# Mathematical Propositions

**Types and Proofs** 

Dr. Pooja Assistant Professor

### Statements or Propositions

- A proposition or statement is a declaration which is either true or false.
- Some examples:
- \* Orange juice contains vitamin C is a statement that is true.
- Open the door. This is not considered a statement since we cannot assign a true or false value to this sentence. It is a command, but not a statement or proposition.

## Truth Table

- It is a table giving the truth values of a compound statement.
- It has a number of columns and rows.
- It is very helpful in finding out the validity of a report.

# **Compound Statement**

It is a combination of two or more simple statements.
e.g. 1. Either he is an intelligent or he is hardworking.
2. √2 is real no. and √-2 is an imaginary no.

| <b>Connection Word</b> | Name of Connective                 | Symbol                |
|------------------------|------------------------------------|-----------------------|
| Or                     | Disjunction                        | V                     |
| And                    | Conjunction                        | Λ                     |
| Ifthen                 | Implication<br>(conditional)       | $\longrightarrow$     |
| If and only of (iff)   | Double implication<br>(Equivalent) | $\longleftrightarrow$ |
| Not                    | Negation                           | —                     |

P is a true statement. ~P is false and Vice-Versa.

# Example of Truth Table



# Definition

- Open Sentence an equation that contains one or more variables.
  - An open sentence is neither true nor false until the variable is filled in with a value.
- Examples:
  - Open sentence: 3x + 4 = 19.
  - Not an open sentence: 3(5) + 4 = 19.

# Valid and Invalid Arguments

In mathematics and logic an *argument* is a sequence of statements ending in a conclusion. We now show how to determine whether an argument is valid—that is, whether the conclusion follows *necessarily* from the preceding statements. We will show that this determination depends only on the form of an argument, not on its content.

For example, the argument

If Jim is a man, then Jim is mortal. Jim is a man.

:. Jim is mortal.

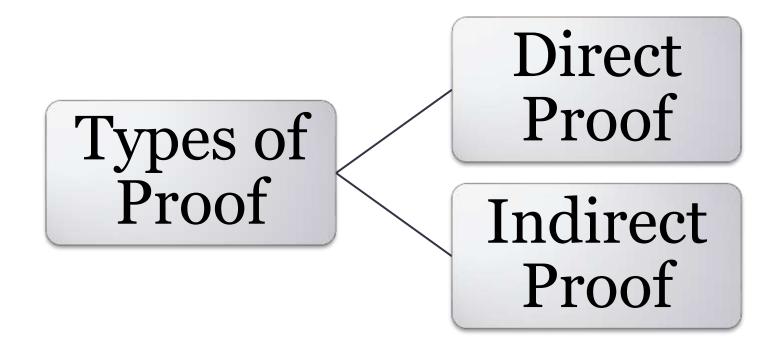
# Converse, Inverse, and Contrapositive

- If you <u>interchange</u> the antecedent and the consequent of a conditional, you form a new conditional known as the *converse* of the original statement.
- If you <u>negate</u> both the antecedent and the consequent, you form the *inverse* of the statement.
- If you <u>interchange and negate</u> the antecedent and consequent, you form the *contrapositive* of the statement.

| Related Conditional Sta | tements        |                       |
|-------------------------|----------------|-----------------------|
| Conditional (original)  | p→q            | If p, then q.         |
| Converse                | q→p            | If q, then p.         |
| Inverse                 | ~p → ~q        | If not p, then not q. |
| Contrapositive          | ~q <b>→</b> ~p | If not q, then not p. |

# Proofs

• A symbol of a theorem is finite sequence of logically valid steps that demonstrate that the premises of a theorem imply the conclusion.



#### Example of Direct Proof

- Theorem: The sum of two odd integers is even
  - let m and n be odd numbers, thus n = 2s + 1 and m = 2t + 1 definition of odd number
  - 2. n + m = (2s+1) + (2t+1) substitution
  - 3. = 2s + 2t + 1 + 1
  - 4. = 2(s+t+1)
  - 5. n+m is even

associativity and commutatively associativity and commutatively

definition of even

Cal Poly Computer Science Department

## Indirect proof

- □ The method of proof by contradiction of a theorem p → q consists of the following steps:
  - 1. Assume p is true and q is false
  - Show that ~p is also true.
  - 3. Then we have that p ^ (~p) is true.
  - But this is impossible, since the statement p ^ (~p) is always false. There is a contradiction!
  - 5. So, q cannot be false and therefore it is true.
- OR: show that the contrapositive (~q)→(~p) is true.
  - □ Since (~q) → (~p) is logically equivalent to p → q, then the theorem is proved.

 $+h\{a_n\}^k \varphi \circ \cup$