use of the (F -1) components. As F = 1 when there are no experimental effects 
(i.e., under the null hypothesis), subtracting this value from each F removes the 
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influence of chance differences between the condition means. Applying equa
tion ( 4.12) to the data presented in Table 2. 7 provides 

�2 (3 - 1)(22.615 -1) 43.230 
w 

= (3 -1)(22.615 -1) + 3(8) = 67.230 = 0·
64 

This reveals that the experimental effect explains 64% of the population variance. 
Applied to the same data, adjusted R2=0.65 (see Section 2.6.3), which is 0.01 �2 greater than the w estimate. This difference is consistent with Maxwell and 
Delaney's (2004) claim (based on Maxwell, Camp, and Arvey, 1981, review of 
Carroll and Nordholm, 1975) that usually adjusted R2 is no more than 0.02 greater �2 than w . 

4.3.1 SOA for Specific Comparisons 

The type of w2 estimate considered so far refers to the overall or omnibus effect. 
However, there is likely to be interest in the SOA for particular comparisons 
between experimental conditions. For example, in the hypothetical study time 
experiment, there is specific interest in the SOA between the 30 and 180 s 
conditions. Similar to the omnibus w2, it is possible to obtain such an w2 estimate 
simply by substituting the (O"�otal - CJ;) numerator in equation (4.9) with the 
specific comparison SS. Keppel and Wickens (2004) label this type of w2 estimate 
as the complete w2• This complete w2 can be defined as 

2 
2 (Ji/I 

Wi/Jc =-2 -
Wtotal 

The complete w2 is estimated easily from 

�2 Fi/I - 1 
wi/lc = (p- l)(Fo - 1) + pNJ 

( 4.13) 

( 4.14) 

where Fi/I is the specific comparison F-value and Fo is the omnibus F-value
indeed, the whole denominator corresponds with the omnibus F-test. 

Another type of w2 estimate, which Keppel and Wickens term the partial w2 
(also see Grissom and Kim, 2005), can be defined as 

(4.15) 

where (following Keppel and Wickens, 2004), the partial nature of the effect estimate 
is denoted by placing the effect in angled brackets. The partial w�i/I> is the specific 
comparison variance expressed as a proportion of the specific comparison variance 
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plus the error variance, which in single factor experiments is the full experimental 

design OLM error variance. This can be estimated by 

� 1 Fl/I -1 
(!) - ----'---

<I/I> 
-

Fl/I -1 + 2N1 

4.4 SMALL, MEDIUM, AND LARGE EFFECT SIZES 

( 4.16) 

A simple relationship exists between effect size indexed by f and the strength of 
� 1 

association defined by w 

[� ( 4.17) f = 

(!) 

and 

�2 
f (4.18) (!) = 

�2 

(! + 1) 

For guidance only, Cohen (1969, 1988) suggested d and/ values that would indicate 

small, medium, and large effect sizes. These are presented in Table 4.1, along with/ 
� 2 

values converted tow using equation (4.17). Cohen's guidelines suggest a large 

effect size is observed in the hypothetical experiment on study time. 

4.5 EFFECT SIZE IN RELATED MEASURES DESIGNS 

When related measures experimental designs are applied, a complicating issue arises 

with respect to the estimation of effect size. As described in Chapter 6, one of the main 

benefits of related measures experimental designs is reduced experimental design 

OLM error term. This reduction is achieved by accommodating the covariation 

between the dependent variable scores from the same or similar subjects rather than 

letting it contribute to the experimental design OLM error term. 

�2 
Table 4.1 Cohen's Small, Medium, and Large Effect Sizes for d,f, and w 

Size 

Small 
Medium 
Large 

d 

0.2 
0.5 
0.8 

f 

0.10 
0.25 
0.40 

O.Dl 
0.06 
0.14 
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Equations (4.3), (4.5), and (4.6), which provide d, f, and adjusted f and equa
tion ( 4.11 ), which provides w 2, reveal that the experimental design GLM MSe appears 
as part of the denominator to estimate all of the effect sizes. Therefore, if related 

measures designs provide reduced MSe terms compared to equivalent independent 
measures designs, it follows that the same difference between means, or the same 

SOA will be estimated as greater with a related measures experimental design than 

with an independent measures experimental design. 

As the purpose of effect size estimates is to enable comparisons across studies free 

of the influence of sample size, it is far from ideal that effect size estimates can 

depend on whether related or independent measures designs are applied. However, 

as mentioned above, related measures designs differ from independent measures 

designs because subjects provide scores under more than one experimental condi

tion and the covariation between these scores can be estimated and attributed to a 

random factor, usually labeled "subjects," so removing it from the experimental 

design GLM error term. In other words, related measures designs provide specific 

additional information that is used to reduce the error term. Therefore, effect size 

comparability across related and independent measures designs could be achieved 
simply by ignoring the additional information provided by related measures designs 

and estimating related measures design effect sizes as if they had been obtained with 

equivalent independent measures designs. The equivalent independent measures 
design is identical to the related measures design, but omits the "subjects" random 

factor. This approach to effect size estimation in related measures designs is 
described further in Chapter 6. 

4.6 OVERVIEW OF STANDARDIZED MEAN DIFFERENCE AND 

SOA MEASURES OF EFFECT SIZE 

Although sample size information has to be accommodated in effect size estimates to 

offset the overestimation bias, the major benefit provided by effect size measures is 

they cannot be inflated by increasing the size of the sample. However, in common with 

other statistics and aspects of null hypothesis testing, the validity of all effect size 

estimates is influenced by the extent to which the experimental data complies with 

GLM assumptions (see Chapter 10). 

Standardizing mean difference provides a potentially boundless value indicative of 
effect size. In contrast, SOA measures provide a value between 0 and 1 that expresses 

effect size in terms of the proportion of variance attributable to the conditions. 

Therefore, by default, SOA measures also provide the proportion of variance not 

attributable to the experimental conditions-if 0.25 (i.e., 25%) of the variance is due 
to experimental conditions, then 0.75 (i.e., 75%) of the variance is not due to 
experimental conditions. This aspect of SOA measures can provide a greater 

appreciation of the effect size by highlighting how much of the performance variation 

is and is not due to the experimental manipulation. A comparison of the equivalent 

SOA and standardized mean difference measures presented in Table 4.1 shows that 
SOA measures can be very low. As performance also is affected by multiple genetic 
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and experiential factors, it might be expected that the proportion of all performance 
variance attributable uniquely to some experimental conditions may be relatively low. 
Nevertheless, it is important that less experienced researchers do not undervalue 
low SOA measures of effect and, equally, that genuinely low SOA measures alert 
researchers to the possibility of additional causal factors or a lack of experimental 
control, or both (see Grisom and Kim, 2005, for further discussion). 

�2 
Most authors recommend the use of w to measure effect size (e.g., Keppel and 

Wickens, 2004; Maxwell and Delaney, 2004). Although R2 and 112 provide a valid 
description of the effect size observed in the sample data, they are inflated and poor 
estimates of the effect size in the population. a/ minimizes the overestimation bias of 
the population effect size better than other effect size estimates and w2 estimates have 
been specified for most ANO VA designs. However, it should be appreciated that w 2 is 
not entirely bias free - like all of the effect size measures considered its overestimate 
bias increases as the sample size decreases. 

Nevertheless, despite the many recommendations to use w2 effect size measures, 
other estimates continue to be used. For example, 112 is observed frequently in journal 
articles, and d and f are used by many statistical packages for power analysis and 
sample size calculation (e.g., G*Power, nQuery Advisor). For this reason, the next 
section considers the use of power analysis to determine sample size with respect to �2 w andf 

4.7 POWER 

As mentioned in the previous chapter, the credit for drawing attention to the important 
issue of power is due to Jacob Cohen (1969, 1988). Although Cohen's work focused 
primarily on having sufficient power to detect the effects of interest in psychological 
research, his work also influenced research in many other disciplines. Cohen defined 
power as the probability of correctly rejecting a false null hypothesis when an 
experimental hypothesis is true 

Power= (1-/3) (3.5, rptd) 

where f3 is the Type 2 error rate (i.e., the probability of accepting a false null 
hypothesis, see Section 3.6. l ). Alternatively, power is the probability of detecting a 
true effect. As described in Chapter 3, Cohen (l 988) recommends power of at least 
0.8. When this is achieved, equation (3.5) reveals /3 = 0.2. 

4.7.1 Influences on Power 

The sampling distribution of Funder the null hypothesis was discussed in Section 2.3. 
This is the sampling distribution of F used to assess the tenability of the null 
hypothesis. When the null hypothesis is true, the sampling distribution of F has a 
central distribution, which depends on only two parameters: the F-value numerator 
and denominator dfs (see Figure 4.1). However, when the null hypothesis is false, F 
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F-distibution when null hypothesis is true 

Value of F a= 0.05 

Figure 4.1 Sampling distributions of F when the null hypothesis is true and when it is false. 

has a noncentral distribution. It is the noncentral distribution that is used to determine 

the power of a test (see Figure 4.1 ). The noncentral distribution depends on three 

parameters: the F-value numerator and denominator dfs, plus the noncentrality 

parameter A. The noncentrality parameter is defined as 

"'p i.1.2 
A = L,,j=I J 

CJ2/N 
e J 

( 4.19) 

where L1J=1 rxJ is the sum of the squared experimental effects, CJ� is the variance 

associated with these effects and N1 is the sample size per condition. Applying 

equation ( 4.19) to the data presented in Tables 2.2, 2.6, and 2. 7 provides 

� 14 
)
, 

= 
2.476/8 

= 45
.2

34 

Horton (1978) describes how A may be estimated from 

i = Experimental effect SS /MSe 

Applying equation (4.20) to the data in Table 2.7 provides 

1 = 112/2.476 = 45
.2

34 

(4.20) 

As equations ( 4.19) and ( 4.20) show, A reflects the ratio of the sum of the squared 

experimental effects to the (mean square) error associated with this effect. In short, A is 
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another expression of effect size. Assuming the F-value numerator and denominator 
dfs do not change, any increase in Jc will shift the noncentral distribution in a positive 

direction (see Figure 4. 1). In fact, the power to detect an effect can be defined by the 

proportion of the noncentral F distribution that lies above the critical (central F) 

value used to define a significant effect. Therefore, it follows that power is 

determined by Jc (i.e., effect size) and the noncentral F-distribution numerator and 

denominator dfs. The final determinant of power is the level of significance adopted. 

A more stringent level of significance reduces the likelihood that an effect will be 

detected, so reducing power. 

Effect size increases with greater differences between the experimental condi

tion means, or lower error variance, or both. Although the differences between the 

experimental condition means may be increased by selecting extreme factor levels 

and error variance may be constrained by the implementation of appropriate 

experimental controls, effect size really is set by nature and not the experimenter. 

Acceptable significance level (and so Type 1 error rate) is set by strong discipline 

conventions, while the numerator dfs (specifically, the number of experimental 

conditions) is determined by the experimental design appropriate to investigate 

the theoretical or practical issue. Therefore, the most easily manipulated experi

mental feature affecting analysis power is the denominator dfs, which is deter

mined by the sample size. Consequently, most attempts to increase analysis power 

involve increasing the size of the sample. 

Power refers to the ability of a statistical analysis to detect significant effects. 

However, because all of the information needed to assess power is determined by 

the nature of the experiment or study conducted, many researchers refer to 

experiment or study power. When the most powerful test appropriate for the data 

is applied, analysis and experiment or study power will be at a maximum and any 

of these labels will be acceptable. However, if the most powerful test is not applied 

to the data, a discrepancy can exist between the analysis power achieved and the 

analysis power possible given the nature of the study conducted. In such circum

stances, it might be useful to distinguish between analysis power and study power, 

with the latter referring to the power achievable if the most powerful test is applied to 

the data. 

4.7.2 Uses of Power Analysis 

Murphy and Myors (2004) describe four uses of power analysis. First, power 

analysis can be applied to determine the sample size required to achieve a 

specific power of analysis. Second, power analysis can be applied to determine 

the power level of a planned or a completed study. Third, power analysis can 

be applied to determine the size of effect that a study would declare significant. 

The fourth and final use of power analysis is to determine an appropriate 

significance level for a study. However, only the two most important uses of 

power analysis will be considered here: employing power analysis to determine 

the sample size required to achieve a specific power and employing power 

analysis to determine the power level of a planned or completed study. An 
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excellent overview of sample size planning is provided by Maxwell, Kelly, and 

Rausch (2008), while readers interested in the other uses of power analysis 
should consult Murphy and Myors (2004). 

4.7.3 Determining the Sample Size Needed to Detect the Omnibus Effect 

Power analysis can be employed to determine the sample size required to achieve a 

specific level of power to ensure that the study to be conducted will be able to detect 

the effect or effects of interest. Cohen ( 1962) noted that the low level of power 

apparent in many published studies across a range of research areas made the 

detection of even medium-sized effects unlikely. Even experienced and statistically 

sophisticated researchers can underestimate how many subjects are required for an 

experiment to achieve a set level of power (Keppel and Wickens, 2004). Unfortu

nately, recent surveys have indicated that despite the emergence of a considerable 

literature on power analysis and the issue of underpowered studies, the problem of 

underpowered studies persists, creating difficulty for the coherent development of 

psychological theory (see Maxwell, 2004, for review and discussion). Therefore, 

employing power analysis to determine the sample size required to achieve a specific 

level of power is by far the most important use of power analysis (e.g., Keppel and 

Wickens, 2004; Maxwell and Delaney, 2004). 

Four pieces of information are required to determine the sample size needed to 
obtain a specific power. They are 

• The significance level (or Type 1 error rate) 

• The power required 

• The numerator dfs 

• The effect size 

Acceptable significance levels are set by discipline conventions. In psychology, 

usually a is set at 0.05, although 0.01 may be used in some situations. Here, the usual 

a= 0.05 is employed. Again, the convention in psychology is to aim for power 2:0.8. 

The numerator dfs is set by the number of experimental conditions. For the 

hypothetical single independent measures factor experiment presented in Chapter 

2, numerator dfs = (p - 1) = (3 - 1) = 2. 

The final, but possibly the most difficult piece of information required is the 

effect size. In an ideal world, researchers simply would apply their research 

knowledge to describe the effect size to be detected. However, even researchers 

quite familiar with a research topic and area can find it difficult to predict effect 

sizes, especially if the purpose of the study is to examine some novel influence. 

Nevertheless, if a similar study has been conducted already then this data may be 

useful for deriving an effect size. Alternatively, Keppel and Wickens (2004) 

suggest researchers to obtain an effect size by considering what minimum 

differences between means would be of interest. However, the overestimation 
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bias of effect size measures needs to be considered when differences between 
sample data means provide the effect size estimates. In such circumstances, '(;/ or 
adjusted f effect size estimates should be employed. 

When no similar or sufficiently similar studies exist and researchers are unsure 
what minimum differences between means would be of interest, then Cohen's 
effect size guidelines can be useful. Nevertheless, researchers using Cohen's 
guidelines still need to decide whether large, medium, or small effects are to be 
detected and these categories may depend upon the research topic, the research 
area, or both. Here, a medium effect size is to be detected, corresponding to 
� 2 
w = 0.06 or f = 0.25. 

Probably the easiest way to determine the sample size required to achieve a 
specific level of power is to use power analysis statistical software. Many statistical 
packages are now available to conduct power analysis and sample size calculations. 
Statistical software developed specifically for power analysis and sample size 
calculation is available commercially (e.g., nQuery Advisor) and as freeware 
(e.g., G*Power 3, Faul et al., 2007), while some of the larger commercially available 
statistical software packages (e.g., GenStat, SYS TAT) also include the facility to 
conduct power analysis and sample size calculation. If you have access to any of 
these statistical packages, it is recommended they are used, as these programs will 
provide the most accurate results. 

Those without access to power analysis statistical software still can conduct power 
and sample size calculation in the "old-fashioned" way, using power charts. (Power 
charts are presented in Appendix C.) The power charts plot power ( l  - /3) against the 
effect size parameter, ¢, at rx = 0.05 and at rx = 0.01, for a variety of different 
denominator dfs. ¢ is related to A. as described below 

( 4.2 l) 

� 2 
The use of power charts is illustrated below for w andf The same iterative procedure 

� 2 
is employed size irrespective of whether the w orf effect size estimates are used. The 
only difference is whether equation (4.22) or (4.23) is applied 

(4.22) 

and 

(4.23) 
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-2 

With w = 0.06, the first calculation estimates </>, N1 = 20. This provides 

(4.22, rptd) 

</> =  � J20 
VI=0:06 

</> = 0.25(4.47) 

</> = 1.12 

Examination of the power function chart for numerator dfs (v1) = 2, a= 0.05, 
denominator dfs ( v2) = (p x N1 - 3 = 3 x 20 3) 57, and </> = 1.12, reveals power= 0.37. 
To increase power, the second calculation increases Nj to 50. This provides 

</> = (OJ56 J50 VI=0:06 
</> = 0.25(7.07) 

</> = 1.77 

Examination of the same power function chart, but now with denominator dfs 
(v2) = (p x NrP = 3 x 50 - 3) 147, N = 150, and </> = 1.77, reveals power,....., 0.8. 
(In fact, the more accurate G*Power 3 estimate reveals that to obtain power= 0.8, dfs 
(v2) = 156, N = 159. Nevertheless, the power charts allow derivation of quite an 
accurate estimate of the sample size required.) 

To obtain sample size estimates usingf, similar procedures are implemented, but 
rather than using equation (4.22), equation (4.23) is employed 

</> = tv'iii ( 4.23, rptd) 

Applying equation (4.23), with/= 0.25 and N1=50, equation (4.23) provides 

</> = 0.25vl50 

</> = (0.25)(7.07) 

</> = 1.77 

The equivalence of the ;n2 and f calculations above can be appreciated by 
-2 

considering equations (4.17) and (4.22). This reveals that to calculate </> ,  w is 
converted to f. 
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4.7.4 Determining the Sample Size Needed to Detect Specific Effects 

The analyses considered so far have focused on determining the sample size 
required to achieve a specific level of power to allow rejection of the omnibus null 
hypothesis. However, as discussed in Section 3.2, the omnibus null hypothesis is 
rarely the hypothesis in which there is real interest. Usually, the real interest is in the 

hypotheses manifest in specific pairwise comparisons between the means of specific 
experimental conditions. In factorial experiments, there is likely to be great interest 
in whether the interaction effects are consistent with theoretical predictions (see 
Chapter 5). 

In Section 3.6.4, it was suggested that in the hypothetical experiment, the 
comparison of most interest was the 30 s versus 180 s experimental conditions. (For 
simplicity, it will be assumed that this is the only pairwise comparison of interest in 
this experiment.) As this is a planned comparison (i.e., the experiment was designed 
with the intention of comparing performance in these experimental conditions), it 
follows that the sample size chosen for the experiment should take into account the 
level of power required for this comparison. As specific pairwise comparisons employ 
only a subset of the data involved in assessing the omnibus null hypothesis, 
determining the sample size needed to achieve a set level of power for pairwise 
comparisons is most likely to provide greater power for the omnibus null hypothesis 
assessment. 

The key piece of information required to determine the sample size to enable a 
pairwise comparison to operate at the set power level is the partial w2 (see 
equation (4.15) or (4.16)) or the equivalent! measure. Once the size of the (pairwise) 
effect to be detected is expressed as a partial w2 or f, the procedure for determining the 
required sample size continues as was described for the omnibus effect. 

The hypothetical experiment presented in Chapter 2 employs three conditions and 
it may be determined that for the 30 s versus 180 s pairwise comparison to operate with 
a power of 0.8 (when numerator dfs = I, ix= 0.05), a sample size of N1 = 20 is 
required. Therefore, there needs to be 20 subjects in the 30 s experimental condition 
and 20 subjects in the 180 s experimental condition. It was established earlier that to 
detect the anticipated omnibus effect with power '°"0.8, required a sample size where 
N1= 15. Therefore, one possibility would be to conduct an experiment with the 
number of subjects per condition as shown in Table 4.2. 

If the experiment was run with the 55 subjects shown in Table 4.2, rather than the 
45 (i.e., 3 x 15) subjects required to detect the anticipated omnibus effect (with power 
-0.8), then, the power of the analysis to detect the anticipated omnibus effect would be 
>0.8, while the power to detect the effect of the 30 s versus 180 s pairwise comparison 
would = 0.8. As the purpose of power analysis is to ensure that sufficient power is 
available to detect effects, having more than the conventional power requirement of 

Table 4.2 Possible Numbers of Subjects per Experimental Condition 

Experimental condition 30 s 60 s 180 s 
Number of subjects 20 15 20 
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0.8 to detect the omnibus effect is not a problem. However, in Section 2.1, allocating 

equal numbers of subjects to experimental conditions to obtain a balanced experi
mental design was advocated as a good design practice. The example above shows 

that applying the power analysis results above could lead to an unbalanced 

experimental design, but this could be resolved by employing 20 subjects in all 

conditions. 

In contrast to the view that good design practice involves balanced experimental 

designs, McClelland (1997) argues that psychologists should optimize their experi

mental designs to increase the power of the important experimental comparisons by 

varying the number of subjects allocated to the different experimental conditions. To 

make his case, McClelland addresses the reasons for favoring balanced data. 

The ease of calculation and the interpretation of parameter estimates with 

balanced data are dismissed by McClelland as insufficient to justify balanced 

data. McClelland claims that the widespread use of computer-based statistical 

calculation has made ease of calculation with balanced data irrelevant. However, 

while the ease of the statistical calculation may no longer be the issue it once was, 

the same cannot be said about the issue of statistical interpretation with unbalanced 

data. There are a number of different ways to implement ANOVA. With balanced 

data in factorial experiments, factors and their interactions are orthogonal and so, 

the same variance estimates are obtained irrespective of the order in which the 

variance is attributed. However, with unbalanced data, factors and their interactions 

are not orthogonal and so, appropriate analysis techniques must be employed to 

obtain accurate estimates of the variance due to the factors and their interactions. 

The overparameterization problem solved by cell mean models discussed in 

Chapter 2 is also relevant. Essentially, with unbalanced data, reparameterization 

and estimable function techniques can provide parameter estimates that are 

ambiguous and so provide ambiguous hypothesis tests, and this problem is 

compounded by the opacity of much statistical software (Searle, 1987). Therefore, 

the use of statistical software to ease calculation with unbalanced data can 

exacerbate the more serious problem of understanding what the statistics mean. 

McClelland also argues that rather than simply relying on balanced data to make 

ANOVA robust with respect to violations of distribution normality and variance 

homogeneity assumptions, the tenability of these assumptions should be assessed 

empirically and then, if necessary, remedied by data transformation, or the 

adoption of modem robust comparison methods. Unfortunately, however, the 

situation regarding statistical assumptions is not so simple and clear cut. To begin 

with, some authors now advise against assumption tests and instead advocate that 

the experimental design should minimize or offset the consequences of assumption 

failures (see Chapter 10). From this perspective, balanced experimental designs 

would be a standard component of any such design. Moreover, McClelland seems 

over reliant on data transformation and modem robust comparison methods. 

Certain assumption violations simply cannot be remedied by data transformation 

and even when data transformation does remedy the assumption violation(s), issues 

can arise as to the interpretation of transformed data analyses depending on the 

nature of the transformation applied. Similarly, the adoption of modem robust 
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comparison methods may not be the panacea suggested-not all ANOVA techni
ques have an equivalent robust comparison method and not all robust comparison 
methods are considered equally valid. 

Optimizing experimental designs by allocating different numbers of subjects to 
different experimental conditions to increase the power of the comparisons can be a very 
useful approach, but it is not without drawbacks. ANOVA is not robust to violations of 
the normality and homogeneity assumptions with unbalanced data. Therefore, if such 
assumption violations are detected with unbalanced data, a researcher already has 
abandoned one of their key strategies for dealing with such a situation and is reliant 
entirely on the success of the available data transformation or robust comparison method 
strategies to deal with the problems identified. Moreover, although the general 
availability of statistical software has eliminated concerns about calculation difficulty 
and error, the accurate statistical interpretation of results obtained with unbalanced data 
remains problematic. As accuracy is paramount, it may be better for less sophisticated or 
less confident data analysts to err on the side of inefficient, but equally powerful, 
balanced data designs, than risk misinterpreting the results of optimally designed 
experiments. 

4.7.5 Determining the Power Level of a Planned or Completed Study 

Although the best practice is to employ power analysis to plan and design a study, it also 
may be applied to determine the power of a study to detect the effects of interest. This 
might be done as a check before the study is conducted. Alternatively, when a study has 
been conducted, but no significant effect was detected, a power analysis can be applied 
to ensure that the study had sufficient power to detect the effect(s) of interest. 

In any of these situations, study power can be assessed by applying equation ( 4.22) 
or ( 4.23), depending on the measure of effect size employed. For example, assuming it 

�2 

is planned to conduct a study to detect a large effect size, w = 0.14, over 4 
experimental conditions, with 10 subjects per condition and the significance level 
set at the conventional 0.05. Applying equation (4.22), provides 

¢ = fOT4 VlO 
v� 

¢ = (0.40)(3.16) 

¢ = 1.26 

Examination of the power function chart for numerator dfs ( v1) = 3, a= 0.05, 
denominator dfs (v2) = (p x N1 - p = 4 x 10-4) 36, N = 40, and¢= 1.26, reveals 
power= 0.5. As this value falls some way below the conventionally required power of 
0.8, it is necessary to increase the sample size to obtain the required power. In fact, 
even when a large effect is to be detected with power= 0.8, in an experiment with 
numerator dfs (v1)=3 and a=0.05, N1= 19. Therefore, the total sample size 
required= (4 x 19) = 76. 
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When power analysis is applied to determine the study sample size needed to 
achieve a specific level of power to detect the effect or effects of interest, essentially, a 
prediction is made with respect to the effect size anticipated. Likewise, when power 
analysis is applied to check a study has sufficient power to detect an anticipated effect 

size after the study has been planned and designed, but before the study is conducted, 

the anticipated effect size is also a predicted effect size. However, when a study has 

been conducted without detecting a significant effect and a power analysis is applied 

to ensure that the study had sufficient power to detect the effect(s) of interest, perhaps 
it is less obvious that the anticipated effect size again is a predicted effect size. In short, 
all power analyses should employ effect size measures estimated before the study is 
conducted, or at least independent of the actual observed effect size(s). 

4.7.6 The Fallacy of Observed Power 

Despite the statement above that all power analyses should employ effect sizes 

anticipated or predicted before the study is conducted, some statistical packages (e.g., 

IBM SPSS) provide what is termed, observed power. Observed power employs the 
sample data to provide direct estimates of the parameters required for the power 

analysis and so, it is supposed to describe the power of the actual analysis conducted. 

This means that observed power is based on the untenable assumption that the 
observed sample means are equivalent to the population means. However, as 
discussed in Sections 4.2 and 4.3, it is known that sampling error is responsible for 
the sample data overestimating the population effect size. Nevertheless, sometimes it 

is argued-if observed power is high but no effect is detected, then the failure to detect 

the effect cannot be attributed to low power and so, some sort of support for the null 
hypothesis is provided. However, there is an inverse relationship between power and 
the p-value associated with any effect-as power increases, (the size of the test 
statistic increases and) the p-value decreases. Therefore, not only does observed 

power provide no new information but, by definition, the power of a test that declares 

an effect not to be significant cannot be high. Consequently, there is general agreement 
that the notion of observed power is meaningless and should be avoided, and that the 
appropriate role for power analysis is in planning and designing an experiment or 
other type of study (Hoenig and Heisey, 2001; Keppel and Wickens, 2004; Maxwell 
and Delaney, 2004). 



CHAPTER 5 

GLM Approaches to Independent 

Measures Factorial Designs 

5.1 FACTORIAL DESIGNS 

Factorial designs are the most common type of design applied in psychological 

research. While single factor experiments manipulate a single variable, factorial 

experiments manipulate two or more variables (i.e., factors) at the same time. As 

naturally occurring circumstances involve an interplay between a multitude of 

variables, there is a sense in which factorial designs offer closer approximations to 

reality than single factor studies. Of course, this line of reasoning leads to the 

conclusion that the most ecologically valid approach is to observe reality. However, as 

reality involves this interplay between a multitude of variables, usually it is far too 

difficult to determine causality simply by observing by observation. An experimental 

approach tackles the issue of causality in a different way. Rather than deal with the full 

complexity of reality, experiments simplify by focusing on only those aspects of 

reality thought relevant to the causal relations under investigation, which are 

expressed and measured as factors and dependent variables. The experimental factors 

and dependent variables must be relevant to what occurs in the real world, but 

maintaining relevance does not necessarily mean replicating real world occurrences. 

When experiments test psychological theory, factors and dependent variables must be 

theoretically relevant, but a psychological process may be assessed pertinently by a 

dependent variable obtained from an artificial task. Therefore, an experiment may 

have low ecological validity, but still have high external validity-its findings 

generalize appropriately to the theoretical issues under examination (Brewer, 

2000; Shadish, Cook, and Campbell, 2002). While all experiments need to be 

externally valid, the particular purpose of the experimental investigation determines 

whether ecological validity also is a concern. 
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Although the experimental conditions under which performance is observed are 

defined by two or more factors, factorial designs allow the effects attributable to the 

separate factors to be estimated. The separate factor effect estimates are termed main 
effects and compare with the estimates of the effects of experimental conditions in single 

factor studies. Nevertheless, the unique feature of factorial designs is the ability to 

observe the way in which the manipulated factors combine to affect behavior. The pattern 

of performance observed over the levels of a single factor may change substantially when 

combined with the levels of another factor. The influence of the combination of factors is 

called an interaction effect and reflects the variation in performance scores resulting 

specifically from the combination of factors. In other words, an interaction effect is in 

addition to any factor main effects. Indeed, in many factorial experiments whether there 

are factor interactions may be of more interest than whether there are main effects. 

5.2 FACTOR MAIN EFFECTS AND FACTOR INTERACTIONS 

The nature of main effects and factor interactions probably is explained best by way 

of an example. Consider an extension to the hypothetical experiment examining 

the influence of study time on recall. A researcher may be interested to know the 

consequences for recall of different encoding strategies when the same periods of 

study time are available. To examine this issue, the study time periods could be 

crossed with two forms of encoding instruction. Half of the subjects would 

be instructed to "memorize the words," just as before, while the other subjects would 

be instructed to use the story and imagery mnemonics (i.e., construct a story from the 

stimulus words and imagine the story events in their mind's eye). As before, the recall 

period lasts for 4 minutes and begins immediately after the study period ends. The data 

obtained from this hypothetical independent two-factor (2 x 3) design is presented in 

Table 5.1, along with some useful summary statistics. 

Table 5.1 Experimental Data and Summary Statistics 

Encoding 

Instructions al Memorize a2 Story and Imagery 

bl b2 b3 bl b2 b3 

Study Time 30s 60s 180 s 30s 60s 180s 

7 7 8 16 16 24 

3 11 14 7 10 29 

6 9 10 11 13 10 

6 11 11 9 10 22 

5 10 12 10 10 25 

8 10 10 11 14 28 

6 11 11 8 11 22 

7 11 12 8 12 24 

LY 48 80 88 80 96 184 

(l::Y)2 304 814 990 856 1,186 4,470 

Ly2 2,304 6,400 7,744 6,400 9,216 33,856 
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Table 5.2 Means and Marginal Means for the Experimental Data in Table 5.1 

Study Time 

bl b2 b3 

113 

Encoding Instructions 30s 60 s 180 s Marginal Means 

al Memorize words 6 10 1 1  9 
a2 Story and imagery mnemonics 10 12 23 15 

Marginal means 8 1 1  17 12 

Two conventions are relevant here. The first is that the factor with the fewest 
levels is labeled A, the factor with the next fewest levels is labeled B, and so on. 
The second is upper case (capital) letters are used to denote factors and lower 
case letters denote factor levels. Therefore, Factor A represents the two levels of 
encoding, with a l  and a2 representing the memorize, and story construction and 
imagery conditions, respectively, while Factor B represents the three levels of 
study time, with bl, b2, and b3 representing the 30, 60, and 180 s conditions, 
respectively. 

An alternative presentation of the six experimental conditions comprising the 
two-factor design is presented in Table 5.2. Here, the mean memory performance 
observed in each of the experimental conditions is presented, as are marginal means 
(so termed because they appear in the table margins), which provide performance 
estimates under the levels of one factor, averaged over the influence of the other 
factor. (The mean in the bottom right comer is the average of all the averages.) Six 
experimental conditions result from crossing a two-level independent factor with a 
three-level independent factor. This type of factorial design can be called a fully 
crossed factorial design to distinguish it from other multifactor designs that do not 
fully cross all factor levels (e.g., see Kirk, 1995 on nested designs). However, fully 
crossed factorial designs are far more frequently employed than nested factor 
designs. Consequently, in common with linearity as applied to GLMs, nested 
factorial designs typically are described specifically as nested designs and any 
design described as factorial can be assumed to be fully crossed, unless specified 
otherwise. 

The equation 

yijk = µ + !Xj + fh + (r.xf3)jk + f.ijk (5.1) 

describes the experimental design GLM for the independent measures, two-factor 
ANOVA applicable to the data presented in Table 5.1. Yijk is the ith subject's 
dependent variable score in the experimental condition defined by the jth level of 
Factor A, wherej = 1, . . . , p, and the kth level of Factor B, wherek = 1, ... , q. As in 
the single factor design, the parameter µ is the general mean of the experimental 
condition population means. The parameter r.x1 is the effect of the j Factor A levels 
and the parameter f3k is the effect of the k Factor B levels. The effect of the 



114 GLM APPROACHES TO INDEPENDENT MEASURES FACTORIAL DESIGNS 

interaction between Factors A and B over the j and k levels is represented by the 

parameter ( rxf3)Jk· Finally, the random variable, B;Jk. is the error term, which reflects 

variation due to any uncontrolled source. Again equation 5.1 summarizes a set of 

equations, each of which describes the constitution of a single dependent variable 

score. 

The general mean parameter, µ, is defined as 

'L'l= I L�= 1 µjk µ=------

pq 
(5.2) 

The Factor A effect parameters, rx1, are defined as 

(5.3) 

where µ1 is the marginal mean for Factor A, level j, and µ is the general mean as 

defined. Therefore, the effect of the j levels of Factor A is given by the difference 

between the j Factor A marginal means and the general mean. The (marginal) mean 

for the jth level of Factor A is defined as 

where q is the number of levels of Factor B. Therefore 

and so 

6+10+11 
µ1 = 3 = 9 

-10 + 12 + 23 -15 µ2-
3 

-

rx1=9-12 = -3 

rx2 = 15 - 12 = 3 

(5.4) 

This shows that overall, the effect of the Factor A Level 1 manipulation (the memorize 

instruction) is to reduce memory performance by three words, whereas the Factor A 

Level 2 manipulation (the story and imagery mnemonics) is to increase memory 

performance by three words. 

The Factor B effect parameters, f3b are defined as 

(5.5) 

where µk is the marginal mean for Factor B, Level k. Therefore, the effect of the k 

levels of Factor B is given by the difference between the k Factor B marginal 
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means and the general mean. The (marginal) mean for the }th level of Factor B is 
defined as 

where p is the number of levels of Factor A. Therefore 

and so 

6 + 10 
µ, = -2-=8 

10 + 12 
µ2= 2 =11 

11 + 23 
µ3= 2 =17 

/31 = 8 - 12 = - 4 

/32 = 11 - 12 = - 1 

/33 = 17 - 12 = 5 

(5.6) 

This shows that overall, the effect of the Factor B Level 1 manipulation (30 s study 
time) is to reduce memory performance by four words, the Factor B Level 2 
manipulation (60 s) reduces memory performance by one word, while the Factor B 

Level 3 manipulation ( 180 s) increases memory performance by five words. 
Comparisons between marginal means compare with the effect of experimental 

conditions in the single independent factor design presented earlier. However, 
while main effects in factorial designs bear comparison with experimental 
condition effects in single factor designs, across the two experiments, subjects' 
performance is very unlikely to have been observed under identical circumstances. 
In single factor experiments, there should be no systematic variation between 
experimental conditions other than the experimental manipulations defining the 
levels of the single factor and this will be reflected in the experimental condition 
means. However, the factorial design counterparts of the single factor experimental 
condition means-the marginal means-are estimated by averaging across any 
influence of the other factor and so, they incorporate any influence of this factor. 
Therefore, factorial experiment marginal means are likely to differ from compa
rable single factor experimental condition means (e.g., compare the Factor B 

marginal means in Table 5.2 with the original "memorize the words" single factor 
condition means-Level a l  in Table 5.2). Nevertheless, because the factors are 
crossed, the two marginal means for Factor A average over exactly the same levels 
of Factor B and so, the only difference between the two marginal means for Factor 
A is in terms of the distinction between the Factor A levels (encoding instructions). 
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Similarly, the three marginal means for Factor B are averaged over the same levels 

of Factor A and so, the only difference between the three marginal means for 

Factor B is in terms of the distinction between the Factor B levels (study time). 
Consequently, the averaging procedures result in orthogonal comparisons between 

the levels of Factor A and the levels of Factor B and the interaction between the 

Factor A and the Factor B levels. 

The Factor A and Factor B interaction effect parameters, (afJ)Jk• are defined as 

(5.7) 

where µ1k represents the separate experimental condition means. Therefore, each 

interaction effect is the extent to which each separate experimental condition mean 

diverges from the additive pattern of main effects. Hopefully, this gives some 

substance to the earlier claim that the interaction effects were over and above any 

factor main effects. For the current example 

(rt../3)11 =µ11-(µ + rt..1 + /31) = 6-(12-3-4) = 

(rt../3)12 =µ12 -(µ + rt..1 + /32)=10-(12-3-1) = 2 

(rt../3)13 = µ13 -(µ + rt..1 + [33) = 11 -(12-3 + 5) = -3 

(rt../3)21 =µ21 -(µ + rt..2 +/Ji)= 10-(12+3-4) = - l 

(a/3)22 = µ22 -(µ + rt..2 + /32) = 12-(12 + 3 -1) = -2 

(afJ)n = µ23 -(µ + rt..2 + /33) = 23 -(12 + 3 + 5) = 3 

The effect of the interaction is to increase or to decrease subjects' memory 

performance in each of the six experimental conditions by the number of words 

shown. For instance, memory performance in the experimental condition in which 

subjects were instructed to memorize the words and had 180 s to do so (condition 

alb3) was poorer by 3 words than would be expected if Factors A and B had 

exerted only additive effects. The interaction effect indicates that the particular 

combination of these two-factor levels affects memory performance in a manner 

different to the aggregate of the separate effects of the two factors. 

Based on the model component of the two-factor GLM equation, predicted scores 

are given by 

(5.8) 

and so, the last parameters, the error terms, which represent the discrepancy between 

the actual scores observed and the scores, predicted by the two-factor GLM, are 

defined as 

(5.9) 
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The experimental design GLM underlying the two factor independent mea
sures ANOVA has been described and its parameters defined. Attention now 

turns to how well the GLMs incorporating some or all of these parameters 
accommodate the experimental data. Two strategies for carrying out ANOVA by 
comparing GLMs will be considered. The first is a simple extension of the 
comparison between full and restricted GLMs for factorial experimental designs, 

while the second concords with incremental linear modeling. Subsequently, the 
use of some computer software packages for implementing these strategies is 

discussed. 
In factorial designs with balanced data, all factor main effects and interaction 

effects are orthogonal. (This may be checked by examining the zero correlation 
between the variables that effect code the factors and their interactions in Table 5.4 

when equal numbers of condition instances, cf. subjects, are employed. NB. 
correlations between these variables are caused by unbalanced data.) As multi
colinearity problems (see Section 1.4) do not arise in factorial designs with balanced 
data, no matter the order in which the sum of squares estimates for the factor main 
effects, interaction effects, and error are calculated, the same values always are 
obtained. 

5.2.1 Estimating Effects by Comparing Full and Reduced 

Experimental Design G LMs 

The major issue for a GLM comparison approach is what are the pertinent GLMs to 
compare? The equation 

(5.1, rptd) 

describes the full experimental design GLM underlying the independent measures, 
two-factor ANOVA. The hypotheses concerning the main effect of Factor A, the 
main effect of Factor B, and the effect of the interaction between Factor A and 
Factor B are assessed by constructing three reduced GLMs, which manifest data 
descriptions under the three different null hypotheses. Subsequently, the error 
components of these three reduced GLMs are compared with the error component 
of the full model above. 

The Factor A null hypothesis states that the Factor A manipulation does not affect 
the data. Consequently, the reduced experimental design GLM does not need to 
accommodate an influence of Factor A. However, any influence of Factor B does need 
to be accommodated, as does any interactive influence of the Factors A and B. 
Therefore, the reduced GLM that omits the influence of Factor A, which is used to 
assess the influence of Factor A is 

(5.10) 
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The null hypothesis that the levels of Factor A do not influence the data may be 
expressed more formally as 

('/.) = 0 (5.11) 

Applying the same rationale, the reduced GLM for assessing the effect of Factor Bis 

(5.12) 

The null hypothesis that the levels of Factor B do not influence the data may be 
expressed more formally as 

(5.13) 

Finally, the reduced GLM for assessing the effect of the interaction between Factors A 
and B is 

(5.14) 

and the null hypothesis that the interaction between the levels of Factors A and B do 
not influence the data may be expressed more formally as 

(5.15) 

Note that the null hypotheses are expressed in terms of zero effects and not in 
terms of the equivalence of the general mean, the marginal means, and the 
experimental condition means. This is because the marginal and experimental 
condition means may vary from the general mean as a consequence of one effect 
when another effect is assessed as being equal to zero. 

The next step is to calculate the error sums of squares for the two factor independent 
measures AN OVA, full and reduced GLMs. For both full and reduced GLMs, the error 
SS can be defined as 

N p q N 

SSE= L (cuk)2 =LL L (Yuk- Y)2 
i=l j=I k=I i=l 

(5.16) 

where Y is the predicted scores from either the full or the reduced GLM. For the full 
GLM, the estimate of Y is provided by Yjk and for the Factor A reduced GLM, the 
estimate of Y is provided by(YJk - a1 ). Therefore 

p q N 

SSEARGLM = LL L (Yuk - Y1k - a1 )2 
j=I k=I i=l 

( 5 .17) 
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Contained within the brackets of equation (5.17) are the full GLM error (Yijk - Y1k) 
and the effect of Factor A (a1). The effect of Factor A has been defined as 

(5.3, rptd) 

and is estimated by 

(5.18) 

where Y1 represents the Factor A marginal means and Y 0 is the general mean. 

Substituting these terms and applying some algebra reveals 

p 

SSEAROLM = SSEFOLM + Njkq L (Y1 - y o)
2 

J=I 
(5.19) 

where Nik is the number of subjects in each experimental condition. It follows from 
equation (5.19) that 

p 

SSEAROLM - SSEFOLM = Njkq L (Y1 - y o)
2 

J=I 
(5.20) 

Equation (5.20) specifies the reduction in the GLM error term when the effect 
of Factor A is accommodated in comparison with not accommodating only the 
Factor A effect in the reduced GLM, and is equal to the main effect sum of squares 
for Factor A (SSA). A similar logic reveals the main effect sum of squares for 
Factor B (SS8) as 

q 

SSEsROLM - SSEFoLM = NJkP L (Yk - Y o)2 
k=I 

(5.21) 

where Y k represents the Factor B marginal means. Finally, the sum of squares for the 
interaction between the levels of Factors A and B (SSAs) is given by 

p q 

SSEABRGLM - SSEFGLM = Njk LL (Yjk - Y1 - y k + y G )
2 

j=I k=I 
(5.22) 

Applying these sums of squares formulas to the example memory experiment data 
provides 

SSEARGLM - SSEFGLM = 8(3)[(9- 12)2 + (15 - 12)2] 

= 24[18] 

=432 



120 GLM APPROACHES TO INDEPENDENT MEASURES FACTORIAL DESIGNS 

SSEBRGLM - SSEFGLM = 8(2) [(8 - 12)2 + ( 11 -12)2 + ( 17 -12)2] 

= 16[42] 

=672 

SSEABRGLM - SSEFGLM = 8[(6 -9 -8 + 12)2 + (10-9 - 11 + 12)2 

+ (11-9-17 + 12)2 + (10-15-8 + 12)2 

+ (12-15-11+12)2 + (23-15-17 + 12)2] 

= 8[28] 

=224 

In addition to the SS for main and interaction effects, the associated df� are required. 
Previously, dfs were described as the number of scores employed in constructing the 
estimate that genuinely was free to vary. Equivalently, the dfs may be defined in 
accordance with the model comparison approach. The dfs for a GLM equals the 
number of scores minus the number of independent parameters employed in the 
model. And just as main and interactive effects are defined as the difference between 
reduced and full GLM errors, the main and the interactive effect dfs can be defined as 
the difference between the reduced and the full GLM dfs. 

The ANO VA solution to the overparameterization problem for experimental design 
GLMs is to constrain effects to sum to zero ( see Section 2 .8 .5). Therefore, µ 

constitutes one parameter, there are (p - 1) parameters required to distinguish the 
levels of Factor A, (q-1) parameters are required for Factor B, and (p- l)(q- 1) 
parameters are required for the interaction between Factors A and B. For the 
independent (2 x 3) factors experimental design GLM, a total of six independent 
parameters are employed. Consequently, for the full independent (2 x 3) factor 
experimental design GLM applied to the memory experiment data, there are 

(N -6) = (48 -6) = 42 df s 

For the Factor A reduced GLM, the (p -1) parameters distinguishing the Factor A 
levels are omitted, leaving, 1 + (q-1) + (p- l)(q- 1) = 1 + (3 -1) + 
(2 -1)(3 -1) = 5. Therefore, for the Factor A reduced GLM, there are 

48-5 =43df s 

As the Factor A reduced GLM has 43 dfs and the full independent (2 x 3) factor 
experimental design GLM has only 42 dfs, it follows that the main effect of Factor A 
has 1 df For the Factor B reduced GLM, the (q -1) parameters distinguishing the 
Factor B levels are omitted, leaving, 1 + (p-1) + (p - l)(q-1) = 1 + (2 -1) 
+ (2 -1 )(3 -1) = 4 .  Therefore, for the Factor B reduced GLM, there are 

48-4 = 44df s 
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Table 5.3 ANOV A Summary Table 

Source SS df MS F p 

Encoding instructions (A) 432.000 1 432.000 47.747 >0.001 
Study time (B) 672.000 2 336.000 37.137 >0.001 
Encoding instructions x Study time (A x B) 224.000 2 112.000 12.379 >0.001 

Error (A x B x S) 380.000 42 9.048 

Total 1708.000 47 

As the Factor B reduced GLM has 44 dfs and the full experimental design GLM has 

42 dfs, it follows that the main effect of Factor B has 2 dfs. For the AB Factors 

interaction reduced GLM, the (p - l)(q- I) parameters distinguishing the separate 
experimental conditions are omitted, leaving, 1 + (p - 1) + (q - 1) = I + 

(2 - 1) + (3 - 1) = 4. Therefore, for the AB Factors interaction reduced GLM, 

there are 

48-4 = 44df s 

As the AB Factors interaction reduced GLM has 44 dfs and the full experi

mental design GLM has 42 dfs, again it follows that the AB interaction effect 

has 2dfs. 
Armed with sums of squares and degrees of freedom for the two main effects and 

the interaction effect, the ANOVA summary table can be constructed. 

The last column in the ANOVA summary table (Table 5.3) provides the proba
bility of observing these F-values under the null hypothesis. (The tabled critical F

values presented in Appendix B may be used to determine significance if hand 

calculation is employed or the statistical software employed does not output the 
required p-values.) As all of the probabilities are less than 0.05, all of the null 
hypotheses can be rejected and all of the (non-directional) experimental hypotheses 

can be accepted. Therefore, the full GLM provides the best description of the 
experimental data. 

5.3 REGRESSION GLMs FOR FACTORIAL ANOV A 

As mentioned earlier, comparing full and reduced GLMs is a distilled form of linear 

modeling made possible by the nature of experimental data. In factorial designs, 
because factor levels are completely crossed, factor main and interaction effects are 

orthogonal. This means there is no overlap in the information defining the two factor 
predictors and the interaction predictor, and so any variance in the dependent variable 

attributed to one factor will be distinct from any variance in the dependent variable 

attributed to any other factor or interaction between factors. Consequently, it makes 

no difference which term first enters the factorial ANOVA GLM-irrespective of 

entry order, exactly the same results will be obtained. 
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T he regression ANOVA GLM for the factorial (2 x 3) experimental design applied 
in the memory experiment is 

(5.23) 

T he effect coding required for the regression GLM to implement the factorial (2 x 3) 

ANOVA is presented in Table 5.4. As only {p- 1) predictors are required to code p 

experimental conditions, the two levels of Factor A can be coded by the predictor 

variable X1• Similarly, the three levels of Factor B can be coded by the predictor 

variablesX2 andX3. T herefore, predictor X1 represents the main effect of Factor A and 

predictors X2 and X3 represent the main effect of Factor B. T he interaction between 

Factors A and B is coded by the variables X4 and X5. Variable X4 is obtained by 

multiplying the codes of predictors X1 and X2, and variable X5 is obtained by 

multiplying the codes of predictors X1 and X3. It is worth noting that the number 

of predictors required to code each main effect and the interaction effect (A -X 1, 

B -X2 and X3, and A x B -X4 and X5) equals the dfs for each effect (A = 1, B = 2, and 

Ax B = 2). 
Table 5.5 presents the ANOVA summary table output from statistical software when 

the effect coded regression ANOVA GLM is applied to the data presented in Table 5.4. 
The residual SS in Table 5.5 equals the error SS in Table 5.3. The regression SS in 

Table 5.4 Effect Coding for a Two-Factor (2 x 3) Experimental Design 

x, X2 X3 X3 Xs y 

sl 0 0 7 

AlBl 
s8 0 0 7 

s9 0 0 7 

A1B2 
s16 0 0 11 

sl7 -1 -1 -1 -1 8 

AlB3 
s24 -1 -1 -1 -1 12 

s25 -1 0 -1 0 16 

A2Bl 
s31 -1 0 -1 0 8 

s32 -1 0 0 -1 16 

A2B2 
s40 -1 0 0 -1 12 

s41 -1 -1 -1 24 

A2B3 
s48 -1 -1 -1 24 
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Table 5.5 ANOVA Summary Table Output from SYSTAT Statistical Software 

Implementing the Regression ANOV A GLM Described by Equation (5.23) 
Using Effect Coding 

Source SS df MS F 
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p 

Regression 1328.000 5 265.000 29.356 <0.001 
Residual 380.000 42 9.048 

Total 1708.000 47 

R: 0.882; R2: 0.778; adjusted R2: 0.751. 

Table 5.5 is equivalent to the sum of the SS for Factors A, B, and their interaction. 

However ANOVA provides a separate SS for each factor and factor interaction. As 

factorial ANOVA with balanced data ensures orthogonal factors with the result that the 

variance attributed to each of the three predictors (i.e., Factors A, B, and their interaction) 

is unaffected by their order of entry into the AN OVA GLM, one of the simplest ways to 

obtain the separate factor and factor interaction SS estimates is to carry out an 

incremental analysis (Cohen et al., 2003). 

5.4 ESTIMATING EFFECTS WITH INCREMENT AL ANALYSIS 

Several names have been applied to describe incremental analysis. One of the most 

popular names was hierarchical analysis, but this label now is applied most frequently 

to multilevel analysis. So, to avoid confusion, the title incremental analysis is applied 

to the form of analysis described below. (Multilevel analysis for related measures is 

presented in Chapter 12.) 
Incremental analysis is employed frequently to cope with multicolinearity. When 

multicolinearity exists, some or all of the predictors are related. Due to the relations 

between the predictors, the predictors will be associated with the same variance in 

the dependent variable. This means that the order of entry into the GLM will 

determine which predictors accommodate what dependent variable variance. If both 

predictors A and B are associated with part C of the dependent variable variance, 

variance part C will be attributed to whichever predictor, A or B, first enters the 

GLM. As this variance is no longer available to be attributed to the latter predictor, 

the order of predictor entry into the GLM determines the dependent variable 

variance attribution to predictors. In incremental analysis predictors (or sets of 

predictors) are entered into the GLM, cumulatively, in a principled order set by the 

researcher's knowledge of the topic. After each predictor has entered the GLM, 

the new model may be compared with the previous model, with any changes 

attributable to the predictor just included. 

The alternative to an incremental analysis is a simultaneous analysis. However, 

simultaneous analyses attribute to predictors only the dependent variable variance 

that is unique to each predictor. Any dependent variable variance associated with 

more than one predictor is not unique and so, it is not attributed to any predictor. 
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Instead, this variance is relegated to the residual or error term, with the consequence 
that analysis power is diminished. (See Pedhazur, 1997, for a defence of simultaneous 
analysis and a criticism of incremental analysis. Cohen, Cohen, West, and Aiken, 

2003, present and discuss incremental analysis.) 
Incremental analysis may be implemented using experimental design GLMs or 

regression ANOVA GLMs. The equivalence of both of these approaches is illustrated 

below. 

5.4.1 Incremental Regression Analysis 

5.4.1.1 Step 1 
Here, the SS for Factor A is obtained. This is accomplished by applying the 
experimental design GLM 

(5.24) 

or the regression ANOVA GLM 

(5.25) 

Table 5.6 presents an ANOVA summary table for the equivalent experimental design 
and regression ANOVA GLMs, which reveals that the Factor A SS is identical to that 
for Factor A in Table 5.3. However, note that the error/residual SS the error dfs and 
MSe at this step do not equal the full two factor independent measures ANOVA error 
SS, the error dfs and MSe. 

5.4.1.2 Step 2 
Here, the SS for Factor B is obtained. This is accomplished by applying the 

experimental design GLM 

(5.14, rptd) 

or the regression ANOVA GLM 

(5.26) 

Table 5.6 ANOV A Summary Table of the First Step in the Incremental Analysis of the 
Two-Factor Experiment 

Source SS df MS F p 

Factor A 432.000 l 432.000 15.574 <0.001 

Error/residual 1276.000 46 27.739 

Total 1708.000 47 27.739 

R: 0.503; R2: 0.253; adjusted R2: 0.237. 
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Table 5.7 ANOVA Summary Table of the Second Step in the Incremental Analysis 

of the Two-Factor Experiment 

Source SS df Mean Square F p 

Factors A and B 1104.000 3 368.000 26.808 <0.001 
Error/residual 604.000 44 13.727 

Total 1708.000 47 27.739 

R: 0.804; R2: 0.646; adjusted R2: 0.622. 

Table 5.7 presents an ANOVA summary table for the equivalent experimental design 

and regression ANOVA GLMs. The reduction in the error/residual SS from Step l to 

Step 2 equals the SS attributable to the inclusion of Factor B. Therefore, 

1276.0 - 604.0 = 672.0. This SS is identical to the SS for Factor B in Table 5.3. 

5.4.1.3 Step 3 
Here, the interaction between Factors A and B is obtained. This is accomplished by 

applying the experimental design GLM 

Yuk=µ+ ii.J + fh + (t1./3)Jk + eifk (5.1,rptd) 

or the regression ANOVA GLM 

(5.23 , rptd) 

Of course, these are now equivalent full experimental design and full regression 

ANOVA GLMs-the final addition being terms for the interaction between 

Factors A and B. Table 5.8 presents an ANOVA summary table for these ANOVA 
GLMs. 

The reduction in the error/residual SS from step 2 to step 3 equals the SS 

attributable to the inclusion of the Factor A x Factor B interaction. Therefore, 

604.0 - 380.0 = 224.0. This SS is identical to the SS for Factor A x Factor B 

interaction in Table 5.3. 

Table 5.8 ANOVA Summary Table of the Third Step in the Incremental Analysis of the 

Two-Factor Experiment 

Source SS df MS F p 

Factor A, B, and A x B 1328.000 5 265.000 29.356 <0.001 

Error/residual 380.000 42 9.048 

Total 1708.000 47 

R: 0.882; R2: 0.778; adjusted R2: 0.751. 
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5.5 EFFECT SIZE ESTIMATION 

In Section 4.3 .1, a distinction was made between complete and partial @2 effect sizes. 

Similar distinctions can be made with respect to factorial experimental designs. 
However, the situation with factorial experimental designs is slightly more compli

cated due to there being omnibus, partial and specific single df comparison effect sizes 

for two or more main effects and one or more interactions. 

5.5.1 SOA for Omnibus Main and Interaction Effects 

Complete and then partial SOA effect size estimates for main and interaction effects in 
factorial experimental designs are discussed in this section. 

5.5.1.1 Complete ai for Main and Interaction Effects 
As before, the complete @2effect size expresses the variance due to the experimental 
effect as a proportion of the all the variance observed in the experimental scores. 
Equation (5.27) defines the complete @2 effect size for a two-factor independent 
measures study 

(5.27) 

This definition of the complete @2 effect size reveals that in a two factor independent 
measures design, the total variation in the study is the sum of the main effect, 
interaction, and error variance. However, most often complete @2 effect size 
calculations are based on sample data, with the simplest formulas making use of 
calculated F-values. The estimate of the complete @2 effect size for each of the main 
and interaction effects is defined by 

�2 dfeffect(Feffect - 1) 
weffect = 

dfA (FA -1) + dfB(FB -1) + df AxB (FAxB -1) + N 
(5.28) 

Applying equation (5.28) to the hypothetical two-factor independent measures 
experiment and its ANOVA provides 

�2 1(47.747 - 1) = 
46.747 

= 0.246 WA= 
1(47.747 -1) + 2(37.137 -1) + 2(12.379-1) + 48 189.779 

�2 2(37.137 -1) = 
72.274 

= 0.381 WB = 
1(47.747-1) + 2(37.137-1) + 2(12.379-1) + 48 189.779 

�2 2(12.379-1) 
= 

22.758 
= 0.120 WAxB = 1(47.747-1) + 2(37.137-1) +2(12.379-1) +48 189.779 
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(It is worth noting that the effect sizes obtained above for the hypothetical experiment 
are far greater than typically observed, cf. Table 4.1.) 

5.5.1.2 Partial @2 for Main and Interaction Effects 
A partial w2 can be defined for omnibus main and interaction effects. In common with 
Keppel and Wickens (2004), angled brackets are used to identify such partial effect 
estimates 

2 
OJ2 _ 

a effect (effect) -a2 + a2 effect error 
(5.29) 

Equation (5.29) shows that the partial OJ2 estimate of the omnibus effect size 
expresses the variance due to the effect as a proportion of only the effect variance 
plus the error variance for just that effect. When based on experimental data, the 
estimate of the partial @2 effect size for each of the main and interaction effects 
can be defined by 

� 2 df effect ( F effect - 1 ) 
OJ (effect) = dlf (F 1) + N effect effect -

(5.30) 

Applying equation (5.30) to the hypothetical two-factor independent measures 
experiment and its ANOVA provides 

�2 1(47.747 - 1) 46.747 

W(A) = 1(47.747 - 1) + 48 = 94.747 = 0.493 

� 2 2(37.137 - 1) 72.274 
OJ = = = 0 601 (B) 2(37.137 -1) + 48 120.274 

. 

� 2 

= 
2(12.379- 1) 

= 
22.758 

= 0 322 OJ(AxB) 2(12.379 - 1) + 48 70.758 
. 

5.5.2 Partial @2 for Specific Comparisons 

As well as defining partial OJ2 effect sizes for main and interaction effects, it is also 
possible to define partial OJ2 effect sizes for specific comparisons. In Section 4.3.1, the 
partial OJ2 effect size for a specific comparisons was defined as 

2 
2 (ji/I OJ -�--

(I/I) - a2 + a2 i/I e 
(4.15, rptd) 
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and exactly the same equation applies to two-factor independent measures experi
mental designs. The variance attributable to the specific comparison is determined 
in exactly the same way in both single- and two-factor independent measures 
experimental designs. Similarly, a single error term is obtained in both designs and 
this plus the specific comparison variance provides the denominator for the 
variance attributable to the specific comparison. When estimated from experimen
tal data, the estimate of the partial w2 effect size for specific comparisons can be 
defined by 

�2 
Fl/! -l 

w -------
(ifl) - (Fl/l-l) + 2N1 

5.6 FURTHER ANALYSES 

( 4.16, rptd) 

Two significant main effects and a significant interaction effect were detected, but, 
in common with single factor studies, further analyses are necessary to determine 
exactly which experimental conditions differ. When the GLM assumptions are 
tenable (see Chapter 10), the use of a single error term in fully independent factorial 
experimental design GLMs makes their further analyses amongst the most easily 
implemented. Moreover, as described in Section 3.7.1, the most powerful compar
isons are obtained when this omnibus MSe is employed in tests of the differences 
between the experimental condition means. 

5.6.1 Main Effects: Encoding Instructions and Study Time 

Interpreting the main effect of the encoding instructions factor in terms of mean 
differences is quite simple. As there are only two levels of this factor, the (marginal) 
means of these two levels of encoding instruction are the only means that can be 
unequal. Therefore, no further test needs to be applied and all that remains to be done 
is to determine the direction of the effect by identifying the encoding instruction levels 
with the larger and smaller means. Plotting pertinent means on a graph is an extremely 
useful tool in interpreting data from any experiment and the plot of the two encoding 
instruction marginal means presented in Figure 5.1 reveals the nature of this main 
effect. The overall free recall memory performance of subjects is significantly greater 
after story and imagery instructions at encoding than after memorization instructions 
at encoding. 

When an experimental design includes only two levels of a factor, a planned 
comparison is suggested. This is certainly true for the current experiment, and so the 
comparison of subjects' free recall memory performance after story and imagery 
instructions and after memorization instructions should be assessed without any 
Type I error rate adjustment. However, even if this comparison was not planned, no 
Type I error rate adjustment would be applied to this comparison. The reason is the 
ANOVA convention of treating each main effect and each interaction effect as 
separate hypothesis families and this is only hypothesis in this main effect family of 
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Figure 5.1 Number of words recalled as a function of encoding instructions. 
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hypotheses (cf. each planned comparison being considered as the sole member of a 

hypotheses family). 

Interpreting the main effect of the study time factor in terms of mean differences is 

slightly more complicated. As this factor has three levels, the pertinent unequal 

(marginal) means may be any one or more of, b I versus b2, b2 versus b3, and b 1 versus 

b3, and nonpairwise differences also may contribute to the significant main effect. 

Therefore, further tests are required to identify exactly which means differ. Figure 5.2 

presents the mean number of words recalled as a function of study time and suggests 

that free recall increases in a linear fashion as study time increases. If this linearity 

hypothesis is of interest, then a conducting a trend analysis would be appropriate 

(Howell, 2010; Keppel and Wickens, 2004; Kirk, 1995; Maxwell and Delaney, 2004 

provide accounts of this form of analysis). 

The next step in the analysis strategy outlined in Section 3.8 is to identify the 

planned comparison(s). It will be assumed that a comparison of the 30 s versus 180 s 

experimental conditions was planned and all other comparisons of experimental 

conditions are unplanned. Therefore, the hypothesis manifest in the comparison of the 

30 s versus 180 s experimental condition means is assessed without any Type I error 
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Figure 5.2 Number of words recalled as a function of study time. 
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Table 5.9 Marginal Means for the Three Study 
Time Experimental Conditions 

Study Time 

k ==I k== 2 k=3 
bl b2 b3 

30s 60s !80s 

8 11 17 

rate adjustment, while any other (pairwise or nonpairwise) comparisons are conceived 
as members of a separate family over which the Type 1 error rate is controlled at 
a= 0.05. For simplicity, it is assumed that the only other comparisons of interest are 
the two pairwise comparisons between the 30 s versus 60 s and the 60 s versus 180 s 
experimental conditions. 

The planned comparison is examined by applying the appropriate linear contrast 
and determining the comparison SS. Table 5.9 presents the three marginal study time 
means. There are q = 3 levels of study time, so each population mean is designated by 
µk and each estimate of the population mean is provided by the sample means, 1\ 
where k = 1, 2, or 3. 

As described in Section 3.4, the linear contrast for the planned comparison 
expressed in terms of population means is 

l/Jpc = ( 1)µ1 + (0)µ2 + ( -1)µ3 

The linear contrast for the planned comparison employing the sample means 
estimators of the population means is 

l/Jpc = ( 1) 8  + (0)11 + ( -1)17 = -9 

Therefore, bearing in mind that each study time marginal mean is based on 16 subjects 
(i.e. , pNjk = 2 x 8) 

ss� 
i/tp, 

( 16 )( - 9)2 
= 

1296 
= 648 

( 1  )2 + ( - 1)2 + (0)2 2 

One dfis associated with SS,rP'
' so the mean square for the contrast is 

SSl/t 648 
MS� = __ P' = - = 648 

and so 

"'P' 1 1 

MSl/t 648 
F(l 42) = __ P' = -- = 7 1. 6 18 ' MSe 9.048 
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As the comparison of the 30 s versus 180 s experimental conditions is a planned 
comparison, no Type 1 error adjustment is made, F0,42)=71.618, MSe=9.048, 
p < 0.001. Therefore, the difference between subjects' free recalls after 30 and 180 s 
is significant. 

The procedures applied above to obtain planned comparison F-tests also 
are applied to obtain the F-values for each of the unplanned comparisons. This 

provides 

30 s marginal mean vs 60 s marginal mean: F0,42l = 10.800, MSe = 9.048,p = 0.003. 

60 s marginal mean vs 180 s marginal mean: F0,42) = 9.600, MSe = 9.048, p = 0.004. 

As unplanned comparisons, the two hypotheses are regarded as constituting a family 
of hypotheses and the Type 1 error rate is controlled over the family. The technique 
generally recommended for this task is Shaffer's R test (see Section 3.9.2.2). 
However, consideration of the LRH with respect to the planned and unplanned 
comparisons can reveal a much reduced risk of Type 1 error. 

As explained previously (see Sections 3.6.6.1 ), with three experimental conditions, 
there are three unique pairwise comparisons. The significant F-test informs that the 
overall null hypothesis (i.e., µ1 = µ2 = µ2) is false, while the rejection of a pairwise 
null hypothesis was confirmed by the result of the planned pairwise comparison. 
Therefore, the appropriate Type 1 error rate control for the next pairwise comparison 
requires accommodation of only one possibly true pairwise null hypothesis. As this is 
the classic statistical test protection, no p-value adjustment is necessary and both 
unplanned comparisons can be accepted as significant at their classic p = 0.003 and 
p = 0.004 values. 

5.6.2 Interaction Effect: Encoding Instructions x Study Time 

An interaction effect indicates that the effect of one factor is not consistent over all of 
the levels of the other factor(s). This can be seen by the plot of the means of the 
six experimental conditions presented in Figure 5.3. The two-factor (2 x 3) design 
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Figure 5.3 Number of words recalled as a function of encoding instructions and study time. 
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b1 b2 b3 
a1 6 10 11 

I 6 I 10 I 11 
/ 

a2 10 12 23 

� I.. I·�. I.,,, I . .,, I 
Figure 5.4 Decomposition of the 2 x 3 factor design into two simple effects: the effect of the 

levels of Factor B (i.e., bl, b2, and b3) at each of the levels of Factor A (i.e., al and a 2). 

applied in the memory experiment can be broken down into the simple effects 
presented in Figures 5.4 and 5.5. The interaction may be described in terms of the 

simple effects of Factor B (i.e., b l, b2, and b3) at each level of Factor A (i.e., al and a2, 

see Figure 5.4). Alternatively, the interaction may be described in terms of the simple 

effects of Factor A (i.e., a l  and a2) at each level of Factor B (i.e., b l ,  b2, and b3, 

see Figure 5.5). The latter simple effect comparisons are equivalent to three pairwise 

comparisons. The theoretical or practical issues under investigation determine which 

simple effects analyses will be applied. 

5.6.2.1 Simple Effects: Comparing the Three Levels of Factor Bat al, and at a2 

Figure 5.4 presents a schematic illustration of the simple effects of Factor B. The 

three levels of Factor B are compared at each level of Factor A. The two simple effect 

analyses can be regarded as two single factor ANOVAs with three levels (i.e., b l, b2, 

and b3) and in fact, this is exactly what the two simple effect analyses do-they 

apply two single factor ANOVAs. One ANOVA is applied to the (a l )  memorization 

data and the other ANOVA is applied to the (a2) story and imagery data. Each line 

(one for the memorization study time conditions and the other for the story and 

imagery study time conditions) in Figure 5.3 represent the data to be examined by 

each ANOVA. 

b1 b2 b3 

a1 6 10 11 

a2 ----_10 12 23 
-

I l 
b1 • b2 �, b3 • 

a1 6 a1 10 a1 11 

a2 10 a2 12 a2 23 

Figure 5.5 Decomposition of the 2 x 3 factor design into three simple effects: the effect of the 

levels of Factor A (i.e., a l  and a 2) at each of the levels of Factor B (i.e., bl, b2, and b3). 
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The SS calculations for each simple effects analysis are identical to the single factor 
independent measures AN OVA discussed in Section 2. 7 .1. Equation (5.31) defines the 
SS for the Factor B effect at the separate levels of Factor A 

q 

SSs atJ = LN1k(Y1k - Y1J2 
k=l 

SSs at}= I =  L 8(6 - 9)2 
+ 8(10- 9)2 + 8(11 - 9)2 

= 112 

SSs atJ=2 = L 8(10- 15)2 + 8(12 - 15)2 
+ 8(23 - 15)2 

= 784 

(5.3 I) 

The numerator dfs for each of these simple effects is (q- 1) = (3 - 1) = 2. These 
provide the simple effect MS 

SSB . 
MSs at} = dlf '1 

B,J 

SSB1 112 
MSs at}=! = -d · = - = 56.000 

if Bk,l 2 

SSB2 784 
MSs at}=2 = d

fB:2 = 
2 

= 392.000 

(5.32) 

Finally, to obtain the F-value for the simple effect of Bk atj, the MSe from the full two 
factor ANOVA is employed. Table 5.10 presents all of this information in the form of 
an ANOVA summary table. 

Given this example involves exactly the same analysis of exactly the same data, it 
should be no surprise to see the simple effect SS and MS for memorize instructions 
(a l )  is identical to that presented in Tables 2.3, 2.7 and 2.9. However, as the MSe used 
for the two simple effect analyses is obtained from the two-factor experimental data, it 
differs from that employed in Tables 2.3, 2.7 and 2.9. The MSe from the two-factor 
ANOVA employed in Table 5.10 also differs from the two MSe terms based on only 
the data involved in each separate simple effect analysis. Each simple effect analysis is 
based on only one-half of the experimental data and so each associated MSe would 

Table 5.10 ANOV A Summary Table for the Simple Effect of Factor B at 
Each Level of Factor A 

Source SS df MS F p 

At al (Memorize) 
Study time 112.000 2 56.000 6.189 0.004 
Error 380.000 42 9.048 

At a2 (Story and imagery) 
Study time 784.000 2 392.000 43.325 <0.001 
Error 380.000 42 9.048 
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have only 21 dfs, whereas the two-factor omnibus error term is associated with 42 dfs. 
As mentioned, assuming the GLM assumptions are tenable and all else is equal, the 
two-factor omnibus error term provides the most powerful tests. 

The simple effect analyses indicate greater study time effects after story and 
imagery encoding instructions than after memorization encoding instructions. 
With balanced data, the greater F-value identifies the greater effect. The graphical 
presentation of the data in Figure 5.3 suggests, more specifically, that the difference 
between the 60 and 180 s study times is much greater after encoding using story and 
imagery than after memorization encoding and it might be expected that this would be 
the theoretical prediction. Separate pairwise comparisons for the 60 s and 180 s 
experimental conditions given memorization instructions and given story and imag
ery instructions should be conducted Gust as described for single factor experiments) 
to establish if this is the case. If it was planned to carry out these specific comparisons 
to test these hypotheses, no Type 1 error rate adjustment is necessary. However, the 
Type 1 error rate should be controlled with respect to any unplanned comparisons 
conducted. The hypotheses tested by the unplanned comparisons should be organized 
into hypothesis families, or, if separate hypothesis families are not appropriate, all 
unplanned hypotheses should be included in a single family. 

The interaction effect detected indicates the effect of study time with memorization 
instructions differs from the effect of study time with story and imagery instructions. 
Two simple effect outcomes are consistent with this interaction. A simple effect of 
study time may exist at one level of the (memorization or story and imagery) encoding 
instructions, but not at the other, or alternatively, there may be simple effects of study 
time with both (memorization or story and imagery) encoding instructions, but one of 
these simple effects is significantly greater than the other. If the first description is 
accurate, it is possible for only one of the two simple effect omnibus null hypotheses 
to be true. If the alternative description is accurate, it is not possible for either of the 
null hypotheses to be true. These two possible outcomes provide a maximum of one 
null hypothesis over which Type 1 error control must be exerted. As this is consistent 
with the classical conception, no adjustment to control the Type 1 error rate is 
necessary when the two simple effect omnibus F-tests are applied, irrespective of 
whether the simple effect analyses were planned or unplanned. 

The different single factor, simple effect F-values presented in Table 5.10 reveal 
that neither of the omnibus null hypotheses are true and so attention turns to further 
analyses of the effect of study time, separately, under memorization and under story 
and imagery conditions (cf. the unplanned pairwise comparisons between the three 
study times discussed in Section 5.6.1.). It follows that per memorization and story 
and imagery encoding condition, only one null hypothesis possibly could be true and 
so there are a maximum of two possibly true null hypotheses. (If only one of the simple 
effect omnibus F-tests had been significant, the three pairwise null hypotheses in this 
instruction condition would be true and with the one possibly true pairwise null 
hypothesis in the other instruction condition, the maximum number of possibly true 
pairwise null hypotheses would be four.) If both of these null hypotheses are 
accommodated within a single hypothesis family, Type l error rate control must be 
exerted over both hypotheses, but, if there are theoretical reasons to consider each 
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hypothesis as the single member of a hypothesis family, then no Type 1 error rate 
adjustment is necessary. 

5.6.2.2 Simple Effects: Comparing the Two Levels of Factor A at bl, at b2, and at b3 
Figure 5.5 presents a schematic illustration of the simple effects of Factor A. The 
simple effects of Factor A are the Factor A effects at each level of Factor B. This 

means that the two levels of Factor A are compared at each level of Factor B. The 
three simple effect analyses can be regarded as three /-tests or three single factor 
ANOVAs with two levels (i.e., a l  and a2). One ANOVA is applied to the (b l )  30 s 
study time data, another ANOVA is applied to the (b2) 60 s study time data and the 
third ANOVA is applied to the (b3) 180 s study time data. These simple effect 
analyses compare the two lines (one for the memorization study time conditions and 
the other for the story and imagery study time conditions) depicted in Figure 5.3 at 
each of the three study times. 

Equation (5.33) defines the SS for the Factor A effect at the separate levels of 
Factor B 

p 

SSAatk = LN11(Y11 -Y,)2 
J=I 

SSA at bl = L 8 (6 -8)2 + 8(10 -8)2 = 64 

SSAa1b2 = L8(10-11)2 + 8(12-11)2 = 16 

SSAatb3 = L8(11-17)2 + 8(23 - 17)2 = 576 

(5.33) 

The numerator dfs for each of these simple effects is (p -1) = (2 - 1) = 1. These 
provide the simple effect MS 

SSAk 
MSA at k = 

dif ' A,k 

SSA I 64 
MSAatbl = -d 

' =-=64.000 
if A,I 1 

SSA 2 16 
MSAatb2 =-d ' =- = 16.000 

if A,2 1 

SSA.3 576 
MSA at b3 = -d . = -= 576.000 

if A,3 1 

(5.34) 

As before, to obtain the F-value for the simple effect of Factor A at k, the MSe from 
the full two-factor independent measures ANOVA is employed. All of this informa
tion can be presented easily in an ANOVA summary table (Table 5.11). 

The simple effect analyses indicate that the greatest difference between encoding 
conditions (favoring the story and imagery instructions) is observed after 180 s study 
time. A smaller difference between encoding conditions (still favoring the story and 
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Table 5.11 ANOV A Summary Table for the Simple Effect of Factor A at 
Each Level of Factor B 

Source SS df MS F p 

Atb1(30s) 

Encoding instruction 64.000 1 64.000 7.073 0.011 
Error 380.000 42 9.048 

At b2 (60 s) 

Encoding instruction 16.000 16.000 1.768 0.191 
Error 380.000 42 9.048 

At b3 (180s) 

Encoding instruction 576.000 576.000 63.661 <0.001 

Error 380.000 42 9.048 

imagery instructions) is observed after 30 s, whereas no difference between encoding 

conditions is observed after 60 s. 

It is worth mentioning that the SS and MS values for all of the simple effects 

analyses discussed above can be obtained using statistical software by selecting the 

appropriate data for each simple effect analysis and applying a single factor AN OVA. 

Subsequently, the simple effects SS and MS from the single factor ANOVA should be 

employed with the error term from the two-factor ANOVA to provide the simple 

effects F-tests. 

As described for the simple effects of study time, planned and unplanned simple 

effect comparisons should be distinguished. No Type l error rate adjustment is 

necessary for planned comparisons. However, if it is appropriate, unplanned compar

isons should be organized into hypothesis families. If such organization is not 

appropriate, then a single hypothesis family will contain all of the unplanned 

comparisons. Type 1 error rate control should be applied over each family of 

hypotheses, or over the single hypothesis family. 

The interaction effect indicates that at least one of the three pairwise comparisons 

differs from one of the other pairwise comparisons. Therefore, the maximum number 

of possibly true null hypotheses is two. If both of these null hypotheses are 

accommodated within a single hypothesis family, Type l error rate control must be 

exerted over both hypotheses. However, if there are theoretical reasons to consider 

each hypothesis as the single member of a hypothesis family, then no Type 1 error rate 

adjustment is necessary. 

5.7 POWER 

5.7.1 Determining the Sample Size.Needed to Detect Omnibus 
Main Effects and Interactions 

Three omnibus ANOVA F-tests are applied to data from a two-factor independent 

measures experimental design: the main effects of Factor A and Factor B and the 

A x B interaction effect, and it is for these separate F-tests that power is set and 
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Table 5.12 The Numbers of Subjects in the 2 x 3 Experimental Design 

bl b2 b3 Total 

al 25 25 25 75 
a2 25 25 25 75 

Total 50 50 50 150 

sample size is determined. Essentially, the same procedure described for determining 
the sample size in single factor independent measures designs is applied separately to 
each main and interaction effect F-test, employing the partial &} for main and 
interaction effects discussed in Section 5.4.2. However, this means that the sample 
size estimated to provide a test operating at a specified power will be the number of 
subjects required in each of the experimental conditions defined by Factor A, Factor 
B, or the A x B interaction. For example in Section 4.7 .3, the sample size for a single 
factor independent measures design with three experimental conditions operating 
with a= 0.05 and power= 0.8 to detect a medium effect size was determined to be 
approximately 150. This situation is presented schematically in terms of the 2 x 3 
design in Table 5.12. However, with this design, it follows that if there are 50 subjects 
in every study time condition, then there will be 25 subjects in each experimental 
condition and so, for the Factor A effect, the total sample size again will be 150, but 
Nj = 75. Using the same method, the sample size required to detect a medium sized 
Factor A effect, with a= 0.05 and power= 0.8 can be determined 

</> = (0156 Vi5 Vl=o.06 
</> = 0.25(8.66) 

</> = 2.17 

( 4.22, rptd) 

Examination of the power function chart (see Appendix C) for numerator dfs (v1) = 1, 
a= 0.05, denominator dfs (v2) = p x Nj- p = 2 x 75 - 2 = 148, and</>= 2.17 reveals 
power= 0.86. Therefore, a sample size of 150 would provide adequate power to detect 
the two main effects. The same assessment can be made for the A x B interaction. 
Again, a medium-sized effect is to be detected, with a= 0.05 and power= 0.8. 
However, Table 5.12 shows that with 150 subjects in a two-factor independent 
measures design, the interaction effect Nj= 25. Applying equation (4.22) provides 

<P= �m 

</> = 0.25(5) 

</> = 1.25 
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Examination of the power function chart for numerator dfs (v1) = 5, a= 0.05, 
denominator dfs (v2) = p x N1- p = 2 x 75 - 2 = 148, and </J = 1.25 reveals power 
= 0.65 (see Appendix C). Therefore, a sample size of 150 would not provide 
adequate power to detect the interaction effect. In fact, the sample size required to 
detect a medium-sized interaction effect with a = 0.05 and power= 0.8, is 216, so 
N1=36. 

Keppel and Wickens (2004) point out that as the approach to power analysis and 
sample size determination just described assumes separate single factor analyses, the 
power estimates obtained will be slightly greater than would be obtained when the 
power is estimated properly for a factorial design. To compensate for this overesti
mate, they suggest simply adding one or two subjects to each experimental condition. 
Of course, if power analysis and sample size determination is implemented using 
the statistical software mentioned, then power can be estimated precisely for the 
experimental designs described. 

Finally, it is very worthwhile noting that for the Factor A, Factor B, and the 
interaction effects examined in two-factor independent measures design, rx, and effect 
size remained constant, but to detect the same sized effects at the same level of power, 
different numbers of subjects were required. In other words, when the a, the effect 
size and the sample size are fixed, the power to detect the different omnibus effects in 
factorial experimental designs varies, with greater power associated with those 
effects with the greater N1. This means that in all factorial experimental designs with 
balanced data, those factors with fewer levels will be assessed with greater power 
and interactions will be assessed with least power. 

5.7.2 Determining the Sample Size Needed to Detect Specific Effects 

The omnibus null hypothesis is rarely the hypothesis in which there is interest. 
Usually, the real interest is in the hypotheses manifest in specific pairwise 
comparisons of particular experimental condition means (see Section 3.2). Therefore, 
the key piece of information required for the power analysis to determine the required 
sample size is a partial w

2 (or an equivalent/) estimate of the specific comparison 
under consideration (Section 5.5.2). Once the partial w

2 for the specific comparison is 
obtained, the procedure for determining the required sample size proceeds as 
discussed for the omnibus effects (Section 5.7.1). 



CHAPTER 6 

GLM Approaches to Related 

Measures Designs 

6.1 INTRODUCTION 

A defining feature of related measures designs is the accommodation of the relations 

between the dependent variable measures recorded across the experimental conditions. 

Although several different types of related measures designs are available (see below), 

related measures analyses applying least squares-based estimation procedures employ 

the same technique to accommodate the relations between the dependent variable 

measures (see Section 6.3 and Keselman, Algina, and Kowalchuk, 2001 for a review of 

repeated measures designs and analyses). Accommodating the data relations in this 

way requires the data to be grouped on the basis of the related aspect. In tum, this 

requires the researcher to know which aspect of the study is responsible for the relation 

between the dependent variable measures and to be able to group the data appropriately 

for the related analysis. Unfortunately, however, related data also can arise without the 

researcher's awareness and even if a researcher becomes aware of these relations, it 

may not be possible after the study is complete to group the data appropriately for the 

related measures analysis. As prevention is far better than cure, the emphasis should 

be on applying appropriate designs to avoid or to accommodate relations between the 

dependent variable measures (also see Section 10.4.1.3). 
In the following sections, the common organizational structure for the different 

types of related measures designs provided by Kirk's (1968) account of randomized 

blocks will be described. Subsequently, the focus will be repeated measure related 

designs. Repeated measures designs are applied much more frequently in psychologi

cal research than other randomized block designs, but as all conditions are experienced 

by subjects participating in the experiment, problematic effects can arise due to the 

order in which the experimental conditions are experienced. These problems are 

identified and a number of ways of dealing with them are described, before the GLM 
approach to repeated measures designs is presented. 

ANOVA and ANCOVA: A GLM Approach, Second Edition. By Andrew Rutherford. 
© 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc. 
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Table 6.1 A Single Factor Randomized Block Design with Six Subject Blocks and 

Three-Factor Levels 

Block Condition I Condition 2 Condition 3 

sl 19 years s2 19 years s3 19 years 

2 s4 25 years s5 25 years s6 25 years 

3 s7 30 years s8 30 years s9 30 years 

4 slO 37 years sl I 37 years sl2 37 years 

5 s13 47 years s14 47 years s15 47 years 

6 sl6 55 years sl 7 55 years s18 55 years 

6.1.1 Randomized Block Designs 

Randomized block designs are employed to deal with subject variables which are 

likely to affect subjects' performance in an experiment. For example, as people get 

older, their reaction times tend to get a little slower. Therefore, if the dependent 

variable in an experiment is to be reaction time measured in milliseconds, the 

subject's age is very likely to influence this performance measure and is likely to 

be labeled a nuisance variable. One way of dealing with nuisance variables is to let the 

random sampling and random allocation of subjects distribute older and younger 

subjects randomly across the experimental conditions, so the age-related RT effects 

are distributed randomly (i.e., unsystematically) across experimental conditions. 

However, another approach is to recruit sets of similarly aged subjects and allocate 

one subject from each set to each experimental condition. This would provide an 

experiment where each subject in Condition 1 was matched with a similar subject in 

each of the other conditions. Such designs are known as randomized block designs. 

Table 6.1 presents a randomized block design with six blocks of subjects and three 

experimental conditions. Within any block, subjects are matched on one or more of 

the nuisance variables thought to affect the dependent variable measure. The label, 

randomized block design, refers to the random allocation of subjects within any block 

to the experimental conditions. 

Of course, there is no reason to limit such designs to experiments with only three 

conditions. However, as the number of experimental conditions increases, recruiting 

the required number of exactly matched subjects will become increasingly difficult. 

In such circumstances, defining matching age (or other variable) ranges may be a 

more efficient strategy (see Table 6.2). 

Table 6.2 A Single Factor Randomized Block Design with Six Subject Blocks and 

Four-Factor Levels 

Block Condition 1 Condition 2 Condition 3 Condition 4 

sl 19-24 years s2 19-24 years s3 19-24 years s4 19-24 years 

2 s5 25-29 years s6 25-29 years s7 25-29 years s8 25-29 years 

3 s9 30-36 years s!O 30-36 years s 11 30-36 years sl2 30-36 years 

4 sl3 37-46 years sl4 37-46 years s15 37-46 years sl6 37-46 years 

5 sl7 47-54 years sl 8 47-54 years sl9 47-54 years s20 47-54 years 

6 s21 55-59 years s22 55-59 years s23 55-59 years s24 55-59 years 
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Table 6.3 A Single Factor Matched Samples Design with Two-Factor Levels 

Block 

l 
2 
3 

4 

5 

6 

Condition 1 

sl 19 years 
s3 25 years 
s5 30 years 

s7 37 years 

s9 47 years 

sl 1 55 years 

6.1.2 Matched Sample Designs 

Condition 2 

s2 

s4 
s6 

s8 

19 years 

25 years 

30 years 

37 years 

slO 47 years 

sl2 55 years 

Typically, a matched sample design is a randomized block design that employs only 

two experimental conditions. Table 6.3 presents a typical matched samples design. 

Although blocks are unlikely to be mentioned when such a design is described, it can 

be seen that this is simply a reduced version of Table 6.1. 

6.1.3 Repeated Measures Designs 

Repeated measures designs refer to situations where each subject experiences and 

provides dependent variable measures in two or more experimental conditions. 

T herefore, repeated measures designs can be conceived as particular instances of 

randomized block designs where there is only one subject per block. Table 6.4 

presents this design, where the same subjects are measured, repeatedly, under each 

of the three experimental conditions. As Table 6.4 illustrates, all of the subjects 

experience all of the experimental conditions. Therefore, the experimental variable 

may be described as being manipulated within the same group of subjects and so, 

repeated measures designs also are known as within subjects designs. 

Like independent measures designs, the purpose of repeated measures designs is 

to determine the effect of different experimental conditions on a dependent variable. 

Although repeated measures designs provide information about individual subjects' 

performance over all of the experimental conditions, describing individual 

subjects' performance is not an objective. Indeed, a random factor is used to organize 

subject information, so emphasizing that the experiment aims to generalize to the 

population from which the subjects are drawn, rather than focus on the individual 

subjects providing the data. 

Table 6.4 A Single Factor Repeated Measures Design with Three Levels-Equivalent to 

a Randomized Block Design with Each Block Containing Only One Subject 

Block Condition 1 Condition 2 Condition 3 

sl 19 years sl 19 years sl 19 years 

2 s2 25 years s2 25 years s2 25 years 

3 s3 30 years s3 30 years s3 30 years 

4 s4 37 years s4 37 years s4 37 years 

5 s5 47 years s5 47 years s5 47 years 

6 s6 55 years s6 55 years s6 55 years 
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The labels related measures design, randomized block design, repeated measures 

design and within subjects design might be considered sufficient. However, defining 

the experimental factor as a fixed effect and the subject factor as a random effect has 

the consequence that these designs also can labeled as mixed designs. 

Repeated measures designs offer a number of advantages over comparable 

randomized block and independent measures designs. Using the same subjects in 

all experimental conditions eliminates the sometimes considerable number of sub

jects and effort required to identify sets of matched subjects for randomized block 

designs. Comparable independent measures designs also require more subjects than 

repeated measures designs to provide the same number of data points. For example, 

the single factor repeated measures design with three conditions employing 6 

subjects, illustrated in Table 6.4, provides as much data as 18 subjects in an equivalent 

independent measures design. Another advantage of repeated measures designs 

(shared with other randomized block designs) is a reduction in error variance. It 

would be expected that the total amount of score variation will be less with three 

subjects each performing under three experimental conditions, than with three 

subjects performing under one condition, another three subjects performing under 

the second condition, and yet another three subjects performing under the third 

experimental condition. (It is often said that subjects act as their own controls in 

repeated measures designs. However, as many experiments do not use a standard 

control condition, this statement can be rather obtuse. Perhaps a more accurate and 

more easily understood description is that subjects provide their own comparisons: 

each subject's performance can be compared across all levels of the experimental 

factor.) The reduction in variation is due to the greater similarity of the scores provided 

by the same subjects (or the matched subjects in other randomized block designs) 

compared to the scores provided by different subjects. In other words, scores from the 

same subject (or the matched subjects) are assumed to be correlated. The advantages 

(and some disadvantages) of related designs accrue from the correlations between 

these scores. Utilizing these correlations not only requires more complicated statisti

cal analyses, but also more restrictive statistical assumptions than are required for 

independent measures designs (see Chapter 10). 

The presentation order of the experimental conditions also can effect repeated 

measures designs. These effects are categorized as incidental effects, carryover 

effects, contrast effects, and context effects (Keppel and Wickens, 2004). Consider 

the design outlined in Table 6.4. If all subjects experience all experimental conditions, 

each subject must experience Conditions 1, 2, and 3 in some order and the particular 

order experienced may affect the subject's performance in each of the experimental 

conditions. For instance, if all subjects experienced Condition 1, then Condition 2, 

and then Condition 3, performance may increase from Conditions 1 to 3 due to the 

practise subjects receive as they perform the same experimental task under different 

conditions. Alternatively, and particularly if the task is very demanding, subjects' 

performance might decrease from Conditions 1 to 3 due to fatigue. Following Keppel 

and Wickens (2004 ), practice and fatigue effects are labeled as instances of incidental 

effects. Incidental effects cannot be eliminated from subjects' performance, but by 

applying appropriate controls with respect to the order in which subjects receive the 
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experimental conditions, systematic influences can be avoided. In other words, steps 

can be taken to try and ensure subjects' score variance attributable to practice or 

fatigue is accommodated by the error term and not confounded with the score variance 

attributed to an experimental factor. 

Carryover effects occur when an experimental condition exerts a transient influence 

over the next (or subsequent) experimental condition(s) experienced. For example, a 

mood induction procedure may be used to examine the cognitive consequences of 

mild depression, but testing subjects in the normal mood condition before the effects 

of the depressed mood induction had worn off (or a normal mood induced) would 

provide data contaminated by the subjects' still depressed moods. A contrast effect 

(termed a differential order effect by Maxwell and Delaney, 2004) occurs when two 

specific experimental conditions interact in a specific fashion. For example, in a 

memory experiment comparing two encoding strategies, differences between con

ditions may be diminished because subjects employing a semantic encoding strategy 

may continue to apply it (intentionally or unintentionally) in a graphemic encoding 

strategy condition. However, the converse, applying the graphemic encoding strategy 

in the semantic encoding condition is less likely to occur, resulting in an interaction 

between the experimental conditions and the presentation orders. A context effect 

occurs when subjects' experience and behavior in one experimental condition 

determines their behavior in subsequent experimental conditions. For example, 

measuring unintentional learning with a surprise memory test cannot be done 

repeatedly because, despite instructions, the subjects' earlier experience of perform

ing a memory test is likely to change their previously unintentional learning into 

intentional learning in subsequent experimental conditions. 

Conventional repeated measures analyses are inappropriate where carryover 

effects, contrast effects or context effects can occur. However, as carryover, contrast 

and context effects arise as a consequence of the order in which subjects experience all 

of the experimental conditions, applying one of the randomized block designs 

described in Sections 6.1.1 and 6.1.2 can avoid these problems and still provide 

many of the benefits of a repeated measures design. When there is only a single set of 

matched subjects per block (as illustrated in Tables 6.1, 6.2, 6.3 and 6.4), the 

procedures described in Section 6.3 can be applied directly to the experimental data, 

with the term representing the subject effect being reinterpreted as denoting the 

matched subject effect (i.e., the effect of matched subjects on the dependent variable 

scores obtained across all of the experimental conditions). Procedures for designs 

where more than one set of matched subjects are included in each randomized block 

also are available (e.g., Kirk, 1995). 

If any carryover, contrast and context effects become apparent over the course of a 

study employing a repeated measures design, rather than abandoning any experi

mental data collected, Keppel and Wickens (2004) suggest it may be possible to apply 

an independent measures analysis to each subject's first experimental condition 

performance - this experimental condition cannot be affected by a prior experimental 

condition because there is no prior experimental condition. Further discussion of 

carryover effects, contrast effects and context effects is provided by Greenwald 

(1976) and Maxwell and Delaney (2004). 
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6.2 ORDER EFFECT CONTROLS IN REPEATED MEASURES DESIGNS 

6.2.1 Randomization 

The basic statistical theory underlying repeated measures designs assumes the order 

of experimental conditions experienced by subjects is determined randomly. 

Randomly generating and implementing an order for each subject means any order 

is equally likely to be generated and experienced by a subject. Therefore, it is 

extremely unlikely that there will be a sufficient accumulation of orders necessary to 

produce systematic biases in the data. Although randomization does not exclude 

the possibility of a systematic bias arising, it does make it extremely unlikely. 

Consequently, randomization may be regarded as providing an approximation to 

counterbalancing (see below). When randomization is applied to control order effects, 

the error term accommodates the score variance attributable to the different orders 

experienced by the subjects. However, designs employing counterbalancing allow 

this variance to be identified and removed from the error term, so increasing the power 

of analysis. 

6.2.2 Counterbalancing 

6.2.2.1 Crossover Designs 

One way to control incidental order effects is to allocate at least one subject to every 

order of conditions possible in the experiment. In the current example, there are three 

conditions (labeled A, B, and C for clarity) and so, (3 ! = 3 x 2 x 1) six different order 

permutations are possible-ABC, ACB, BCA, BAC, CAB, and CBA. Allocating a 

subject to each order of conditions does not eliminate the effect of any particular order, 

as each individual subject's performance in each experiment continues to be 

influenced by the order in which they experience the conditions. Nevertheless, in 

a full crossover counterbalanced design, all orders are experienced by equal numbers 

of subjects and so, any performance benefit arising as a consequence of a particular 

order of conditions is counterbalanced by the effect of its counterorder (e.g., ABC and 

CBA). Moreover, including all orders in the experiment has the consequence that the 

orders are crossed with the other experimental factors. Provided more than one subject 
is allocated to each presentation order, it is possible to construct a factorial model of 

the data that explicitly represents the score variance due to the order effects and, if 

desired, the interaction between this factor and all the other factors in the experiment. 

A contrast effect should manifest as an interaction between the presentation order and 

the experimental factor, but carryover and context effects are more likely to manifest 

as a reduction in the influence of the experimental factor. As the experimental purpose 

is to determine if a factor exerts an influence, unequivocally identifying carryover or 

context effects can be difficult. Nevertheless, despite the potential benefit of enabling 

a check on contrast effects, examination of the psychological literature reveals that 

GLMs applied to repeated measures designs typically rely on the quality of the 

experimental design to prevent carryover, contrast, and context effects and omit those 

terms representing the presentation orders. Therefore, the GLMs described here for 
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repeated measures designs also will omit these terms. However, if presentation order 

can be coded as a factor, it would be beneficial to do so, as the most efficient data 

analyses are obtained when the experimental design is reflected fully in the GLM 
applied. 

6.2.2.2 Latin Square Designs 

With only three experimental conditions, it is quite feasible to allocate two, three, or 

more subjects to each experimental order. Even with 5 subjects per order, a total of 

only 30 subjects is required. However, as the number of experimental conditions 

increases, the number of order permutations increases exponentially. For example, six 

experimental conditions provide (6! = 6 x 5 x 4 x 3 x 2 x I) 720 order permuta

tions. It is very unlikely that an experimenter would want to run 720 subjects in a 

single experiment. (Worse still, just two subjects per presentation order requires 

2 x 720 subjects.) However, there are alternatives to fully counterbalanced crossover 

designs that may be applied before the number of order permutations requires very 

large numbers of subjects. Rather than assign subjects to each of all possible orders, it 

is possible to determine a smaller set of orders in which each experimental condition 

occurs once in each order position. This arrangement is termed a Latin square design. 

An example of a Latin square for the four experimental conditions A, B, C, and D, is 

provided in Table 6.5. 
As Latin square designs employ a small set of orders to represent all of the order 

permutations, the selection of the orders constituting the Latin square is an important 

consideration. The ideal is a digram-balanced Latin square, as presented in Table 6.5. 
A digram-balanced Latin square is obtained when each experimental condition both 

precedes and follows all others. The main disadvantage of digram-balanced Latin 

squares is that they can be applied only when there are an even number of 

experimental conditions. Two digram-balanced Latin squares can be employed when 

there are odd numbers of experimental conditions, or a randomly permuted Latin 

square may be applied. Although a randomly permuted Latin square does not have the 

property that each experimental condition both precedes and follows all others, they 

are a reasonable compromise (see Kirk, 1995; Maxwell and Delaney, 2004). In any 

event, the sort of Latin square to avoid constructing is a cyclic square. These Latin 

squares arise when the same sequence of experimental conditions occurs in each order 

employed (e.g., ABCD, BCDA, CDAB, and DABC). Although each of the conditions 

Table 6.5 A Latin Square for Single Factor Repeated Measures Design with Four Levels 

(i.e., A, B, C, and D) 

Position in Order 

Order Pl P2 P3 P4 

1 A B c D 

2 c A D B 

3 B D A c 

4 D c B A 



146 GLM APPROACHES TO RELATED MEASURES DESIGNS 

occupy all positions once in the four orders, the same sequence or partial sequence of 

A followed by B followed by C followed by D is maintained. 

Kirk ( 1995) and Max well and Delaney (2004) present models for Latin square 

designs that represent score variance due to order effects. However, Latin 

square designs employ only a particular set of the experimental condition orders 

(unlike crossover designs) and consequently, only order main effects can be 

estimated, so order interaction effects cannot be used to check the repeated 

measures assumption of constant order effects. Although Tukey's (1949, 1955) 
test for additivity (see Kirk, 1995) can provide some assurance that contrast 

effects are not present, a simple and parsimonious assessment employing resi

duals is described in Chapter 10. 
Although conceived as single factor designs, all repeated measures designs are 

analyzed as factorial designs. This is because an additional factor is employed to 

represent the influence of each individual subject on each dependent variable 

measure. Moreover, crossover and Latin square counterbalanced designs employ 

yet another factor to represent the presentation orders. Therefore, a "single factor" 

repeated measures design actually can involve three factors. However, rather than 

embark upon the description of such "multifactor" designs, the simplest single factor 

repeated measures design, where the order of experimental conditions experienced by 

subjects is randomized, is considered. 

6.3 THE GLM APPROACH TO SINGLE FACTOR REPEATED 
MEASURES DESIGNS 

Imagine the experiment described in Chapter 2 had been obtained from a single factor 

repeated measures design and not a single factor independent measures design. Rather 

than observing data from 24 different subjects divided equally over three conditions, 

the performance of the same 8 subjects would be observed under each of the three 

experimental conditions. Table 6.6 presents the data from Table 2.2 as if it had been 

obtained from a single factor repeated measures design. As the same data is used 

under the independent and repeated designs conceptions, direct comparisons may be 

drawn between these two designs. 
The GLM underlying a single factor repeated measures design ANOVA is 

described by the equation 

(6.1) 

where Yy is the ith subject's dependent variable score in the }th experimental 

condition, µ is the general mean of the experimental condition population means, 

ni represents the random effect of the ith subject, !Y.j is the effect of the }th experimental 

condition, ( na) ij represents the interaction between the ith subject and the }th 

experimental condition, and the error term, By, reflects variation due to any uncon

trolled source. As usual, equation ( 6.1) summarizes a system of equations, where each 

equation describes a single dependent variable score. 
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Table 6.6 Subjects' Free Recall Scores in Single Factor Repeated Measures Design 

Subjects 3 0s 60s 180s Marginal Means 

s l  7 7 8 7.33 
s2 3 11 14 9.33 
s3 6 9 10 8.33 
s4 6 11 11 9.33 
s5 5 10 12 9.00 
s6 8 10 10 9.33 
s7 6 11 1 1  9.33 
s8 7 11 12 10.00 

Marginal means 6 10 11 9.00 

In comparison to the experimental design GLM for a single factor independent 

measures AN OVA, the only differences are the inclusion of the terms ni and ( na) ij" 
The term, ni, represents the influence of the subjects on the dependent variable scores 

obtained across all of the experimental conditions. The interaction term, ( na) ij• 
represents the varying influence of the subjects on the dependent variable scores per 

experimental condition. As a major part of the single factor independent measures 

ANOVA error term is due to differences between subjects, specifically accommodat

ing score variance attributable to different subjects with the ni term reduces the size of 

the repeated measures error variance considerably and is one of the reasons for the 

greater analysis power provided by repeated measures designs. However, the role 

played by the interaction term ( na) ij in repeated measures experimental design GLMs 

is a little more complicated. 

Earlier it was said that repeated measures designs are analyzed as factorial designs. 

Table 6.7 presents the data from Table 6.6 cast in line with the two-factor conception. 

Here, there are three levels of the experimental condition factor and eight levels of the 

subject factor, providing one score per experimental design cell (i.e., one score per 

subject per experimental condition). However, usually factorial ANOVA designs (see 

Chapter 3) contain several scores per cell. The mean of the cell scores is taken as the best 

estimate of the cell score and is used to calculate interaction effects, with the discrepancy 

between the mean and the actual score providing the estimates of experimental error. If 

there is only one score per subject per experimental condition, then a mean and its error 

cannot be calculated per subject per experimental condition and without these 

Table6.7 Data from a Single Factor Repeated Measures Design with Subjects Cast as a 

Second Factor 

Subjects 

Experimental Conditions b l  b2 b3 b4 b5 b6 b7 b8 

a l  7 3 6 6 5 8 6 7 

a2 7 11 9 11 10 10 11 11 

a3 8 14 10 11 12 10 11 12 
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estimates, the experimental error (eu) cannot be separated from the interaction effect 

( na) u· Therefore, a more accurate description of the single factor repeated measures 

experimental design GLM applied most frequently is 

(6.2) 

Fortunately, however, the lack of a specific error term does not prevent assessment of 

the experimental conditions effect ( a1 ). When a single random factor is included in a 

model with fixed effects and the fixed effects are to be tested, limiting the interaction 

of the pertinent fixed factor and the random factor to zero (i.e., setting it to zero) 

provides an error term appropriate for assessing the fixed factor effects. As the 

interaction between the subjects and the experimental factors can be set to zero 

simply by omitting the interaction between these two factors from the GLM, the 

single factor repeated measures ANOVA experimental design GLM usually is 

described by the equation 

(6.3) 

Equation (6.3) may be used for simplicity, but whenever an interaction between 

experimental conditions and subjects exists, equation (6.2) describes the data more 

accurately. Nevertheless, when such an interaction exists and the interaction term is 

omitted, the expected mean square for the experimental conditions, like the 

expected mean square for error, includes variation attributable to the interaction 

between experimental conditions and subjects. Therefore, the F-test of the effect of 

experimental conditions involves the following expected mean squares 

F= 
E(MSexperimental conditions) = (J;xperimental conditions+ (J;xperimental conditions*subjects + (J�rror 

E(MSerror) (J�xperimental conditions*subjects + (J�rror 
(6.4) 

Therefore, setting the interaction between the fixed effect of experimental conditions 

and the random effect of subjects to zero, by omitting the interaction term from the 

single factor repeated measures GLM, provides an appropriate F-test of the fixed 

effect of experimental conditions, but not of the random effect of subjects (e.g., 

Howell, 2010; Maxwell and Delaney, 2004). 
The lack of an F-test of the random effect of subjects is no great loss. Usually, there is 

no interest in the subject effect and as a consequence, many statistical software 

packages do not even report the subject effect in the repeated measures AN OVA output. 

The real aim in applying repeated measures designs, or any related measures design, is 

to increase the power of the F-test of the experimental factor (i.e., the test of the 

experimental manipulation). The subjects factor is included in analyses simply because 

the variance attributed to the subjects factor is extracted from the F-test error term, 

resulting in an increase in the power of the F-test of the experimental factor. 

Comparing the effect of the experimental conditions against the error plus 

interaction variation estimate makes intuitive sense. The interaction represents the 
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extent to which the experimental condition effect varies across subjects. The greater 
this inconsistency in relation to the effect of the experimental conditions, the less 

likely it is that the experimental condition effect is reliable. However, as might be 
expected, there is a cost associated with this approach. Only when the experimental 
conditions covariance matrix is spherical will the F-ratio mean square biases cancel 

out and provide a valid and accurate F-test. If the experimental conditions covariance 

matrix is not spherical, both the F-ratio mean square numerator and denominator will 
be biased and will provide a biased F-test (see Section 10.2.2). 

As always, the model component of the GLM equation describes the predicted 
scores 

(6.5) 

As µ is a constant, variation in prediction arises not only from the influence of the 
experimental conditions (a1) but also from which subject provides the scores (n;). 
Consequently, the repeated measures experimental design GLM can predict a 
different score for each subject in each experimental condition. However, as there 
is no interaction effect, the predicted scores for each experimental condition are equal 
to the mean of all subjects' scores per condition, as given by the marginal means at the 
bottom of Table 6.6. 

The estimate of the single factor repeated measures experimental design GLM 
parameter, µ, is defined as the general mean of the dependent variable scores 

(6.6) 

Notice the symbol, N, is employed in equation (6.6). Typically, N represents the total 
number of subjects in the experiment and analysis, and N with an appropriate 
subscript or n is used to represent the number of subjects in an experimental condition. 
However, in repeated measures designs all subjects participate in all experimental 
conditions so N, N with an appropriate subscript, and n are all equivalent. Applying 
equation (6.6) to the data in Table 6.6 provides 

� - 7 + 3 + ... + 11 + 12 
-

216 
-

9 
µ = y G = ----------

8(3) 
-

24 
-

With balanced designs, µ also may be defined as the mean of the experimental 
condition means 

Applied to the data in Table 6.6 provides 

� - 6+10+11 
µ=Ya= =9 

3 

(2.1
9

, rptd) 
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Given that (L�=' Yii/N) are the experimental condition means (f1), the experimental 
effect estimates are defined by 

�= (2=7� Yu) -YG (6.7) 

Applying formula (6.8) to the data in Table 6.6 provides 

a-,= 6-9=-3 
&'2=10-9= 1 
a3=ll-9= 2 

0 

From these estimates of experimental effects, the Experimental Condition SS can 
be calculated as 

p 
Experimental Conditions SS= LN(µ1 - µ)2 

J=I 

= 2: 8( - 32) + 8(12) + 8(22) 

= 72 + 8 + 32 

= 112 

(2.28, rptd) 

T herefore, the estimate of the effect of experimental conditions in the single factor 
repeated measures design is identical to that obtained in the single factor independent 

measures design. Given that ( l:j= 1 Y1 J / p) is the mean of the scores provided by each 

subject, the subject effect estimates are defined by 

� _ L..-1=l IJ 
-y (�p y ') 

n;- - G 
p 

Applying formula (6.8) to the data in Table 6.6 provides 

n1= 7.333-9=-l.667 
'ii2 = 9.333 -9 = 0.333 
n3 = 8.333 -9 = -0.667 
n4 = 9.333 -9 = o.333 
'iis = 9.000 -9 = 0.000 
n6 = 9.333 -9 = 0.333 
n1 = 9.333 -9 = 0.333 
ns = 10.000 -9 = 1.000 

�N � 
L..-i=I n; 0.000 

(6.8) 
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As with the experimental effect estimates, it is possible to calculate the subject SS 

N 

Subjects SS = ij(µ1 - µ)2 = 3( - 1.6672) + 3(0.3332) + 3( - 0.6672) 
i=I 

+ 3(0.3332) + 3(02) + 3(0.3332) 

+ 3(0.3332) + 3(1.000) 

= 8.337 + 0.333 + 1.332 + 0.333 

+ 0 + 0.333 + 0.333 + 3.000 

= 14.000 

Using each of the parameter estimates in equation (6.5) provides the predicted 
scores presented in Table 6.8. 

Finally, the error estimate is provided by the discrepancy between each observed 

score (see Table 6.4) and each predicted score (see Table 6.6) 

(6.9) 

Table 6.9 presents the calculation of the errors and the sum of the squared errors. 

This is the estimate of the error sum of squares (SSerror) for the single factor 
repeated measures GLM described by equation (6.3). Whereas the SS for the 

experimental conditions equaled that obtained with a single factor independent 

measures design, the single factor repeated measures design error SS is smaller, 

with the difference between the two SS errors being that SS attributable to subjects 

(i.e., 52 - 38 = 14). 
Having calculated the SS for both experimental conditions and error, the 

next step is to determine the degrees of freedom. The logic determining the 

experimental conditions dfs is identical to that for independent measures designs. 

Therefore 

Table 6.8 Scores Predicted by the Single Factor Repeated Measures 

Experimental Design GLM 

Subjects 30s 60s 180s Means 

sl 4.333 8.333 9.333 7.333 

s2 6.333 10.333 11.333 9.333 

s3 5.333 9.333 10.333 8.333 

s4 6.333 10.333 11.333 9.333 

s5 6.000 10.000 11.000 9.000 

s6 6.333 10.333 11.333 9.333 

s7 6.333 10.333 11.333 9.333 

s8 7.000 11.000 12.000 10.000 

Means 6.00 10.00 11.00 9.00 
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Table 6.9 Calculation of the Errors Per Experimental Condition Per Subject and the 
Sum of the Squared Errors 

Subjects 30s 60s !80s 

sl 7- 4.333 = 2.667 7 - 8.333 = -1.333 8- 9.333 = -1.333 
s2 3 - 6.333 = -3.333 11 -10.333 = 0.667 14-11.333= 2.667 
s3 6- 5.333= 0.667 9 - 9.333 = -0.333 10 -10.333 = -0.333 
s4 6 -6.333 = -0.333 11 -10.333 = 0.667 11 -11.333 = -0.333 
s5 5 - 6.000 = -1.000 10- 10.000= 0.000 12 - 11.000 = 1.000 
s6 8- 6.333 = 1.667 10 -10.333 = -0.333 10 -11.333 = -1.333 
s7 6 - 6.333 = -0.333 11 - 10.333 = 0.667 11 -11.333 = -0.333 
s8 7-7.000= 0.000 11 - 11.000= 0.000 12-12.000= 0.000 

L:1 ei =22.667 3.333 = 12.000 

L:I Lf=I el = 38.000 

dj experimental conditions = P - l = 3 - l = 2 (6.10) 

As for error dfs, a separate mean is employed in each experimental condition, so a df is 
lost from the N scores of each condition. However, a separate mean also is employed to 
describe every set of p scores a subject provides, so for every set of p scores a df is lost. 
Therefore 

dferror = (N - l)(p-1) = (8 - 1)(3 - 1) = 14 (6.11) 

All of this information can be placed in an ANOVA summary table, as in 
Table 6.10. However, the subject effect reported in Table 6.10 may not be presented, 
as it is generally of little interest and due to the lack of an appropriate MSe, an 
F-value cannot be calculated and its significance determined. The tabled critical 
F-values presented in Appendix B may be used to determine significance if hand 
calculation is employed or the statistical software employed does not output the 
required p-values. 

Table 6.10 Single Factor Repeated Measures ANOV A Summary Table 

Source SS df MS F p 

Subjects 14.000 7 2.000 

Experimental conditions 112.000 2 56.000 20.634 <0.001 

Error 38.000 14 2.714 

Total 164.000 23 
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6.4 ESTIMATING EFFECTS BY COMPARING FULL AND REDUCED 

REPEATED MEASURES DESIGN GLMs 

The full single factor repeated measures experimental design GLM was described by 
equation (6.3). The reduced GLM is similar, but excludes experimental conditions. 

Therefore, the GLMs are 

Reduced GLM: Yii = µ + n; + r;ii 

Full GLM: Yii = µ + n; + r:t.1 + r;ii 

The reduced GLM manifests the null hypothesis 

( 6.12) 

( 6.3, rptd) 

(2.33, rptd) 

which states that the experimental condition effects equal 0, that is, the experimental 
conditions exert no effect. The full GLM manifests the nondirectional experimental 
hypothesis 

r:t.1 -I- 0 for some j (2.30 , rptd) 

This states that the effect is not zero for some experimental conditions. In other words, 
the experimental conditions exert an effect. A convenient formula for the reduced 
GLM error SS is 

N p 

SSE RGLM = L 2..)Yij -YJ)2 

i=l j=l 
(6.13) 

Applying equation (6.13) to the data in Table 6.5 provides the calculations presented 
in Table 6.11. 

A convenient formula for the full GLM SSerror is 

N p 

SSEFGLM = LL(Yij-Yj-Yi + YG)2 
i=l J=l 

( 6.14) 

Applying equation (6.14) to the data in Table 6.4 provides the calculations presented 
in Table 6.12. 

An F-test of the error component sum of squares, attributed to the inclusion of the 
experimental condition effects, is given by 

F = 
__:_(s_s_E _R_GL_M _-_s_s_EF_G_LM 

___ 
) /_( d_lf_R-'-GL_ M_-_df_ F _G _LM_) 

SSEFGLM/ dfFGLM 
(2.42, rptd) 
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Table 6.11 

Subjects 

sl 

s2 

s3 

s4 

s5 

s6 

s7 

s8 

Therefore 

Calculation of the SS Error for the Reduced GLM 

al a2 
30s 60s 

7 - 7.333 = -0.333 7 - 7.333 = -0.333 

3 -9.333 = -6.333 I I -9.333 = 1.667 

6- 8.333 = -2.333 9- 8.333 = 0.667 

6-9.333 = -3.333 11-9.333= 1.667 

5-9.000 =-4.000 10-9.000= 1.000 

8-9.333 = -1.333 10-9.333= 0.667 

6-9.333 = -3.333 I 1 -9.333 = 1.667 

7 - 10.000 = -3.000 II - 10.000= 1.000 

L:1 Lf=I et = 150.000 

(150-38)/(16-14) 56 
F- ----

38/14 -
2.714 

F(2, 14) = 20.634 

The full and reduced models under consideration are 

Reduced GLM: Y ii = µ + n; + zu 

FullGLM: Yu=µ+ n; + r:x.1 + zu 

a3 

180s 

8 - 7.333 = 0.667 

14 -9.333 = 4.667 

10 - 8.333 = 1.667 

I I -9.333 = 1.667 

12 -9.000 = 3.000 

10-9.333 = 0.667 

1 I -9.333 = 1.667 

12 - 10.000 = 2.000 

(6.12, rptd) 

( 6.3, rptd) 

As the only difference between these two models is the term representing the 

experimental conditions, so the difference between these two models provides an 

Table 6.12 Calculation of the SS Error for the Full GLM 

Subjects 

sl 

s2 

s3 

s4 

s5 

s6 

s7 

s8 

30s 

7 - 4.333 = 2.667 

3 - 6.333 = -3.333 

6 - 5.333 = 0.667 

6 - 6.333 = -0.333 

5 - 6.000 = -1.000 

8 - 6.333 = 1.667 

6 - 6.333 = -0.333 

7 - 7.000 = 0.000 

60s 

7 - 8.333 = -1.333 

11 - 10.333 = 0.667 

9- 9.333 = 0.333 

11 - 10.333 = 0.667 

10 - 10.000 = 0.000 

10 - 10.333 = -0.333 

11 - 10.333 = 0.667 

I I - 11.000 = 0.000 

180 s 

8 - 9.333 = -1.333 

14 - 11.333 = 2.667 

10 - 10.333 = 0.333 

I I - 11.333 = -0.333 

12 - I 1.000 = 1.000 

10- I 1.333 = -1.333 

I 1 - I 1.333 = -0.333 

12 - 12.000 = 0.000 
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estimate of the experimental effect. However, to obtain an estimate of the subject 
effect requires an even more reduced model that does not include the subject 
term 

Even more reduced GLM: Y ii = µ + eii (2.32, rptd) 

In fact, this model may be recognized as the single factor independent measures 
ANOVA reduced GLM. The SS error for the even more reduced GLM is provided 
in Section 2.7.2 (also see Section 6.6) and is equal to 164. This is the SS error 
when all experimental data are described only by the general mean of all 
scores. Therefore, an estimate of the subject effect can be obtained from the 
difference between the (even more) reduced GLM SS error and the reduced GLM 
SS error 

SSE(EM)RGLM - SSERGLM = 164- 150 = 14 

It is convenient to construct an AN OVA summary table, as presented as Table 6.13, as 
the various calculations are completed. 

It is useful to compare the effect estimates provided by the single factor 
repeated measures ANOVA GLM presented in Table 6.13, with those provided 
by the single factor independent measures ANOVA GLM presented in Tables 2.3 
and 2.7. This comparison demonstrates that irrespective of whether a repeated or 
an independent measures ANOVA GLM is applied, the SS estimates of the 
experimental effect are identical. The main difference between the repeated and 
independent measures ANOVA GLMs is the inclusion of a term to represent the 
subject effect in the repeated measures ANOVA GLM. Variance that can be 
accommodated only by the error term in the independent measures ANOVA GLM 
is attributed to the subject term and so the repeated measures ANOVA GLM error 
term is reduced. This is demonstrated by the difference between the full single 
factor independent measures ANOVA GLM error term SS (52) and the full single 
factor repeated measures ANOVA GLM error term SS (38), which is equal to 
the subject effect SS (14). 

Table 6.13 Single Factor Repeated Measures ANOV A Summary Table 

Source SS df MS F p 

Subjects 14.000 7 2.000 
Error reduction due to 112.000 2 56.000 20.634 <0.001 

experimental conditions 
FGLM error 38.000 14 2.714 

Total 164.000 23 
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6.5 REGRESSION GLMs FOR SINGLE FACTOR REPEATED 

MEASURES DESIGNS 

The experimental design GLM equation (6.3) may be compared with the equivalent 

regression equation 

(6.15) 

where Y; represents the ith dependent variable score (not the ith subject), {30 is a 
constant, /31 is the regression coefficient for the predictor variable Xi. and {32 is the 
regression coefficient for the predictor variable X2• However, in repeated measures 
design, the subjects providing the repeated measures also are represented. The N 

levels of the subject factor are represented by (N - 1) variables. Therefore, the eight 
levels (i.e., subjects) are represented by the first seven variables (X1-X7). Similarly, the 
p levels of the experimental factor are represented by (p - 1) variables. Therefore, the 
three experimental conditions are represented by the last two variables (X8 and X9). 
Again, the random variable £; represents error. 

Table 6. 14  presents effect coding for the single factor repeated measures regression 
GLM. This coding scheme shows scores associated with subjects l-7 are identified by 
the presence of a 1 in the variable column representing the subject, while subject S's 
scores are identified by a - 1 across all (X1-X7) subject variables. As in GLM 
equation (6.3), terms representing the interaction between experimental conditions 
and subjects are omitted. 

Consistent with the incremental strategy (see Section 5.4) and estimating effects by 
comparing full and reduced GLMs, the first regression carried out here is that for the 

full single factor repeated measures experimental design GLM, when all subject and 
experimental condition predictor variables are included (i.e., variables X1-X9). 
Table 6. 15 presents the predictor variable regression coefficients and standard 
deviations, the standardized regression coefficients, and significance tests (t- and 
p-values) of the regression coefficient. From the repeated measures ANOVA per
spective, the analysis results in this table are of little interest, although it is worth 
noting that the regression coefficient estimates are equivalent to the subject effect 
estimates calculated earlier. Table 6. 1 6  presents the ANOVA summary table for the 
regression GLM describing the complete single factor repeated measures ANOVA. 
As the residual SS is that obtained when both subject and experimental conditions are 
included in the regression, this is the error term obtained when the single factor 
repeated measures ANOVA GLM is applied. 

The next aim is to determine by how much the residual SS increases when the 
predictor variables representing the experimental conditions are omitted. To do this, a 
regression GLM corresponding with the reduced single factor repeated measures 
experimental design GLM described by equation (6. 14) is constructed. This regres
sion GLM employs only those variables representing the subjects (variables X 1-X7) as 
predictors. As subject and experimental condition variables are orthogonal, the 
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Table 6.14 Effect Coding for the Single Factor Repeated Measures 
Regression GLM 

Subjects y Xi X2 X3 X4 Xs x6 X1 Xg 

sl 7 l 0 0 0 0 0 0 0 
s2 3 0 1 0 0 0 0 0 0 
s3 6 0 0 1 0 0 0 0 0 
s4 6 0 0 0 1 0 0 0 0 
s5 5 0 0 0 0 0 0 0 
s6 8 0 0 0 0 0 l 0 0 
s7 6 0 0 0 0 0 0 0 
s8 7 -1 0 

sl 7 1 0 0 0 0 0 0 0 
s2 11 0 0 0 0 0 0 0 
s3 9 0 0 1 0 0 0 0 0 
s4 11 0 0 0 1 0 0 0 0 
s5 10 0 0 0 0 l 0 0 0 
s6 10 0 0 0 0 0 1 0 0 
s7 11 0 0 0 0 0 0 0 
s8 11 -1 -1 0 

sl 8 1 0 0 0 0 0 0 -1 0 
s2 1 4 0 1 0 0 0 0 0 -1 0 
s3 IO 0 0 I 0 0 0 0 -1 0 
s4 11 0 0 0 I 0 0 0 1 0 
s5 12 0 0 0 0 l 0 0 0 
s6 10 0 0 0 0 0 l 0 -1 0 
s7 11 0 0 0 0 0 0 -I 0 
s8 12 -1 -1 -1 -1 -1 -1 -1 0 

Table 6.15 SYST AT Output Pertinent to Multiple Regression Equation for 

Effect Coding 

Standard Standard 

Variable Coefficient Error Coefficient p (Two-Tailed) 

Constant 9 0.336 <0.001 26.762 <0.001 
X1 -1.667 1.654 -0.319 -1.008 0.329 

X2 0.333 1.654 0.064 0.202 0.843 
X3 -0.667 1.654 -0.128 -0.403 0.692 

X4 0.333 1.654 0.064 0.202 0.843 

Xs <0.001 1.654 <0.001 <0.001 1.000 

x6 0.333 1.654 0.064 0.202 0.843 

X1 0.333 1.654 0.064 0.202 0.843 
Xs -3.000 0.476 -0.937 -6.308 <0.001 

X9 1.000 0.476 0.312 2.103 0.054 
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Table 6.16 ANOV A Summary Table for Subject and Experimental Condition 
Effect Regression 

Source SS df MS F 

Regression 126.000 9 14.000 5.158 
Residual 38.000 14 2.714 

R: 0.877; R2: 0.768; adjusted R2: 0.619. 

p 

0.003 

predictor variable regression coefficients, their standard deviations, the standardized 

regression coefficients, and the significance tests (t- and p-values) of the regression 

coefficients provided by this analysis are identical to those presented in Table 6.15. 
Therefore, of most interest is the ANOVA summary presented in Table 6.17. This 

presents the residual SS for the reduced single factor repeated measures experimental 

design GLM. (As the residual SS contains both SS for experimental conditions and SS 

error, the F-test is irrelevant.) The experimental condition effect can be estimated by 

subtracting the full GLM residual SS from the reduced GLM residual SS 

SS error for reduced regression GLM 
SS error for full regression GLM 

SS error reduction due to experimental conditions 

150.000 
-38.000 

112.000 

Another regression would be applied if information on the subject effect was 

required. The GLM for this regression would exclude the terms for both subjects 

(variables X 1-X 7) and experimental conditions (variables X8 and X9). With all of these 

variables excluded, the only prediction of a subject's score is provided by the general 

mean Y G· This model may be recognized as the single factor independent measures 

AN OVA reduced GLM, the SS error of which is equal to 164 (see Section 2.8.2). An 

alternative method of calculating the SS error for this GLM is to subtract Y c from each 

score and then square and sum the residuals. Table 6.18 presents these calculations. 

The subject effect can be estimated by subtracting the reduced GLM residual SS from 

the even more reduced OLM (equivalent to the single factor independent measures 

ANOVA reduced OLM) 

SS error for even more reduced regression OLM 
SS error for reduced regression GLM 

SS error reduction due to subjects 

Table 6.17 ANOV A Summary Table for Subject Effect Regression 

Source SS df MS F 

164.000 
-150.000 

14.000 

Regression 

Residual 

14.000 

150.000 

7 

16 

2.000 

9.375 

0.213 

R: 0.292; R2: 0.085; adjusted R2: 0.000. 

p 

0.977 
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Table 6.18 Single Factor Independent Measures ANOV A 

Reduced GLM SS Error Calculation 

Subjects y Ye Y-Yc (Y-Yc)2 

sl 7 9 -2 4 
s2 3 9 -6 36 
s3 6 9 -3 9 
s4 6 9 -3 9 
s5 5 9 -4 16 
s6 8 9 -1 1 
s7 6 9 -3 9 
s8 7 9 -2 4 

sl 7 9 -2 4 
s2 11 9 2 4 
s3 9 9 0 0 
s4 11 9 2 4 
s5 10 9 
s6 10 9 
s7 11 9 2 4 

s8 11 9 2 4 

sl 8 9 -1 
s2 14 9 5 25 

s3 10 9 1 

s4 11 9 2 4 

s5 12 9 3 9 

s6 10 9 1 1 

s7 11 9 2 4 

s8 12 9 3 9 

I: 164 

Putting this information and the corresponding dfs in Table 6.19 essentially recasts 

Table 6.16, but separates the regression SS and dfs into Experimental Condition SS 
and dfs, and subject SS and dfs. 

Repeated measures ANOVA also may be implemented by a regression GLM that 
uses a single criterion scaled variable, rather than (N - I) variables, to accommodate 
the subject effect (e.g., Pedhazur, 1982). One advantage of this approach is the 
reduction in predictors required, especially with larger numbers of participants. This 

Table 6.19 ANOV A Summary Table for Single Factor Repeated Measures ANOV A 

Source SS df MS F p 

Subje�ts 14.000 7 2.000 

Experimental conditions 112.000 2 56.000 20.634 <0.001 

Error 38.000 14 2.714 
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was particularly useful when statistical software was limited in the number of 
predictor variables that could be accommodated in a regression analysis. However, 
as the capability of most statistical software now far exceeds the demands likely to be 
made by most repeated measures designs, this is no longer a serious concern. 

6.6 EFFECT SIZE ESTIMATION 

Effect size estimation with repeated measures designs is a more complicated business 
than for independent designs due to the consequences of accommodating subject 
variance. As described below, this results in different types of repeated measures SOA 
effect size estimates developed to serve different purposes. 

6.6.1 A Complete ai SOA for the Omnibus Effect Comparable Across 
Repeated and Independent Measures Designs 

As described in Section 6.4, repeated measures experimental design GLMs accom
modate score variance attributable to the subjects. As subject differences is a major 
contributor to the single factor independent measures ANOVA error term, accom
modating score variance attributable to subjects (with then; term) usually reduces the 
repeated measures ANOVA GLM error variance considerably. As said in Section 4.5, 
one purpose of estimating effect size is to enable comparisons across studies free of 
the influence of sample size, but the ability of repeated measures ANOVA GLMs to 
reduce error estimates by accommodating subject variance with then; term is a major 
source of discrepancy between independent and repeated measures effect size 
estimates. However, if the n; term (and its interactions with other GLM terms) is 
omitted from the GLM, then an independent AN OVA GLM is applied to the repeated 
measures data and this will provide effect size estimates comparable across repeated 
and independent designs. 

In Section 4.3, the complete omnibus w
2 for a single factor independent measures 

ANOVA GLM was defined in full and reduced model comparison terms and in 
traditional ANOVA summary table terms. As two reduced models (the reduced model 
and the even more reduced model) and one full model are involved in estimating 
repeated measures effect sizes, it is simpler to describe the estimation of repeated 
measures effect sizes using the traditional ANOVA summary table terms definition 
of w

2
. This defines the omnibus w

2 as 

� 2 Experimental conditions SS - (p- 1 )MSe 
w =�=-----������������'---� 

Total SS + MSe 
( 4.11, rptd) 

The omnibus w2 may also be defined in terms of the number of experimental conditions, 
the F-statistic and the number of subjects per condition (in a balanced design) 

� 2 
w 

(p- l )(F- 1) 

(p - 1) ( F - 1) + pN 
( 4.12, rptd) 
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It was seen in Section 6.5 that the same experimental effect SS of 112 is obtained 
with independent or repeated measures ANOVA GLMs. Similarly, irrespective of 
whether independent or repeated measures AN OVA GLMs are applied, there are p = 3 
experimental conditions, sop - 1 = 2. However, as equation ( 4.11) is for independent 

measures ANOVA GLMs, the MSe mentioned is the independent measures ANOVA 
GLM MSe. Tables 2.3 and 2. 7 show this to be 2.476, while Tables 2.3, 2. 7, 6.10, 6.13, 
6.17, and 6.19 show that the total SS is I 64. Inserting these values into equation ( 4. I 1) 
provides 

�2 112 - (2)2.476 
(JJ = = 0.64 

164 + 2.476 

Therefore, 64% of the total population variation is explained by the experimental 
effect. The purpose of the effect size estimation above is to allow comparison across 
independent and repeated measures. experimental designs free of the error term 
reduction due to accommodating score variance attributable to the different subjects 
by omitting this feature from the effect size estimation. Consequently, an independent 
measures w2 estimate was obtained from the repeated measures data. The same 
hypothetical data was analyzed under independent and repeated measures concep
tions and so the equality of the w2 estimate above and the w2 estimate obtained in 
Section 4.3 demonstrates the efficacy of the approach. 

6.6.2 A Partial @2 SOA for the Omnibus Effect Appropriate for 
Repeated Measures Designs 

Although the ability to compare effect size estimates across repeated and independent 
designs has its place, there is also a need for effect size estimates that utilize the full 
ability of repeated designs to reduce error variance. These estimates not only reveal 
the actual effect sizes observed in repeated measures designs, but also they are 
required for power analysis determination of the appropriate sample sizes for repeated 
measures designs. 

A complete @2 SOA for the omnibus effect is defined as 

2 
2 IT expt. effect 

(JJ expt. effect = 
IT2 total 

(6.16) 

Equation (6.16) makes it clear that the complete &} for the omnibus effect is a 
proportion of the total experimental variation. However, as the total experimental 
variation includes subject variance and one of the reasons a repeated design will have 
been employed is to remove this variance, it makes little sense to employ a complete 
@2 effect size estimate for the omnibus effect. A partial &} effect size for the omnibus 
effect is much more appropriate. 

The partial @2 SOA for the omnibus effect ignores subject variance and employs 
the reduced error term. The partial w2 estimate of the omnibus effect is defined as 

2 
2 

IT expt. effect 
(JJ (ex pt effect) - IT2 + 2 expt. effect IT error 

( 6. I 7) 
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and its estimate may be obtained from 

-2 (p - l )(Fexpt. effect - 1) 
W(expt. effect) = -(p---1-) (-F

---'------'- -_-1-) -+
-'--
p-N-expt. effect 

( 6.18) 

Applying equation (6.18) to the data in Tables 6.10, 6.13, 6.17 and 6.19 provides 

�1 (2)(20.634-1) 39.268 
W(expt. effect) = (2)(20.634 -1) + 3(8) = 63.268 = 

0·62 

Therefore, the experimental effect accounts for 62% of the experimental effect and the 
error population variation. (Keep in mind that the amount of variance of which this 
SOA estimate of the experimental effect is a proportion is considerably smaller than 
that employed by the complete omnibus effect size estimate in Section 6.6.1.) 

6.6.3 A Partial w2 SOA for Specific Comparisons Appropriate for 

Repeated Measures Designs 

As with independent designs, there is likely to be greatest interest in the SOA for 
particular comparisons between experimental conditions in repeated measures 
designs. For example, just as it was in the hypothetical independent design, the SOA 
between the 30 and 180 s conditions in the hypothetical repeated measures study time 
experiment is of interest. 

The partial w2 described in Section 4.3.l expresses the specific comparison 
variance only as a proportion of the specific comparison variance plus error variance. 
For single factor-repeated measures designs, this partial w2 for specific comparisons 
can be defined as 

_2 Fi/I -1 
w - -----

("1) - Fi/I -1 + 2N 

Applying equation (6.19) to the data in Table 6.22 provides 

_2 = 21.212 - I 
= 

20.212 
= O 56 w

(i/J) 21.212 -1 + 2(8) 36.212 
. 

( 6.19) 

Therefore, 56% of the variance in the 30 and 180 s populations is explained by the 
comparison between these two experimental conditions. 

6.7 FURTHER ANALYSES 

As described for the independent experimental design ANOVAs, a significant 
omnibus F-test leads to rejection of the omnibus null hypothesis 

(2.34, rptd) 
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Table 6.20 Marginal Means for the Three Study Time Experimental Conditions 
30s: 60s: 180 s: 

Study Time Condition 1 Condition 2 Condition 3 

x 6 10 11 

and acceptance of the experimental or alternate hypothesis 

µ # µ1 for some) (2.31, rptd) 

As with the independent single and multifactor experimental designs, the next step in 
the analysis strategy outlined in Section 3.9 is to identify the planned comparison(s). 
As before it is assumed the comparison of the 30 s versus 180 s experimental conditions 
is planned and all other experimental condition comparisons are unplanned. Therefore, 
the hypothesis manifest in the comparison of the 30 s versus 180 s experimental 
condition means is assessed without any Type 1 error rate adjustment, while any other 
(pairwise or nonpairwise) comparisons are conceived as members of a separate family 
(or families if appropriate) over which the Type 1 error rate is controlled at a= 0.05. 
For simplicity, it again is assumed only the two pairwise comparisons - the 30 s versus 
60 s and 60 s versus 180 s experimental conditions - are of any interest as unplanned 
comparisons. Table 6.20 presents the three study time means. There are p = 3 study 
time levels, each population mean is designated by µ1 and each estimate of the 
population mean is provided by the sample means, Y1 where j = 1, 2, or 3. 

Calculation of the planned or unplanned comparison sums of squares (SStfJP') for 
the single factor repeated measures design is identical to that for the single factor 
independent measures design. The linear contrast for the planned comparison 
expressed in terms of population means (see Section 3.4) is 

l/Jpc = ( - 1)µ1 + (0)µ2 + (1)µ3 

Replacing the population means with the sample mean estimators provides 

l/Jpc = ( -1)6 + (0)10 + (1)11=5 

However, the formula for the repeated measures design SSt/IP' employs the number of 
subjects participating in each condition, which is also the total number of subjects 
participating in the whole experiment. Therefore 

�2 
Nl/Jpc (8)(5)2 200 

ss� = --- = - = 100 
t/11" L,cJ (-1)2+(0)2+( l )2 2 

One df is associated with SS fl", so the mean square for the contrast is 

ss"'P' lOO MS� = -- =-= 100 
t/11" 1 1 
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The next requirement for the planned comparison F-test is an appropriate error term. 

For independent measures designs, the omnibus ANOVA error term was the 

relatively simple choice for a number of reasons (see Section 3.7.1). However, as 
mentioned in Section 6.2, only when the error covariance matrix is spherical will a 

valid and accurate F-test be obtained. Spherical experimental condition covariance 

matrices are obtained when the variance of the differences between the subjects' 

experimental condition scores are homogeneous (see Section 10.2.2). As psycho

logical data often violates the sphericity assumption and research has shown that 

even small sphericity violations can exert a large influence on the outcome of 

pairwise and nonpairwise comparisons (e.g., Boik, 1981 ), a frequent recommenda

tion is to employ an error term based on only that data contributing to the pairwise 

(or nonpairwise) comparison. (This also explains the absence of complete w2 SO As 

for specific comparisons with repeated designs.) This error term can be calculated in 

a variety of ways. For example, the procedures described in Sections 6.4-6.6 can be 

applied to only two experimental conditions and would provide both experimental 

effect and error term estimates. 

However, there is a quicker way to calculate the error term for the comparison 

between the two experimental conditions that has much in common with the way 

in which a repeated measures t-test is calculated. A repeated measures t-test 

converts the two experimental condition scores obtained from each subject into a 

single difference score simply by subtracting one from the other in a manner 

consistent with the linear contrast. Table 6.21 presents each subjects' scores from 

the 30 and 180 s experimental conditions, the difference score for each 

subject, the means of the experimental condition scores, the mean of the 

difference score, the sum of the difference scores, and the sum of the squared 

difference scores. 

Table 6.21 Differences Between Subjects' Scores 
Across 30 and 180 s Experimental Conditions 

Subjects 180 s 30s 180s - 30s (�;) 
sl 8 7 
s2 14 3 11 
s3 10 6 4 
s4 11 6 5 
s5 12 5 7 
s6 10 8 2 
s7 11 6 5 
s8 12 7 5 

'E,t/!; 40 

If/; 11 6 5 

'E.�� 266 
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The error SS for the reduced GLM when only the two experimental conditions 

being compared are considered is provided by 

�2 
SSE 'E, "'i 266 

RGLM = '°' 2 = 2 2 = 133 
�ci -1 +l 

The SS for the planned comparison between the 30 and 180 s experimental conditions, 

SSl/I"', calculated above was 100. As 

it follows that 

Therefore 

ssl/I"' = ssERGLM - ssEFGLM 

l:
t 266 SSEFGLM = l:c
J -SS;r;"' = _ 

12 
+ 1

2 -100 = 33 

It is convenient to cast the SS results in an ANOVA summary table to complete the 
calculations with the planned pairwise comparison dfs = (p - 1) and the error term 

dfs = (N -1) (p - 1 ) , as done in Table 6.22. As the comparison of the 30 and 180 s 

experimental condition means was planned, no Type 1 error adjustment is necessary. 

Therefore, the difference between the subjects' free recalls after 30 and 180 s is 

declared significant. 

Identical calculations can be carried out to assess the two unplanned comparisons 

involving the 30 and 60 s, and the 60 and I 80 s experimental condition means. The 

linear contrast for the two unplanned comparison expressed in terms of population 

means are 

l/130 vs. 60( - 1 )µ1 + ( 1 )µ2 + (0)µ3 

lfi60vs 180(0)µ1 + ( -1)µ2 + (1)µ3 

Replacing the population means with the sample mean estimators provides 

lfi3ovs.60 = ( -1)6 + (1)10 + (0)11=4 

lfi6ovs. 180 = (0)6 + ( -1)10 + (1)11=1 

Table 6.22 ANOV A Summary Table for the Planned Pairwise Comparison Between the 
30 and 180 s Experimental Condition Means 

Source 

30 s vs. 180 s PC 

Error 

SS 

100.000 

33.000 

df 

7 

MS F p 

100.000 21.212 0.002 

4.714 
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The SS for these two unplanned comparisons are 

ss� 
�2 Nl/f 30 vs 60 (8)(4)2 128 

--�---=----=- - -- 64 
1/130 vs. 60 'i:.CJ (-1)2+(0)2 +(1)2

-
2 

-

�2 Nl/f 60 vs. 180 (8)(1)2 8 
--�------ -- 4 

L,eJ (-1)2 + (0)2 + (1)2 
-

2
-

As one df is associated with each unplanned comparison SS, the contrast mean 

squares are 

The values in Table 6.23 allow calculation of the reduced GLM SSE and together 

with the SS for each comparison, (see Table 6.24). The calculations for the full GLM 

SSE for each of the two comparisons are presented below 

�2 
SSE 

L I/I i,30 vs. 60 
RGLM(30 vs. 60) = ""'"' 2 weJ 

168 
-�--=- = 84 
-12 + 12 

�2 16 
SS 

L l/li,60 vs. 180 
ERGLM(60 vs. 180) = ""'"' 2 weJ 

---- = 8  
- 12 + 12 

�2 
SSE 

L I/I i,30 vs. 60 
SS FGLM(30 vs. 60) = ""'"' 2 

-
f weJ pc 

�2 
SS 

L l/li,60 vs. 180 
SS EFGLM(60 vs. 180) = ""'"' 2 

-
;;; weJ pc 

168 
-64 = 20 

-12 + 12 

16 
-4 = 4 

-12 + 12 

Of course, it is much easier to implement all of these comparison calculations using 

statistical software. This can be done simply by applying a standard repeated 

measures ANO VA for each comparison. For each comparison, only that data obtained 

under the pertinent two experimental conditions is selected and analyzed. 

As the last two comparisons are unplanned comparisons and there is no theoretical 

reason to consider these hypotheses separately, the two hypotheses constitute a single 

hypothesis family over which Type 1 error rate control is exerted. However, 

consideration of the LRH is always worthwhile and as the situation here mirrors 

that described in Section 5.6.1, there can be only one possibly true null hypothesis, and 

as the classic statistical test protection is for one possibly true null hypothesis, and as 

this is the classic statistical test protection, no p-value adjustment is necessary to 



FURTHER ANALYSES 167 

Table6.23 Differences Between Subjects' Scores Across the 30 and 60 s, and the 60 and 
180 s Experimental Conditions 

Subjects 60s 30s 60s-30s (�) 180 s 60s 180 s -60 s ( �;) 
sl 7 7 0 8 7 I 
s2 11 3 8 14 11 3 
s3 9 6 3 10 9 
s4 11 6 5 11 11 0 
s5 10 5 5 12 10 2 
s6 10 8 2 IO 10 0 
s7 11 6 5 11 11 0 
s8 11 7 4 12 11 

2:,1/1; 32 8 

lfi; 4 

"'£�: 168 16 

maintain the appropriate control of Type 1 error rate. Therefore, the unplanned 

comparisons above require no p-value adjustment and both can be accepted as 

significant at their classic p = 0.002 and p = 0.033 values. 

It have been noticed that breaking the experiment up into separate pairs 

of conditions for analysis results in a considerable loss of dfs from the separate 

comparison error terms. Only 7 dfs are associated with each of the separate 

comparison error terms, while 14 dfs are associated with the error term in 

the omnibus repeated measures ANOVA. This reduction in error dfs is likely to 

diminish the power of the separate comparisons. 

Section 10.2.2 considers the spherical covariance matrix assumption made by 

univariate repeated measures ANOVA. Most statistical software packages provide 

two statistics (Geisser and Greenhouse, 1958; Huynh and Feldt, 1976) that attempt 

to estimate Box's ( 1954) parameter, 1:, which varies between 0 and 1 and indexes the 

extent of the violation of the sphericity assumption, with lower values indicating 

greater sphericity violation. Of the two, Huynh and Feldt' s e is superior estimate of 

1:. Therefore, if Huynh and Feldt's e is very close to 1, using the omnibus MSe with 

the greater associated dfs may be worth considering if an increase in comparison 

power is required. 

Table6.24 ANOV A Summary Table for the Unplanned Pairwise Comparisons Between 

the 30 Versus 60s and the 60 Versus 180s Experimental Condition Means 

Source SS df MS F p 

30s vs. 60s PC 64.000 64.000 22.400 0.002 
Error 20.000 7 2.857 

60s vs. 180s PC 4.000 I 4.000 7.000 0.033 
Error 4.000 7 0.571 
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6.8 POWER 

6.8.1 Determining the Sample Size Needed to Detect the Omnibus Effect 

The method for determining the required sample size to achieve a specific level of 
power in a repeated measures design is a simple generalization of the method described 
for independent measures designs. The four pieces of information required are 

• The significance level (or Type 1 error rate) 

• The power required 

• The numerator dfs 

• The effect size 

The usual a= 0.05 is employed and the convention in psychology is to set power at 
0.8. The numerator dfs are set by the number of experimental conditions. For the 
hypothetical single factor repeated measures design experiment presented here, the 
numerator dfs (v1) = (p- 1) = (3 - 1) = 2. It is also important to note that when w

2 

effect sizes observed in previous research or pilot studies, and power analyses are 
conducted to determine the sample size needed to detect an omnibus effect, the partial 
w

2 SOA for the omnibus effect size estimate (Section 6.6.2) or the partial w2 SOA for 
specific comparisons (Section 6.6.3) should be used. Here, it will be assumed that a 
medium effect size, w

2 
= 0.06, is to be detected. 

When power charts are used (see Appendix C), the next step is to make an educated 
guess as to how many subjects might be needed and equation (4.22) is applied 

( 4.22, rptd) 

The educated guess is to use a sample size of 50 subjects per experimental condition. 
Applying equation (4.22) with w2 =0.06 and N=50 provides 

¢ = fOIS6 V50 
Vl="o.06 

= 0.25(7.07) 

= l .77 

It should be noted that when repeated measures designs are considered, Vz, the 
denominator df, is defined differently to when independent measures designs are 
considered. Specifically, with 50 subjects participating in each of the experimental 
conditions, the repeated measures denominator dfs ( v2) = (N - 1 )(p - l )  = ( 50 - 1) 
(3 - 1) = 98. Examination of the power charts reveals that with N = 50, ¢ = 1. 77, and 
denominator dfs ( v2) = 98 (i.e., 100 in charts), power'"" 0.8. As well as being a good 
(or lucky) educated guess, the example also illustrates how many subjects can be 
required to obtain higher power levels even when repeated measures designs are 
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employed. Applying G*Power to this data, to obtain a more accurate estimate, 

indicates that with N = 50 (and the other values defined as above), power= 0.76. 
A power of 0.8 is achieved when N = 54. 

It is also possible to apply a power analysis to determine sample size that employs 

the correlation between subjects' scores across the experimental conditions (see 

Keppel and Wickens, 2004; Kirk, 1995; Maxwell and Delaney, 2004). This correla

tion may be known or estimated from previous research or pilot studies. However, in 

most situations, researchers are unlikely to know this correlation and in any novel 

situations, any previously observed correlations are unlikely to apply. 

6.8.2 Determining the Sample Size Needed to Detect Specific Effects 

As mentioned before, the omnibus null hypothesis is rarely the hypothesis in which 

there is real interest. Usually, the real interest is with regard to the hypotheses manifest 

in specific pairwise comparisons between the specific experimental condition means 

of means. 

The key piece of information required for the power analysis to determine the 

required sample size is a partial w2 (or an equivalent f) estimate of the specific 

comparison under consideration. The pertinent partial w2 (or an equivalent/) estimate 

is the partial SOA for specific comparisons described in Section 6.6.3. This is the 

pertinent effect size estimate because the study to be designed will employ repeated 

measures and so the detection of this effect will be assisted by the error reduction 

resulting from the accommodation of the variance attributable to subjects. After 

the partial w2 for the specific comparison is obtained, the procedure for determining 

the required sample size continues as described above for the omnibus effect in 

Section 6.8.1. 





CHAPTER 7 

The GLM Approach to Factorial 

Repeated Measures Designs 

7.1 FACTORIAL RELATED AND REPEATED MEASURES DESIGNS 

Factorial repeated measures designs are amongst the most popular research designs 

employed in psychological research. This popularity has much to do with the 

combined advantages of factorial and repeated measures randomized block designs 

(see Sections 5.1, 5.2 and 6.1.3). Other forms of randomized blocking (see 

Sections 6.1. l and 6.1.2) offer benefits similar to repeated measures designs without 

any risk of the problems that can arise from experimental condition presentation 

orders. However, these designs also require much more effort and many more subjects 

from which to identify the matching subjects, particularly in factorial studies where 

each block of subjects must be matched across all the levels of all the factors. Indeed, 

the number of subjects and effort required to obtain similar matching blocks for 

factorial studies probably is a major reason why so few factorial nonrepeated 

measures randomized block designs are applied. Therefore, the focus of this and 

the next chapter is factorial repeated measures designs. Nevertheless, as noted in 

Section 6.1.3, the procedures described here for repeated measures randomized block 

designs are appropriate for all randomized block designs employing only one matched 
set of subjects per randomized block, while Kirk (1995) presents procedures for 

designs employing more than one matched set of subjects per randomized block. 

Repeated measures factors can be combined with independent factors, or with other 

repeated measures factors. The combination of an independent measures factor and a 

repeated measures factor is addressed in Chapter 8. The present chapter address the 

combination of two repeated measures factors. When only repeated measures factors 

are employed, the design can be labelled a fully repeated measures factorial design. 

In fully repeated measures factorial designs, every subject experiences every experi

mental condition. 

ANOVA and ANCOVA: A GLM Approach, Second Edition. By Andrew Rutherford. 
© 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc. 
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Table 7.1 A Fully Related Two-Factor (2 x 3) Design 

Factor A al a2 

Factor B bl b2 b3 bl b2 

sl sl sl sl sl 
s2 s2 s2 s2 s2 

s8 s8 s8 s8 s8 

7.2 FULLY REPEATED MEASURES FACTORIAL DESIGNS 

b3 

sl 

s2 

s8 

A two-factor fully repeated measures design is presented schematically in Table 7 .1. 

In common with single factor repeated measures designs, appropriate controls are 

required to address the potential confounding posed by order effects. In fully 
repeated measures factorial designs, there are likely to be more experimental 

conditions under which the same subjects provide scores, so there will be a greater 
number of order permutations and so a more extensive implementation of order 

controls is required. 
As with all factorial designs, there are a greater number of main and interaction 

effects in factorial repeated measures designs compared with single factor repeated 

measures designs. With fully related factorial designs, there is also an increase in the 
number of "error" terms. In fact, there is a separate "error" term for each fixed 

experimental factor and interaction between fixed experimental factors. 
The GLM for a fully related two-factor ANOVA is described by the equation 

where Y ijk is the dependent variable score for the ith subject at the jth level of Factor A 

and the kth level of Factor B, µ is the general mean of the experimental condition 

population means, n; is a parameter representing the random effect of the ith subject, 

tl.j is the effect of the }th level of Factor A, f3 k is the effect of the kth level of Factor B, 

( na) iJ is the effect of the interaction between the ith subject and the }th level of 
Factor A, (nf3h is the effect of the interaction between the ith subject and the kth 
level of Factor B, ( af3)jk is the interaction effect of the jth level of Factor A and the 
kth level of Factor B, and, as always, BiJk represents the random error associated with 
the ith subject in the }th level of Factor A and the kth level of Factor B. 

As with single factor repeated measures designs, due to there being only one score 

per subject per experimental condition, the error term and the interaction between 
the two experimental factors and subjects cannot be separated and so, Bijk is written 

more accurately as [(naf3)iJk + BiJk] and often is refered to simply as (naf3)iJk' or 
(S x A x B). However, the variation associated with the error term Bijk is used only to 

assess the effect of the interaction between the two fixed experimental factors. As 

described with respect to the single factor repeated measures design, when a single 

random factor is included in a model with fixed effects and the fixed effects are to be 
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tested, limiting the interaction of the pertinent fixed factor( s) and the random factor to 
zero provides an appropriate error term. In fully repeated measures factorial designs, 

the term representing the interaction of the fixed Factors A and B is to be tested, while 

the only random factor represents the influence of the subjects. Therefore, setting the 

[(no:/j)ijk] interaction to zero simply by omitting this term from the GLM provides an 

appropriate error term to assess the interaction between the two fixed experimental 

Factors A and B. 

The strategy just described seems to leave the main effects of Factors A and B 

without an error term denominator for the F-test. However, in the fully repeated 

measures factorial design, the variation associated with the interaction between 

Factor A and subjects [(mx)ij] is used to assess the effect of the Factor A 

manipulation, while the variation associated with the interaction between Factor 
B and subjects [ ( nP);k] is used to assess the effect of the Factor B manipulation (For 

F-test numerator and denominator expected mean squares, see Howell, 20 l 0). As in 

the single factor repeated measures design, using these variation estimates to assess 

the main effects of Factor A and B makes intuitive sense. In both instances, the 

interactions represent the extent to which the factor effect is inconsistent across 

different subjects and the greater this inconsistency in relation to the factor effect, 

the less likely is the factor effect to be reliable. Nevertheless, due to the way in which 

the interactions between Factor A and Subjects, and Factor B and Subjects are 

calculated (the fully factorial GLM description of factor and subject factor inter

actions are based on single mean scores - the means of each subject's repeated 

measures under the pertinent factor levels), these interaction terms also accommo

date error components. Consequently, all of the fully repeated measures factorial 

ANOVA F-tests are accurate and valid only when the variance of differences across 

the factor levels is homogeneous, i.e., when the sphericity assumption is tenable (see 

Section 10.2.2). 

Consider the experimental data presented in Chapter 5 cast as a fully repeated 

measures factorial design, as presented in Table 7.2. In this design, all subjects are 

presented with and attempt to recall different sets of words under all 6 experimental 

conditions, with each subject receiving a randomized presentation order of the 6 

experimental conditions. However, randomizing presentation orders has the con
sequence that there will be many instances where a story and imagery instruction 

condition is followed by a memorization condition. A particular concern is that 

subjects may continue to employ a story and imagery encoding strategy in subse

quent memorization conditions (because story and imagery instructions are more 

specific and seem more effective than memorization instructions), so diminishing 

the distinction between these factor levels. As it is less likely that subjects asked to 

memorize and then asked to construct stories from the words and imagine the story 

events would employ the memorize only strategy rather than the story and imagery 

strategy, a contrast effect is likely. Therefore, a fully repeated measures factorial 

design would be inappropriate in these circumstances. Nevertheless, for the sake of 

illustrating the analysis of a fully repeated measures factorial design, assume the 

data in Table 7 .2 had been obtained from just 8 subjects participating in all 

conditions and no contrast effect occurred. 
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Table 7.2 Experimental Data from a Fully Repeated Measures 

Two-Factor (2 x 3) Design 

Encoding al a2 

Instructions Memorize Story and Image 

bl b2 b3 bl b2 b3 Subject 
Study Time 30s 60s 180s 30s 60s 180 s Means 

sl 7 7 8 16 16 24 13.000 
s2 3 11 14 7 IO 29 12.333 
s3 6 9 IO 11 13 IO 9.833 

s4 6 11 11 9 10 22 11.500 

s5 5 10 12 IO IO 25 12.000 

s6 8 10 10 11 14 28 13.500 

s7 6 11 11 8 11 22 11.500 

s8 7 11 12 8 12 24 12.333 

x 6 IO 11 10 12 23 12.000 

As was described for the single factor repeated measures design, the manner of 
calculating experimental condition effects remains the same as in independent 
measures designs, emphasizing that repeated measures designs have consequence 
only for the error estimates. As the estimates ofµ, and the a1, /h, and ( af3)1keffects 
are defined just as for the independent measures factorial design, their definitions 
are not repeated here. 

The mean of the scores provided by each subject is 

and so the subject effects are 

Applying formula (7.3) to the data in Table 7.2 provides 

n1=13.ooo- 12 = 1.000 

n2 = 12.333 - 12 = o.333 

n3 = 9.833 - 12 = -2.167 

Jt4 = 11.500 - 12 = -0.500 

ns = 12.000- 12 = 0.000 

n6 = 13.500 - 12 = 1.500 

JG= 11.500 - 12 = -0.500 

ns = 12.333 - 12 = 0.333 

I:N � 

n· 
i=l l 

0.000 

(7.2) 

(7.3) 
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The subject SS is given by 

N 

SSsubjects = pq L (µi - µ )2 
i=l 

= 6[(1.000)2 + (0.333)2 + ( - 2.167)2 + ( -0.500)2 

+ (0)2 + (1.500)2 + ( - 0.500)2 + (0.333)2] 

SSsubjects = 52.008 

The subject x Factor A interaction effects are defined by 

(nr:1.)u = µiJ - (µ + n; + rt.1) 
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(7.4) 

which reveals each interaction effect to be the extent to which each subject mean 

within each level of Factor A diverges from the additive pattern of subject and Factor 

A main effects. Applying formula (7.4) to the data in Table 7.2 provides 

(mx)1,1 = 7.333 -(12.000 + 1.000- 3) = -2.667 

(iw:Ji,1 = 9.333 -(12.000 + 0.333- 3) = 0.000 

(rr<Xh,1= 8.333-(12.000 - 2.167- 3)= 1.500 

(rr<X)4,1 = 9.333 -(12.000 - 0.500- 3) = 0.833 

(rr<X)5,1 = 9.000-(12.000 + 0.000- 3) = 0.000 

(rr<X)6,1 = 9.333 -(12.000 + 1.500- 3) = -1.167 

(rr<Xh,1 = 9.333 -(12.000 - 0.500- 3) = 0.833 

(rr<X)8,1=10.000-(12.000 + 0.333 - 3) = 0.667 

(rr<X)1,2 = 18.667 -(12.000 + 1.000 + 3) = 2.667 

(rr<X)2,2 = 15.333 -(12.000 + 0.333 + 3) = 0.000 

(rr<Xh,2= 11.333-(12.000 - 2.167 + 3)=-1.500 

(rr<X)4,2 = 13.667 -(12.000 - 0.500 + 3) = -0.833 

(rr<X)5,2 = 15.000-(12.000 + 0.000 + 3) = 0.000 

(rr<X)6,2 = 17.667-(12.000 + 1.500 + 3) = 1.167 

(rr<Xh,2 = 13.667 -(12.000 - 0.500 + 3) = -0.833 

(rr<X)8,2 = 14.667 -(12.000 + 0.333 + 3) = -0.666 
N p 

2= 2= (n"lu = o.ooo 
i=l J=I 

The subject x Factor A SS is given by 

or alternatively 

Therefore 

N 

SSsubjectsxFactor A = q L[µij - (µ + n; + IY.j )2] 
i=I 

N 

SSsubjectsxFactorA = q L(na)t 
i=I 

SSsubjectsxFactorA = 3[( -2.6672) + (02) + (1.5002) + (0.8332) + (02) 

+ ( - 1.1672) + (0.8332) + (0.6672) + (2.667) 

+ (02) + ( - 1.5002) + ( - 0.8332) + (02) 

+ (1.1672) + ( - 0.8332) + ( - 0.6662)] 

= 75.333 

(7.5) 

(7.6) 
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Similarly, the subject x Factor B interaction effects are defined by 

(n/3);k = µik - (µ + n; + /3k) (7.7) 

which reveals each interaction effect to be the extent to which each subject mean 

within each level of Factor B diverges from the additive pattern of subject and Factor B 

main effects. Applying formula (7.5) to the data in Table 7.2 provides 

(rr/J)1,1 = II.500- (12.000 + 1.000-4)= 2.500 

(rr/3)2,1 = 5.000- (12.000 + 0.333 - 4) = -3.333 

(rr/3Ji,1= 8.500-(12.000 - 2.167-4)= 2.667 

(rr/J)41 = 7.500- (12.000 - 0.500-4)= 0.000 

(rr/3)5_1 = 7.500- (12.000 + 0.000-4) = -0.500 

(rrfi)6,1 = 8.500 - (12.000 + I.500-4) = -I.000 

(rr/Jh,1 = 7.000- (12.000 - 0.500-4) = -0.500 
(rr/3)81 = 7.500- (12.000 + 0.333 - 4) = -0.833 

(rr/3)1,2 =I l.500- (12.000 + I.000- I)= -0.500 

(rr/Jlz,2 = 10.500- (12.000 + 0.333 - I)= -0.833 

(rr/Jli.z = 1 I.000- (12.000 - 2.167 -I)= 2.167 

( rr/3)4 2 = 10.500 - (12.000 - 0.500 -I)= 0.000 

(rr/3)5,2=10.000- (12.000 + 0.000-1)=-l.000 

( rr/3)6,2 = 12.000 - (12.000 + 1.500 -I)= -0.500 

(rr/Jh,2 = 11.000- (12.000 - 0.500- 1) = 0.500 

(rr/3)8,2 =I l.500- (12.000 + 0.333 - I)= 0.167 

(rr/3)13= 16.000-(12.000 + I.000 + 5)=-2.000 

( rr/3)23 = 21.500 -( 12.000 + 0.333 + 5) = 4.167 

(rrfih3 = 10.000-(12.000 - 2.167 + 5) =-4.833 

( rr/3)43 = 16.500 -(12.000 - 0.500 + 5) = 0.000 

( rr/3)5,3 = 18.500 - (12.000 + 0.000 + 5) = 1.500 

(rr/3)6,3 = 19.000-(12.000 + I.500 + 5) = 0.500 

(rr/Jh,3 = 16.500-(12.000 - 0.500 + 5) = 0.000 

(rr/3)8,3=18.000-(12.000 + 0.333 + 5) = 0.667 

N q 
2= L(rr/3);k =o.ooo 
i=I k=I 

The subject x Factor B SS is given by 

or alternatively 

N 

SSsubjectsxFactorB = p L[µ;k - (µ + n; + /3k)2] 
i=l 

N 

SSsubjectsxFactorB = P L(nf3)fk 
i=l 

SSsubjectsxFactorB = 2[(2.5002) + ( - 3.3332) + (2.6672) + (02) 

(7.8) 

(7.9) 

+ ( -0.5002) + ( - 1.0002) + ( - 0.5002) + ( -0.8332) 

+ (-0.5002) + (-0.8332) + (2.1672) + (02) 

+ (-1.0002) + (-0.5002) + (0.5002) + (0.1672) 

+ ( -2.0002) + (4.1672) + ( -4.8332) + (02) 

+ (1.5002) + (0.5002) + (02) + (0.6672)] 

SSsubjectsxFactorB = 161.000 
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Table 7.3 Predicted Scores for the Fully Repeated Measures 
Two-Factor (2 x 3) Experiment 

al a2 

bl b2 b3 bl b2 b3 

sl 6.833 7.833 7.333 16.167 15.167 24.667 

s2 3.000 9.500 15.500 7.000 11.500 27.500 

s3 8.000 11.500 5.500 9.000 10.500 14.500 

s4 6.333 10.333 11.333 8.667 10.667 21.667 

s5 5.500 9.000 12.500 9.500 11.000 24.500 

s6 6.333 9.833 11.833 12.667 14.167 26.167 

s7 5.833 10.833 11.333 8.167 11.167 21.667 

s8 6.167 11.167 12.667 8.833 11.833 23.333 

Based on the model component of the fully repeated measures two-factor experi

mental design GLM equation, predicted scores are given by 

YiJk = µ + n; + rx1 + fh + (nrx)iJ + (nfJ);k + (rx{J)Jk (7.10) 

Using the parameter estimates in this formula provides the predicted scores per 

subject per experimental conditions. The final parameters for the fully repeated 

measures two-factor experimental design GLM, the error terms, which represent the 

discrepancy between the actual scores observed (Table 7.2) and the scores predicted 

by the two-factor GLM (Table 7.3), are defined as 

Bijk = yijk - f ijk (7 .11) 

and are presented by subject and experimental condition in Table 7.4. 

Table7.4 Error Terms for the Fully Repeated Measures Two-Factor (2 x 3) Experiment 

al a2 

bl b2 b3 bl b2 b3 

sl 0.167 -0.833 0.667 -0.167 0.833 -0.667 

s2 -0.000 l.500 -1.500 0.000 -l.500 1.500 

s3 -2.000 -2.500 4.500 2.000 2.500 -4.500 

s4 -0.333 0.667 -0.333 0.333 -0.667 0.333 

s5 -0.500 1.000 -0.500 0.500 -l.000 0.500 

s6 l.667 0.167 -1.833 -1.667 -0.167 1.833 

s7 0.167 0.167 -0.333 -0.167 -0.167 0.333 

s8 0.833 -0.167 -0.667 -0.833 0.167 0.667 

LN 2 

i=I 8ijk 7.889 10.722 27.223 7.889 10.723 27.222 

L;;,,i 'E.j= I Lk= I 8�k 91.668 
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Degrees of freedom are required next. For the subject effect 

dj Ssubject = N - 1 

This reflects how the subject effect is calculated from the deviation of N means from 
µ, which is the mean of these N means. Therefore, as described before, only (N - 1) 
of the component means are free to vary. As the subject factor has N levels, the 
subject x Factor A interaction effect dfs are given by 

df subjectxFactor A = (N 
- 1) (p - I) 

and the subject x Factor B interaction effect dfs are given by 

dfsubjectxFactorB = (N- l)(q-1) 

For the error dfs, as a separate mean is employed in each experimental condition, a df 
is lost from the N scores of each condition. Moreover, a separate mean is employed 
to describe every set of p scores a subject provides, so for every set of p scores a df is 
lost, and similarly, a separate mean is employed to describe every set of q scores a 
subject provides, so for every set of q scores a df is lost. Therefore 

dferror = (N - I)(p- l)(q- I) 

The error/interaction SS estimates, along with the SS for the experimental Factors 
A and B (calculation of which is identical to that described for the independent Factors 
A and Bin Section 5.2.1) and the dfs are presented in an ANOVA Summary Table 
(Table 7 .5). If hand calculation is employed or the statistical software employed does 
not output the required p-values, then the tabled critical F-values presented in 
Appendix B may be used to determine significance. 

Table 7.5 Fully Repeated Measures Two-Factor ANOV A Summary Table 

Source Sum of Squares df MS F p 

Subject 52.000 7 7.429 

Encoding instructions (A) 432.000 432.000 40.141 <0.001 

Subjects x Encode instructions 75.333 7 10.762 
(S x A) 

Study time (B) 672.000 2 336.000 29.217 <0.001 

Subjects x Study time (S x B) 161.000 14 11.500 

Encode instructions x 224.000 2 112.000 17.105 <0.001 

Study time (Ax B) 
Subjects x Encode instructions 91.668 14 6.548 

x Study time (S x A x B) 
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7.3 ESTIMATING EFFECTS BY COMPARING FULL AND 

REDUCED EXPERIMENTAL DESIGN GLMs 

The independent factors ANOVA was estimated by comparing full and reduced 
experimental design GLMs, so the hypotheses concerning the main effect of the 
repeated measures Factor A, the main effect of the repeated measures Factor B and 

the effect of the interaction between the repeated measures Factors A and B may be 
assessed by constructing three reduced GLMs, which manifest data descriptions 
under the respective null hypotheses, and comparing their error components with the 
full model. Again this approach is simplified by virtue of all the subject, experimental 
factors, and their interactions being orthogonal. As the effect estimates are completely 
distinct, omitting, or including any particular effect has no consequence for the 
estimates of the other effects. 

The main effect of Factor A is assessed by constructing the reduced experimental 
design GLM 

Yuk=µ+ n; + /h + (nr:x)iJ + (nf3);k + (af3)jk + Eijk (7.12) 

This model manifests the null hypothesis that the p levels of Factor A do not influence 
the data. More formally this is expressed as 

(7 .13) 

The main effect of Factor B is assessed by constructing the reduced experimental 
design GLM 

(7.14) 

This model manifests the null hypothesis that the q levels of Factor B do not influence 
the data. More formally, this is expressed as 

(7.15) 

Finally, the reduced GLM for assessing the effect of the interaction between Factors A 
and Bis 

Yuk=µ+ n; + <Xj + /3k + (na)u + (n/3);k + EiJk (7.16) 

This reduced GLM manifests the data description under the null hypothesis that the 
interaction between the levels of Factors A and B do not influence the data and is 
expressed more formally as 

(af3)jk = 0 (7.17) 

Nevertheless, when fully repeated measures two-factor ANOVAs are carried out by 
hand, the strategy of comparing different experimental design GLM residuals is very 
laborious, as there are so many reduced experimental design GLMs. In addition to the 
full experimental design GLM error term, reduced experimental design GLM error 
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Table 7.6 Formulas for the (Balanced) Fully Repeated Measures Two-Factor 
ANOV A Effects 

Effect 

Subject 

A 

S xA 

B 

SxB 

AxB 

Ax B x S (or error) 

Formula 

terms have to be calculated for each of the effects (A, B, and AB), and then to obtain 

the error terms for the main effect of Factor A (S x A), the main effect of Factor B 

(S x B) the interaction effect (S x Ax B), further reduced experimental design 

OLMs must be constructed. Therefore, when hand calculations are employed, instead 

of calculating the error SS associated with each of these reduced experimental design 

OLMs and comparing them with the full experimental design OLM, it is more 

efficient to calculate directly the SS for each of the effects and errors. Formulas for 

calculating all of the fully repeated measures two-factor ANOVA effects directly, 
which are more convenient than those used to define and illustrate the SS calculation, 

are provided in Table 7 .6. However, as described below, the strategy of comparing 

different experimental design OLM residuals to estimate fully repeated measures 

two-factor ANOVA effects is a simple way to implement related ANOVAs using 
regression OLMs. 

7.4 REGRESSION GLMs FOR THE FULLY REPEATED MEASURES 

FACTORIAL ANOV A 

The fully repeated measures two-factor (2 x 3) experimental design OLM equation 

(7.1) may be compared with the equivalent regression equation 

Y; = /30 + /31X;,1 + /32X;,2 + {33X;,3 + f34X;,4 + f3sX;,s + f36Xi,6 + {37X;,7 

+ /38X;,s + {39X;,9 + /310X;,10 + /311X;,11 + /312X;,12 + {313X;,13 + f314X;,14 

+ /315X;,1s + /316X;,16 + {317X;,17 + f31sX;,1s + f319X;,19 + /320X;,20 + /321X;,21 

+ f322X;,22 + f323X;,23 + /J24X;,24 + f325X;,2s + /J26Xi,26 + f327X;,27 + f32sX;,2s 

(7.18) 
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where Y; represents the ith dependent variable score (not the ith subject), /Jo is a 
constant, /31 is the regression coefficient for the predictor variable X" and f32 is the 
regression coefficient for the predictor variable Xi, and so on. As with the single factor 
repeated measures regression GLM, there are 7 variables that represent scores from 
individual subjects (from X1 to X7), 3 variables that represent experimental factors 
(from X8 to X 10), and 21 variables that represent interactions between the subjects and 
the experimental factors (from X11 to X31), and 2 variables that represent the 
interaction between the experimental factors (from X32, X33). Clearly, equation 
(7 .18) is unwieldy and the earlier mention of the proliferation of predictor variables 
required for repeated measures designs can be appreciated. Nevertheless, once the 
effect coding scheme has been established in a computer data file, it is relatively 
simple to carry out the fully repeated measures factorial ANOVA. Effect coding 
applied to the data in Table 7.2 is presented in Table 7.7. 

Applying a regression GLM to implement a fully repeated measures factors 
ANOVA may be done in a manner consistent with incremental analyses and 
estimating effects by comparing full and reduced GLMs. As all of the variables 
representing effects are orthogonal in a balanced design, the order in which SSs are 
estimated is of no consequence. The first regression carried out is that for the full 
fully repeated measures factorial experimental design GLM-when all subject and 
experimental condition predictor variables are included (variables X1 to X33). 
Although information about each of the predictor variables will be provided by 
linear regression software, as most of the experimental design effects are repre
sented by two or more regression predictor variables, generally, information about 
the individual predictor coefficients, and so on, is of little interest. Of much more 
interest is the ANOVA summary presented in Table 7.8, which provides the full 
GLM residual SS. This may be compared with the fully repeated measures factorial 
experimental design GLM error term in Table 7.4. 

Having obtained the full GLM residual SS, the next stages involve the implemen
tation of the various reduced GLMs to obtain their estimates of residual SS. 
The reduced GLM for the effect of the subject factor is obtained by carrying out 
the regression analysis again, but omitting the predictors representing the (variables 
X1 toX7). The summary of this ANOVA, presented in Table 7.9, provides the subjects 
reduced GLM residual SS. 

Therefore 

Subjects factor reduced GLM residual SS 
Full GLM residual SS 

SS attributable to subjects factor 

143.667 

91.667 

52.000 

dfs 
21 

14 

7 

The reduced GLM for the effect of Factor A is applied by omitting only the 
predictor representing the Factor A experimental conditions-variable X8• The 
summary of this ANOVA, presented in Table 7.10, provides the Factor A reduced 
GLM residual SS. 
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� Table 7.7 Effect Coding for a Fully Repeated Measures Two-Factor (2 x 3) Experimental Design 

S A  B SxASxBAxB 

s Y X1 X2 X3 X4 Xs X6 X1 Xs X9 X10 X11 X12 X13 X14 Xis X16 X11 X18 X19 X20 X21 X22 X23 X24 X2s X26 X21 X2s X29 X30 X31 X32 X33 

sl 7 l 0 0 

s2 3 0 I 0 

s3 6 0 0 I 

s4 6 0 0 0 

0 

0 

0 

s5 5 0 0 0 0 

s6 8 0 0 0 0 

s7 6 0 0 0 0 

s8 7 -1 -1 -1 -1 

0 

0 

0 

0 

I 

0 

0 

-1 

sl 7 1 0 0 0 0 

s2 11 0 1 0 0 0 

s3 9 0 0 1 0 0 

s4 11 O 0 0 1 0 

s510 0 0 0 0 1 

s6 10 0 0 0 0 0 

s7 1 1  0 0 0 0 0 

s8 11 -1 -1 -1 -1 -1 

sl 8 1 0 0 0 0 

s2 14 0 1 0 0 0 

s3 10 0 0 1 0 0 

s4 11 0 0 0 1 0 

s5 12 0 0 0 0 I 

s610 0 0 0 0 0 

s7 1 1  0 0 0 0 0 

s8 12 -1 -1 -I -1 -1 

0 

0 

0 

0 

0 

0 

0 

0 

0 0 

1 0 

0 

-1 -1 

0 

0 

0 

0 

1 0 

0 I 

0 0 

0 0 

0 0 0 0 0 

0 0 0 0 0 

I 0 0 0 0 

0 1 0 0 0 

1 0 

0 1 

0 0 

0 0 

0 

0 

1 

0 

0 

0 

0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 

0 

0 

0 

0 

0 

0 

0 

0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 0 0 0 0 I 0 0 0 

0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 

0 

0 

0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 1 0  1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

0 0 1 0  1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 

0 0 1 0  I 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

0 0 I 0 I 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 

0 0 I 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

1 0 1 0  1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 

0 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

-1 -1 1 0 1 -1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1 -1 0 

0 

0 

0 

0 

0 

0 

0 

0 

0 0 l -1 -1 1 0 0 0 0 0 0 -I 0 0 0 0 0 0 -1 0 0 0 0 0 0 -1 -I 

0 0 1 -1 -1 0 1 0 0 0 0 0 0 -1 0 0 0 0 0 0 -1 0 0 0 0 0 -1 -1 

0 0 1 -1 -1 0 0 1 0 0 0 0 0 0 -1 0 0 0 0 0 0 -1 0 0 0 0 -1 -1 

0 0 1 -1 -1 0 0 0 1 0 0 0 0 0 0 -1 0 0 0 0 0 0 -1 0 0 0 -1 -1 

0 0 1 -1 -1 0 0 0 0 I 0 0 0 0 0 0 -1 0 0 0 0 0 0 -1 0 0 -1 -1 

1 0 1 -1 -I 0 0 0 0 0 1 0 0 0 0 0 0 -1 0 0 0 0 0 0 -1 0 -1 -1 

0 1 1 -1 -1 0 0 0 0 0 0 1 0 0 0 0 0 0 -I 0 0 0 0 0 0 -1 -1 -1 

-1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 I 1 I I 1 1 I 1 I 1 I 1 1 1 -1 -1 
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Table 7.8 ANOV A Summary Table for the Fully Repeated Measures Factorial 

Experimental Design GLM (Subjects and Experimental Condition Effects Regression) 

Source SS df MS F p 

Regression 1616.333 33 48.980 7.481 <0.001 
Residual 91.667 14 6.548 

R: 0.973; R2: 0.946; adjusted R2: 0.820. 

Table 7.9 ANOV A Summary Table for the Reduced GLM that Omits the 

Subjects Factor 

Source SS df MS F 

Regression 1564.333 26 60.167 8.795 
Residual 143.667 21 6.841 

R: 0.957; R2: 0.916; adjusted R2: 0.812. 

Table 7.10 ANOVA Summary Table for the Reduced GLM that Omits the 

Factor A Experimental Conditions 

Source SS df Mean Square F 

p 

p 

Regression 
Residual 

1184.333 
523.667 

32 
15 

37.010 
34.911 

1.060 0.470 

R: 0.833; R2: 0.693; adjusted R2: 0.039. 

Therefore 

Factor A reduced GLM residual SS 
Full GLM residual SS 

SS attributable to Factor A 

523.667 
91.667 

432.000 

dfs 
15 
14 

The subjects x Factor A reduced GLM is applied by omitting only the predictors 
representing the subjects x Factor A interaction-variables from X11 to X17. The 
summary of this ANO VA, presented in Table 7 .11, provides the subject x Factor A 
reduced GLM residual SS. Therefore 

Subject x Factor A interaction reduced GLM residual SS 
Full GLM residual SS 

SS attributable to subject x Factor A interaction 

dfs 
167.000 21 

91.667 14 

75.333 7 

Next, the Factor B reduced GLM is applied by omitting only the predictors 
representing the Factor B experimental conditions-variables X9 and X10· The 
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Table 7.11 ANOVA Summary Table for the Reduced GLM that Omits the 

Subject x Factor A Interaction 

Source SS df Mean Square F 

Regression 1541.000 26 59.269 7.453 
Residual 167.000 21 7.952 

R: 0.950; R2: 0.902; adjusted R2: 0.781. 

185 

p 

<0.001 

summary of this AN OVA, presented in Table 7 .12, provides the Factor B reduced GLM 

residual SS. Therefore 

Factor B reduced GLM residual SS 
Full GLM residual SS 

SS attributable to Factor B 

763.667 
91.667 

672.000 

dfs 
16 
14 

2 

The subjects x Factor B reduced GLM is applied by omitting only the predictors 
representing the subjects x Factor B interaction-variables from X18 to X31. The 
summary of this ANOVA, presented in Table 7.13, provides the subject x Factor B 

reduced GLM residual SS. Therefore 

Subject x Factor B interaction reduced GLM residual SS 
Full GLM residual SS 

SS attributable to subject x Factor B interaction 

dfs 
252.667 28 

91.667 14 

161.000 14 

The Factor A x Factor B interaction reduced GLM is applied by omitting only 
the predictors representing the Factor A x  Factor B interaction-variables from X32 

Table 7.12 ANOVA Summary Table for the Reduced GLM that Omits the 

Factor B Experimental Conditions 

Source 

Regression 
Residual 

SS 

944.333 
763.667 

R: 0.744; R2: 0. 553; adjusted R2: 0.000. 

df 

31 
16 

MS 

30.462 
47.729 

F 

0.638 

Table 7.13 ANOVA Summary Table for the Reduced GLM that Omits the 

Subject x Factor B Interaction 

Source 

Regression 
Residual 

SS 

1455.333 
252.667 

R: 0.925; R2: 0.852; adjusted R2: 0.752. 

df 

19 
28 

MS 

76.596 
9.024 

F 

8.488 

p 

0.862 

p 

<0.001 
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Table 7.14 ANOV A Summary Table for the Reduced GLM that Omits the 
Factor A x Factor B Interaction 

Source SS df MS F p 

Regression 1392.333 31 44.914 2.277 0.042 
Residual 315.667 16 19.729 

R: 0.903; R2: 0.815; adjusted R2: 0.457. 

and X33. The summary of this ANOVA presented in Table 7.14 provides the 

Factor A x Factor B reduced GLM residual SS. Therefore 

Factors A x B interaction reduced GLM residual SS 
Full GLM residual SS 

SS attributable to Factor A x Factor B interaction 

dfs 
315.667 16 

91.667 14 

224.000 2 

Using the SS and dfs calculated for each effect by comparing full and reduced GLMs, 
the ANOVA summary Table 7.5 can be reconstructed. 

7.5 EFFECT SIZE ESTIMATION 

The more complicated nature of effect size estimation with repeated measures 
measures designs becomes particularly apparent with fully factorial repeated mea
sures designs. Effect size estimates that may be compared across independent and 
repeated measures designs also are required for fully factorial repeated measures 
designs and it is that to which attention is turned first. 

7.5.1 A Complete ai SOA for Main and Interaction Omnibus Effects 
Comparable Across Repeated Measures and Independent Designs 

In Section 5.5.1, the omnibus w2 for a factorial independent measures ANOVA GLM 
was defined by equation (5.29) in terms of the number of experimental conditions, the 
F-statistic, and the number of subjects per condition (in balanced designs). Applying 
this equation to the data in Table 7.5 provides the complete &} SOA for the main and 
interaction omnibus effects. 

� z 1(40.141 - 1) 
= 

39.141 
= 0.22 WA = 

1(40.141- 1) + 2(29.217 -1) + 2(17.105 - 1) + 48 175.785 

� z = 
2(29.217 -1) 

= 
56.434 

= 0.32 WB 1(40.141- 1) + 2(29.217 - 1) + 2(17.105 -1) + 48 175.785 

� z _ 2(17.105 - 1) = 32.210 
= 0 18 WAxB - 1(40.141-1) + 2(29.217-1) + 2(17.105-1) + 48 175.785 

. 
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As Keppel and Wickens (2004) describe, there is no difficulty defining a partial a/ 

SOA for main and interaction omnibus effects in terms of population parameters. 

For example, partial (;} SOA for main and interaction omnibus effects can be 

defined as 

2 <7 expt. effect 
2 + 2 + 2 

<7 A <7 AxS <7error 

<7� + <7Ls + <7�rror 
2 

2 <7AxB 
w(AxB) - 2 + 2 + 2 <7 AxB <7 AxBxS <7error 

(7.19) 

However, complications and difficulty arise when an attempt is made to estimate 

these population parameters. Essentially, the problem is the GLM used for fully 

repeated measures designs does not provide a specific estimate of <7;rror because it 

incorporates experimental factor and subjects interactions (i.e., Ax S, B x S, and 

Ax B x S). The ANOVA circumvents this problem by using the subject interaction 

terms as the F-test denominators. Nevertheless, as equations (7 .19) make clear, this 

solution cannot work for the partial al estimates because both interactions and error 

term estimates are required to calculate the partial @2 estimates. Dodd and Schultz 

( 1973) point out that a range can be specified for each main effect partial @2 

estimate, but usually these ranges are a bit too large to be of great practical value. 

For example 

Applied to the data in Table 7.5, this provides a partial @2 between 0.45 and 0.71. 

df8(Fs -1) 
d 

df8(Fs -1) 
@2

(B) ranges between an 
df(Fs -1) + pqN df(Fs -1) + qN 

Applied to the data in Table 7.5, this provides a partial @2 between 0.54 and 0.71. 
However, as the nature of the ranges above suggest, a specific value can be obtained 

for the interaction partial @2 estimate 

�2 dfAxB(FAxs-1) 
W(AxB) = df(FAxB -1) + pqN 

Applied to the data in Table 7 .5 provides a partial @2 = 0.40. 
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7.5.3 A Partial @2 SOA for Specific Comparisons Appropriate for 

Repeated Measures Designs 

As with independent designs, there will be interest in the SOA for particular com
parisons between experimental conditions in repeated measures designs. For example, 
the SOA between the memorization 30 and 180 s conditions in the hypothetical fully 
repeated measures two-factor study time experiment again is of interest. 

The partial w2 for a specific comparison expresses the comparison variance as a 
proportion of only the specific comparison variance plus error variance. For fully 
repeated measures two-factor designs, the partial w2 for specific comparisons can be 
defined as 

�2 Fifi - l 
w -

-�--
-"' -

Fifi- I+ 2N (7.20) 

Given the F'¥ for the memorization 30 and 180 s conditions
= 

21.212, applying 
equation (7.20) provides 

�
2 

21.212 - 1 20.212 
w

t/I = 21.212 - 1 + 2(8) = 36.212 = 
0

·
56 

As might be expected given the nature of the partial w2 for a specific comparison and 
its application to the same experimental data, exactly the same result is obtained here 
as was obtained with the design and the analysis presented in Section 6.6.3. Fifty-six 
percent of the variance in the 30 and 180 s populations is explained by the 
comparison between these two experimental conditions. 

7.6 FURTHER ANALYSES 

7.6.1 Main Effects: Encoding Instructions and Study Time 

As described in Section 5.6.1, interpreting the main effect of the encoding instructions 
factor in terms of mean differences is simple due to there being only two levels or 
conditions of this factor and so only two means that can be unequal. No further test 
need be applied and all that remains to be done is to determine the direction of the 
effect by identifying the encoding instruction levels with the larger and smaller 
means, ideally by plotting these means on a graph (see Figure 5.1 ). All that was said 
about planned and unplanned comparisons with regard to the independent factorial 
design in Section 5.6.1 also applies here. 

As described for the independent factorial design, interpreting the main effect of the 
study time factor in terms of mean differences is slightly more complicated and is 
carried out in a different fashion with repeated measures designs. First, as this factor 
has three levels, the pertinent unequal (marginal) means may be any one or more of, b 1 
versus b2; b2 versus b3; and b l  versus b3, and non pairwise differences also may 
contribute to the significant main effect, so further tests are required to identify exactly 
which means differ. Plotting pertinent means on a graph is an extremely useful tool in 
interpreting the experimental data (see Figure 5.2). 
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In terms of analysis strategy, the approach to the repeated measures design does not 
differ from the approach described for the two-factor independent design. However, 
although the same hypotheses are tested and the same approach to Type 1 error rate 
control for planned and unplanned comparisons are applied in independent and 
related designs, different statistical analyses are motivated by concerns about the 
consequences of an untenable sphericity assumption. As described in Section 6.8, 
the approach adopted for most further analyses with related designs is to analyze the 
specific comparisons of interest separately. 

Table 5.10 presents the marginal means for the three study times averaged over the 
memorization and story and imagery conditions. Further analysis of the main effect of 
the 30, 60, and 180 s Factor B study times proceeds as if each pairwise comparison 
constituted a separate experiment. Therefore, a single factor repeated measures 
ANOVA is applied to all of the data pertinent to the comparison between the 30 
and 60 s conditions, a separate single factor repeated measures AN OVA is applied to 
all of the data pertinent to the comparison between the 30 and 180s conditions, and a 
separate single factor repeated measures ANO VA is applied to all of the data pertinent 
to the comparison between the 60 and 180 s conditions. 

Planned or unplanned comparison sum of squares (SSl/Jpc) calculation in the fully 
repeated measures design is identical to that described for other designs. Again, it is 
assumed that the planned comparison involves the 30 and 180 s study time conditions. 
The linear contrast for this planned comparison expressed in terms of population 
means (see Section 3.4) is 

Replacing the population means with the sample mean estimators from Table 5.10 
provides 

ijJ = ( -1)8 + (0)11 + (1)17 = 9 

However, the formulas for the repeated measures design SSl/Jpc employ the number of 
subjects participating in each condition, which is also the total number of subjects 
participating in the whole experiment. Therefore, 

�2 2 
SS� = Ni/Jpc = (8)(9) = 

648 
= 324.000 

L,cJ ( -1)2 
+ (0)2 

+ (1)2 2 

One df is associated with SS ;p so the mean square for the contrast is 

M
s

."= ssi/Jpc = 
324 

= 324.ooo 
'I' 1 1 

As before, the next requirement for the planned comparison F-test is the error term 
pertinent to the separate and specific comparison of the 30 and 60 s study time 
conditions. To calculate this error term, the procedure applied to obtain the specific 
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Table 7.14 (a) Data and Means of Memorize (M) and Story and Imagery (S&I) 30 and 

180 s Experimental Conditions. 

M-30s S&I-30s 30s X M-180s S&I-180s 180s X 
sl 7 16 11.5 8 24 16.0 
s2 3 7 5.0 14 29 21.5 
s3 6 11 8.5 10 10 10.0 
s4 6 9 7.5 I I 22 16.5 
s5 5 10 7.5 12 25 18.5 
s6 8 I I 9.5 10 28 19.0 
s7 6 8 7.0 11 22 16.5 
s8 7 8 7.5 12 24 18.0 

(b) Means of Memorize (M) and Story and Imagery (S&I) 30 and 180 s Experimental 

Conditions and their Difference Scores 

180s X 30sX 180s X - 30s X 

sl 16.0 I 1.5 4.5 
s2 21.5 5.0 16.5 
s3 10.0 8.5 1.5 
s4 16.5 7.5 9.0 
s5 18.5 7.5 I 1.0 
s6 19.0 9.5 9.5 
s7 16.5 7.0 9.5 
s8 18.0 7.5 10.5 

L, Ii/; 136 64 72 

i/J; 17 8 9 

L, ;Ji: 787.5 

comparison error term in the single factor repeated measures design is applied, after 

a slight modification. The modification is to take an average of each subjects' scores 

over the factor levels not involved in the comparison (i.e., the memorization and story 

and imagery instruction conditions). This is illustrated in Table 7. l 4a. The lower part of 

the table (Table 7. l 4b) presents these mean scores and applies exactly those procedures 

applied with respect to the single factor repeated measures design. Essentially, these 

procedures provide a shortcut method of obtaining estimates from a single factor 

repeated measures AN OVA GLM applied to the means of the 30 s condition means and 

the 180 s condition means. 

The SS for the planned comparison between the 30 and 180s experimental 

conditions, SS"'""' calculated above was 324. Therefore 

�2 

2:= i/I; � 787.5 
SSEFGLM = """" 2 - SSijJ = 2 2 - 324 = 69.750 

L..J cJ -1 +1 
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Table 7.15 AN OVA Summary Table for the Planned Pairwise Main Effect Comparison 
Between the 30 and 180 s Experimental Condition Means 

Source 

30 s versus 180 s 

Error 

SS 

324.000 

69.750 

df 

1 

7 

MS 

324.000 

9.964 

F 

32.517 

p 

<0.001 

The planned pairwise comparison dfs = (p - 1) and the error term dfs = (Nr 1) 

(p - 1). As before, it is convenient to lay all of this information out in an ANOVA 

summary table and complete the F-test calculation, as presented in Table 7. 15: The 30 

versus 180 s experimental condition means comparison was planned, so no Type 1 

error adjustment is necessary and the difference between the subjects' free recalls 

after 30 s and 180 s is declared significant. 

Identical calculations can be carried out to assess the two unplanned study time 

main effect comparisons involving the 30 and 60 s, and the 60 and 180 s experimental 

condition means. All of the issues discussed with respect to the planned and the 

unplanned comparisons conducted with respect to the single factor repeated measures 
design apply to the this fully repeated measures two-factor analysis. It is worth noting 

that breaking the two-factor experiment up into separate pairs of conditions for 
analysis results in the same loss of dfs from the separate comparison error terms as in 

the single factor case. Only 7 dfs are associated with each of the separate comparison 

error terms, whereas 14 dfs are associated with the S x B error term in the omnibus 

repeated measures AN OVA. This reduction in error dfs is likely to diminish the power 

of these separate comparisons. 

7.6.2 Interaction Effect: Encoding Instructions x Study Time 

The aims of data analysis in factorial repeated measures designs are the same as those 
when factorial independent designs are analyzed. The factorial experimental data 

breaks down in a similar fashion to that described for the independent design (see 

Section 5.6.2) and the choice of simple effects analysis again depends on the research 

issues and experimental hypotheses to be assessed, with the result that usually only 

one set of simple effects analyses are applied. 

7.6.2.1 Simple Effects: Comparison of Differences Between the Three Levels 

of Factor B (Study Time) at Each Level of Factor A (Encoding Instructions) 

The three levels of Factor B, study time, are examined at each level of Factor A, 
encoding instructions. Therefore, each simple effect analysis is actually a single factor 

repeated measures ANOVA applied to the three study time conditions (30, 60, and 
180 s). One such simple effect single factor repeated measures ANOVA is applied to 
the scores obtained from three study time conditions under memorization instructions 

and another simple effect single factor repeated measures ANOVA is applied to the 

scores obtained from three study time conditions under story and imagery instructions 

(see Figure 5.4). It is worth emphasizing that the relevant SS calculations are for a 
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single factor repeated measures ANOVA and not for a specific comparison that 
employs a linear contrast. 

As each simple effect analysis is a single factor repeated measures AN OVA, the SS 

calculations for the study time effect will be identical to those described for the single 
factor repeated measures ANOVA in Section 6.4. 

p 

Experimental conditions SS= ]:,N;(µ1 -µ)2 
J=I 

(2.28, rptd) 

Therefore, the SS for the effect of study time under memorization (i.e., when}= 1) is 

SSnaj=I = ]:,8(6-9)2 + 8(10-9)2 + 8(11-9)2 = 112 

and the SS for the effect of study time under story and imagery (i.e., when}= 2) is 

SSn aj=2 = L 8(10- 15)2 + 8(12 - 15)2 + 8(23 -15)2 = 784 

Unlike the fully independent measures two-factor design, the omnibus error term is 
not employed due to concerns about the tenability of the sphericity assumption and 
so, it is necessary to calculate a separate error term based on only the data involved 
in each of the single factor ANOVAs. Again a quick way to obtain the SS error per 
AN OVA is to apply the procedures outlined in Table 7. l 4b. The calculation of the 
AN OVA error SS for the study times with memorization is presented in Table 7 .16 
and below. 

q 
�2 

Lk=I L l/J; = 
168 + 266 + 16 

= 150.000 
q 3 

Table 7.16 Calculation of Error SS for Single Factor ANOV A for 

Study Time with Memorization 

Memorization 30s 60s 180s 60-30 180- 30 

sl 7 7 8 0.000 1.000 

s2 3 11 14 8.000 11.000 

s3 6 9 IO 3.000 4.000 

s4 6 11 11 5.000 5.000 

s5 5 IO 12 5.000 7.000 

s6 8 10 IO 2.000 2.000 

s7 6 11 11 5.000 5.000 

s8 7 11 12 4.000 5.000 

"L, I/Ii 32.000 40.000 

If/; 4.000 5.000 

"L, �: 168.000 266.000 

180-60 

1.000 

3.000 

1.000 

0.000 

2.000 

0.000 

0.000 

1.000 

8.000 

1.000 

16.000 
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Table 7.17 Calculation of Error SS for Single Factor ANOVA for Study Time with 
Story and Imagery 

Story and 
Imagery 30s 60s 180 s 60s- 30 s 180s- 30 180- 60 

sl 16 16 24 0.000 8.000 8.000 
s2 7 10 29 3.000 22.000 19.000 
s3 11 13 10 2.000 -1.000 -3.000 
s4 9 10 22 1.000 13.000 12.000 
s5 10 10 25 0.000 15.000 15.000 
s6 11 14 28 3.000 17.000 14.000 
s7 8 11 22 3.000 14.000 11.000 
s8 8 12 24 4.000 16.000 12.000 

"L,i/t; 16.000 104.000 88.000 

Ii/; 2.000 26.000 11.000 

'I:,�� 48.000 1684.000 1264.000 

Therefore, the error SS for the single factor repeated measures ANOVA GLM 
applied to the data obtained from the three study time conditions with memorization 

encoding instructions is 

SSEFGLM = 150- 112 = 38.000 

Corroboration of the error SS is provided by the equivalent error SS reported in 

Tables 6.9 and 6.12, when the study time data with memorization instructions was 

conceived and analyzed as a single factor repeated measures ANOVA. 

For the story and imagery instructions ANO VA error SS, see Table 7.17. 

""q "" � 2 

L..k=I L., l/J; = 48 + 1684 + 1264 = 998_667 
q 3 

Therefore, the error SS for the single factor repeated measures ANOVA GLM 
applied to the data obtained from the three study time conditions with story and 

imagery instructions is 

SSEFGLM = 998.667 - 784 = 214.667 

Table 7 .18 presents all of this information in the form of an ANO VA summary table. 

If further analysis of the simple effect single factor repeated measures ANOVA is 

decided upon, then the procedures described in Section 6.8 for the further analysis of 

single repeated measures ANOVAs are appropriate. 

7.6.2.2 Simple Effects: Comparison of Differences Between the Two Levels 

of Factor A (Encoding Instructions) at Each Level of Factor B (Study Time) 

The simple effect analyses of the effect of encoding instruction at each of the three 

study times (30 s, 60 s, and 180 s) involve pairwise comparisons between the two 
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Table 7.18 ANOVA Summary Table for the Simple Effect of Factor Bat Each 
Level of Factor A 

Source SS df MS F p 

At a I : Memorize 

Study time 112.000 2 56.000 20.634 <0.001 

Error 38.000 14 2.714 

At a2: Story and imagery 

Study time 784.000 2 392.000 25.566 <0.001 

Error 214.667 14 15.333 

levels of Factor A (memorization and story and imagery). Each of these comparisons 

can be conceived as a related !-test, a single factor repeated measures ANOVA, or as a 

linear contrast between two experimental condition means. For consistency, the latter 

conception is applied. The simple linear contrast for the comparisons is 

l/JAatbk = ( -1)µ, + (1)µ2 

where µ1 represents the population mean of subjects' scores with memorization and 

µ2 represents the population mean of subjects' scores with story and imagery. 

Substituting the population parameters with the sample mean estimators for the 

30 s experimental conditions from Table 7 .2 provides 

l/JAatbl = ( -1)6 + (1)10 = 4 

However, the formulas for the repeated measures design SS'!' Aat bk employs the 

number of subjects participating in each condition, and the total number of subjects 

participating in the experiment. Therefore 

is 

�2 
SS _ Nl/JAatbl 

Aatbl - '\""" 2 ucj 

�2 
SS _ Nl/JAat b2 Aatb2 - '\""" 2 ucj 

�2 
SS Nl/J Aatb2 Aatb3 = '\""" 2 ucJ 

(8)(4)2 
= 

128 
= 64.000 

(-1)2+(1)2 2 

(8)(12-10)2 
= 

32 
= 16.000 

( -1)2 + ( 1 )2 2 

(8)(23-11 )2 
=1152=576.000 

( -1 )2 + ( 1 )2 2 

One dfis associated with each SS"'A•• bk' so the mean square for the SSAatbl contrast 

SS.1. 324 
MS= 

'I' A at bl 
= - = 324.000 

1 1 
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The next requirement is specific error terms for each of the three pairwise 

comparisons. Again, a quick way to obtain these error terms is to apply the procedures 

described previously. The first step in calculating the error terms is to calculate the 

sum of the squared differences between each subjects' story and imagery and 

memorization scores with 30 s study time. Table 7 .19 presents the data required for 

these calculations. 

The error SS for each of the comparisons between the two levels of the encoding 

instructions factor: story and imagery and memorization are obtained by subtraction 

'E. �
2 

SSEFGLM = 

L 
� - SSAatbk 

CJ 

Table 7.19 Differences Between Subjects' Scores Across 

the Story and Imagery Encoding Instruction Experimental 

Conditions at 30 s, 60 s, and 180 s Study Time 

30 s Study Time 

S&I M S&l-M (�;) 
sl 16 7 9 
s2 7 3 4 
s3 11 6 5 
s4 9 6 3 
s5 10 5 5 
s6 11 8 3 
s7 8 6 2 
s8 8 7 

I:, i/!; 32 

i/!; 4 

I:,�� 170 

60 s Study Time 

S&I M S&I-M (�;) 
sl 16 7 9 
s2 10 11 -1 
s3 13 9 4 
s4 10 11 -1 
s5 10 10 0 
s6 14 10 4 
s7 11 11 0 
s8 12 11 

I:, i/!; 16 

Ii/; 2 

I:,�� 116 
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Table 7.19 (Continued) 

180 s Study Time 

S&I M S&I-M (�;) 
sl 24 8 16 

s2 29 14 15 

s3 10 10 0 

s4 22 11 11 

s5 25 12 13 

s6 28 10 18 

s7 22 11 11 

s8 24 12 12 

L,1/1; 96 

I/I; 12 

L, �� 1360 

T herefore, the full GLM error SSA at bl = 
1i0 

- 64 = 21, the full GLM error 

SSAatb2 = 1�6 - 16 = 42, and the full GLM error SSAatb3 = 
13260 

- 576 = 104. 
Table 7 .20 presents all of this information in the form of an ANO VA summary table. 

T he significance of planned comparisons is assessed without Type 1 error rate 

adjustment, whereas unplanned comparisons are assessed with an appropriate Type 1 
error rate adjustment. With regard to the unplanned comparison Type 1 error rate 

adjustment, it should be kept in mind that the prior interaction indicates that at 

least one of the pairwise comparisons described in Table 7.20 is significant. 

T herefore, only one of the three pairwise comparisons possibly could be nonsignifi

cant and so, Type 1 error rate needs to controlled over only one null hypothesis 

(see Table 3.6). 

Table 7.20 ANOV A Summary Table for the Simple Effect of Factor B at Each 
Level of Factor A 

Sou rce SS df MS F p 

At bl (30s) 

Encoding instructions 64.000 64.000 21.333 0.002 

Error 21.000 7 3.000 

At b2 (60s) 

Encoding instructions 16.000 16.000 2.667 0.146 

Error 42.000 7 6.000 

At b3 (180s) 

Encoding instructions 576.000 576.000 38.769 <0.001 

Error 104.000 7 14.857 
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7.7 POWER 

To conduct power analysis to determine sample size for two-factor fully repeated 
measures designs using tables, each omnibus main effect and interaction effect, as 
well as specific comparison effects are assessed separately. Therefore, the procedures 

described for the single factor repeated measures design in Section 6.9 also apply to 
factorial fully repeated measures designs. However, more accurate results will be 
obtained if one of the statistical software packages available for this purpose is 
employed. For power analysis of fully repeated measures two-factor measures 
designs and all other such designs, the free statistical software package G*Power 
3 (Faul et al., 2007) is recommended highly. 





CHAPTER 8 

GLM Approaches to Factorial Mixed 

Measures Designs 

8.1 MIXED MEASURES AND SPLIT-PLOT DESIGNS 

Any design that combines at least one fixed factor and at least one random factor can 

be labelled a mixed design (see Section 1.7). Generally, when the mixed measures 

design label is applied there is usually theoretical or practical interest in the effects of 

the fixed factors and the random factors. However, when mixed measures designs (and 

other randomized block designs) are applied in psychology, usually there is only one 

random factor - the blocking or subject factor- and very rarely is there any interest in 

its effect. Typically, theoretical and practical interest is confined to the fixed factor 

effects and the sole purpose of the random factor is to accommodate the relations 

between the two or more dependent variable measures provided by the same or 

matched subjects over study conditions. 

The type of mixed design employed most frequently in psychology often is labelled 

a split-plot design. In common with the majority of the experimental designs and 

analyses employed in psychology and reported in this text, split-plot designs (the first 

mixed designs) and their analyses were developed originally by Fisher (1925) for use 

in agricultural experiments - separate plots of land were split into sections which 

received different treatment levels of one factor, while whole plots received different 

treatment levels of another factor. 

Figure 8.1 presents a two factor (2 x 3) split-plot design appropriate for a 

psychology experiment. Factor A is the independent measures factor - different 

subjects experience the two levels of this factor - and Factor B is the repeated 

measures factor - the same subjects experience the different levels of this factor. In 

psychology experiments, the subjects take the place of the plots of land. The particular 

nature of these "split-plot" designs should not be forgotten, but from this point 

forward, the more generally applicable mixed measures design label will be applied. 

ANOVA and ANCOVA: A GLM Approach, Second Edition. By Andrew Rutherford. 
© 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc. 
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Factor A a1 a2 

Factor B b1 b2 b3 b1 b2 b3 

s1 s1 s1 s9 s9 s9 
s2 s2 s2 s10 s10 s10 

s8 s8 s8 s16 s16 s16 

Figure 8.1 A two-factor (2 x 3) mixed me asures/spli t-plo t design . 

8.2 FACTORIAL MIXED MEASURES DESIGNS 

Consider the fully repeated measures factorial experiment described in Chapter 7. It 

was suggested in Section 7.2 that the fully repeated measures factorial design could 

produce a contrast effect. In such circumstances, the factorial mixed measures design 

presented in Figure 8.1 would be a good alternative. A mixed measures design would 

allow different groups of subjects to receive memorize and story and imagery 

instructions. This eliminates the possibility of subjects continuing to apply a story 

and imagery encoding strategy in memorize conditions, but retains the advantages of 

measuring the same subjects' performance under all of the study times. Table 8.1 
presents the hypothetical experimental data as if they had been obtained from the two

factor mixed measures design just outlined. 
The GLM for the two-factor mixed measures design ANOVA is described by the 

equation 

where Yuk is the dependent variable score for the ith subject at the jth level of 

Factor A and the kth level of Factor B, µ is the general mean of the experimental 

Table 8.1 Experimental Data from a Two-Factor (2 x 3) Mixed Measures Design 

Encoding Instruct ions al Memorize a 2  Story and Imag ery 

bl b2 b3 Subject bl b2 b3 Subject 

Study Time 30s 60s 180s x 30s 60s 180 s x 

sl 7 7 8 7.333 s9 16 16 24 18.667 

s2 3 11 14 9.333 slO 7 10 29 15.333 

s3 6 9 10 8.333 sl l 11 13 10 11.333 

s4 6 11 11 9.333 sl2 9 10 22 13.667 

s5 5 10 12 9.000 sl3 10 10 25 15.000 

s6 8 10 10 9.333 sl4 11 14 28 17.667 

s7 6 11 11 9.333 s15 8 11 22 13.667 

s8 7 11 12 10.000 sl6 8 12 24 14.667 

x 6 10 1 I 9 x 10 12 23 15 
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condition population means, a1 is the effect of the jth level of Factor A, f3k is 
the effect of the kth level of Factor B, ni(j) is a parameter representing the random 
effect of the ith subject within the jth level of Factor A, ( af3)1k is the interaction 

effect of the jth level of Factor A and the kth level of Factor B, (/3n )ki(j) 
is the 

interaction effect of the kth level of Factor B and the ith subject within the jth level 
of Factor A, and, as always, siJk represents the random error associated with the ith 
subject in the jth level of Factor A and the kth level of Factor B. Although the 
subjects factor is crossed with the levels of Factor B, all subjects receive all levels 
of Factor B-the use of brackets around the subscript j indicates that these effects 
involve the scores of subjects' nested within the p levels of Factor A (i.e., separate 
groups of subjects are employed in each of the p levels of Factor A). 

As described in Section 6.3, related designs conceive of each subject as a level of 
a random factor-subject. In the two-factor mixed design, different (groups of) 
subjects experience each level of the encoding instructions independent factor. 
T herefore, different subjects (i.e., different levels of the subject factor) are nested 
within the encoding instructions factor, rather than being crossed with this indepen
dent factor. As a result, the interaction between encoding instructions and subjects 
( na) 

iJ 
cannot be estimated and so there is no term in the GLM representing this 

interaction. 
Experimental effects in mixed factorial designs are assessed using fewer error 

terms than their equivalent fully related measures factorial designs, but they 
employ more error terms than equivalent independent measures factorial designs. 
Mixed designs may be conceived as separate related designs nested within each of 
the levels of the independent factors. In the example presented in Table 8.1, the two 
independent factor levels, a l  and a2, each comprize a single factor related 
measures design. As each subject provides only one score in each level of the 
related factor, it is not possible to separate error from the subject and the related 
factor interaction. Consequently, a more accurate version of the SiJk term would be 
[siJk + (n/3);k

(j)
]. However, in common with fully repeated measures factorial 

designs, [siJk + (nf3);k
(j)] frequently is referred to as (n/3)

iJ
k• or (SxB). 

Consider the current two-factor mixed design analyzed as two separate single 
factor related designs, as presented in Table 8.2. (Apart from the subjects SS, these 
two separate single factor related measures ANOVAs were calculated as the two 
simple effect analyses applied to examine the two-factor fully related measures 
interaction, see Table 7.18.) Comparing these two single factor related measures 
ANOVAs (Table 8.2) with the two-factor mixed measures AN OVA (Table 8.5) reveals 
that in balanced designs, both of the mixed measures ANOVA SS error terms are 
simply the sums of the separate single factor related measures ANO VA SS for subject 
effects and SS error terms: The sum of the SS subject effects provides the error term 
for the independent factor ( 14 + 113.333 = 127 .333), while the sum of the separate 
error terms provides the error term for the related factor (38 + 214.667 = 252.667). 
(The small discrepancies are due to rounding error.) However, this is not the case in 
unbalanced designs, as the error terms are pooled weighted averages (weighted 
by N1- 1). 
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Table 8.2 Two-Factor (2 x 3) Mixed Measures Experimental Data Cast as 

Two Single Factor Related Measures Designs 

En codin g Instructions Study Time 

bl 30s b2 60s 

sl 7 7 

s2 3 11 

s3 6 9 

Memorize (al) s4 6 11 

s5 5 10 

s6 8 10 

s7 6 11 

s8 7 11 

Source SS df MS F 

Memorize (al) 

Subject 14 7 

Study time 112.000 2 56.000 20.634 

Error 38.000 14 2.714 

En codin g Instructions 
Study Time 

bl 30s b2 60s 

s9 16 16 

slO 7 10 

sl 1 11 13 

Story an d imagery (a2) sl2 9 10 

sl3 10 10 

sl4 11 14 

sl5 8 11 

sl6 8 12 

Source SS df MS F 

Story an d imagery (a2) 

Subject 113.333 7 

Study time 784.000 2 392.000 25.566 

Error 214.667 14 15.333 

b3 !80s 

8 

14 

10 

II 
12 

10 

11 

12 

p 

<0.001 

b3 !80s 

24 

29 

10 

22 

25 

28 

22 

24 

p 

<0.001 

One single factor repeated measures AN OVA is applied to the memorization instructions data and a separate 

similar ANOVA is applied to the story and imagery instructions data. 

The estimates ofµ, and the IY.J, f3k, and ( 1Y.{3)1k effects are defined just as for the 

independent measures factorial design, so it is unnecessary to repeat their definitions 

and calculations here. This leaves only the two error terms to be calculated. The 

simplest of these is the error term used to assess the independent experimental Factor 

A. This is obtained by taking the average of the scores provided by each subject. 

Essentially, this eliminates the related experimental Factor B and, with each subject 

providing a single (average) score and different subjects in each level of the 

independent factor, produces an independent measures ANOVA. 
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The mean of the scores provided by each subject is 

(8.2) 

Therefore, the effect due to the different subjects nested within the levels of the 

independent factor is 

Applying equation (8.2) to the data in Table 8.1 provides 

n1 = 7.333 - 9 = -I.667 
n2 = 9.333 - 9 = 0.333 
Jr3 = 8.333 - 9 = -0.667 
Jr4 = 9.333 - 9 = 0.333 

ns = 9.000 - 9 = 0.000 
7r6 = 9.333 - 9 = 0.333 
Jr7 = 9.333 - 9 = 0.333 
Jrg = 10.000 - 9 = 1.000 

'""'N 2 L..,;=t ni(j) = 4.667 

n1 = 18.667 - 15 = 3.667 
n2 = 15.333 - 15 = o.333 
n3 = 11.333 - 15 = -3.667 
Jr4 = 13.667 - 15 = -1.333 

ns = 15.000 - 15 = 0.000 
n6 = 11.661 - 15 = 2.661 
Jr7 = 13.667 - 15 = -1.333 
Jrg = 14.667 - 15 = -0.333 

'""'N 2 
L., i=I ni(j) = 37.782 

'""'p '""'N 2 
L.,j=I L.,;=I Jri(j) = 42.449 

(8.3) 

The error SS due to the different subjects nested within the levels of the independent 

factor is 
p N 

Subject error SS = q LL n�(j) = 3(42.449) = 127.347 (8.4) 
j=I i=I 

The last error term required is that based on the subject x Factor B interaction. 

Based on the model component of the fully related two-factor experimental design 

GLM equation, predicted scores are given by 

(8.5) 

Using the parameter estimates determined earlier in this formula provides the 
predicted scores per subject per experimental condition. These values are presented 

in Table 8.3. 
The error terms for the two-factor mixed measures experimental design GLM, 

which represent the discrepancy between the actual scores observed (Table 8.1) and 
the scores predicted by the two-factor GLM (Table 8.3), are defined as 

f;1k =Yuk - Yuk (8.6) 

Table 8.4 presents the error terms by subject and experimental condition. 
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Table 8.3 Predicted Scores for the Mixed Two-Factor (2 x 3) Experiment 

al a2 

bl b2 b3 bl b2 

sl 4.333 8.333 9.333 s9 13.667 15.667 
s2 6.333 10.333 11.333 slO 10.333 12.333 
s3 5.333 9.333 10.333 sll 6.333 8.333 
s4 6.333 10.333 11.333 sl2 8.667 10.667 
s5 6.000 10.000 11.000 sl3 10.000 12.000 
s6 6.333 10.333 11.333 sl4 12.667 14.667 
s7 6.333 10.333 11.333 sl5 8.667 10.667 
s8 7.000 11.000 12.000 sl6 9.667 11.667 

Table 8.4 Error Terms for the Mixed Two-Factor (2 x 3) Experiment 

sl 
s2 
s3 
s4 
s5 
s6 
s7 
s8 

LN 2 t· i=l yk 

LP Lq LN 2 1=1 k=I i=l 8iJk 

bl b2 

2.667 -1.333 
-3.333 0.667 

0.667 -0.333 
-0.333 0.667 
-1.000 0.000 

1.667 -0.333 
-0.333 0.667 

0.000 0.000 

22.667 3.333 

b3 bl b2 

-1.333 s9 2.333 0.333 
2.667 slO -3.333 -2.333 

-0.333 sll 4.667 4.667 
-0.333 sl2 0.333 -0.667 

1.000 s13 0.000 -2.000 
-1.333 sl4 -1.667 -0.667 
-0.333 sl5 -0.667 0.333 

0.000 s16 -1.667 0.333 

11.999 44.446 32.446 

252.554 

b3 

26.667 
23.333 
19.333 
21.667 
23.000 
25.667 
21.667 
22.667 

b3 

-2.667 
5.667 

-9.333 
0.333 
2.000 
2.333 
0.333 
1.333 

137.663 

Degrees of freedom for the two error terms employed in two-factor mixed measures 
experimental design GLM are also required. For the error SS due to the different 
subjects nested within the levels of the independent factor, S(A), 

df = (N - p) = (16-2) = 14 

and for the f.iJk error term 

df = (N-p)(q-1) = (16-2)(3-1) = 14(2) = 28 

Table 8.5 presents the previously obtained SS and dfs for the experimental effects 
along with the current SS and dfs in the form of an AN OVA summary table. The tabled 
critical F-values presented in Appendix B may be used to determine significance if 
hand calculation is employed or the statistical software used does not output the 
required p-values. 
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Table 8.5 Two-Factor Mixed Measures ANOV A Summary Table 

Source Sum of Squares df MS F 

Encoding instructions [A] 432.000 432.000 47.493 

Subject error (S(A)] 127.347 14 9.096 

Study time [BJ 672.000 2 336.000 37.251 

Encoding instructions x 224.000 2 112.000 12.417 
Study time [A x BJ 

Error [S x BJ 252.554 28 9.020 

8.3 ESTIMATING EFFECTS BY COMPARING FULL AND 
REDUCED EXPERIMENTAL DESIGN GLMs 

205 

p 

<0.001 

<0.001 

<0.001 

The full experimental design GLM for the mixed two-factor ANOVA was described 

by equation (8.1 ). As with all the previous factorial ANOVAs calculated by comparing 

full and reduced experimental design GLMs, the hypotheses concerning the main 

effect of Factor A, the main effect of Factor B and the effect of the interaction 

between Factors A and B are assessed by constructing three reduced GLMs, which 

manifest data descriptions under the respective null hypotheses, and comparing their 

error components with the full model. Again this approach is simplified by virtue 

of all the subject and experimental factors, and their interactions being orthogonal. 

As all of the effect estimates are completely distinct, omitting or including any 

particular effect has no consequence for any of the other effect estimates. 

The main effect of Factor A is assessed by constructing the reduced experimental 

design GLM 

(8.7) 

This model manifests the data description under the null hypothesis 

(8.8) 

The main effect of Factor B is assessed by constructing the reduced experimental 

design GLM 

(8.9) 

This model manifests the data description under the null hypothesis 

(8.10) 

Finally, the reduced GLM for assessing the effect of the interaction between Factors A 

and Bis 

(8.11) 
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Table 8.6 Formulas for the (Balanced) Fully Related Two-Factor 

ANOV A Effects 

Effect 

A 

S(A) 

B 

AxB 

S x B (error) 

Formula 

p - - 2 qNLJ=' (Y1-Ya) 

'\'N '\'P - - 2 q �i=l �J=l (Yii -YJ) 

pN2=Z=, (Y -Ya)2 

NL,)=, Lk=I (YJk -Y1-Yk + Ya)2 

L.:, L.f=l Lk=l (Yijk - y ij -yjk + Y; )2 

This reduced GLM manifests the data description under the null hypothesis 

(8.12) 

Although fewer error terms need to be calculated for mixed ANOVAs, when 
hand calculations are employed, instead of calculating the error SS associated with 
each of these reduced experimental design GLMs and comparing them with the full 
experimental design GLM, it may be more efficient to calculate directly the SS for 
each of the effects and errors. Formulas for calculating all of the mixed two-factor 
ANOVA effects directly, which are more convenient than those used to define and 
illustrate the SS calculation, are provided in Table 8.6. However, as will be described, 
the strategy of comparing different experimental design GLM residuals to estimate 
mixed two-factor ANOVA effects is a simple way to implement related ANOVAs 
using regression GLMs. 

8.4 REGRESSION GLM FOR THE TWO-FACTOR MIXED 
MEASURES ANOV A 

The mixed factor (2 x 3) experimental design GLM equation (8.1) may be compared 
with the equivalent regression equation 

Y; =Po+ P1X;,1 + P2X;,2 + P3X;,3 + P4X;,4 + PsX;,s + P6Xi,6 + P1X;,1 

+ PsX;,s + p9X;,9 + P10X;,10 + PllX;,11 + f312X;,12 + {313X;,13 + P14X;,14 

+ f315X;,1s + f316X;,16 + f311X;,11 + f31sX;,1s + f319X;,19 + £; 

(8.13) 

where Y; represents the ith dependent variable score, Po is a constant, f31 is the 
regression coefficient for the predictor variable X 1, {32 is the regression coefficient for 
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the predictor variable X2, and so on. As with the fully related factorial design, there are 
X variables that represent experimental factors and their interactions (from X1 to X5), 
while 14 variables (from X6toX19) identify the subjects providing the scores. The first 
seven subject variables (from X6 to X n) identify those subjects providing scores in the 
condition labeled as a l ,  memorize, while the second set of seven subject variables 

identify those subjects providing scores in the condition labeled as a2, story and 
imagery. Equation (8.13) is not particularly wieldy, but once the effect coding scheme 
has been established in a computer data file, it is relatively simple to carry out the mixed 
factorial AN OVA. Table 8. 7 presents effect coding applied to the data in Table 8.1. 

Applying a regression GLM to implement a mixed factors ANOVA may also be 
done in a manner consistent with incremental analysis and estimating effects by 
comparing full and reduced GLMs. In balanced designs, the predictor variables 
representing experimental factors and those identifying subjects' scores again are 
orthogonal and so the order in which the SS are calculated is of no consequence. 

The first regression carried out is that for the full mixed factorial experimental 
design GLM, when all experimental condition and subject predictor variables are 
included (i.e., variables from X1 to X19). Of interest is the ANOVA summary presented 
in Table 8.8, which provides the full GLM residual SS. This may be compared with the 
mixed factorial experimental design GLM error term in Table 8.18. 

Having obtained the full GLM residual SS, the next stages involve implementing 
the various reduced GLMs to obtain their estimates of residual SS. First, the 
reduced GLM for the effect of the subjects nested within Factor A is obtained by 
carrying out the regression analysis again, but omitting the predictors identifying 
the subjects providing the scores (from X6 to X19). The summary of this ANOVA, 
presented in Table 8.9, provides the subjects nested within Factor A reduced GLM 
residual SS. Therefore 

Subjects (Factor A) reduced GLM residual SS 
Full GLM residual SS 

SS attributable to subjects nested within Factor A 

dfs 
380.000 42 
252.667 28 

127.333 14 

The reduced GLM for the effect of Factor A is applied by omitting only the 
predictor variable representing the Factor A experimental conditions (X1). The 
summary of this AN OVA presented in Table 8.10 provides the Factor A reduced 
GLM residual SS. Therefore 

Factor A reduced GLM residual SS 
Full GLM residual SS 

SS attributable to Factor A 

684.667 
252.667 

432.000 

dfs 
29 
28 

The Factor B reduced GLM is applied by omitting only the predictor variables 
representing the Factor B experimental conditions (X2 and X3). The summary of this 



� Table 8.7 Effect Coding for the Mixed (2 x 3) Factorial ANOVA 

Subject Y A B AxB A= 1 subjects A = -1 subjects 

Y X1 X2 X3 X4 Xs X6 X7 Xs X9 X10 X11 X12 X13 X14 Xis X16 X17 Xis X19 

1 
2 
3 
4 
5 
6 
7 
8 

2 
3 
4 
5 
6 
7 
8 

l 
2 
3 
4 
5 
6 
7 
8 

7 
3 
6 
6 
5 
8 
6 
7 

7 
11 

9 
1 1  
10 
10 
11 
11 

8 
14 
10 
11 
12 
10 
11 
1 2  

0 
0 
0 
0 
0 
0 
0 
0 

0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 - 1  

0 0 0 
1 0 0 
0 1 0 
0 0 
0 0 0 
0 0 0 
0 0 0 

-1 -1 -1 

0 0 0 

0 
0 
0 
0 
1 
0 
0 

-1 

0 

0 
0 
0 
0 
0 
1 
0 

-1 

0 

0 
0 
0 
0 
0 
0 

-1 

0 0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 

0 1 0 0 0 0 0 
0 0 l 0 0 0 0 
0 0 0 1 0 0 0 
0 0 0 0 1 0 0 
0 0 0 0 0 l 0 
0 0 0 0 0 0 

-1 -1 -1 -1 
- 1  -1 -1 -1 
-1 -1 -1 -1 
-1 -1 -1 -1 
-1 -1 -1 -1 
-1 -1 -1 -1 
-1 -1 -1 -1 
- 1  -1 -1 -1 

-1 -1 -1 -1 -1 -1 -1 

1 0 0 0 0 
0 l 0 0 0 
0 0 l 0 0 
0 0 0 l 0 
0 0 0 0 l 
0 0 0 0 0 
0 0 0 0 0 

-1 -1 -1 -1 -1 

0 
0 
0 
0 
0 
l 
0 

-1 

0 
0 
0 
0 
0 
0 

-1 

0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 



� 

2 

3 

4 

5 

6 

7 

8 

2 

3 

4 

5 

6 

7 

8 

1 

2 

3 

4 

5 

6 

7 

8 

16 -1 

7 -1 

11 -1 

9 -1 

IO -1 

11 -1 

8 -1 

8 -1 

16 -1 

10 -1 

13 -1 

10 -1 

10 -1 

14 -1 

11 -1 

12 -1 

0 -1 0 

0 -1 0 

0 -1 0 

0 -1 0 

0 -1 0 

0 -1 0 

0 -1 0 

0 -1 0 

0 1 0 -1 

0 1 0 -1 

0 1 0 -1 

0 1 0 -1 

0 1 0 -1 

0 1 0 -1 

0 1 0 -1 

0 1 0 -1 

24 -1 -1 -1 

29 -1 -1 -1 

10 -1 -1 -1 

22 -1 -1 -1 

25 -1 -1 -1 

28 -1 -1 -1 

22 -1 -1 -1 

24 -1 -1 -1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 1 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 -1 

0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 -1 

0 0 

0 

0 1 

0 0 

0 0 

0 0 

0 0 

-1 -1 

0 0 

0 

0 1 

0 0 

0 0 

0 0 

0 0 

-1 -1 

0 

0 

0 

0 

0 

0 

-1 

0 

0 

0 

0 

0 

0 

-1 

0 1 0 0 0 

0 0 1 0 0 

0 0 0 1 0 

0 0 0 0 1 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 -1 -1 -I -1 

0 

0 

0 

0 

1 

0 

0 

-1 

0 

0 

0 

0 

I 

0 

0 

-1 

0 0 

0 0 

0 0 

0 0 

0 0 

1 0 

0 

-1 -1 

0 0 

0 0 

0 0 

0 0 

0 0 

1 0 

0 1 

-1 -1 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

1 0 0 

0 1 0 

0 0 

-1 -1 -1 
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Table 8.8 ANOV A Summary Table for the Regression Implementation of the 

Full Mixed Factorial Experimental Design GLM (Includes Experimental 

Conditions and Subject Effects) 

Source SS df MS F 

Regression 1455.333 19 76.596 8.488 
Residual 252.667 28 9.024 

R: 0.923; R2: 0.852; adjusted R2: 0. 752. 

p 

Table 8.9 ANOV A Summary Table for the Mixed Factorial Experimental Design GLM 

Omitting the Effect of Subjects Nested Within Factor A 

Source 

Regression 

Residual 

SS 

1328.000 
380.000 

R: 0.882; R2: 0.778; adjusted R2: 0.751. 

df 

5 

42 

MS 

265.600 
9.048 

F 

29.356 

Table 8.10 ANOV A Summary Table for the Reduced GLM That Omits the 

Factor A Experimental Conditions 

Source 

Regression 

Residual 

SS 

1023.333 

684.667 

R: 0.774; R2: 0.599; adjusted R2: 0.350. 

df 

18 

29 

MS 

56.852 

23.609 

F 

2.408 

p 

p 

O.Dl7 

ANOVA presented in Table 8.l 1 provides the Factor B reduced GLM residual SS. 
Therefore, 

Factor A reduced GLM residual SS 
Full GLM residual SS 

SS attributable to Factor A 

924.667 
252.667 

672.000 

dfs 
30 
28 

2 

The Factor A x Factor B interaction reduced GLM is applied by omitting only the 
predictor variables representing the Factor A x Factor B interaction (X4 and Xs). The 

Table 8.11 ANOV A Summary Table for the Reduced GLM That Omits the 

Factor B Experimental Conditions 

Source SS df MS F 

Regression 783.333 17 46.078 1.495 

Residual 924.667 30 30.822 

R: 0.677; R2: 0.459; adjusted R2: 0.152. 

p 

0.163 
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Table 8.12 ANOV A Summary Table for the Reduced GLM That Omits the 
Factor A x Factor B Interaction 

Source SS df MS F 

211 

p 

Regression 1231.333 17 72.431 4.559 <0.001 
Residual 476.667 30 15.889 

R: 0.849; R2: 0.721; adjusted R2: 0.563. 

summary of this ANOVA presented in Table 8.12 provides the Factor A x Factor B 

reduced GLM residual SS. Therefore, 

Factors A x B interaction reduced GLM residual SS 

Full GLM residual SS 

SS attributable to Factor A x Factor B interaction 

dfs 

476.667 30 
252.667 28 

224.000 2 

Using the SS and dfs calculated for each effect by comparing full and reduced GLMs, 

an ANOVA summary table similar to Table 8.5 can be constructed to present the 

results of applying the two-factor mixed measures ANOVA GLM. 

8.5 EFFECT SIZE ESTIMATION 

As mixed measures designs combine independent and related factors, so the ap

proaches developed to estimate independent and related factors are applied separately 

to the estimation of effects in mixed measures designs. Therefore, for a two-factor 

mixed design, the procedures described for single factor independent measures 

designs (Section 4.3) and for single factor related designs (Section 6.6) are most 

relevant. As the interaction also employs the related factors error term, it is treated as a 

related measures effect. 

8.6 FURTHER ANALYSES 

Further analysis of mixed measures designs also applies the approaches developed 

for independent and related factor main and interaction effects separately to the 

pertinent factors. 

8.6.1 Main Effects: Independent Factor-Encoding Instructions 

Further analysis of the independent factor follows exactly the same approach and 

employs exactly the same calculations described in Section 5.6.1. However, note that 

the error SS for the independent factor, that is, the S(A), is one-third of the size of the 
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error SS in the fully independent design. This is due to the F-test being applied to 
"independent" scores obtained by taking the average of the three scores provided by 
each subject. Although the error SS for Factor A is reduced, the error dfs are reduced 
similarly, so comparable F-values are obtained. 

8.6.2 Main Effects: Related Factor-Study Time 

Further analysis of the related factor follows exactly the same approach and employs 
exactly the same calculations described in Sections 6.8 and 7 .6.1. 

8.6.3 Interaction Effect: Encoding Instructions x Study Time 

The combination of independent and related factors in a mixed design can complicate 

some aspects of the further analysis of the interaction effect. However, as will be 
explained below, more recent approaches to further analysis of the interaction effect 

simplify matters by employing specific error terms for the particular comparisons 
examined. 

8.6.3.I Simple Effects: Comparing Differences Between the Three Levels of 

Factor B (Study Time) at Each Level of Factor A (Encoding Instructions) 

As always, the three levels of Factor B, study time, are examined at each level of 

Factor A, encoding instructions. In the current two-factor mixed design, each level of 

the independent Factor A, provides a single factor related ANO VA applied to the three 
study time conditions (30, 60, and 180 s). The results of these two simple effect 

analyses already have been presented in Table 8.2 to illustrate the nature of the 
omnibus error terms. One simple effect single factor related ANOVA is applied to the 
scores obtained from three study time conditions under memorization instructions 

and another simple effect single factor related ANOVA is applied to the scores 
obtained from three study time conditions under story and imagery instructions (see 
Figure 5.4 ). Therefore, the approach to the simple effect analysis and the simple effect 
analysis calculations described in Section 7 .6.2.1 also apply here. 

8.6.3.2 Simple Effects: Comparing Differences Between the Two Levels of Factor 

A (Encoding Instructions) at Each Level of Factor B (Study Time) 

In the current two-factor mixed measures design, certain comparisons drawn across 
the levels of the independent factor can be slightly more complicated to deal with than 
in other designs. Table 8.13 presents a reminder of the two-factor mixed design 

applied. One group of subjects receives memorization encoding instructions and the 
other group receives story and imagery encoding instructions, but all subjects apply 
these encoding instructions under all three study time conditions. When comparisons 
across study time conditions are applied separately by encoding instructions, as in 
Section 8.6.3.1, separate S x B error terms were employed. One of these error terms 

represents the within group variance of the three study time conditions (after removal 

of the covariation due to related scores) with memorization encoding instructions 
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Table 8.13 Mean Recall by Encoding Instructions and Study Times 

in the Mixed Design Applied 

Encoding Instructions 

al Memorize 

a2 Story and imagery 

bl 

6 

10 

Study Time 

b2 

10 

12 

b3 

11 

23 
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(the a l  row in Table 8.13) and the other S x B error term represents the within group 
variance of the three study time conditions (after removal of the covariation due to 

related scores) with story and imagery encoding instructions (the a2 row in Table 8.13 ). 

Section 8.2 described and Table 8.2, illustrated that the two Subject SSs and the sum of 

the two error SSs from the single factor repeated measures ANOVAs, respectively, 

provide the error SS for the independent factor and the error SS for the related factor in 

the two factor mixed measures ANOVA. The two MSe terms used in the two factor 

mixed design are pooled weighted averages of these SSs (accurate averages are 

provided by the different dfs, but there is equal weighting in a balanced design), but the 
point of this account is the bases of the mixed design omnibus error estimates are two 

entirely separate sets of related scores (the a l  row and the a2 row in Table 8.13). 

When a comparison is drawn across the levels of the independent factor, for 
example, condition a l  b l  (X = 6) versus a2bl (X = 10), it is drawn across two separate 

groups of subjects. Usually, the error term employed to assess the interaction would 

be considered as an appropriate term to assess the difference between these two 

experimental condition means. However, as described above, the interaction error 

term is based on two separate repeated measures error terms, but error arising from the 

differences between the two groups of subjects providing the mean scores is not 

represented. Some way of accommodating the error arising from the two different 
groups of subjects is required. One way of accommodating this error term is to simply 
to combine the between subjects error term [S(A)] with the repeated measures main 

effect and interaction error term [S xB] to obtain what is known as the MS within cell 
(e.g., Howell, 2010; Kirk, 1995; Winer, Brown, and Michels, 1991). As the MS within 
cell error term combines the two omnibus error terms from the two factor mixed 

measures ANOVA it is vital that these error terms comply with their respective 

variance homogeneity and sphericity assumptions. However, as such assumption 

compliance is unlikely and assumption violations can have a profound influence on 
Type l error rates, the most frequent recommendation currently is to conduct specific 

comparisons involving only the experimental conditions of interest. Therefore, the 

comparison of a l  b l  (X = 6) vs a2bl (X = 10) would be implemented by applying a 

single factor independent ANO VA only to the data obtained from the a l b  1 (memorize 
30s) experimental condition and the a lb2 (story and imagery 30s) experimental 

condition, the comparison of a l  b2 (X = 10) vs a2 b2 (X = 12) would be implemented 

by applying a separate single factor independent ANOVA only to the data obtained 

from the a lb2 (memorize 60s) experimental condition and the a l b2 (story and 
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imagery 60s) experimental condition, and the comparison of al b3 (X = 11) vs a2b3 

(X = 23) would be implemented by applying another single factor independent 

ANOVA only to the data obtained from the a l b3 (memorize 180s) experimental 

condition and the al b3 (story and imagery 180s) experimental condition. Although 

conducting specific comparisons as described is a safer approach, when the omnibus 

error term assumptions are tenable, applying the MS within cell approach will provide 

more powerful tests, for exactly the same reasons described with respect to the use of 

the omnibus ANOVA MSe in independent designs (see Section 3.7.1). 

8.7 POWER 

To conduct power analysis to determine sample size for mixed measures designs using 

tables, each omnibus main effect and interaction effect, as well as specific comparison 

effects are assessed separately. Therefore, the procedures described for single factor 

independent measures designs (Section 4.7) and for single factor related designs 

(Section 6.8) apply to two-factor mixed measures designs. (The interaction also is 

treated as a related measures effect.) Nevertheless, more accurate results will be 

obtained if one of the statistical software packages available for this purpose is 

employed. For power analysis of two-factor fully related measures designs and all 

other such designs, the free statistical software package G*Power 3 (Faul et al. 2007) is 

recommended highly. 



CHAPTER 9 

The GLM Approach to ANCOVA 

9.1 THE NATURE OF ANCOV A 

In Chapter 5, the single factor independent measures experimental design presented 

in Chapters 3 and 4 was extended by establishing a new factor labelled encoding 

instruction. Memorization and story and imagery instructions defined the two levels 

of the encoding instruction factor, and these two factor levels were crossed with the 

three levels of the study time factor, defined by 30 s, 60 s and 180 s, in a factorial 

independent measures design. The present chapter considers only the 30 s, 60 s and 

180 s story and imagery instruction conditions, as if a separate single factor indepen

dent measures experiment had been designed. 

All of the subjects in this experiment are asked to construct stories using the 

presented words and to form images of the story events, but story and imagery ability 

is very likely to differ across subjects. Experimental studies employ random sampling 

and random allocation of subjects to avoid systematic effects attributable to subjects. 

If a measure of each subject's story and imagery ability was available, then the most 

likely observation after random sampling and random allocation would be equal mean 

story and imagery ability across the three study time groups. Nevertheless, within 

each of the study time conditions, some subjects will possess greater story and 

imagery ability, while other subjects will possess lesser story and imagery ability. 

If constructing stories and images influences memory, then variation in story and 

imagery ability will result in variation in subjects' recall scores within each study time 

group and this variation will increment the ANOVA error term. All else being equal, 

the consequence of a larger error term is a less powerful analysis and so a greater 

chance that any influence of study time on memory recall will go undetected. A more 

precise assessment of the influence of study time on free recall when story and 

imagery encoding strategies are used would be obtained if all of the subjects had the 

same ability to construct stories and images. 

In psychology, when GLMs include a quantitative variable in addition to the 

categorical coding of experimental conditions, but experimental effects remain the 
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major concern, the analysis is termed ANCOVA (cf. Cox and McCullagh, 1982). 
ANCOVA offers a way to obtain a more precise assessment of the effect of the 

experimental manipulations on the dependent variable. Indeed, ANCOVA offers a 

statistical means of assessing the influence of study time on free recall when all of the 

subjects employing the story and imagery encoding strategies have the same ability to 

construct stories and images 

As well as recording the independent and dependent variables, an ANCOVA 

design requires the measurement of one or more other variables. These variables 

(variously known as covariates, predictor variables, concomitant variables, or 

control variables) represent sources of variation that are thought to influence the 

dependent variable, but have not been controlled by the experimental procedures. In 

the present example, the covariates would be measures of each subject's ability to 

construct stories and images. The rationale underlying AN COVA is that the effect of 

the independent variable(s) on the dependent variable is revealed more precisely 

when the relationship between the dependent variable and the covariate(s) is used to 

adjust the dependent variable scores to those predicted if all subjects had obtained 

the same covariate score. 

9.2 SINGLE FACTOR INDEPENDENT MEASURES 
ANCOVA DESIGNS 

The story and imagery conditions of the memory experiment described in Chapter 5 
are presented as if they had been obtained in a new experiment. In this new 

experiment, prior to their allocation to study time experimental condition, subjects 

also were required to complete a test that provided a single measure of their story and 

imagery abilities. Table 6.1 presents the subjects' story and imagery task (covariate) 

scores and the subjects' free recall scores after story and imagery encoding in the three 

study time conditions. 

The equation 

y iJ = µ + rJ.j + f3ZiJ + eij (9.1) 

describes an experimental design GLM for the single factor independent measures 

ANCOVAwith one covariate applicable to the data presented in Table 9.1. Yij is the ith 

score in the jth treatment, µ is the grand mean of the experimental condition 

population means, rJ.j is the effect of the jth treatment level and the error term, 

£ij, reflects random variation due to any uncontrolled source. The new term, f3wZiJ, 
represents the influence of the covariate on the dependent variable, and is comprised 

of the regression coefficient parameter, f3w, which represents the degree of linear 

relationship between the covariate and the dependent variable and Zij, the particular 

covariate score corresponding to the Yij. (It is important to appreciate that the degree 

of the linear relationship between the covariate and the dependent variable is 

determined empirically from the data.) The ANCOVA GLM combines features of 

an ANOVA GLM and a regression GLM. The (categorical) experimental condition 
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Table 9.1 Story and Imagery Test Scores and Recall Scores After 
Story and Imagery Encoding 

Study Time 30s 60s 180 s 

z y z y z y 

9 16 8 16 5 24 
5 7 5 10 8 29 

6 11 6 13 3 10 
4 9 5 10 4 22 

6 10 3 10 6 25 
8 11 6 14 9 28 
3 8 4 11 4 22 
5 8 6 12 5 24 

Sums 46 80 43 96 44 184 

Means 5.750 10.000 5.375 12.000 5.500 23.000 

Sum of squares 292 856 247 1186 272 4470 

Sum squared 2116 6400 1849 9216 1936 33,856 

effects are specified as in ANOVA, while the relationship between the (quantitative) 

covariate and the dependent variable is specified as in regression. 

In Figure 9.1, the regression lines of subjects' dependent variable memory recall 

scores on their story and imagery ability test scores are plotted for each study time 

35 

30 

"' 

� 
8 
"' 

� 
Q) 

er: 

2 4 8 10 

Covariate score (story and imagery test score) 

Figure 9.1 Dependent variable memory recall scores plotted on their story and imagery 

ability test scores for each study time experimental condition(b1 - 30 s, bz -60 s and b3 - 180 s). 

The within groups regression line <Pw) also is plotted. 
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experimental condition (b1 -30 s, bi-60 s, and b3-180 s). Also shown is Pw• the 
slope of the regression line employed in the ANCOVA GLM, which is given by 

(9.2) 

Pw also may be calculated from 

Equation (9.3) reveals Pw as the weighted average of the separate (within group) 
regression lines, where each experimental condition regression coefficient (bi. b2, and 
b3) is weighted by the variation of the covariate scores in that experimental condition. 
Consequently, Pw may be called the within groups regression coefficient. An important 
point to appreciate is that equations (9.2) and (9.3) provide a regression coefficient that 
is free of the influence exerted on the dependent variable scores by the experimental 
conditions. However, in common with the pooled weighted estimate of MSe, is good 
summary estimate only when the dependent variable on covariate regressions across 
experimental conditions are homogeneous (see Sections 10.4 and 10.2.3). 

A little algebra applied to equation (9 .1) reveals 

(9.4) 

where Ytaij is the fundamental adjusted dependent variable score observed if all 
influence of the covariate is removed from the dependent variable score. The Ytaij 

correspond to the points on the dependent variable axis intersected by each of the 
experimental condition regression lines (see Figure 9.1). This is where the value of 
the covariate equals zero. Traditionally in ANCOVA, however, the dependent variable 
scores are not adjusted to remove all influence of the covariate. Instead, adjustment is 
made so it is as if all subjects had obtained a covariate score equal to the general 
covariate mean (Zc; = 5.542). Replacing f3wZ!i in equation (9.1) with f3w(Zij-Zc;) 
provides the single factor independent measures experimental design GLM for 
traditional ANCOVA with one covariate 

(9.5) 

Applying the same algebra to equation (9.5) as was applied to equation (9.1) 
provides 

(9.6) 

where Yaij is the adjusted dependent variable score based on the difference between 
the recorded covariate score and the general covariate mean scaled by the regression 
coefficient estimated from the data. The experimental condition means of the Yaij 

scores correspond to the points on the dependent variable axis where the separate 
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experimental condition regression lines intersect the line representing ZG (see 
Figure 9.1). 

Although the GLMs described by equations (9.1) and (9.5) employ the same 

regression coefficient, obviously the adjustments provided by f3wZu and f3w(Zu - ZG ) 

do not provide identical adjusted dependent variable scores (see Yau and ffazJ in 

Figure 9.1 ). Nevertheless, as the effect of the experimental conditions is represented 

by the vertical differences between the experimental condition regression lines, and 

traditional AN COVA assumes the regression lines of the dependent variable on the 

covariate in each of the treatment groups are parallel, the experimental condition 

effect estimates will be constant across all values of the covariate. Therefore, when 

traditional ANCOVA (which assumes homogeneous regression coefficients/slopes) 

is applied, the terms ffazJ and YaiJ provide equivalent estimates of the experimental 

conditions effect and so accommodate identical variance estimates. 

Calculating 7Jw for the data in Table 9 .1 provides 

30s 60s 180s 

Zij-ZJ Yij-YJ Zij-ZJ Yij-YJ Zij-ZJ Yij-YJ 

9-5.750= 3.250 16-10= 6 8- 5.375 = 2.625 16- 12= 4 5 - 5.500 = -0.500 24-23= 

5 -5.750 = -0.750 7-10=-3 5 - 5.375 = -0.375 10-12=-2 8-5.500= 2.500 29- 23= 

I 

6 

6 - 5.750= 0.250 11-10= I 6- 5.375 = 0.625 13- 12= I 3 - 5.500 = -2.500 10-23=-13 

4 - 5.750 = -1.750 9-10= -I 5 - 5.375 = -0.375 10- 12=-2 4 - 5.500 = -1.500 22- 23=-I 

6- 5.750= 0.250 10-10= 0 3 - 5.375 = -2.375 10-12=-2 6- 5.500= 0.500 25-23= 2 

8- 5.750= 2.250 11-10= I 6- 5.375 = 0.625 14- 12= 2 9- 5.500= 3.500 28- 23= 5 

3- 5.750 = -2.750 8-10=-2 4- 5.375 = -1.375 11-12=-1 4 - 5.500 = -1.500 22- 23= - I  
5 - 5.750 = - 0.750 8-10=-2 6- 5.375 = 0.625 12-12= 0 5 - 5.500 = -0.500 24-23 = 

I: = 0 27.500 I: =0 15.875 I: =0 30.000 

30s 60s 180s 

(Zij -Z1)(Yij -Y1) (Zij-ZJ)(Yij-Y1) (Zij-Z1)(Yij-YJ) 

3.250(6) = 19.500 2.625( 4.00) = 10.500 -0.500( 1.00) = -0.500 

-0.750(-3) = 2.250 -0.375( -2.00) = 0.750 2.500(6.00) = 15.000 

0.250(1) = 0.250 0.625(1.00) = 0.625 -2.500( -13.00) = 32.500 

-1.750(-1)= 1.750 -0.375(-2.00) = 0.750 -1.500(-1.00) = 1.500 

0.250(0) = 0.000 -2.375(-2.00) = 4.750 0.500(2.00) = 1.000 

2.250(1) = 2.250 0.625(2.00) = 1.250 3.500(5.00) = 17.500 

-2.750(-2)= 5.500 -1.375(-1.00) = 1.375 -1.500( -1.00) = 1.500 

-0.750(-2) = 1.500 0.625(0.00) = 0.000 -0.500( 1.00) = -0.500 

I: =0 33.000 I: =0 20.000 I: =0 68.000 

� = 
33 + 20 + 68 

= 1.649 f3w 
27.500 + 15.875 + 30.000 

I 
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One consequence of including the dependent variable on the covariate regression 
component in the ANCOVA GLM is the definition of the parameterµ changes 
slightly. For balanced ANOVA, µ was defined as the mean of the experimental 
condition means, but this is not the case even for balanced AN COVA. Nevertheless, 

in ANCOVA, µremains the intercept on the Y-axis (see Figures 2.3 and 9.1) of the Pw 
regression line, which passes through the general covariate and dependent variable 

means and so, it may be calculated simply by estimating the reduction from the 
dependent variable mean on the basis of the general mean of the covariate. In 

Figure 9.1, the Pw regression line intercepts the Y-axis at a point below the 
dependent variable general mean. This point is determined by the distance from 
the general mean of the covariate to the origin, scaled by the R_ regression 
coefficient. Therefore 

ii= Ya - R_(Za) 

Applying equation (9.7) to the data in Table 9.1 provides 

µ = 15 - 1.649(5.542) = 5.861 

The adjusted experimental condition means is given by 

Therefore 

Ya] = Y1 - f3w(Z1 - Zo ) = 10 - 1.649(5.750 - 5.542) = 9.657 

Ya2 = Y2 - f3w(Z2 - Zo) = 12 - 1.649(5.375 - 5.542) = 12.275 

Ya3 = f3 - f3w(Z3 - Zc;) = 23 - 1.649(5.500 - 5.542) = 23.069 

(9.7) 

(9.8) 

In common with AN OVA, adjusted experimental condition means in AN COVA are 
comprised of the constant µ plus the effect of the experimental condition 

and so it follows 

For the data in Table 9.1 this provides 

a1 = 9.657 - 5.861 = 3.796 

az = 12.275 - 5.861=6.414 

� = 23.069 - 5.861 = 17.208 

(9.9) 

(9.10) 
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9.3 ESTIMATING EFFECTS BY COMPARING FULL AND REDUCED 

ANCOVA GLMs 

Although µ and the experimental condition effects are not needed to calculate the 
error terms for full and reduced GLMs, their calculation methods are provided for 

completeness. In fact, these experimental condition effect estimates should not be 
used to obtain the experimental condition SS, in the manner described for ANOVA 
GLMs, as this provides an inaccurate estimate (Cochran, 1957; Maxwell, Delaney, 
and Manheimer, 1985; Rutherford, 1992). 

The reduced and full models for the traditional single factor single covariate 
ANCOVA design are presented below 

Reduced GLM: 

Full GLM: 

(9.11) 

(9.5, rptd) 

There are two differences between these full and reduced GLMs. First, the reduced 
GLM omits the variable representing the experimental conditions. Second, the 
reduced GLM employs the regression coefficient for the total set of scores, 'JJi, 
where allocation to experimental condition is ignored and all scores are treated as 
one large group, whereas the full GLM employs the within groups regression 
coefficient, Pw· 

Equation (9 .11) describes the reduced GLM as a simple linear regression, where the 
difference between subjects' covariate scores and the general covariate mean is used 
to predict subjects' dependent variable scores. This GLM may be compared with the 
reduced GLM that employs Zij as the predictor 

Yij = µ + fli(Zij) + f.ij (9.12) 

Equation (9.12) is the reduced GLM for the ANCOVA model described by equa
tion (9.1). As was described with respect to the GLMs described by equations (9.1) 
and (9.5), the GLMs described by equations (9.11) and (9.12) employ a common 
regression coefficient, and accommodate equal amounts of variation. 

The application of a little algebra to the full GLM for the single factor, single
covariate ANCOVA defines the error term in the following way. If 

(9.6, rptd) 

then 

Omitting the terms to the left of the first equals sign and employing equation (9.9) 
provides 
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Therefore 

Bij = Yaij-Yaj (9.13) 

In other words, the full GLM errors are equal to each subjects' adjusted score minus 
the adjusted mean for the experimental condition. Equation (9.6) defines subjects' 
adjusted scores as 

(9.6, rptd) 

which are calculated as below. 

30s 60s 180s 

Y;1 -{J(Z;1 -Zc;) = Ya;1 Yi2 -{J(Zi2 -Zc;) = Ya;2 Y;3 -{J(Z;3 -Zc;) = Yai3 

16- 1.649(9- 5.542) = 10.298 16- 1.649(8 - 5.542) = 11.947 24 - 1.649(5 - 5.542) = 24.894 

7 - 1.649(5 - 5.542) = 7.894 10 - 1.649(5 - 5.542) = 10.894 29- 1.649(8 - 5.542) = 24.947 

11 - 1.649(6 - 5.542) = 10.245 13 - 1.649(6- 5.542) = 12.245 10- 1.649(3 - 5.542) = 14.192 

9 - 1.649( 4 - 5.542) = 11.543 10 - 1.649(5 - 5.542) = 10.894 22 - 1.649( 4 - 5.542) = 24.543 

10- 1.649(6- 5.542) = 9.245 10 - 1.649(3 - 5.542) = 14.192 25 - 1.649(6 - 5.542) = 24.245 

11 - 1.649(8 - 5.542) = 6.947 14- 1.649(6 - 5.542) = 13.245 28 - 1.649(9 - 5.542) = 22.298 

8 - 1.649(3 - 5.542) = 12.192 11 - 1.649(4- 5.542) = 13.543 22 - 1.649(4 - 5.542) = 24.543 

8 - 1.649(5 - 5.542) = 8.894 12- 1.649(6- 5.542) = 11.245 24 - 1.649(5 - 5.542) = 24.894 

Y.n =9.657 Y.;2 =12.275 Y.n =23.069 

As a check on their accuracy, the adjusted scores can be used to calculate group means 
for comparison with those calculated from equation (9.8). Error terms are calculated 
using the adjusted scores and adjusted experimental condition means according to 
equation (9.13). As always, the sum of the errors per experimental condition and across 
conditions equals zero (given rounding error). The sum of the squared errors across 
experimental conditions is the (reduced) error term for the full GLM. 

30s 

Yan - Y.1 = f.;1 

10.298 - 9.657 = 0.641 

7.894- 9.657 = -1.763 

10.245 - 9 .657 = 0.588 

11.543 - 9.657 = 1.886 

9.245 - 9.657 = -0.412 

6.947 - 9.657 = -2.710 

12.192- 9.657 = 2.535 

8.894- 9.657 =- 0.763 

"E,�1 f.n = 0.002 

"E,�, f.;, =21.944 

60s 

Y.;2 - Ya2 = f.;2 

11.947 - 12.275 = -0.328 

10.894 - 12.275 = -1.381 

12.245 - 12.275 = -0.030 

10.894- 12.275 = -1.381 

14.192- 12.275 = 1.917 

13.245 - 12.275 = 0.970 

13.543 - 12.275 = 1.268 

11.245 - 12.275 = -1.030 

L�I f.;2 =0.005 

"E,�1s72=11.207 

180s 

Yai3 -
Ya3 = f.;3 

24.894 - 23.069 = 1.825 

24.947 - 23.069 = 1.878 

14.192 - 23.069 = -8.877 

24.543 - 23.069 = 1.474 

24.245 - 23.069 = 1.176 

22.298 - 23.069 = -0.771 

24.543 - 23.069 = 1.474 

24.894 - 23.069 = 1.825 

L�I f.;3 = 0.004 

"E,�1 sf3 =95.312 
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The reduced GLM errors for this AN COVA design may be found in the same way as 
above. First, reordering the terms in equation ( 6. 9) allows the subjects' adjusted scores 
to be specified. As 

(9.11,rptd) 

So 

(9.14) 

As experimental conditions are ignored,µ is equal to the general mean of the adjusted 
scores, Yao- It follows that for the reduced GLM 

(9.15) 

A first requirement to calculate the reduced GLM errors is the regression 
coefficient /31 

(9.16) 

Applied to the data in Table 9.1 provides 

30s 60s 180s 

(Zij-Zc;) (Zif -Zc;) (Zij-Zc;) 

(9-5.542) = 3.548 (8 -5.542) = 2.458 (5 -5.542) = -0.542 

(5 -5.542) = -0.542 (5 -5.542) = -0.542 (8 -5.542) = 2.458 

(6-5.542) = 0.458 (6-5.542) = 0.458 (3 -5.542) = -2.542 

(4 -5.542) = -1.542 (5 - 5.542) = -0.542 (4-5.542) = -1.542 

(6-5.542) = 0.458 (3 - 5.542) = -2.542 (6-5.542) = 0.458 

(8 - 5.542) = 2.458 (6-5.542) = 0.458 (9-5.542) = 3.458 

(3 -5.542) = -2.542 (4-5.542) = -1.542 (4 -5.542) = -1.542 

(5 -5.542) = -0.542 (6-5.542) = 0.458 (5 -5.542) = -0.542 

2= = 21.846 2= = 16.098 2= = 30.014 
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30s 
(Zij -Za)(Yij -Yo) 

(9 - 5.542)(16- 15) = 3.458 

(5 - 5.542)(7 - 15) = 4.336 

(6 - 5.542)(11 - 15) = -1.832 

(4 - 5.542)(9-15) = 9.252 

(6-5.542)(10- 15) = -2.290 

(8 - 5.542)(11 - 15) = -9.832 

(3 - 5.542)(8 -15) = 17.794 

(5 - 5.542)(8 - 15) = 3.794 

L = 24.680 

60s 

(Zu -Za)(Yu-Y0) 

(8 - 5.542)(16 - 15) = 2.458 

(5 -5.542)(10- 15) = 2.710 

(6- 5.542)(13 - 15) = -0.916 

(5 - 5.542)(10 - 15) = 2.710 

(3- 5.542)(10-15)= 12.710 

(6 -5.542)(14- 15) = -0.458 

(4 - 5.542)(11 - 15) = 6.168 

(6 - 5.542)(12 - 15) = -1.374 

L = 24.008 

� 114.000 
Pt = 73.958 

= 1.541 
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180s 

(Zij -Za)(Yu -Yo) 

(5 - 5.542)(24- 15) = -4.878 

(8 - 5.542)(29 - 15) = 34.412 

(3 - 5.542)(10- 15) = 12.710 

(4- 5.542)(22 - 15) = -10.794 

(6- 5.542)(25 - 15) = 4.580 

(9 - 5.542)(28 - IS)= 44.954 

(4- 5.542)(22 -15) = -10.794 

(5 - 5.542)(24 - 15) = -4.878 

L = 65.312 

This regression coefficient estimate is used to calculate each subjects' adjusted score, 

according to equation (9.14). 

30s 

Yu-f31(Zij-Za) =Yau 

16- 1.541(3.548) = 10.671 

7 - 1.541(-0.542) = 7.835 

11 - 1.541(0.458) = 10.294 

9 - 1.541 ( -1.542) = 11.376 

10- 1.541(0.458) = 9.294 

11- 1.541(2.458) = 7.212 

8- 1.541(-2.542)= 11.917 

8 - 1.541 ( -0.542) = 8.835 

60s 

Yu -(3,(Zij-Zo) = Yaij 

16- 1.541(2.458) = 12.212 

I 0 - 1.541 ( -0.542) = 10.835 

13 - 1.541 (0.458) = 12.294 

10 - 1.541 ( -0.542) = I 0.835 

10-1.541(-2.542)= 13.917 

14-1.541(0.458) = 13.294 

I I - l.541(-1.542)= 13.376 

12 -1.541 (0.458) = 11.294 

Y; = 15.001 

180s 

Yij - {3,(Zij -Za) =Yau 

24 - 1.541 ( -0.542) = 24.835 

29-1.541(2.458) =25.212 

10- 1.541(-2.542) = 13.917 

22 -1.541(-1.542) = 24.376 

25 - 1.541 (0.458) = 24.294 

28 - 1.541 (3.458) = 22.671 

22 - 1.541 ( -1.542) = 24.376 

24 - 1.541 ( -0.542) = 24.835 

With the reduced GLM, the mean of the adjusted scores equals the mean of the 

unadjusted scores, that is, 15. Given rounding error, this is the value obtained from 

the adjusted scores. As specified by equation (9.15), the discrepancy between this 

mean and the subjects' adjusted scores provides the error term estimates. 
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30s 

Yan -Y.1 = B;1 

10.671 - 15 = -4.329 

7.835 - 15 = -7.165 

10.294- 15 = -4.706 

11.376- 15 = -3.624 

9.294 - 15 = -5.706 

7.212-15 = -7.788 

11.917 - 15 = -3.083 

8.835 - 15 = -6.165 

60s 

Yai2 - faz = Bi2 

12.212 - 15 = -2.788 

10.835 - 15 = -4.165 

12.294 - 15 = -2.706 

10.835 -15 = -4.165 

13.917 -15 = -1.083 

13.294-15 = -1.706 

13.376 -15 = -1.624 

11.294 -15 = -3.706 

"p "Nj 
LJ=I Li=l eu = O.Ol2 

"p "NJ 2 
LJ=I Li=I f,i2 = 936.279 

180s 

Ya;J - Ya3 = e;3 

24.835 - 15 = 9.835 

25.212 -15 = 10.212 

13.917 - 15 = -1.083 

24.376 - 15 = 9.376 

24.294-15 = 9.294 

22.671 - 15 = 7.671 

24.376 - 15 = 9.376 

24.835 - 15 = 9.835 

Given rounding error involved, 0.012 is not too bad an estimate of the correct value of 

zero. The sum of the squared errors provides the estimate of the reduced GLM error 

SS. Therefore, the error reduction as a consequence of taking account of the 

experimental conditions is 

Reduced GLM SSerror - Full GLM SSerror = 936.279 - 128.463 = 807.816 

Again the full GLM SS error is employed as the error term, but an additional degree 

of freedom is lost due to the use of the dependent variable on covariate regression 

line-for every regression line, or equivalently, for every covariate employed, an error 

df is lost. If desired, the SS accommodated by the covariate may be determined by 

comparing the error SS from the full AN COVA with the error SS from an equivalent 

full ANOVA GLM. As before, all of this information can be displayed conveniently 

in an ANCOVA summary table, as presented in Table 9.2. 

The tabled critical F-values presented in Appendix B may be used to determine 

significance if hand calculation is employed or the statistical software employed does 

not output the required p-values. 

Table9.2 ANCOV A Summary Table for the Single Factor, Single-Covariate Experiment 

Source SS df MS F p 

Error reduction due to 807.816 2 403.908 62.883 <0.001 

experimental conditions 

Error reduction due to covariate 199.537 1 199.537 31.065 <0.001 

Full GLM error 128.463 20 6.423 
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9.4 REGRESSION GLMs FOR THE SINGLE FACTOR, 

SINGLE-COVARIATE ANCOV A 

The experimental design GLM equation (9.1) may be compared with the equivalent 
regression equation 

(9.17) 

Similarly, the experimental design GLM equation (9.5) may be compared with the 
equivalent regression equation 

(9.18) 

In both equations (9.17) and (9.18), {30 represents a constant common to all Y scores, 
/31 is the regression coefficient for the predictor variable X1 and {32 is the regression 
coefficient for the predictor variable X2, where the variables X1 and X2 code the 
differences between the three experimental conditions, /33 is the regression coefficient 
for the covariate, Zij is the covariate score for the ith subject in the jth condition and as 
always, the random variable, eij, represents error. Table 9.3 presents effect coding for 

Table 9.3 Effect Coding and Covariate for a Single Factor 
ANCOV A With One Covariate 

Subject z X1 X2 y 

1 9 0 16 
2 5 0 7 
3 6 0 11 
4 4 0 9 

5 6 0 10 
6 8 0 11 

7 3 0 8 

8 5 0 8 

9 8 0 16 

10 5 0 10 

11 6 0 13 

12 5 0 10 

13 3 0 10 

14 6 0 14 

15 4 0 I 11 

16 6 0 I 12 

17 5 -1 -1 24 

18 8 -I -I 29 

19 3 -1 -I 10 

20 4 - I -I 22 

21 6 -1 -I 25 

22 9 -1 -] 28 

23 4 -I -1 22 

24 5 -1 -I 24 

Subject number and the dependent variable score also are shown. 
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Table 9.4 Results for the Full Single Factor, Single-Covariate ANCOV A 
Regression GLM 

Variable Coefficient Standard Error Standard Coefficient p (Two-Tailed) 

Constant 5.861 1.719 0.000 3.409 0.003 
Bi -5.344 0.734 -0.641 -7.278 <0.001 
B2 -2.725 0.733 -0.327 -3.716 0.001 
z 1.649 0.296 0.425 5.574 <0.001 

the single factor, single-covariate regression GLM. It can be seen that apart from the 

addition of the Z covariate, the setup is identical to the effect coding for a single factor 

ANOVA with three levels. 

Implementing a single factor, single-covariate ANCOVA is a two-stage procedure 

if only the variance attributable to the experimental conditions is to be assessed, and a 

three-stage procedure if the covariate regression is to be assessed. Consistent with 

estimating effects by comparing full and reduced GLMs, the first regression carried 

out is for the full single factor, single-covariate experimental design GLM, when all 

experimental condition predictor variables (X1 and X2) and the covariate are included. 

The results of this analysis are presented in Tables 9.4 and 9.5. 
Table 9.4 presents the predictor variable regression coefficients and standard 

deviations, the standardized regression coefficients, and significance tests (t- and 

p-values) of the regression coefficient. As can be seen, the constant (coefficient) is 

equivalent toµ. Another useful value in Table 9.4 is the estimate of the full ANCOVA 

GLM covariate regression coefficient, Pw· A !-test of this regression coefficient is also 

provided. 

Table 9.5 presents the ANOVA summary table for the regression GLM describing 

the complete single factor, single-covariate ANCOVA. As the residual SS is that 

obtained when both covariate and experimental conditions are included in the 

regression, this is the error term obtained when the single factor, single-covariate 

ANCOVA GLM is applied. 

At the second stage, a regression is applied which omits experimental conditions and 

employs the covariate (Z) as the only predictor. This regression GLM is equivalent to 

the reduced GLM for the single factor, single-covariate ANCOV A. The results of this 

analysis are presented in Tables 9.6 and 9.7. Of most interest is the regression residual/ 

error SS provided in Table 9.7. The difference between the residual/error SS in 

Table 9.5 and that in Table 9.7 is equivalent to the SS attributable to experimental 

conditions. (This SS is presented in Table 9.9.) However, the SS attributed to the 

Table 9.5 ANOV A Summary Table for Covariate and Experimental 

Conditions Regression 

Source 

Regression 

Residual 

SS 

983.537 
128.463 

R: 0.940; R2: 0.884; adjusted R2: 0.867. 

df 

3 
20 

MS 

327.846 
6.423 

F 

51.041 

p 

<0.001 
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Table 9.6 Results for the Reduced Single Factor, Single-Covariate ANCOVA 

Regression GLM 

Variable Coefficient Standard Error Standard Coefficient p (Two-Tailed) 

Constant 
z 

6.458 

1.541 

4.410 

0.759 

0.000 

0.398 

Table 9.7 ANOVA Summary Table for Covariate Regression 

Source SS df MS 

Regression 175.721 175.721 

Residual 936.279 22 42.558 

R: 0.398; R2: 0.158; adjusted R2: 0.120. 

1.465 

2.032 

F 

4.129 

0.157 

0.054 

p 

0.054 

covariate in Table 9. 7 is not the covariate SS calculated when the full AN COVA GLM is 

applied, as the regression coefficient when experimental conditions are omitted is p1 
and the full ANCOVA GLM employs the regression coefficient Pw to estimate the 

variation in the dependent variable attributable to the covariate. As mentioned in 

Section 9.3, the SS for the covariate in the full ANCOVA GLM may be obtained by 

comparing the error SS from the full ANCOVA GLM with the error SS from an 

equivalent full ANOVA GLM. A full ANOVA GLM is implemented by a regression 

that uses only the predictors representing the experimental conditions (X1 and X2). 

Table 9.8 presents the ANOVA summary of this analysis. 

Armed with the error term from the regression GLM implementation of the single

factor ANO VA, the error reduction attributable to the covariate can be calculated. This 

information is summarized in Table 9.9. 

Table 9.8 ANOV A Summary Table for Experimental Conditions Regression 

Source SS df MS F 

Regression predictors for 784.000 2 392.000 25.098 

experimental conditions 

Residual 328.000 21 15.619 

R: 0.840; R2: 0.705; adjusted R2: 0.677. 

Table 9.9 ANOV A Summary Table for Covariate and Experimental 

Conditions Regression 

Source SS df MS F 

Error reduction due to experimental 807.816 2 403.908 62.883 

conditions 

Error reduction due to covariate 199.537 199.537 31.065 

Full ANCOVA GLM residual 128.463 20 6.423 

R: 0.940; R2: 0.884; adjusted R2: 0.867. 

p 

<0.001 

p 

<0.001 

<0.001 
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Table 9.10 Adjusted Means for the Three Study Time 
Experimental Conditions 

Factor Levels 
Study Time 

Adjusted means 

9.5 FURTHER ANALYSES 

al 
30 s 

9.66 

a2 
60 s  

12.28 

a3 
180 s 

23.0 7 
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Further analysis in ANCOVA usually involves comparison between the adjusted 

experimental condition means. However, due to the inclusion of a covariate in the 

GLM, a slightly different approach is employed to compare the experimental 

condition adjusted means. For example, it is assumed that in the hypothetical 

ANCOVA experiment, there is interest in the comparison between the 30 and 

180 s condition adjusted means. The adjusted means were described in Section 9.2 
and are presented in Table 9.10. The square of the difference between the two adjusted 

means divided by the variance of this difference is distributed as F with 1 numerator 

and (N - p -1) denominator dfs. 

The first step in obtaining the square of the difference between the two adjusted 

means is to determine the value of the linear contrast. The linear contrasts between 

adjusted means are defined as 

(9.19) 

Applying equation (9.19) to the comparison between the 30 and 180 s experimental 

condition adjusted means provides 

Its square is 

�I versus3 = ( -1)9.66 + (0)12.28 + (1)23.07 = 13.41 

�2 2 
t/Ja3-al = 13.41 = 179.83 

The variance of the difference between the adjusted means is estimated by 

(9.20) 

The calculation of the full AN COVA GLM dependent variable on covariate regression 

coefficient in Section 9.2 provides the components to determine I:1I:;(Zij-ZJ)2• 
Applying equation (9.20) provides 
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Therefore 
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[-12 12 ( -1)(5.750)2 + (1)(5.500)2] 
s?a3 -Ya! = 6.423 -8- + S + 

73.375 

[2 ( - 5.750 + 5.500)2] 
Sta3 -Yal = 

6.423 S + 
73.375 

= 6.426[0.251 J 

s�a3 -Ya! = l.6l3 

F _ 1{!�3_31 179.83 1,20 - 2 = 
1.613 

= 111.488, p < 0.001 
SYa3-Yal 

Assuming this is a planned comparison, no Type 1 error adjustment is necessary and 
difference between the two groups would be declared significant. Two other pairwise 
comparisons are available. They are a comparison of the 30 and 60 s (i.e., a l  versus a2) 
experimental condition means and a comparison of the 60 and 180 s (i.e., a2 versus a3) 
experimental condition means. Applying equation (9.19) to these comparisons 
provide 

lfj, versus2 = ( -1)9.66 + (1)12.28 + (0)23.07 = 2.62 

and 

lf2versus3 = (0)9.66 + ( -1)12.28 + (1)23.07 = 10.79 

The squares are 

�2 
1/11 versus 2 = 6.864 
�2 
1/12 versus 3 = 116.424 

Therefore, the two F-tests provide 

F = 1/1;2-a1 = 
6·864 

= 4 255 p = 0.052 1•20 
s'!:_ - 1.613 · ' Ya2-Yal 

F _ 1/1;3-a2 -
116.424 

= 72 179 p < 0.001 1•20 -
s'!:_ - - 1.613 

· ' 

Ya3 -Ya2 

Although both of these comparisons are unplanned, the significant ANCOVA 
omnibus F-test rejects the omnibus null hypothesis and Shaffer's (1986) account 
of logically related hypotheses informs that only one pairwise null hypothesis 
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possibly could be true. Therefore, the classical p-values associated with the adjusted 
mean pairwise comparison F-tests can be accepted without any Type 1 error 
adjustment because these values assume only one possibly true null hypothesis. 
Therefore, the comparison between the 60s and l 80s experimental condition 
adjusted means is declared significant, but the comparison between the 30 and 
60 s experimental condition adjusted means is declared not significant. (Note: 

The substantial F-values probably reflect the hypothetical nature of the data-such 
large F-values are unlikely in real research studies.) 

9.6 EFFECT SIZE ESTIMATION 

Just as related design effect estimates are modified for comparison with equivalent 
independent designs, it may be thought that something similar might be done to 
allow effect size comparisons across ANCOVA designs and their equivalent 
independent designs. However, while related designs reduce error without influ
encing the experimental effect estimate(s), ANCOVA reduces error and influences 
the experimental effect estimate(s). This is a key difference and one that precludes 
the comparability between ANCOVA and independent designs available between 
related and independent designs. 

9.6.1 A Partial @2 SOA for the Omnibus Effect 

The most appropriate estimate of effect size for ANCOVA is an estimate that takes 
into account the full consequences for the experimental effect and error term of 
the dependent variable on covariate regression. A partial w2 can be defined for the 
single factor ANCOVA omnibus (population) effect. Angle brackets denote the partial 
effect estimates 

2 
W2 _ CT effect (effect) - a2 + cr2 effect error 

(5.28, rptd) 

The partial w2 employs the adjusted experimental effect and the adjusted error, but 
omits from the denominator the variation explained by the regression of the dependent 
variable on the covariate. The partial @2 effect size estimate for the single factor 
ANCOVA omnibus effect is defined.by 

�2 dfeffect(Feffect - l) 
W(effect) = d'' (F 1) + N J effect effect -

Applied to the hypothetical ANCOVA experimental data provides 

�2 _ 2(62.883 - l )  = O 838 w(effect) - 2( 62.883 - 1) + 24 
. 

(5.29, rptd) 
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Again, the finding that as much as 84% of the variance associated with the 
experimental effect is attributable to the experimental effect probably reflects the 

hypothetical nature of the data. 

9.6.2 A Partial w2 SOA for Specific Comparisons 

As with independent and related designs, there is likely to be considerable interest in 

the SOA for particular comparisons between experimental conditions in ANCOVA 

designs. For example, just as it was in the hypothetical independent design, the SOA 

between the 30 and 180 s conditions in the hypothetical repeated measures study time 
experiment is of interest. 

For single factor ANCOVA designs, the specific comparison partial w2 can be 
defined as 

(4.16 , rptd) 

Applying equation (9.26) to the F-value obtained in Section 9.5 provides 

�
2 

111.488 - 1 110.488 
w(i/J) = 111.488 - 1 + 2(8) = 126.488 = 0·874 

Therefore, 87% of the variance in the 30 and 180 s populations is explained by the 
comparison between these two experimental conditions. As said before, this high w2 
for the specific comparison probably reflects the hypothetical nature of the data - it is 
unlikely that experimental manipulations would accommodate such a large propor
tion of the variance when real data is obtained. 

9.7 POWER 

Determining the sample size required to achieve a specific level of power in an 
ANCOVA design is virtually identical to determining the sample size required to 
achieve a specific level of power in an equivalent single or multi factor independent 
design (see Sections 4.3 and 5. 7). When the planned AN COVA experiment is based on 
a previous ANCOVA experiment, the first step is to calculate the omnibus or specific 
comparison partial @2 effect size estimates. Once these values are obtained, the 
remaining procedure replicates that described for single or multifactor independent 

designs. When an ANOVA is the basis of the planned ANCOVA, it is necessary to 
estimate the expected ANCOVA partial w2 effect sizes from the ANOVA @2 effect 
size(s). In population parameter terms, the relationship between an ANCOVA partial 
@2 effect size and an ANOVA @2 effect size is 

2 �2 (Teffect ANOVA 
W(effect)ANCOVA = a2 + (1 _ p2 )a2 effect ANOVA ZY S(A) 

(9.21) 
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where p�y is the correlation between the covariate and the dependent variable. When 
applied to experimental data, and an estimate of the correlation between the covariate 
and the dependent variable is available, perhaps from a pilot study, the ANCOVA 
partial w2 effect is estimated by 

2 
�2 _ Weffect ANOVA 
W(effect)ANCOVA - �2 �2 2 

weffectANOVA + (1- Pzy)(l -weffectANOVA) 
(9.22) 

In factorial designs, each ANOVA main and interaction effect should be modified as 
described above. 

9.8 OTHER ANCOV A DESIGNS 

Many texts on experimental design and statistical analysis often are vague about any 
form of ANCOVA other than single factor independent measures ANCOVA. 
Although there is insufficient space here to consider other ANCOVA designs in a 
detailed fashion, the following discussion is presented to provide some appreciation 
of the different types ANCOVA designs and analyses available. 

9.8.1 Single Factor and Fully Repeated Measures Factorial ANCOV A Designs 

Single factor repeated measures designs and indeed, all fully repeated measures 
factorial designs derive no benefit from ANCOVA. In these designs, as all subjects 
experience and provide a dependent variable score in all of the experimental 
conditions, there are no group differences to adjust and so no role for ANCOVA. 
(e.g., Keppel and Zedeck, 1989.) 

9.8.2 Mixed Measures Factorial ANCOV A 

In contrast to fully related factorial designs, there may be advantage in applying 
ANCOVA to mixed designs. There are two sorts of mixed ANCOVA design. In the 
simplest of these designs (Figure 9.2a), each subject provides a single score on the 
covariate(s). In the more complicated design (Figure 9.2b), each subject provides 
covariate scores in each experimental condition and it provides covariate scores for 
each dependent variable score. 

For the simpler mixed measures factorial ANCOVA design, the covariate(s) will 
have consequence for the independent measures factor (Factor A in Figure 9.2a) and, 
for the same reasons as described for single factor repeated measures designs, the 
covariate will have no effect on the related factor effect (Factor Bin Figure 9.2a), nor 
will the covariate exert any influence on the interaction between the related and the 
independent factors. Therefore, the simpler mixed measures factorial ANCOVA 
design may be analyzed by carrying out two separate analyses: (1) A single 
independent measures factor ANCOVA and (2) a mixed measures factorial ANOVA. 



234 THE GLM APPROACH TO ANCOVA 

Factor B 
b1 b2 b3 

Factor A Subiect z y y y 
1 

a1 2 
3 
4 

a2 5 
6 

(a) 

Factor B 
b1 b2 b3 

Factor A Subject z y z y z y 
1 

a1 2 
3 
4 

a2 5 
6 

(b) 

Figure 9.2 Mixed factorial ANCOVA designs. (a) Mixed factorial ANCOVA design with one 

covariate measure per subject. (b) Mixed factorial AN COVA design with one covariate measure 

per repeated measure. 

The effect of the independent measures factor is assessed by a single factor AN COVA 

applied to the subjects' covariate score(s) and the mean of their repeated measures 

scores. The related factor main effect and the independent factor and related factor 

interaction effect are assessed by a mixed measures factorial ANOVA. 

In the more complicated mixed measures factorial ANCOVA design (Figure 9.2b), 

the covariate(s) have consequence for both independent and related factor effects. 

Consequently and in contrast to the simpler mixed measures factorial ANCOVA 

design, there are no convenient shortcuts or checks. The traditional ANOVA 

approach to both mixed factorial ANCOVA designs is presented by Winer, Brown, 

and Michels (1991), while Huitema (1980) describes the regression GLM for the 

simpler mixed measures factorial ANCOVA (Figure 9.2a). Considerable care also 

should be taken when using statistical software to implement these sorts of 

ANCOVA. Indeed, there is sufficient ambiguity over the form of ANCOVA 

implemented by some statistical software packages that testing the package by 

using it to analyze example data (as provided in statistics texts) and inspecting the 

results output to see if they match with the expected results is a wise strategy. 



CHAPTER 10 

Assumptions Underlying ANOVA, 

Traditional ANCOVA, and GLMs 

10.1 INTRODUCTION 

Ensuring the statistical assumptions underlying analyses are tenable often is consid

ered to be a technical matter to be addressed and resolved prior to the streamlined 

presentation of the study results in a research journal. Unfortunately this can convey 

the impression that assumption assessment is not done and so cannot be important. 

However, the authors of nearly all higher level psychology statistics texts endorse the 

view that assumption checks should be carried out to ensure the validity of the data 

analysis (e.g., Cohen et al., 2003; Howell, 2010; Keppel and Wickens, 2004; Kirk, 

1995; Maxwell and Delaney, 2004; Myers, Well, and Lorch, 2010; Winer, Brown, and 

Michels, 1991). Indeed, a good understanding of analysis assumptions enables a 

researcher to determine the extent to which any of the assumption violations detected 

jeopardize the validity of the analyses applied. 

Given this account, it may be surprising to discover that whether or not assumption 

checks should be conducted before an analysis is applied has become a matter 

of debate with some authors unequivocally advising against any assumption checks 

(e.g., Wells and Hintze, 2007). The argument for abandoning assumption checks is 

considered at the end of this chapter. However, the prior presentation of ANOVA, 

traditional ANCOVA, and GLM assumptions and methods of assessing these 

assumptions anticipates the outcome of this consideration. 

10.2 ANOV A AND GLM ASSUMPTIONS 

A least squares GLM specification includes more than an equation describing the data 

in terms of model parameters and error terms. There is also a set of assumptions 

specifying restrictions on the model parameters and error terms. Some model 

ANOVA and ANCOVA: A GLM Approach, Second Edition. By Andrew Rutherford. 
© 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc. 
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parameter assumptions were discussed in Section 2.8, but assumptions about AN OVA 
model parameters often are expressed implicitly in terms of the experimental design 
and are made explicit only when the ANOVA is discussed in greater statistical detail. 
Nevertheless, when GLM statistical assumptions are considered, there is an almost 

exclusive focus on the assumptions about the error terms - only in ANCOVA does the 

focus shift to assumptions about model parameters (see Sections l 0.2.3 and 10.4.2.1 ). 

However, this focus may be regarded as a parsimonious strategy, as examining errors 
not only provides a direct assessment of the error assumptions, but the nature of any 

error assumption violations also can reveal problems with assumptions about the 
model parameters. 

Although only one small set of assumptions underlie all GLMs, sometimes it seems 
there are a number of distinct analyses and all make different statistical assumptions. 
A major contributor to this impression is the different terminologies that developed 
within the research areas employing regression and ANOVA (see Section 1.2). 

Misidentifying the matrix algebra expression as the GLM (see Section 1.3) also 
encourages the view that GLM analyses differ from regression and AN OVA analyses, 
while the use of regression terminology by GLMs (due to the regression format being 
more elemental and so more widely applicable) also suggests a false distinction 
between GLMs and regression on one side, and ANOVA on the other. However, 
another contributor to the impression of distinct analyses making different assump
tions is the additional assumptions some analyses make to simplify their calculation 
and interpretation. 

The following section on independent measures designs presents the typical 

expression of AN OVA assumptions and the typical expression of GLM and regression 
assumptions. It is explained why these two sets of assumptions are equivalent and that 
all GLMs make this small single set of statistical assumptions. Subsequently, the 
further assumptions made to simplify parameter estimation and interpretation when 
related ANOVA and traditional ANCOVA are applied are discussed. 

10.2.1 Independent Measures Designs 

The set of assumptions underlying all GLM analyses are most apparent in the context 
of independent measures designs. The ANOVA and GLM expressions of these 
assumptions are presented in Table 10.1. As the ANOVA and GLM assumptions 
labelled a in Table 10.l are expressed identically, their equivalence is appreciated 
easily. However, the assumptions labelled b, c and d, in Table 10.1 show that typically, 
ANOVA assumptions refer to the dependent variable scores, whereas GLM assump
tions are expressed with respect to their error components. 

Consideration of the independent measures experimental design GLM reveals the 
model component provides the predictions of the experimental condition means and 
the only deviation from these predictions is provided by the error term. As the only 
variation in scores within an experimental condition is due to the error term, it follows 

that examining scores by experimental condition is equivalent to examining their 
errors. Therefore, when the ANOVA assumptions b and c refer to scores within 
experimental conditions, really they are referring to the GLM errors and so these 
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Table 10.1 ANOV A and GLM Assumptions 

ANOVA Assumptions 

a Each condition contains a random 

sample of the population of such scores 

b The scores in each condition are 

distributed normally 

c The scores in each condition are 

independent of each other 

d The variances of the scores in each 

experimental condition are 

homogeneous 
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GLM Assumptions 

Each condition contains a random sample 

of the population of such scores 

Errors are distributed normally 

Errors are independent 

Errors are homoscedastic (errors exhibit 

common variance across all values of 

the predictor variables) 

ANOVA and GLM assumptions are equivalent. For assumption d, the same logic 

applies with respect to the equivalence of examining errors and dependent variable 

scores per condition. However, the homoscedasticity assumption is a more general 

form of the homogeneity assumption. The homoscedasticity assumption is that the 

error variances observed at any combination of predictor variable values will be 

equivalent, whereas the ANOVA assumption refers only to equivalent error variance 

across experimental conditions. For example, in ANCOVA, the homoscedasticity 

assumption is that error variance will be equivalent, not only across experimental 

conditions, but also at any covariate value within the experimental conditions. 

As the only way to assess error assumptions using full scores is on a condition by 

condition basis, each assessment is limited to the number of scores per condition. 

Although errors still can be identified by condition, as they are free of the influence of 

the experimental conditions, all errors can be examined together. Therefore, assessing 

error assumptions directly not only facilitates graphical and test based assumption 

checks by maximizing the data set, but it also allows sophisticated assumption checks 

developed for regression to be applied to ANOVA and ANCOVA. 

Valid significance tests require normally and independently distributed (NID) 

errors (e.g., Draper and Smith, 1998; Kirk, 1995; Pedhazur, 1997; Snedecor and 

Cochran, 1980). Although these assumptions are unnecessary when a GLM is used 

only to describe data, they still would enhance the accuracy of the description. 

However, as GLMs usually are applied with the intent to test the significance of 

parameter estimates, usually NID errors are necessary assumptions. 

The level of measurement appropriate for the GLM dependent variable is not 

presented as an ANOVA or GLM assumption. Some authors consider the level of 

measurement of the dependent variable as determining which statistical analyses are 

and are not appropriate (e.g., Stevens, 1951; Suppes and Zinnes, 1963). Typically, 

such authors would consider ANOVA as assuming an interval level of dependent 

variable measurement. However, there are also authors who consider the level of the 

dependent variable measurement to be largely irrelevant as far as choosing a statistical 

technique is concerned (e.g., Townsend and Ashby, 1984; Mitchell, 1986). ANOVA 

texts have tended, either implicitly (Kirk, 1995) or explicitly (e.g., Howell, 2010; 



238 ASSUMPTIONS UNDERLYING ANOVA, TRADITIONAL ANCOVA, AND GLMs 

Winer, Brown, and Michels, 1991) to concord with the latter view, Currently, the 
general opinion seems to be that the measurement issue falls within the realm of 
methodology, rather than statistics and it is more important that the numbers 
representing the dependent variable accurately reflect the entity in which there is 
interest, than they comply with the requirements of a particular measurement scale. 
After all, it may be that the entity in which we are interested does not increment in an 

orderly fashion, 

10.2.2 Related Measures 

Related measures designs (i.e., repeated measures and other randomized block 
designs) present a problem for the typical GLM assessment of the statistical 
assumptions concerning errors. In Chapter 6, it was described how each subject 
providing only one score per experimental condition precluded separation of the 
subject by factor interaction estimates from the error estimates and so, error estimates 
per se cannot be obtained. One consequence of the lack of error term estimates is that 
unique and self-contained assumption assessment and remedial techniques have 
developed for related measures designs. 

When the covariance matrix of the experimental condition scores is spherical, the 
biases in the numerator and the denominator mean squares cancel out to provide a 
valid and accurate F-test (Huynh and Feldt, 1970; Rouanet and Lepine, 1970). 
Therefore, when related ANOVAs are applied, spherical experimental condition score 
covariance matrices are assumed. Sphericity is a property apparent in the matrix 
algebra representation of the GLM experimental conditions covariance matrix when 
there is homogeneity of the variances of the differences between the scores in the 
related experimental conditions - the related factor levels. For example, given a 
repeated-measures ANOVA with three experimental conditions, the variance of the 
differences between the subjects scores in Conditions 1 and 2 should be the same as 
the variance of the differences between the subjects scores in Conditions 1 and 3, or 2 
and 3. Despite homogeneity of variances of differences providing a clear statement of 
the nature of the assumption, the more obscure sphericity label is more popular, 
probably due to its brevity. 

A more constrained form of sphericity is termed compound symmetry or 
circularity. The experimental conditions covariance matrix will exhibit compound 
symmetry if and only if there is homogeneity of score variance across all conditions 
(1, 2, and 3) and homogeneity of all correlations between scores across all pairs of 
conditions (i.e., 1 and 2, 1 and 3, 2 and 3). Although sphericity without compound 
symmetry is possible (but not compound symmetry without sphericity ), if real data are 
spherical, then they almost always exhibit compound symmetry (Howell, 2010; 
Maxwell and Delaney, 2004). Nevertheless, the need to assume a spherical covariance 
matrix is a significant restriction for psychological data. 

10.2.2.1 Assessing and Dealing with Sphericity Violations 
Box ( 1954) described a parameter that indexes the extent of the sphericity assumption 
violation. (Unfortunately, as the Greek letter epsilon, £, is used to denote this 
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parameter, the potential for confusion arises as epsilon also denotes the error term 
parameter.) Box's <: varies between 0 and 1, with lower values indicating greater 
violation of sphericity, but it tends to underestimate the parameter<:, so overestimating 
the extent of the sphericity violation. However, due to the laborious calculations 
required to obtain an estimate of<: ( £), most workers used Geisser and Greenhouse's 
lower bound adjustment instead. Geisser and Greenhouse (1958) demonstrated that 

the lowest possible value for the parameter<: in a single factor ANOVA design with p 

levels provides a numerator df of 1 and denominator dfs of (p - 1 ). Of course, this is a 
very conservative adjustment, as for most data the true value oft: would be much larger 
than that which would provide the lower bound adjustment. In place of Box's £, 
Huynh and Feldt (1976) suggested the estimate£. However,£ tends to overestimate<: 
slightly and so, it slightly underestimates the sphericity violation. (Keep in mind that 
lower values of <: indicate greater sphericity violation.) Laborious calculations are 
required to estimate £and£, but from the late 1970s, these estimates were provided by 
many statistical packages and began to be used in preference to Geisser and Green
house's lower bound adjustment (see Table 10.2). Confusingly, however, the statisti

cal packages usually label £as the Geisser and Greenhouse adjustment because these 
programs follow Geisser and Greenhouse's (1958) generalization of £ to more 
complicated designs. 

Greater violation of the sphericity assumption increases the F-test Type 1 error rate. 
However, reducing the F-test numerator and denominator dfs increases the p-values 
associated with the F-statistic. Therefore, once the extent of the sphericity assump
tion violation has been assessed, the F-value numerator and denominator dfs can be 
reduced appropriately to rectify the F-test Type 1 error rate and this is exactly what 
Box's Geisser and Greenhouse epsilon and Huynh and Feldt's epsilon are employed 
to do. 

Table 10.2 presents the SYSTAT repeated measures ANOVA summary table for 
the experimental data presented in Chapter 6. In common with most statistical 
software packages, the output includes Geisser and Greenhouse's generalization of 
Box's£, Huynh and Feldt's (1976) estimate,£, and the adjusted F-testp-values based 
on these two epsilon estimates. (SPSS provides the same information, but in a very 
unhelpful fashion.) There are three levels of the experimental conditions factor in this 
experiment, but when an experimental factor has only two levels, there can be only 
one difference between the factor levels and with only one difference, homogeneity of 

variance of differences (i.e., sphericity) cannot be an issue. 
When factorial repeated measures experimental design GLMs are applied, 

the typical output from a factorial repeated measures ANOVA provides 

Table 10.2 SYST AT Output: Summary Table for the Single Factor Repeated Measures 

ANOV A with Greenhouse-Geisser (G-G) and Huynh-Feldt (H-F) p-Value Adjustments 

Source SS df MS F p G-G H-F 

Experimental conditions ll2.000 2 56.000 20.634 <0.001 0.002 0.001 

Error 38.000 14 2.714 

Greenhouse-Geisser Epsilon, 0.562; Huynh-Feldt Epsilon, 0.595. 
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Greenhouse-Geisser and Huynh-Feldt epsilon estimates and p-value adjustments for 

each factor and each interaction between factors, Similarly, when mixed measures 

experimental design GLMs are applied, the typical output from a mixed measures 

ANOVA provides Greenhouse-Geisser and Huynh-Feldt epsilon estimates and p

value adjustments for each repeated measures factor and for each interaction 

involving a repeated measures factor, This demonstrates the applicability of the 

sphericity assumption to these factors and factor interactions. The GLM assumptions 

a and b also apply to these factors and their interactions. In mixed measures ANOVAs, 

all of the GLM assumptions apply to the independent factors. 

Greater access to statistical computing resources has supported the application of a 

multivariate approach to the analysis of related measures data (e.g., Hand and Taylor, 

1987; Maxwell and Delaney, 2004; O'Brien and Kaiser, 1985). However, empirical 

evidence indicates that with balanced designs, both the corrected df and multivariate 

approaches provide valid and effective control of Type I error (Keselman, Lix, and 

Keselman, 1996), but generally the univariate approach is more powerful (see 

Davidson, 1972, or the summary provided by Maxwell and Delaney, 2004). For this 

reason and also because the univariate approach links more easily to multilevel 

modeling approaches to the analysis of related measures, the focus here is on the 

univariate GLM approach to related measures designs. 

10.2.3 Traditional ANCOV A 

In addition to all of the ANOVA assumptions, traditional ANCOVA also makes the 

assumptions listed in Table 10.3. T hese assumptions have no counterparts in GLM 

terms, as they are made to simplify the interpretation and/or calculation of the 

ANCOVA. Although orthogonal predictors are preferable and correlations can cause 

interpretation problems, covariate-treatment correlations do not preclude accurate 

and informative analysis (Cohen and Cohen, 1983; Rutherford, 1992). GLMs also 

can accommodate nonlinear regression of the dependent variable on the covariate 

(see polynomial regression, e.g. Draper and Smith, 1998; Kutner et al, 2005) and 

heterogeneous regressions (e.g. Rutherford, 1992; Searle, 1979, 1987). Indeed, the 

popularity of heterogeneous regression ANCOVA seems to be increasing (e.g., 

Maxwell and Delaney, 2004). 

The form of ANCOVA incorporating the assumptions listed in Table 10.3 is termed 

traditional ANCOVA to distinguish it from less constrained forms of ANCOVA. 

Table 10.3 Specific ANCOV A Assumptions 

a The covariate is independent of the treatments 

b In each treatment group the relationship between the covariate and the dependent variable 

is linear (the covariate and dependent variable are expressed at the first power only) 

c The regression coefficients of the dependent variable on the covariate in each treatment 

group are homogeneous 
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Traditional ANCOVA is still the most common form of ANCOVA applied in 

psychological research and the programs labeled ANCOVA in most commercial 

statistical packages implement this form of ANCOVA. Beyond the benefits accrued 

from simplifying ANCOVA interpretation and/or calculation, there are other reasons 

for choosing traditional ANCOVA. First, the good ANCOVA design practice of 

measuring the covariate before administering the experimental manipulation(s) 

usually ensures the experimental conditions cannot influence the covariate and 

second, most relationships between covariates and dependent variables in psychology 

appear to be linear, or are approximately linear. Therefore, it is very likely that two of 

the three traditional assumptions will be tenable for most ANCOVAs. Unfortunately, 

however the assumption of homogeneous regressions across experimental conditions 

becomes more tenuous as the number of experimental conditions increases and as the 

number of experimental factors increase (e.g., Winer, Brown, and Michels, 1991). 

10.3 A STRATEGY FOR CHECKING GLM AND TRADITIONAL 

ANCOV A ASSUMPTIONS 

A general strategy for checking GLM and traditional ANCOVA assumptions is 

presented. Lack of space prevents the detailed description of measures-mainly data 

transformations-to remedy data that fail to meet ANOVA or ANCOVA assumptions. 

Nevertheless, excellent accounts are provided by Daniel and Wood (1980), Emerson 

(1991 ), Hoaglin, Mosteller, and Tukey (1985), Kirk (1995), Mosteller and Tukey 

(1977), Kutner, Nachtstein, Neter and Li (2005), Tukey (1977), and Weisberg (1985). 

An interesting debate as to whether and which transformations should be applied can be 

found in Games (1983, 1984), Levine and Dunlap (1982, 1983), and Grissom (2000). 

Moreover, if certain assumptions underlying traditional ANCOVA are violated, some 

of the alternatives to traditional ANCOVA (Chapter 11) may be applied. 

The GLM assumptions provide criteria to judge the statistical validity of any GLM, 

while the nature of error assumption violations can indicate other problems with the 

model parameters applied. For example, violations of the extra traditional AN COVA 

assumptions typically manifest as violations of one or more GLM error assumptions. 

The general strategy advocated to check ANOVA and ANCOVA assumptions 

employs a stepwise, and, if necessary, an iterative approach. The basic outline of this 

strategy is presented in Figure 10.1. 

First, the analysis is implemented and the GLM residuals (the error term estimates) 

are obtained (Box 1 and Box 2). These residuals are analyzed in terms of their 

conformity to GLM assumptions (Box 3). At this point the first branch in the 

assessment path is reached. If the GLM assumptions are judged to be tenable, nothing 

more need to be done and the analysis results can be interpreted (Box 4). However, if 

any of the GLM assumptions is judged to be untenable after an ANOVA was 

implemented (Box 5), remedial action(s) must be undertaken with respect to the 

model or data (Box 6). If any of the GLM assumptions are judged untenable after an 

ANCOVA was implemented (Box 7), then it is possible that the cause of the GLM 

assumption violation( s) is a failure of one or more of the specific traditional AN COVA 
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Interpret 
results 
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ANOVA? 

Remedial 
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model/data 

Figure 10.1 Flow chart of a general strategy for checking ANOVA and ANCOVA 
assumptions. 

assumptions (Box 8). If violations of any specific traditional AN COVA assumptions 

are detected, then appropriate remedial action on the model or data should be 

undertaken (Box 6). If there are no specific traditional ANCOVA assumption 

violations, a failure of one or more of the GLM assumptions is indicated (Box 9). 

In such circumstances, remedial actions with respect to the model or data should be 

undertaken (Box 6) and the analysis repeated (Box l). Nevertheless, after the second 

analysis, it is necessary to ensure the underlying assumptions are tenable before 

interpreting the results. 

10.4 ASSUMPTION CHECKS AND SOME ASSUMPTION 

VIOLATION CONSEQUENCES 

There are both graphical and significance test methods for assessing assumption 

conformity. Although the former approach seems more popular (e.g., Cohen et al, 

2003; Cook and Weisberg, 1983; Draper and Smith, 1998; Lovie, 1991b; 

Montgomery and Peck, 1982; Kutner, Nachtsheim, Neter, and Li, 2005; Norusis, 

1990; Pedhazur, 1997), it may be difficult for the less experienced to determine 

assumption violations in this way. With graphical approaches there may be a tendency 
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to ignore or fail to appreciate the spread of scores in relation to the specific aspect of 

the data considered. In contrast, it is exactly these relations that most significance tests 

formalize. Nevertheless, as sample size increases, test power increases and with large 

enough samples, virtually all tests will have sufficient power to reject the null 

hypothesis. This is a problem because the influence of random processes makes 

exact conformity with assumptions extremely unlikely and so the issue always is the 

extent to which assumptions are met. With large data sets, the ability to reject the null 

hypothesis may not be the best assessment criterion. As well as determining the 

significance level, the extent of the assumption violation should be considered, 

perhaps by comparing the size of the test statistic obtained with its expected value 

under the null hypothesis. 

To illustrate graphical and significance test methods, some of the assessment 

techniques described are applied to the single factor independent measures AN COVA 

with one covariate example (see Chapter 9). Most commercially available statistical 

packages are able to describe ANOVA and ANCOVA in terms of the experimental 

design GLM and can provide estimates of the model errors (residuals) as part of the 

output. Once obtained, the residuals can be input to other programs in the statistical 

package for examination. However, implementing ANOVA and ANCOVA as regres

sion models does offer an advantage with respect to the analysis of errors. As most 

good quality regression software provides a range of techniques for examining errors 

regression implementations of ANOVA and ANCOVA can make use of these 

(sometimes automatic) regression diagnostics programs. 

10.4.1 Independent Measures ANOV A and ANCOV A Designs 

10.4.1.1 Random Sampling 

Ideally, assumption (a) in Table 10. l should be satisfied by implementing two 

randomization procedures, one after the other. First, subjects are sampled randomly 

from the population of interest. The manner of this sampling determines the validity of 

the inferences from the sample to population of interest. However, very few experi

ments in psychology invest great effort to ensure a random sample of the population to 

which inferences will be generalized. Most research conducted in European and 

American universities employs convenience samples of the undergraduate popula

tion. Usually results are generalized to the population of the western world, if not the 

population of the whole world, on the presumption that with respect to the psycho

logical processes examined in the experiment, there are no real differences between 

the participating undergraduates, the rest of the undergraduate population, and the 

western and world populations (see Maxwell and Delaney, 2004; Wright, 1998). 

Second, the subjects constituting the sample are assigned randomly to the experi

mental conditions. After such random assignment, it is most likely that any subject 

characteristics such as academic ability, friendliness, and so on, will be distributed 

equally across all conditions. In other words, it is most unlikely that differences in 

subjects' dependent variable scores will be due to differences in subject character

istics across experimental conditions. Consequently, random assignation of subjects 

to experimental conditions is the basis for attributing any differences observed 
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between the experimental conditions to these experimental conditions. The validity 

of any ANOVA is severely questioned whenever these sampling procedures are 

compromised. 

10.4.1.2 Independence 
The value of one GLM error is assumed not to affect the value of another. However, 

while error terms are conceived as independent, when h GLM parameters are estimated 

from N observations, there are only N - h dfs, so the residuals, the error term estimators, 

will covary (e.g., Draper and Smith, 1998). Residuals related only in this way are of little 

concern. However, residuals may be related in other ways and relatively few statistical 

texts point out that ANOVA and AN COVA are not robust with respect to violation of the 

independent errors assumption (e.g., Maxwell and Delaney, 2004). 
As well as being part of the basis for attributing experimental effects to the 

experimental manipulation, randomization procedures also increase the likelihood of 

independent scores; there is no reason to believe that scores from subjects randomly 

selected from the population of interest and randomly allocated to experimental 

conditions will be related. Generally, appropriate randomization procedures (and the 

application of a pertinent analysis) provide independent errors. However, contrary to 

some claims (e.g., Winer, Brown, and Michels, 1991), randomization procedures 

cannot assure error independence. Sometimes despite random sampling and assign

ment, relations between scores can arise. In particular, the way in which the dependent 

variable scores are collected may produce related scores. For example, scores from 

subjects tested as a group, or scores obtained using a certain piece of equipment, or 

questionnaire, and so on may be related. Consequently, consideration of the full 

study methodology, ideally before its implementation, is necessary to ensure inde

pendent errors. 

Kenny and Judd (1986) describe means of assessing the nonindependence of 

ANOVA errors due to groups, sequence and space, as well as methods to eliminate the 

F-ratio numerator and denominator mean square biases caused by nonindependent 

errors (see Section 10.2.2). Of these three sources, nonindependence due to groups is 

the most frequently encountered in psychological research. Groups may be defined in 

a variety of different ways (e.g., see blocking, Hays 1994; Kirk, 1995; Winer, Brown, 

and Michels, 1991). Most familiar and obvious is the situation where groups and 
experimental conditions are equivalent. However, data sharing any common feature 

can be grouped. Ideally, groups should be crossed with experimental conditions. In a 

single factor ANOVA design, where data are arranged on the basis of the grouping 

criteria, the nonindependence of errors due to groupings when a spherical covariance 

matrix is assumed can be estimated by the Within Groups Correlation 

( 10. l) 

where MSb and MSw are the mean squares between and within groups, and N1 is the 

number of scores in each group (e.g., Kenny and Judd, 1986). The WGC calculated 

can be treated as an F-ratio with (N - 1) numerator and (N - 1) denominator dfs 
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(Donner and Koval, 1980). Negative group linkage is indicated by significant WGC 
values below 1 and positive group linkage is indicated by significant WGC values 
above 1. Positive values indicate greater similarity of residuals within groups than 

between, while negative values indicate the converse. Preliminary application of this 
formula may indicate nonindependence that should be accommodated in the experi

mental design GLM (see below). 
Graphical assessment of errors related through groups also is possible. When errors 

are plotted against the suspected groupings, dependence should be revealed by errors 
bunching within groups. This is a graphical analog of equation ( 10.1 ). In addition to 
nonindependence due to grouping, Kenny and Judd (1986) also discuss significance 
test methods of assessing error dependence due to sequence and space, while Draper 
and Smith (1998), Montgomery and Peck (1982), and Kutner at al, (2005) present 
graphical methods of assessing error dependence due to sequence. 

Once the related scores are identified, they are treated just as scores from the same 

subject (or block) would be treated. In other words, the statistical procedures used to 
analyse related measures (or blocked) designs are applied. Nevertheless, prevention 
of non-independence is far preferable to cure, not least because, unlike the use of 
blocks in a planned experiment, post-hoc groupings may not be easily identified nor 
conveniently nested or crossed. 

10.4.1.3 Normality 
Wilcox ( 1998a) raised the profile of the normality assumption. Wilcox argues 

strongly that even slight deviations from the normal distribution can have substan
tial consequences for analysis power. However, most psychology statistical texts 
report ANOVA (and ANCOVA) as being robust with respect to violations of the 
normality assumption (e.g., Hays, 1994; Kirk, 1995; Maxwell and Delaney, 2004; 
Winer, Brown, and Michels, 1991), especially when the experimental condition 
sample distributions are symmetrical and the sample sizes are equal and greater than 
12 (Clinch and Keselman, 1982; Tan, 1982). Indeed, Hays (1994) describes the 

robustness of ANOVA to non-normal distributions to be in proportion to the sample 
size; greater non-normality exerts less influence on the F-test as the sample size 
increases. Although data that mildly violates the normality assumption is not 
uncommon, severe departures from normality are quite rare (but see the differing 
views of Bradley, 1978; Glass, Peckham, and Sanders, 1972; Micceri's, 1989, 
critique of the normality assumption for achievement and psychometric variables). 
Nevertheless, robustness is a matter of degree and greater departures from normality 
are likely to exert some effect on the F-test Type I error rate. 

Conformity to a normal distribution can be assessed in a number of ways. Hays 
( 1994) suggests the use of the Kolmogrov-Smimov test, which assess the discrepancy 
between hypothetical and sample distributions. This appears to be more powerful 
than the alternative chi-square test (Siegel and Castellan, 1988). However, the 
Shapiro-Wilk (1965) test is another popular means of assessing normality, as is the 

Lilliefors test (Lilliefors, 1967), which is a modification of the Kolmogrov-Smimov 

test, specifically for sample data. The Shapiro-Wilk test is more conservative than the 
Lilliefors test, but as ANOVA and ANCOVA appear to be robust with respect to 
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normality assumption violations and the aim is to screen for large deviations, 
generally it is accepted that powerful tests are unnecessary. 

Most statistical packages can provide skew and kurtosis statistics and also the 

standard errors of these statistics. (Karl Pearson originally labeled the skew index g 1 

and the kurtosis index g2. Skew and Kurtosis also are known as the third and fourth 
moments of the normal distribution.) Dividing the skew and kurtosis statistics by their 

respective standard errors provides an approximation to a Z-score that can be used as a 

significance test. However, standard error is a function of sample size (all else being 
equal, larger samples have smaller standard errors) and so larger samples tend to 
provide greater Z-scores. Consequently, although Z-tables have no obvious markers of 

sample size, such as dfs, it should be appreciated that the power of these Z-score tests 

also increase with sample size. 

Normal probability plots of GLM error terms provide a graphical alternative to 

determine whether the data is likely to have been sampled from a normally distributed 

population. Normal probability plots are constructed by first ranking the observed 

errors from smallest to largest. Subsequently, these ranked or ordered observations are 

plotted against their observed cumulative frequency ( centiles) on a graph where the Y
axis has been scaled appropriately for the hypothesized distribution. When this is 

done, the observed cumulative frequency (centiles) should equal the ordered ob

servations, that is, y = x (e.g., Chambers et al., 1983) and so, the plot of the observed 

cumulative frequency (centiles) on ordered observations should lie along a straight 

line with unit slope that passes through the graph origin (i.e., 0,0). A SYSTAT normal 
probability plot of the ANCOVA errors (see Section 9.3) and the results of the 

Lilliefors test are presented in Figure 10.2. Although it would be very useful if 

SYSTAT provided an option to include the straight line upon which the plotted points 

should lie, this line can be drawn on the plot very easily, as described. First, request the 
default normal probability plot and note the minimum values on the X- and Y-axes. In 

the default normal probability plot of the AN COVA errors (Plot A in Figure 10.2), the 

minimum Y-axis value is - 3, while the minimum X-axis value is - 10. The next step 

is simply to increase the shorter length axis to match the length of the longer axis. In 

this case, the minimum Y-axis is extended to - 10. When this is done and the graph is 

replotted, a straight line drawn from the bottom left comer (where both X- and Y-axes 
now have equivalent minimum values < 0), through the origin toward the top right 
comer will be the line upon which the observed cumulative frequency (centiles) on 

ordered observations should lie (Plot B in Figure 10.2). 

Both the normal probability plot and the significance test indicate some deviation 
from a normal distribution but given the robustness of ANOVA and the size and 

balanced nature of the sample, insufficient to affect the F-test interpretation. (Miles 
and Shevlin, 2001, provide a good introduction to interpreting the normal probability 

plot deviations from the straight line.) Sometimes, half-normal probability plots of 
residuals (obtained by plotting absolute residual values) are suggested when there are 
few data points (e.g., Lovie, 1991). However, these plots often suggest greater 

deviation from linearity than equivalent "full-normal" probability plots and greater 

experience may be required for accurate interpretation (Draper and Smith, 1998, also 

see Judd and McClelland, 1989). 
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Figure 10.2 Normal probability plots of ANCOVA errors and the Lilliefors significance test 
result. 
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10.4.1.4 Homoscedasticity: Homogeneity of Variance 

Homoscedasticity can be defined as constant error variance (estimated by the GLM 
residuals) at every value of the predictor variable, and/or every combination of the 
predictors (e.g., Kirby, 1993), while some authors define homoscedasticity as constant 
error variance across all of the predicted values of the dependent variable (e.g., Cohen 

et al, 2003; Judd and McClelland, 1989). However, the most detailed set of predictor 

value combinations available from any data set is provided by the predictor combina
tions associated with each data point. As each data point has a corresponding 
predicted value, examining variance by predicted values is equivalent to variance 
examination at every combination of predictor values. 

The deviations between the predicted scores (i.e., the experimental condition 
means) and the observed dependent variable scores are squared and summed for each 
experimental condition to provide the separate SSwithin groups· As a pooled average of 
these separate variance estimates, the MSe should reflect the variation within each of 
the experimental conditions. However, with heteroscedasticity, the MSe poorly 
reflects the variation within each experimental condition and so compromises the 
validity of the F-test. 

Most psychology statistical texts (e.g., Hays, 1994; Kirk, 1995; Maxwell and 
Delaney, 2004; Myers and Well, 2003; Winer, Brown, and Michels, 1991) report 
ANOVA (and ANCOVA) as being robust with respect to moderate violations of 
heteroscedasticity, provided the experimental condition sample sizes are equal (i.e., 
balanced) and greater than five (Clinch and Keselman, 1982; Tomarken and Serlin, 
1986). It is worth emphasizing that when sample sizes are unequal, moderate hetero
scedasticity can have a substantial effect on F-test Type 1 error rates (e.g., Lix and 
Keselman, 1998; Scheffe, 1959). However, as said with regard to the normality 
assumption, robustness is a matter of degree and increasing heteroscedasticity will 
increase the F-test Type 1 error rate. Therefore, screening to ensure that there is no gross 
departure from homoscedasticity and that the GLM is appropriate for the data would 
appear to be sensible. 

Errors plotted on the ANOVA or ANCOVA experimental conditions should take 
the shape of a horizontal band, but this is not the case in Figure 10.3, where the plotted 
errors exhibit more of a wedge shape (although the 'direction' of the wedge depends 
on the inclusion or exclusion of the score nearest the X-axis). Discrepancies in the 
length of the vertical error "stripes" over the experimental conditions indicate 
heterogeneous error variance as a function of the experimental conditions. However, 
errors should also be plotted on the predicted values, as in Figure 10.4. Indeed, this 
may be the easier method of graphical assessment, particularly if more than two 
experimental conditions have been coded for a regression model implementation of 
ANOVA or ANCOVA. Shapes other than a horizontal band most likely indicate error 
variance increasing with the size of the GLM estimate. Although in theory, error 
variance may decrease as the predicted values increase, rarely is this seen in practice. 

Also presented in Figures 10.3 and 10.4 are the results from Cook and Weisberg's 
(1983) score test. The score statistic is the regression of U, the standardized residual 
squared, on the predicted values (or any independent variable), divided by 2. The score 
statistic has an approximate chi-square distribution with one df, which provides a very 
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Figure 10.4 Errors on predicted scores and Cook and Weisberg's score test for predicted 
scores. 
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useful significance test of homoscedasticity. Step-by-step accounts of how to calculate 

the score test are presented by Weisberg (1985) and Kirby ( 1993 ). This test is also 
incorporated into the BMDP regression program P2R. (Unfortunately, however, the 

BMDP score test is very poorly documented and easily could be missed. The score test 

result appears as a single line directly below the diagnostic error variance plot to which 

it refers. Moreover, there is no account in the BMDP Manuals of the fact that separate 

score test statistics are calculated for each predictor and for the predicted values, but 

only the plot and score test for the variable associated with the largest score test and so, 

greatest heteroscedasticity, are presented. Indeed, nowhere in the BMDP Manuals is 
there mention of this extremely useful significance test of homoscedasticity, see BMDP 
Communications, 1983, Vol. 16, No. 2, p. 2). Whereas the graphical and significance 

test assessments of errors by predicted scores suggest conformity to the homoscedas

ticity assumption (Figure l 0.4 ), this is not the case when the graphical and significance 

test assessments examine errors by experimental condition (Figure 10.3). This differ

ence emphasizes the value of examining errors as a function of a number of GLM 

components. The error attributable to an outlier (the data point nearest to the X-axis in 

both graphs) is very noticeable also and deleting this outlier may benefit assumption 
conformity substantially. A good introduction to dealing with outliers is provided by 
Pedhazur (1997). Finally, it should be mentioned that heteroscedasticity resisting all 

remedial measures may indicate the omission of a predictor variable. 

10.4.2 Traditional ANCOV A Designs 

10.4.2.1 Covariate Independent of Experimental Conditions 

Although it is inevitable that the covariate(s) and experimental conditions will have 
some sort of conceptual link, traditional ANCOVA assumes that the covariate(s) and 

experimental conditions are statistically independent: Experimental conditions 

should not affect the distribution of covariate scores, nor should the covariate(s) 
influence the nature of the experimental conditions. When the covariate(s) and 

experimental conditions are related, traditional ANCOVA adjustments on the basis 

of the general covariate mean(s) are equivalent to modifying the experimental 

conditions, so that adjustments to the dependent variable can remove part of the 

experimental effect or produce an artefactual experimental effect (Cochran, 1957; 
Elashoff, 1969; Keppel, 1991; Kirk, 1995; Smith, 1957). Good design practice in 
ANCOVA involves measuring the covariate(s) before the experimental manipulation. 

Logically, this makes it impossible for the experimental conditions to influence the 

covariate (e.g., Howell, 2010; Keppel, 1991; Kirk, 1995; Winer, Michels, and Brown, 

1991). Measuring the covariate(s) after the experimental manipulation affords the 

opportunity for the experimental conditions to exert an influence on the covariate(s) 
and is one way in which a relation between covariate(s) and experimental conditions 

can arise. However in ANCOVA, a relation between covariate(s) and experimental 

conditions can also arise as a consequence of the procedures employed to assign 

subjects to experimental conditions. 

The least serious relation between covariate(s) and experimental conditions has 

been termed fluke assignment (Maxwell and Delaney, 2004). Fluke assignment is 
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when, despite random assignment, different experimental condition covariate dis

tributions are obtained. With fluke assignment, the differences between experimental 
condition covariate distributions that produce the relation between covariate(s) and 

experimental conditions reflect a Type I error. However, in these circumstances, 

ANCOVA is the appropriate analysis to control any resulting bias (Permutt, 1990; 

Senn, 1989; Shirley and Newnham, 1984). 

A more serious relation between covariate(s) and experimental conditions caused 

by assignment procedures is known as biased assignment. Here, the covariate scores 

are used as an assignment criterion. Two types of assignment may be used. In one, 
only subjects with particular covariate scores (e.g., below the mean of all covariate 

scores recorded) are assigned to the experimental conditions. With the other type of 

assignment, subjects scoring high on the covariate are placed in one experimental 

condition and low scoring subjects are placed in another experimental condition 
(Huitema, 1980). Even when biased assignment has been used, traditional ANCO
VA will adjust for the differences between the covariate distributions and will 
provide an unbiased test of the experimental effects (Rubin, 1977). Nevertheless, as 

experimental condition covariate distributions become more distinct, so the tena
bility of the traditional model assumptions becomes more important for the 
interpretation of the analysis (see Cochran, 1957; Huitema, 1980; Maxwell and 
Delaney, 2004). Taylor and Innocenti (1993) also refer to this issue, when they assert 
that if the general covariate mean is not logical for a variable, it should not be used as 
a covariate. 

The most serious covariate-experimental condition relation caused by assign
ment procedures occurs when intact groups serve as the subjects in each of the 
experimental conditions. A typical example is the use of two classes of school 

children to compare two types of teaching method. When intact groups constitute 
the experimental conditions, interpretation of the ANCOVA results should proceed 
with considerable caution. With biased assignment, the basis for the difference 

between experimental conditions is known. In contrast, intact groups may be 
distinguished on the basis of a whole range of unknown variables. If the covariate 

scores of the intact experimental conditions differ, this can be conceived as an 
effect of the experimental conditions on the covariate(s). However, as the 
relationship between the covariate(s) and any set of (unknown) variables distin
guishing the experimental conditions cannot be determined, there is a model 
specification error and the nature and consequences of the ANCOVA adjustment 
cannot be known (e.g., Overall and Woodward, 1977). (Intact groups also violate 

the random sampling and independence assumptions and so creates a number of 

problems for ANOVA.) 
The issue of covariate measurement error is also pertinent here. Strictly, the covariate 

(in common with all of the independent variables) is assumed to be measured without 
error. However, provided random assignment or even biased assignment to experi
mental conditions is employed and all other assumptions are tenable, the consequence 
of covariate measurement error (cf. no covariate measurement error) is only a slight 

reduction in the power of the ANCOV A. However, when intact experimental conditions 

are used, covariate measurement error is expected to provide biased ANCOVA 
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experimental effects. (For further discussion of assignment to experimental conditions 
procedures, and the consequences of covariate measurement errors and methods of 

repair, see Maxwell and Delaney, 2004; Huitema 1980; Bollen, 1989.) 

In the GLM context, correlations among predictor variables, such as the covariate 

and the experimental conditions, is termed multicolinearity (e.g., Cohen et al, 2003; 

Kutner et al, 2005; Pedhazur, 1997). Previously, this term was used to describe 

predictors that were exact linear combinations of other model predictors (e.g., Draper 

and Smith, 1998), but now it tends to be applied more generally. Data exhibiting 

multicolinearity can be analyzed, but this should be done in a structured manner (e.g., 

Cohen et al, 2003, also see Rutherford, 1992, and Section 10.7.1 regarding the use of 

heterogeneous regression ANCOVA to attenuate the problems caused by covariate

experimental conditions dependence). Multicolinearity may also arise through 

correlations between two or more covariates. However, because there is seldom 

concern about the relative composition of the extraneous variance removed by 

covariates, this is much less problematic than a relation between the covariate(s) 

and the experimental conditions. 

One symptom of a covariate-experimental conditions relation is that the ANCOVA 

regression homogeneity assumption may not be tenable (Evans and Anastasio, 1968). 

Elashoff (1969), Maxwell and Delaney (2004), and Winer, Brown, and Michels 

( 1991) claim that carrying out an AN OVA on the treatment group covariate scores can 

be a useful indicator of experimental conditions influencing the covariate. However, 

with random assignment, the expectation is equal covariate treatment means and 

given that the covariate was measured before any experimental manipulation, what is 

to be made of a significant F-test? In such circumstances, covariate imbalance should 

reflect just less likely covariate distributions and, as argued by Senn ( 1989) and 

Permutt (1990), ANCOVA is the appropriate analysis to control any resulting bias. 

Consequently, an ANOVA on the treatment group covariate scores is appropriate only 

when there are theoretical or empirical reasons to believe that something more serious 

than fluke assignment has occurred. Adopting good ANCOVA design practice and 

applying all knowledge about the relationships between the study variables seem the 

only ways to avoid violating this assumption. 

I 0.4.2.2 Linear Regression 

When a linear regression is applied to describe a relationship between two variables 

that is not linear, the regression line will not only provide a poorer overall fit to the data 

but it will also fit the data better at some points than at others. At the well fitting points 

there will be smaller deviations between the actual and adjusted scores than at the ill 

fitting points. Consequently, the residual variance is likely to be heterogeneous and it 

is possible that the residuals may not be distributed normally (Elashoff, 1969). 

Moreover, as the points through which the regression line passes provide the predicted 

scores, a regression line that does not track the data properly provides predicted scores 

of questionable meaning. 

Atiqullah ( 1964) examined in purely mathematical terms the traditional AN COVA 

F-test when the real relationship was quadratic. With just two experimental conditions 

Atiqullah found that the F-test was biased unless there was random assignment of 
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subjects to experimental conditions. The other situation considered by Atiqullah was 

a single factor ANCOVA where the number of experimental conditions approached 
infinity. In such circumstances, despite random assignment, the traditional ANCOVA 
F-test was gravely biased, with the amount of bias depending upon the size of the 
quadratic component. However, precisely because the number of experimental 
conditions approached infinity, there is considerable dubiety concerning the relevance 

of these conclusions for any real ANCOVA study (Glass, Peckham, and Saunders, 

1972). Moreover, precisely because Atiqullah's examination was in purely mathe

matical terms, dealing with expectations over many experiments, these reservations 

may extend to the whole study. 
Huitema ( 1980) states that the assumption of linear regression is less important than 

the traditional AN COVA assumptions of random assignment, covariate-experimental 
conditions independence, and homogeneity of regression. This claim is made on the 
grounds that linear regression provides an approximate fit to most behavioral data and 

that nonlinearity reduces the power of the ANCOVA F-test by only a small amount. 
Nevertheless, as Huitema illustrates, in the face of substantial nonlinearity, ANOVA 
can provide a more powerful analysis than traditional ANCOVA. Moreover, with 
nonlinearity, as experimental condition covariate distribution imbalance increases, 
ANCOVA adjustments become extremely dubious. 

Although it may interfere with the smooth execution of the planned data analysis, 
nonlinearity should not be considered as a statistical nuisance preventing proper 
analysis of the data. Nonlinearity is a pertinent finding in its own right, as well as a 
feature of the data that should be accommodated in the model in order to allow its 
proper analysis. 

Many psychology statistical texts deliver a rather enigmatic presentation of 
regression linearity assessment. Most of these texts merely state the regression 
linearity assumption (Hays, 1994 ), or like Keppel (1991 ), they refer readers to Kirk 
(1995), who cites Kendall (1948), or Winer, Brown, and Michels (1991). Winer, 
Brown, and Michels ( 1991) distinguish between ANCOVA assumption tests and tests 
of other properties of the data. However, Winer ( 1962, 1971) includes tests of the 
regression linearity of the dependent variable experimental condition means on 
the covariate experimental condition means (fJEcM) and the linearity of the regression 
line based on the total set of scores (jJ,), plus a test of /Ji= Pw (see Chapter 9). Winer 
(1962) states, 

if this regression · ·(PEcM) · · does not prove to be linear, interpretation of the adjusted 
treatment means becomes difficult (Winer, 1962, p. 588). 

Winer ( 1971) omits this sentence, but as the presentation is identical otherwise, the 
same meaning is conveyed. Similarly, in his section on ANCOVA assumptions, Kirk 

( 1968, 1982, 1995) includes tests of the regression linearity of PEcM, and the linearity 
of jJ1, but no distinction is made in the text between these tests and those that assess the 
specific ANCOVA assumptions. Unfortunately, considerable misunderstanding and 
confusion about the nature of the traditional ANCOVA regression linearity assump

tion and how it should be tested can be caused by these accounts. 
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The traditional ANCOVA linearity assumption is that the regression of the 
dependent variable on the covariate(s) in each of the experimental conditions is 
linear (i.e., t�e {f1 a� linear). No other tests of regression linearity are pertinent. 

Linearity of /31 and /3EcM is expected only when there are no experimental effects. 

Given that regression linearity should be determined prior to the assessment and in the 

presence of experimental effects, indirect tests of � linearity are not satisfactory. 

Probably the most obvious way to assess the linearity of the separate groups 

regressions is to plot the dependent variable against the covariate (or each covariate) 

for each experimental condition. Another popular, but much less direct approach is to 

ignore experimental conditions and to plot residuals against the predicted scores. This 

approach has the advantage of generalizing over covariates. However, nonlinearity 

within one condition may be masked by the linearity within the other conditions, 

particularly when there are many conditions. Moreover, when any nonlinearity is 

detected, it will need to be traced to source and so eventually, checks per covariate per 

condition will be required. Further discussion of graphic checks of regression linearity 

is provided by Draper and Smith (1998), Montgomery and Peck (1982), and Kutner 
et al, (2005). Assessing linearity by inspecting data plots may be more difficult than 

the graphic assessments of normality and homoscedasticity, particularly when the 

linearity assessments are carried out per experimental condition, where there are 

fewer data upon which to form an opinion. Consequently, significance test methods 

may have a larger role to play, particularly for those less experienced in graphical 

assessment. 
Regression linearity also may be assessed by applying a significance test for the 

reduction in errors due to the inclusion of nonlinear components (e.g., Maxwell and 

Delaney, 2004). A nonlinear relationship between the dependent variable and a 

covariate can be modeled by including the covariate raised above the first power as a 

predictor. For example, the ANCOVA GLM equation 

(10.2) 

is termed as second-order polynomial model and describes a quadratic curve. The 

ANCOVA GLM equation 

( 10.3) 

is termed as third-order polynomial model and describes a cubic curve. Further 

components (e.g., quartic, quintic, etc.) can be added to increase the order of a GLM, 

but the highest order any equation may take is equal to the number of experimental 

conditions minus 1 (here,p - 1 ). However, it is exceptional for more than a third-order 

polynomial model to be needed to describe psychological data. 

To apply a polynomial model as described by equation (10.3), two new predictor 

variables must be created: Z2 and Z3. However, these variables will be correlated with 

Z, so the problem of multicolinearity arises. To deal with this, the data should be 
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analyzed in a structured manner (e.g., Cohen et al., 2003). For example, the traditional 

ANCOVA model 

(9.5, rptd) 

should be compared with the traditional ANCOVA model described by equa

tion (10.2). Any decrement in the error estimate of GLM equation (10.2) in 

comparison to the same estimate in equation (9.5) can be attributed to the 

f3w(ZiJ -Zc;)2 component. The component is retained if an F-test of the variance 

attributed to the component is significant. However, if error examination suggests that 

further curvilinearity exists, a third-order GLM may be compared with the second

order GLM. (For further information on curvilinear AN COVA, see Cohen et al., 2003; 
Huitema, 1980; Maxwell and Delaney, 2004. For further information on polynomial 

models, see Cohen et al., 2003; Draper and Smith, 1998; Neter, Wasserman, and 

Kutner, 1990; Pedhazur, 1997.) One advantage of this approach is that when all 

significant curvilinear components are included, the description of the curvilinear 

ANCOVA GLM is complete and the ANCOVA results can be interpreted. 
Figure 10.5 presents a plot of the dependent variable on the covariate with the linear 

regression lines depicted for each experimental condition. The ANCOVA Summary 
Table for the GLM described by equation (9.5) is presented in Chapter 9 (Table 9.2), 
while the ANCOVA summaries of the second- and third-order ANCOVA GLMs are 

presented in Table 10.4. As can be seen, assessing linearity per experimental condition 
graphically with only a few data can be a difficult task. However, the insignificant 
reduction in error variance attributable to the inclusion of the quadratic and cubic 
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Figure 10.5 A plot of the dependent variable on the covariate per experimental condition. 
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Table 10.4 Summaries of Error Reduction Due to the Second- and Third-Order 
ANCOVAGLMs 

Source SS Increment df MS F 

Covariate (Z2) GLM equation (10.2) 2.086 2.086 0.308 

p 

0.586 
Covariate (23) GLM equation (10.3) 4.464 1 4.464 0.659 0.428 
Error from GLM equation (10.3) 121.913 18 6.773 

R: 0.941; R2: 0.886; adjusted R2: 0.862. 

components suggests the tenablity of the dependent variable on covariate regression 

linearity assumption. 

10.4.2.3 Homogeneous Regression 

The final traditional ANCOVA assumption is that the regression slopes, described by 

the regression coefficients, are homogeneous across the experimental conditions. As 

the regression coefficient employed in AN COVA is a weighted average of the separate 

experimental conditions' regression coefficients ( Pw), two problems occur if there is 

heterogeneity of experimental condition regression coefficients. The first problem 

concerns the effect on the F-test. Monte Carlo investigations employing random 

assignment (e.g., Hamilton, 1976; also see Huitema, 1980) indicate that provided 

sample sizes are equal and exhibit homogeneous variance, heterogeneity of regression 

coefficients tends to result in conservative F-values, reducing the sensitivity or power 

of the analysis. This is because averaging over heterogeneous regression coefficients 

introduces error into /Jw, with the result that it is a poor estimate of the dependent 

variable on covariate regression slopes in all of the experimental conditions. 

Therefore, in comparison to the homogeneous regression slopes situation, where 

Pw is a good descriptor of all of the experimental condition regression slopes, there 

will be larger discrepancies between the actual and predicted scores. Consequently, 

the error variance will be larger and so the power of the analysis will be lower. 

However, this applies to ANCOVA employing random assignment, where the 

differences between experimental condition covariate means are expected to be zero. 

Hollingsworth (1976) (cited by Huitema, 1980) found Type 1 error increased with 

regression heterogeneity when nonzero differences between experimental condition 

covariate means were provided by nonrandom assignment. The second problem 

posed by heterogeneous regression ANCOVA is that treatment effects vary as a 

function of the covariate. As a result, and in contrast to the homogeneous regression 

situation, an assessment of experimental effects at any one measure of the covariate 

cannot be taken to reflect experimental effects at any other measures of the covariate 

(see Section 11.2). 
As with the regression linearity of the dependent variable on the covariate, 

heterogeneous regression coefficients across experimental conditions should not be 

considered as statistical nuisance interfering with the proper analysis of the data. 

Heterogeneous regression across experimental conditions is an important finding. 
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Regression heterogeneity indicates that the dependent variable on covariate relation

ship differs between experimental conditions. This is a result that should be consid

ered on a par with differences observed between experimental condition dependent 

variable means and it should be accommodated in the GLM to allow proper analysis of 

the data. However, it is worth repeating that heterogeneous regression coefficients 

may be symptomatic of a relationship between the covariate and the experimental 

conditions (Evans and Anastasio, 1968). 
Regression homogeneity may be assessed graphically by judging the relative 

slopes of experimental condition regression lines (see Figure 10.5). Alternatively, a 

significance test approach can be applied by examining the reduction in errors due to 

the inclusion in the GLM of a term representing the interaction between the covariate 

and the experimental conditions. The predictor variables representing the interaction 

between the covariate and the experimental conditions are constructed in exactly the 

same manner as these variables representing factor interactions were constructed. 

(For further details see Cohen et al, 2003; Howell, 201 O; Kutner et al, 2005; Pedhazur, 

1997.) However, as with the tests of regression linearity, the problem of multi

colinearity arises; the predictor variables representing the interaction between the 

covariate and the experimental conditions will be correlated with Z. Therefore, the 

data analysis should proceed in a structured manner (e.g., Cohen et al, 2003). This 

emphasizes the point that the significance test approach examines the (further) 

reduction in errors due to the inclusion in the GLM of a term representing the 

interaction between the covariate and the experimental conditions, after those terms 

representing experimental conditions and the single regression line have been 

included in the GLM. A significant reduction in error (i.e., a significant interaction 

term) indicates regression heterogeneity. This means the model fit to data can be 

improved by employing a different regression coefficient in at least one of the 

experimental conditions. 

Table 10.5 presents the ANCOVA summary of the error reduction when separate 

regression slopes are employed in the different experimental conditions. As no 

significant improvement is observed, the tenability of the assumption of homo

geneous regression coefficients is accepted. However, if a significant interaction 

between the covariate and the experimental conditions had been detected, the next 

question should be, which of the experimental conditions require distinct regression 

Table 10.5 Summary of Additional Error Reduction Due to Heterogeneous 

Regression ANCOV A 

Source SS Increment df MS F 

Additional error reduction due to 19.394 2 9.697 1.600 

covariate x experimental 

conditions 
Full GLM error 109.070 18 6.059 

R: 0.941; R2: 0.886; adjusted R2: 0.862. 

p 

0.229 
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coefficients? It may be that only one or two of the experimental conditions require a 
unique regression slope. As a df is lost from the error variance estimate with every 
distinct regression line employed, for this and other reasons applying only the 
minimum number of terms required is a guiding principle of linear modeling (e.g., 
Draper and Smith, 1998). Which experimental conditions require distinct regression 
lines can be determined by comparing different models that employ a common 
regression line for all but one of the experimental conditions. Rather than obtaining 
an estimate of the error when all experimental conditions employ distinct regression 
lines, an error estimate is obtained when only one experimental condition employs a 
distinct regression line. The reduction in residuals due to this one distinct regression 
line can then be assessed in comparison to the residual estimate obtained when a 
common regression line is applied in all treatment groups. Successive estimations can 
be made and each time a distinct regression line is employed in a different experimental 
condition, any significant reduction in errors indicates a significant improvement in 
the fit of the model to the data. 

The significance test method described above is equivalent to the standard test of 
regression homogeneity presented by Kendall (1948), reproduced by Hays (1994), 
Keppel (1991), Kirk (1995), and Winer, Brown, and Michels (1991). For the single 
factor, single-covariate independent sample design, this is 

Slf(p- 1) 
F[(p- I),p(N -2)] = 

S,j(p(N _ 2)) 
( 10.4) 

where S 1 is the residual vanation when separate group regressions have been 
employed and S2 is the variation of the separate experimental condition regressions 
about the weighted average regression line (see texts above for computational 
formulas). The sum of squares S2 estimates the variation not accommodated when 
the weighted average regression line (rather than separate experimental condition 
regression lines) is used and is equivalent to the estimate of the interaction effect or 
the reduction in residuals due to the separate experimental condition regression 
lines. For all of the significance test methods, the same F-test denominator estimate 
is employed and a significant F-value indicates that the homogeneity of regression 
coefficients assumption is untenable. In order to avoid Type 2 errors, Kirk (1995) 
and Hays (1994) recommend the use of a liberal level of significance (about 0.25) 
with the regression homogeneity test. However, test power increases with large data 
sets, so more conservative significance levels should be set when the test is applied 
to large data sets. 

Regression homogeneity also must be checked after polynomial components have 
been added to the traditional ANCOVA model to accommodate curvilinear regres
sion. This is achieved most easily by applying a significance test in a manner similar to 
that described above. Another set of predictors is created to represent the interaction 
between the polynomial components (added to accommodate the curvilinearity) and 
the experimental conditions. For example, had it been decided that the GLM 
described by equation (10.2) was most appropriate for the data, incorporating an 
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additional term to represent an experimental conditions-curvilinear interaction 

would result in the model 

Yu = µ + r:t.1 + f3w(Zu - Zo) + f3w(Zu -Zo/ ( 10.5) 

+ [(a1)(f3w(Zu-Zo) + f3w(Zu-Zo)2)] + t.u 

An F-test is applied to the reduction in error variance attributed to the interaction term. 

A significant F-test indicates that better prediction is provided when at least one of the 

experimental conditions employs a different curvilinear regression line. Therefore, 

the next step is to determine which experimental conditions actually require distinct 

regression lines. As always, when any new GLM is considered, it is necessary to check 

that it conforms to the set of GLM assumptions. As with curvilinear regression, an 

advantage of this approach is that when all significant heterogeneous regression 

components are included, the description of the heterogeneous regression ANCOVA 

GLM is complete and the ANCOVA results can be interpreted. 

10.5 SHOULD ASSUMPTIONS BE CHECKED? 

Over the past 50 years, a number of research studies have questioned the use of 

preliminary analyses to check statistical test assumptions to identify the most 

appropriate test (Arnold, 1970; Bancroft, 1964; Moser and Stevens, 1992; Moser, 

Stevens, and Watts, 1989; Rao and Saxena, 1981; Saleh and Sen, 1983; Zimmerman, 

1996, 2004). These arguments are summarized and considered by Wells and Hintze 

(2007). Five problems arise when statistical or graphical assumption checks are 

applied in this two-stage procedure. The first problem is that when a preliminary test 

determines the main test, the test statistic distribution becomes conditional on the 

preliminary test outcome. As Wells and Hintze explain, there would be no problem if 

the preliminary test outcome was always correct, but, unfortunately, the preliminary 

test Type 1 and Type 2 error rates affect the significance level (and error rate) of the 

main test. Research has focused on the issue of test choice following preliminary 

analyses, but the order of application of assumption checks and main analysis is 

irrelevant. Main test statistics become conditional on assumption checks because the 

outcome of the assumption checks determines the analysis applied. Perhaps some 

difficulty is created by the use of the term "applied." Many analyses can be applied, 

but any use of assumption check information to decide which of these main analyses is 

appropriate makes all of these main analyses conditional on the assumption check(s). 

This is clearest when the checks indicate assumptions are untenable and the initial 

main analysis choice has to be changed, or a data transformation is applied, and the 

original main analysis (and assumption checks) reapplied. However, the main 

analysis is also conditional on assumption checks when information from the checks 

supports assumption tenability and the planned main analysis is applied or the planned 

and already implemented main analysis is deemed appropriate, reported, and inter

preted. The second problem arising when statistical or graphical assumption checks 
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are applied is that the detrimental consequences for the main test accumulate with 

each assumption that is checked. The third problem is that the usual assumption check 

null hypothesis is that the assumption (e.g., equal variances) is valid. However, failure 

to reject the null hypothesis does not allow simple acceptance of the null hypothesis. 

Therefore, assumption checks are limited in their ability to provide conclusive 

information about the validity of the assumption assessed. The fourth problem is 

that preliminary analyses frequently make their own statistical assumptions and so 

there is a danger of an infinite regress regarding assumption checks. The fifth and last 

problem is that even when an assumption check identifies a serious assumption 

violation, it is still possible for the particular violation to exert little effect on the 

outcome of the subsequent test. 

Of these five problems, the focus will be the main difficulty that the distribution of the 

test statistic becomes conditional on the preliminary test outcome. Problem two is a 

generalization of the first and main problem, problem three applies to all hypothesis tests 

and can be mitigated by power analysis (i.e., checking that sufficient power to detect the 

effects was available in principle-if the hypothesized effect was present, see Section 

4.7.5). However, most researchers appreciate that assumption checks do not provide 

conclusive information about assumption compatibility, but instead are indicators of 

assumption tenability. Problem four is serious in principle, but less serious in reality, 

particularly when assumption checks are regarded as indicators of assumption tenabil

ity. Finally, the assessment inherent in problem five seems either crude or inaccurate. 

One of the benefits of larger samples and balanced designs is a robustness to some 

assumption violations, as assessed by the F-test Type 1 error rate. Therefore, Wells and 

Hintze may have a point if the exclusive concern of the study is to accept or reject a 

particular null hypothesis. However, it is to be hoped that psychologists are moving 

away from this barren approach (see Section 4.1), with specific effect p-values, effect 

sizes, confidence limits and power considerations all regarded as evidence contributing 

to an understanding of a study outcome. As many of these estimates also rely on the 

GLM assumptions, it is extremely unlikely that a serious assumption violation would 

have little effect on the accuracy and coherence of all of these measures. 

Wells and Hintze (2007) suggest that the way to address the problems caused by 

preliminary analyses is to abandon the use of such analyses and instead employ 

theory, empirical evidence, and reason to identify an appropriate test. Relevant theory 

includes psychological theory, measurement theory, and statistical theory. For 

example, psychological theory may suggest not only higher, but more varied scores 

in one condition than another and so tests that are unaffected by, or robust with respect 

to, variance heterogeneity would be preferred. Measurement theory can also assist by 

identifying the dependent variable measure with the most appropriate properties. 

Statistical theory can offer tests that are robust to particular assumption violations and 

where normality violations are a concern, it can inform the sample size chosen so as to 

ensure central limit theorem applies. Pertinent empirical evidence includes previously 

conducted studies and pilot studies. Both of these sources provide a great deal of 

information and pilot studies can offer the advantage of exactly the same experimental 

design and procedures. Finally, Wells and Hintze suggest reason that provides a 

synthesis of theory and empirical evidence that allows researchers to determine which 
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assumptions are most, less, and least likely to be tenable. Wells and Hintze's 

suggestions really are an emphatic iteration of the vital role of careful planning in 

the design of any study. However, while statistical theory can provide tests that are 

robust to particular assumption violations, it is misleading to suggest that many 

equivalent tests are available - most robust tests are quite limited compared to tests 

typically employed to analyze psychological data. Hopefully, researchers apply 

ANOVA and ANCOVA, and other tests, because they are most appropriate for their 

research purposes and this means other tests will not be as appropriate for 

their research purposes. 

Another consequence of applying the preventative approach described by Wells 

and Hintze (2007) is it precludes the type of optimized experimental design 

advocated by McClelland (1997, see Section 2.2). Nevertheless, some resolution 

may be achieved if Wells and Hintze's recommendations are applied primarily to 

research topics about which relatively little is known, or to research topics which are 

known to provide problematic data, while McClelland's recommendations are 

applied primarily to research topics which are known to provide data compliant 

with the required statistical assumptions. 
An analysis of the cost and benefits of checking or not checking assumptions is 

also informative. For example, Zimmerman (2004) described the effect on the Welch 

test applied only when Levene's (1960) test declared significant variance heteroge

neity. W hen the group with the greater sample size (i.e., 40 vs. 20) also exhibited 

greater variance, the Welch test Type 1 error rate actually diminishes from 0.050 to a 

minimum of 0.037. However, when the group with the smaller sample size (i.e., 20 

vs. 40) exhibited greater variance, the Welch test Type 1 error rate increased to a 

maximum of 0.065. (t-test Type 1 error rates followed the same patterns as Welch 

test Type 1 error rates, but, as would be expected as variance heterogeneity 

increased, due to increasing t-test assumption violation, the effect on t-test Type 

l error rates was much greater.) Therefore, with variance heterogeneity and unequal 

sample sizes designed to exert substantial effects on the subsequent test, the 

maximum variation around 0.05 level was approximately ± 0.015. In contrast, if 

analyses are conducted without any checks on assumptions and one or more 

statistical assumptions underlying an analysis are violated in a substantial fashion, 

it is possible that a completely invalid analysis may be reported. Given that the two 

extremes are to tolerate a maximum Type 1 error rate deviation of ± 0.015 or report an 

invalid analysis, the former situation seems preferable. 

Unfortunately, the recommended method of assumption checking by residual 

examination suffers all of the problems summarized by Wells and Hintze's 

(2007). Nevertheless, residual examination provides researchers with a vital and 

necessary appreciation of the statistical validity of their analyses. For these reasons, it 

is unlikely that data analysts will stop recommending the assessment of the tenability 
of the statistical assumptions underlying analyses. However, strategies are likely to be 

developed to minimize the accumulation of assumption check error. For example, it 

should be possible to reduce the set of assumptions to be checked by taking into 

account what is known about the data obtained in such research situations and the 

robustness of the main analysis. 





CHAPTER 11 

Some Alternatives to Traditional 

ANCOVA 

11.1 ALTERNATIVES TO TRADITIONAL ANCOVA 

As the good design practice of recording the covariate measure before the experi

mental manipulation prevents the experimental conditions affecting the covariate 

directly, and because most relationships between dependent variables and covariates 

in psychology are linear or approximately linear, heterogeneous regression coeffi

cients across experimental conditions is the traditional ANCOVA assumption most 

likely to be violated. As it also is a problem that becomes more likely as the number of 
factors and conditions in a study increase, the majority of traditional ANCOVA 

alternatives were presented to address this issue. However, rather than being a 

statistical assumption required for a valid and accurate analysis, regression homo

geneity is an assumption made only to simplify the calculation and interpretation of 

traditional ANCOVA. In fact, the ANCOVA GLM can be modified easily to 

accommodate heterogeneous regressions across conditions and most contemporary 

approaches deal with regression heterogeneity in this fashion. 

Heterogeneous regression ANCOVA is able to provide superior representation of 

variable relationships and influence, and so provide greater prediction accuracy. 

Indeed, the potential benefits and low cost of applying heterogeneous regression 

ANCOVA compared with traditional ANCOVA led Maxwell and Delaney (2004) to 

suggest there should be a bias in favour of heterogeneous regression ANCOVA 

applications. Consequently, the present chapter focuses on heterogeneous 
ANCOVA GLMs, but two further alternatives to traditional ANCOVA are presented, 

as is the ability of heterogeneous regression ANCOVA to ameliorate the 

problems caused by a relationship between the covariate(s) and the experimental 

conditions. 

ANOVA and ANCOVA: A GLM Approach, Second Edition. By Andrew Rutherford. 

© 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc. 
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11.2 THE HETEROGENEOUS REGRESSION PROBLEM 

As the term ANCOVA is applied, the main concern is the determination of experi
mental effects (see Section 1.3.3). The basic problem posed by heterogeneous 
regression ANCOVA is that experimental effects vary as a function of the covariate. 
This is illustrated in Figure 11.1. In order that the issues are understood clearly, a 

simple independent measures, single-covariate, single factor (with two levels) 
experimental design is depicted. 

From Figure 11.1, it can be appreciated that the experimental effect, represented by 
the vertical distance between the regression lines, is not constant across the range of 
the covariate values, as is the case in traditional ANCOVA, but instead varies as a 
function of the covariate values. As a result and in contrast to the homogeneous 
regression situation, an assessment of experimental effect at any one measure of the 
covariate cannot be taken to reflect the experimental effect at any other measures of 
the covariate. In essence therefore, heterogeneous regression ANCOVA presents a 
problem of experimental effect determination and description. 

If the process of model selection determines that distinct regressions (in graphical 
terms, lines which pass through all fitted values) are required to accommodate the 
data, there seems little reason to consider the null hypothesis that the separate 
regressions predict the same dependent variable values. Yet by definition, nonparallel 
regression lines intersect at some point. Here, the same values will be predicted by the 
two distinct regression lines and importantly, the experimental effect observed below 
this covariate value will be the converse of the experimental effect observed above this 
value. (A plot of the regression lines is an obvious way to determine if regressions 
intersect within the range of observed covariate values.) Depending on the location of 
this intersection point, it may be necessary to determine the covariate values at which 
significant experimental effects are exerted and to specify the nature of these 
experimental effects. As the intersection point in Figure 11.1 is below Z = 0, although 
the effect size may vary, the nature of the experimental effect is constant across the 
range of positive covariate values. 

Dependent 
variable ( Y) 

Regression line for 
experimental condition 1 

Covariate (Z) 

Figure 11.1 Heterogeneous regression across two experimental conditions. 
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In Chapter 9, two versions of the ANCOVA GLM were described. The typical 
traditional AN COVA GLM expresses the covariate scores in terms of their deviation 
from the overall covariate mean, while the more general ANCOVA GLM simply 
expresses the covariate score. The latter version of the independent measures, single 
factor, single-covariate experimental design GLM is 

(9.1, rptd) 

As described in Chapter 9, subtracting the term f3wZii from the dependent variable 
score removes all influence of the covariate, leaving what was labelled as 
the fundamental adjusted score (Yfaij). This is the predicted dependent variable 
score when Z = 0 

(9.4, rptd) 

If the general covariate mean (Zc;) is substituted for Zu, the predicted dependent 
variable scores are the values Yau• as in traditional ANCOVA. Both of these 
predictions are specific instances of the general prediction on the basis of Z, where 
Z is any measure of the covariate. 

To accommodate the heterogeneous regressions depicted in Figure 11.1, equa
tion (9.1) may be rewritten as 

(11.1) 

where the regression coefficient f3w of equation (9 .1) is replaced by {31, which, by virtue 
of the j subscript, denotes a different regression coefficient per experimental condition. 
An important point to appreciate about the separate regression lines is that they are 
statistically independent (e.g., Searle, 1987). 

As heterogeneous regression ANCOVA GLMs simply incorporate terms to 
accommodate the different slopes, they are able to provide tests comparable with 
the traditional ANCOVA hypotheses, as well as tests of the covariate effect and 
factor interactions. In traditional ANCOVA, the omnibus F-test of experimental 
conditions compares adjusted means, which are those scores predicted on the basis 
of the general covariate mean (ZG). However, when heterogeneous regression 
ANCOVA is applied, the omnibus F-test of experimental conditions compares the 
predicted scores when Z = 0 (e.g., Searle, 1987). In other words, the Y-intercepts of 
the separate regression lines are compared (see Figure 11.1 ). Nevertheless, it is 
unlikely there will be much interest in comparing treatment groups at the zero value 
of the covariate, not least because a zero-covariate score may be impossible to 
observe in the real world. Nevertheless once the heterogeneous regression 
ANCOVA GLM is selected and parameter estimates obtained, it is possible to 
predict a dependent variable score based on any covariate value for each experi
mental condition (including Z = 0). Moreover, as the standard errors associated with 
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these predicted scores are also determinable, it is possible to carry out F-tests of the 

effect of experimental conditions at any covariate value(s). For example, F-tests of 

the experimental effects might be carried out at ZG, or at the separate experimental 

condition covariate means (Z1). 
In ANCOVA, the accuracy of the predicted dependent variable scores and so 

the power of the F-test of experimental effects is greatest when the covariate 

value employed lies at the center of the covariate distribution. This is known as 

the center of accuracy (Ca). Interestingly, Rogosa ( 1980) revealed that the 

heterogeneous regression ANCOVA experimental effect at Ca is identical to 

the traditional homogeneous regression ANCOVA experimental effect at Ca. 
Moreover, with balanced designs, .estimating experimental effects on the 

basis of the separate z1 values also provides an F-test at Ca. Paradoxically, 

therefore, estimating experimental effects at z1 provides a simple heterogeneous 

regression alternative to the traditional ANCOVA experimental effect estimate, 

which is identical to the traditional ANCOVA experimental effect estimate. 

There may be theoretical reasons for comparing all subjects across the experi

mental conditions at the same covariate value, but as prediction accuracy drops 

with distance from the experimental condition covariate means, the power cost 

inherent in these comparisons depends on the difference between ZG and each of 

the z1. 
When statistical software is used to implement heterogeneous regression 

ANCOVA, it is advisable to check the software documentation or to check 

empirically (with a known data set) which covariate value(s) are the basis for any 

adjusted experimental condition means presented. Many statistical packages able to 

implement heterogeneous regressions will apply GLMs in the form of equa

tion ( 11.1) and so the AN COVA summary table will present experimental effects 

assessed when all influence of the covariate has been removed (i.e., at Z = 0). If 

experimental effects are to be assessed at any other covariate values, then further 

analysis will be necessary. 

11.4 SINGLE FACTOR INDEPENDENT MEASURES 
HETEROGENEOUS REGRESSION ANCOV A 

In the following example, two of the conditions reported in Chapter 9 will be 

presented as if they constituted a separate experiment. Table 11.1 presents the 

subjects' story and imagery task (covariate) scores and the subjects' memory recall 

scores after story and imagery encoding in two study time conditions, and a 

heterogeneous regression ANCOVA is applied (also see Figure 10.5). 
The slope of the regression lines <P) for each of the experimental conditions 

employed in the ANCOVA GLM is given by 

( 11.2) 
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Table 11.1 Story and Imagery Test Scores and Recall Scores After Story 
and Imagery Encoding 

Study Time z 

9 

5 

6 
4 

6 

8 

3 

5 

'E,ZIY 46 

Z/Y 5.750 

('E,ZIY)2 

L,z2;y2 

For $1 this provides 

(Zij-Zj)2 

292 

2I I6 

9 -5.750 = 3.250 

5 -5.750 = -0.750 

6 -5.750 = 0.250 

4-5.750 = -1.750 

6 -5.750 = 0.250 

8 -5.750 = 2.250 

3 -5.750 = -2.750 

5 -5.750 = -0.750 

I: = 27.500 

and for $2 this provides 

(Zij-Zj)2 

5 - 5.500 = -0.500 

8 -5.500 = 2.500 

3 -5.500 = -2.500 

4 -5.500 = -1.500 

6 -5.500 = 0.500 

9 -5.500 = 3.500 

4 -5.500 = -1.500 

5 -5.500 = -0.500 

I: = 30.000 

30s 

y 

I6 

7 
I I 

9 

JO 
I I 

8 

8 

80 

I0.000 

856 

6400 

16- 10= 6 

7-10= -3 

11-10= 

9-10=-l 

10-10= 0 

11-10= 1 

8-10=-2 

8-10=-2 

p 
= 

33.000 
= 1.200 

l 27.500 

24-23 = 

29-23 = 6 

10-23 = -13 

22-23 = -I 

25 -23 = 2 

28-23 = 5 

22-23 = - I 

24-23 = 

I80s 

z 

5 

8 

3 
4 

6 

9 
4 

5 

44 

5.500 

272 

I936 

19.500 

2.250 

0.250 

1.750 

0.000 

2.250 

5.500 

1.500 

I: =  33.000 

-0.500 

15.000 

32.500 

1.500 

1.000 

17.500 

1.500 

-0.500 

I: = 68.000 

y 

24 

29 
JO 
22 

25 

28 
22 
24 

I84 

23.000 

4470 

33,856 
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� 68.000 
P2 = 30.000 

= 2.267 

The formula for calculating adjusted means presented in Chapter 9 is repeated 
below 

(9.8, rptd) 

Applying this to the heterogeneous regression situation where each experimental 
condition has a distinct regression line and employs the experimental condition 
covariate mean as a predictor reveals the adjusted experimental condition means to be 
equal to the unadjusted experimental means 

Ya1 = Y1 - p(z1 - ZJ) 

Ya1 = Y1-p(z1-z1) 

Ya1 = Y1 - P(O) 
(11.3) 

However, it is worth noting that the equivalence of adjusted and unadjusted means is 
a consequence of employing distinct regression lines in each experimental condi
tion and employing the respective experimental condition covariate means as 
predictors. Consequently, when heterogeneous regression ANCOVA is applied 
that does not fit separate regression lines per experimental condition (in more 
complex designs, heterogeneous regressions may be applied over all levels of 
different factors, rather than per experimental condition) or does not employ 
experimental condition covariate means as predictors, adjusted and unadjusted 
means may not be equivalent. 

11.5 ESTIMATING HETEROGENEOUS REGRESSION 
ANCOV A EFFECTS 

The full GLM for the single factor, single-covariate heterogeneous regression 
ANCOVA design was described in equation (I I.I). The reduced GLM for this design 
omits the variable representing experimental conditions and is described by the 
equation 

( 11.4) 

The GLM equation ( 11.4) describes p dependent variable on covariate regression 
lines all with a common Y-intercept (µ). However, the estimates of the � in 
equation (11.4) and those estimated for equation (11.l ) are not equal (see Searle, 
1987). Therefore, to minimize the amount of calculation required, an alternative 
approach to estimating heterogeneous regression AN COVA effects will be described. 
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This approach simply applies and extends the check of the regression homogeneity 
assumption. 

First, the full traditional ANCOVA error term is required. As these calculations 
were described in Chapter 6, albeit for all three experimental conditions, 
the traditional ANCOVA error sum of squares (SS) will be accepted as, 
116.591, with dfs = 13. Next, the full heterogeneous regression ANCOVA GLM 

predicted scores must be calculated. A little algebra applied to equation ( 11.1) 
reveals 

( 11.5) 

Simply rewriting this equation in terms of the parameter estimates provides 

( 11.6) 

which states that when all influence of the covariate has been removed, the 
predicted dependent variable score is equivalent to the constant plus the effect 
of the particular experimental condition. Of course, when all influence of the 
covariate is removed, Z = 0. Therefore, (µ + �) must be equivalent to the Y
intercept of each experimental condition regression line (see Figure 11.1 ). Indeed, 
with balanced data 

( 11. 7) 

As well as passing through the ( µ + �) intercepts, each regression line passes 
through the point defined by the experimental condition dependent variable mean 
and the experimental condition covariate mean (:Z1Y1). Substituting these mean 
values into equation ( 11. 7), along with the pertinent regression coefficient estimates, 
allows calculation of the regression line intercepts. For experimental condition 1, 

(Ii+&-,)= 10.000-1.200(5.750) = 3.100 

and for experimental condition 2 

(Ii+ a3) = 23.000 - 2.267(5.500) = 10.532 

In fact, the (fl + �) values are actually the means of the predicted scores, as can be 
seen by adding the Yraij term to equation ( 1 1.5) 

(11.8) 

Therefore, substituting each subjects' dependent variable and covariate scores into the 
first half of equation (11.8) 

(11.9) 



270 SOME ALTERNATIVES TO TRADITIONAL ANCOVA 

provides the Yra;; scores. 

30 s 

Y;; - p, (Z;;) = Yra;; 

16- 1.200 (9) = 5.200 
7- 1.200(5)=1.000 

1 I - 1.200 (6) = 3.800 
9 - 1.200 (4) = 4.200 

10 - 1.200 (6) = 2.800 
11 - 1.200 (8) = 1.400 

8 - 1.200 (3) = 4.400 
8 - I .200 (5) = 2.000 

180 s 

Y;;- P3(Z;;) = Yra;; 

24 - 2.267 (5) = 12.665 
29 - 2.267 (8) = 10.864 
10 - 2.267 (3) = 3.199 
22 - 2.267 (4) = 12.932 
25 - 2.267 (6) = 11.398 
28 - 2.267 (9) = 7.597 
22 - 2.267 (4) = 12.932 
24 - 2.267 (5) = 12.665 

As the Yta;; are the scores distributed around the (Ji+ 0) means the discrep

ancy between the Yta;; scores and the (Ji+ 0) intercepts provide the error term 

estimates, f;;. T his may be appreciated if a little algebra is applied to equa

tion ( 11.8) 

so 

and 

( 11.8, rptd) 

Yta;; = (µ + ocj) + e;; 

30 s 180 s 

Yran - (µ + iii) = ii;, Yra;2 - (µ + ii2) = iii2 

5.200-3.100= 2.100 
1.000-3.100 = - 2.100 
3.800 - 3.100 = 0.699 
4.200- 3.100= 1.100 
2.800 - 3.100 = - 0.300 
1.400 - 3.100 = - 1.699 
4.400 -3.100 = 1.300 
2.000 -3.100 = - 1.100 

I: ef1 = 16.395 

12.665 - 10.532 = 2.133 
10.864 - 10.532 = 0.334 

3.199 - 10.532 = - 7.333 
12.932 - 10.532 = 2.400 
11.398 - 10.532 = 0.867 

7.597 - 10.532 = - 2.933 
12.932 - 10.532 = 2.400 
12.665 - 10.532 = 2.133 

L ET1 = 83.858 

L
N 

L
P 2 

. . e,,; = 100.253 
1=! =I " 

Table 11.2 summarizes the SS error and the dfs obtained when homogeneous and 

heterogeneous regression ANCOVA GLMs are applied to the data. 



ESTIMATING HETEROGENEOUS REGRESSION ANCOVA EFFECTS 271 

Table 11.2 SS Error and dfs with Homogeneous and Heterogeneous Regression 
ANCOVAGLMs 

SS 

df 

Homogeneous Regression 
ANCOVAGLM 

116.591 
13 

Heterogeneous Regression 
ANCOVAGLM 

100.253 
12 

Reduction 

16.338 
1 

As before, an F-test of the reduction in the error SS, attributed to heterogeneous 
regressions is given by 

F = 
SS Error reduction/ dfe Reduction 

SS Heterogeneous regression/ df Heterogeneous regression 

F 
= 16.338/1 

= 1.956 
100.253/12 

As F(l ,12) = 1.956 is not significant at the 0.05 level, the traditional ANCOVA 
homogeneity of regression assumption is tenable. Nevertheless, as Maxwell and 
Delaney (2004) state and will also be seen later in this chapter, there may be good 
reasons for applying heterogeneous regression ANCOVA even when the homo
geneity assumption is tenable. Therefore, analysis of the data presented in 
Table 11.1 will continue on the basis of the heterogeneous regression ANCOVA 
GLM. 

Earlier it was said that the omnibus F-test of the effect of experimental conditions, 
when a heterogeneous regression AN COVA GLM is applied, compares the separate 
experimental condition regression line Y-intercepts-the predicted differences 
between the experimental conditions when Z = 0. Therefore, a simple comparison 
of these Y-intercepts provides the same test of the effect of the experimental 
conditions. 

In general, the experimental effect is denoted by the vertical difference between 
the experimental condition regression lines at any experimental condition covariate 
value, that is, the experimental effect can be predicted using different covariate values 
in the different experimental conditions. Equation ( 11.11) provides a formula for 
calculating such experimental effects when there are two experimental conditions 

(11.11) 

where MSe is the heterogeneous regression ANCOVA mean square error, the 
Y ZpJ are the predicted means given the covariate values for the particular 
experimental condition, the N1 are the number of subjects per experimental 
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condition, the ZpJ are the experimental condition covariate values upon which 
the dependent variable means are predicted and the z1 are the experimental 
condition covariate means. Substituting the values for the current example 
provides 

F
= (3.100-10.532)2 

8.354 [I /8 I /8 (O -5·750)2 

55.235 
F= --

20.552 
F( l , 1

2
) = 2.688 

+ + 27.500 + 
(0 -5.500)2] 

30.000 

As F( 1, I 2) = 2.688 is not significant at the 0.05 level, the null hypothesis that the 
two experimental condition regression line Y-intercepts are equivalent cannot be 
rejected. However, examination of Figure I I. I shows that the difference between 
the regression lines is at its minimum (ignoring negative covariate values) when 
Z = 0. For this and other theoretical reasons, there may be relatively little interest in 
comparing the predicted experimental condition means when the covariate is zero. 
Probably of much more interest is the predicted effect of experimental conditions 
when subjects obtain covariate scores equal to the experimental condition covariate 
means. Given balanced data, the convenient fact that the predicted experimental 
effect at the respective experimental condition covariate means obtained with 
heterogeneous regression ANCOVA is equal to that obtained with traditional 
homogeneous regression AN COVA may be employed. If the strategy outlined here 
has been applied (i.e., fitting a traditional homogeneous regression ANCOVA GLM 
and then testing for error reduction after fitting heterogeneous regressions) then the 
traditional ANCOVA and the heterogeneous regression ANCOVA experimental 
effects will have been calculated already. Table I I .3 summarizes the traditional 
ANCOVA GLM applied to the data presented in Table I I. I. 

Table I I .3 reveals a significant effect of experimental conditions predicted on 
the basis of the experimental condition covariate means. The critical F-values 
presented in Appendix B may be used to determine significance if the calculations 
were carried out by hand, or the statistical software employed does not output the 
required p-values. 

Table 11.3 Summary of the Traditional AN COVA of the Data Presented in Table 11.1 
Source SS df MS F p 
Error reduction due to 719.313 719.313 80.204 <0.001 

experimental conditions 
Error reduction due to covariate 177.409 177.409 19.781 0.001 
Full GLM error 116.591 13 8.969 



REGRESSION GLMs FOR HETEROGENEOUS REGRESSION ANCOVA 

11.6 REGRESSION GLMs FOR HETEROGENEOUS 

REGRESSION ANCOV A 

273 

The experimental design GLM equation ( 11. l) may be compared with the equivalent 
regression equation 

(11.12) 

where /30 represents a constant common to all Y scores, /31 is the regression coefficient 

for the predictor variable X1, which distinguishes between the two experimental 

conditions, and /32 is the regression coefficient for the covariate, Zij is the covariate 

score for the ith subject in the )th condition, f33 is the regression coefficient for the (XZ) 

interaction, which represents the heterogeneous regression, and, as always, the random 

variable, e ij• represents error. Table 11.4 presents effect coding for the single factor, 

single-covariate heterogeneous regression ANCOVA GLM. 

As with other design analyses, implementing a single factor, single-covariate 
heterogeneous regression ANCOVA is a two-stage procedure, if only the variance 

attributable to the experimental conditions is to be assessed, and a three-stage 

procedure if the variance attributable to the covariate regression is to be assessed. 

Consistent with estimating effects by comparing full and reduced GLMs, the first 

regression carried out is for the full single factor, single-covariate heterogeneous 

regression experimental design GLM, when all experimental condition predictor 

variables (X1), the covariate (Z), and the experimental condition-covariate interaction 

(XZ) are included. The results of this analysis are presented in Tables 11.5 and 11.6. 

Table 11.4 Effect Coding and Covariate for a Single Factor, 

Single-Covariate Heterogeneous Regression ANCOV A. Subject 

Number and the Dependent Variable Score Are Also Shown 

Subject z X1 xz y 

9 9 16 
2 5 5 7 
3 6 6 11 
4 4 4 9 
5 6 6 10 
6 8 8 11 
7 3 3 8 
8 5 1 5 8 

17 5 -1 -5 24 
18 8 -1 -8 29 
19 3 -1 -3 10 
20 4 -1 -4 22 
21 6 -1 -6 25 
22 9 -1 -9 28 
23 4 -1 -4 22 
24 5 -1 -5 24 
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Table 11.5 Results for the Full Single Factor, Single-Covariate Heterogeneous 

Regression ANCOV A Regression GLM 

Standard Standard 

Variable Coefficient Error Coefficient p (two-tailed) 

Constant 6.817 2.267 0.000 3.007 0.011 
X1 -3.717 2.267 0.477 -1.639 0.127 
z 1.733 0.382 0.423 4.543 0.001 

xz -0.533 0.382 -0.407 -1.398 0.187 

Table 11.6 ANOV A Summary Table for Experimental Conditions, Covariate, and 

Heterogeneous Regressions 

Source SS df Mean Square F p 

Regression 869.733 3 289.911 34.697 <0.001 
Residual 100.267 12 8.356 

R: 0.947; R2: 0.897; adjusted R2: 0.871. 

Table 11.5 presents the predictor variable regression coefficients and standard 

deviations, the standardized regression coefficients, and significance tests (t- and 

p-values) of the regression coefficients. Table 11.5 is also interesting in that the 

Constant is the value ofµ free of rx1. This confirms 

(11.7 , rptd) 

Table 11.6 presents the ANOVA summary table for the regression GLM describing 

the complete single factor, single-covariate ANCOVA. As the residual SS is obtained 

when both covariate and experimental conditions are included in the regression, this 

is the error term obtained when the single factor, single-covariate ANCOVA GLM 
is applied. 

The second stage is to carry out a regression where the experimental conditions are 

omitted, but all other regression predictors are included. This regression GLM is 

equivalent to the reduced GLM for the single factor, single-covariate heterogeneous 

Table 11.7 Results for the Heterogeneous Regression ANCOVA GLM Omitting 

Experimental Conditions 

Standard Standard 

Variable Coefficient Error Coefficient p (two-tailed) 

Constant 7.110 2.402 0.000 2.959 0.011 
z 1.694 0.405 0.413 4.186 0.001 

xz -1.126 0.130 -0.858 -8.692 <0.001 
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Table 11.8 ANOV A Summary Table for the Heterogeneous Regression GLM Omitting 
Experimental Conditions 

Source 

Regression 

Residual 

SS 

847.278 

122.722 

R: 0.935; R2: 0.873; adjusted R2: 0.854. 

df 

2 

13 

MS 

423.639 
9.440 

F 

44.876 

p 

<0.001 

regression ANCOVA. The results of this analysis are presented in Tables 11.7 
and 11.8. 

The results presented in Table 11.7 are of little interest, but they do demonstrate that 

the reduced GLM estimates of the Constant (µ) and the dependent variable on 

covariate regressions per experimental condition differ from those of the full GLM 
estimate, the additional calculation of which was the reason given earlier for taking 

an alternative approach to calculating the effects of the experimental conditions. 

Of most interest is the residual/error term from the heterogeneous regression 

presented in Table 11.8. 
The difference between the residual/error SS in Table 11.6 and that in Table 11.8 

is equivalent to the SS attributable to experimental conditions. However, the SS 

attributed to the regressions in Table 11.8 is not equivalent to the covariate 

SS calculated when the full ANCOVA GLM is applied. The SS for the covariate 

in the full AN COVA GLM may be obtained by comparing the error SS from the full 

ANCOVA with the error SS from an equivalent full ANOVA GLM. A full ANOVA 

GLM is implemented by a regression that uses only the predictors representing 

the experimental conditions (XI). Table 11.9 presents the ANOVA summary of this 

analysis. 

The error reduction attributable to the covariate can be calculated using the 

error term from the regression GLM implementation of the single factor AN OVA. 

T his information is summarized in Table 11.10. In common with the full 

experimental design heterogeneous regression ANCOVA, this regression 

ANCOVA GLM assess the experimental effect when Z = 0. The tabled critical 

F-values presented in Appendix B may be used to determine significance if hand 

calculation is employed or the statistical software employed does not output the 

required p-values. 

Table 11.9 ANOV A Summary Table for Experimental Conditions Regression 

Source SS df MS F p 

Experimental condition 676.000 676.000 32.190 <0.001 

regression predictors 

Residual 294.000 14 21.000 

R: 0.835; R2: 0.697; adjusted R2: 0.675. 



276 SOME ALTERNATIVES TO TRADITIONAL ANCOVA 

Table 11.10 ANOV A Summary Table for Experimental Conditions and Heterogeneous 

Covariate Regressions with Regression Implementation 

Source 

Error reduction due to experimental 
conditions 

Error reduction due to covariate 
Full ANCOVA GLM residual 

R: 0.940; R2: 0.884; adjusted R2: 0.867. 

SS 

22.456 

188.754 

100.267 

df 

2 

12 

MS 

22.456 

94.377 

8.356 

F 

2.688 

20.636 

1.954 

11.7 COVARIATE-EXPERIMENT AL CONDITION RELATIONS 

p 

0.127 

<0.001 

Applying traditional ANCOVA when a relationship exists between the covariate and 

the experimental conditions will provide an analysis which is statistically correct, but 

it is unlikely to apply easily or usefully to the real world (see Huitema, 1980, for the 

traditional ANCOVA approach to this issue). In these circumstances, heterogeneous 

regression provides the most appropriate analysis . 

In what probably remains the most detailed consideration, Smith (1957) identified 

three situations that result in a relationship between the covariate and the experimental 

conditions (also see Huitema, 1980; Maxwell and Delaney, 2004). The first situation 

is when a variable not included in the GLM exerts an effect on both the dependent 

variable and the covariate. The best way of dealing with this source of systematic bias 

is to include the pertinent variable in the GLM. The second situation, where the 

covariate and dependent variable are both measures of the one entity is addressed in 

Section 11.8.2. The final situation is when the experimental conditions influence the 

covariate measure. 

The good ANCOVA design practice of recording the covariate before the experi

mental manipulation prevents the experimental conditions affecting the covariate 

directly. (However, this will have no consequence for the relationship between the 

covariate and the experimental manipulation if both are measures of the same entity.) 

However, there may be practical or theoretical reasons for recording the covariate after 

the experimental manipulation. For example, practical reasons may preclude covariate 

recording before the experimental manipulation has been implemented or for theoret

ical reasons separate and independent statistical control within experimental condi

tions may be deemed appropriate. In these situations, the covariate measure is likely to 

be affected by the experimental manipulation and this creates problems for traditional 

ANCOVA. Two problems arise for traditional ANCOVA when the experimental 

conditions affect the covariate. These problems are adjustments based on the general 

covariate mean and multicolinearity. Each of these problems and how they are 

addressed by heterogeneous regression ANCOVA is described below. 

11.7.1 Adjustments Based on the General Covariate Mean 

Traditional ANCOVA is the assessment of an experimental effect at the general 

covariate mean. This can be seen by examining equation (9.6), which reveals that the 
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traditional ANCOVA adjustment is based on the within groups regression coefficient 
(/Jw) and the deviation of subjects' covariate scores (Z;j) from the general covariate 
mean (Za) 

(9.6, rptd) 

However, when experimental conditions influence the covariate, the experimental 
conditions are related to (i.e., correlated with) the covariate and this has two 
important consequences. First, differences between the experimental condition 
covariate means are expected and second, covariate values correspond with experi
mental conditions, with the experimental condition covariate mean values reflecting 
the specific experimental conditions and the general covariate mean value reflecting 
an intermediate experimental condition, but one which may have no counterpart in 
reality (Huitema, 1980; Smith, 1957). Therefore, when experimental conditions 
affect the covariate, traditional ANCOVA can be described as assessing the experi
mental effect in a fictitious experimental condition. Interpreting the general mean as 
an experimental condition is one difficulty, but another is interpreting the experi

mental effect in an experimental condition when it should involve the comparison of 
experimental conditions. 

When experimental conditions influence the covariate, heterogeneous regression 
AN COVA is able to fit separate and independent regression lines (Searle, 1987) to the 
different experimental conditions with the different covariate score distributions. As 
adjustments can be based on the individual experimental condition covariate means 
rather than the general covariate mean, the problem of the general covariate mean 
representing an intermediate experimental condition does not arise (see Urquhart, 
1982, for a similar assessment and conclusion). However, while heterogeneous 
regression ANCOVA maintains the integrity of the experimental condition covariate 
score distributions, the relationship between the experimental conditions and the 
covariate remains to be addressed. Nevertheless, by avoiding covariate distribution 
conflation, the relation between the experimental conditions and the covariate in 
heterogeneous regression ANCOVA changes from a condition that seriously com
plicated the interpretation of adjusted experimental effects and questioned the real 
world validity of the analysis, to the familiar regression topic of multicolinearity. 

11. 7 .2 Multicolinearity 

Multicolinearity has been discussed already in Sections 1.4 and 10.4.2.1, where the 
use of incremental analysis and heterogeneous regression to address multicolinearity 
problems also was mentioned. Multicolinearity refers to correlated predictor vari
ables. As a consequence of their relationship, the covariate and experimental condition 
predictors will be associated with the same variation in the dependent variable. Unless 
predictors are correlated perfectly, each predictor also will accommodate variation in 
the dependent variable that no other predictor accommodates, but it is the association 
of more than one predictor with the same variation in the dependent variable that 
creates the multicolinearity problems described in Section 1.4. 
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Incremental analysis attributes variance in the dependent variable to predictors that 
are entered into the GLM cumulatively in a principled order. When the heterogeneous 

regressions are across experimental conditions, the principled order requires the 

predictor( s) representing the experimental conditions to enter the GLM first- separate 

regressions cannot be applied before the experimental condition predictors 

separate the data by experimental condition. In these circumstances, the estimate 
of the effect of the experimental conditions will equal that which would be obtained 

with a conventional ANOVA. At the next step, variance uniquely attributable to the 

covariate is accommodated with heterogeneous regression across the experimental 

conditions. This heterogeneous regression ANCOVA adjustment is based on separate 

and independent experimental condition regression coefficients (/3) and the deviation 

of the subjects' covariate scores (Zu) from their experimental condition covariate 

mean (Zj). Although the variance accommodated by these regressions does not 

influence the variance attributed to the experimental conditions, it is removed from the 

error term and so provides more powerful tests of the effects assessed. 

When the variance in the dependent variable due to the covariate is extracted first, 

variance that could have been attributed to the experimental conditions will be 

removed and so, the variance subsequently attributed to the experimental conditions 

will be found to be less than that obtained when the experimental condition variance is 

extracted first, with the difference being a function of the correlation between the 

experimental conditions and the covariate. For most experiments this form of analysis 

would not be appropriate, due to a primary interest in the effect of the experimental 

conditions. However, it does suggest another way of analysing the experimental data 

(see 11.8.2). 

11.8 OTHER ALTERNATIVES 

11.8.1 Stratification (Blocking) 

Rather than a statistical operation, stratification is a modification to the design of the 

study, which necessitates a change in the experimental design GLM. The strategy 

employed is to allocate subjects to groups defined by certain ranges of the covariate 

scores. This creates another factor in the study design, with the same number of 

levels as the number of newly defined groups. This modification also changes the 

AN COVA into an AN OVA: the dependent variable scores are input to a conventional 

ANOVA on the basis of the new experimental design GLM. For example, the GLM 
equation for the independent measures, single-covariate, single factor design, 

described by equation ( 11. l ), after stratification would be described by equa

tion (11.3) 

YiJJk = µ + rx1 + f3k + (rxf3)1k + f.iJk (11.13) 

where {3k is the new factor with q levels, from 1 to k. The q levels of {3k represent the 

defined ranges of the covariate values (see Cochran, 1957; Elashoff, 1969; Kirk, 
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1995; Maxwell and Delaney, 2004; Winer et al., 1991; Winer, Brown, and Michels, 
1991). 

Ideally, the decision to employ this sort of analysis would be taken before subjects 
are recruited to �he experiment. This would enable the appropriate allocation 
procedures to be implemented (Maxwell and Delaney, 2004). The major advantage 
conferred by stratification is that no assumptions are made about the form of 
the relationship between the treatments and the covariate. Consequently, all of the 
problems unique to ANCOVA are avoided. 

However, Maxwell and Delaney (2004) describe the disadvantages of stratifica
tion compared with ANCOVA when ANCOVA assumptions are tenable. First, 
information is lost in the change from the covariate measurement scale to the 
nominal stratification measurement scale. The consequence is that variance accom
modated by the covariate in ANCOVA cannot be accommodated by the stratified 
covariate. Second, while ANCOVA accommodates only linear trend, with stratifi
cation all possible trends, such as linear, quadratic, cubic, and so on, are accom
modated: another trend component with each level of the new factor. 
The consequence is that where ANCOVA devotes only one df to the covariate, 
stratification devotes (q - 1) dfs. Unfortunately, this is not economical, as the linear 
trend component accommodates the vast majority of the variance in most psycho
logical data. Both of these stratification features result in a loss of analysis power in 
comparison with ANCOVA. Third, stratification will increase the number of 
experimental conditions and so reduce the dfs associated with the error term. The 
largest reduction is due to the dfs associated with the most complex or highest order 
interaction involving the covariate stratification factor. This interaction approxi
mates the ANCOVA capability of assessing experimental effects at any value of the 
covariate. Generally, the reduction in error term dfs results in higher error term 
estimates and so again, less powerful F-tests in comparison with ANCOVA. 

Given the preceding points, a stratified analysis is most likely to be applied when 
one or more traditional ANCOVA assumptions are untenable. As the untenability of 
most of the traditional AN COVA assumptions is likely to be determined only after the 
experiment has been completed and the data analyzed, a major difficulty with 
stratification is that the distribution of subjects' covariate scores may not allow 
convenient allocation to useful covariate range groups to conform to conventional 
AN OVA design requirements. In other words, without discarding selected data, which 
raises problematic issues, it is likely that this approach will require the analysis of 
unbalanced designs. Therefore, when planning an ANCOVA experiment it would 
seem wise to consider assumption failures and, as far as possible, design the 
experiment so the data obtained would be compatible with stratification analysis 
requirements. 

11.8.2 Replacing the Experimental Conditions with the Covariate 

When multicolinearity is caused by the covariate and the experimental conditions 
expressing the same entity, it may be beneficial to modify the experimental conception 
by dropping the terms representing the correlated experimental conditions from the 
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experimental design GLM and employ only the covariate to predict dependent 
variable scores. Certainly, one advantage enjoyed by the covariate is measurement 
on a ratio or interval scale (although sometimes this is stretched to an ordinal scale), 

in contrast to the nominal scale on which the category coded experimental 
manipulation is measured. An analysis based on a new linear model may be carried 
out by dropping the correlated experimental manipulation and introducing a term 
to represent the covariate. (In factorial designs, the covariate may be correlated with 
only one factor and so, one factor and all other terms involving this factor would be 
replaced by the covariate and a new set of terms representing the main effect and 
interactions.) With a new different GLM fitted to the data, consideration would need 
to be given to the suitability of the new hypotheses tested and the conclusions that 
could be drawn from their rejection or support. (See Cohen and Cohen, 1983; 
McCullagh and Nelder, 1989; Pedhazur, 1997, regarding the interpretation of 
categorical and quantitative variable interactions.) 

11.9 THE ROLE OF HETEROGENEOUS REGRESSION ANCOV A 

Although heterogeneous regression ANCOVA is only an extension of traditional 
ANCOVA, its application to real problems pushes to the foreground a particularly 
important issue: the nature of the relationship between the covariate and the depen
dent variable. Smith ( 1957) pointed out that a direct causal link between covariate and 
dependent variable is not a necessary requirement in traditional ANCOVA, but 
without knowledge of the causal effects, the interpretation of adjusted means is 
hazardous. In heterogeneous regression this state of affairs would appear to be even 
more pronounced, due to the potential increase in causal routes provided by the 
separate regressions. Therefore, the price of achieving an accurate interpretation of 
effects in heterogeneous regression ANCOVA is a more extensive theoretical 
consideration of the relationship between the covariate and the dependent variable 
under the different experimental conditions, than needs to be undertaken when 
traditional ANCOVA is employed. 

With the emphasis on a GLM approach to heterogeneous ANCOVA, the similari
ties between the theoretical description of causality required of the linear model and 
the causality, which usually is examined with structural equation models (Bentler, 
1980), such as LISREL (e.g., JOreskog and Sorbom, 1993), becomes more apparent 
(also see Cohen et al, 2003; Pedhazur, 1997). It is for these reasons that heterogeneous 
regression should be regarded as a means by which the validity of theoretical accounts 
can be further assessed and not as a cheap way to circumvent research effort or repair 
faulty research designs. 



CH APTER 12 

Multilevel Analysis for the 

Single Factor Repeated 

Measures Design 

12.1 INTRODUCTION 

Snijders and Bosker ( 1999) describe multilevel analysis as the coming together of 

two streams of statistical research: one addressing contextual analysis and the other 

addressing mixed effects analysis. Contextual analysis is concerned with the way in 

which the social context influences the individual's behavior. Mixed effects analysis 

in regression and analysis of variance (ANOVA) concerns analyses in which some 

variables (or factors) are fixed, while others are random. Multilevel analysis arose in 

the 1980s from the appreciation that the social context and the individual are 

separate and random sources of variance. This appreciation linked with statistical 

developments in mixed effects analysis (and within contextual analysis) that 

enabled regression models to accommodate nested random variables and their 

coefficients. (For more detailed historical accounts, see Hiittener and van den Eeden, 

1995; Longford, 1993.) One consequence of its varied origins is the number of 

different names applied to a set of similar, but not identical analyses. These include, 

hierarchical linear analysis (cf. Section 5.4 ), random coefficient analysis, or general 

linear mixed model analysis (e.g., Laird and Ware, 1982). Of these analyses, only 

hierarchical linear analysis is equivalent to multilevel analysis. Both hierarchical 

linear analysis and multilevel analysis impose a hierarchical or multilevel structure 

on the data (see Section 12.3). However, it is also possible to combine the equations 

describing the separate levels into a single full model equation. When this is done, 

the full model equation will include both fixed and random components and will 

employ fixed and random coefficients. Consequently, the model may be referred to 

as a random coefficient analysis (or model) or a (general) linear mixed model. 

ANOVA and ANCOVA: A GLM Approach, Second Edition. By Andrew Rutherford. 
© 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc. 
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Nevertheless, despite these differences, multilevel analysis now seems to be the 
most commonly applied name. Multilevel analysis is the title employed throughout 
this chapter not only because it is applied commonly but also because there will be a 
focus on a particular multilevel structure. 

Since the 1980s, multilevel analysis applications have become increasingly 
popular in the medical sciences, in the social sciences and in developmental, 
educational, and organizational psychology. In these research areas, data fre
quently is conceived as being grouped at different levels. For example, children 
from the same family or nursery may be more alike in their responses than they 
are to other children, while individual pupils within a class, within a school, or 
within an education authority area may exhibit greater similarity of response to a 
new teaching technique than pupils from other classes, schools, or education 
authority areas. Responses on other measures may also show similar patterns for 
individuals within different parts of an organization and perhaps at different 
levels of seniority. 

Although it may not be obvious immediately from the account just provided, 
multilevel analysis also offers a number of benefits for the examination of experi
mental data (e.g., Hoffman and Rovine, 2007). For example, data from groups tend 
to be related and often violates the sphericity assumption (see Sections 10.2.2 and 
10.4.1.3). Multilevel models are able to deal with such relations by their accom
modation of random factors. Multilevel analysis also offers a means of conducting 
more sophisticated analyses of experimental data. For example, Wright and London 
(2009) describe how signal detection theory (Macmillan and Creelman, 2005) 
measures can be estimated and employed economically within a multilevel analysis, 
while Hoffman and Rovine (2007) describe how multilevel analysis can model 
reaction times and error rate simultaneously, so allowing direct investigation of 
speed-accuracy trade-offs. Nevertheless, such sophisticated multilevel analysis will 
not be considered here. T he current chapter has the much simpler aim of introducing 
readers to the multilevel analysis approach to the single factor repeated measures 
experimental design described in Chapter 6. 

12.2 REVIEW OF THE SINGLE FACTOR REPEATED MEASURES 

EXPERIMENTAL DESIGN GLM AND ANOVA 

In Chapter 6, data from eight subjects, all observed under each of the three 
experimental conditions was presented in Table 6.6. All but the subject marginal 
means are presented again in Table 12.1. It also was explained in Chapter 6 that the 
general linear model (GLM) underlying a single factor related or repeated measures 
design ANOVA can be described by the equation 

Yu = µ + n; + a1 + r,!i (6.3,rptd) 

where Y ii is the ith subject's dependent variable score in the jth experimental 
condition, µ is the grand mean of the experimental condition population means, 
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Table 12.1 The Number of Words Recalled by Subjects After Study Periods of 30, 60, 

and 180 s Obtained in a Single Factor Repeated Measures Design 

Subjects 30s (Condition 1) 60 s (Condition 2) 180 s (Condition 3) 

sl 7 7 8 

s2 3 11 14 

s3 6 9 IO 

s4 6 11 11 

s5 5 IO 12 

s6 8 IO IO 

s7 6 11 II 

s8 7 11 12 

Means 6 10 11 

n; represents the random effect of the ith subject, and a.1 is the effect of the 
jth experimental condition. It was also explained that rather than simply reflecting 
variation due to any uncontrolled source, the error term, BiJ, also incorporates the 
interaction effect ( na.) u· However, it is only when the error covariance matrix 
is spherical that a valid and accurate F-test is obtained (see Sections 6.3 
and 10.2.2). 

In addition to the assumption of a spherical experimental conditions covariance 
matrix, ANOVA repeated measures designs also require all subjects to provide data 
across all of the repeated measures conditions. If a subject fails to provide any 
repeated measures dependent variable score, all of this subject's data must be dropped 

from the ANOVA of the experimental data. 

12.3 THE MULTILEVEL APPROACH TO THE SINGLE FACTOR 

REPEATED MEASURES EXPERIMENTAL DESIGN 

The multilevel analysis approach grew out of regression analysis, so expressing 
multilevel models in regression terms is to be expected (see Section 2.7.3). 
Therefore, in common with GLMs, when the independent variable has a quantitative 
or continuous nature, multilevel analysis provides an appropriate form of analysis 
(Cohen, 1983; Maxwell and Delaney, 1993; Vargha et al., 1996). Nevertheless, 
when multilevel models are applied to experimental data, it is just as easy to express 
them as experimental design GLMs. When a multilevel approach is applied to 
repeated measures data, the repeated measures are considered to occur "within" the 
subject. In multilevel parlance, the subject is the context for the repeated measures. 
Consequently, a Level 1 model describes the repeated measures "within" each 

subject as 

( 12. l) 
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where Y; represents the ith subject's dependent variable score, PoXo; represents the 
intercept on the Y-axis for the ith subject, Xii and X2; are indicator variables coding 
experimental condition for the ith subject, and e; the error term reflecting variation due 
to any uncontrolled source for the ith subject. Therefore, equation ( 12.1) describes a 
separate regression line for each subject. 

The relations across subjects are expressed by the (higher) Level 2 multilevel 
regression GLMs 

Po = 
Po + uo; (12.2a) 

(12.2b) 

(12.2c) 

It is worth drawing attention to the unfortunate, but established, use of the ordinary 
letter "u" to represent the parameter (i.e., the coefficient) for a random factor. Clearly, 
this has the potential to create confusion with µ, the Greek letter representing the 
general mean in experimental design GLMs. Nevertheless, examination of 
equation (12.2a) reveals that Po is defined as being composed of fixed CPo) and 
random (u0) effects. As fixed effect parameters are defined frequently as population 
means and are estimated as the average over the subjects in the sample, they are not 
associated with individual subjects so the i subscript is not appropriate. In contrast, 
random effect parameters, such as the parameter u, represent variance. Here, each U; 

represents deviation attributable to the ith subject. In other words, equation (12.2a) 
informs us that Po describes a separate intercept for each subject, where each subject 
varies from the general intercept (Po) by u0;. Similarly, the first and the second 
regression coefficients, p1 and p2, include fixed components estimated across 
subjects (p1 and P2) and individual deviations from these fixed components given 
by uli and u2;. 

Substituting the Level 1 components for their Level 2 descriptions provides the 
full multilevel regression GLM for the repeated measures design presented in 
Table 12.1 

(12.3) 

(Note: X1 is multiplied by p1, so when P1 is replaced by P1 + u1;, X1 is multiplied by 
p, + u1; to give p1xli + u;Xli. The same applies to p2.) Examination of the full 
model (12.3) reveals an equivalence with the single factor repeated measures 
experimental design GLM when effect coding is employed. With respect to the 
fixed effects, the Po component from equation ( 12.3) is equal to the µ component of 
equation (6.3, rptd) and the (P1X1; + P2X2;) component is equal to the rx1 component 
of equation (6.3, rptd). With respect to the random effects, the u0; component from 
equation (12.3) is equal to the n; component of equation (6.3, rptd), while the 
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Figure 12.1 Recall on experimental condition for each subject. 
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(u;X1; + u2X2; + e;) from equation (12.3) is equal to the£;, or, more accurately, 

the [(mx)u + eu] component of equation (6.2). 
In multilevel analyses, the dependent variable scores are conceived as randomly 

sampled measures nested within subjects. Although missing repeated measures is less 

of a problem for laboratory-based experimental research, a major benefit of this 

conception for applied research is that it allows the accommodation and use of data 

from subjects with incomplete sets of repeated measures. This contrasts with the 

experimental design GLM approach to repeated measures mentioned earlier, where 

any subject with any missing repeated measures data must be omitted from the 

analysis. However, in common with the experimental design GLM approach to 

unbalanced data with independent data, multilevel analyses implicitly assume that 

missing data is missing at random (i.e., there is no systematic reason for data to be 

missing). 

In Figure 12.l , each line represents each subjects' recall plotted as a function of 

the experimental condition. As can be seen, most subjects' recalls increase from 

experimental condition 1 (30 s study time) through experimental condition 2 (60 s 

study time) to experimental condition 3 (180 s study time), but there are 

exceptions. 

The multilevel model described for this repeated measures design employs a 

separate regression intercept of scores on experimental conditions per subject. More 

often than not, "factor" is dropped from the name of the random factor intercept 

model, it being called a random intercept model for short. (This is mentioned just in 
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Figure 12.2 Recall on experimental condition for each subject as provided by the multilevel 

model described by equation (12.3). Each subject provides a regression line, but as four 

subjects share an intercept, only five lines are apparent (i.e., one regression line represents 

four subjects). 

case any reader thinks random intercept models locate the intercepts on a random 
basis!) However, although the current multilevel model for the repeated measures 

design accommodates the influence of experimental conditions on subjects' scores, it 

also employs a single regression coefficient to represent the subjects' scores across the 

experimental conditions. Figure 12.2 provides a graphical representation of the 

multilevel model (and the repeated measures experimental design GLM) account 

of the repeated measures data presented in Figure 12.l. Hopefully, the graphical 

presentation demonstrates that employing a single regression coefficient for all 

subjects results in a set of parallel regression lines (one line per subject) across 

experimental conditions. All of the GLMs assume independent errors, so in repeated 

measures designs additional variables are introduced to accommodate relations 

between the repeated measures to provide independent errors. As discussed, both 

the repeated measures experimental design GLM and the random intercept multilevel 

GLM applied to the same repeated measures data accommodate certain relations, but 
not others. For example, the equivalent repeated measures experimental design and 

random intercept multilevel GLMs allow subjects scores to be related across 

experimental conditions, but, as Figure 12.2 shows, they do not allow any other 
relations between the repeated measures, or between the repeated measures and the 

experimental condition, as might be suggested by Figure 12.1. Of course, the issue is 

whether there is sufficient (i.e., significant) departure from compound symmetry 

expectations to warrant rejection of this assumption. 
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If the repeated measures experimental data was consistent with the repeated 
measures experimental design GLM and the random intercept multilevel GLM, then 
the matrix representing the experimental conditions covariance structure will exhibit 
compound symmetry (see Section 10.2.2). In other words, when you apply a random 
intercept multilevel model, you assume it is appropriate for the data and so, you 
assume the experimental conditions covariance structure will exhibit compound 
symmetry. In short, you assume compound symmetry when you apply a random 
intercept multilevel model. 

As suggested above, different variables can be introduced into the repeated 
measures experimental design or multilevel GLMs to accommodate different rela
tions across the repeated measures and experimental conditions. However, accom
modating different aspects of the related factors may change the assumed nature of the 
covariance structure. Therefore, by including particular variables in the repeated 
measures experimental design or multilevel GLMs, different covariance structures 
can be accommodated providing more realistic models and more accurate estimates. 
However, as said in Chapter 6, when repeated measures design GLMs are applied, 
there is rarely interest in the random factor (i.e., the subject variations over the 
repeated measures). Usually, this factor is included simply to increase the power of the 
test of the experimental factor (manipulation). Given this perspective, there will be no 
further attempt to describe the specific nature of the multilevel GLMs that represent 
the different correlational structures. Instead, in Section 12.5, attention will focus 
simply on fitting multilevel models that vary in terms of the covariance structures 
they assume. 

In the first part of this section the equivalence of the multilevel GLM and the 
repeated measures experimental design GLM for the repeated measures data pre
sented in Table 12.l was demonstrated and subsequently, it was described how the 
multilevel approach allows for different covariance structures. However, irrespective 
of the specific way in which the multilevel GLMs represent the different correlational 
structures, the effect of the experimental manipulations still may be expressed in 
terms of a comparison of full and reduced repeated measures GLMs. For example, the 
full repeated measures experimental design GLM 

(6.3, rptd) 

was compared with the reduced repeated measures experimental design GLM 

Yij = µ + 1'; + Bij ( 6.15, rptd) 

The same comparison expressed in multilevel GLM terms involves the full GLM 

(12.3,rptd) 

and the reduced GLM 

Y; =/Jo + Uo; + (u;Xli + U2X2; + £;) (12.3, rptd) 
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In short, the comparison of full and reduced GLMs compares a GLM that includes 

terms representing the experimental conditions with a GLM that excludes the terms 
representing the experimental conditions. It follows that irrespective of the way in 

which the multilevel GLMs represent the different correlation structures, it still 

will be possible to compare full and reduced models that include and exclude the 

specific terms representing the experimental conditions. Later, when the effect of 

the experimental manipulations (i.e., the experimental factor) is presented, it can 

be assumed that such a comparison of full and reduced models will have been 

carried out. 

12.4 PARAMETER ESTIMATION IN MULTILEVEL ANALYSIS 

All of the GLMs considered in previous chapters employed least squares estimation 

(see Section 1.6) and to allow the least squares based normal equations to be solved to 

provide estimates of random variable effects requires the imposition of simplifying 
but restrictive constraints (i.e., assumptions). One way to escape from some of these 

constraints is to employ a different method of parameter estimation. The ability of 
multilevel models to provide superior account of random factor effects is tied very 

closely to their use of different methods of parameter estimation. However, all of the 
parameter estimation methods used by multilevel models are very demanding 
computationally and so, generally, multilevel analyses rely on computer implemen
tations via appropriate software. One consequence is that various aspects of the 

multilevel analysis applied can be attributed to the particular capabilities of the 

statistical software employed. The same is true of this presentation, which employs 

the multilevel analyses available in SYS TAT. 

SY S TAT offers four estimation methods for random factor and fixed factor effect 

estimation: ANOVA methods (i.e., method of moments estimation, which can 

provide Type I, II, and III sums of squares), minimum variance quadratic unbiased 

estimation (MIVQUEO), maximum likelihood estimation (ML), and restricted (or 

residual) maximum likelihood estimation (REML). However, all four estimation 

methods are available only when variance components models are applied to 
examine fixed and random effects. When (general) linear mixed models and 

hierarchical linear mixed models (see Section 12. I) are used to examine fixed and 
random effects, only ML and RML estimation methods are available. Most other 
statistical packages also offer ML and REML estimation methods for (general) linear 

mixed models and hierarchical linear mixed models, so ML and REML estimation 
methods will be the focus here. Although a review of parameter estimation methods 

is well beyond the scope of this text, some aspects of ML and REML, and other 

estimation methods will be mentioned as the use of multilevel models to analyze 
repeated measures designs is presented. 

The least squares estimation of random factor effects hardly differs from the least 

squares estimation of fixed factor effects, whereas ML and REML take quite different 

approaches to the estimation of fixed and random factors. As the name "maximum 



APPLYING MULTILEVEL MODELS WITH DIFFERENT COVARIANCE STRUCTURES 289 

likelihood" suggests, both ML and REML provide parameter estimates that are most 

likely in specific, statistically defined situations. Features of the statistically defined 
situation include the nature of the model, which defines the factors the factor types 
(fixed or random), the factor interactions, and parameter estimate distributions, as 
well as the nature of the covariance structures. However, ML and REML 
estimation procedures are computationally demanding partly because equations 

defining the parameter estimates with maximum likelihood are not available for all 
situations and iterative parameter estimation has to be adopted to identify the most 
likely parameter estimate. A lthough the power of contemporary computers makes 
this a fairly trivial problem, ML and REML exhibit several other features that 
would make them attractive parameter estimation procedures even if their 
computational demands were still problematic. Specifically, ML and REML 
provide consistent, asymptotically efficient (i.e., the estimates are precise-they 
have low variance), and asymptotically normal parameter estimates that always 
fall within the theoretically defined parameter space under a range of assumptions. 
Unfortunately, ML estimates also tend to be biased, due to using residuals as if 
they were data, when, in fact, as a consequence of the process that generates them, 
residuals are more correlated than real data. REML addresses the residual 
correlation by reducing the residual dfs appropriately to provide unbiased param
eter estimates. (For further information on ML and REML, see Searle, Casella, 
and McCulloch, 1992.) 

12.5 APPLYING MULTILEVEL MODELS WITH DIFFERENT 

COVARIANCE STRUCTURES 

In this section, a step-by-step description of how to implement the multilevel GLM 
described by equation (12.4) in SYSTAT is presented and some aspects of the 
SYSTAT output is discussed. Subsequently, some other multilevel GLMs for the 
repeated measures experiment under consideration are presented and discussed. 
However, this section has a limited set of specific aims and should not be regarded 
as providing a full account of linear mixed models in SYSTAT. (For further 
information on linear mixed models in SYSTAT readers should refer to the appropri
ate SYSTAT manuals.) 

12.5.1 Using SYST AT to Apply the Multilevel GLM of the Repeated Measures 

Experimental Design G LM 

One of the first things required for a multilevel analysis, is an appropriately 
constructed data file. In SYSTAT and most other statistical packages, this means 
that each (repeated measures) dependent variable score should be on a separate line 
and the other column variables should specify the nature of each (repeated measures) 
dependent variable score. For the data from the hypothetical experiment presented in 
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Chapter 6, three column variables are required. The first variable specifies the 
subject, with subjects identified by the numbers 1-8. The next variable specifies 
the experimental condition, with the 30 s experimental condition identified by the 
number 30, the 60 s experimental condition identified by the number 60, and the 
180 s experimental condition identified by the number 180. The (repeated measures) 
dependent variable scores occupy the last column. For Subject 1 in experimental 

condition 30 s, the dependent variable score provided was 7. For Subject 2 in 
experimental condition 30 s, the dependent variable score provided was 3, and so on. 
However, all of the subjects also provided scores in the other two experimental 
conditions and these data are recorded too. A copy of the data file containing this 
data is presented in Figure 12.3. 

1.000 

2 2.000 
� 

3 3.000 

4 4.000 

5 5.000 

6 6.000 

7 7.000 

8 8.000 

9 1.000 

10 2.000 

11 3.000 

12 4.000 

13 5.000 

14 6.000 

15 7.000 

16 8 000 

17 1.000 

18 2.000 

19 3.000 

20 4 000 

21 5.000 

22 6.000 

23 7.000 

24 8.000 

TIME 

30.000 

30.000 

30.000 

30.000 

30.000 

30.000 

30.000 

30.000 

60.000 

60.000 

60.000 

60.000 

60.000 

60.000 

60 000 

60.000 

180.000 

180.000 

180.000 

180 000 

180.000 

180.000 

180.000 

180.000 

RECAl.L I 
7.000 

3 000 

6.000 

6.000 

5.000 

B.000 

6.000 

7000 

7.000 

11.000 

9.000 

11.000 

10.000 

10.000 

11 000 

11.000 

8 000 

14 000 

10.000 

11 000 

12..000 

10.000 

11.000 

12.000 

Figure 12.3 The typical format of data file required for multilevel modeling. 
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Figure 12.4 The Linear Mixed Models dialog box. 

291 

While the data editor is open, click on Data to obtain the drop down menu and 

click on Categorical Variables, and select, SUBJECTS and TIME, and click OK. 

(This surmounts a problem setting categorical variables under Mixed Models.) 

12.5.1.1 The Linear Mixed Model 
After completing the steps described in Section 12.5.1, click on Analyze to obtain 

the drop down menu and then select Mixed Models and then Linear Mixed 
Models. This opens the Linear Mixed Models dialog box. Select the column 

containing all of the (repeated measures ) dependent variable scores (RECALL) as 

dependent and the experimental conditions column (TIME) as the fixed effect (see 

Figure 12.4). Notice that ML and REML estimation methods are available and that 

REML is the default. 

Next, click on the Random tab. This opens the Random dialog box. At the top of 

this dialog box, identify the section titled, Random effects covariance structure. 

SUBJECTS should be the only effect listed in the Available effect(s) box on the left. 

Highlight SUBJECTS and click on the Add button. This will move SUBJECTS into 

the selected effect(s) box on the right. SUBJECTS also will be accompanied by an 

indication that a variance components covariance structure will accommodate the 

SUBJECT effect. The variance components covariance structure is one in which all 

diagon al entries are equal (i.e., an identity matrix). Unless there are particular 

features of the SUBJECT effect to be accommodated, this simple covariance 

structure usually is sufficient. Next, in the section below, labeled error covariance 

structure, click on the Structure menu (the box with the downward pointing arrow) 
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Figure 12.5 The Linear Mixed Models dialog box. 

and select Compound symmetry, and click OK, which implements the analysis (see 

Figure 12.5). 

The SYSTAT output is presented below. 

The categorical values encountered during processing are 

Variables Levels 

-------------------- + ---------------------------------------

TIME (3 levels) 30.000 60.000 180.000 
SUBJECTS (8 levels) 1.000 2.000 3.000 4.000 5.000 

Dependent Variable 

Fixed Factor(s) 

Fixed Covariate(s) 

Random Factor(s) 

Estimation Method 

Dimensions 
Covariance Parameters 

Columns in X 
Columns in Z 
No. of Observations 

6.000 

RECALL 

TIME 

Intercept 

SUBJECTS 

7.000 8.000 

Residual or Restricted Maximum 

Likelihood (REML) 

2 
4 
8 

24 
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Fit Statistics 
Final L-L 

-2L-L 

AIC 

AIC (Corrected) 
BIC 

-42.973 

85.946 

91. 946 

93.358 

95.080 

Estimates of Covariance Components 

Random Effect : Description Estimate 
---------------+-----------------------

SUBJECTS : Variance 

: Parameter 

0.451 

-�-------------+-----------------------

Error variance Variance 2.224 

Parameter 

Error 

Correlation 

(CS) 

Estimates of Fixed Effects 

0.000 
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Effect Level: Estimate Standard Error df t p-Value 
--------------- +------------------------------------- -------

Intercept 11. 000 0.578 7 19.020 0.000 

--------------- +------------------------------ ------- -------

TIME 30 

60 

180 

-5.000 

- 1.000 

0.000 

0.746 14 -6.706 

0.746 14 -1.341 

0.000 

0.000 

0.201 

Confidence Intervals of Fixed Effects Estimates 

Effect Level Estimate 

95.00% Confidence Interval 

Lower Upper 

------------------ +-----------------------------------------

Intercept 11. 000 9.760 12.240 

------------------ +-----------------------------------------

TIME 30 -5.000 -6.599 -3.401 

60 -1.000 -2.599 0.599 

180 0.000 

Type III Tests for Fixed Effects 

Effect I Numerator df Denominator df F-Ratio p-Value I 

-------+--------------------------------------------------

TIME 2 14 25.180 0.000 
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As the multilevel GLM described by equation (12.4) is equivalent to the repeated 

measures experimental design GLM, the analysis applied here should provide exactly 

the same results as the repeated measures ANOVA (based on the repeated measures 

experimental design GLM) presented in Tables 6.10 and 6. I 3. Above the residual plot 

(which suggests that there are no homoscedasticity problems-see Section 10.4. I .4), 

is a table providing the ANOVA (Type III SS) test for the fixed effects of the 

experimental factor, Time. However, the F-value presented, F(2,14)=25.180, is 

greater than the value reported in Tables 6.10, 6.13, and 6.19 F(2, I 4) = 20.634. The 

reason for this is outlined below. 

Previously, it was said that ML and REML provide estimates that always fall within 

the theoretically defined parameter space. The theoretically defined parameter space 

does not include negative variance, but, due to sampling error, negative variance 

estimates can arise in exactly the same way that slightly inflated variance estimates 

can arise. Unfortunately, the repeated measures experimental data in Table 12. I 

provides a negative variance estimate for the subject effect As REML assumes that all 

variance estimates are greater than or equal to 0, the negative estimate is set to 0. This 

results in an underestimate of the F-test denominator for the effect of the experimental 

factor, which, in tum, provides the inflated F-value. Fortunately, however, this 

problem can be surmounted by implementing a hierarchical linear mixed model 

analysis. 
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Figure 12.6 The Hierarchical Linear Mixed Models dialog box. 

12.5.1.2 The Hierarchical Linear Mixed Model 
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A hierarchical linear mixed model analysis imposes the multilevel structure on 

the data described in Section 12.3. One consequence of this approach is an 

alteration in the parameters estimated. Although the two models are essentially 

equivalent, what was a negative variance estimate for the subject effect in the 

linear mixed model manifests as (REML acceptable) negative correlations 

between subjects' repeated measures scores in the hierarchical linear mixed 

model. Instructions to implement a hierarchical linear mixed model analysis are 

provided below. 

After completing the steps described in Section 12.5.1, click on Analyze to obtain 

the drop down menu and then select Mixed Models and then Hierarchical Linear 

Mixed Models. This opens the Hierarchical Linear Mixed Models dialog box. Select 

the column containing all of the (repeated measures) dependent variable scores 

(RECALL) as dependent and the experimental conditions column (TIME) as the fixed 

effect (see Figure 12.6). 

Next, click on the Random tab. This opens the Random dialog box. At the top 
of this dialog box, identify the section titled, Random effects covariance 

structure, and under Subject, from the drop down list, select the variable, 

SUBJECTS, and then moving to the left of this dialog box, under Covariance 

structure, select Compound symmetry, and click OK, which implements the 

analysis (see Figure 12.7). 
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Figure 12.7 The Random dialog box-selecting Compound symmetry. 

The SYSTAT output is presented below. 

The categorical values encountered during processing are 

Variables Levels 

---------- ---------- + ------------------------------------

TIME (3 levels) 

SUBJECTS (8 levels) 

30. 000 60. 000 180. 000 
1.000 2.000 3.000 4.000 5.000 
6.000 

Dependent Variable RECALL 

Fixed Factor ( s) TIME 

Fixed Covariate(s) Intercept 

7.000 8.000 

Estimation Method Residual or Restricted 

Maximum Likelihood (REML) 

Dimensions 
Covariance Parameters 1 
Columns in X 4 
Columns in Z O 
No. of Observations 24 
Number of subjects 8 

Max. observations per subject 3 
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Fit Statistics 
Final L-L 

-2L-L 

AIC 
AIC(Corrected) 

BIC 

-42.333 

84.665 

88.665 
89.332 

90.754 

Estimates of Covariance Components 

Random Effect : Description Estimate 
---------------+-----------------------

Error variance Variance 

Parameter 

E rror 

Correlation 

(CS) 

Estimates of Fixed Effects 

2.476 

-0.096 
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Effect Level :Estimate Standard Error df t p-Value 

---------------- + -------------------------------------------

Intercept 11.000 0.556 21 19.772 0.000 

---------------- +-------------------------------------------

TIME 30 

60 

180 

-5.000 

-1.000 

o.oob 

0.824 21 -6.070 

0.824 21 -1.214 

0.000 

0.000 

0.238 

Confidence Intervals of Fixed Effects Estimates 

Effect Level Estimate 

95.00% Confidence Interval 

L ower Upper 

------------------+-----------------------------------------

Intercept 11. 000 9.843 12.157 

------------------ +-----------------------------------------

TIME 30 -5.000 -6.713 -3.287 

60 

180 

-1. 000 

0.000 

Type III Tests for Fixed Effects 

Effect : Numerator df Denominator df 

-2. 713 0. 713 

F-Ratio p-Value 

-------+--------------------------------------------------

TIME 2 21 20.632 0.000 
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The F-ratio in the table above is virtually identical to the F-value reported in 

Tables 6.10, 6.13 and 6.19 (i.e., 20.632 cf. 20.634 ). Nevertheless, there is a 

discrepancy with respect to the denominator dfs. In common with (IBM) SPSS 

implementations of hierarchical linear mixed models, SYSTAT shows the F-test 

denominator df = 21. However, the repeated measures AN OVA shows the F-test 

denominator df = 14. This discrepancy is due to neither SYSTAT nor SPSS removing 

the 7 dfs contributed by Subjects from the F-test denominator dfs. However, no such 
dfs discrepancy arose when the linear mixed model was implemented (Sec

tion 12.5.1.1). This and the explanation for the F-estimate discrepancy observed 

with the linear mixed model (Section 12.5.1.1), reveals that although the linear mixed 
model and the hierarchical linear mixed model can be expressed equivalently, the two 

implementations differ and different issues are matters of debate for the different 
implementations, such as appropriate dfs for particular model terms in the hierarchical 

linear mixed model (e.g., Bolker et al, 2009). 

12.5.2 Applying Alternative Multilevel GLMs to the Repeated 

Measures Data 

Of course, the purpose of adopting a multilevel analysis approach to repeated 

measures designs is not to replicate ANOVAs, but rather to escape from some of 
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the constraints placed on repeated measures ANOVA, so more accurate estimates 

of experimental effects can be obtained. The requirement that the experimental 

conditions covariance structure should exhibit sphericity (compound symmetry 

for current purposes, see Section l 0.2.2) has been identified as particularly 

problematic. 

When a linear mixed model was implemented (Section 12.5.1. l), it was assumed 

that the matrix representing the error covariance structure exhibited compound 

symmetry, but when a hierarchical linear mixed model was implemented 

(Section 12.5. l.2), it was assumed that the matrix representing the random Subject 

effect covariance exhibited compound symmetry. In Section 10.2.2 , it was 

explained how a spherical matrix representing the experimental conditions co

variance structure provided independent errors. Similarly, the assumptions about 

the covariance structures of the error and Subject effect covariance structures suit 

the different implementation methods but follow from the assumption that the 

matrix representing the experimental conditions covariance structure exhibits 

compound symmetry. 

SYSTAT offers two alternative covariance structures: variance components and 

AR(l). The variance components option applies an identity matrix to accommodate 

the covariance structure, while the AR( 1) option applies an autoregressive covariance 

structure, which assumes that adjacent experimental conditions will be more corre

lated than experimental conditions that are further apart. (It is also assumed that each 

correlation depends only upon the previous correlation plus error.) For example, the 

30 s experimental condition will be more correlated with the 60 s experimental 

condition than with the 180 s experimental condition, while the 180 s experimental 

condition will be more correlated with the 60 s experimental condition than with the 

30 s experimental condition. The AR(l) covariance structure applies most coherently 

to repeated measures data collected over time, where all subjects' experience of the 

same order of study "conditions" (i.e., with longitudinal data). Nevertheless, this 

conception also fits with the current experimental factor, study time, as although it is 

treated as a categorical variable, its origins on a quantitative scale are apparent. (Note: 

As each subject would have experienced a different random order of experimental 

conditions, it is the theoretical "distance" between the 30, 60, and 180 s experimental 

conditions and not the actual order of experimental conditions experienced that is 

important here.) There will be other experimental factor levels that also fit with the 

AR( 1) conception, but some care should be taken to ensure that the AR( 1) assump

tions have theoretical correspondence with the experimental factor levels. An 

unstructured covariance matrix is often a serious contender for repeated measures 

data and this certainly would be a useful addition to the set of covariance structures 

offered by SYSTAT. 

To implement a multilevel GLM with a covariance structure defined by AR( 1) to 

the repeated measures data presented in Table 12.1, follow all of the instructions in 

Section , up to the opening of the Random dialog box. However, rather than 

selecting Compound symmetry for the SUBJEC TS error covariance structure at this 

point, select AR(l) and then click OK (see Figure 12 .8). 
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Figure 12.8 The Random dialog box-selecting AR(I ). 

However, when this was done initially, the following appeared in the output: 

**WARNING**: Maximum number of iterations exceeded. Displaying 

results at last iteration. 

You may: a) Increase the number of ECME iterations using 

NEM=number to improve initial estimates 

b) Increase the number of Newton-Raphson iterations 

using NNR = number 

Therefore, before running the analysis again, the number of ECME and 

Newton-Raphson iterations was increased. This is done by clicking on the Options 

tab in the Hierarchical Linear Mixed Models dialog box and simply increasing the 

pertinent values, as shown in Figure 12.9, and clicking OK. 

The SYSTAT output obtained is presented below. 

The categorical values encountered during processing are 

Variables Levels 

--------------------+----------------------------------------

SUBJECTS (8 levels) 

TIME (3 levels) 

1. 000 
6.000 

30.000 

2.000 
7.000 

3.000 
8.000 

60.000 180.000 

4.000 5.000 
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RECALL 

TIME 

Intercept 

Dependent Variable 
Fixed Factor(s} 

Fixed Covariate(s} 
Estimation Method Residual or Restricted 

Maximum Likelihood (REML} 

Dimensions 

Covariance Parameters 1 

Columns in X 4 
Columns in Z O 

No. of Observations 24 

Number of subjects 8 

Max. observations per subject 3 

Fit Statistics 

Final L-L 

-2L-L 

AIC 

AIC(Corrected} 

BIC 

-41.895 

83.790 

87.790 

88.457 

89.879 

Estimates of Covariance Components 

Random Effect : Description Estimate 

--------------- +-----------------------

Error variance Variance 2.490 

Parameter 

Error 

Correlation 

(AR(l}} 

Estimates of Fixed Effects 

0.286 
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Effect Level : Estimate Standard Error df t p-Value 

------ ----------- + -------------------------------------------

Intercept 11.000 0.558 21 19.719 0.000 

----------------- + --------- ---------------------- ------------

TIME 30 -5.000 0.756 21 -6.615 0.000 

60 
180 

-1.000 

0.000 

0.666 21 -1.500 

0.000 

0.148 
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Confidence Intervals of Fixed Effects Estimates 

Effect Level Estimate 
95.00% Confidence Interval 

Lower Upper 
------------------ +-----------------------------------------

Intercept 11. 000 9.840 12.160 
------------------ + --------- --------------------------------

TIME 30 -5.000 -6.572 -3.428 
60 -1.000 -2.386 0.386 
180 0.000 

Type III Tests for Fixed Effects 

Effect : Numerator df Denominator df F-Ratio p-Value 
------- + --------------------------------------------------

TIME 

3 

2 

ai 
::J 

"O 0 "iii 
<ll 
a: 

-1 

-2 

-3 

-4 
6 

2 21 25.612 

Plot of residuals versus predicted values 

0 

Q 0 

----------------------0------0----

7 8 9 

Estimate 

0 

0 0 

10 11 

0.000 

12 

When a covariance structure defined by AR( 1) was applied, the AN OVA (Type III 

SS) test for the fixed effects of the experimental factor, Time, was, F= 25.612. This is 

greater than, F = 20.632, which was obtained when Compound symmetry was 

assumed to provide an adequate description of the covariance structure. So which 
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Figure 12.9 The Options dialog box to specify the number of ECME and Newton-Raphson 
iterations. 

of these two F-tests is most appropriate to report? The answer is the most appropriate 

F-tests is the one from the model providing the best fit to the experimental data. How 

to determine which model fits the experimental data best is addressed in the next 

section. 

12.6 EMPIRICALLY ASSESSING DIFFERENT MULTILEVEL MODELS 

In common with most multilevel statistical packages, SYSTAT provides a number of 

model Fit Statistics and comparing the Fit Statistics for each model provides an 

empirical assessment of the model fit to the experimental data. 

Fit Statistics are presented near the top of the data output. For the multilevel OLM 

with a compound symmetry error covariance, the fit statistics were 

Fit Statistics 
Final L-L 
-2L-L 
AIC 
AIC(Corrected) 
BIC 

-42.333 
84.665 
88.665 
89.332 
90.754. 
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For the multilevel GLM with an AR(l )  error covariance, the fit statistics were 

Fit Statistics 

Final L-L 

-2L-L 

AIC 

AIC(Corrected) 

BIC 

-41. 895 

83.790 

87.790 

88.457 

89.879. 

Generally, the recommended fit statistics are Akiake's information criterion 
(AIC), the corrected Akiake information criterion (AIC corrected) and the Bayesian 

information criterion (BIC), with smaller fit statistics indicating a better fit between 
the model and the data. Unfortunately, however, Keselman, Algina, Kowalchuk and 

Wolfinger (1998) demonstrated that information criteria alone frequently do not 
identify the best fitting model and so simple empirical assessments of the best fitting 

model, particularly when fit statistics do not differ greatly, cannot be guaranteed to 

select the best model. Identifying the most appropriate model is another matter that 
requires theoretical perspective, consideration and input. Although a comparison of 

the indices above suggests that the multilevel GLM with an AR( 1) covariance 

structure provides the better fit to the experimental data than the compound 

symmetry covariance structure, the differences are slight and some theoretical 
perspective, consideration and input would be very useful. Nevertheless, as both 

models indicate a large and significant effect of Time, the choice of the most 

appropriate covariance structure is unlikely to affect the conclusions drawn. 

There is much to recommend linear mixed models and hierarchical linear mixed 

models. However, a number of issues, such as appropriate dfs for some terms and even 
whether some effects can be assessed, remain to be resolved (e.g., Bolker et al, 2009). 

Until these matters are resolved fully, it is unlikely linear mixed models and 

hierarchical linear mixed models will be adopted as widely as least squares GLMs. 



Appendix A 

SYSTAT 

Information about SYST AT is available on the SYST AT home page: 

http://www.systat.com 

MYSTAT is a free reduced version of SYSTAT that can be downloaded via the 

SYSTAT home page. 

Although MYSTAT has much less capability than SYSTAT, it does include indepen

dent measures ANOVA and ANCOVA. 

ANOVA and ANCOVA: A GLM Approach, Second Edition. By Andrew Rutherford. 
© 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc. 
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Table B.1 Upper Percentage Points of the F Distribution 

a 

0 2 F 3 a 

4 5 

dffor 
df for Numerator 

Denomi-

nator (:J. 1 2 3 4 5 6 7 8 

0.25 5.83 7.50 8.20 8.58 8.82 8.98 9.IO 9.19 
1 O.IO 39.9 49.5 53.6 55.8 57.2 58.2 58.9 59.4 

0.05 161 200 216 225 230 234 237 239 
0.25 2.57 3.00 3.15 3.23 3.28 3.31 3.34 3.35 

2 O.IO 8.53 9.00 9.16 9.24 9.29 9.33 9.35 9.37 
0.05 18.5 19.0 19.2 19.2 19.3 19.3 19.4 19.4 
0.01 98.5 99.0 99.2 99.2 99.3 99.3 99.4 99.4 
0.25 2.02 2.28 2.36 2.39 2.41 2.42 2.43 2.44 

3 O.IO 5.54 5.46 5.39 5.34 5.31 5.28 5.27 5.25 
0.05 I O. I  9.55 9.28 9.12 9.01 8.94 8.89 8.85 
0.01 34.1 30.8 29.5 28.7 28.2 27.9 27.7 27.5 
0.25 1.81 2.00 2.05 2.06 2.07 2.08 2.08 2.08 

4 O.IO 4.54 4.32 4.19 4.11 4.05 4.01 3.98 3.95 
0.05 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 
0.01 21.2 18.0 16.7 16.0 15.5 15.2 15.0 14.8 
0.25 1.69 1.85 1.88 1.89 1.89 1.89 1.89 1.89 

5 O.IO 4.06 3.78 3.62 3.52 3.45 3.40 3.37 3.34 
0.05 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 
0.01 16.3 13.3 12.1 11.4 11.0 10.7 10.5 I0.3 
0.25 1.62 1.76 1.78 1.79 1.79 1.78 1.78 1.78 

6 0.10 3.78 3.46 3.29 3.18 3.11 3.05 3.01 2.98 
0.05 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 
0.01 13.7 I0.9 9.78 9.15 8.75 8.47 8.26 8.IO 
0.25 1.57 1.70 1.72 1.72 1.71 1.71 1.70 1.70 

7 O. I O  3.59 3.26 3.07 2.96 2.88 2.83 2.78 2.75 
0.05 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 
0.01 12.2 9.55 8.45 7.85 7.46 7.19 6.99 6.84 
0.25 1.54 1.66 1.67 1.66 1.66 1.65 1.64 1.64 

8 O.IO 3.46 3.11 2.92 2.81 2.73 2.67 2.62 2.59 
0.05 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 
0.01 11.3 8.65 7.59 7.01 6.63 6.37 6.18 6.03 
0.25 1.51 1.62 1.63 1.63 1.62 1.61 1.60 1.60 

9 O.IO 3.36 3.01 2.81 2.69 2.61 2.55 2.51 2.47 
0.05 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 
0.01 I0.6 8.02 6.99 6.42 6.06 5.80 5.61 5.47 

APPENDIX B 

9 10 11 12 

9.26 9.32 9.36 9.41 
59.9 60.2 60.5 60.7 
241 242 243 244 

3.37 3.38 3.39 3.39 
9.38 9.39 9.40 9.41 

19.4 19.4 19.4 19.4 
99.4 99.4 99.4 99.4 

2.44 2.44 2.45 2.45 
5.24 5.23 5.22 5.22 
8.81 8.79 8.76 8.74 

27.3 27.2 27.1 27.1 
2.08 2.08 2.08 2.08 
3.94 3.92 3.91 3.90 
6.00 5.96 5.94 5.91 

14.7 14.5 14.4 14.4 
1.89 1.89 1.89 1.89 
3.32 3.30 3.28 3.27 
4.77 4.74 4.71 4.68 

I 0.2 IO.I 9.96 9.89 
1.77 1.77 1.77 1.77 
2.96 2.94 2.92 2.90 
4.10 4.06 4.03 4.00 
7.98 7.87 7.79 7.72 
1.69 1.69 1.69 1.68 
2.72 2.70 2.68 2.67 
3.68 3.64 1.60 3.57 
6.72 6.62 6.54 6.47 
1.63 1.63 1.63 1.62 
2.56 2.54 2.52 2.50 
3.39 3.35 3.31 3.28 
5.91 5.81 5.73 5.67 
1.59 1.59 1.58 1.58 
2.44 2.42 2.40 2.38 
3.18 3.14 3.10 3.07 
5.35 5.26 5.18 5.11 
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df for Numerator 

309 

dffor 
Denomi-

15 20 24 30 40 50 60 100 120 200 500 00 rx nator 

9.49 9.58 9.63 9.67 9.71 9.74 9.76 9.78 9.80 9.82 9.84 9.85 0.25 

61.2 61.7 62.0 62.3 62.5 62.7 62.8 63.0 63.1 63.2 63.3 63.3 0.10 

246 248 249 250 251 252 252 253 253 254 254 254 0.05 

3.41 3.43 3.43 3.44 3.45 3.45 3.46 3.47 3.47 3.48 3.48 3.48 0.25 

9.42 9.44 9.45 9.46 9.47 9.47 9.47 9.48 9.48 9.49 9.49 9.49 0.10 2 

19.4 19.4 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 0.05 

99.4 99.4 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 0.01 

2.46 2.46 2.46 2.47 2.47 2.47 2.47 2.47 2.47 2.47 2.47 2.47 0.25 

5.20 5.18 5.18 5.17 5.16 5.15 5.15 5.14 5.14 5.14 5.14 5.13 0.10 3 

8.70 8.66 8.64 8.62 8.59 8.58 8.57 8.55 8.55 8.54 8.53 8.53 0.05 

26.9 26.7 26.6 26.5 26.4 26.4 26.3 26.2 26.2 26.2 26.1 26.1 0.01 

2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 0.25 

3.87 3.84 3.83 3.82 3.80 3.80 3.79 3.78 3.78 3.77 3.76 3.76 O. IO 4 

5.86 5.80 5.77 5.75 5.72 5.70 5.69 5.66 5.66 5.65 5.64 5.63 0.05 

14.2 14.0 13.9 13.8 13.7 13.7 13.7 13.6 13.6 13.5 13.5 13.5 0.01 

1.89 1.88 1.88 1.88 1.88 1.83 1.87 1.87 1.87 1.87 1.87 1.87 0.25 

3.24 1.21 3.19 3.17 3.16 3.15 3.14 3.13 3.12 3.12 3.11 3.IO 0.10 5 

4.62 4.56 4.53 4.50 4.46 4.44 4.43 4.41 4.40 4.39 4.37 4.36 0.05 

9.72 9.55 9.47 9.38 9.29 9.24 9.20 9.13 9.11 9.08 9.04 9.02 0.01 

1.76 1.76 1.75 1.75 1.75 1.75 1.74 1.74 1.74 1.74 1.74 1.74 0.25 

2.87 2.84 2.82 2.80 2.78 2.77 2.76 2.75 2.74 2.73 2.73 2.72 0.10 6 

3.94 3.87 3.84 3.81 3.77 3.75 3.74 3.71 3.70 3.69 3.68 3.67 0.05 

7.56 7.40 7.31 7.23 7.14 7.09 7.06 6.99 6.97 6.93 6.90 6.88 0.01 

1.68 1.67 1.67 1.66 1.66 1.66 1.65 1.65 1.65 1.65 1.65 1.65 0.25 

2.63 2.59 2.58 2.56 2.54 2.52 2.51 2.50 2.49 2.48 2.48 2.47 O.IO 7 

3.51 3.44 3.41 3.38 3.34 3.32 3.30 3.27 3.27 3.25 3.24 3.23 0.05 

6.31 6.16 6.07 5.99 5.91 5.86 5.82 5.75 5.74 5.70 5.67 5.65 O.Ql 

1.62 1.61 1.60 1.60 1.59 1.59 1.59 1.58 1.58 1.58 1.58 1.58 0.25 

2.46 2.42 2.40 2.38 2.36 2.35 2.34 2.32 2.32 2.31 2.30 2.29 0.10 8 

3.22 3.15 3.12 3.08 3.04 3.02 3.01 2.97 2.97 2.95 2.94 2.93 0.05 

5.52 5.36 5.28 5.20 5.12 5.07 5.03 4.96 4.95 4.91 4.88 4.86 0.01 

1.57 1.56 1.56 1.55 1.55 1.54 1.54 1.53 1.53 1.53 1.53 1.53 0.25 

2.34 2.30 2.28 2.25 2.23 2.22 2.21 2.19 2.18 2.17 2.17 2.16 0.10 9 

3.01 2.94 2.90 2.86 2.83 2.80 2.79 2.76 2.75 2.73 2.72 2.71 0.05 

4.96 4.81 4.73 4.65 4.57 4.52 4.48 4.42 4.40 4.36 4.33 4.31 0.01 
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Table B.1 (Continued) 

dffor 
df for Numerator 

Denomi-
nator ('/,, 1 2 3 4 5 6 7 8 9 10 1 1 1 2  

0.25 1.49 1.60 1.60 1.59 1.59 1.58 1.57 1.56 1.56 1.55 1.55 1.54 

10 0.10 3.29 2.92 2.73 2.61 2.52 2.46 2.41 2.38 2.35 2.32 2.30 2.28 

0.05 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.94 2.91 

0.01 10.0 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85 4.77 4.71 

0.25 1.47 l.58 1.58 l.57 l.56 1.55 1.54 1.53 1.53 l.52 1.52 1.51 

11 0.10 3.23 2.86 2.66 2.54 2.45 2.39 2.34 2.30 2.27 2.25 2.23 2.21 

0.05 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 2.82 2.79 

0.01 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63 4.54 4.46 4.40 

0.25 1.46 1.56 1.56 1.55 1.54 1.53 1.52 1.51 1.51 1.50 1.50 1.49 

12 0.10 3.18 2.81 2.61 2.48 2.39 2.33 2.28 2.24 2.21 2.19 2.17 2.15 

0.05 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 2.72 2.69 

O.Ql 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4.30 4.22 4.16 

0.25 1.45 1.55 1.55 l.53 1.52 1.51 1.50 l.49 1.49 1.48 1.47 l.47 

13 0.10 3.14 2.76 2.56 2.43 2.35 2.28 2.23 2.20 2.16 2.14 2.12 2.10 

0.05 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67 2.63 2.60 

0.01 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19 4.10 4.02 3.96 

0.25 1.44 1.53 1.53 l.52 l.51 1.50 1.49 1.48 1.47 1.46 1.46 1.45 

14 0.10 3.10 2.73 2.52 2.39 2.31 2.24 2.19 2.15 2.12 2.10 2.08 2.05 

0.05 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60 2.57 2.53 

O.Dl 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03 3.94 3.86 3.80 

0.25 1.43 1.52 1.52 l.51 l.49 1.48 1.47 1.46 1.46 1.45 1.44 l.44 

15 0.10 3.07 2.70 2.49 2.36 2.27 2.21 2.16 2.12 2.09 2.06 2.04 2.02 

0.05 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.51 2.48 

0.01 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80 3.73 3.67 

0.25 1.42 1.51 1 .51 1.50 1.48 1.47 1.46 l.45 1.44 1.44 1.44 1.43 

16 0.10 3.05 2.67 2.46 2.33 2.24 2.18 2.13 2.09 2.06 2.03 2.01 1.99 

0.05 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.46 2.42 

O.Dl 8.53 6.2.1 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69 3.62 3.55 

0.25 1.42 1.51 1.50 l.49 1.47 1.46 1.45 1.44 1.43 1.43 l.42 1.41 

17 0.10 3.03 2.64 2.44 2.31 2.22 2.15 2.10 2.06 2.03 2.00 1.98 1.96 

0.05 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45 2.41 2.38 

0.01 8.40 6.11 5.18 4.67 4.34 4.lO 3.93 3.79 3.68 3.59 3.52 3.46 

0.25 1.41 1.50 1.49 1.48 1.46 1.45 1.44 1.43 l.42 1.42 1.41 1.40 

18 0.10 3.01 2.62 2.42 2.29 2.20 2.13 2.08 2.04 2.00 1.98 1.96 1.93 

0.05 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.37 2.34 

O.Dl 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60 3.51 3.43 3.37 

0.25 1.41 1.49 1.49 1.47 1.46 1.44 1.43 1.42 1.41 l.41 1.40 1.40 

19 0.10 2.99 2.61 2.40 2.27 2.18 2.11 2.06 2.02 1.98 1.96 1.94 1.91 

0.05 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38 2.34 2.31 

O.Ql 8.18 5.9. l 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43 3.36 3.30 

0.25 1.40 1.49 1.48 l.46 1.45 l.44 1.43 1.42 1.41 l.40 1.39 1.39 

20 0.10 2.97 2.59 2.3B 2.25 2.16 2.09 2.04 2.00 1.96 l.94 1.92 1.89 

0.05 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.31 2.28 

O.Ql 3.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37 3.29 3.23 
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df for Numerator 

311 

dffor 

Denomi-
15 20 24 30 40 50 60 100 J20 200 500 00 rx nator 

1.53 1.52 1.52 1.51 1.5 J 1.50 1.50 1.49 1.49 1.49 1.48 1.48 0.25 
2.24 2.20 2. J 8 2.16 2.13 2.12 2.11 2.09 2.08 2.07 2.06 2.06 0.10 10 
2.85 2.77 2.74 2.70 2.66 2.64 2.62 2.59 2.58 2.56 2.55 2.54 0.05 
4.56 4.4J 4.33 4.25 4.17 4.12 4.08 4.01 4.00 3.96 3.93 3.91 0.01 

J� lM JM l� l� l� l� lM lM lM lM lM � 

2.17 2.12 2.10 2.08 2.05 2.04 2.03 2.00 2.00 1.99 1.98 1.97 0.10 11 

2.72 2.65 2.61 2.57 2.53 2.51 2.49 2.46 2.45 2.43 2.42 2.40 0.05 

4.25 4.10 4.02 3.94 3.86 3.81 3.78 3.71 3.69 3.66 3.62 3.60 0.01 

J� l� lM lM lM JM lM 1-0 J-0 1-0 J� l� � 

2.10 2.06 2.04 2.01 1.99 1.97 1.96 1.94 1.93 1.92 1.91 1.90 0.10 12 

2.62 2.54 2.51 2.47 2.43 2.40 2.38 2.35 2.34 2.32 2.3 J 2.30 0.05 

4.0J 3.86 3.78 3.70 3.62 3.57 3.54 3.47 3.45 3.41 3.38 3.36 0.01 

1.46 1.45 1.44 1.43 1.42 1.42 1.42 1.41 1.41 1.40 J .40 J .40 0.25 

2.05 2.01 1.98 1.96 1.93 1.92 1.90 1.88 1.88 1.86 1.85 1.85 0.10 13 

2.53 2.46 2.42 2.38 2.34 2.3J 2.30 2.26 2.25 2.23 2.22 2.2J 0.05 

3.82 3.66 3.59 3.51 3.43 3.38 3.34 3.27 3.25 3.22 3.19 3.17 0.01 

1.44 1.43 1.42 1.41 1.41 1.40 1.40 1.39 1.39 1.39 1.38 1.38 0.25 

2.01 1.96 1.94 1.91 1.89 1.87 1.86 1.83 1.83 1.82 1.80 1.80 0.10 14 

2.46 2.39 2.35 2.31 2.27 2.24 2.22 2.19 2.18 2.16 2.14 2.13 0.05 

3.66 3.5J 3.43 3.35 3.27 3.22 3.18 3.11 3.09 3.06 3.03 3.00 0.01 

1.43 1.41 J .41 1.40 1.39 1.39 1.38 1.38 1.37 1.37 1.36 1.36 0.25 

1.97 1.92 1.90 1.87 1.85 1.83 1.82 1.79 1.79 1.77 1.76 1.76 0.10 15 

2.40 2.33 2.29 2.25 2.20 2.18 2.16 2.12 2.11 2.10 2.08 2.07 0.05 

3.52 3.37 3.29 3.21 3.13 3.08 3.05 2.98 2.96 2.92 2.89 2.87 0.01 

J .41 1.40 1.39 1.38 1.37 1.37 1.36 1.36 1.35 1.35 1.34 1.34 0.25 

1.94 1.89 1.87 1.84 1.81 1.79 1.78 1.76 1.75 1.74 1.73 1.72 0.10 16 

2.35 2.28 2.24 2.19 2.15 2.12 2.11 2.07 2.06 2.04 2.02 2.0 I 0.05 

3.41 3.26 3.18 3.10 3.02 2.97 2.93 2.86 2.84 2.81 2.78 2.75 0.01 

1.40 1.39 1.38 1.37 1.36 1.35 1.35 1.34 1.34 1.34 1.33 1.33 0.25 

1.91 1.86 1.84 1.81 1.78 1.76 1.75 1.73 1.72 1.71 1.69 1.69 0.10 17 

2.31 2.23 2.19 2.15 2.10 2.08 2.06 2.02 2.01 1.99 1.97 1.96 0.05 

3.31 3.16 3.08 3.00 2.92 2.87 2.83 2.76 2.75 2.71 2.68 2.65 0.01 

1.39 1.38 1.37 1.36 1.35 1.34 1.34 1.33 1.33 1.32 1.32 1.32 0.25 

1.89 1.84 1.81 1.78 1.75 1.74 1.72 1.70 1.69 1.68 1.67 1.66 0.10 18 

2.27 2.19 2.15 2.11 2.06 2.04 2.02 1.98 1.97 1.95 1.93 1.92 0.05 

3.23 3.08 3.00 2.92 2.84 2.78 2.75 2.68 2.66 2.62 2.59 2.57 0.01 

1.38 1.37 1.36 1.35 1.34 1.33 1.33 1.32 1.32 1.31 1.31 1.30 0.25 

1.86 1.81 1.79 1.76 1.73 1.71 1.70 1.67 1.67 1.65 1.64 1.63 0.10 19 

2.23 2.16 2.11 2.07 2.03 2.00 1.98 1.94 1.93 1.91 1.89 1.88 0.05 

3.15 3.00 2.92 2.84 2.76 2.71 2.67 2.60 2.58 2.55 2.51 2.49 0.01 

1.37 1.36 1.35 1.34 1.33 1.33 1.32 1.31 1.31 1.30 1.30 1.29 0.25 

1.84 1.79 1.77 1.74 J.7J 1.69 1.68 1.65 1.64 1.63 1.62 l.6J 0.10 20 

2.20 2.12 2.08 2.04 1.99 1.97 1.95 1.41 1.90 1.88 1.86 1.84 0.05 

3.09 2.94 2.86 2.78 2.69 2.64 2.61 2.54 2.52 2.48 2.44 2.42 0.01 
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Table B.l (Continued) 

dffor 
df for Numerator 

Denomi-

nator rx I 2 3 4 5 6 7 8 9 10 11 12 

0.25 1.40 1.48 1.47 1.45 1.44 1.42 1.41 1.40 1.39 1.39 1.38 1.37 

22 0.10 2.95 2.56 2.35 2.22 2.13 2.06 2.01 1.97 1.93 1.90 1.88 1.86 

0.05 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30 2.26 2.23 

0.01 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 3.26 3.18 3.12 

0.25 1.39 1.47 1.46 1.44 1.43 1.41 1.40 1.39 1.38 1.38 1.37 1.36 

24 0.10 2.93 2.54 2.33 2.19 2.10 2.04 1.98 1.94 1.91 1.88 1.85 1.83 

0.05 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25 2.21 2.18 

0.01 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26 3.17 3.09 3.03 

0.25 1.38 1.46 1.45 1.44 1.42 1.41 1.39 1.38 1.37 1.37 1.36 1.35 

26 0.10 2.91 2.52 2.31 2.17 2.08 2.01 1.96 1.92 1.88 1.86 1.84 1.81 

0.05 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22 2.18 2.15 

0.01 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18 3.09 3.02 2.96 

0.25 1.38 1.46 1.45 1.43 1.41 1.40 1.39 1.38 1.37 1.36 1.35 1.34 

28 0.10 2.89 2.50 2.29 2.16 2.06 2.00 1.94 1.90 1.87 1.84 1.81 1.79 

0.05 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2.19 2.15 2.12 

0.01 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12 3.03 2.96 2.90 

0.25 1.38 1.45 1.44 1.42 1.41 1.39 1.38 1.37 1.36 1.35 1.35 1.34 

30 0.10 2.88 2.49 2.28 2.14 2.05 1.98 1.93 1.88 1.85 1.82 1.79 1.77 

0.05 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 2.13 2.09 

O.QJ 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 2.98 2.91 2.84 

0.25 1.36 1.44 1.42 1.40 1.39 1.37 1.36 1.35 1.34 1.33 1.32 1.31 

40 0.10 2.84 2.44 2.23 2.09 2.00 1.93 1.87 1.83 1.79 1.76 1.73 1.71 

0.05 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 2.04 2.00 

O.QJ 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 2.80 2.73 2.66 

0.25 1.35 1.42 1.41 1.38 1.37 1.35 1.33 1.32 1.31 1.30 1.29 1.29 

60 0.10 2.79 2.39 2.18 2.04 1.95 1.87 1.82 1.77 1.74 1.71 1.68 1.66 

0.05 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99 1.95 1.92 

0.01 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63 2.56 2.50 

0.25 1.34 1.40 1.39 1.37 1.35 1.33 1.31 1.30 1.29 1.28 1.27 1.26 

120 0.10 2.75 2.35 2.13 1.99 1.90 1.82 1.77 1.72 1.68 1.65 1.62 1.60 

0.05 3.92 3.07 2.68 2.45 2.29 2.17 2.09 2.02 1.96 1.91 1.87 1.83 

O.QJ 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56 2.47 2.40 2.34 

0.25 1.33 1.39 1.38 1.36 1.34 1.32 1.31 1.29 1.28 1.27 1.26 1.25 

200 0.10 2.73 2.33 2.11 1.97 1.88 1.80 1.75 1.70 1.66 1.63 1.60 1.57 

0.05 3.89 3.04 2.65 2.42 2.26 2.14 2.06 1.98 1.93 1.88 1.84 1.80 

0.01 6.76 4.71 3.88 3.41 3.11 2.89 2.73 2.60 2.50 2.41 2.34 2.27 

0.25 1.32 1.39 1.37 1.35 1.33 1.31 1.29 1.28 1.27 1.25 1.24 1.24 

00 0.10 2.71 2.30 2.08 1.94 1.85 1.77 1.72 1.67 1.63 1.60 1.57 1.55 

0.05 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 1.83 1.79 1.75 

0.01 6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.41 2.32 2.25 2.18 

Table B.l is abridged from Table 18 in Pearson E.S. & Hartley H.O. (eds) (1958). Biometrika Tables 
for Statisticians. Vol. I, 2nd ed. New York: Wiley. Reproduced with permission of the editors and the 
trustees of Biometrika. 
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df for Numerator 

15 20 24 30 40 50 60 100 120 200 500 00 

1.36 1.34 1.33 1.32 1.31 1.31 1.30 1.30 1.30 1.29 1.29 1.28 0.25 
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dffor 
Denomi
nator 

1.81 1.76 1.73 1.70 1.67 1.65 1.64 1.61 1.60 1.59 1.58 1.57 O.IO 22 

2.15 2.07 2.03 1.98 1.94 1.91 1.89 1.85 1.84 1.82 1.80 1.78 0.05 

2.98 2.83 2.75 2.67 2.58 2.53 2.50 2.42 2.40 2.36 2.33 2.31 0.01 

1.35 1.33 1.32 1.31 1.30 1.29 1.29 1.28 1.28 1.27 1.27 1.26 0.25 
1.78 1.73 1.70 1.67 1.64 1.62 1.61 1.58 1.57 1.56 1.54 1.53 O. IO 24 
2.11 2.03 1.98 1.94 1.89 1.86 1.84 1.80 1.79 1.77 1.75 1.73 0.05 
2.89 2.74 2.66 2.58 2.49 2.44 2.40 2.33 2.31 2.27 2.24 2.21 0.01 

1.34 1.32 1.31 1.30 1.29 1.28 1.28 1.26 1.26 1.26 1.25 1.25 0.25 

1.76 1.71 1.68 1.65 1.61 1.59 1.58 1.55 1.54 1.53 1.51 1.50 0.10 26 
2.07 1.99 1.95 1.90 1.85 1.82 1.80 1.76 1.75 1.73 1.71 1.69 0.05 
2.81 2.66 2.58 2.50 2.42 2.36 2.33 2.25 2.23 2.19 2.16 2.13 0.01 

1.33 1.31 1.30 1.29 1.28 1.27 1.27 1.26 1.25 1.25 1.24 1.24 0.25 

1.74 1.69 1.66 1.63 1.59 1.57 1.56 1.53 1.52 1.50 1.49 1.48 O. IO 28 
2.04 1.96 1.91 1.87 1.82 1.79 1.77 1.73 1.71 1.69 1.67 1.65 0.05 
2.75 2.60 2.52 2.44 2.35 2.30 2.26 2.19 2.17 2.13 2.09 2.06 0.01 

1.32 1.30 1.29 1.28 1.27 1.26 1.26 1.25 1.24 1.24 1.23 1.23 0.25 

1.72 1.67 1.64 1.61 1.57 1.55 1.54 1.51 1.50 1.48 1.47 1.46 0.10 30 
2.01 1.93 1.89 1.84 1.79 1.76 1.74 1.70 1.68 1.66 1.64 1.62 0.05 
2.70 2.55 2.47 2.39 2.30 2.25 2.21 2.13 2.11 2.07 2.03 2.01 0.01 

1.30 1.28 1.26 1.25 1.24 1.23 1.22 1.21 1.21 1.20 1.19 1.19 0.25 

1.66 1.61 1.57 1.54 1.51 1.48 1.47 1.43 1.42 1.41 1.39 1.38 0.10 40 

1.92 1.84 1.79 1.74 1.69 1.66 1.64 1.59 1.58 1.55 1.53 1.51 0.05 

2.52 2.37 2.29 2.20 2.11 2.06 2.02 1.94 1.92 1.87 1.83 1.80 0.01 

1.27 1.25 1.24 1.22 1.21 1.20 1.19 1.17 1.17 1.16 1.15 1.15 0.25 

1.60 1.54 1.51 1.48 1.44 1.41 1.40 1.36 1.35 1.33 1.31 1.29 0.10 60 

1.84 1.75 1.70 1.65 1.59 1.56 1.53 1.48 1.47 1.44 1.41 1.39 0.05 

2.35 2.20 1.12 2.03 1.94 1.88 1.84 1.75 1.73 1.68 1.63 1.60 0.01 

1.24 1.22 1.21 1.19 1.18 1.17 1.16 1.14 1.13 1.12 I.I I 1.10 0.25 

1.55 1.48 1.45 1.41 1.37 1.34 1.32 1.27 1.26 1.24 1.21 1.19 0.10 120 

1.75 1.66 1.61 1.55 1.50 1.46 1.43 1.3-7 1.35 1.32 1.28 1.25 0.05 

2.19 2.03 1.95 1.86 1.76 1.70 1.66 1.56 1.53 1.48 1.42 1.38 0.01 

1.23 1.21 1.20 1.18 1.16 1.14 1.12 1.11 1.10 1.09 1.08 1.06 0.25 

1.52 1.46 1.42 1.38 1.34 1.31 1.28 1.24 1.22 1.20 1.17 1.14 O. IO 200 

I. 72 1.62 1.57 1.52 1.46 1.41 1.39 1.32 1.29 1.26 1.22 1.19 0.05 

2.13 1.97 1.89 1.79 1.69 1.63 1.58 1.48 1.44 1.39 1.33 1.28 0.01 

1.22 1.19 1.18 1.16 1.14 1.13 1.12 1.09 1.08 1.07 1.04 1.00 0.25 

1.49 1.42 1.38 1.34 1.30 1.26 1.24 1.18 1.17 1.13 1.08 1.00 0.10 00 

1.67 1.57 1.52 1.46 1.39 1.35 1.32 1.24 1.22 1.17 1.11 1.00 0.05 

2.04 1.88 1.79 1.70 1.59 1.52 1.47 1.36 1.32 1.25 1.15 1.00 0.01 
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